97,716 research outputs found

    Self-organized density patterns of molecular motors in arrays of cytoskeletal filaments

    Get PDF
    The stationary states of systems with many molecular motors are studied theoretically for uniaxial and centered (aster-like) arrangements of cytoskeletal filaments using Monte Carlo simulations and a two-state model. Mutual exclusion of motors from binding sites of the filaments is taken into account. For small overall motor concentration, the density profiles are exponential and algebraic in uniaxial and centered filament systems, respectively. For uniaxial systems, exclusion leads to the coexistence of regions of high and low densities of bound motors corresponding to motor traffic jams, which grow upon increasing the overall motor concentration. These jams are insensitive to the motor behavior at the end of the filament. In centered systems, traffic jams remain small and an increase in the motor concentration leads to a flattening of the profile, if the motors move inwards, and to the build-up of a concentration maximum in the center of the aster if motors move outwards. In addition to motors density patterns, we also determine the corresponding patterns of the motor current.Comment: 48 pages, 8 figure

    Phase diagram of two-lane driven diffusive systems

    Full text link
    We consider a large class of two-lane driven diffusive systems in contact with reservoirs at their boundaries and develop a stability analysis as a method to derive the phase diagrams of such systems. We illustrate the method by deriving phase diagrams for the asymmetric exclusion process coupled to various second lanes: a diffusive lane; an asymmetric exclusion process with advection in the same direction as the first lane, and an asymmetric exclusion process with advection in the opposite direction. The competing currents on the two lanes naturally lead to a very rich phenomenology and we find a variety of phase diagrams. It is shown that the stability analysis is equivalent to an `extremal current principle' for the total current in the two lanes. We also point to classes of models where both the stability analysis and the extremal current principle fail

    Traffic jams induced by rare switching events in two-lane transport

    Get PDF
    We investigate a model for driven exclusion processes where internal states are assigned to the particles. The latter account for diverse situations, ranging from spin states in spintronics to parallel lanes in intracellular or vehicular traffic. Introducing a coupling between the internal states by allowing particles to switch from one to another induces an intriguing polarization phenomenon. In a mesoscopic scaling, a rich stationary regime for the density profiles is discovered, with localized domain walls in the density profile of one of the internal states being feasible. We derive the shape of the density profiles as well as resulting phase diagrams analytically by a mean-field approximation and a continuum limit. Continuous as well as discontinuous lines of phase transition emerge, their intersections induce multi-critical behaviour

    Gravitational-wave versus binary-pulsar tests of strong-field gravity

    Full text link
    Binary systems comprising at least one neutron star contain strong gravitational field regions and thereby provide a testing ground for strong-field gravity. Two types of data can be used to test the law of gravity in compact binaries: binary pulsar observations, or forthcoming gravitational-wave observations of inspiralling binaries. We compare the probing power of these two types of observations within a generic two-parameter family of tensor-scalar gravitational theories. Our analysis generalizes previous work (by us) on binary-pulsar tests by using a sample of realistic equations of state for nuclear matter (instead of a polytrope), and goes beyond a previous study (by C.M. Will) of gravitational-wave tests by considering more general tensor-scalar theories than the one-parameter Jordan-Fierz-Brans-Dicke one. Finite-size effects in tensor-scalar gravity are also discussed.Comment: 23 pages, REVTeX 3.0, uses epsf.tex to include 5 postscript figures (2 paragraphs and a 5th figure added at the end of section IV + minor changes

    The Totally Asymmetric Simple Exclusion Process with Langmuir Kinetics

    Full text link
    We discuss a new class of driven lattice gas obtained by coupling the one-dimensional totally asymmetric simple exclusion process to Langmuir kinetics. In the limit where these dynamics are competing, the resulting non-conserved flow of particles on the lattice leads to stationary regimes for large but finite systems. We observe unexpected properties such as localized boundaries (domain walls) that separate coexisting regions of low and high density of particles (phase coexistence). A rich phase diagram, with high an low density phases, two and three phase coexistence regions and a boundary independent ``Meissner'' phase is found. We rationalize the average density and current profiles obtained from simulations within a mean-field approach in the continuum limit. The ensuing analytic solution is expressed in terms of Lambert WW-functions. It allows to fully describe the phase diagram and extract unusual mean-field exponents that characterize critical properties of the domain wall. Based on the same approach, we provide an explanation of the localization phenomenon. Finally, we elucidate phenomena that go beyond mean-field such as the scaling properties of the domain wall.Comment: 22 pages, 23 figures. Accepted for publication on Phys. Rev.

    A Position-Space Renormalization-Group Approach for Driven Diffusive Systems Applied to the Asymmetric Exclusion Model

    Full text link
    This paper introduces a position-space renormalization-group approach for nonequilibrium systems and applies the method to a driven stochastic one-dimensional gas with open boundaries. The dynamics are characterized by three parameters: the probability α\alpha that a particle will flow into the chain to the leftmost site, the probability β\beta that a particle will flow out from the rightmost site, and the probability pp that a particle will jump to the right if the site to the right is empty. The renormalization-group procedure is conducted within the space of these transition probabilities, which are relevant to the system's dynamics. The method yields a critical point at αc=βc=1/2\alpha_c=\beta_c=1/2,in agreement with the exact values, and the critical exponent ν=2.71\nu=2.71, as compared with the exact value ν=2.00\nu=2.00.Comment: 14 pages, 4 figure
    corecore