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Abstract
Oscillation is a common natural phenomenon in real world problems. The most efficient

mathematical models to describe these cyclic phenomena are based on dynamical systems.
Exploring the periodic solutions is an important task in theoretical and practical studies of
dynamical systems.

Abelian integral is an integral of a polynomial differential 1-form over the real ovals of a
polynomial Hamiltonian, which is a basic tool in complex algebraic geometry. In dynamical
system theory, it is generalized to be a continuous function as a tool to study periodic solutions
in planar dynamical systems. The zeros of Abelian integral and their distributions provide the
number of limit cycles and their locations.

In this thesis, we apply the Abelian integral method to study limit cycles bifurcating from
the periodic annuli for some hyperelliptic Hamiltonian systems. For two kinds of quartic hy-
perelliptic Hamiltonian systems, the periodic annulus is bounded by either a homoclinic loop
connecting a nilpotent saddle, or a heteroclinic loop connecting a nilpotent cusp to a hyperbolic
saddle. For a quintic hyperelliptic Hamiltonian system, the periodic annulus is bounded by a
more degenerate heteroclinic loop, which connects a nilpotent saddle to a hyperbolic saddle.
We bound the number of zeros of the three associated Abelian integrals constructed on the peri-
odic structure by employing the combination technique developed in this thesis and Chebyshev
criteria. The exact bound for each system is obtained, which is three. Our results give answers
to the open questions whether the sharp bound is three or four. We also study a quintic hy-
perelliptic Hamiltonian system with two periodic annuli bounded by a double homoclinic loop
to a hyperbolic saddle, one of the periodic annuli surrounds a nilpotent center. On this type
periodic annulus, the exact number of limit cycles via Poincaré bifurcation, which is one, is
obtained by analyzing the monotonicity of the related Abelian integral ratios with the help of
techniques in polynomial boundary theory. Our results give positive answers to the conjecture
in a previous work.

We also extend the methods of Abelian integrals to study the traveling waves in two weakly
dissipative partial differential equations, one is a perturbed generalized BBM equation and the
other is a cubic-quintic nonlinear, dissipative Schrödinger equation. The dissipative partial
differential equations (PDEs) are reduced to singularly perturbed ordinary differential equation
(ODE) systems. On the associated critical manifold, the Abelian integrals are constructed
globally on the periodic structure of the related Hamiltonians. The existence of solitary, kink
and periodic waves and their coexistence are established by tracking the vanishment of the
Abelian integrals along the homoclinic loop, heteroclinic loop and periodic orbits. Our method
is novel and easily applied to solve real problems compared to the variational analysis.

Keywords: ODE, PDE, Abelian integral, limit cycle, traveling wave, weak Hilbert’s 16th
problem.
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Summary for Lay Audience
Periodic motions appear in almost all natural and engineering dynamical systems. Determining
the number of periodic solutions and their locations plays an important role in solving real
world problems, in particular on stability and bifurcations of the system. It is important to
determine what may cause oscillation and what may destroy oscillation, and what affects the
period and amplitude of oscillation. However, it is not easy to determine all possible locations,
periods and amplitudes even for the oscillations in two-dimensional dynamical systems. In this
thesis, we apply an integral defined on a family of continuous ovals as a bifurcation function
to study the oscillation phenomena in some perturbed temporal or temporal-spatial dynamical
systems, and obtain new results which solve open problems in the existing literature.
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Chapter 1

Introduction

1.1 Oscillation in differential dynamical systems
In natural science and engineering, researchers usually use mathematical tools to model real
world problems, or build mathematical models for conducting more detailed research, for ex-
ample, predicting what may happen under some exact controls, growing or decaying? Among
various kinds of nonlinear phenomena in real world, the most common one is oscillation, such
as the heart beating [71], the periodic outbreak of the influenza [52], the business cycle in
economics [8], vibration of machines [47], the protein oscillation in bacteria [36], the periodic
pattern induced by spatial variation [35] and so on. The most efficient mathematical models
to describe these cyclic phenomena are based on dynamical systems, including Ordinary Dif-
ferential Equations (ODEs) and Partial Differential Equations (PDEs). Therefore, exploring
the periodic solutions is an important task in the study of dynamical systems, particularly on
determining the number of periodic solutions and their locations, as well as investigating what
may cause oscillation and what may destroy oscillation, and what affects the period and am-
plitude of oscillation. However, it is not easy to determine all possible locations, periods and
amplitudes even for the oscillations in two-dimensional dynamical systems.

