
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

8-2022

A Memory-Centric Customizable Domain-Specific FPGA Overlay A Memory-Centric Customizable Domain-Specific FPGA Overlay

for Accelerating Machine Learning Applications for Accelerating Machine Learning Applications

Atiyehsadat Panahi
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Computer and Systems Architecture Commons, Digital Communications and Networking

Commons, Hardware Systems Commons, and the Systems and Communications Commons

Citation Citation
Panahi, A. (2022). A Memory-Centric Customizable Domain-Specific FPGA Overlay for Accelerating
Machine Learning Applications. Graduate Theses and Dissertations Retrieved from
https://scholarworks.uark.edu/etd/4618

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact scholar@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F4618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.uark.edu%2Fetd%2F4618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.uark.edu%2Fetd%2F4618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.uark.edu%2Fetd%2F4618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/263?utm_source=scholarworks.uark.edu%2Fetd%2F4618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=scholarworks.uark.edu%2Fetd%2F4618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/4618?utm_source=scholarworks.uark.edu%2Fetd%2F4618&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

A Memory-Centric Customizable Domain-Specific FPGA Overlay for Accelerating Machine
Learning Applications

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Engineering, with a concentration in Computer Engineering

by

Atiyehsadat Panahi
Sharif University of Technology

Bachelor of Science in Computer Engineering, 2014
Shahid Beheshti University

Master of Science in Computer Engineering, 2016

July 2022
University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

David Andrews, Ph.D,
Dissertation Director

John M. Gauch, Ph.D,Mark E. Arnold, Ph.D,
Committee MemberCommittee Member

Miaoqing Huang, Ph.D,
Committee Member

Abstract

Low latency inferencing is of paramount importance to a wide range of real time and user

facing Machine Learning (ML) applications. Field Programmable Gate Arrays (FPGAs) offer

unique advantages in delivering low latency as well as energy efficient accelertors for low latency

inferencing. Unfortunately, creating machine learning accelerators in FPGAs is not easy,

requiring the use of vendor specific CAD tools and low level digital and hardware

microarchitecture design knowledge that the majority of ML researchers do not possess. The

continued refinement of High Level Synthesis (HLS) tools can reduce but not eliminate the need

for hardware-specific design knowledge. The designs by these tools can also produce inefficient

use of FPGA resources that ultimately limit the performance of the neural network. This research

investigated a new FPGA-based software-hardware codesigned overlay architecture that opens the

advantages of FPGAs to the broader ML user community. As an overlay, the proposed design

allows rapid coding and deployment of different ML network configurations and different

data-widths, eliminating the prior barrier of needing to resynthesize each design. This brings

important attributes of code portability over different FPGA families. The proposed overlay

design is a Single-Instruction-Multiple-Data (SIMD) Processor-In-Memory (PIM) architecture

developed as a programmable overlay for FPGAs. In contrast to point designs, it can be

programmed to implement different types of machine learning algorithms. The overlay

architecture integrates bit-serial Arithmetic Logic Units (ALUs) with distributed Block RAMs

(BRAMs). The PIM design increases the size of arithmetic operations and on-chip storage

capacity. User-visible inference latencies are reduced by exploiting concurrent accesses to

network parameters (weights and biases) and partial results stored throughout the distributed

BRAMs. Run-time performance comparisons show that the proposed design achieves a speedup

compared to HLS-based or custom-tuned equivalent designs. Notably, the proposed design is

programmable, allowing rapid design space exploration without the need to resynthesize when

changing ML algorithms on the FPGA.

Acknowledgements

I am deeply grateful to my supervisor Dr. David Andrews for his assistance, inspiration, and

helpful guidelines at every stage of the research project. He has been so supportive and

understanding to me during these years. I also thank my committee members, Dr. Arnold, Dr.

John Gauch, and Dr. Huang. I appreciate the time they spent on reviewing and evaluating my

work. Thank you to the National Science Foundation (NSF) for the financial supports they

provided under grant number 1956071 to the Computer Systems Design laboratory. I also want to

thank my lab mates, Suhail Balsalama and Ange-Thierry Ishimwe for working with me during the

first stages of this project and their contributions on it. Finally, I would like to thank my husband

and my son for their love and continues support in the past and the future. I also thank my family

and family-in-law for their patience and encouragement.

Table of Contents

1 Introduction 1

1.1 Research Goals and Approach . 2

1.2 Thesis Statement . 5

1.3 Evaluation Strategy . 6

1.4 Summary . 7

2 Related Works 9

3 Proposed Approach 25

3.1 System Architecture . 26

3.2 ISA . 28

3.3 Memory-Centric Tiles and PE-blocks . 30

3.4 ALUs . 32

3.5 Bit-serial Arithmetic . 33

3.6 Controller . 35

3.7 Data Movement . 37

3.8 I/O Buffer (Parallel/Serial Converter) . 39

3.9 Activation Functions . 39

3.10 Software Programmability . 41

4 Results 47

4.1 Latency Comparison . 48

4.2 Resource Utilization Comparison . 52

4.3 Performance Comparison . 53

4.4 Overlay Portability . 55

5 Optimizations 57

5.1 Internal Data Movement . 57

5.1.1 Latency Comparison . 60

5.1.2 Resource Utilization Comparison . 63

5.2 Bit-Sliced Method . 63

5.2.1 Bit-sliced PE-blocks . 64

5.2.2 Bit-sliced Arithmetic . 65

5.2.3 Latency Comparison . 67

5.2.4 Resource Utilization Comparison . 69

5.2.5 Performance Comparison . 71

5.3 Online Training . 75

5.4 Design Space Exploration . 80

5.4.1 Defining the Equations . 83

5.4.2 Explaining an Example Equation . 83

5.4.3 Mapping to SIMD Instructions . 84

5.4.4 Verifying the Equations . 86

6 Conclusion 88

References 92

List of Figures

1 Memory Architecture (a) Central memory vs. (b) Our memory-centric. 5

2 Overlay architecture. 28

3 PIM Tile. 31

4 Bit-serial ALUs. 33

5 Bit-serial Booth’s Multiplication Algorithm. 36

6 Mapping convolution algorithm into processor array. 44

7 Mapping matrix multiplication algorithm into processor array. 45

8 Mapping large matrix multiplication algorithm into processor array. 45

9 Binary Tree Interconnect. 59

10 MAC and Move clock cycles at Internal Data Movement optimization. 61

11 PE blocks layout for bit-sliced methods. 66

12 Bit-sliced multiplication algorithm. 67

13 Benchmarks Execution time: (a) MLP, (b) LSTM, (c) CNN, (d) GRU. 68

14 ALUs’ Performance for Different Methods: (a) Addition/Subtraction, (b) Multi-

plication, (c) NEWS Moves. 70

15 Area × Latency for Different Methods: (a) Addition/Subtraction, (b) Multiplica-

tion, (c) NEWS Moves. 73

16 Functional Density for Different Methods. 74

17 Modifications for Supporting Online Training. 78

18 SoC with Overlay. 81

List of Tables

1 Comparing the Previous FPGA-based Overlay Implementations 14

2 Comparing the Previous FPGA-based LSTM Implementations 19

3 Comparing the Previous FPGA-based MLP Implementations 22

4 Comparing the Previous FPGA-based MLP Training Implementations 24

5 ISA and Software Macros . 46

6 Software Macros Instruction Count Break-Down. 46

7 FPGA Implementation Results . 50

8 Low-precision Networks Performance Comparison. 52

9 Our Processor Array Overlay’s Resource Utilization 54

10 Bit-serial ALUs Performance . 55

11 Breakdown of Execution Cycles . 59

12 Effects of Internal Data Movement Optimization on Benchmarks Instruction Count. 61

13 Analysis of PEs and Interconnections . 62

14 Effects of Binary Tree Interconnect . 63

15 Instructions Latency in Clock Cycles. 64

16 Small MLP Benchmark Execution Time (µs) for Different Methods 69

17 Max number of PEs for Different Methods . 72

18 Max Operating Frequency for Different Methods 75

19 Processor Array Overlay Results (8-bit FxP, 200 MHz, Virtex UltraScale+ VU9P) . 79

20 Parameter Definition of Cycle Count Equations. 85

21 Software Macros Instruction Count Break-Down. 86

Chapter 1

Introduction

Machine Learning (ML) algorithms have permeated every aspect of our daily lives, from how our

search engines provide us with relevant and customized information, companies tailor

individualized marketing campaigns, doctors access our health, through the realization of

autonomous vehicles. In somewhat of a twist of fate, the rise of Machine Learning occurred as

our ability to ride Moore’s law began to slow down. Just as computationally intensive machine

learning algorithms began positioning themselves as the next generation computationally

challenging workload our ability to deliver transparent performance increases began to vanish.

These two realities served as a catalyst for computer architects to explore new technologies and

architectures capable of delivering the level of scalable performance necessary to meet current

and next generation Machine Learning application requirements.

Field Programmable Gate Arrays (FPGAs) as well as Application-Specific Integrated Circuits

(ASICs) have found their way into data centers and cloud infrastructures to meet the performance

and energy efficiency requirements of current and next generation Machine Learning applications.

FPGAs cannot compete with custom ASICs in terms of clock frequency and performance.

However, they do combine a compelling energy efficiency argument with a unique ability to allow

their gates to be reconfigured on a per-application basis after deployment [1]. Once deployed

gates can be reconfigured in the field to support follow on changes to base compute algorithms or

the integration of additional user functionality which can occur weekly in data centers. Such

flexibility and ability to rapidly update is not a hallmark of ASICs that once deployed cannot be

changed, and modifications requiring $10’s of Millions of dollars of refabrication costs spanning

multiyear design cycles. This delay could render the new chip obsolete and multiple generational

changes behind by the time it was deployed.

As an example, Microsoft developed Catapult, an FPGA-based system to accelerate their

Bing web search service [2]. Microsoft could have created an ASIC but chose to use FPGAs for

1

their exact ability to support the rapid updates needed to continually provide competitive

advantages over other search engines. Microsoft followed up the Catapult work with Brainwave,

which uses FPGAs within data centers to accelerate ML algorithms. Microsoft has deployed over

1.5 Million FPGAs throughout their data centers [7].

Forecasts predict the number of worldwide IoT edge devices will approach 75 billion in 2025,

representing a fivefold increase in ten years [6]. This explosive growth is changing how we will

store and analyze data. Traditional cloud-based IoT paradigms can lead to prohibitively long

latencies for gathering and transferring raw data from distributed sensors to consolidated data

centers for analysis and transferring actionable knowledge back to edge devices that need to take

actions in real-time. Processing is moving out to where the data is produced, domain-specific

hardware accelerators are becoming ubiquitous infrastructure, and latency is replacing throughput

as the driving system performance requirement. FPGAs are poised to play a key role in this

migration.

Despite their appeal of energy efficiency and in field customization, the poor levels of

designer productivity offered by vendor development tools have left software developers and

programmers reluctant to embrace their use. The success of our software industry was built on the

three tenets of software engineering; abstraction, portability and reuse. FPGA hardware design

violates all three of these tenets. Designers must code to the physical architecture not a higher

level abstract machine model. The designs produced are machine specific and not portable, and

the code must be changed for different logic families.

1.1 Research Goals and Approach

The goal of this research was to explore if the same advantages brought to software development

through abstraction, portability and reuse could be brought over the design of machine learning

accelerators within FPGAs.

Operating Systems enable code portability and reuse by separating high level user accessible

policies from lower level platform specific mechanisms. Overlays were originally developed for

2

FPGAs to provide the same type of separation between policies and mechanisms. Whereas

Operating Systems provide system services, Overlays break up the direct translation of

application code into low level platform specific gates. In essence an overlay is an abstract model

that like an operating system provides the transition between user accessible policies that are

portable and can be reused over different lower level platform specific mechanisms.

Prior research on Overlays have shown that portability and reuse of the user code could be

achieved by at a rather significant cost of performance. This limited their use in the performance

oriented world of reconfigurable computing. The first goal of this research was to develop a new

overlay architecture that could bring the best of both worlds; designer productivity levels

associated with software development but levels of performance associated with custom hardware

design. The research conducted for this dissertation resulted in a new memory-centric

(Processor-In-Memory (PIM)) overlay architecture. In a memory-centric architecture, on-chip

memories and not the Processing Elements (PEs) became the focal core of the architecture. This

inverted the classic Von Neumann model, which had the processor as the focal core and led to the

classic Von Neumann bottleneck. Results provided in this dissertation show that this paradigm

shift in models was not just competitive with custom designs but in some cases resulted in new

levels of reduced inference latency. An interesting outcome of this research is showing how the

new PIM architecture can eliminate the classic Von Neumann bottleneck and enable FPGA IoT

devices to meet stringent real time inference latency requirements [8].

How to configure processing elements around the on-chip memories (BRAMs) to increase

storage capacity and maximize concurrent accesses become a crucial part of my investigations.

Further, I explored how the memory-centric approach improved performance using memories that

are optimized for data locality. The memory-centric method maximized utilization of limited

FPGA resources without any complex workload scheduler. Figure 1(b) illustrates how each

groups of PEs have concurrent access to local memory (BRAMs), and how data moves by

hopping through the PEs core-to-core. This architecture lowered inter-PE communication

latencies by allowing memory-to-memory direct transfers between the PEs’ register files. This

3

distributed memory architecture maximizes energy efficiency as it can take high parallelism when

compared with the centered memory architecture shown in Figure 1(a). PIM processors are

tightly coupled with the memory, which supports the unique property of scaling the processing

capability with the amount of available memory. In addition, since the processors are tightly

coupled with the memory, the data does not have to move across a shared bus. In the this method,

there is no buffer in the processors and the intermediate results are stored in memory. Therefore,

the processors are as small as possible, and as the size of the storage increases, processing

capabilities also increase to guarantee linear scaling with the memory size.

Prior investigations of overlays for Machine learning were constrained to only support a

single type of neural network configuration such as a Multi-Layer Perceptron (MLP), a

Convolutional Neural Network (CNN), a Long-Short Term Memory (LSTM), or a Gated

Recurrent Unit (GRU) network. Prior to this research there were no studies of Overlays that could

be used to support mutliple types of networks. A goal of this research was to explore the

feasibility of a single generalized overlay that could support all types of network configurations.

To promote code portability and reuse the new overlay architecture would need to be in a form

implementable in the user logic of various FPGA families. To achieve this a parameterized

overlay was developed capable of supporting various fixed-point formats and precisions.

Designers can specify the fixed-point precision based on their accuracy requirements using a

single overlay. Regardless of the chosen specific platform implementation mechanisms user code

was not affected. This provided the requisite separation of policy from mechanism that had been

missing in prior FPGA desgin flows.

As part of this research, a new run-time application programming interface (API) was

developed that allowed any neural network configuration to be compiled on the overlay. Each time

a new ML network configuration or a new set of network parameters is given, instead of having to

resynthesize a new accelerator, the new network can be expressed in a traditional high-level

programming language, compiled and linked with a set of macro libraries to retarget the overlay.

This extends the prior work on FPGA overlays for machine learning algorithms that accelerated

4

DSP

DSP

DSP

DSP

Potential bottleneck

(a)

M
em

ory

M
em

ory

PE

PE
PE

PE

PE

PE

PEPEPE

PE
M

em
ory

PE

PE
PE

PE

PE

PE

PEPEPE

PE

(b)

Figure 1: Memory Architecture (a) Central memory vs. (b) Our memory-centric.

only one particular network type [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. ML

algorithms continue to rapidly evolve, and various model structures and optimization techniques

are constantly emerging. Perhaps the most significant outcome of this research is a new

easy-to-use software programmable framework that can be used by algorithmists and software

engineers as they seek to explore how new machine learning algorithms can be accelerated.

Taken together, my approach will bring software levels of productivity to the design of

FPGA-based neural networks and open the use of FPGAs to the large cadre of programmers with

no hardware design expertise.

1.2 Thesis Statement

When I set out on this research I proposed that a memory-centric or PIM architecture could

reduce inference latencies better than what current Von Neumann type architectures with separate

processing and memory subsystems could achieve. Further I put forth the idea that a PIM

architecture could also serve as a generalized programmable overlay that can support all types of

neural networks with performance that would remain competitive with custom designs. I

proposed that supporting both communication-bound and computation-bound ML algorithms

[24] on a generalized programmable overlay would require new optimizations to fit the overlay

5

into FPGA devices with limited available resources and on-chip memories.

The results of this research verify that a PIM architecture approach does reduce the inference

latency when compared to classical Von Neumann custom accelerators. This result held on when

comparing the generalized programmable overlay with other state of the art HLS generated Von

Neumann architectures. The PIM architeture allows exploitation of much higher degrees of

on-chip concurrent data accesses between the local memory and the processing elements

compared to the HLS generated Von Neumann architectures. Results showed that concurrent data

accesses scaled with the volume of data stored within the limited on-chip memories. New

approaches were developed to increase the utilization of the on-chip distributed memories to

achieve this scaling. Increasing the volume of data stored on-chip had the secondary affect of

reducing the overhead associated with batch transferring the ML network parameters between

external DRAM and on-chip BRAM buffers. Thus, a key component to reducing end-to-end

inference latency was the creation of a PIM architecture that maximized concurrency of operand

accesses and minimized the number of cycles spent stalled in the arithmetic units waiting for data

to be transferred between the internal and external memories. New design techniques were

developed as part of this research that minimized data access times by increasing the usable

capacity of the on-chip BRAMs. This allowed a greater number of ML network parameters to be

stored on-chip and concurrently accessed by large numbers of processing elements.

1.3 Evaluation Strategy

The claims of portability and re-programmability of the overlay were validated by running a wide

suite of benchmarks gathered from the literature on the overlay. The benchmarks were either

compiled or hand coded in MicroBlaze assembly. A small set of functions that represent Domain

Specific Language was created during this research to facilitate rapid testing of the overlay over

different FPGA architectures. All benchmarks were run on the overlay without having to

re-synthesize the design. Benchmarks from the three different types of ML networks (MLP, CNN,

LSTM, and GRU) benchmarks from the literature were adopted to provide as fair comparisons of

6

performance and resource utilization. These benchmarks were chosen to evaluate the design’s

performance for ML algorithms that ran the spectrum of being communication-bound or

computation-bound. The benchmarks contained a suite of networks with varying numbers of

network parameters ranging from sufficiently small to enable all parameters to fit into the on-chip

memory, up to benchmarks with large numbers of parameters that could not fit into on-chip

memory. These larger networks allowed the effects of our memory-centric method on data access

times between on chip BRAM and off chip DRAM to be evaluated. Results are also included that

show how data bit-widths effect the size of the overlay that could be embedded within different

FPGA logic families and the resulting end to end inference latency. Detail are provided in

Chapter 4.

1.4 Summary

• Developed an SoC architecture that includes a fully programmable memory-centric FPGA

overlay. The overlay can implement any standard ML architecture in any data-width on any

FPGA. The overlay resolve prior issues of poor design reuse and low productivity without a

loss of performance.

• Defined a hierarchical design strategy that allows the overlay to be tuned to exploit the

specific resources of different FPGA devices. The memory-centric architecture reduces

both computation and communication latencies with the 2-D array of mixed variable and

low-precision multiply-accumulate units.

• Reduced communication latencies using memory-centric computing through combining

local data storage and massively parallel processing elements by enabling full concurrent

accesses for ALUs to weights and partial results stored in on-chip BRAMs.

• Developed new optimizations that can be used to reduce communication latencies for

matrix reduction operations while optimizing ALU performance by supporting bit-slicing

in addition to bit-serial operations. These optimizations reduce the overall latency of the

7

ML benchmarks and increases the utilized resource utilization.

• Implemented an MLP back-propagation algorithm to support online training of MLP

networks.

• Performed design space exploration on different design parameters using a set of equations

than can find the optimum design for a specific ML application.

• Analysed performance and results of standard ML benchmarks including MLP, CNN,

LSTM, and GRU implemented on Xilinx Virtex-7 and Virtex Ultra FPGAs. The results

show that the overlay’s latency is competitive and for some benchmarks lower than the

previous custom ML accelerators.

The remainder of this dissertation is organized as follows. Chapter two provides a survey of

related works. The description of our approach with the design’s implementation details is

provided in Chapter three. The next chapter discusses the results of comparing our design with

previous works as well as the evaluation of the design in different metrics including the area,

latency, and performance. The fifth chapter describes the optimizations have been applied on the

original design and, finally, the last Chapter is a summary of the dissertation.

8

Chapter 2

Related Works

The FPGA overlays are developed to support software programmability for the hardware designs.

Some overlays are implemented in high-level languages to generate HDL codes, and some are

written in HDL languages. In the HDL-generator overlays [16, 19, 23, 45], the design is

translated into RTL/HDL either manually, using automated tools, or by generating the hardware

implementations with RTL-HLS hybrid templates. The other type of overlays are reprogrammed

at run-time to rapidly implement different network topologies. These overlays, including our

design, are usually hardware/software co-designed using an automation flow to directly compile

high-level network definitions (such as Caffe or Tensorflow) to the final FPGA accelerator. In

these designs [14, 15, 17, 18, 20], the hardware design synthesis is conducted once, for all

network topologies. The soft processor, however, runs separately for each ML network topology.

Among these works, [18, 45] support various data-widths that is also supported in our design.

Our processor array overlay indicates that overlays are viable across ML applications and can

compete in performance with custom designs. For a better comparison with previous works, a

summary of FPGA-based overlays is presented in Table 1. As presented in this table, while our

FPGA-based accelerators in the literature mainly focused on CNNs as they are

computation-bound, there is significant intermediate data communication overhead in other

machine learning models, diminishing overall performance gains. Therefore, the models that are

communication-bound can become the new bottleneck [48]. In other words, most prior works

have focused on increasing computational density, whereas in our method, the focus is on

addressing this issue to well support communication bound ML algorithms using the

memory-centric approach. The previous works reduce the off-chip communication by

compression, sparsity, or designing with lower bit-widths [49, 50, 51, 52, 53]. However, in our

processor array overlay, to maintain a deterministic execution time, we do not perform such

optimizations. Instead, since we utilize a locality-aware processing-in-memory technique, we

9

reduce the off-chip data access time by avoiding frequently accessing off-chip memory.

In Table 1, the [22] study proposes an FPGA overlay for ML applications on the edge

devices. The authors have optimized their design around the DSP blocks. They have also

optimized the overlay interconnects for the patterns required by the application domain to reduce

the resource utilization. The overlay presented in [14] is an HLS-based design for accelerating

MLPs. Their overlay can be reprogrammed at run time to rapidly change network topologies

using a linear array of processing elements. The [15] proposes an overlay for MLP

fully-connected networks that is multiplication-free. Their design’s inputs and activation

functions are quantized to power-of-two values that enables using logical shift operations instead

of multiplications. The [16] proposes a flexible debug overlay family for ML applications. Their

overlay is added to the design at compile time and is configured at debug time to keep track of

network parameters. The configuration can be changed between debug iterations [16]. The [17]

implements a CNN accelerator using a hardware/software co-designed library. They also design

an automated flow that directly compiles network high-level definitions to the CNN accelerator.

