1,406 research outputs found

    Immune epitope database analysis resource (IEDB-AR)

    Get PDF
    We present a new release of the immune epitope database analysis resource (IEDB-AR, http://tools.immuneepitope.org), a repository of web-based tools for the prediction and analysis of immune epitopes. New functionalities have been added to most of the previously implemented tools, and a total of eight new tools were added, including two B-cell epitope prediction tools, four T-cell epitope prediction tools and two analysis tools

    Flanking p10 contribution and sequence bias in matrix based epitope prediction: revisiting the assumption of independent binding pockets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eluted natural peptides from major histocompatibility molecules show patterns of conserved residues. Crystallographic structures show that the bound peptide in class II major histocompatibility complex adopts a near uniform polyproline II-like conformation. This way allele-specific favoured residues are able to anchor into pockets in the binding groove leaving other peptide side chains exposed for recognition by T cells. The anchor residues form a motif. This sequence pattern can be used to screen large sequences for potential epitopes. Quantitative matrices extend the motif idea to include the contribution of non-anchor peptide residues. This report examines two new matrices that extend the binding register to incorporate the polymorphic p10 pocket of human leukocyte antigen DR1. Their performance is quantified against experimental binding measurements and against the canonical nine-residue register matrix.</p> <p>Results</p> <p>One new matrix shows significant improvement over the base matrix; the other does not. The new matrices differ in the sequence of the peptide library.</p> <p>Conclusion</p> <p>One of the extended quantitative matrices showed significant improvement in prediction over the original nine residue matrix and over the other extended matrix. Proline in the sequence of the peptide library of the better performing matrix presumably stabilizes the peptide conformation through neighbour interactions. Such interactions may influence epitope prediction in this test of quantitative matrices. This calls into question the assumption of the independent contribution of individual binding pockets.</p

    PEPVAC: a web server for multi-epitope vaccine development based on the prediction of supertypic MHC ligands

    Get PDF
    Prediction of peptide binding to major histocompatibility complex (MHC) molecules is a basis for anticipating T-cell epitopes, as well as epitope discovery-driven vaccine development. In the human, MHC molecules are known as human leukocyte antigens (HLAs) and are extremely polymorphic. HLA polymorphism is the basis of differential peptide binding, until now limiting the practical use of current epitope-prediction tools for vaccine development. Here, we describe a web server, PEPVAC (Promiscuous EPitope-based VACcine), optimized for the formulation of multi-epitope vaccines with broad population coverage. This optimization is accomplished through the prediction of peptides that bind to several HLA molecules with similar peptide-binding specificity (supertypes). Specifically, we offer the possibility of identifying promiscuous peptide binders to five distinct HLA class I supertypes (A2, A3, B7, A24 and B15). We estimated the phenotypic population frequency of these supertypes to be 95%, regardless of ethnicity. Targeting these supertypes for promiscuous peptide-binding predictions results in a limited number of potential epitopes without compromising the population coverage required for practical vaccine design considerations. PEPVAC can also identify conserved MHC ligands, as well as those with a C-terminus resulting from proteasomal cleavage. The combination of these features with the prediction of promiscuous HLA class I ligands further limits the number of potential epitopes. The PEPVAC server is hosted by the Dana-Farber Cancer Institute at the site

    Prediction of MHC-peptide binding: a systematic and comprehensive overview

    Get PDF
    T cell immune responses are driven by the recognition of peptide antigens (T cell epitopes) that are bound to major histocompatibility complex (MHC) molecules. T cell epitope immunogenicity is thus contingent on several events, including appropriate and effective processing of the peptide from its protein source, stable peptide binding to the MHC molecule, and recognition of the MHC-bound peptide by the T cell receptor. Of these three hallmarks, MHC-peptide binding is the most selective event that determines T cell epitopes. Therefore, prediction of MHC-peptide binding constitutes the principal basis for anticipating potential T cell epitopes. The tremendous relevance of epitope identification in vaccine design and in the monitoring of T cell responses has spurred the development of many computational methods for predicting MHC-peptide binding that improve the efficiency and economics of T cell epitope identification. In this report, we will systematically examine the available methods for predicting MHC-peptide binding and discuss their most relevant advantages and drawbacks