For two-dimensional ODE systems, an isolated periodic orbit is called a limit cycle. The
Poincaré-Bendixson theorem [27] is usually used to prove the existence of limit cycles. How-
ever, it is not a trivial task to construct more than one compact regions for finding more than
one limit cycle. The non-existence of limit cycles in two-dimensional systems can be verified
by showing non-vanishment of the divergence (Bendixson-Dulas criterion [27]) or by show-
ing non-existence of critical points in a related region. Another way to find limit cycles is to
construct Poincaré map near the center-focus singularity, for which the linearization matrix has
a pair of purely imaginary eigenvalues by introducing trigonometric transformation into the
two-dimensional system. Then n small limit cycles, surrounding the singularity, will arise in
a very small neighborhood of the singularity when the Liapunov coefficients (or focus values)
vi, i = 0, 1, 2, · · · , n, satisfy

|v0| � |v1| � · · · � |vn|, and vi−1vi < 0. (1.1)

This is called Hopf bifurcation and the associated singularity is called a Hopf critical point,
see [31]. The Liapunov coefficients can be computed via symbolic algorithms with the aid of
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computer algebra systems, such as Maple. However, it is difficult to study the algebraic variety
of the Liapunov coefficients and further analyze the condition given in (1.1), see [31]. Even
though there exist other methods for studying limit cycles, they are applicable to planar systems
with strict restrictions [27]. So far, there does not exist general methodology which can be used
to determine large limit cycles in general planar systems without special restrictions.

For higher dimensional ODE systems, periodic motions are often detected by studying
Hopf bifurcation in the related two-dimensional systems projected on center manifold, see
[31]. The center manifold is usually defined locally, implying that the periodic motion de-
tected for the original higher dimensional system has small amplitude. In numerical studies,
researchers have indeed found larger amplitude periodic motions by choosing parameter val-
ues in a neighborhood of the Hopf bifurcation curve [53]. But, it is still unclear how a periodic
solution emerging from a Hopf bifurcation becomes a large amplitude oscillation. In particu-
lar, it is very interesting to note that slow-fast motions can occur in some higher dimensional
systems, which cannot be investigated by the standard singular perturbation theory. This phe-
nomenon was first discovered in [72]. There exist four conditions ensuring the existence of
slow-fast motion, see [69, 72],
(i) there exists at least one equilibrium solution;
(ii) there exists a saddle-node bifurcation or a transcritical bifurcation at an intersection of the
two equilibrium solutions;
(iii) there is a Hopf bifurcation which occurs from one of the equilibrium solutions; and
(iv) there exists a “window” between the Hopf bifurcation point and the saddle-node/transcritical
bifurcation point in which oscillations continuously exist.
The criteria have successfully been applied to find slow-fast oscillations in many kinds of
biological models, such as HIV model [67, 69, 72] for modeling the Viral Blips, Tritrophic
Food Chain Model [66] and biologically relevant organic reactions [68]. Higher dimensional
ODE systems can also exhibit oscillations via Bogdanov-Takens (BT) bifurcation, which oc-
curs when the matrix of linearized system has a double-zero eigenvalue [39]. The number of
limit cycles can be investigated by studying a reduced two-dimensional system of the form,
which is the projected system on the center manifold,

ẋ = y, ẏ = −g(x) + f (x)y, (1.2)

where g(x) and f (x) are polynomials. System (1.2) has a simple form, but it is really a very
useful and interesting model. It appears not only in the study of local bifurcation in higher
dimensional ODE systems, but also in modeling various kinds of oscillations, such as spring
vibration [47], wind-induced vibrations to tall buildings [1]. In Newton mechanics, g(x) is
called restoring term and f (x) damping term. System (1.2) can also appear in the study of
traveling waves of PDEs, such as studying the fronts in Fisher-Kolmogorov equation [50], the
solitary waves in dissipative KdV equation [19] and perturbed generalized BBM equation [12],
etc. The limit cycles arising in (1.2) correspond to the periodic wave trains for the related
PDEs, and the existence of a limit cycle is one neccessary condition on the existence of a
traveling front with a tail. It also has theoretical significance to study limit cycles in system
(1.2) because it is related to the famous Hilbert’s 16th problem.

