We discuss a new class of driven lattice gas obtained by coupling the
one-dimensional totally asymmetric simple exclusion process to Langmuir
kinetics. In the limit where these dynamics are competing, the resulting
non-conserved flow of particles on the lattice leads to stationary regimes for
large but finite systems. We observe unexpected properties such as localized
boundaries (domain walls) that separate coexisting regions of low and high
density of particles (phase coexistence). A rich phase diagram, with high an
low density phases, two and three phase coexistence regions and a boundary
independent ``Meissner'' phase is found. We rationalize the average density and
current profiles obtained from simulations within a mean-field approach in the
continuum limit. The ensuing analytic solution is expressed in terms of Lambert
W-functions. It allows to fully describe the phase diagram and extract
unusual mean-field exponents that characterize critical properties of the
domain wall. Based on the same approach, we provide an explanation of the
localization phenomenon. Finally, we elucidate phenomena that go beyond
mean-field such as the scaling properties of the domain wall.Comment: 22 pages, 23 figures. Accepted for publication on Phys. Rev.