    Strength in numbers: achieving greater accuracy in MHC-I binding prediction by combining the results from multiple prediction tools

    Get PDF
    BACKGROUND: Peptides derived from endogenous antigens can bind to MHC class I molecules. Those which bind with high affinity can invoke a CD8(+ )immune response, resulting in the destruction of infected cells. Much work in immunoinformatics has involved the algorithmic prediction of peptide binding affinity to various MHC-I alleles. A number of tools for MHC-I binding prediction have been developed, many of which are available on the web. RESULTS: We hypothesize that peptides predicted by a number of tools are more likely to bind than those predicted by just one tool, and that the likelihood of a particular peptide being a binder is related to the number of tools that predict it, as well as the accuracy of those tools. To this end, we have built and tested a heuristic-based method of making MHC-binding predictions by combining the results from multiple tools. The predictive performance of each individual tool is first ascertained. These performance data are used to derive weights such that the predictions of tools with better accuracy are given greater credence. The combined tool was evaluated using ten-fold cross-validation and was found to signicantly outperform the individual tools when a high specificity threshold is used. It performs comparably well to the best-performing individual tools at lower specificity thresholds. Finally, it also outperforms the combination of the tools resulting from linear discriminant analysis. CONCLUSION: A heuristic-based method of combining the results of the individual tools better facilitates the scanning of large proteomes for potential epitopes, yielding more actual high-affinity binders while reporting very few false positives

    Degenerate T-cell Recognition of Peptides on MHC Molecules Creates Large Holes in the T-cell Repertoire

    Get PDF
    The cellular immune system screens peptides presented by host cells on MHC molecules to assess if the cells are infected. In this study we examined whether the presented peptides contain enough information for a proper self/nonself assessment by comparing the presented human (self) and bacterial or viral (nonself) peptides on a large number of MHC molecules. For all MHC molecules tested, only a small fraction of the presented nonself peptides from 174 species of bacteria and 1000 viral proteomes (0.2%) is shown to be identical to a presented self peptide. Next, we use available data on T-cell receptor-peptide-MHC interactions to estimate how well T-cells distinguish between similar peptides. The recognition of a peptide-MHC by the T-cell receptor is flexible, and as a result, about one-third of the presented nonself peptides is expected to be indistinguishable (by T-cells) from presented self peptides. This suggests that T-cells are expected to remain tolerant for a large fraction of the presented nonself peptides, which provides an explanation for the “holes in the T-cell repertoire” that are found for a large fraction of foreign epitopes. Additionally, this overlap with self increases the need for efficient self tolerance, as many self-similar nonself peptides could initiate an autoimmune response. Degenerate recognition of peptide-MHC-I complexes by T-cells thus creates large and potentially dangerous overlaps between self and nonself

    MULTIPRED: a computational system for prediction of promiscuous HLA binding peptides

    Get PDF
    MULTIPRED is a web-based computational system for the prediction of peptide binding to multiple molecules (proteins) belonging to human leukocyte antigens (HLA) class I A2, A3 and class II DR supertypes. It uses hidden Markov models and artificial neural network methods as predictive engines. A novel data representation method enables MULTIPRED to predict peptides that promiscuously bind multiple HLA alleles within one HLA supertype. Extensive testing was performed for validation of the prediction models. Testing results show that MULTIPRED is both sensitive and specific and it has good predictive ability (area under the receiver operating characteristic curve A(ROC) > 0.80). MULTIPRED can be used for the mapping of promiscuous T-cell epitopes as well as the regions of high concentration of these targets—termed T-cell epitope hotspots. MULTIPRED is available at

    Evaluation of MHC class I peptide binding prediction servers: Applications for vaccine research