However, it is difficult to study the limit cycles in system (1.2) even though it has a simple
form. For convenience, we call system (1.2) type (m, n) if (deg(g), deg( f )) = (m, n). There
exist no efficient methods to study the number and location of limit cycles in system (1.2),
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except for the Hopf bifurcation method of studying small limit cycles. When the damping
term f (x)y is relatively weaker than the restoring term g(x), Dumortier and Li investigated the
number of limit cycles and their locations for system (1.2) with m = 3 and n = 2 in a series
of papers [20, 21, 22, 23], in which the exact bifurcation diagrams are obtained. For example,
they proved that there exist at most five limit cycles in system (1.2) of Duffing oscillator type,
and in each potential component there are at most two limit cycles [23]. For types (4, 3) and
(5, 4) system (1.2), few results have been reported on the maximal number of limit cycles, but
on some upper and lower bounds [7, 56, 57, 62, 63, 64, 74]. It is still open on the exact bound
of the maximal number of limit cycles in different subsystems of types (4, 3) and (5, 4) system
(1.2). In the first part of this thesis, we will apply the Abelian integral method with the help
of some techniques in geometry and symbolic computation to study the limit cycles in system
(1.2), without being restricted to small limit cycles.

PDEs can model spatiotemporal oscillations in real world problems by studying periodic
traveling waves, which are significant as the one-dimensional equivalent of spiral waves and
target patterns in two-dimensional space. In solving real world problems, certain relatively
weak influences are unavoidable due to the existence of uncertainty and higher order correction
to the originally mathematical models, for example in describing the shallow water waves in
nonlinear dissipative media [16] and dispersive media [37]. In other words, it is more realistic
to consider perturbed models. For example, in explaining wave motions on a liquid layer over
an inclined plane, Topper and Kawahara [59] derived the following equation,

ut + uux + αuxx + βuxxx + γuxxxx = 0. (1.3)

When the inclined plane is relatively long and the surface tension is relatively weak, the dif-
fusion term and the 4th-order dispersion term in the above equation may be treated as weak
terms. Therefore, (1.3) can be put in the form of

ut + uux + uxxx + ε(uxx + uxxxx) = 0, (1.4)

where ε is a small positive perturbation parameter (0 < ε � 1), see [48]. When the diffusion
uxx and the dissipation uxxxx terms vanish, (1.4) is reduced to the classical KdV equation, and
so (1.4) is called perturbed KdV equation. However, the weakly dissipative terms broke the
integrable structure of the original model, causing more challenge to analyze. For the weakly
dissipative PDE models, many works were concerned on the existence of solitary and kink
waves and their stability, such as solitary waves in perturbed generalized BBM equation [12]
and perturbed KdV equations [19, 46, 48], kink waves in perturbed defocing KdV equation [13]
and perturbed Sine-Gordon equation [18]. There exist some open problems, for example, can
the solitary (kink) and periodic waves coexist in the dissipative equation? What is the amplitude
of the coexisting periodic wave? Moreover, how many periodic waves with different amplitudes
can coexist? And what are the exact parameter conditions for these physical phenomena to
occur? These open problems arise from all kinds of PDEs with weakly multiple dissipations. In
the second part of this thesis, we focus on the above problems for a perturbed generalized BBM
equation with degeneracy and a cubic-quintic nonlinear Schrödinger equation with multiple
dissipations. The main mathematical tool used is the Abelian integral theory, which will be
introduced in next sections.
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1.2 Abelian integrals
In mathematics, an Abelian integral, named after the Norwegian mathematician Niels Henrik
Abel, is an integral of an algebraic function in the form,∫ x1

x0

R(w, x)dx, (1.5)

where R(w, x) is some rational function in variables w and x that are related by an algebraic
equation

