55,599 research outputs found

    Mobile Life: A Research Foundation for Mobile Services

    Get PDF
    The telecom and IT industry is now facing the challenge of a second IT-revolution, where the spread of mobile and ubiquitous services will have an even more profound effect on commercial and social life than the recent Internet revolution. Users will expect services that are unique and fully adapted for the mobile setting, which means that the roles of the operators will change, new business models will be required, and new methods for developing and marketing services have to be found. Most of all, we need technology and services that put people at core. The industry must prepare to design services for a sustainable web of work, leisure and ubiquitous technology we can call the mobile life. In this paper, we describe the main components of a research agenda for mobile services, which is carried out at the Mobile Life Center at Stockholm University. This research program takes a sustainable approach to research and development of mobile and ubiquitous services, by combining a strong theoretical foundation (embodied interaction), a welldefined methodology (user-centered design) and an important domain with large societal importance and commercial potential (mobile life). Eventually the center will create an experimental mobile services ecosystem, which will serve as an open arena where partners from academia and industry can develop our vision an abundant future marketplace for future mobile servĂ­ces

    Emerging technologies for learning (volume 2)

    Get PDF

    Wearable and mobile devices

    Get PDF
    Information and Communication Technologies, known as ICT, have undergone dramatic changes in the last 25 years. The 1980s was the decade of the Personal Computer (PC), which brought computing into the home and, in an educational setting, into the classroom. The 1990s gave us the World Wide Web (the Web), building on the infrastructure of the Internet, which has revolutionized the availability and delivery of information. In the midst of this information revolution, we are now confronted with a third wave of novel technologies (i.e., mobile and wearable computing), where computing devices already are becoming small enough so that we can carry them around at all times, and, in addition, they have the ability to interact with devices embedded in the environment. The development of wearable technology is perhaps a logical product of the convergence between the miniaturization of microchips (nanotechnology) and an increasing interest in pervasive computing, where mobility is the main objective. The miniaturization of computers is largely due to the decreasing size of semiconductors and switches; molecular manufacturing will allow for “not only molecular-scale switches but also nanoscale motors, pumps, pipes, machinery that could mimic skin” (Page, 2003, p. 2). This shift in the size of computers has obvious implications for the human-computer interaction introducing the next generation of interfaces. Neil Gershenfeld, the director of the Media Lab’s Physics and Media Group, argues, “The world is becoming the interface. Computers as distinguishable devices will disappear as the objects themselves become the means we use to interact with both the physical and the virtual worlds” (Page, 2003, p. 3). Ultimately, this will lead to a move away from desktop user interfaces and toward mobile interfaces and pervasive computing

    Count three for wear able computers

    Get PDF
    This paper is a postprint of a paper submitted to and accepted for publication in the Proceedings of the IEE Eurowearable 2003 Conference, and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at the IET Digital Library. A revised version of this paper was also published in Electronics Systems and Software, also subject to Institution of Engineering and Technology Copyright. The copy of record is also available at the IET Digital Library.A description of 'ubiquitous computer' is presented. Ubiquitous computers imply portable computers embedded into everyday objects, which would replace personal computers. Ubiquitous computers can be mapped into a three-tier scheme, differentiated by processor performance and flexibility of function. The power consumption of mobile devices is one of the most important design considerations. The size of a wearable system is often a design limitation

    Establishing the design knowledge for emerging interaction platforms

    Get PDF
    While awaiting a variety of innovative interactive products and services to appear in the market in the near future such as interactive tabletops, interactive TVs, public multi-touch walls, and other embedded appliances, this paper calls for preparation for the arrival of such interactive platforms based on their interactivity. We advocate studying, understanding and establishing the foundation for interaction characteristics and affordances and design implications for these platforms which we know will soon emerge and penetrate our everyday lives. We review some of the archetypal interaction platform categories of the future and highlight the current status of the design knowledge-base accumulated to date and the current rate of growth for each of these. We use example designs illustrating design issues and considerations based on the authors’ 12-year experience in pioneering novel applications in various forms and styles

    Mobility is the Message: Experiments with Mobile Media Sharing

    Get PDF
    This thesis explores new mobile media sharing applications by building, deploying, and studying their use. While we share media in many different ways both on the web and on mobile phones, there are few ways of sharing media with people physically near us. Studied were three designed and built systems: Push!Music, Columbus, and Portrait Catalog, as well as a fourth commercially available system – Foursquare. This thesis offers four contributions: First, it explores the design space of co-present media sharing of four test systems. Second, through user studies of these systems it reports on how these come to be used. Third, it explores new ways of conducting trials as the technical mobile landscape has changed. Last, we look at how the technical solutions demonstrate different lines of thinking from how similar solutions might look today. Through a Human-Computer Interaction methodology of design, build, and study, we look at systems through the eyes of embodied interaction and examine how the systems come to be in use. Using Goffman’s understanding of social order, we see how these mobile media sharing systems allow people to actively present themselves through these media. In turn, using McLuhan’s way of understanding media, we reflect on how these new systems enable a new type of medium distinct from the web centric media, and how this relates directly to mobility. While media sharing is something that takes place everywhere in western society, it is still tied to the way media is shared through computers. Although often mobile, they do not consider the mobile settings. The systems in this thesis treat mobility as an opportunity for design. It is still left to see how this mobile media sharing will come to present itself in people’s everyday life, and when it does, how we will come to understand it and how it will transform society as a medium distinct from those before. This thesis gives a glimpse at what this future will look like

    Personalisation and recommender systems in digital libraries

    Get PDF
    Widespread use of the Internet has resulted in digital libraries that are increasingly used by diverse communities of users for diverse purposes and in which sharing and collaboration have become important social elements. As such libraries become commonplace, as their contents and services become more varied, and as their patrons become more experienced with computer technology, users will expect more sophisticated services from these libraries. A simple search function, normally an integral part of any digital library, increasingly leads to user frustration as user needs become more complex and as the volume of managed information increases. Proactive digital libraries, where the library evolves from being passive and untailored, are seen as offering great potential for addressing and overcoming these issues and include techniques such as personalisation and recommender systems. In this paper, following on from the DELOS/NSF Working Group on Personalisation and Recommender Systems for Digital Libraries, which met and reported during 2003, we present some background material on the scope of personalisation and recommender systems in digital libraries. We then outline the working group’s vision for the evolution of digital libraries and the role that personalisation and recommender systems will play, and we present a series of research challenges and specific recommendations and research priorities for the field

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future

    Towards a user-centric and multidisciplinary framework for designing context-aware applications

    Get PDF
    Research into context-aware computing has not sufficiently addressed human and social aspects of design. Existing design frameworks are predominantly software orientated, make little use of cross-disciplinary work, and do not provide an easily transferable structure for cross-application of design principles. To address these problems, this paper proposes a multidisciplinary and user-centred design framework, and two models of context, which derive from conceptualisations within Psychology, Linguistics, and Computer Science. In a study, our framework was found to significantly improve the performance of postgraduate students at identifying the context of the user and application, and the usability issues that arise
    • 

    corecore