    Get PDF
    &lt;b&gt;Background&lt;/b&gt; Protein antigens and their specific epitopes are formulation targets for epitope-based vaccines. A number of prediction servers are available for identification of peptides that bind major histocompatibility complex class I (MHC-I) molecules. The lack of standardized methodology and large number of human MHC-I molecules make the selection of appropriate prediction servers difficult. This study reports a comparative evaluation of thirty prediction servers for seven human MHC-I molecules.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Results&lt;/b&gt; Of 147 individual predictors 39 have shown excellent, 47 good, 33 marginal, and 28 poor ability to classify binders from non-binders. The classifiers for HLA-A*0201, A*0301, A*1101, B*0702, B*0801, and B*1501 have excellent, and for A*2402 moderate classification accuracy. Sixteen prediction servers predict peptide binding affinity to MHC-I molecules with high accuracy; correlation coefficients ranging from r = 0.55 (B*0801) to r = 0.87 (A*0201).&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusion&lt;/b&gt; Non-linear predictors outperform matrix-based predictors. Most predictors can be improved by non-linear transformations of their raw prediction scores. The best predictors of peptide binding are also best in prediction of T-cell epitopes. We propose a new standard for MHC-I binding prediction – a common scale for normalization of prediction scores, applicable to both experimental and predicted data. The results of this study provide assistance to researchers in selection of most adequate prediction tools and selection criteria that suit the needs of their projects

    Multi-level Strategy for Identifying Proteasome-Catalyzed Spliced Epitopes Targeted by CD8+ T Cells during Bacterial Infection

    Get PDF
    Proteasome-catalyzed peptide splicing (PCPS) generates peptides that are presented by MHC class I molecules, but because their identification is challenging, the immunological relevance of spliced peptides remains unclear. Here, we developed a reverse immunology-based multi-level approach to identify proteasome-generated spliced epitopes. Applying this strategy to a murine Listeria monocytogenes infection model, we identified two spliced epitopes within the secreted bacterial phospholipase PlcB that primed antigen-specific CD8+ T cells in L. monocytogenes-infected mice. While reacting to the spliced epitopes, these CD8+ T cells failed to recognize the non-spliced peptide parts in the context of their natural flanking sequences. Thus, we here show that PCPS expands the CD8+ T cell response against L. monocytogenes by exposing spliced epitopes on the cell surface. Moreover, our multi-level strategy opens up opportunities to systematically investigate proteins for spliced epitope candidates and thus strategies for immunotherapies or vaccine design

    Evaluating the predictive performance of cytotoxic T lymphocyte epitope prediction tools using Elispot assay data

    Get PDF
    Computational T-cell epitope prediction tools have been previously devised to predict potential human leukocyte antigen (HLA) binding peptides from protein sequences. These tools are complements of Enzyme-linked immunosorbent spot (ELISpot) assays - a very commonly applied immunological technique that is used both to identify regions of pathogen genomes that trigger an immune response and to characterize the relationships between an individual's complement of HLA alleles and the degree of immunity that they display. If computational tools could accurately predict HLA-peptide binding, then these tools might be useable as a cheap and reliable alternative to ELISpot assays. A web-based IFN γ ELISpot assay dataset sharing resource, called IMMUNO-SHARE, was developed to enable the simple and straightforward storage and dissemination amongst researchers of large volumes of IFN γ ELISpot assay data. Such experimental data was next used to make HLA-peptide binding predictions with four frequently used T-cell epitope prediction tools - netMHC 3.2, IEDB_ANN, IEDB_ARB Matrix and IEDB_SMM. The predictive performances of all four tools individually and collectively was statistically assessed using non-parametric Spearman rank-order correlation tests. It was found that none of the four tested tools yielded binding affinity predictions that were detectably correlated with the observed ELISpot data. High false positive rates, where high predicted binding affinities between peptides and patient HLAs corresponded in these patients with no appreciable immune responses, were apparent for all four of the tested methods. The low degree of correlation between ELISpot data and HLA-peptide binding predictions and in particular, high false positive rates and relatively low true positive and true negative rates, indicate that the four tested tools would require substantial improvement before they could be seen as a viable alternative to ELISpot assays. Given that the accuracy of predictions of each of the four methods tested is largely dependent on both the quantity and quality of known true binder and true non-binder datasets that were used to train the HLA-peptide binding prediction methods implemented by the tools, it is plausible that the accuracy of these tools could be increased with larger training datasets. Retraining either the current methods or the next generation of prediction tools would therefore be greatly facilitated by the availability of large quantities of publically available HLA-peptide binding interaction information. It is hoped that IMMUNO-SHARE or some other ELISpot data sharing resource could eventually meet this need
    corecore