F(w, x) = a0(x)wn + a1(x)wn−1 + · · · + an(x) = 0,

where the coefficients ai(x) are polynomials in x, i = 0, 1, · · · , n. In complex geometry, the
polynomial F(w, x) defines a compact Riemann surface F, which is an n-sheeted covering of
the Riemann sphere. Abelian integral provides a way mapping an algebraic curve into Abelian
varieties. Multi-dimensional generalizations of the theory of Abelian integrals form the subject
matter of algebraic geometry and the theory of complex manifolds in modern mathematics. An
extended version of Abelian integral, as a continuous function, is an integral of a polynomial
differential 1-form,

ω = Q(x, y)dx − P(x, y)dy (1.6)

over the real ovals of a polynomial Hamiltonian H(x, y), given by

A(h) =

∮
Γh

Q(x, y)dx − P(x, y)dy, h ∈ J, (1.7)

where P(x, y) and Q(x, y) are polynomials of degree n ≥ 2, H(x, y) is a polynomial of degree
m + 1 and has at least one family of ovals {Γh}, which are parameterized by {(x, y) : H(x, y) =

h, h ∈ J} where J is an open interval. An oval is a smooth simple closed curve which is free of
critical points of H(x, y). The endpoints of J correspond to the critical points or a non-simple
closed curve in the level set of H(x, y). A(h) is usually a multivalued function on J, in the sense
that there might exist several ovals lying on the same level set {(x, y) : H(x, y) = h, h ∈ J}.
The extended version of Abelian integral is connected to the prominent mathematician David
Hilbert and his 16th Problem. We recall that Hilbert’s 16th problem [34] considers the maximal
number of limit cycles and their distributions in two-dimensional polynomial systems,

ẋ = F(x, y), ẏ = G(x, y), (1.8)

where F(x, y) and G(x, y) are polynomials with max(deg(F), deg(G)) = n. Let H(n) denote the
maximal number of limit cycles of system (1.8). This problem is still not completely solved
even for quadratic polynomial systems (i.e., for the simplest case n = 2). Mathematicians have
dedicated a lot to this open problem for more than one century. However, we only know that
H(n) is finite up to now, see the relatively new monograph [60]. Many theories and method-
ologies have been developed for solving the problem, and a lot of good results on the lower
bounds for H(n) have been obtained, such as H(2) ≥ 2, H(3) ≥ 13 and H(4) ≥ 28, see re-
cent new publications [2, 49]. In order to overcome the difficulty in solving the Hilbert’s 16th
problem, researchers have tried to study the relative weakened problems or weaker versions
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I

I

β(h)•α(h) •

Figure 1.1: Poincaré map of system (1.9)

of the problem, for example, studying limit cycles arising from certain special bifurcations, or
focusing on systems with simper forms.

Anorld’s version of the Hilbert’s 16th problem [3] connects the Abelian integral given in
(1.7) to studying limit cycles in the following special form of system (1.8),

ẋ = Hy(x, y) + εP(x, y), ẏ = −Hx(x, y) + εQ(x, y), (1.9)

where P(x, y), Q(x, y) and H(x, y) are given in (1.7), ε > 0 is sufficiently small. The ovals Γh =

{(x, y) : H(x, y) = h, h ∈ J} are periodic orbits of system (1.9)ε=0. Such a family of periodic
orbits is called a periodic annulus {Γh}. The endpoints of J correspond to the boundaries of
periodic annulus {Γh}, which may be centers, saddle loops, polycycle or infinity in dynamical
system language. System (1.9) is called a perturbed Hamiltonian system or a near-hamiltonian
system, and it is, in geometric language, a deformation of a polynomial Hamiltonian with a
polynomial differential 1-form ω given in (1.6),

dH(x, y) + εω.

Under perturbation (ε , 0), most periodic orbits of system (1.9)ε=0 are broken and only a finite
number of periodic orbits persist as isolated closed orbits (limit cycles) of system (1.9). This
is usually called Pioncaré bifurcation or limit cycles bifurcating from periodic annulus. The
tools to study the limit cycles via Pioncaré bifurcation in system (1.9) are described below.

Definition 1.2.1 Let (α(h), 0) denote the intersection point of Γh with the positive x-axis, Γh,ε

be the positive orbit of (1.9) starting from the point (α(h), 0) at time t = 0, and (β(h, ε), 0) the
first intersection point of Γh,ε with the positive x-axis at time t = t∗(ε). The Pioncaré map is
defined by Pε : α(h) → β(h) as the first return map of the solutions of (1.9), see Figure 1.1.
The corresponding difference is the displacement function defined by

∆(h) = β(h) − α(h), h ∈ J.

