41 research outputs found

    On the optimal controllability time for linear hyperbolic systems with time-dependent coefficients

    Full text link
    The optimal time for the controllability of linear hyperbolic systems in one dimensional space with one-side controls has been obtained recently for time-independent coefficients in our previous works. In this paper, we consider linear hyperbolic systems with time-varying zero-order terms. We show the possibility that the optimal time for the null-controllability becomes significantly larger than the one of the time-invariant setting even when the zero-order term is indefinitely differentiable. When the analyticity with respect to time is imposed for the zero-order term, we also establish that the optimal time is the same as in the time-independent setting

    [Book of abstracts]

    Get PDF
    USPCAPESCNPqFAPESPICMC Summer Meeting on Differential Equations (2016 São Carlos

    Abelian Integral Method and its Application

    Get PDF
    Oscillation is a common natural phenomenon in real world problems. The most efficient mathematical models to describe these cyclic phenomena are based on dynamical systems. Exploring the periodic solutions is an important task in theoretical and practical studies of dynamical systems. Abelian integral is an integral of a polynomial differential 1-form over the real ovals of a polynomial Hamiltonian, which is a basic tool in complex algebraic geometry. In dynamical system theory, it is generalized to be a continuous function as a tool to study the periodic solutions in planar dynamical systems. The zeros of Abelian integral and their distributions provide the number of limit cycles and their locations. In this thesis, we apply the Abelian integral method to study the limit cycles bifurcating from the periodic annuli for some hyperelliptic Hamiltonian systems. For two kinds of quartic hyperelliptic Hamiltonian systems, the periodic annulus is bounded by either a homoclinic loop connecting a nilpotent saddle, or a heteroclinic loop connecting a nilpotent cusp to a hyperbolic saddle. For a quintic hyperelliptic Hamiltonian system, the periodic annulus is bounded by a more degenerate heteroclinic loop, which connects a nilpotent saddle to a hyperbolic saddle. We bound the number of zeros of the three associated Abelian integrals constructed on the periodic structure by employing the combination technique developed in this thesis and Chebyshev criteria. The exact bound for each system is obtained, which is three. Our results give answers to the open questions whether the sharp bound is three or four. We also study a quintic hyperelliptic Hamiltonian system with two periodic annuli bounded by a double homoclinic loop to a hyperbolic saddle, one of the periodic annuli surrounds a nilpotent center. On this type periodic annulus, the exact number of limit cycles via Poincar{\\u27e} bifurcation, which is one, is obtained by analyzing the monotonicity of the related Abelian integral ratios with the help of techniques in polynomial boundary theory. Our results give positive answers to the conjecture in a previous work. We also extend the methods of Abelian integrals to study the traveling waves in two weakly dissipative partial differential equations, which are a perturbed, generalized BBM equation and a cubic-quintic nonlinear, dissipative Schr\ {o}dinger equation. The dissipative PDEs are reduced to singularly perturbed ODE systems. On the associated critical manifold, the Abelian integrals are constructed globally on the periodic structure of the related Hamiltonians. The existence of solitary, kink and periodic waves and their coexistence are established by tracking the vanishment of the Abelian integrals along the homoclinic loop, heteroclinic loop and periodic orbits. Our method is novel and easily applied to solve real problems compared to the variational analysis

    Boundary controllability of some coupled parabolic systems with Robin or Kirchhoff conditions