In the [18], they implement an FPGA overlay using a sophisticated domain-specific graph

compiler. In their method, the ML application is compiled to target the hardware overlay. In [19],

they propose an overlay to bridge the gap between software and hardware development. Their

design is optimized using a fine-grained layer-based pipeline architecture and a column-based

cache method to improve resource utilization and latency. The [20] proposes a software-hardware

co-designed for light-weight CNNs using reformulating and decomposing the operations for an

efficient acceleration. In [23], a CNN accelerator is developed that automatically compiles the

CNN algorithms into executable codes, which are loaded and executed by the overlay without

FPGA reconfiguration. In their design, the granularity of instruction is optimized for performance

and flexibility. The [45] study proposes an end-to-end framework that generates the hardware

design of an MLP network form its software-based TensorFlow implementation using RTL-HLS

hybrid templates. Another fine-grained FPGA overlay is designed in [64] that can be

implemented in different FPGA families from different vendors. This design is optimized by

10

mapping the interconnection network directly into the switch fabric of the hosting FPGA. The

[65] work investigates the use of a programmable overlay to reduce reconfiguration time and

increase the performance of variable DSP workloads being executed on FPGAs. An FPGA

overlay is presented in [66] that supports polynomial run-time mapping of dataflow applications

in high-performance CPU-FPGA platforms. It also maps multi-threading onto an overlay

architecture and provides the infrastructure to explore different accelerator designs [66]. The

feasibility of using a coarse-grain overlay for FPGA-based acceleration of the soft processor

codes is investigated in [13]. They use virtual dynamically reconfigurable method to rapidly

configure the soft processor at run time for implementing a given data flow graph. In [67], the

authors present an FPGA overlay architecture that is an open-source cross-compatible

architecture. The [21] study proposes a highly-scalable overlay that is optimized based on the

structure of FPGAs to achieve high operating frequencies. What distingushes our design from the

previous designs is that our overlay supports all types of ML architectures, all data-widths, and

can run on all FPGA families. Moreover, compared to the previous FPGA overlays, our

memory-centric design results in efficient on-chip memory utilization and supports large ML

benchmarks.

In our design, we also explore utilizing bit-serial operations based on SIMD memory-centric

processor-in-memory (PIM) tiles. Early works on PIM designs developed SIMD processor arrays

for video applications [54, 55, 56, 57, 58, 25]. The communication and computational

requirements of machine learning have renewed interest in PIM computing architectures for ML

applications [24]. Similar to our method, the [25] work proposes enhancing the ubiquitous FPGA

BRAMs with in-memory compute-capabilities based on bit-serial arithmetic. The authors

propose a reconfigurable in-memory accelerator architecture for deep learning inference

acceleration that outperforms the Microsoft’s BW [42]. The advantage of our design is supporting

all types of ML networks, where as the implemented design in [25] only supports RNN networks.

SIMD processor arrays are a natural approach for implementing data parallelism within the ML

applications [59, 60, 61, 62, 63]. Our design extends these ideas by tightly coupling processor

11

ALUs with memory to address off-chip communications latencies for communication-bound ML

algorithms.

Performance and area trade-off for bit-serial compared to bit-parallel arithmetic has been well

explored in previous works [68, 69, 70, 71, 72, 73, 74, 75]. It is shown in these works that how

FPGA-based bit-serial arithmetic operations offer advantages in area utilization while suffering

from performance degradation. Our propose design shows how replication of bit-serial operations

in a SIMD architecture can provide performance and area improvement by packing more

processing elements in a 2-D processor array. In this regard, some of the previous works propose

bit-serial ALUs and then replicate them to form a processor array [76, 70, 68]. These works show

that with significant concurrency, serial arithmetic can counterintuitively improve throughput

compared to bit-parallel implementations. It is discussed in [70, 68] that despite the decreased

throughput of individual serial operators, replication of serial arithmetic can provide an increase

in throughput compared to bit-parallel pipelines. Compared to previous works, our bit-serial ALU

is more resource-efficient so that we only utilize 2 LUTs and 2 FFs, while for example, our ALU

in [76] takes 16 LUTs and 7 FFs without supporting the multiplication operation. The works

presented in [77, 78] use bit-serial arithmetic to occupy minimum amount of hardware resources

for on-line encryption using bit-serial XOR and addition operations. Despite our work, their

multiplier is not fully implemented using bit-serial. The use of bit-serial multiplication in

embedded systems has been well studied [79, 80, 71, 85, 83, 86, 76, 81, 69]. While in these

works, the standard multiply-accumulate method is implemented, we have developed a bit-serial

radix-4 Booth’s multiplication. Similar to [70, 68], we use Booth’s multiplication [82], but with

optimizations on the logical shift operations and also not using any shift register in the ALUs.

This saves some resources within the ALUs and therefore, increases the level of concurrency by

packing more PEs in the design. The bit-serial and bit-sliced methods have also been utilized for

implementing the arithmetic operations of machine learning applications

[83, 84, 85, 51, 86, 87, 88]. These research works are primarily driven by the observation that

using the bit-serial operations, the data-width required for ML applications can easily vary across

12

networks and the layers of the same network. For example, in [83, 84], bit-serial is used to match

the data-width of individual neural network layers for CNNs. The work in [51] uses a serial

processor unit that processes one bit at a time and is width-specific for each group of weights with

various bit-widths. The [86] method relies on bit-serial compute units and the parallelism that is

naturally present within neural networks to improve performance and energy. In [87], bit-serial

operations are utilized to improve the memory bandwidth utilization and being capable of

retrieving any-precision data from a compact memory storage. The difference between their work

and our method is using the standard multiply-accumulate multiplication instead of our improved

Booth’s multiplication, as well as utilizing DSPs versus our method that is LUT-based. In [88],

similar to our work, they present hardware-efficient MVM implementation techniques using

bit-serial arithmetic, but at a lower operating frequency and based on a custom design just for

CNNs, not as an overlay. Bit-sliced method has been implemented in [85] for multiplication

operation in CNN networks. However, despite our method that the slice sizes can vary from 2 to

32 bits, in [85] the slice size is fixed. Therefore, our method is distinguished from the discussed

previous research works as it supports all types of neural networks and is programmable at run

time.

13

Ta
bl

e
1:

C
om

pa
ri

ng
th

e
Pr

ev
io

us
FP

G
A

-b
as

ed
O

ve
rl

ay
Im

-

pl
em

en
ta

tio
ns

R
ef

.
B

en
ch

m
ar

ks
FP

G
A

D
at

a
Fr

eq
.

C
od

e
M

et
ho

d

Fo
rm

at
(M

H
z)

[2
2]

M
L

P
Z

yn
q

U
Fx

P
18

-
H

D
L

A
fle

xi
bl

e
ar

ch
ite

ct
ur

e
th

at
fu

lly
ex

pl
oi

ts
D

SP
bl

oc
ks

[1
4]

M
L

P
Z

ed
bo

ar
d

Fx
P

13
10

0
C

++
/H

L
S

L
in

ea
ra

rr
ay

of
PE

s
re

pr
og

ra
m

m
ed

at
ru

n
tim

e

[1
5]

M
L

P
Z

Y
N

Q
-7

In
te

ge
r

30
0

V
er

ilo
g

C
pr

og
ra

m
on

A
R

M
,Q

ua
nt

iz
ed

to
po

w
er

-o
f-

tw
o

[1
6]

C
N

N
St

ra
tix

V
Fx

P
32

20
0

R
T

L
A

nu
m

be
ro

fP
E

s
an

d
m

em
or

y
bl

oc
ks

,T
he

de
si

gn
is

ge
ne

ra
to

r
tr

an
sl

at
ed

to
R

T
L

,m
an

ua
lly

or
au

to
m

at
ed

[1
7]

C
N

N
K

in
te

x
U

a
Fx

P
8,

16
20

0
H

L
S

A
n

au
to

m
at

io
n

flo
w

di
re

ct
ly

co
m

pi
le

s
hi

gh
-l

ev
el

M
L

de
fin

iti
on

s
to

th
e

fin
al

FP
G

A
ac

ce
le

ra
to

r

[1
8]

C
N

N
A

rr
ia

10
Fl

P
8-

32
45

0
H

D
L

A
do

m
ai

n
sp

ec
ifi

c
V

L
IW

co
m

pi
le

rs
M

L
to

ta
rg

et
ov

er
la

y

[1
9]

C
N

N
K

U
11

5
Fx

P
8,

16
20

0
H

D
L

A
pi

pe
lin

ed
pa

ra
m

et
er

iz
ed

pr
oc

es
s

en
gi

ne

ge
ne

ra
to

r
D

es
ig

n
flo

w
fr

om
M

L
fr

am
ew

or
ks

to
bo

ar
d-

le
ve

lF
PG

A

[2
0]

C
N

N
K

in
te

x-
7

Fx
P

8
20

0
H

D
L

A
co

m
pi

le
rf

or
m

ul
at

es
th

e
M

L
co

m
pu

ta
tio

n

an
d

m
ap

s
th

e
ne

tw
or

k
in

to
ha

rd
w

ar
e

[2
1]

C
N

N
V

ir
te

x-
7

Fx
P

16
65

0
H

D
L

A
hi

gh
ly

-s
ca

la
bl

e
ov

er
la

y
co

m
pi

la
tio

n
fr

am
ew

or
k

V
ir

te
x

U
op

tim
iz

ed
fo

rt
he

til
ed

st
ru

ct
ur

e
of

FP
G

A
s

14

[2
3]

C
N

N
K

in
te

x-
7

Fx
P

8
20

0
H

D
L

A
do

m
ai

n-
sp

ec
ifi

c
ov

er
la

y
pr

oc
es

so
r

ge
ne

ra
to

r
au

to
m

at
ic

al
ly

co
m

pi
le

d
in

to
ex

ec
ut

ab
le

co
de

s

[4
5]

C
N

N
St

ra
tix

-V
Fx

P
8-

32
15

0
H

D
L

G
en

er
at

es
ha

rd
w

ar
e

im
pl

em
en

ta
tio

ns

L
ST

M
ge

ne
ra

to
r

w
ith

R
T

L
-H

L
S

hy
br

id
te

m
pl

at
es

[6
4]

M
IP

S
V

ar
io

us
2

Fx
P

16
50

R
T

L
Po

rt
ab

le
cu

st
om

in
st

ru
ct

io
n

se
te

xt
en

si
on

s,
M

ap
pi

ng
th

e

ov
er

la
y

in
te

rc
on

ne
ct

io
n

in
to

th
e

FP
G

A
’s

sw
itc

he
s

[6
5]

Si
gn

al
V

ir
te

x-
5

Fx
P

24
19

6
H

D
L

C
G

R
A

ar
ra

y
(2

56
PE

s)

Pr
oc

es
si

ng
w

ith
a

so
ft

-c
or

e
pr

oc
es

so
rf

or
co

nt
ro

lle
r

[1
3]

Im
ag

e
St

ra
tix

II
I

Fx
P

32
-

H
D

L
A

rr
ay

of
PE

s
in

te
rc

on
ne

ct
ed

by
pr

og
ra

m
m

ab
le

Pr
oc

es
si

ng
sw

itc
he

s
co

nfi
gu

re
d

by
th

e
so

ft
pr

oc
es

so
ra

tr
un

-t
im

e

[6
6]

Im
ag

e
A

rr
ia

10
Fx

P
8-

32
20

0
C

++
H

et
er

og
en

eo
us

PE
s

fo
rt

hr
ea

ds

Pr
oc

es
si

ng
m

ap
s

th
e

da
ta

flo
w

ke
rn

el
s

on
to

th
e

ac
ce

le
ra

to
r

[6
7]

M
C

N
C

3
V

ir
te

x
5

-
-

H
D

L
A

cr
os

s-
co

m
pa

tib
le

em
be

dd
ed

sy
st

em

St
ra

tix
IV

L
U

T-
ba

se
d

FP
G

A
ar

ch
ite

ct
ur

e

1 U
m

ea
ns

U
ltr

a.

2 In
cl

ud
in

g
St

ra
tix

IV
,S

pa
rt

an
-6

,C
yc

lo
ne

-I
I,

an
d

Sp
ar

ta
n-

3.

3 B
en

ch
m

ar
k

ne
tli

st
s

fo
rfl

oo
rp

la
nn

in
g

an
d

pl
ac

em
en

t.

15

From different machine learning architectures that can run on the processor array, LSTM

networks have recently been more of an interest for time-series applications. These networks are

expensive in computation and communication operations. Therefore, providing a low-latency

design is well studied using FPGAs. The work in [100] implements a compact and configurable

model in which the scale and size of the neural networks are configurable using fully-pipelined

hardware. Several configurable buffers are used to fully utilize the bandwidth of the external

memory used for storing the network parameters. The other work in [42] implements a

single-threaded SIMD ISA paired with a distributed microarchitecture capable of dispatching

over 7M operations from a single instruction. Their method exploits parallelism and

parametrizability. It also benefits from the flexibility of running on different FPGAs. The

pipelining is optimized using direct producer-consumer dataflow routing to reduce pipeline

bubbles. The other optimization method is used on the LSTM networks is weight pruning, which

is in [101]. Their ML network is pruned to create structured sparse features for the

hardware-friendly purpose by using permuted block diagonal. They also utilized normalized

quantization on the network parameters and mask matrices. The method in [102] utilizes pipeline

and parallelism methods for the forward computing process. They also utilized weight pruning on

90% of the connections between the input layer and the hidden layer to generate a sparse LSTM

network. The method in [103] is also using a structured pruning method to eliminate the

imbalance computation, and irregular memory accesses so that only 1
8 of parameters are reserved.

In [103], they are pruning the entire columns of redundant weights. If the sum of the absolute

value of weights in the same column is smaller than a threshold, then the whole column weights

are pruned away. Using the FIFO strategy to transfer weights of different layers, the computations

of several layers are put together. The computation between adjacent layers is also pipelined. In

another method [104], they exploit the LSTM networks inherent parallelism so that the

matrix-vector multiplication operation is performed in parallel in linear time. The other method in

[105] uses stochastic computing along with stochastic memories to simplify the fundamental

arithmetic circuits. In their stochastic memory, the primary objective is to convert binary data into

16

stochastic values then stochastic values are fed to the network. The method in [53] discusses that

the random nature of the pruning technique transforms the dense matrices of the model to highly

unstructured sparse ones, which leads to unbalanced computation and irregular memory accesses

and thus hurts the overall performance and energy efficiency. Therefore, they use a structured

compression technique that could reduce the LSTM model size and eliminate the irregularities of

computation and memory accesses. Their method employs block-circulant instead of sparse

matrices to compress weight matrices and reduce the storage. They proposed to break down the

original single pipeline into several smaller coarse-grained pipelines and overlap their execution

time by inserting double-buffers for each concatenated pipeline pair. All the weight matrices are

compressed small enough to be stored in on-chip BRAM buffers instead of off-chip DDR

memory. This reduces the execution time to the order of µs. In [106], the bit-sliced method is

conducted to cascade enough slices for an optimum performance depending on the problem size.

Slices are arranged into an n-dimensional structure for the adder to concurrent with the rest of the

hardware in a pipeline fashion. In the [107] work, as irregular computation and memory accesses

in unrestricted sparse LSTM limit the realizable parallelism, they use bank-balanced sparsity, a

novel sparsity pattern that can maintain model accuracy at a high sparsity level while still enable

an efficient FPGA implementation each matrix row is split into multiple equal-sized banks, and

each bank has the same number of non-zero values so that it prunes the smallest 50% of weights.

The same method is utilized in [52], in which a load-balance-aware pruning method is used to

generate sparse LSTM to 90% and the execution time is in order of µs for [107, 52]. In [108],

in-depth investigation of precision versus accuracy using a fully hardware-aware training flow is

performed. During training, quantization of all aspects of the network including weights, input,

output, and in-memory cell activation are taken into consideration. Their method avoids the use of

redundant high-precision calculations for on-chip dense models and implements coarse-grain and

fine-grain parallelism. The method in [109], develops a low-latency real-time implementations for

pipelining and loop unrolling. In this method, instead of off-chip memory, a custom on-chip

memory paging/controller system is implemented that efficiently supplies the needed memory

17

values to the module. In [110], compression is conducted to the number of parameters by 7×, and

it stores the two non-linear functions approximation in a single-port ROM. In [33], the inner-most

loops are unrolled, and computation in parallel to minimize latency is performed. They also use

pipelining and compression techniques. They reshape the parameter matrices to ensure that they

can be accessed sequentially for the tiled computation. In [111], they also use parallelism and

complexity reduction through precision. The other method in [112] uses pipeline methods to

parallelize the forward computing process. To optimize their implementation, they also use

multiple methods, including tiled matrix-vector multiplication, binary adder tree, and overlapping

the computation and data access. In [113], scalable division method is proposed. The size of the

target LSTM and the number of boards used in the prototype can be freely changed. They develop

a large-scale AI system called F1ow-in-Cloud. The current prototype is consisting of multiple

FPGA boards with a high communication bandwidth network. In [114], low-power and

high-speed features that are achieved through overlapping the timing of the operations and

pipelining the datapath. The method in [36] involves designing a parallel multiply-accumulate

unit configuration to perform the matrix-vector multiplication. In [?], a comparative study of

FPGA, GPU, and FPGA+ASIC in-package solutions for integrating an ASIC chipset and

TensorRAM, with an FPGA as system-in-package is provided to enhance on-chip memory

capacity and bandwidth. Their method also provides compute throughput matching the required

bandwidth. A summary of LSTM custom accelerators is presented in Table 2.

18

Ta
bl

e
2:

C
om

pa
ri

ng
th

e
Pr

ev
io

us
FP

G
A

-b
as

ed
L

ST
M

Im
-

pl
em

en
ta

tio
ns

R
ef

.
N

et
D

at
a

Fr
eq

D
el

ay
L

U
T

s
FF

s
D

SP
s

B
R

A
M

s
G

O
PS

Po
w

er
FP

G
A

M
et

ho
d

Si
ze

a
Fo

rm
at

(M
H

z)
(m

s)
(#

)
(#

)
(#

)
(#

)
(W

)

[1
00

]
10

24
Fx

P
16

23
8

-
30

92
17

03
19

16
7.

64
0.

88
Z

yn
q-

U
b

H
D

L

[?
]

25
6

Fl
P

11
25

0
0.

42
84

57
19

-
52

45
81

92
37

0
12

5
St

ra
tix

-1
0

H
D

L

[1
01

]
20

0
Fx

P
8

15
0

-
-

-
-

-
18

50
1.

67
A

rr
ia

-1
0

H
D

L

[1
02

]
25

6
Fl

P
32

-
-

-
-

-
-

-
2.

07
Z

ed
bo

ar
d

H
D

L

[1
03

]
51

2
Fx

P
16

22
0

-
12

02
48

-
16

0
12

38
33

9.
7

-
St

ra
tix

-V
H

L
S

[1
04

]
12

8
Fx

P
18

15
4.

3
0.

00
2

12
54

48
11

11
18

51
2

-
4.

53
4

1.
51

V
ir

te
x-

7
H

D
L

[1
05

]
16

Fl
P

32
10

0
18

.5
8

95
29

84
56

0
0

-
0.

07
2

Z
yn

q-
7

H
D

L

[5
3]

10
24

Fx
P

16
20

0
0.

01
24

94
23

39
07

19
26

46
94

6
-

22
K

in
te

x-
U

H
L

S

[1
06

]
-

Fx
P

16
25

4
-

-
-

22
9

-
-

-
V

ir
te

x-
U

H
D

L

[1
07

]
10

24
Fx

P
16

20
0

0.
00

2
28

90
00

-
15

18
25

09
30

4.
1

19
.1

A
rr

ia
-1

0
H

D
L

[5
2]

10
24

Fx
P

16
20

0
0.

08
29

39
20

45
30

68
15

04
94

7
28

2
41

K
in

te
x-

U
H

D
L

[1
08

]
12

8
Fx

P
8

26
6

-
55

00
0

-
-

17
0

18
33

0.
87

Z
yn

q-
U

H
L

S

[1
09

]
10

k
Fx

P
12

10
0

0.
35

17
74

32
19

11
17

38
9

52
1

-
-

Z
yn

q-
U

H
L

S

[1
10

]
60

0
Fx

P
8

10
0

9.
9

67
85

35
91

34
24

-
-

Z
ed

bo
ar

d
H

D
L

19

[?
]

25
0

Fl
P

32
15

0
39

0
18

98
71

18
16

34
11

76
11

2
7.

26
19

.6
3

V
ir

te
x-

7
H

L
S

[1
11

]
10

0
Fx

P
5

14
2

11
70

16
15

74
51

21
3

19
5

33
9

30
8.

05
-

Z
yn

q-
7

H
L

S

[1
12

]
12

8
Fl

P
32

-
-

46
83

4
26

21
2

20
0

26
4

-
2.

46
2

Z
ed

bo
ar

d
H

D
L

[1
13

]
25

6
Fx

P
16

10
0

0.
01

10
38

25
46

32
9

51
2

38
4

10
1.

05
14

.1
K

in
te

x-
U

H
L

S

[1
14

]
64

Fx
P

16
16

4
0.

09
12

71
4

10
64

0
38

-
7.

51
0.

28
Z

yn
q-

7
H

D
L

[?
]

12
8

Fx
P

16
14

2
0.

90
72

01
12

96
0

50
16

0.
26

4
1.

94
2

Z
yn

q-
7

H
D

L

[?
]

10
24

Fx
P

8
27

5
3.

13
56

79
82

-
48

80
90

18
10

60
0

28
.3

St
ra

tix
-1

0
H

D
L

a N
um

be
ro

fh
id

de
n

no
de

s
in

th
e

L
ST

M
la

ye
r.

b U
m

ea
ns

U
ltr

a.

20

In addition to the LSTM networks, MLP networks are another type of communication-bound

ML applications. A summary of the previous works on FPGA-based MLP implementation is

presented in Table 3. This table shows that most of the previous works are customized for a

specific MLP network architecture with a fixed data-width. However, our overlay supports any

MLP architecture in any data-width. The previously studied MLPs are mostly small and the

execution time is in order of mus. It is also shown that most of the previous works focus on

fixed-point data type rather than floating-point. The blank spaces in this table are the information

that is not reported in the previous works. From these studies, the FPGA-based overlays include

[14, 89, 46, 15, 22] and they are run-time programmable for only MLP architectures, not all ML

applications. The work presented in [14] proposes a co-processor that is configurable at run-time

and allows application developers to modify the MLP network parameters and eliminates the need

to resynthesize. The other method that supports configurability at run-time is [89]. This study

uses a software interface to generate the MLP networks and provide a high-performance hardware

design. The other MLP overlay is [46] that proposes a framework using a flexible heterogeneous

streaming architecture for building binariezed MLP accelerators. Their design provide the fastest

classification rates reported on the utilized image classification benchmarks. The [15] study

introduces a high-performance MLP accelerator overlay using a multiplication-free design. In

their design the network parameters are quantized to power-of-two values, that replaces the

multiplication operations with logical shift operations. Another overlay design for MLP networks

is [22] that has optimized the architecture and the overlay interconnect around the DSP blocks.

From the previous works presented in Table 3, in addition to accelerating the inference phase of

ML algorithms, some of them have implemented the training phase as well [94, 96]. In [94], the

authors propose a training method based on descendent gradient. Their design performs the

operations in serial since they aim to reduce the resource utilization. In [96], instead of classic

back-propagation methods, the training is implemented using weight perturbation techniques.

The [91, 92, 97, 99] studies perform a design space exploration to find the optimum design for

accelerating MLP inference. The [90, 93, 95, 98] designs are optimized for a specific application.

21

The [90] proposes an MLP for activity classification, [93] proposes an MLP for a primitive gas

recognition system for discriminating between industrial gas species, [95] is designed for

real-time cancer detection, and [98] detects anomalies in ECG signals.