The displacement function has a representation as a power series in the variable ε:

∆(h) = εM1(h) + ε2M2(h) + ε3M3(h) + · · · ,



6

which is convergent for small ε. Mk(h) is called the kth-order Pioncaré-Pontryagin function or
Melnikov function of order k. The relationship between A(h), M1(h) and the number of limit
cycles of system (1.9) was discussed in many monographs, see [15, 27, 31, 60]. We recommend
the relatively new one [60] for reference.

Theorem 1.2.2 (Poincaré-Pontryagin-Andronov Theorem) The following statements hold:

(I)
M1(h) = A(h) for h ∈ J.

(II) If there exists h∗ ∈ J such thatA(h∗) = 0 andA′(h∗) , 0, then system (1.9) has a unique
hyperbolic limit cycle Γh∗,ε bifurcating from Γh∗ such that Γh∗,ε → Γh∗ as ε→ 0.

(III) If A(h∗) = A′(h∗) = A′′(h∗) = · · · = A(k−1)(h∗) = 0, and A(k)(h∗) , 0, then system (1.9)
has at most k limit cycles bifurcating from Γh∗ .

(IV) The total number (counting multiplicity) of the limit cycles of system (1.9) bifurcating
from the annulus {Γh} is bounded by the maximum number of isolated zeros (taking into
account their multiplicities) of the Abelian integralA(h) for h ∈ J.

Therefore, the zeros ofA(h) provide the information on the persisting limit cycles of system
(1.9) in the sense of the first order Poincaré bifuraction when ε is sufficiently small. Studying
the maximal number of zeros ofA(h) denoted by Z(m, n) is so-called the weak Hilbert’s 16th
problem or Anorld-Hilbert’s 16th problem [3, 60], which has produced most of results on the
study of the Hilbert’s 16th problem. We note that Z(n + 1, n) gives a lower bound of H(n).
However, the weak version of the Hilbert’s 16th problem is still very difficult to solve, and so
far only the case (m, n) = (3, 2) has been completely solved, see [14] and references therein.
Note that the maximum number Z(m, n) must be a uniform bound with respect to all possible
Hamiltonian H(x, y) with all possible families of ovals Γh and arbitrary polynomial 1-forms
ω. Khovansky and Varchenko [38, 61] proved that Z(m, n) is bounded by a constant, however,
gave no information and clues on Z(m, n).

Definition 1.2.3 The maximal number (counting multiplicity) of the limit cycles of system (1.9)
bifurcating from the annulus {Γh} for small ε is called annulus cyclicity of {Γh}.

Note that the claim (IV) in Theorem 1.2.2 implies that the annulus cyclicity of {Γh} is ex-
actly Z(m, n). It should be also noted that the proof of Theorem 1.2.2 is based on the application
of the Implicit Function Theorem to the displacement map. Therefore, the displacement map
should be analytic. Hence, one should assume that the parameter space and the annulus are
compact. Therefore, it is not confusing that the claim (IV) holds for h ∈ [h1 + σ, h2 − σ] ⊂
J := (h1, h2), where σ is sufficiently small. As Z(m, n) < +∞ [38, 61] and this total number
is the uniform bound, we take the maximum of this number as σ → 0, then get the cyclicity
Z(m, n) of the period annulus {Γh}. The number Z(m, n) can include the number of limit cycles
bifurcating from the elementary center and the hyperbolic saddle homoclinic loop, because the
displacement function is analytic at these two kinds of boundaries, while it cannot be extended
to any other kinds of polycycles, because it is unknown if the displacement map is analytic on
these boundaries, see [60].
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Abelian integral is a very efficient and powerful mathematical tool for studying limit cycles
in certain subclasses of system (1.9). We choose Abelian integral as a tool in this thesis to
study the limit cycles and establish the existence of traveling waves. There are several classical
methods for studying the zeros of Abelian integral (1.7) associated with system (1.9) under
certain assumptions.