    Get PDF
    Dans cette thèse, on étudie la contrôlabilité à zéro par le bord de quelques systèmes paraboliques linéaires couplés par des termes de couplage intérieur et/ou au bord. Le premier chapitre est une introduction à l'ensemble du manuscrit. Dans le deuxième chapitre, on rappelle les principaux concepts et résultats autour des notions de contrôlabilité qui seront utilisés dans la suite. Dans le troisième chapitre, on étudie principalement la contrôlabilité par le bord d'un système couplé 2x2 de type cascade avec des conditions au bord de Robin. En particulier, on prouve que les contrôles associés satisfont des bornes uniformes par rapport aux paramètres de Robin et convergent vers un contrôle de Dirichlet lorsque les paramètres de Robin tendent vers l'infini. Cette étude fournit une justification, dans le contexte du contrôle, de la méthode de pénalisation qui est couramment utilisée pour prendre en compte des données de Dirichlet peu régulières en pratique. Dans le quatrième et dernier chapitre, on étudie d'abord la contrôlabilité à zéro d'un système 2x2 en dimension 1 contenant des termes de couplage à la fois à l'intérieur et au bord du domaine. Plus précisément, on considère une condition de type Kirchhoff sur l'un des bords du domaine et un contrôle de Dirichlet sur l'autre bord, dans l'une ou l'autre des équations. En particulier, on montre que les propriétés de contrôle du système diffèrent selon que le contrôle agisse sur la première ou sur la seconde équation, et selon les valeurs du coefficient de couplage intérieur et du paramètre de Kirchhoff. On étudie ensuite un modèle 3x3 avec un ou deux contrôle(s) aux limites de Dirichlet à une extrémité et une condition de type Kirchhoff à l'autre extrémité ; ici la troisième équation est couplée (couplage intérieur) avec la première. Dans ce cas, on obtient ce qui suit : en considérant le contrôle sur la première équation, on a contrôlabilité conditionnelle dépendant des choix du coefficient de couplage intérieur et du paramètre de Kirchhoff, et en considérant le contrôle sur la deuxième équation, on obtient toujours une contrôlabilité positive. En revanche, considérer un contrôle sur la troisième équation conduit à un résultat de contrôlabilité négative. Dans cette situation, on a besoin de deux contrôles aux limites sur deux des trois équations pour retrouver la contrôlabilité. Enfin, on expose quelques études numériques basées sur l'approche pénalisée HUM pour illustrer les résultats théoriques, ainsi que pour tester d'autres exemples.In this thesis, we study the boundary null-controllability of some linear parabolic systems coupled through interior and/or boundary. We begin by giving an overall introduction of the thesis in Chapter 1 and we discuss some essentials about the notion of parabolic controllability in the second chapter. In Chapter 3, we investigate the boundary null-controllability of some 2x2 coupled parabolic systems in the cascade form where the boundary conditions are of Robin type. This case is considered mainly in space dimension 1 and in the cylindrical geometry. We prove that the associated controls satisfy suitable uniform bounds with respect to the Robin parameters, which let us show that they converge towards a Dirichlet control when the Robin parameters go to infinity. This is a justification of the popular penalization method for dealing with Dirichlet boundary data in the framework of the controllability of coupled parabolic systems. Coming to the Chapter 4, we first discuss the boundary null-controllability of some 2x2 parabolic systems in 1-D that contains a linear interior coupling with real constant coefficient and a Kirchhoff-type condition through which the boundary coupling enters in the system. The control is exerted on a part of the boundary through a Dirichlet condition on either one of the two state components. We show that the controllability properties vary depending on which component the control is being applied; the choices of interior coupling coefficient and the Kirchhoff parameter play a crucial role to deduce positive or negative controllability results. Thereafter, we study a 3x3 model with one or two Dirichlet boundary control(s) at one end and a Kirchhoff-type boundary condition at the other; here the third equation is coupled (interior) through the first component. In this case we obtain the following: treating the control on the first component, we have conditional controllability depending on the choices of interior coupling coefficient and the Kirchhoff parameter, while considering a control on the second component always provides positive result. But in contrast, putting a control on the third entry yields a negative controllability result. In this situation, one must need two boundary controls on any two components to recover the controllability. Further in the thesis, we pursue some numerical studies based on the penalized Hilbert Uniqueness Method (HUM) to illustrate our theoretical results and test other examples in the framework of interior-boundary coupled systems

    Applied Mathematics and Fractional Calculus

    Get PDF
    In the last three decades, fractional calculus has broken into the field of mathematical analysis, both at the theoretical level and at the level of its applications. In essence, the fractional calculus theory is a mathematical analysis tool applied to the study of integrals and derivatives of arbitrary order, which unifies and generalizes the classical notions of differentiation and integration. These fractional and derivative integrals, which until not many years ago had been used in purely mathematical contexts, have been revealed as instruments with great potential to model problems in various scientific fields, such as: fluid mechanics, viscoelasticity, physics, biology, chemistry, dynamical systems, signal processing or entropy theory. Since the differential and integral operators of fractional order are nonlinear operators, fractional calculus theory provides a tool for modeling physical processes, which in many cases is more useful than classical formulations. This is why the application of fractional calculus theory has become a focus of international academic research. This Special Issue "Applied Mathematics and Fractional Calculus" has published excellent research studies in the field of applied mathematics and fractional calculus, authored by many well-known mathematicians and scientists from diverse countries worldwide such as China, USA, Canada, Germany, Mexico, Spain, Poland, Portugal, Iran, Tunisia, South Africa, Albania, Thailand, Iraq, Egypt, Italy, India, Russia, Pakistan, Taiwan, Korea, Turkey, and Saudi Arabia
    corecore