Table 3: Comparing the Previous FPGA-based MLP Imple-

mentations

Ref. Network Exe. Data Freq. FPGA

Time Width (MHz)

[14] (64, 16, 64) 83.66 µs FlP 32 100 Zedboard

[89] (100, 9, 2) 31.04 µs FxP 32 33 Virtex-6

[90] (7, 6, 5) 270 ns FxP 16 100 Artix-7

[46] (1024, 1024, 1024) 2.44 µs FxP 1 200 Zynq-7000

[91] (29, 10, 6) 7.81 µs FxP 32 100 Spartan-6

[15] 300 Zynq-7000

[92] FlP 32 250 Arria 10

[93] (8, 4, 5) FxP 16 10 XC4000E

[94] (2, 5, 2, 1) 1.96 ms FxP 16 50 Spartan-6

[22] (11, 12, 10, 3) FxP 18 Zynq Ultra

[95] (15154, 512, 512, 2) 10 µs FxP 8 295 Arria 10

[96] (32, 16, 8, 16, 32) FxP 12 Kintex-7

[97] (784, 256, 256, 10) FxP 8 295 Arria 10

[98] (8, 4, 1) FxP 16 Zynq

[99] FxP 32 150 Virtex-7

An optimization on our processor array overlay is developed to in addition of inference

acceleration, support online-training for the MLP networks. We would discuss the previous works

22

in this area and compare it with our overlay design. A summary of these previous works has been

presented in Table 4. In this table, the [115] has developed a new back-propagation method using

ternary operations on MNIST dataset with batch-size of one. The [116] study has implemented a

systolic array for MLP networks with pipeline method for back-propagation algorithm. They also

share the hardware resources for both inference and training phases. The other study in [96]

proposes an optimized implementation of online ML training based on weight perturbation. They

use ping-pong buffering for the network parameters and unroll the network computations on

FPGAs using a fully-pipelined method for MLP training. The [117] implements on-chip

back-propagation training algorithm to implement a small MLP network. In [118], the

Quasi-Newton method is used for neural network training on a Virtex-7 FPGA. Another study in

[124] also uses Quasi-Newton method for training. In this method, an inexact line search method

is implemented to replace the exact line search method. The [119] study uses online training

method to implement a back-propagation MLP training on a Virtex-6 FPGA. Parallel-pipeline

structures are utilized to accelerate the computational process. The [120] evaluates the effects of

arithmetic precision on hardware implementation of MLP neural network training using

matrix-vector multiplication operations. Another study in [121] uses a generic high-speed

integrated circuit to experiment with a large number of formats and designs in MLP

back-propagation algorithm. The other work in [122] introduces hyper-dimensional computing as

an alternative computing paradigm for developing efficient and robust MLP training algorithm.

The [123] proposes a new neuron representation using time-division multiplexing for DSPs. The

[125] study accelerates the training latency by using hardware-oriented algorithmic optimizations.

They also remove dependencies and expose parallelism methods for transforming the algorithmic

structures. In all these previous works, the design is customized for a specific small benchmark.

However, in our overlay design, different sizes of MLPs can be implemented without the need to

re-synthesize. Additionally, the data-width can vary based on the application’s requirements.

23

Table 4: Comparing the Previous FPGA-based MLP Train-

ing Implementations

Ref. Network Data Latency Freq. FPGA Method

Width (MHz)

[115] (784, 128, 10) FxP 3 MAX10 Quartus

[116] (2, 6, 3, 2) FxP 16 0.7 µs 10 Virtex-4 HDL

[96] (4, 7, 12, 3) FxP 14 171 µs Kintex-7 HLS

[117] (2, 2, l) FlP 32 10 µs Spartan 3 HDL

[118] (8, 15, 8) FlP 32 41 ms 250 Virtex-7 HDL

[119] (15, 32, 2) 2.95 µs Virtex-6

[120] FxP 16 33 XC4000 HDL

[121] (10, 10, 10) FxP 18 200 Virtex-2 HDL

[122] (617, 26) FxP 16 1 ms 200 Kintex-7 HDL

[123] (60, 15, 10, 5) FxP 16 190 Virtex-5

[124] (15, 32, 1) FlP 32 5.5 ms 250 SUME HDL

[125] (46, 15, 1) 37.9 ms 300 ZCU102 HDL

24

Chapter 3

Proposed Approach

Our design was aimed to implement an FPGA overlay as a 2-D processor array, which provides

programmability and reusability of the underlying fabric for implementing machine learning

algorithms. Machine learning algorithms are continually evolving which require updates to a

wide variety of IoT FPGA edge devices. Having to recode the hardware design for each update

and resynthesize for each FPGA device further proliferates the historical limitation for the current

FPGA-based designs. The limitations including the low productivity, lack of portability and

reuse, and the need to understand hardware design was addressed using our method in this

dissertation. We focused on evaluating the most challenging FPGA-based design goal that how to

bring software levels of productivity, portability and reuse to rapdily changing ML networks

deployed throughout a growing number of different IoT FPGA edge devices. On the other hand,

when implementing FPGA-based ML networks acceleration, data access latencies within an

FPGA requires new architecture approaches that increase the storage efficiency of the limited

capacity on-chip BRAMs and eliminates serialization of weight transfers and partial results

between the multiply-accumulate array and the BRAMs. Ideally, all ALUs would be provided full

concurrent access to weights and partial results. This was an important design goal of our

processor array presented in this dissertation. Our overlay is a Single-Instruction-Multiple-Data

(SIMD) processor array designed to support ML applications running in IoT FPGA edge devices.

This overlay is a configurable overlay that can be sized for different FPGAs. As an overlay, it is

programmable and executes the Microblaze instruction set architecture (ISA). This allows rapid

updates and brings code portability across different FPGA devices. The overlay architecture

accelerates the ML algorithms by implementing the soft processor instructions on hardware. In

our processor array, computation is carried out by the processing elements connected using

four-neighbor connectivity to form a 2-D array of PEs. The 2-D array of PEs implement a SIMD

architecture. In a SIMD architecture, at each time, the same instruction is conducted on multiple

25

data. In our design, the operations are performed in parallel in all processing elements. Each PE

has its own register file and the same operation is implemented on each PEs register file. The

simple processing elements are made of an ALU for arithmetic operations and a register file for

data storage. The performance benefits of hardware accelerators desired to have efficient ALUs in

the processing elements. Therefore, we explored using bit-serial operations for implementing the

arithmetic operations in ALUs. The bit-serial SIMD processor arrays are utilized to use the large

memory bandwidth more efficiently within a memory chip. This is provided by performing a

significant number of massively parallel bit-serial computations and thus achieving high

performance in ML inference acceleration. The register file is implemented using distributed

BRAMs in a memory-centric method to best support both the communication and computation

bound ML algorithms [24].

3.1 System Architecture

In contrast to projects developing point designs for a particular neural network configuration, our

method was developed to fill the need for a generalized reprogrammable solution. This

architecture addresses the source of communication and computation latencies found across

various machine learning algorithms. As an overlay, it is a step towards enabling the portability of

code over different FPGAs. Figure 2 shows the 2-D processor array that includes the tiles and

PE-blocks. Each PE-block consists of the processing elements that perform the arithmetic

operations. Operationally, a master processor (MicroBlaze in Figure 2) sequences the running of

instructions. The algorithms that run on the processor array are programmed using the overlay’s

ISA on the MicroBlaze and are executed one by one. The instructions go through the AXI slave

registers to be sent to the overlay. The controller reads the instructions from the AXI slave

register and runs it on the processor array. As typical with SIMD architectures, programs contain

data-parallel instructions for the processor array and control instructions for the master processor.

Instructions for the 2-D processor array are placed into the slave register, and the master processor

is put on sleep to maintain proper instruction sequencing. This decouples the execution of

26

multicycle instructions in the processor array from the Microblaze. All arithmetic and data

movement instructions are executed on the processor array. This simple protocol allows the

processor array to compute a set of instructions decoupled from the master processor. Although

our design adopted the standard MicroBlaze’s ISA for convenience, it has been designed to easily

support other processor’s ISAs as well. The MicroBlaze ISA is implemented in our design to

allow utilizing the standard MicroBlaze compiler for a direct compilation from C/C++ codes to

the overlays instruction set.

Figure 2 shows an overview of the processor array architecture that contains a 2-D SIMD

array of m×m tiles. Each tile contains n×n PE-blocks. The number of tiles and PE-blocks

within a tile is configurable to allow the SIMD processor array size to be tuned to any specific

FPGA. Each PE-block consists of l × l PEs that share a BRAM for register storage. Each PE has

a bit-serial ALU. In designing and implementing the ALUs, an initial design trade-off was made

to investigate Look-Up-Table-based (LUT-based) bit-serial arithmetic circuits as opposed to

full-precision bit-parallel Digital Signal Processing (DSP) units to increase the density of PE units

that could be packed within an FPGA. Therefore, to pack more PEs within the FPGA, no DSPs

are used in our processor array. This is a significant difference between our method and HLS

driven designs. While DSPs provide reduced latency for full-precision operations, they can limit

concurrency and result in inefficient resource utilization for less than full-precision operations.

For example, experiments on a Virtex-7 FPGA for a 32-bit design show that utilizing DSPs for

arithmetic operations in ALUs limits the number of PEs to only 676, whereas using bit-serial

ALUs results in up to 16k PEs on the same FPGA. Therefore, the additional cycles resulting from

bit-serial operations are amortized through parallelism resulted from SIMD concurrent operations

in PEs. This approach allowed a more efficient utilization of available BRAMs to reduce the

inference latency associated with weight stall cycles while increasing the density of PEs within

the FPGA. In the next sections, each part of the processor array hardware design is separately

discussed in more detail.

27

PE_Block
(0,	n-1)

Controller

Tile	(0,	m-1)

PE_Block
(n-1,	n-1)

PE_Block
(0,	0)

PE_Block
(n-1,	0)

AXI	BUS

Data	out
(Instruction)

Address

Splitter

Queue

Instruction	BRAM

Fu
ll	
In
te
rr
up
t

E
m
pt
y	
In
te
rr
up
t

MicroBlaze

Add	R1,R2,R3
A.Add	R5,R2,R3
Mul	R4,R5,R3
Sub	R3,R1,R8
A.Mul	R2,R1,R5
BNE	R1,R0,Loop

Jump	main

Processor	Array
NOP	or	Scalar/Control

Instructions

ARP	Instructions

DRAM

Instruction	Sequencer

North	I/O	(Serial/Parallel	Converter)

SouthI/O	(Serial/Parallel	Converter)

W
es
t	I
/O
	(S
er
ia
l/P

ar
al
le
l	C

on
ve
rt
er
)

Sigmoid

Sigmoid

Sigmoid

Sigmoid

Sigmoid

Sigmoid

Sigmoid

Sigmoid

Tanh

Tanh

Tanh

Tanh

Tanh

Tanh

Tanh

Tanh

C
on
tro
lle
r

E
as
t	I
/O
	(S
er
ia
l/P

ar
al
le
l	C

on
ve
rt
er
)

PE_Block
(0,	n-1)

Controller

Tile	(0,	0)

PE_Block
(n-1,	n-1)

PE_Block
(0,	0)

PE_Block
(n-1,	0)

PE_Block
(0,	n-1)

Controller

Tile	(m-1,	0)

PE_Block
(n-1,	n-1)

PE_Block
(0,	0)

PE_Block
(n-1,	0)

PE_Block
(0,	n-1)

Controller

Tile	(m-1,	m-1)

PE_Block
(n-1,	n-1)

PE_Block
(0,	0)

PE_Block
(n-1,	0)

10
24
-b
it	
R
eg
is
te
r	F

ile

10
24
-b
it	
R
eg
is
te
r	F

ile

10
24
-b
it	
R
eg
is
te
r	F

ile

10
24
-b
it	
R
eg
is
te
r	F

ile

PE1 PE2 PE3 PE15 PE16

Bit-Serial	ALUs	of	PE1	through	PE16

PE	Block

10
24
-b
it	
R
eg
is
te
r	F

ile

Figure 2: Overlay architecture.

3.2 ISA

Our overlay implements a subset of MicroBlaze instructions as listed in Table 5. Arithmetic

instructions include addition (add), subtraction (sub), multiplication (mult), and relu. Internal

data movement instructions (Move) are provided as a linkable library. In the processor array,

Move instructions simply direct the flow of data between different PEs. The arithmetic

instructions take two input registers as input operands and one output register for storing the

result of the arithmetic operation. For example, as also described in Table 5, the add Rd , Rs1, Rs2

instruction add the values stored in Rs1 and Rs2 registers and stores the result in Rd . Because of

the SIMD architecture of the design, this add instruction is performed on the same registers of all

PEs, but each PE’s registers store different values in their register file. The same applies for other

arithmetic instructions of sub and mult. The relu instruction, which is used for CNN networks,

28

takes one input register, the function is applied to that value and the output is stored in Rd . The

NEWS Moves instructions are used for internal data movement between the PEs. Move N,

Move E, Move W , and Move S instructions move the data from the source (Rs1) register to the

destination register (Rd) of their adjacent PE in their North, East, South, and West side. In the

original design, each PE is only connected to its 4 adjacent PEs. Therefore, the Rs2 register is not

used. However, as discussed in Section 5.1, the original processor array is then optimized for

internal data movements. In this case, since each PE is connected to more than one PE in different

distances, the Rs2 register determines the PEs distance. For example, Move E R1, R2, 4 moves the

values of R2 of all PEs to the PEs that are in the 4th east column from the original PE.

To allow easier implementing of different applications on the processor array, some

domain-specific SIMD macros are implemented in software using the described basic ISA. Table

5 also shows these software macros. All these software macros are implemented using the basic

ISA (top instructions in Table 5). More domain-specific macros can easily be implemented using

these functions and instructions as needed. From the presented software macros in Table 5,

matrix-vector multiplication (MV M), vector-vector element-wise addition and multiplication

(VVA, VV M) are used for MLP/LSTM/GRU networks. For the CNN networks, 2-D convolution

(2D conv), 2-D padding (2D pad), 2-D average-pooling (2D avg pool), and 2-D max-pooling

(2D max pool) are called. In the MV M software macro, the input registers determine the registers

that store the input matrix and the input vector and Rd is the output vector. The input values are

stored in the Rs1 and Rs2 registers before calling this software macro. The VVA and VV M

software macros also take Rs1 and Rs2 as the input vector and the result is stored in Rd . The same

applies to the 2D conv, 2D pad, 2D avg pool, and 2D max pool software macros. The input

matrix is in Rs1 and the output matrix is stored in Rd register. The other required parameters such

as kernel size and stride size are also passed to the software macro, but are not mentioned in Table

5. More detail on the implementation of these software macros provided in Section 3.10.

29

3.3 Memory-Centric Tiles and PE-blocks

The processor array shown in Figure 2 appears as a standard 2-D processor array composed of

tiles and PE-blocks. As shown in Figure 3, each PE-block forms a PIM computing component.

Each PIM PE-block contains a 4×4 = 16 configuration of PEs with a local storage modeled as a

traditional register file using the Xilinx RAMB18E1 BRAM block. The RAMB18E1 module has

a depth of 1024 bits and a width of 16 bits, which resembles an array of 1024 rows and 16

columns of bits. In full-precision designs, operands are stored in a row-major format, where each

row represents one register. This prevents concurrent access to the BRAM shared by multiple

PEs. Conversely, in the PIM PE-block, operands for all 16 PEs are stored in a column-major

format, i.e., vertically, as shown in Figure 3 (e). This configuration allows a single BRAM to

provide concurrent accesses for all 16 PEs. By storing data vertically, each column of the BRAM

(1024 bits) is dedicated to a specific PE (16 columns, one per PE). This means for 32-bit

operands, the 1024 rows of bits are partitioned into 32, 32-bit registers per column. Register R0 of

all 16 PEs occupy address range 0 to 31. Register R1 from address 32 to 63, and so on (illustrated

in Figure 3 (e)). The number of registers and operand data-widths of a BRAM is configurable

through simple addressing. In a design with N-bit data-width, the available 1024 column bits for

each PE is accessed as k = 1024
N registers (shown in Figure 3 (e)). This allows a PE’s 1024 bit

storage to be viewed by the controller as k = 1024
N internal registers. For example, for 32-bit,

16-bit, and 8-bit data-widths (N), the number of storage registers (k) within the BRAM becomes

1024
32 = 32, 1024

16 = 64, and 1024
8 = 128, respectively. This ensured that all BRAMs are efficiently

utilized, and all 16 PEs can simultaneously access their respective register files. The PE-blocks,

thus, become the building blocks for a system with high data-level parallelism.

Figure 3 provides an expanded view of the PE-blocks within each tile. Figure 3 (a) shows the

tiles and PE-blocks connected in a 2-D N-E-W -S interconnect. However, this network is virtual

and shown only for illustrative purposes. Communications between PEs are implemented using

reads and writes of data from one PE’s register into another PE’s register within the BRAM. This

small processor array is an example design that includes 4 tiles and each tile includes 4 PE-blocks

30

(a) (b) (c) (d)

PE1

PE5

PE9

PE2

PE6

PE10

PE3

PE7

PE11

PE4

PE8

PE12

PE13 PE14 PE15 PE16

.........

PE
1	R

eg	File

PE
2	R

eg	File

PE
16	R

eg	File

.........

PE	Block
(Structural	Implementation)

PE
	R
eg	File

Controller	(Ctrl)

Tile

PE
Block

PE
Block

PE
Block

PE
Block

CtrlTile

PE
Block

PE
Block

PE
Block

PE
Block

Ctrl

Tile

PE
Block

PE
Block

PE
Block

PE
Block

Ctrl Tile

PE
Block

PE
Block

PE
Block

PE
Block

Ctrl

PE	Block
(Abstraction)(Abstraction)

Processor	Array

R00

R0N-1

...
R10

R1N-1

(e)

Reg	Files	(BRAM)

R20

R2N-1

...

R10

R1N-1

...
..............

Rk0

RkN-1

...

R1

R2

Rk

R20

R2N-1
...

R10

R1N-1

...
..............

Rk0

RkN-1

...

R20

R2N-1
...

R10

R1N-1

...
..............

Rk0

RkN-1

...

R20

R2N-1

...
..............

Rk0

RkN-1

...
PE1					PE2					PE3																				PE16

.........

Figure 3: PIM Tile.

in Figure 3 (a). There is one controller inside each tile and a master controller for all tiles. Figure

3 (b) shows that a 4×4-PEs with nearest-neighbor connections comprise a PE-block. Figure 3 (c,

d) show each PE contains a bit-serial ALU and a register file implemented within a column of a

BRAM. Figure 3 (d) shows the structural view of a PE-block. The block that shows the PEs’

register file is a RAMB18E1 BRAM block with 16 columns (one for each PE). There are 16

bit-serial ALUs inside each PE-block, each is connected to one column of the the BRAM block.

Finally, Figure 3 (e) shows more detail on how a RAMB18E1 BRAM block provides shared

register files for all 16 PEs in a PE-block.

Experiments showed that the optimal size of the PE-block is device-dependent. We identified

two possible configurations for the PE-blocks by exploring different configurations of PEs with

the Virtex-7 BRAMs: 1) connecting 16 PEs to a single 18Kb RAMB18E1 or 2) connecting 32

PEs to a single 36Kb RAMB36E1. The first option proved more efficient for the following two

reasons: First, a PE-block of 16 PEs connected to a single BRAM can be abstracted to a square

4×4 = 16 PEs (Figure 3 (b)), rather than a rectangle of 4×8 or 2×16 block of 32 PEs. Utilizing

the block of 16 PEs offers symmetry, simplifies interconnect, and allows for simpler control logic

that deals with the four directions in a consistent manner. To illustrate, with a 4×4 PE-block, we

can build any square 2-D processor array where its dimensions are multiples of 4, such as

4×4-PEs (1 PE-block), 4×8-PEs (2 PE-blocks), or 20×20-PEs (25 PE-blocks) processor

arrays. Whereas, by using 32-PEs in a PE-block, one of the dimensions of the processor array

31

must be at least a multiple of 8, so we would not be able to produce a processor array with a size

of 4×4-PEs, 12×12-PEs, or a 20×20-PEs. Second, as mentioned before, our design should

create the smallest feasible PE-block to reserve the flexibility and configurability of the system.

Additionally, our experiments showed that designs that utilize 18Kb RAMB18E1 versus 36Kb

RAMB36E1 achieve higher operating frequencies with lower timing issues. Therefore, we

utilized an 18Kb RAMB18E1 with 16 PEs inside each PE-block. The PE-blocks are of size 4×4

and can be arranged in different ways to build larger processor arrays.

3.4 ALUs

The 1-bit serial ALUs are used in the overlay. The goal of using bit-serial ALUs was to design the

smallest possible ALU that efficiently utilizes available FPGA resources to allow packing a large

number of those ALUs. The bit-serial ALUs are implemented using only 2 LUTs and 2 FFs. This

simple ALU can support variable precision arithmetic operations. The bit-serial ALUs operate on

1 bit at a time. The controller iterates through the whole bits and sends only one bit to the ALUs

at each time. When the operands data-width changes, it is just the number of iterations that

changes and the ALUs bit-width does not need to be modified based on the arithmetic precision.

Therefore, as each PE’s register file is mapped vertically within a BRAM, the controller sets the

bit iterations based on the data-width. This flexibility allows data-width changes to be made in

software. The utilized data format in our design is two’s complement. This data format handles

any custom fixed-point data-width in various custom formats. Using this data format in the

arithmetic operations, the same algorithms are executed on the integer and fraction parts of a

number, regardless of the number of bits for each part. Shown in Figure 4, all ALUs perform the

same operation (single-instruction) on parallel data (multiple-data) stored in their corresponding

BRAM register files. The ALUs for addition/subtraction and radix-4 Booth’s multiplication are

designed to only perform addition or subtraction. The ALU’s operation is determined using a

control signal (aluOp) sent from the controller to switch between addition or subtraction

operations. To perform the arithmetic operations, the controller first sets the input operands

32

0
1

N-1
N

N+1

2N-1

R
0

31N
31N+1

32N-1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16addrR#
PE#

R
1

R
31

alu_op

rs1_addr

rs2_addr

rd_addr

rs1_data
[0:15]

rs2_data
[0:15]

Serial
ALU 1

Serial
ALU 16

rd_data
[0:15]

rs1_data
[0]

rs1_data
[15]

rs2_data
[0]

rs2_data
[15]

rd_data
[0]

rd_data
[15]

Dual-Port 18k BRAM (16x1024 bits)

Figure 4: Bit-serial ALUs.

addresses (rs1 addr, and rs2 addr). A BRAM read operation will read from those addresses

which are two rows of the dual-port BRAM block (highlighted in green in Figure 4). The values

of those two rows are one bit of the input operands to the 16 ALUs (one bit per ALU). Then, the

arithmetic operations are performed on those single bits in parallel in all 16 ALUs. The results is

then stored in the destination register in BRAM (highlighted in red in Figure 4). The address of

the destination register is determined by the controller (rd addr). Then the controller again sets

the address for the input operands next bit that should be processed. This iterations continues

until all bits of the input operands are processed and the final result is stored in the BRAM.

3.5 Bit-serial Arithmetic

The ALU’s structure is very simple. It has two 1-bit inputs for operands (rs1, and rs2), and one

1-bit output (rd) for the result. For the bit-serial addition/subtraction operation, the ALU also has

a 1-bit register called cb to represent the carry in and carry out of a full-adder as well as the

borrow in, and borrow out of a full-subtractor. The cb register is updated each clock cycle

according to (1). The rd output, which is the same for the adder and the subtractor, is represented

in (2). For addition/subtraction operations, at each iteration, the controller assigns the addresses

33

of rs1 and rs2, the data is read from BRAM, the arithmetic operations based on (2) are performed,

the carry out and borrow out registers are set based on (1), and the result is stored in rd in BRAM

based the address that the controller has set. Assuming data-width of N bits, the total clock cycles

spend on add/sub instructions is 2N. It takes N clock cycles to read the two input operands from

the register files and perform the operation on them (one bit at a time), and it takes N clock cycles

to write the result into the register file (one bit at a time). It should be noted that since a dual-port

BRAM block is used, the two input operands are read at the same iteration, each using a separate

port of the dual-port BRAM.

cb ⇐

rs1 · rs2 + rs1 · cb+ rs2 · cb, aluOp = ADD

rs1 · rs2 + rs1 · cb+ rs2 · cb, aluOp = SUB
(1)

rd ⇐ rs1 ⊕ rs2 ⊕ cb (2)

The bit-serial Move instructions are implemented using two bit at each iteration. The bits of

the source register are read from the BRAM register file and are written into the BRAM

destination register. The controller sets the addresses for the source and destination registers.

Using a dual-port BRAM, assuming data-width is N, it takes N
2 clock cycles to read N bits of the

source register (two bits at a clock cycle using the dual-port BRAM), and it takes N
2 clock cycles

to write those N bits into the destination register. Therefore, the total cycles per Move instructions

is N
2 + N

2 = N clock cycles. The bit-serial multiplication is implemented using radix-4 Booth’s

algorithm [82]. In our method, we have optimized this multiplication algorithm by eliminating

the algorithms’ logical shift operations by just modifying the operands addressing. We now

describe how our improved Booth’s radix-4 algorithm is implemented. Typical implementations

of N ×N-bit Booth’s radix-4 multiplier circuits include a 2N-bit wide shift register in which the

partial product (P) is processed using the Multiplicand (M). At each iteration of the algorithm,

0M, 1M, or 2M is added or subtracted from the higher N bits of the product register. The higher N

bits are then shifted right towards the lower end of the product register. Figure 5 shows how we

34

were able to eliminate the shift register and control circuitry. Figure 5 starts the first iteration on

the two least-significant bits of the Multiplier (R) by reading two rows of all BRAMs at the same

time. Each PE-block has 16, 3-bit registers (shown as Q1 for PE1 in Figure 5) to hold the

operation (addition or subtraction) that each ALU will perform. Once the operation is determined,

the controller sets up the BRAM addresses to output the bits of the product P (R1 and R2

registers) starting with the least significant bits and the bits of the Multiplicand M (R4). The

results of adding or subtracting those bits are then stored back in place of the product bits. When

subtracting 2M, a 0 is provided as the first bit, assimilating the behavior of a logical shift right

operation. The controller then increments the product register pointer (rd addr arrows in Figure

5) by two, in preparation for the next iteration. Finally, the controller sets the BRAM control

signals to double sign extend the result in preparation for the next iteration where the operation

(addition or subtraction) happens two bits further from the previous iteration. At that point, the

first iteration is completed (Iter#1 in Figure 5), and the two least significant bits in the product

registers do not change going forward. The same sequence occurs for the next iterations until the

multiplication is completed. For an N ×N-bit radix-4 multiplication, the algorithm takes N
2

iterations to complete. Each iteration takes 2N cycles for addition/subtraction and 4 clock cycles

for the sign extend operations for the radix-4 algorithm. This results in a total of N2 +2N clock

cycles for the bit-serial Booth’s radix-4 multiplication. If the bit sequence is “000” or “111” for

all 16 PEs, the controller skips performing the operation saving 2N clock cycles. Using this

method, in the best case when all inputs are “0” or “1”, N
2 ×2N = N2 clock cycles are saved in the

radix-4 algorithm.

3.6 Controller

The controller is implemented as a finite state machine that takes a standard 32-bit custom

instruction to generate control signals of different parts of the system. It sets the op codes of the

ALUs, the ALU’s operands addresses, and the write-enable signals of BRAMs for each

instruction. For arithmetic instructions, the controller issues op codes for the ALUs (add/sub)

35

Figure 5: Bit-serial Booth’s Multiplication Algorithm.

36

and sets the data addresses for reading and writing the operands in the BRAMs. Therefore, for

arithmetic operations, the controller sends the right data from the register files to the ALUs at the

right time. For internal data movement instructions (NEWS Moves), the controller sequences a

series of microoperations to BRAMs to move data within one BRAM or between BRAMs of

different PIM PE-blocks. Because of using serial arithmetic and serial data movements, the

controller needs to send a series of BRAM and ALU control signals to achieve the correct

functionality. Therefore, the controller has registers (rs1 ptr, rs2 ptr, rd ptr) that store the

pointers (addresses) of source and destination data at a certain time. For the activation functions,

the controller sets the select bit of a multiplexer to choose between the Sigmoid and the Tanh

modules. As shown in Figure 2, each tile has its own controller that is synchronized with the other

controllers in the design. The controller within each tile handles the operations of PE-blocks

inside that tile, and the master controller (left side of Figure 2), handles the operations between

the tiles. The connection between the soft processor (MicroBlaze) and the controller is

implemented using the AXI slave registers of the overlay’s IP. The MicroBlaze writes the

instructions into the AXI slave register and the controller reads from that slave register, decodes

the 32-bit instructions, and sets the BRAM addresses using its FSM-based design.

3.7 Data Movement

As disscussed, the PEs of each PE-block are connected to their 4 adjacent PEs in NEWS sides.

The same connections exist for the PEs on the edges of PE-blocks to connect two PE-blocks and

two tiles together. Figure 3 (b) represents these connections between PEs in a PE-block and to the

adjacent PE-blocks. For the PEs on the edges of the 2-D processor array, the data can input and

output from the NEWS directions into the I/O buffers. This design implements the Move N,

Move E, Move W , and Move S instructions for transferring the data between the PEs. Since the

local data of each PE is stored in one column of a RAMB18E1 block, to move the data from a

specific register of a PE into another register of another PE, we need to read the data from that

specific location of the BRAM and store it in another location. Therefore, the Move instructions

37

are nothing but reading and writing the data from/into the BRAM blocks. The arrows in Figure

3(e) show an example of Move E instruction from register R1 to R2. Considering Figure 3 (b),

this instruction should move the data from register R1 of PE1 to R2 of PE2, R1 of PE2 should

move to R2 of PE3 and the same for the rest of PEs. For the PE1, PE5, PE9, and PE13 which are

on the edge, the west I/O block’s data will be moved to R2 of these PEs. Also, for the PE4, PE8,

PE12, and PE16, their R1 registers are respectively moved to the R2 of PE1, PE5, PE9, and

PE13 of their right PE-block.

Considering the described high-level abstraction of data movements, the implementation

details of the Move instructions are now discussed. As already mentioned, the NEWS Move

instructions are implemented using bit-serial read/write operations from/into the BRAM blocks.

It is shown in Figure 3 (e) that in the design, the registers are stored vertically in the BRAM

blocks. This implies that to read a register, the individual bits are read and written one by one.

This is because in the standard BRAM read and write operations, data is accessed row by row

(not columns) at each clock cycle. Therefore, to read the whole N bits of a register in the vertical

implementation, we read the whole row and extract the one bit we need from that row and then

repeat the same for the next rows. Therefore, assuming utilizing the registers of size N (bits 0 to

N −1 in Figure 3(e)), any Move instruction will take 2N clock cycles (N clocks for reading and N

clocks for writing N bits one by one). We have optimized this operation by utilizing a True

Dual-Port BRAM that supports reading and writing two bits at each clock cycle. This speeds up

the Move instructions by a factor of 2×. In this optimized method, the Move instructions take N

clock cycles (N
2 clocks for reading and N

2 clocks for writing N bits two by two). As mentioned,

the PEs of each PE-block share the same BRAM. Therefore, when performing the Move

instructions, each PE inside a PE-block can access to the register files of the other PEs inside the

same PE-block using direct BRAM reads and writes. However, for the edge PEs of the PE-blocks

and tiles, the communications is conducted using data buffers. In this case, the data is read from

the adjacent PE-block PEs, stored into the data buffers, and then is written into to the other edge

PEs. For the processor arrays edge PEs (the PEs on the first row and first column of the 2-D

38

processor array), the data comes from the I/O buffers.

3.8 I/O Buffer (Parallel/Serial Converter)

These modules are shown in Figure 2 at the NEWS sides of the processor array. The external side

of the I/O buffers on the processor array periphery includes serial-to-parallel and parallel-to-serial

corner-turn registers to translate between the column-major bit-serial register formats of the edge

PEs with external parallel modules such as DRAM and the Sigmoid and Tanh modules. I/O

buffers are provided at the four edges of the processor array to move data into and out of the PEs’

register files. Due to the bit-serial nature of the processor array, the I/O buffer provides a serial

I/O interface to receive or send concurrent serial data from the edge PEs. In the original design,

there was an I/O buffer for the whole edge PEs. Given the high fan-out of such a module, the

operating frequency was limited. The design is then optimized so that the I/O buffers are

implemented as parallel modules with one associated per each PE-block. This configuration was

implemented to enable the processor array to achieve the maximum possible operating frequency.

However, this optimized implementation utilizes more resources. The I/O buffers read two serial

bits at a time from the edge PEs, store them in a parallel register, read the next two bits of those

edge PEs, and store them in the same parallel register until the total N bits of the operands

data-width is converted from serial to parallel. The same applies when a parallel to serial

conversion is conducted. The I/O buffer modules have a serial and a parallel input and a serial and

a parallel output. Assuming data-width of N, the serial input and the serial output size is 2×4 (2

bits at each cycle and 4 PEs on the edge of each PE-block). The parallel input and the parallel

output size is 4×N (4 PEs on the edge of each PE-block and N bits data-width).

3.9 Activation Functions

As shown in Figure 2, the activation functions of Sigmoid and Tanh are implemented using

separate modules outside the processor array. The I/O buffers interface with these parallel

activation function modules. The far-right column of PEs feeds the activation functions, and the

39

results are returned into the top row of PEs. The input to the activation functions comes from the

east I/O buffer. The parallel output from the activation functions is converted to serial using the

north I/O buffer and then is serially sent to the processor array. Activation functions on FPGAs

are commonly implemented using linear approximations of Taylor [26], HARD [27], and PLAN

[28] methods. The Taylor and HARD methods require multiplication and division operations,

whereas the PLAN method only uses logical shift and addition operations. In our design, for the

Sigmoid function, the PLAN method is implemented since it results in lower execution time and

resource requirement than other methods. The Tanh function is also implemented based on the

PLAN method, considering that based on (3), Tanh can be computed using Sigmoid function [29].

The array of activation functions includes a separate module instance of Sigmoid and Tanh per

each PE-block. Therefore, the outputs from the right-most column of PEs are processed in

parallel by the activation functions. For the CNN networks, the relu activation function is

implemented using the relu instruction in the processor array’s ISA.

Tanh(x) = 1−2×σ(−2x) (3)

The PLAN method of the Sigmoid module, is implemented using an FSM-based method based on

(4). The input and output to this module are parallel N-bit width values. In the first state of these

FSM, the input range is specified. The next state compute the output value based on (4). In all

these conditions, the multiplication is implemented using a shift operation and is added to a

constant value. For example, the 0.25× x operation is a 2-bit shift right, and the 0.125× x

operation is a 3-bit shift right operation. Finally, in the last state, the ready signal is set and the

controller will notify the north I/O buffer to convert the parallel values to serial and store them in

the top row of PEs.

40

σ(x) =

1 |x|> 5

0.03125×|x|+0.84375 2.375 ≤ |x|< 5

0.125×|x|+0.625 1 ≤ |x|< 2.375

0.25×|x|+0.5 0 ≤ |x|< 1

(4)

3.10 Software Programmability

This section elaborates more on how our overlay is software programmable. More specifically,

the implementation details of the software macros that are presented in Table 5 are discussed in

this section. Figure 6 shows how a simple small CNN network is mapped and executed on the

processor array overlay. For more background information on CNN networks refer to [30].

Shown in Figure 6, the input feature maps of three nodes are mapped into the PEs of the

processor array. Assuming a 6×6 feature map that produces a 4×4 output feature map

(kernel size = 3, padding = 0, stride = 1). The three 6×6 feature maps are mapped into 12×12

PEs. The convolution algorithm is implemented using a single multiplication on all PE inputs

contained in R1 and the weights in R2. Partial products are stored in R3. In the following step, the

partial products are added using Move E, Move S and add instructions with results stored in R4,

R5, and R6 for each feature map. This is shown in Figure 6 (a) for only the first feature map. The

other two feature maps follow the same operations and the results are saved in R5 and R6. It

should be noted that no additional read and write is required to move the highlighted values into

the top-left of the processor array as the final results are mapped and saved in the correct position.

Finally, by accumulating the R4, R5, and R6 registers (Figure 6 (b)), the output feature map is

stored in R4 (Figure 6 (c)). The bias parameters are added in the next step and then the Relu

function is applied. The pooling (if any) is then applied to the output feature map (Figure 6 (c))

(not represented in this simple example). In a SIMD architecture, the convolution algorithm is

implemented in parallel over the number of nodes for each CNN layer. For larger CNNs, where

the feature maps do not fit into the available processor array, multiple registers are used to store

41

the input feature maps. This reduces the transfer latency swapping feature maps between DRAM

and BRAM. For example, assuming feature maps of 6×6 on a processor array of 12×12 PEs, if

the number of input nodes is 5, the first 4 feature maps can be stored in R1 (same as the prior

example) and their associated weights stored in R2. However, the last feature map cannot be

stored in R1 as the array is fully utilized. In this case, the last feature map can be stored in a

different register (e.g. R10) on the top-left position of the processor array. The convolution

algorithm is first applied on registers R1 and R2 (for nodes 1−4) with the inputs in R1 and their

associated weights stored in R2. A second convolution can then be applied on R10 and R2 for the

5th node. In essence, a virtual processor array larger than the physical array can be defined, with

each physical PE operating as multiple virtual PEs.

Figure 7 shows the execution of a typical matrix-vector multiplication operation as the main

operation of MLP/LSTM/GRU networks within our processor array overlay. For example

purposes, we show a small 3×4 matrix W multiplied by vector X4×1 resulting vector Y3×1. Figure

7 (a) shows how the weight matrix W is partitioned into distributed BRAMs of the 2-D array and

how the elements of vector X are mapped and replicated into the processor array. One SIMD

parallel multiplication is performed (Figure 7 (b)) on all PEs, generating all partial products in

one instruction. The addition of partial products is then followed using Move and add instructions

(Figure 7 (b)). For this step, the addition of partial products uses the binary reduction tree shown

in Figure 7 (b). The final output from the multiply-accumulate step is then sent to the output

buffer (Figure 7 (c)). The partial product accumulation step (Figure 7 (b)) is the most time

consuming part in the MVM operation. There is a loop as the number of matrix columns (in this

example 4) that performs the Move E and add instructions. Using the binary tree reduction

method for the addition operations, assuming the matrix size if n×m, the number of add

instructions is logm and the Move E instructions are as the number of the processor array’s

column size. In case the matrix column size if not a power of two number, the closest power of

two to the matrix column size is found and then the binary tree reduction step is performed on

those number of columns. The rest of columns are processed using linear reduction method. For

42

example, if the column size is 25, 16 of them are processed using binary tree reduction method

and the rest 9 columns are processed using linear reduction method. It also should be noted that

the in case the matrix column number is less than the processor array size, the final result would

be in one of the middle columns of the processor array and it should be moved to the last columns

of PEs using a series of Move E instructions. This operation is further optimized for internal data

movement to support a binary tree interconnect for the Move E instructions as well as the add

instructions. This is disscussed in more detail in Section 5.1.

The larger matrix multiplications that could not fit into the 2-D processor array are

implemented using partitioning (divide-and-conquer) so that each subsection is stored in a

different register. After the matrix multiplication for each subsection, the results are merged

together to form the final output. In this case, the matrix size is larger than the processor array

dimensions and needs to be divided into smaller sub-matrices that could fit into the processor

array. A simple example of this case is shown in Figure 8. In this example, assume that a matrix

of size 4×6 is multiplied by a vector of size 6×1 on a processor array of size 2×3. Therefore,

since the matrix and the vector do not fit into the processor array, they are divided into smaller

2×3 and 3×1 sub-matrices. Each sub-matrix is stored in a different register. The normal MVM

operation is performed on the small sections and then the results are added to generate the final

output 4×1 vector. This vector is also stored in sub-vectors of size 2×1, each in a different

register. Vector-vector element-wise operations (VVA and VV M) are performed using a single

SIMD instruction on the whole vector. In case of large vectors, the divide-and-conquer method is

applied and the vector is divided into smaller sub-vectors, each is stored in a different register. In

this case, for example for the VVA operation, the number of additions is one per sub-vector. The

number of instructions for each software macro is presented in Table 21.

There are some software macros that move the data between different edges of the 2-D

processor array. They include ColumntoRow for moving data form the last column of PEs to the

first row of PEs, RowtoColumn for moving data from the first row of PEs to the last column of

PEs, and ColumntoColumn for moving data from the last column of PEs to the first column of

43

Mult	R3,	R2,	R1
ShE	R4,	R3,	0	
Add	R4,	R4,	R3
ShS	R4,	R3,	0
Add	R4,	R4,	R3	

Add	R4,	R4,	R5
Add	R4,	R4,	R6	

R4
R5

R6

R4

(a) (b) (c)

Figure 6: Mapping convolution algorithm into processor array.

PEs. These software macros replace a series of NEWS Moves instructions with a single

instruction. They are utilized for implementing the ML algorithms when the output of a layer

needs to be used in the next layer. These software macros are also used when applying the

activation functions. There is an input variable for these software macros that determines if the

data needs to go through the activation functions and then be stored into the PEs register files or

the data should be directly moved between the PEs register files without going through the

activation functions.

The other set of software macros are used to store data into the right location of the PEs

register files. For example, in Figure 7, the elements of matrix W and vector X are written into the

register R1 and R2 of the PEs in a proper way. The input to this software macro is the

matrix/vector, the destination register name, and the method of storing that matrix/vector. In this

example, the elements of matrix W are stored as a 2-D array, while the elements of vector X are

first stored in the first row of PEs and then are copied to the below PEs. Vector X is copied since it

is should be multiplied by all rows of matrix W to be able to perform the WX matrix-vector

multiplication operation. The other method of storing a vector is for example storing it in the last

column of PEs. This is mostly used for storing the biases values. Therefore, this software macro

that is called Write Matrix, is used to store the network parameters into the PEs register files. It is

called before running the other software macros.

44

w0,0 w0,1 w0,2 w0,3

w1,0 w1,1 w1,3

w2,0 w2,1 w2,2 w2,3

w1,2

x0

x1

x2

x3

x

w0,0x0+w0,1x1+w0,2x2+w0,3x3

w1,0x0+w1,1x1+w1,2x2+w1,3x3

w2,0x0+w2,1x1+w2,2x2+w2,3x3

=

y0

y1

y2

=

x0
w0,0

x1
w0,1

x2
w0,2

x3
w0,3

x0
w1,0

x1
w1,1

x2
w1,2

x3
w1,3

x0
w2,0

x1
w2,1

x2
w2,2

x3
w2,3

x0w0,0 x1w0,1 x2w0,2 x3w0,3

x0w1,0 x1w1,1 x2w1,2 x3w1,3

x0w2,0 x1w2,1 x2w2,2 x3w2,3

+ +
+

+ +
+

+ +
+

y0

y1

y2

y0

y1

y2

Ea
st
	I/
O
	B
uf
fe
r

Mult	R3,	R2,	R1
(In	Parallel)	

ShE	R4,	R3,	0
Add	R4,	R4,	R3

(a) (b) (c)

Figure 7: Mapping matrix multiplication algorithm into processor array.

w0,0 w0,1 w0,2 w0,3

w1,0 w1,1 w1,3

w2,0 w2,1 w2,2 w2,3

w3,0 w3,1 w3,2 w3,3

w1,2

x0
x1

x2

x3
x =

w0,4

w1,4

w2,4

w3,4

w0,5

w1,5

w2,5

w3,5

x4

x5

4 x 6 6 x 1

y1,0

y0,0 +

+

y0,1
y1,1

y2,1
y3,1y3,0

y2,0

=

4 x 1

y0
y1

y2
y3

4 x 1

Figure 8: Mapping large matrix multiplication algorithm into processor array.

45

Table 5: ISA and Software Macros

ISA Description
Instruction Format Description

add Rd , Rs1 , Rs2 Rd = Rs1 +Rs2
sub Rd , Rs1 , Rs2 Rd = Rs1 −Rs2
mult Rd , Rs1 , Rs2 Rd = Rs1 ×Rs2
Move E Rd , Rs1 , 0 moves all PEs’ Rs1 to Rd of their right PE
Move W Rd , Rs1 , 0 moves all PEs’ Rs1 to Rd of their left PE
Move N Rd , Rs1 , 0 moves all PEs’ Rs1 to Rd of their above PE
Move S Rd , Rs1 , 0 moves all PEs’ Rs1 to Rd of their below PE
relu Rd , Rs1 , 0 Rd = Rs1 i f Rs1 > 0 else Rd = 0

Software Macros
Function Name Description

MV M(Rd , Rs1 , Rs2) Matrix-Vector Multiplication
VVA(Rd , Rs1 , Rs2) Vector-Vector Element-wise Addition
VV M(Rd , Rs1 , Rs2) Vector-Vector Element-wise Multiplication
2D conv(Rd , Rs1 , Rs2) 2-D Convolution (any kernel and stride size)
2D pad(Rd , Rs1 , 0) 2-D padding (any padding size)
2D max pool(Rd , Rs1 , 0) 2-D max pooling (any kernel and stride size)
2D avg pool(Rd , Rs1 , 0) 2-D average pooling (any kernel and stride size)

Table 6: Software Macros Instruction Count Break-Down.
Software Macro∗ Instruction

add mult Move
MV M(mi+1×mi) log2 mi 1 x
VVA(mi) 1 0 0
VV M(mi) 0 1 0
2D conv(mi+1×mi) mi +mi+1 −2 1 mi +mi+1 −2
2D max pool(mi+1×mi) 0 0 mi +mi+1 −2
2D avg pool(mi+1×mi) mi +mi+1 −2 0 mi +mi+1 −2
ColumnToRow 0 0 2
RowToColumn 0 0 2
ColumnToColumn 0 0 2
∗ Numbers in parenthesis are the matrix/vector sizes.

46

Chapter 4

Results

In this section, we evaluated the processor array overlay from different aspects. All experiments

used the Xilinx Vivado 2018.3. We first started with evaluating the functionality and the

performance of the design by running some ML benchmarks. The results for these several

standard ML benchmarks are presented and compared with the previous equivalent custom point

designs. The training was conducted on Tensorflow, and the computed network parameters

(weights and biases) were exported and used in the inference phase. The C code versions of the

benchmarks were developed for the inference phase of each ML network and were run through the

MicroBlaze compiler to generate assembly instructions for the developed system. The reported

performance results of the inference phase were run-time latencies measured using accurate cycle

counters running at 130 MHz implemented on a Virtex-7 VC707 (xc7vx485T-2ffg1761) as well

as running at 200 MHz operating frequency on a Virtex Ultra FPGA (xcvu9p-flgb2104-2-i).

The benchmarks that are explored include two LSTM networks with different sizes, an MLP,

a CNN network (SqueezeNet v1.1), and a GRU network. The [31] is an LSTM network with

input size of 61, three hidden layers of size 250, and output size of 39 used for speech recognition

on TIMIT dataset [32]. The [34] benchmark is another LSTM network with an input layer of size

64, two hidden layers of size 128, and the output size of 64. This network is used for character

recognition on the Shakespeare dataset [35]. The MLP [37] includes 784 inputs, hidden layer and

output sizes of 100 for image recognition on MNIST dataset [38]. The SqueezeNet v1.1 CNN

network [39] is used for image classification on ImageNet dataset [40] and the GRU network [42]

with 39 inputs, two hidden layers of sizes 256 and 200, and 10 outputs is also utilized in speech

recognition on [43] dataset. The benchmarks are compared to the custom FPGA-based

accelerations to evaluate how the overlay method works in terms of resource utilization and

performance that have been considered as inherent problems of overlays. The results show that

our method provides lower inference latency and lower resource utilization than most

47

benchmarks.

A summary of results in terms of performance and resource utilization (LUTs, FFs, BRAMs,

and DSPs) comparing our method to other custom designs provided in Table 7. The developed

design can implement each ML benchmark in different data-widths, but only the results for the

data-widths reported in comparative works are included. The processor array of up to 16k PEs

have been implemented on the Virtex-7. However, the resource utilization in Table 7 is for an

array of 10k PEs. This size of the processor array was chosen to match the largest benchmark

reported in the literature. A smaller processor array could have been used for some of the

benchmarks, which would result in better resource utilization numbers. The choice of using a

single-size processor array was made in part to show how the overlay can implement all

benchmarks on the same design by rewriting software instead of resynthesizing.

4.1 Latency Comparison

The results in Table 7 shows that the overlay design achieved a 34.2× speedup in LSTM(1)

compared to the HLS-based design reported in [33]. This speedup is achieved at a lower clock

frequency (130 MHz versus 150 MHz). LSTM(2) shows that our design achieved a 3.5× speedup

compared to the HDL-based design reported in [36]. The ability to decrease execution time using

bit-serial arithmetic points out the importance of the data movement overhead. This is also shown

when comparing the execution time improvement of our method to LSTM(1) and LSTM(2). In

case of LSTM(2) since all network parameters could fit into the on-chip BRAM memory of the

FPGA, less improvement is achieved than LSTM(1) in which some parameters are stored in

DRAM. Therefore, the decrease in the overall execution time of the developed method is

attributed to the memory access times reduction. The design for the CNN network achieved a

modest 2.1× speedup compared to results reported in [41]. Execution time results were not

reported in [20]. The achieved modest 2.1× speedup also confirms that since the CNN

benchmarks are computation-bound, the design’s speedup is less than the communication-bound

ML networks when compared with the previous works. Our design achieved a speedup of 4.3×

48

for the MLP network and a 12.5× speedup compared to the results reported in [44] for the GRU

network. The clock frequencies were approximately equal (130 MHz for our design versus 125

MHz in [44]). Different latencies were reported in [44] for various utilized delta thresholds. The

reported comparisons are against a delta threshold of 0x00, which is equivalent to what is

implemented in our design. In summary, the achievable speedups for MLP/LSTM/GRU networks

are higher compared to CNN networks. This is a result of the design SIMD ability to exploit

parallelism, especially in MVM operations. In MLP/LSTM/GRU networks, the multiply step in a

complete MVM operation occurs once. However, the parallelism within a CNN network is

dependent on the number of nodes in a given layer, with each layer being computed sequentially.

Moreover, in CNNs, feature maps are added together in each stage.

49

Ta
bl

e
7:

FP
G

A
Im

pl
em

en
ta

tio
n

R
es

ul
ts

N
am

e
E

xe
D

at
a

∗
L

U
T

s
FF

s
B

R
A

M
s

D
SP

s
Fr

eq
FP

G
A

M
et

ho
d

Ti
m

e
Fo

rm
at

(M
H

z)

L
ST

M
(1

)(
61

,2
50

,2
50

,2
50

,3
9)

[3
1]

on
T

IM
IT

da
ta

se
t[

32
]

T
hi

sw
or

k
17

.5
m

s
Fx

P
32

13
83

80
67

80
1

31
3

0
13

0
V

ir
te

x-
7

O
ve

rl
ay

T
hi

sw
or

k
11

.4
m

s
Fx

P
32

13
38

90
56

20
7

31
3

0
20

0
V

ir
te

x
U

ltr
a

O
ve

rl
ay

[3
3]

39
0

m
s

Fl
P

32
19

82
80

18
26

46
10

72
11

76
15

0
V

ir
te

x-
7

H
L

S

L
ST

M
(2

)(
64

,1
28

,1
28

,6
4)

[3
4]

on
C

ha
rR

ec
da

ta
se

t[
35

]

T
hi

sw
or

k
39

5.
9

us
Fx

P
16

13
83

80
67

80
1

31
3

0
13

0
V

ir
te

x-
7

O
ve

rl
ay

T
hi

sw
or

k
25

7.
1

us
Fx

P
16

13
38

90
56

20
7

31
3

0
20

0
V

ir
te

x
U

ltr
a

O
ve

rl
ay

[3
6]

90
0

us
Fx

P
16

72
01

12
96

0
16

50
14

2
Z

yn
q

H
D

L

M
L

P
(7

84
,1

00
,1

00
)[

37
]o

n
M

N
IS

T
da

ta
se

t[
38

]

T
hi

sw
or

k
0.

5
m

s
Fx

P
32

13
83

80
67

80
1

31
3

0
13

0
V

ir
te

x-
7

O
ve

rl
ay

T
hi

sw
or

k
0.

3
m

s
Fx

P
32

13
38

90
56

20
7

31
3

0
20

0
V

ir
te

x
U

ltr
a

O
ve

rl
ay

[3
7]

1.
3

m
s

Fx
P

25
13

95
62

17
56

04
50

40
0

10
0

V
ir

te
x-

7
H

D
L

C
N

N
Sq

ue
ez

eN
et

v1
.1

[3
9]

on
Im

ag
eN

et
da

ta
se

t[
40

]

T
hi

sw
or

k
51

.0
m

s
Fx

P
8

13
83

80
67

80
1

31
3

0
13

0
V

ir
te

x-
7

O
ve

rl
ay

T
hi

sw
or

k
33

.1
m

s
Fx

P
8

13
38

90
56

20
7

31
3

0
20

0
V

ir
te

x
U

ltr
a

O
ve

rl
ay

50

[4
1]

70
.5

m
s

Fx
P

8
34

48
9

25
03

6
97

.5
17

2
10

0
Z

yn
q

H
L

S

[2
0]

Fx
P

8
17

35
22

24
11

75
19

3.
5

70
4

20
0

K
in

te
x-

7
O

ve
rl

ay

G
R

U
(3

9,
25

6,
20

0,
10

)[
42

]o
n

D
ee

pS
pe

ec
h

da
ta

se
t[

43
]

T
hi

sw
or

k
3.

3
m

s
Fx

P
16

13
83

80
67

80
1

31
3

0
13

0
V

ir
te

x-
7

O
ve

rl
ay

T
hi

sw
or

k
2.

1
m

s
Fx

P
16

13
38

90
56

20
7

31
3

0
20

0
V

ir
te

x
U

ltr
a

O
ve

rl
ay

[4
4]

26
.4

m
s

Fx
P

16
26

13
57

11
92

60
76

8
45

7.
5

12
5

Z
yn

q-
70

0
H

D
L

∗
Fx

P
m

ea
ns

fix
ed

-p
oi

nt
an

d
Fl

P
m

ea
ns

flo
at

in
g-

po
in

t.

51

Table 8: Low-precision Networks Performance Comparison.
Name Network Latency Data Freq. FPGA Method

Design (us) Format (MHz)
Xilinx FINN [46] MLP (1024) 2.44 FxP 1 200 Zynq-7000 HDL

This work MLP (1024) 6.60 FxP 1 200 Virtex Ultra Overlay

Xilinx FINN [46] MLP (256) 0.31 FxP 1 200 Zynq-7000 HDL
This work MLP (256) 0.45 FxP 1 200 Virtex Ultra Overlay

Intel [1] LSTM (512) 1.16 FxP 8 275 Stratix-10 HDL
Microsoft BW [?] LSTM (512) 3.08 FxP 8 200 Stratix-10 Overlay

This work LSTM (512) 5.50 FxP 8 200 Virtex Ultra Overlay

[47] MLP (500) 27.77 FxP 2 200 Stratix-10 HDL
This work MLP (500) 37.18 FxP 2 200 Virtex Ultra Overlay

To further evaluate our design in terms of latency, the overlay is programmed to run some

low-precision networks. The benchmarks include MLP and LSTM networks running at 1-8 bit

data-width. As shown in Table 8, although the design’s latency is more than the other works, our

method provides the flexibility and the reconfigurability that enables running all benchmarks

without the need to re-synthesize. Moreover, the latency is in the same order of magnitude as

these industry works. The reason of higher latency in our design is using bit-serial operations. For

instance, in the bit-parallel implementation at 8-bit data width, a single addition only takes 1 clock

cycles. However, in our overlay a single addition instruction takes 8 clock cycles. This increased

instruction latency has to some extent compensated with our SIMD-based architecture. However,

for these large benchmarks, the network is required to be divided into smaller sub-sections and

therefore some serial operations are performed for the MV M operations. Moreover, some of these

previous works are customized designs as opposed to our overlay design.

4.2 Resource Utilization Comparison

The resource utilization of the developed overlay with 10k PEs on the Virtex-7 FPGA is broken

down into more detail in Table 9. This table shows that in our overlay, a single bit-serial ALU

only takes 2 LUTs and 2 FFs to be implemented. As a result, a single PE-block and a tile would

52

be small to allow more PEs be packed into the FPGA. The number of each module in the design

is also reported in this table. The 100×100 design contains 5×5 tiles, with each tile including

5×5 PE-blocks. Each PE-block includes 16 PEs (4×4) which results in 5×5×4 = 100 PEs for

each side of the processor array and a total of 100×100 = 10k total PEs. There are 16 ALUs per

PE-block for a total of 16×25×25 = 10,000 (25 tiles, each includes 25 PE-blocks) ALUs for

the complete design. The processor array includes a parallel-to-serial I/O buffer (P/S converter)

per PE-block on each side of the 2-D array which results in a total of 25×4 = 100 P/S converters.

The number of activation functions is a module for each PE and there is 100 modules on only the

east side of the 2-D array. It also should be noted that the summation of the provided resource

utilization per module does not result in the total resource reported for the whole design as some

modules are included and counted inside others. If added together they will be counted twice or

more. BRAM resources are only utilized within the PE-blocks to present the register files. Each

PE-block has one BRAM with a size of 16×1024 bits. Multiplying the total PE-blocks by the

number of BRAMs per PE-block results in 1×625 = 625 BRAMs. The reported number of

BRAMs in Table 9 is based on BRAM18E1 while Table 7 is based on BRAM32E1 of a Virtex-7

FPGA. Table 9 also shows that no DSPs are used in the processor array while as shown in Table

7, the previously proposed custom designs use DSPs. This is a significant difference between our

design and the HLS driven designs. While DSPs provide reduced latency for full-precision

operations, they can limit concurrency and result in inefficient resource utilization for less than

full-precision operations. Experiments on a Virtex-7 FPGA show that utilizing DSPs for the

arithmetic operations limits the number of PEs to 676 in a 32-bit full-precision ALUs, whereas

using LUT-based bit-serial ALUs results in up to 16k PEs on the same FPGA.

4.3 Performance Comparison

For completeness, we include Table 10 which provides additional information on the latency and

performance of different arithmetic instructions for bit-widths ranging from 32 to 8 bits on a

processor array of size 10k. The ALU’s performance is reported using

53

Table 9: Our Processor Array Overlay’s Resource Utilization
Module LUTs FFs DSPs BRAMs # Modules

ALU 2 2 0 0 10,000
Controller 967 144 0 0 26
PE-block 11 64 0 1 625

Tile 3839 1833 0 0 25
P/S Converter 900 175 0 0 100

Sigmoid 18 32 0 0 100
Tanh 195 157 0 0 100

SPAR-2 138380 67801 0 625 1

Giga-Operation-Per-Second (GOPS) metric. In our design, the values of the GOPS metric depend

on a couple of factors including the operating frequency, data-width, the instructions latency as

well as the total number of PEs in the design. Therefore, this metric evaluates the trade-off

between the mentioned factors. Shown in Table 10, the add/sub and Move operations take fewer

clock cycles than mult instruction and therefore resulting in higher GOPS. The radix-4 Booth

multiplication has a higher GOPS and lower clock cycles than the radix-2 method as the number

of iterations in this method is half of the radix-2 method. The linear relation between the

operating frequency (130 MHz versus 200 MHz) and the processor array’s GOPS is also shown in

Table 10. Moreover, there is also a linear relation between the data-width and the clock cycles

spent for add/sub and Move instructions. However, for the mult instruction, there is an

exponential relation between the data-width and the number of clock cycles. For every

instruction, the GOPS values decrease as the data-width increases. Because the instruction’s

execution time increases with the increased data-width. The effects of number of PEs on the

processor arrays’s GOPS performance is also presented in Table 10 for 16k versus 65k PEs.

Comparing the GOPS values for a specific on the same operating frequency and different number

of PEs show that there is linear relation between the number of PEs and the GOPS values. For

example, at 8-bit data width and 130 MHz, when increasing the number of PEs from 16k to 65k

(4× increment), the GOPS values are increased by around 4× as well from 132.98 to 531.94 for

the add/sub instruction, or from 26.59 to 106.38 for the mult instruction.

54

Table 10: Bit-serial ALUs Performance
Clocks GOPS (16k PEs) GOPS (65k PEs)

(#) 130 MHz 200 MHz 130 MHz 200 MHz
8-bit Data-Width

Add/Sub 16 132.98 204.80 531.94 819.20
Mult radix-2 144 14.77 22.75 59.10 91.02
Mult radix-4 80 26.59 40.96 106.38 163.84

Move 8 265.97 409.60 1063.89 1638.40
16-bit Data-Width

Add/Sub 32 66.49 102.40 265.97 409.60
Mult radix-2 455 3.91 6.02 15.64 24.09
Mult radix-4 288 7.38 11.37 29.55 45.51

Move 16 132.98 204.80 531.94 819.20
32-bit Data-Width

Add/Sub 64 33.24 51.20 132.98 204.80
Mult radix-2 2112 1.00 1.55 4.02 6.20
Mult radix-4 1088 1.95 3.01 7.82 12.04

Move 32 66.49 102.4 265.97 409.60

4.4 Overlay Portability

Overlays such as our design bring programmability and portability into an FPGA design. Table 7

presents the result of implementing our design on a Virtex Ultra FPGA. Once the overlay was

synthesized on the Virtex-7, the same code was used to run without modification on the Virtex

Ultra. As the Virtex Ultra is larger than Virtex-7, more PEs (65k) can be fit into the chip.

However, to show portability, the same array of 10k PEs used on the Virtex-7 was also used on the

Virtex Ultra. Not unexpected, synthesizing the array on the Virtex Ultra yielded a higher clock

frequency (130 MHz on the Virtex-7 versus 200 MHz on the Virtex Ultra). The limitation on the

operating frequency of our design to 130 MHz on the Virtex-7 was due to BRAM placement and

routing. The critical path of the design was the connections between the PEs and BRAMs. These

connections produced high congestion on the Virtex-7 board which is resolved on the Virtex Ultra

without any changes to the design logic. The higher clock frequency achieved on the Virtex Ultra

translated into higher throughput of the bit-serial arithmetic operations. In addition to running our

design on Virtex Ultra, it is also ran on the Zynq Ultrascale+ (ZCU104) FPGA to further evaluate

55

the design portability between different families of the FPGAs and using different soft processors.

On a Zynq FPGA, the overlay is ran on a ARM processor instead of the MicroBlaze. The design

is functionally validated, but the results are not included since this FPGA has a lower number of

LUTs and results in smaller processor arrays than on the Virtex-7 and Virtex Ultra FPGAs.

56

Chapter 5

Optimizations

5.1 Internal Data Movement

In ML inference acceleration, the computation/communication ratio determines the end-to-end

inference latency seen by a user. In this section, we discussed on how our processor array was

optimized for data communication to reduce the inference latency. Table 11 breaks down the

percentage of cycles spent in computations (Array Active Cycles) and communications (Internal

Data Movement and Weight Stall Cycles) within our overlay. In this table, the Array Active

Cycles include the arithmetic operations (MAC operations), Internal Data Movement represents

the communication latency for moving the data between the PEs, and the Weight Stall Cycles is

the DRAM access time. Based on Table 11 and consistent with results reported in [24], the

MLP/LSTM/GRU benchmarks are communication-bound. In these benchmarks, the percentage

spent on Internal Data Movement and Weight Stall Cycles is higher than the Array Active Cycles.

This is opposed to CNN networks that most of the total latency is spent on the Array Active

Cycles. Without any loss to the generality, a system designer targeting such

communication-bound networks may want to perform some additional domain customizations to

further reduce inference latency for their applications. Amdahl’s law would point in the direction

of the communications subsystem. In our processor array, the standard NEWS communication

network is general but requires multiple shifts in the width and height dimensions to move data

between the PEs. These customizations can be encapsulated in software macros as part of a

domain-specific library available to programmers. The CNN network is not included as the

Internal Data Movement is a small portion of its total execution cycles. The binary tree reduction

network is implemented using data movement between BRAM blocks. There is no physical

connection between the processing elements. Figure 9 shows how the binary tree network

connects the PEs. In the original design with standard NEWS interconnect network, the data can

move to the adjacent PEs that are only 1 PE away from the source PE. Therefore, to move data to

57

further PEs, the data needs to go one-by-one from the source to the destination PE using a series

of Move instructions. In the optimized PE interconnection network, the data can be moved from

any PE to the PEs that are 2, 4, 8, or any other distance which is a power of two, in the NEWS

directions. Using this method, when moving data from further PEs, there is no need to hop

through all the middle PEs. This will reduce the execution time since a sequence of Move

instructions can be replaced by a single Move instruction. In this optimization, the number of

Moves is set in a register which is a power of two.

To implement this optimization in our memory-centric design, the data needs to be moved

between the BRAM blocks (register files) of different PE-blocks. Previously, with the original

design, since the data movement was conducted on the PEs that are only 1 hop away, the data

movement was performed inside the PE-blocks in one BRAM block not between different

PE-blocks. In the optimized method, if the requested PEs distance is 1 or 2, the data movement is

still performed inside each PE-block. Since the PE-blocks are 4×4, the PE with distance 1 and 2

are inside the same PE-block. If the requested PEs distance is 4, for each destination PE, the data

comes from the PE in the same position of the destination PE, but in the adjacent PE-block. For

example, when running the (Move E R2, R1, 4) instruction, the data should be moved to the PEs

that are in the distance of 4 in the east direction. In this case, the data from PE1 of a PE-block

(Figure 3) should be moved to PE1 of the PE-block on the east side of the current PE-block. If the

requested PEs distance is 8, 16, or 32, for each destination PE, the data comes from the PE in the

same position of the destination PE, but in the PE-block that are 2, 4, or 8 PE-blocks further from

the source PE. The same pattern applies to the rest of PEs destination values. In these case, the

destination PE-block’s location is computed by dividing the destination value by 4. After

determining the destination PE-block’s location, the data is read form that PE-block, stored in a

buffer, is sent to the destination PE-block as an input port, and stored in the correct location in the

BRAM’s register file of the destination PE-block. The effects of implementing this optimization

on the latency and resource utilization of our overlay is discussed in the following sections.

58

Table 11: Breakdown of Execution Cycles
Operation LSTM(1) LSTM(2) MLP CNN GRU

Array Active Cyclesa 33.6% 23.9% 54.2% 84.1% 10.8%
Internal Data Movementb 37.8% 76.1% 45.8% 0.1% 27.6%

Weight Stall Cycles 28.6% 0%c 0%c 15.8% 61.6%
a Multiply-Accumulate (MAC) operations.
b NEWS operations.
c No data movement from DRAM to BRAM.

PE PE PE PEPE PE PE PE

PE PE PE PEPE PE PE PE

PE PE PE PEPE PE PE PE

PE PE PE PEPE PE PE PE

PE

PE

PE

PE

(a)

(b)

(c)

(d)

Figure 9: Binary Tree Interconnect.

59

5.1.1 Latency Comparison

The comparison of utilizing binary tree interconnection as opposed to linear interconnection

between the PEs is shown in Figure 10. The total number of clock cycles for each of the same

benchmarks are compared to show the difference between these two interconnections on the

Array Active Cycles (MAC operations) and Internal Data Movement (Move) operations. MAC

includes the number of multiply and accumulations (add and mult instructions) and Move

represents the total NEWS Moves instructions. The blue and the orange diagrams show the

number of clock cycles spent on the MAC and Move operations when all accumulations and data

movements are implemented using traditional linear operations. The gray and the yellow

diagrams represent the number of clock cycles spent on the MAC and Move operations when both

accumulations and internal data movements are performed using binary tree method. Comparing

the blue and the gray diagrams in all benchmarks show that, as expected, the number of cycles is

decreased because of the lower number of performed additions as the result of utilizing binary

tree accumulation method. The same applies to the orange and yellow diagrams that the total

clock cycles is reduced as the result of utilizing binary tree interconnect between the PEs.

To evaluate the effects of implementing binary tree optimization on the instructions count,

Table 12 shows the number of performed instructions for each benchmark when using the linear

or binary tree methods. The add and Move E instructions are affected by this optimization since

they are used in the matrix-vector multiplication operations. The other instructions remain the

same since they have only performed on PEs with distance of 1. The amount of reduction in the

number of instructions depends on the benchmark size and if the number of neurons are a power

of two or not.

An evaluation on the effects of using binary tree interconnection network as opposed to using

larger processor arrays is performed using two different processor array sizes. This evaluation

clarifies that is it better to dedicate the available FPGA resources to the PEs or to the PE’s

interconnections. In these two cases, a smaller processor array is optimized with binary

interconnection network, but the larger processor array supports a higher level of concurrency

60

Figure 10: MAC and Move clock cycles at Internal Data Movement optimization.

Table 12: Effects of Internal Data Movement Optimization on Benchmarks Instruction Count.
Instr. LSTM(1) LSTM(2) MLP GRU

(Linear add, Linear shift) / (BinTree add, BinTree shift)
Move E 36259 / 15819 2048 / 400 889 / 441 16304 / 5072
Move W 0 / 0 0 / 0 0 / 0 0 / 0
Move N 30 / 30 2 / 2 0 / 0 16 / 16
Move S 1544 / 1544 274 / 274 100 / 100 996 / 996

add 18850 / 10090 1657 / 265 892 / 452 9092 / 3108
mult 410 / 410 19 / 19 8 / 8 188 / 188

61

Table 13: Analysis of PEs and Interconnections
MLP Linear Interconnect Binary Tree Interconnect
Size 200×200 PEs 100×100 PEs

Latency (µs)
200 91.36 46.56
700 354.56 120.16
1100 264.32 174.72
1300 385.12 210.88
2200 485.12 331.36
3200 733.44 619.36

with having more PEs. Table 13 shows this comparison for a set of MLP benchmarks running at

the same operating frequency of 200 MHz and the same data-width of 32-bit fixed-point. As

shown in this table, the latency of the processor array with lower number of PEs (1
4 PEs) is less

than the processor array with more PEs that is not optimized for internal data movements. These

example benchmarks present the importance of the internal data movement optimization for these

MLP networks. In the processor array with 100×100 PEs, none of the utilized MLPs fits into the

processor array. Therefore, the divide-and-conquer method is used and the matrices and vectors

are divided into smaller sections. Therefore, the larger the MLP size is, the more subsections are

required. In this case, the subsections are 100×100. For example, the MLP with size 200 is

divided into two subsections, the MLP with size 3200 is divided into 32 subsections of size

100×100. This divide-and-conquer method increases the latency. However, since this processor

array (100×100 PEs) is optimized for internal data movement, the increased latency as a result of

more subsections, is compensated with lower latency for internal data movement operations. It

should also be noted that in the larger processor array with 200×200 PEs, the MLPs are still

required to be divided into smaller subsections of size 200×200. For example, the MLP with size

200 is not needed to be divided into subsections, the MLP with size 3200 is divided into 16

subsections of size 200×200. In this larger processor array, the number of subsections are less

than the other processor array, but since it is using linear interconnects, the MLP benchmarks

latency is higher than the other processor array.

62

Table 14: Effects of Binary Tree Interconnect
Benchmark Binary Tree add Binary Tree add

Linear Move Binary Tree Move
Execution Time

LSTM(1) (ms) 11.4 8.2
LSTM(2) (us) 257.1 123.8

MLP (ms) 0.3 0.2
GRU (ms) 2.1 1.2

Resource Utilization (10k PEs)
LUTs 133890 492937
FFs 56207 76501

BRAMs 313 313
DSPs 0 0

5.1.2 Resource Utilization Comparison

Table 14 shows how the binary tree interconnection, takes additional resources to be implemented

on a Virtex Ultra FPGA and how the inference latency of the benchmarks can be reduced by

augmenting the NEWS network with a binary tree interconnect network. These customizations

can be encapsulated in software macros as part of a domain-specific library available to

programmers. The CNN network is not included in Table 14 as the Internal Data Movement is a

small portion of its total execution cycles. In this table, the LUTs and FFs are increased by 3.9×

and 1.3× compared to the original design. The BRAMs and DSPs resource utilization is not

changed since the interconnections are implemented using LUTs and FFs. Comparing the LUTs’

resource utilization in this table shows that to be to implement the binary tree interconnection

with a fixed number of LUTs on an FPGA, the number of PEs would be decreased by 4×. This is

also conformed in Table 13 that the optimized processor array is 4× smaller than the original

processor array implementation.

5.2 Bit-Sliced Method

As discussed in Section 3.4, the ALUs in the original design were developed using the bit-serial

method. Although using bit-serial will increase the level of parallelism in our SIMD design by

63

Table 15: Instructions Latency in Clock Cycles.
Addition/ Multiplication Move

Subtraction (NEWS)
1-bit Serial 2N N2 +2N N
p-bit Slice 3N

p 2(N
p)

2 + N
p

N
p

32-bit Parallel 3 3 2

packing more PEs into a specific FPGA, the increased number of cycles spent for each instruction

in the bit-serial method, inversely affects the total inference latency. To evaluate this design

trade-off, we have explored using bit-sliced and bit-parallel operations within the ALUs. In these

methods, the ALUs’ bit-width would be more than 1 bit. The slice width in our design varies

from 2 to 32 bits. In the bit-sliced methods, each slice is processed at a time, and they are

connected together serially. The bit-sliced methods spend less clock cycles per instruction since

instead of processing 1-bit at a time, they work on p-bit slices. Now, assuming a data-width of N,

in the bit-serial method, we perform N iterations on the operand, while in the bit-sliced methods,

N
p iterations are performed. The ALU’s bit-width should be adapted to the slice size, as they

would process one slice with various sizes from 2 to 32 bits.

The execution time of instructions based on the slice’s size is shown in Table 15. This table

shows that in the bit-serial method, the instructions’ latency only depends on the operands

data-width (N) that determines the number of iterations. In the bit-sliced methods, the instructions

latency depends on the data-width (N) and the slice size (p). The larger the slice size is, the less

iterations are required and therefore the instruction’s latency is decreased. In the bit-parallel

method, the instruction’s latency is a fixed number because all bits are processed in one iteration.

5.2.1 Bit-sliced PE-blocks

When using the bit-sliced methods, the layout of each PE-block can vary based on the slice size.

Figure 11 shows the PE-blocks’ layout for each slice size. In bit-sliced methods, the number of

PEs per PE-block depends on the slice size. When using a RAMB18E1 BRAM block as the

register file, there are 16 columns that can be accessed in parallel. For the bit-serial method, these

64

16 columns are dedicated to 16 PEs with 1 column per PE. However, when using bit-sliced

methods, these 16 columns can be divided into some multi-bit slices. In this case, if the slice size

is p, the number of PEs that can be accessed in parallel would be 16
p (p columns per PE).

Therefore, for example, for slice sizes of 2, 4, 8, and 16, the number of PEs in a PE-block would

be 16
2 = 8, 16

4 = 4, 16
8 = 2, and 16

16 = 1, respectively. Different methods on how to layout these

number of PEs in a PE-block is presented in Figure 11. As shows in this figure, in 2-bit slices, 8

PEs can be layout in a 4×2 or 2×4 layout. Either of these two architectures could be used. In

4-bit slices, 4 PEs can be layout in a 4×1, a 2×2 or a 1×4 layout. Based on what is discussed

about the preference of using square shape PE-blocks, the layout of size 2×2 is used for 4-bit

slices. In 8-bit slices, 2 PEs can be layout in a 2×1 or 1×2 layout. Either of these two

architectures could be used. In 16-bit and 32-bit slices, 1 PE is used per PE-block and therefore

there is only one 1×1 PE-block layout. The PE-blocks are then replicated to form larger

processor arrays. The final size of the 2-D processor array for each of the bit-sliced methods

depends on the PE-blocks layout. For example, when using 2-bit slices, the PE-blocks layout is

4×2 PEs. Therefore, by replicating the PE-blocks in a 2-D array of 3×3 PE-blocks, results in a

12×6 arrays of PEs. In this processor array, there is 3 PE-blocks on each rwo and each column.

Therefore, considering the PE-block’s size of 4×2, each row includes 3×4 = 12 PEs and each

column includes 3×2 = 6 PEs that results in a 2-D array of 12×6 total PEs. The final processor

array’s layout depends on the PE-blocks’ layout. If each PE-block is an square, the processor

array would be an square as well.

5.2.2 Bit-sliced Arithmetic

In the bit-sliced methods, the arithmetic operations are performed on one slice at a time. The

operations on one slice is performed in parallel, and the connections between the slices are serial.

For performing the addition and subtraction instructions in the bit-sliced methods, a slice of each

input operand would be the input to the ALUs. The ALUs add/subtract the slices in parallel and

the output is stored in one slice of the destination register. The next slices of the input operands

65

1-bit Serial (16 ALUs)

(a)

2-bit Slice (8 ALUs)

(b)

4-bit Slice (4 ALUs) 8-bit Slice (2 ALUs)

16-bit Slice (1 ALU) 32-bit Parallel (1 ALU)

(a)(a)

(b) (c)

(a) (b) (c) (a) (b)

(a)

Figure 11: PE blocks layout for bit-sliced methods.

are processed in a similar method until all the slices are processed. The carry-in or the borrow-in

of each slice comes from the previous slice. In the bit-sliced methods, using an p-bit ALU for

addition/subtraction of N-bit operands takes 3× N
p clock cycles. 3 clock cycles for reading one

slice of the two operands, performing the arithmetic operation, and writing back the results for

each slice. N
p slices are sequenced through the p-bit ALUs to produce the final result. The

Dual-Port BRAM allows both input operands to be read at the same time (one p-bit slice per

clock cycle). The 32-bit parallel addition/subtraction requires one cycle to read the two

full-precision operands from the register file, one clock cycle for performing the operation, and

the third cycle to write the result back into the register file. The bit-sliced Move instructions

follow the same method except that at each iteration, two slices from the source register is read

from the register file and are written back into the BRAM of the destination register. The latency

of Move instructions is also based on utilizing the Dual-Port BRAM, which is capable of reading

and writing 2 slices at a time. This results in N
2p read iterations and N

2p write iterations on the total

66

2m-1:m m-1:031:31-m-1

2m-1:m m-1:031:31-m-1

*

2m-1:m m-1:031:31-m-1

2m-1:m m-1:031:31-m-1

2m-1:m m-1:031:31-m-1

+

2m-1:m m-1:031:31-m-1

Figure 12: Bit-sliced multiplication algorithm.

N bits with accessing 2 slices at each clock cycle resulting in N
2p ×2 = N

p total clock cycles for

Move instructions. The bit-sliced multiplication algorithm is shown in 12. Every two slices of the

operands are multiplied by each other and they are accumulated in a temporary register in the

ALUs. If the inputs are m slices, the result would have 2m slices. The middle m slices are selected

as the final output. The bit-sliced multiplication is implemented using the standard

multiply-accumulate method by multiplying two slices at a time, spending 2× (N
p)

2 clock cycles

for generating the partial products and N
p clock cycles for the partial production accumulation

step.

5.2.3 Latency Comparison

To evaluate the effects of utilizing bit-sliced methods, we ran the same ML benchmarks presented

in Section ?? using the bit-sliced optimization. Figure 13 compares the inference latency of the

parallel and the serial implementations of these benchmarks. In the parallel implementation, the

operands data-width is equal to the slice size, while in the bit-serial implementation, the

data-width is processed serially one bit at a time. It is shown in Figure 13 that in the parallel

implementation, the latency is almost a fixed value regardless of the data-width. However, in the

bit-serial implementation, the latency depends on the data-width. This is because of the nature of

67

Figure 13: Benchmarks Execution time: (a) MLP, (b) LSTM, (c) CNN, (d) GRU.

bit-serial operations that the clock cycles spent for each instruction, depend on the data-width.

This figure also shows that the gap between the serial and the parallel implementations decreases

as the data-width decreases until 1-bit data-width that both methods result in the same latency.

The trade-off between the resource utilization and the instructions’ clock cycle counts are

evaluated using the GOPS metric that depends on both of these factors. Figure 14 shows the

GOPS values for different ALUs’ bit-widths at various data-widths. The results show that the

bit-serial method outperforms all the other methods in addition/subtraction and the data

movement operations. The bit-sliced methods vary in performance based on the instruction and

the data-width. However, in bit-sliced methods, GOPS is often maximized when the data-width is

equal to the slice size. For example, in 4-bit data width, the 4-bit sliced method results in higher

GOPS than the rest of slice sizes. The diagrams also show that the GOPS values increase with the

decreased data-width. It is because in lower data-widths, less number of clock cycles is spent per

instruction. In the 32-bit Parallel and the 16-bit sliced implementations, the GOPS does not vary

based on the data-width since the slice size is larger than all the data-widths. In these cases, the

operation is performed on one slice anyway, although the data-width is smaller is smaller than

that slice size.

68

Table 16: Small MLP Benchmark Execution Time (µs) for Different Methods
Method Data-Width #

32-bit 16-bit 8-bit 4-bit PEs
1-bit Serial 44.80 17.60 7.84 3.92 12×12
2-bit Sliced 23.80 4.40 4.56 2.44 20×10
4-bit Sliced 9.44 3.76 2.36 1.46 10×10
8-bit Sliced 4.40 2.36 1.46 1.46 20×10
16-bit Sliced 2.36 1.46 1.46 1.46 10×10

32-bit Parallel 1.46 1.46 1.46 1.46 10×10

An analysis on how the bit-sliced methods affect on the latency of a small MLP benchmark is

shown in Table 16. This table shows that when the ML benchmark is small enough that it could fit

into the processor array, how the latency is affected by different bit-serial and bit-sliced methods.

Because in this case the whole ML benchmark would fit into the processor array, there is no need

to apply the divide-and-conquer method and, therefore, the effects of resource utilization and the

processor array size is not included in the results since, in this table, we only focus on the latency.

The results show that the latency of all methods has a linear relation with data-width. The lower

data-widths result in lower latency since the instructions take less clock cycles to go over the bits

of data. Comparing different bit-serial and bit-parallel methods, at a fixed data-width, shows that

the latency decreases as the ALU’s bit-width increases. In this case, when the slice sizes are

larger, less number of iterations are required on the total data-width. The instructions spend less

number of clock cycles and therefore the latency decreases. However, this would not be followed

for all ML benchmarks since for larger benchmarks that the divide-and-conquer method is

applied, the number of PEs and the processor array size would also affect on the total latency.

5.2.4 Resource Utilization Comparison

Table 17 compares the resource utilization of the bit-serial, bit-sliced and the bit-parallel

implementations for a Virtex-7 and a Virtex Ultra FPGA. This table also compares the maximum

number of PEs that fit tnto these FPGAs for each method. Based on this table, as expected, the

higher the ALUs bit-width is, the more resources are utilized for each ALU. In the resource

69

Figure 14: ALUs’ Performance for Different Methods: (a) Addition/Subtraction, (b) Multiplica-
tion, (c) NEWS Moves.

70

utilization, it is shown that when the ALU’s bit-width is 16 or 32 bits, the ALUs utilize DSPs in

addition to the LUTs and FFs to implement the arithmetic operations. Using DSPs in the ALUs

limits the total number of PEs to the number of available DSPs on each specific FPGA. The

increased resource utilization from bit-serial to bit-sliced implementations comes from the more

complex ALUs with more registers inside the ALUs. Comparing the LUT resource utilization in

the 8-bit slice versus 16-bit slice shows that the LUT utilization has decreased from 127 to 73

whihc is because of the DSP utilization in the 16-bit slice methods. Therefore, the decreased LUT

utilization has been compensated with the increased DSP utilization. The other comparison is

between the two utilized FPGAs. The Virtex Ultra FPGA has around 4× more LUTs than the

Virtex-7 FPGA. This increased available resource results in higher number of PEs in the Virtex

Ultra implementation. For example, for the bit-serial method, the total PEs change from 16k to

65k (4× more) when running the design on the Virtex Ultra FPGA.

The other metric that evaluates the resource utilization versus the instructions’ latency is

Area×Latency that is shown in Figure 15 for each of the processor array’s instructions. Lower

Area×Latency results in higher performance in the ALUs. It is shown that the bit-serial method

provides the lowest values at all data-widths. The bit-sliced methods’ performance increases as

the data-width decreases. In case of 16-bit sliced and 32-bit parallel, the Area×Latency value is

fixed for all data-widths since the data-width is less than the slice size, and the operations are

conducted on one slice anyway, regardless of the data-width. Therefore, in these cases, the

latency and the area are fixed. In all the bit-serial, bit-sliced, and bit-parallel methods, the area

does not vary based on the data-width since for different data-widths, the ALU’s architecture is

fixed and it is the number of iterations that vary based on the data-width. However, the ALU’s

architecture changes based on the ALU’s bit-width (slice size).

5.2.5 Performance Comparison

The functional density of the bit-serial, bit-sliced and bit-parallel implementations is shown in

Figure 16. The functional density shows the level of concurrency in the SIMD architecture. It is

71

Table 17: Max number of PEs for Different Methods
ALU’s bit-width ALU’s Resources Max

LUTs FFs DSPs Number of PEs
Virtex-7

1-bit Serial 2 2 0 128 × 128 = 16,384
2-bit Slice 32 67 0 48 × 24 = 1,152
4-bit Slice 73 69 0 30 × 30 = 900
8-bit Slice 127 73 0 40 × 20 = 800
16-bit Slice 73 81 1 26 × 26 = 676

32-bit Parallel 105 97 4 22 × 22 = 484
Virtex Ultra

1-bit Serial 2 2 0 256 × 256 = 65,536
2-bit Slice 32 67 0 104 × 52 = 5,408
4-bit Slice 33 69 0 66 × 66 = 4,356
8-bit Slice 42 73 0 66 × 33 = 2,178
16-bit Slice 81 81 1 45 × 45 = 2,025

32-bit Parallel 112 97 4 40 × 40 = 1,600

computed by evaluating the number of parallel operations that can be performed on a fixed FPGA

resources. For example, we limit the resource utilizaiton to 4k slices of the Virtex-7 FPGA and

evaluate that how many parallel operations can be performed using that resources. The number of

parallel operations are equal to the number of PEs within the processor array that fits into that

limited resources. Higher functional density shows the method is more optimized in terms of

reource utilization since more PEs could be packed into a fixed number of slices. As shown in

Figure 16, the bit-serial method provides the highest density among all other methods. The less

difference between the bit-serial and other methods at low area utilization, shows that how the

bit-serial method is optimized for large benchmarks with low resource utilization compared to the

bit-sliced or parallel methods. The gap between the bit-serial and other methods increase as more

resources become available to the design. The values of the functional density for each method

increase by increasing the number of available slices, but the rate of increase in the bit-serial

method is more than the other methods. Among the bit-sliced methods, smaller slice sizes provide

more concurrency by utilizing less resources such that 2-bit sliced has a higher functional density

than 4-bit sliced and so on for the other slice sizes.

72

Figure 15: Area × Latency for Different Methods: (a) Addition/Subtraction, (b) Multiplication,
(c) NEWS Moves.

73

Figure 16: Functional Density for Different Methods.

To evaluate the effects of utilizing bit-sliced methods on the operating frequency of the

processor array, we implemented the bit-serial and the bit-sliced methods with almost the same

number of PEs (160 PEs) and compare the maximum operating frequency for each of these

methods. The number of PEs in different designs could not be exactly the same since each has a

different PE-block layout. For example, in the bit-serial method, the PE-blocks are 4×4 and the

processor array could be squares with sizes that are multiples of 4. However, in the 2-bit sliced

method, the PE-blocks size are 2×4 and therefore cannot support square size processor arrays.

The maximum operating frequency of each processor array design is reported in Table 18. This

table shows that the bit-serial method can work at a higher frequency than the bit-sliced and the

bit-parallel methods. The small and simple bit-serial ALUs increase the performance of the

design by a factor of 2 compared to the bit-parallel implementation. As the ALUs get larger in the

bit-sliced methods, more resources are required to implement the same number of PEs, the FPGA

gets congested and the design would have a lower performance in terms of clock frequency.

However, in all the methods, when the processor array is larger, the operating frequency is

74

Table 18: Max Operating Frequency for Different Methods
Method Freq. (MHz) # PEs

1-bit Serial 180 20×20
2-bit Sliced 120 40×20
4-bit Sliced 120 20×20
8-bit Sliced 120 20×10

16-bit Sliced 110 20×20
32-bit Parallel 90 20×20

decreased. For example, for the bit-serial method, when the processor array size changes from

160 PEs to 16k PEs, the operating frequency changes from 180 MHz to 130 MHz. In our latency

and area evaluation experiments, we compared the methods at the same clock frequency.

5.3 Online Training

Our SIMD processor array overlay was originally designed to accelerate the inference phase of

ML applications. An extension of this design is then developed to support training of MLP

networks on our FPGA overlay. Figure 17 shows the additional connections that are added to the

original design to support back-propagation algorithm. The connection from the first row of PEs

to the last column of PEs is implemented using a Move N and then a Move W instruction. The

other connection from the last column of PEs to the first column of PEs is implemented using two

Move E instructions. In these connections, the data goes through the I/O buffers and then is

stored to the destination PEs register files. The other modification is adding a copy instruction to

the processor array’s ISA that is used in the back-propagation path when computing the

differential values from the hidden layer to the input layer. To add the copy instruction, the

FSM-based design of the controller is modified. In the copy instruction, the data is copied from

the source PEs’ register to the destination PEs register on their right side. The number of copies is

set as an input register. For example, (copy R1, R2, 4) instruction copies the R2 register of the first

column to the R1 of the next 4 columns.

The back-propagation algorithms on a fully connected MLP networks is implemented by

75

computing the difference between the expected and the actual outputs and then updating the

network parameters accordingly. After performing a forward path, the actual and expected

outputs are subtracted based on (5) and then the output layer weights and biases are updated

based on (6-(6)). Then the hidden layer network parameters are updated based on (8-11). In our

overlay, each of these steps are implemented using SIMD instructions. The (5) is computed using

an element-wise vector subtraction with the results stored in the last column of PEs. An

element-wise vector multiplication that is followed by another element-wise vector subtraction is

performed for bias updates. Two element-wise vector multiplication are performed to compute

the (6) and another element-wise vector subtraction performs (7). Also, before performing the (6),

ColumnToColumn software macro is called to copy the values computed in the last column (7) to

the other columns to then be accessible for weight update (7). The same is applied when

computing the (8-11) using element-wise vector subtraction and multiplication to updated the

hidden layer weights and biases. In these equations, out is the neuron’s output after applying the

activation functions and net is the accumulated input values times the edge weights.

∂Etotal

∂out
= out − target (5)

∂Etotal

∂W
=

∂Etotal

∂out
× ∂out

∂net
× ∂net

∂W
(6)

W
′
=W−α × ∂Etotal

∂W
(7)

∂Etotal

∂W
=

∂Etotal

∂out
× ∂out

∂net
× ∂net

∂W
(8)

∂Etotal

∂out
= Σ

∂Ei

∂out
(9)

76

∂Ei

∂outhi

=
∂Ei

∂net
× ∂net

∂out
(10)

∂Ei

∂net
=

∂Ei

∂out
× ∂out

∂net
(11)

To test the functionality of the MLP training algorithm, we ran some MLP benchmarks used

in [126] dataset. Table 19 shows the results for the forward and backward iterations. In this table,

the MLP size is the input size which represents the history size for the utilized dataset. The

number of hidden nodes is 50 and the MLPs have one Boolean output which represents the state

of the structure. The forward and backward latency is also shown in Table 19. The reported

forward latency is the inference latency and the training latency would be the sum of one forward

and one backward iteration (one epoch) times the number of epochs. The number of performed

SIMD instructions for each MLP network is also presented. In the instruction count columns, the

numbers on the left size of the plus sign are the number of instructions for the forward path and

the numbers on the right side of the plus sign are the number of instructions for the backward path.

The summation of these two is the number of instructions per epoch. Comparing these numbers

show that the data movements between the PEs (NEWS Moves instructions) are the most used

instructions. This is while the utilized overlay for these benchmarks is optimized for internal data

movement using binary tree interconnection network. The resource utilization is also presented in

this table. All benchmarks are ran on a processor array of 10k PEs and therefore, they share the

same resource utilization. Since all of the benchmarks sizes are larger than the processor array,

we still follow the divide-and-conquer method for implementing the back-propagation algorithms.

77

PE_Block
(0, n-1)

Controller

Tile (0, m-1)

PE_Block
(n-1, n-1)

PE_Block
(0, 0)

PE_Block
(n-1, 0)

Processor Array

North I/O Buffer (Serial/Parallel Converter)

South I/O Buffer (Serial/Parallel Converter)

W
es

t I
/O

 B
uf

fe
r

(S
er

ia
l/P

ar
al

le
l C

on
ve

rt
er

)

Sigmoid

Sigmoid

Sigmoid

Sigmoid

Sigmoid

Sigmoid

Sigmoid

Sigmoid

Tanh

Tanh

Tanh

Tanh

Tanh

Tanh

Tanh

Tanh

M
as

te
r C

on
tro

lle
r

E
as

t I
/O

 B
uf

fe
r

(S
er

ia
l/P

ar
al

le
l C

on
ve

rt
er

)

PE_Block
(0, n-1)

Controller

Tile (0, 0)

PE_Block
(n-1, n-1)

PE_Block
(0, 0)

PE_Block
(n-1, 0)

PE_Block
(0, n-1)

Controller

Tile (m-1, 0)

PE_Block
(n-1, n-1)

PE_Block
(0, 0)

PE_Block
(n-1, 0)

PE_Block
(0, n-1)

Controller

Tile (m-1, m-1)

PE_Block
(n-1, n-1)

PE_Block
(0, 0)

PE_Block
(n-1, 0)

Figure 17: Modifications for Supporting Online Training.

78

Ta
bl

e
19

:P
ro

ce
ss

or
A

rr
ay

O
ve

rl
ay

R
es

ul
ts

(8
-b

it
Fx

P,
20

0
M

H
z,

V
ir

te
x

U
ltr

aS
ca

le
+

V
U

9P
)

M
L

P
Fo

rw
ar

d
B

ac
kw

ar
d∗

In
st

ru
ct

io
n

C
ou

nt
∗∗

R
es

ou
rc

e
U

til
iz

at
io

n∗
∗∗

#
si

ze
L

at
en

cy
(µ

s)
L

at
en

cy
(µ

s)
A

D
D

SU
B

M
U

LT
M

O
V

E
L

U
T

s
FF

s
B

R
A

M
s

D
SP

s
PE

s
20

0
8.

76
7.

60
36

+7
0+

6
3+

9
11

7+
74

70
0

22
.3

6
12

.3
6

91
+1

2
0+

11
8+

19
29

7+
74

11
00

32
.1

6
16

.6
0

13
8+

16
0+

15
12

+2
7

40
8+

83
61

32
20

83
65

9
62

5
0

10
k

13
00

39
.2

8
18

.6
0

18
4+

18
0+

17
14

+3
1

47
4+

85
(5

1.
8%

)
(3

.5
%

)
(1

4.
4%

)
(0

%
)

22
00

60
.7

6
27

.6
0

33
6+

27
0+

26
23

+4
9

61
7+

94
32

00
12

3.
16

37
.6

0
28

4+
37

0+
36

33
+6

9
21

81
+1

04
∗

Fo
rt

ra
in

in
g,

ea
ch

ep
oc

h’
s

la
te

nc
y

w
ou

ld
be

th
e

su
m

of
on

e
fo

rw
ar

d
an

d
on

e
ba

ck
w

ar
d

ite
ra

tio
n.

∗∗
T

he
nu

m
be

rs
on

th
e

le
ft

si
de

of
th

e
pl

us
si

gn
ar

e
th

e
fo

rw
ar

d
pa

th
in

st
ru

ct
io

n
co

un
ta

nd
th

e
ri

gh
ts

id
e

nu
m

be
rs

ar
e

th
e

ba
ck

w
ar

d
pa

th
in

st
ru

ct
io

n
co

un
t.

∗∗
∗

A
ll

M
L

P
ne

tw
or

ks
ar

e
ru

n
on

th
e

sa
m

e
pr

oc
es

so
ra

rr
ay

an
d

th
er

ef
or

e
ha

ve
th

e
sa

m
e

re
so

ur
ce

ut
ili

za
tio

n.

79

5.4 Design Space Exploration

Our overlay can be configured in various data-widths, various processor array sizes, various

ALU’s bit-width, on various FPGAs. Thus, the design space contains a number of parameters that

can be adjusted based on the application. The design space is large due to numerous design

choices and therefore it takes a long time to synthesize all these possible architectures and find the

best processor array overlay architecture for a specific ML application. Moreover, it is hard to

provide a single efficient hardware solution for an end-to-end FPGA implementation of every

different ML application. In this section, we present an analytical analysis on how utilizing

different parameters affected on the inference latency of ML applications. We have explored these

different configurations using a set of equations that predict the inference latency for different

overlay architectures and can be used to find the optimum design for a specific ML application.

Although because of the programability and the flexibility that our design provides, different ML

applications could still be ran on the overlay, but they are not just as optimized. These equations

can be solved to determine design parameters that can be used to set data-width and ALU

bit-widths for any LSTM/GRU/MLP network and customize the overlay for the target neural

network model. The flow shown in Figure 18 combines the results of the device specific ALU

sizing analysis with network specific information within the set of parametric equations shown in

(12-17). (12-14) are for LSTM networks and (15-17) are for MLP networks. We have also

developed equations for GRU networks but as they are sufficiently similar to the LSTM equations

(different constant factors) that we have omitted them. These equations can be used in a straight

forward manor to compute the total clock cycles spent for each of the three major instruction

types: multiplication, addition, and data movement on a specific configuration of the 2-D SIMD

processor array. This allows application developers to predict the end-to-end inference latency of

their particular ML application on a specific device early on in the design cycle prior to synthesis.

The need to build and perform trial and error explorations of building systems and simulating

their application running on varying combinations of architecture design choices for a specific

device. The total predicated inference latency in clock cycles on our 2-D SIMD processor array is

80

ALU Sizing
AnalysisLogic Family

Parameters

Parametric
Equations

Equation
Optimizations 2-D SIMD

Overlay Library

FPGA
Logic Family
Specifications

Logic Family
Selection

ML Network
Parameters

Optimized
2-D SIMD

Overlay

User Inputs

Figure 18: SoC with Overlay.

the sum of the three equations. Conversely, the equations can be solved to determine the optimum

values of key design parameters by differentiating with respect to that parameter.

81

LS
T

M
A

dd
s

To
ta

l
C

yc
le

s
=
(n−

2

∑ i=
1

4m
i+

1(
m

i(
m

i−
2lo

g 2
m

i
+

lo
g 2

m
i+

2)
)
+
(m

i+
1(

m
i+

1
−

2lo
g 2

m
i+

1
+

lo
g 2

m
i+

1
+

2)
)

x′ iy
′ i

+
(n−

1

∑ i=
1

9m
i

y′ i
)
+

m
nm

n−
1(

m
n−

1
−

2lo
g 2

m
n−

1
+

lo
g 2

m
n−

1
+

2)
x′ iy

′ i
+

m
n y′ i
)
×
((

2
+

q)
N p
)

(1
2)

LS
T

M
M

ul
ts

To
ta

l
C

yc
le

s
=
(n−

2

∑ i=
1

4(
m

i+
1m

i+
m

2 i+
1)

x′ iy
′ i

+
n−

1

∑ i=
1

3m
i

y′ i
+

m
nm

n−
1

x′ iy
′ i

)
×
((

q
+

1)
N p

2
+
(2

−
q)

N p
)

(1
3)

LS
T

M
M

ov
es

To
ta

l
C

yc
le

s
=
(n−

2

∑ i=
1

4x
(m

i+
1m

i+
m

2 i+
1)

x′ iy
′ i

+
n−

1

∑ i=
1

14
m

i

y′ i
+

n−
1

∑ i=
1

2m
i+

1
+

xm
nm

n−
1

x′ iy
′ i

)
×
(N p

)
(1

4)

M
LP

A
dd

s
To

ta
l

C
yc

le
s
=
(n−

2

∑ i=
1

m
i+

1(
m

i(
x′ i−

2lo
g 2

x′ i
+

lo
g 2

x′ i+
2)
)

x′ iy
′ i

+
m

i y′ i
)
×
((

2
+

q)
N p
)

(1
5)

M
LP

M
ul

ts
To

ta
l

C
yc

le
s
=
(n−

2

∑ i=
1

(m
i+

1m
i)

x′ iy
′ i

)
×
((

q
+

1)
N p

2
+
(2

−
q)

N p
)

(1
6)

M
LP

M
ov

es
To

ta
l

C
yc

le
s
=
(n−

2

∑ i=
1

(x
−

1)
(m

i+
1m

i)

x′ iy
′ i

+
n−

1

∑ i=
3

m
i+

1)
×
(N p

)
(1

7)

82

5.4.1 Defining the Equations

Table 20 provides definitions for the parameters used in our equations. The first four parameters

are user defined. These include the ML network parameters (mi for the number of nodes in the ith

layer of the network and n for total layers in the network), the operand precision (listed as

data-width N), and ALU arithmetic precision (p as the slice bit-width). x,y are the 2-D processor

array dimensions (number of PEs) input from the prior ALU sizing analysis. q is a boolean

variable that selects between bit-serial and non bit-serial methods. 0 selects bit-serial and 1 for

bit-sliced and bit-parallel methods. x
′
i,y

′
i are division factors for large matrix-vector operations.

These are set for ML networks that cannot fit into the processor array. In such cases, a

divide-and-conquer method is employed that divides the operations into sub matrices of size x
′
i,y

′
i

that can fit into the processor array. When the dimensions of the neural network (mi,mi+1) fit into

the processor array (i.e, mi,mi+1 are smaller than x,y), x
′
i,y

′
i are equal to mi,mi+1. Conversely,

when the dimension of the neural network (mi,mi+1) exceeds x,y, it is divided into smaller

subsections. In this case, x
′
i,y

′
i are equal to the largest factors of mi,mi+1 that are smaller than x

and y. For example, if the 2-D processor array size is x = 60 y = 60 and the network dimension is

mi = 100, mi+1 = 90, then the largest factors of mi and mi+1 that are smaller than x,y are 50 and

45. Therefore, x
′
i = 50 and y

′
i = 45.

5.4.2 Explaining an Example Equation

As a representative example, we provide a description of (12) which computes the number of

cycles for the add operations in the LSTM networks. For refreshing on the LSTM architecture

and technical terms refer to [127]. The provided equation includes two terms. The first term

computes the instruction counts which is then multiplied by the second term which is the clock

cycles per addition instruction. The first term in the equation is composed of the two summations

and two single terms which is then multiplied by the second term (2+q)N
p . Expanding on the first

term, the first summation is for the number of additions of the LSTM layers and operate over each

of the n−1 layers of the network. In the numerator of this summation, the first term is for the

83

additions within the matrix-vector multiplication of normal weights and the second term is for the

recurrent weights. The next summation is resulted from the vector-vector addition operations

within each LSTM gate, when adding the outputs of normal weights, recurrent weights and the

biases. The next single term (without the summation) is for the additions of matrix-vector

operation for the fully connected layer and the last single term is for adding the biases for that

fully connected layer. The constant factor of 4 in the numerator of the first summation is because

an LSTM network has 4 gates that perform the same operations. The terms with log2 in the

numerators resulted from the utilized binary tree reduction method for partial product

accumulation. In case the hidden layer size is a power-of-two, all accumulations are performed

using binary tree, and in case of a non power-of-two hidden layer size, the binary tree reduction is

performed on the largest power-of-two and the rest of accumulations is implemented using linear

addition. The ceiling and f looring operators are taking care of these cases. All the denominators

of these terms determine the division factors. For instance, back to our example in Section 5.4.1,

when mn = 90 and y
′
i = 45 the vectors are divided into 90

45 = 2 subsections and therefore we

perform 2 SIMD element-wise additions for the network bias addition in the fully connected layer

that is shown by mn

y′i
in (12). The values of the second term for each equation are derived based on

the cycle counts per instruction shown in Table 15. For instance, in (12), the second term

((2+q)N
p) is the cycles per addition. This is derived based on the values of the

“Addition/Subtraction” column of Table 15. Looking at this term, replacing the q = 0, p = 1

results in the addition/subtraction cycles for the bit-serial method (shown in Table 15 with 2N),

replacing the q = 1, p = p results in 3N
p for the bit-sliced methods, and replacing the q = 1,

p = 32, N = 32 results in 3, equal to what is shown in Table 15 for the 32-bit parallel method.

Similarly, Table 15 lists the values used as the second term for mult and Move instructions.

5.4.3 Mapping to SIMD Instructions

Table 21 shows a summary of instruction counts per software macro. This table shows the

instructions for matrix-vector operations when the ML network size is small and fits into the

84

Table 20: Parameter Definition of Cycle Count Equations.
Parameter Description Type

N Data-width User-defined
mi Number of nodes User-defined

for the ith layer
n Number of layers User-defined
p ALUs’ bit-width User-defined

(slice size)
q Binary variable Automatically set

to switch between bit-serial based on
and other methods p value

x
′
i,y

′
i Division factor Board-specific

for the ith layer
x,y Max. number of PEs Board-specific

processor array. In this case, an MV M operation performs 1 multiplication to generate the partial

products, log2 mi addition operations to accumulate the partial products using a binary tree

reduction method, and x Move E operations to move the partial products between the PEs to be

accumulated. With our SIMD architecture, only one multiplication per matrix-vector multiply is

executed and the partial-product accumulation is performed in parallel on the matrix rows (mi+1).

For vector-vector operations (VVA and VV M), a single add/multiply instruction is performed on

the vector elements in parallel. Therefore, for a VVA or a VV M operation, only 1 addition or 1

multiplication is performed. For matrix-vector operations that the network size is too large to fit

into the processor array, the MV M operation is divided into (mi

x′i
× mi+1

y′i+1
) subsections. For these

cases, we have (mi

x′i
× mi+1

y′i+1
) subsections where each subsection is a small MV M operation.

Therefore, the number of instructions for each MV M operation would be multiplied by

(mi

x′i
× mi+1

y′i+1
). For VVA and VV M operations, the vector is divided into mi+1

y′i+1
subsections. To

compute the total instructions for an ML algorithm, the instruction counts per software macro are

multiplied by the number of software macros utilized to implement an ML algorithm. For

instance, each gate in an LSTM network, that is computed by (WX +UH +b) [127], includes two

MV M operations and two VVA operations. All operations are accounted for in the equations

shown in (12-17).

85

Table 21: Software Macros Instruction Count Break-Down.
Instruction Software Macro

MV M VVA VV M
(mi+1 ×mi) (mi) (m∗

i)
add log2 mi 1 0
mult 1 0 1
NEWS
Moves

x 0 0

∗ Numbers in parenthesis are the matrix/vector sizes.

LST M Adds Total Cycles = (
1

∑
i=1

4×6(4(4−2log2 4 + log2 4+2))+(6(6−2log2 4 + log2 6+2))
4×2

+(
9×4+9×6

2
)+

2×6(6−2log2 6 + log2 6+2)
3×2

+
2
2
)× ((2+1)

32
2
) = (234)× (48)

(18)

LST M Mults Total Cycles = (
1

∑
i=1

4(4×6+62)

2×4
+

3×4
2

+
3×6

2
+

2×6
2×3

)

×((1+1)
32
2

2
+(2−1)

32
2
) = (47)× (528)

(19)

LST M Moves Total Cycles = (
1

∑
i=1

4×4(4×6+62)

4×2
+

14×4
2

+
14×6

2
+(2×6+2×2)

+
4×6×2

3×2
)× (

32
2
) = (214)× (16)

(20)

5.4.4 Verifying the Equations

For example purposes, we validated the LSTM equations on a small network and compare the

instruction counts resulted from our equations versus the accurate cycle counters in the

implemented design. Our example LSTM includes an input layer, a hidden layer and a fully

connected layer at the output with sizes of 4, 6, and 2, respectively. Assuming the bit-sliced size

is p = 2 and the processor array size of x = 4,y = 2. Using this information, we first compute the

x
′
i,y

′
i for each layer. From the input to the hidden layer we have mi = 4,mi+1 = 6, and from hidden

layer to output layer, mn−1 = 6, mn = 2. Considering the processor array size (x = 4,y = 2),

x
′
1 = 4 because 4 is the largest factor of m1 = 4 that is smaller than x = 4. y

′
1 = 2 since 2 is the

largest factor of m2 = 6 that is smaller than y = 2. Similarly, x
′
2 = 3 because 3 is the largest factor

of m2 = 6 that is smaller than x = 4. Finally, y
′
2 = 2 because 2 is the largest factor of m2 = 6 that

is smaller than y = 2. These values are replaced in (12-14) to count the instructions using our

86

equations. They result the same instruction counts we get from implementing this sample network

on our processor array. Based on these numbers, the total cycles for the inference phase of this

LSTM network would be 234×48 cycles for additions, 47×528 cycles for multiplications, and

214×16 cycles for the NEWS Moves when the slice size is 2 and data-width is N = 32. We can

replace the p parameter with other slice slices for computing the total cycles spent using the other

ALU’s bit-widths.

87

Chapter 6

Conclusion

This dissertation developed a memory-centric FPGA overlay which is designed using a SIMD

processor array to support rapid coding, programmability, and flexibility for acceleration of ML

applications. Our FPGA-based overlay has the potential to bring software levels of productivity

and code portability to ML applications running on different FPGA devices. The developed

architecture is based on a 2-D array of processor-in-memory tiles each consisting of small

bit-serial ALUs with concurrent access to register files. In the our memory-centric architecture,

every couple of PEs share the same BRAM block as their register file and therefore can access the

other PEs within the same PE-block. This architecture eliminates the physical connections

between the PEs and increases the level of concurrency in the design that is provided with our

SIMD architecture. Experimental results showed that our SIMD array of the bit-serial

processor-in-memory tiles outperformed custom full-precision HLS-based designs in some

standard ML benchmarks. Importantly, a single hardware design was used for all performance

comparisons, with the different networks being implemented through compiling software without

requiring re-synthesis. The same code was run without modification on the system implemented

in a different device. The bit-serial nature of the design and the novel method of storing the values

within the PEs register files provided the opportunity to run various data-widths on the same

hardware design.

Different optimizations are implemented on the original overlay to further reduce the latency.

Our ML benchmark evaluation showed that in communication-bound networks such as

MLP/LSTM/GRU the most time consuming part of the inference algorithm is spent on internal

data movement between the PEs. The interconnection network is optimized from the standard

NEWS method to binary tree method. The results showed a 33.3%, 28.0%, and 42.8%

improvement on the latency of the utilized MLP, LSTM and GRU networks. However, this

optimization comes at the cost of 268.1% and 36.1% increased resource utilization in LUTs and

88

FFs. Additionally, we also explored using bit-sliced and bit-parallel methods instead of the

bit-serial operations. In this case, the ALU’s bit-widths are more than one bit and therefore the

ALU’s resource utilization increases in terms of LUTs and FFs. The decreased latency of

instructions in the bit-sliced methods is resulted from processing more bits in parallel (each slice)

and spending less iterations on the operands data-widths. In this method, we processed a number

of bits (one slice) in parallel and connect the slices serially to perform the operation on the whole

data-width. The ALUs resource utilization was increased, but the instructions’ latency and the

total inference latency was decreased. The other optimization is supporting the training phase of

the MLP applications. We modified the original design by adding more connections between the

PEs and adding another SIMD instruction to the processor array’s ISA. With the optimized

design, we performed back-propagation algorithms for the MLP networks. This is tested on a

real-time application and the results showed that the processor array meets the real-time

requirements for most of the benchmarks. The 24.4% and 9.3% increase in the LUTs and FFs

utilization is resulted by supporting the training phase on the processor array. As the processor

array’s architecture depends on a number of parameters including various data-widths, ALU

bit-widths, 2-D processor array’s size, and the utilized FPGA. We also explored the design space

using a set of equations that predicted the ML inference latency before synthesizing. Using our

set of equations, we find the optimum design architecture for the processor array for every ML

application. However, the processor array would still run different ML applications but they not

just as optimized.

Future work will explore developing front ends for standard machine learning

domain-specific languages such as tensor-flow, and more exhaustive analysis and optimization on

the latency and performance of the design. Developing a framework to fully automate the process

of compiling ML applications into the processor array architecture is also an area of interest. A

customization that can be applied to the processor array’s PEs is to utilize a subsection of PEs for

some specific algorithms and software macros. In this case, some PEs would be idle and can be

switched off to be inactivated and save on dynamic power consumption. This would also be

89

helpful in terms of latency in case the application size is small that can operate on a subsection of

PEs. The clock cycles spent on internal data movement would be saved since the data does not

need to go through the inactive PEs. The other aspect of further optimizations can focus on large

ML applications. In this case, the available processor arrays are not enough to fit the whole

matrix/vectors at once. We currently follow a divide-and-conquer method for these benchmarks

which increases the latency. The other method that can be implemented using dedicating the

BRAM’s register files to more PEs that are called virtual PEs. For example, in this method,

instead of connecting 16 PEs to a BRAM block of size 16×1024 bits, we can connect 32 PEs to

the same size BRAM and decrease each PE’s local storage from 1024 bits to 512 bits. Therefore,

by supporting more PEs, the level of concurrency increases and larger benchmarks can fit into the

available physical and virtual PEs. Another area of interest would be to analyse the design’s

performance in terms of operating frequency. The current investigations on the limiting factors of

the design’s performance is the BRAM and ALUs connections. The critical path is all ALUs of a

PE-block access the same BRAM block for data reads and writes. A solution that we have tried is

to put registers withing the BRAM-ALU path to be able to clock the ALUs faster. However, this

method increases the instruction’s clock cycles since a clock cycle is added to every bit read. The

improvement in the operating frequency is canceled out with the instructions clock cycle count

that resulted in total higher latencies. This approach could be improved by using a pipeline

architecture when accessing the BRAM. In that case, the data is read from the BRAM still one at

a clock cycle, however it would be processed by the ALUs within the next clock cycles when the

data is passed from the BRAM to the ALUs after going through the middle registers. The

optimization can be in the connection between the PS and PL side of the whole design and find an

alternative solution for a shared memory region between the custom IP and the MicroBlaze

processor. The current solution uses AXI slave registers for this connection method, which is not

very efficient and has limited the operating frequency. Implementing other ML application’s

training algorithms is also an area of interest as a future work. The other future work could be

optimizing the scheduler (software macros) to support more concurrency and efficient processor

90

utilization for all ML benchmarks, specifically the CNN networks.

91

References

[1] E. Nurvitadhi, D. Kwon, A. Jafari, A. Boutros, J. Sim, P. Tomson, et al., “Why compete
when you can work together: Fpga-asic integration for persistent rnns,“ In 27th Annual
International Symposium on Field-Programmable Custom Computing Machines (FCCM),
pp. 199–207, 2019.

[2] A. Putnam, A. M.Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme, et al., “A
reconfigurable fabric for accelerating large-scale datacenter services,” In 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA), pp. 13–24, 2014.

[3] P. Bannon, G. Venkataramanan, D. D. Sarma, and E. Talpes., “Computer and Redundancy
Solution for the Full Self-Driving Computer‘,” IEEE Hot Chips 31 Symposium (HCS), 2019.

[4] https://training.ti.com/jacinto7

[5] D. Abts, J. Ross, J. Sparling, M. Wong-VanHaren, M. Baker, T. Hawkins, et al., “Think fast:
a tensor streaming processor (TSP) for accelerating deep learning workloads,” In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), pp.
145–158, 2020.

[6] A. Ishfaq. “Discover Internet of Things editorial,” Discover Internet of Things,
10.1007/s43926-021-00007-6, 2021.

[7] https://www.microsoft.com/en-us/research/project/project-catapult/

[8] A. Panahi, E. Kabir, A. Downey, D. Andrews, M. Huang, J. D. Bakos, “High-Rate Machine
Learning for Forecasting Time-Series Signals,” IEEE International Symposium on
Field-Programmable Custom Computing Machines, 2022. (Accepted, Not Published yet)

[9] H. Liu, A. Panahi, D. Andrews, and A. Nelson, “An FPGA-Based Upper-Limb
Rehabilitation Device for Gesture Recognition and Motion Evaluation Using Multi-Task
Recurrent Neural Networks,” IEEE Sensors Journal, 2022.

[10] A. Panahi, S. Balsalama, A. T. Ishimwe, J. M. Mbongue, and D. Andrews, “A Customizable
Domain-Specific Memory-Centric FPGA Overlay for Machine Learning Applications,” In
31st International Conference on Field-Programmable Logic and Applications (FPL), pp.
24–27, 2021.

[11] H. Liu, A. Panahi, D. Andrews, and A. Nelson, “FPGA-based gesture recognition with
capacitive sensor array using recurrent neural networks,” In IEEE 28th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 225–225,
2020.

[12] S. Basalama, A. Panahi, A. T. Ishimwe, and D. Andrews, “SPAR-2: A SIMD Processor
Array for Machine Learning in IoT Devices,” In 3rd International Conference on Data
Intelligence and Security (ICDIS), pp. 141-147, 2020.

92

[13] D. Capalija, and T. Abdelrahman, “A coarse-grain fpga overlay for executing data flow
graphs,” In The Second Workshop on the Intersections of Computer Architecture and
Reconfigurable Logic (CARL), 2012.

[14] Z. Aklah, and D. Andrews, “A Flexible Multilayer Perceptron Co-processor for FPGAs,” In
International Symposium on Applied Reconfigurable Computing, pp. 427–434, 2015.

[15] A. M. Abdelsalam, F. Boulet, G. Demers, J. P. Langlois, and F. Cheriet, “An efficient
FPGA-based overlay inference architecture for fully connected DNNs,” In 2018
International Conference on ReConFigurable Computing and FPGAs (ReConFig), pp. 1–6,
2018.

[16] D. H. Noronha, R. Zhao, Z. Que, J. Goeders, W. Luk, and S. Wilton, “An Overlay for Rapid
FPGA Debug of Machine Learning Applications,“ In 2019 International Conference on
Field-Programmable Technology (ICFPT), pp. 135–143, 2019.

[17] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: Toward uniformed
representation and acceleration for deep convolutional neural networks,“ IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 11, pp.
2072–2085, 2018.

[18] M. S. Abdelfattah, D. Han, A. Bitar, R. DiCecco, S. O’Connell, N. Shanker, et al., “Dla:
Compiler and fpga overlay for neural network inference acceleration,“ In 2018 28th
International Conference on Field Programmable Logic and Applications (FPL), pp.
411–4117, 2018.

[19] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W. M. Hwu, and D. Chen, “DNNBuilder: an
automated tool for building high-performance DNN hardware accelerators for FPGAs,“ In
2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–8,
2018.

[20] Y. Yu, T. Zhao, K. Wang, and L. He, “Light-OPU: An FPGA-based Overlay Processor for
Lightweight Convolutional Neural Networks,“ In The 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp. 122–132, 2020.

[21] R. Shi, Y. Ding, X. Wei, H. Li, H. Liu, H. K. H. So, and C. Ding, “FTDL: a tailored
FPGA-overlay for deep learning with high scalability,“ In 2020 57th ACM/IEEE Design
Automation Conference (DAC), pp. 1–6, 2020.

[22] L. Ioannou and S. A. Fahmy, “Neural Network Overlay Using FPGA DSP Blocks,“ In 2019
29th International Conference on Field Programmable Logic and Applications (FPL) pp.
252–253, 2019.

[23] Y. Yu, C. Wu, T. Zhao, K. Wang, and L. He, “OPU: An FPGA-Based Overlay Processor for
Convolutional Neural Networks,“ IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 2019.

93

[24] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, et al., “In-datacenter
performance analysis of a tensor processing unit,” In Proceedings of the 44th Annual
International Symposium on Computer Architecture, pp. 1–12, 2017.

[25] X. Wang, V. Goyal, J. Yu, V. Bertacco, A. Boutros, E. Nurvitadhi, et al., “Compute-Capable
Block RAMs for Efficient Deep Learning Acceleration on FPGAs,” In 2021 IEEE 29th
Annual International Symposium on Field-Programmable Custom Computing Machines
(FCCM), pp. 88–96, 2021.

[26] O. Cetin, F. Temurtas, and S. Gulgonul, “An application of multilayer neural network on
hepatitis disease diagnosis using approximations of sigmoid activation function,” Dicle
Medical Journal/Dicle Tip Dergisi, vol. 42, no. 2, 2015.

[27] Chad Greene (2020). sigmoid
(https://www.mathworks.com/matlabcentral/fileexchange/51007-sigmoid), MATLAB
Central File Exchange. Retrieved January 29, 2020.

[28] H. Amin, K.M. Curtis, and B.R. Hayes-Gill, “Piecewise linear approximation applied to
nonlinear function of a neural network,” IEEE Proceedings-Circuits, Devices and Systems,
vol. 144, no. 6, pp. 313–317, 1997.

[29] S. Gomar, M. Mirhassani, and M. Ahmadi, “Precise digital implementations of hyperbolic
tanh and sigmoid function,” In 50th Asilomar Conference on Signals, Systems and
Computers, pp. 1586–1589, 2016.

[30] S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, “A guide to convolutional neural
networks for computer vision,” Synthesis Lectures on Computer Vision, vol. 8, no. 1, pp.
1–207, 2018.

[31] A. Graves, A. R. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural
networks,“ In 2013 IEEE international conference on acoustics, speech and signal
processing, pp. 6645–6649, 2013.

[32] J. S.. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, and N. L. Dahlgren,
“DARPA TIMIT Acoustic Phonetic Continuous Speech Corpus CDROM NIST,” 1993.

[33] Y. Guan, Z. Yuan, G. Sun, and Cong, J., “FPGA-based accelerator for long short-term
memory recurrent neural networks,” In 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 629–634), 2017.

[34] https://github.com/karpathy/char-rnn

[35] https://storage.googleapis.com/download.tensorflow.org/data/shakespeare.txt

[36] A. X. M. Chang, B. Martini, and E. Culurciello, “Recurrent neural networks hardware
implementation on FPGA,” arXiv preprint arXiv:1511.05552, 2015.

[37] W. uo, H. E. Yantir, M. E. Fouda, A. M. Eltawil, and K. N. Salama, “Toward the Optimal
Design and FPGA Implementation of Spiking Neural Networks,” IEEE Transactions on
Neural Networks and Learning Systems, 2021.

94

[38] Y. LeCun, and C. Cortes, “MNIST handwritten digit database,” 2010.

[39] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.Dally, and K. Keutzer,
“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and¡ 0.5 MB model size,“
arXiv preprint arXiv:1602.07360, 2016.

[40] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,“ In IEEE conference on computer vision and pattern
recognition, pp. 248-–255, 2009.

[41] P. G. Mousouliotis, and L. P. Petrou, “CNN-Grinder: From Algorithmic to High-Level
Synthesis Descriptions of CNNs for Low-end-low-cost FPGA SoCs,” Microprocessors and
Microsystems, vol. 102990, 2020.

[42] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo, et al., “A
configurable cloud-scale DNN processor for real-time AI,“ In 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), pp. 1–14, 2018.

[43] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, et al., “Deep speech:
Scaling up end-to-end speech recognition,“ arXiv preprint arXiv:1412.5567, 2014.

[44] C. Gao, D. Neil, E. Ceolini, S. C. Liu, and T. Delbruck, “DeltaRNN: A power-efficient
recurrent neural network accelerator,“ In Proceedings of the 2018 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pp. 21–30, 2018.

[45] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, et al., “FP-DNN: An automated
framework for mapping deep neural networks onto FPGAs with RTL-HLS hybrid
templates,“ In 2017 IEEE 25th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pp. 152–159, 2017.

[46] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and K. Vissers,
“Finn: A framework for fast, scalable binarized neural network inference,“ In Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp.
65–74, 2017.

[47] H. Alemdar, V. Leroy, A. Prost-Boucle, and F. Pétrot, “Ternary neural networks for
resource-efficient AI applications,“ In international joint conference on neural networks
(IJCNN), pp. 2547–2554, 2017.

[48] D. Abts, J. Ross, J. Sparling, M. Wong-VanHaren, M. Baker, T. Hawkins, et al., “Think fast:
a tensor streaming processor (TSP) for accelerating deep learning workloads,“ In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), pp.
145–158, 2020.

[49] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, et al.,“SCNN:
An accelerator for compressed-sparse convolutional neural networks,“ In ACM/IEEE 44th
Annual International Symposium on Computer Architecture (ISCA), pp. 27-–40, 2017.

95

[50] H. Jang, J. Kim, J. E. Jo, J. Lee, and J. Kim, “MnnFast: A fast and scalable system
architecture for memoryaugmented neural networks,“ In International Symposium on
Computer Architecture (ISCA), pp. 250-–263, 2019.

[51] A. D. Lascorz, S. Sharify, I. Edo, D. M. Stuart, O. M. Awad, P. Judd, et al.,“ShapeShifter:
enabling fine-grain data width adaptation in deep learning,” In International Symposium on
Microarchitecture (MICRO), pp. 28-–41, 2019.

[52] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, et al.,“Ese: Efficient speech recognition engine
with sparse lstm on fpga,” In Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp. 75–84, 2017.

[53] S. Wang, Z. Li, C. Ding, B. Yuan, Q. Qiu, Y. Wang, and Y. Liang,“C-LSTM: Enabling
efficient LSTM using structured compression techniques on FPGAs,” In Proceedings of the
2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp.
11–20, 2018.

[54] T. M. Le, W. M. Snelgrove, and S. Panchanathan, “SIMD processor arrays for image and
video processing: a review,” Proceedings of SPIE - The International Society for Optical
Engineering, vol. 3311, pp. 30–41, 1998.

[55] D. G. Elliott, M. Snelgrove, and M. Stumm, “Computational-RAM: a memory-SIMD hybrid
and its applications to DSP,” IEEE Custom Integrated Circuits Conference, pp.
30.6.1–30.6.4, Boston, 1992.

[56] C. Kozyrakis, J. Gebis, D. Martin, S. Williams, I. Mavroidis, S. Pope, et al., “Vector IRAM:
A Media-oriented Vector Processor with Embedded DRAM,” 12th Hot Chips Conference,
Palo Alto, CA, 2000.

[57] M. Gokhale, B. Holmes, and K. Iobst, “Processing in Memory: The Terasys Massively
Parallel PIM Array,” IEEE Computer, vol. 28, no. 3, pp. 23–31, 1995.

[58] P. M. Kogge, T. Sunaga, and E. A. E. Retter, “Combined DRAM and logic chip for
massively parallel applications,” 16th IEEE Conference on Advanced Research in VLSI,
Raleigh, NC, 1995.

[59] C . Lehmann, M. Viredaz, and F. Blayo, “A generic systolic array building block for neural
networks with on-chip learning,“ IEEE transactions on neural networks, vol. 4, no. 3, pp.
400-407, 1993.

[60] J. Shen, H. Ren, Z. Zhang, J. Wu, W. Pan, and Z. Jiang, “A High-Performance Systolic
Array Accelerator Dedicated for CNN,“ In 2019 IEEE 19th International Conference on
Communication Technology (ICCT), pp. 1200–1204, 2019.

[61] D. Andrews, C. Kancler, and B. Wealand, “An embedded real-time SIMD processor array
for image processing, “ In Proceedings of the 4th International Workshop on Parallel and
Distributed Real-Time Systems, pp. 131–134, 1998.

96

[62] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, et al., “Automated systolic array
architecture synthesis for high throughput CNN inference on FPGAs, “ In Proceedings of
the 54th Annual Design Automation Conference, pp. 1–6, 2017.

[63] C. Kyrkou and T. Theocharides, “SCoPE: Towards a systolic array for SVM object
detection, “ IEEE Embedded Systems Letters, vol. 1, no. 2, 46–49, 2009.

[64] D. Koch, C. Beckhoff, and G. G. Lemieux, “An efficient FPGA overlay for portable custom
instruction set extensions,“ In 23rd international conference on field programmable logic
and applications, pp. 1–8, 2013.

[65] S. McGettrick, K. Patel, and C. Bleakley, “High performance programmable FPGA overlay
for digital signal processing,“ In International Symposium on Applied Reconfigurable
Computing, pp. 375–384, 2011.

[66] L. B. D. Silva, R. Ferreira, M. Canesche, M. M. Menezes, M. D. Vieira, J. Penha, et al.,
“READY: A Fine-Grained Multithreading Overlay Framework for Modern CPU-FPGA
Dataflow Applications,“ ACM Transactions on Embedded Computing Systems (TECS), vol.
18, no. 5s, pp. 1–20, 2019.

[67] A. Brant and G. G. Lemieux, “ZUMA: An open FPGA overlay architecture,“ In 2012 IEEE
20th international symposium on field-programmable custom computing machines, pp.
93–96, 2012.

[68] A. Landy and G. Stitt, “Serial Arithmetic Strategies for Improving FPGA Throughput,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 16, no. 3, pp. 1–25, 2017.

[69] A. J. Miller, U.S. Patent No. 6,438,570. Washington, DC: U.S. Patent and Trademark Office,
2002.

[70] A. Landy and G. Stitt, “Revisiting serial arithmetic: A performance and tradeoff analysis for
parallel applications on modern FPGAs,” In 2015 IEEE 23rd Annual International
Symposium on Field-Programmable Custom Computing Machines, pp. 9–16, 2015.

[71] D. Okamoto, M. Kondo, T. Yokogawa, Y. Sejima, K. Arimoto, and Y. Sato, “A Serial Booth
Multiplier Using Ring Oscillator,” In 2016 Fourth International Symposium on Computing
and Networking (CANDAR), pp. 458–461, 2016.

[72] N. Kapre, “On bit-serial NoCs for FPGAs,” In 25th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 32–39, 2017.

[73] A. Rettberg, M. Zanella, C. Bobda, and T. Lehmann, “A fully self-timed bit-serial pipeline
architecture for embedded systems,” In Design, Automation and Test in Europe Conference
and Exhibition, pp. 1130–1131, 2003.

[74] A. Rettberg, M. Zanella, T. Lehmann, and C. Bobda, “A new approach of a self-timed
bit-serial synchronous pipeline architecture,” In 14th IEEE International Workshop on Rapid
Systems Prototyping, pp. 71–77, 2003.

97

[75] B. M. Li and P. H. Leong, “Serial and parallel FPGA-based variable block size motion
estimation processors,” Journal of Signal Processing Systems, vol. 51, no. 1, pp. 77–98,
2008.

[76] D. Walsh and P. Dudek, “A compact FPGA implementation of a bit-serial SIMD cellular
processor array,” In Proceedings of the 13th International Workshop on Cellular Nanoscale
Networks and their Applications, Turin, pp. 1–6, 2012.

[77] M. P. Leong, O. Y. Cheung, K. H. Tsoi, and P. H. W. Leong, “A bit-serial implementation of
the international data encryption algorithm IDEA,” In Proceedings Symposium on
Field-Programmable Custom Computing Machines, pp. 122–131, 2000.

[78] O. Y. Cheung, K. H. Tsoi, P. H. W. Leong, and M. P. Leong, “Tradeoffs in parallel and serial
implementations of the international data encryption algorithm IDEA,” In International
Workshop on Cryptographic Hardware and Embedded Systems, pp. 333–347, 2001.

[79] D. J. Moss, D. Boland, and P. H. Leong, “A Two-Speed, Radix-4, Serial–Parallel
Multiplier,” Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 4, pp.
769–777, 2018.

[80] K. Oguri, Y. Shibata, and A. Nagoya, “Asynchronous bit-serial datapath for object-oriented
reconfigurable architecture PCA,” In Asia-Pacific Conference on Advances in Computer
Systems Architecture, Springer, Berlin, Heidelberg, pp. 54–68, 2003.

[81] S. Dick, V. Gaudet, and H. Bai, “Bit-serial arithmetic: A novel approach to fuzzy hardware
implementation,” In NAFIPS 2008-2008 Annual Meeting of the North American Fuzzy
Information Processing Society, pp. 1–6, 2008.

[82] A. D. Booth, “A signed binary multiplication technique. The Quarterly Journal of
Mechanics and Applied Mathematics,” vol. 4, no. 2, pp. 236-240, 1951.

[83] G. Csordás, B. Fehér, and T. Kovácsházy, “Application of bit-serial arithmetic units for
FPGA implementation of convolutional neural networks,” In 2018 19th International
Carpathian Control Conference (ICCC), pp. 322-327, 2018.

[84] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Esmaeilzadeh, “Bit fusion:
Bit-level dynamically composable architecture for accelerating deep neural network,” In
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA),
pp. 764–775, 2018.

[85] O. Bilaniuk, S. Wagner, Y. Savaria, and J. P. David, “Bit-slicing fpga accelerator for
quantized neural networks,” In 2019 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1–5, 2019.

[86] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos, “Stripes: Bit-serial
deep neural network computing,” In 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp. 1–12, 2016.

98

[87] Z. He, Z. Wang, and G. Alonso, “Bis-km: Enabling any-precision k-means on fpgas,” In
Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pp. 233–243, 2020.

[88] M. K. Shuvo, “Hardware Efficient Deep Neural Network Implementation on FPGA,”
(Doctoral dissertation, Southern Illinois University at Carbondale), 2020.

[89] J. Skodzik, V. Altmann, B. Wagner, P. Danielis, and D. Timmermann, “A highly integrable
fpga-based runtime-configurable multilayer perceptron,” In IEEE 27th International
Conference on Advanced Information Networking and Applications (AINA), pp. 429–436,
2013.

[90] N. B. Gaikwad, V. Tiwari, A. Keskar, and N. C. Shivaprakash, “Efficient FPGA
implementation of multilayer perceptron for real-time human activity classification,” IEEE
Access, vol. 7, pp. 26696–26706, 2019.

[91] A. Jain, E. D. Pitchika, and S. Bharadwaj, “An exploration of fpga based multilayer
perceptron using residue number system for space applications,” In 14th IEEE International
Conference on Signal Processing (ICSP), pp. 1050–1055, 2018.

[92] P. Colangelo, O. Segal, A. Speicher, and M. Margala, “AutoML for Multilayer Perceptron
and FPGA Co-design,” arXiv preprint arXiv:2009.06156, 2020.

[93] F. Benrekia, M. Attari, and M. Bouhedda, “Gas sensors characterization and multilayer
perceptron (MLP) hardware implementation for gas identification using a field
programmable gate array (FPGA). Sensors”, vol. 13, no. 3, pp. 2967–2985, 2013.

[94] A. N. Perez-Garcia, G. M. Tornez-Xavier, L. M. Flores-Nava, F. Gómez-Castañeda, and J.
A. Moreno-Cadenas, “Multilayer perceptron network with integrated training algorithm in
FPGA,” In 11th International Conference on Electrical Engineering, Computing Science
and Automatic Control (CCE), pp. 1–6, 2014.

[95] A. Sanaullah, C. Yang, Y. Alexeev, K. Yoshii, andM. C. Herbordt, “Real-time data analysis
for medical diagnosis using FPGA-accelerated neural networks,” BMC bioinformatics, vol.
19, no. 18, pp. 19–31, 2018.

[96] S. Siddhartha, S. Wilton, D. Boland, B. Flower, P. Blackmore, and P. Leong, “Simultaneous
inference and training using on-fpga weight perturbation techniques,” In International
Conference on Field-Programmable Technology (FPT), pp. 306–309, 2018.

[97] A. Sanaullah, C. Yang, Y. Alexeev, K. Yoshii, and M. C. Herbordt, “Application aware
tuning of reconfigurable multi-layer perceptron architectures,” In IEEE High Performance
extreme Computing Conference (HPEC), pp. 1–9, 2018.

[98] M. Wess, P. S. Manoj, and A. Jantsch, “Neural network based ECG anomaly detection on
FPGA and trade-off analysis,” In IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1–4, 2017.

99

[99] P. R. Gankidi and J. Thangavelautham, “FPGA architecture for deep learning and its
application to planetary robotics,” In IEEE Aerospace Conference, pp. 1–9, 2017.

[100] K. Chen, L. Huang, M. Li, X. Zeng, and Y. Fan, “A compact and configurable long
short-term memory neural network hardware architecture,” In 25th IEEE International
Conference on Image Processing (ICIP), pp. 4168–4172, 2018.

[101] Y. Zheng, H. Yang, Z. Huang, T. Li, and Y. Jia, “A High Energy-Efficiency FPGA-Based
LSTM Accelerator Architecture Design by Structured Pruning and Normalized Linear
Quantization,” In International Conference on Field-Programmable Technology (ICFPT),
pp. 271–274, 2019.

[102] Y. Zhang, C. Wang, L. Gong, Y. Lu, F. Sun, C. Xu, et. al, “A power-efficient accelerator
based on FPGAs for LSTM network,” In IEEE International Conference on Cluster
Computing (CLUSTER), pp. 629–630, 2017.

[103] S. Wang, P. Lin, R. Hu, H. Wang, J. He, Q. Huang, and S. Chang, “Acceleration of LSTM
with structured pruning method on FPGA,” IEEE Access, vol. 7, pp. 62930–62937, 2019.

[104] J. C. Ferreira, and J. Fonseca, “An FPGA implementation of a long short-term memory
neural network,” In International Conference on ReConFigurable Computing and FPGAs
(ReConFig), pp. 1–8, 2016.

[105] G. Maor, X. Zeng, Z. Wang, Y. and Hu, Y. “An FPGA Implementation of Stochastic
Computing-Based LSTM,” In IEEE 37th International Conference on Computer Design
(ICCD), pp. 38–46, 2019.

[106] M. S. Roodsari, M. A. Saber, and Z. Navabi, “DiBA: n-Dimensional Bitslice Architecture
for LSTM Implementation,” In 23rd International Symposium on Design and Diagnostics of
Electronic Circuits and Systems (DDECS), pp. 1–6, 2020.

[107] S. Cao, C. Zhang, Z. Yao, W. Xiao, L. Nie, D. Zhan, et. al, “Efficient and effective sparse
LSTM on FPGA with bank-balanced sparsity,” IIn Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pp. 63–72, 2019.

[108] V. Rybalkin, A. Pappalardo, M. M. Ghaffar, G. Gambardella, N. Wehn, and M. Blott,
“FINN-L: Library extensions and design trade-off analysis for variable precision LSTM
networks on FPGAs,” In 28th International Conference on Field Programmable Logic and
Applications (FPL), pp. 889–897, 2018.

[109] C. Heelan, A. V. Nurmikko, and W. Truccolo, “FPGA implementation of deep-learning
recurrent neural networks with sub-millisecond real-time latency for BCI-decoding of
large-scale neural sensors (104 nodes),” In 40th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1070–1073, 2018.

[110] C. L. Li, Y. J. Huang, Y. J. Cai, J. Han, and X. Y. Zeng, “FPGA implementation of LSTM
based on automatic speech recognition,” In 14th IEEE International Conference on
Solid-State and Integrated Circuit Technology (ICSICT), pp. 1–3, 2018.

100

[111] V. Rybalkin, N. Wehn, M. R. Yousefi, and D. Stricker, “Hardware architecture of
bidirectional long short-term memory neural network for optical character recognition,”
2017.

[112] Y. Zhang, C. Wang, L. Gong, Y. Lu, F. Sun, C. Xu, et. al, “Implementation and
optimization of the accelerator based on fpga hardware for lstm network,” In IEEE
International Symposium on Parallel and Distributed Processing with Applications and
2017 IEEE International Conference on Ubiquitous Computing and Communications
(ISPA/IUCC), pp. 614–621, 2017.

[113] Y. Yamauchi, K. Musha, and H. Amano, “Implementing a large application (LSTM) on the
multi-FPGA system: Flow-in-Cloud,” In IEEE Symposium in Low-Power and High-Speed
Chips (COOL CHIPS), pp. 1–3, 2019.

[114] E. Bank-Tavakoli, S. A. Ghasemzadeh, M. Kamal, A. Afzali-Kusha, and M. Pedram,
“Polar: A pipelined/overlapped fpga-based lstm accelerator,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 28, no. 3, pp. 838–842, 2019.

[115] T. Kaneko, H. Momose, and T. Asai, “An FPGA Accelerator for Embedded
Microcontrollers Implementing a Ternarized Backpropagation Algorithm,” In International
Conference on ReConFigurable Computing and FPGAs (ReConFig), pp. 1–8, 2019.

[116] R. Gadea, J. Cerdá, F. Ballester, and A. Mocholı́, “Artificial neural network implementation
on a single FPGA of a pipelined on-line backpropagation,” In Proceedings of the 13th
international symposium on System synthesis, pp. 225–230, 2000.

[117] H. M. Vo, “Implementing the on-chip backpropagation learning algorithm on FPGA
architecture,” In International Conference on System Science and Engineering (ICSSE), pp.
538–541, 2017.

[118] Q. Liu, J. Liu, R. Sang, J. Li, T. Zhang, and Q. Zhang, “Fast neural network training on
FPGA using quasi-Newton optimization method,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 26, no. 8, pp. 1575–1579, 2018.

[119] X. Xie, X. Li, D. Li, and L. Xu, “Real-Time In-Situ Laser Ranging via Back Propagation
Neural Network on FPGA,” IEEE Sensors Journal, vol. 21, no. 4, pp. 4664–4673, 2020.

[120] B. Girau and A. Tisserand, “On-line arithmetic-based reprogrammable hardware
implementation of multilayer perceptron back-propagation,” In Proceedings of Fifth
International Conference on Microelectronics for Neural Networks, pp. 168–175, 1996.

[121] A. W. Savich, M. Moussa, and S. Areibi, “The impact of arithmetic representation on
implementing MLP-BP on FPGAs: A study,” IEEE transactions on neural networks, vol.
18, no. 1, pp. 240–252, 2007.

[122] M. Imani, Z. Zou, S. Bosch, S. A. Rao, S. Salamat, V. Kumar, and et. al, “Revisiting
hyperdimensional learning for fpga and low-power architectures,” In 2021 IEEE
International Symposium on High-Performance Computer Architecture (HPCA), pp.
221–234, 2021.

101

[123] F. Ortega-Zamorano, J. M. Jerez, D. U. Munoz, R. M. Luque-Baena, and L. Franco,
“Efficient implementation of the backpropagation algorithm in FPGAs and
microcontrollers,” IEEE transactions on neural networks and learning systems, vol. 27, no.
9, pp. 1840–1850, 2015.

[124] J. Liu and Q. Liu, “Speed and resource optimization of BFGS quasi-Newton
implementation on FPGA using inexact line search method for neural network training,” In
International Conference on Field-Programmable Technology (FPT), pp. 362–365, 2018.

[125] Q. Li, S. Fleming, D. Thomas, and P. Cheung, “Accelerating Top-k ListNet Training for
Ranking Using FPGA,” In International Conference on Field-Programmable Technology
(FPT), pp. 242–245, 2018.

[126] High Rate SHM Working Group, https://github.com/High-Rate-SHM-Working-
Group/Dataset-4-Univariate-signal-withnon-stationarity, Dataset-4 univariate signal with
nonstationarity.

[127] S. Hochreiter, J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9,
no. 8, 1997.

102

	A Memory-Centric Customizable Domain-Specific FPGA Overlay for Accelerating Machine Learning Applications
	Citation

	Introduction
	Research Goals and Approach
	Thesis Statement
	Evaluation Strategy
	Summary

	Related Works
	Proposed Approach
	System Architecture
	ISA
	Memory-Centric Tiles and PE-blocks
	ALUs
	Bit-serial Arithmetic
	Controller
	Data Movement
	I/O Buffer (Parallel/Serial Converter)
	Activation Functions
	Software Programmability

	Results
	Latency Comparison
	Resource Utilization Comparison
	Performance Comparison
	Overlay Portability

	Optimizations
	Internal Data Movement
	Latency Comparison
	Resource Utilization Comparison

	Bit-Sliced Method
	Bit-sliced PE-blocks
	Bit-sliced Arithmetic
	Latency Comparison
	Resource Utilization Comparison
	Performance Comparison

	Online Training
	Design Space Exploration
	Defining the Equations
	Explaining an Example Equation
	Mapping to SIMD Instructions
	Verifying the Equations

	Conclusion
	References