1.3 Zeros of the Abelian integral near the boundaries of {Γh}

One efficient method to detect the zeros ofA(h) is to study the asymptotic expansions ofA(h)
on the boundaries of one periodic annulus {Γh}. As stated above, the boundaries of {Γh} can
be an elementary center, nilpotent center, homoclinic loop passing through a (hyperbolic or
nilpotent) saddle, or a cusp, heteroclinic loop or polycycle connecting (hyperbolic or nilpotent)
saddles, cusps, or a more degenerate singularity. Suppose that the orientation of the orbits
of (1.9) is clockwise, and h1 and h2 are the left and right endpoints of J, respectively. Then
the Hamiltonian H(x, y) at h1 and h2 define the inner and outer boundaries of {Γh}, given by
Γh1 = {(x, y)|H(x, y) = h1} and Γh2 = {(x, y)|H(x, y) = h2}, respectively.

Suppose that Γh2 is a homoclinic loop passing through a hyperbolic saddle at the origin.
Without loss of generality, we may further assume the polynomial Hamiltonian has the normal
form,

H(x, y) = h2 +
λ

2
(y2 − x2) +

∑
i+ j≥3

hi jxiy j, λ > 0.

Roussarie [51] proved that

A(h) =
∑
j≥0

(c2 j(h − h2) j + c2 j+1(h − h2) j+1 ln(|h − h2|), (1.10)

for 0 < −(h − h2) � 1, with the formulas for the first four coefficients ci (i = 0, 1, 2, 3) given
in [29], and the fifth one was only obtained under a very strict assumption [58]. We note that
the coefficients c2 j+1 are called local coefficients because they are some local quantities near
the saddle, not related to the global homoclinic loop, see [29]. We will use the symbols ci to
denote the coefficients of the asymptotic expansions ofA(h) near all kinds of boundaries, such
as homoclinic loops and heteroclinic loops. It should be noted that they have different formulas
for different homoclinic loops and heteroclinic loops.

When Γh2 is a homoclinic loop passing through a nilpotent cusp at the origin, the polynomial
Hamiltonian can be reduced to the normal form by some linear transformation,

H(x, y) = h2 +
y2

2
+

∑
i+ j≥3

hi jxiy j, h30 < 0.

Han et al. [33] proved thatA(h) has the following asymptotic expansions,

A(h) = c0 + B00c1|h−h2|
5
6 + (c2 + bc1)(h−h2) + B10c3|h−h2|

7
6 −

1
11

B00c4|h−h2|
11
6 + O((h−h2)2),

(1.11)
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for 0 ≤ −(h − h2) � 1, and

A(h) = c0 +B∗00c1(h−h2)
5
6 +(c2 +b∗c1)(h−h2)+B∗10c3(h−h2)

7
6 +

1
11

B∗00c4(h−h2)
11
6 +O((h−h2)2),

(1.12)
for 0 ≤ h − h2 � 1, where b, b∗, B00, B∗00, B10 and B∗10 are some constants. The formulas for
the first five coefficients c j ( j = 0, 1, 2, 3, 4) are obtained by the methods developed in [33]. We
note that c1, c3 and c4 are local coefficients.

For a homoclinic loop Γh2 passinng through a nilpotent saddle at the origin, the polynomial
Hamiltonian has the normal form,

H(x, y) = h2 +
y2

2
+

∑
i+ j≥3

hi jxiy j,

with h30 = 0 and h40 <
h2

21
2 . Han et al. [30] obtained the asymptotic expansion ofA(h) and the

exact formulas for the first six coefficients,

A(h) = c0 + c1|h − h2|
3
4 + c2(h − h2) ln |h − h2| + c3(h − h2) + c4|h − h2|

5
4 + c5|h − h2|

7
4

+c6(h − h2)2 ln |h − h2| + O((h − h2)2),
(1.13)

for 0 < −(h − h2) � 1. In the expansion, c1, c2, c4, c5 and c6 are local coefficients.
When the outer boundary of {Γh} is a heteroclinic loop Γh2 connecting a hyperbolic saddle

and a nilpotent cusp, Sun et al. [55] gave the asymptotic expansion of A(h) near Γh2 and
provided a method to compute the coefficients,

A(h) = c0 + c1|h − h2|
5
6 + c2(h − h2) ln |h − h2| + c3(h − h2) + c4|h − h2|

7
6

+c5|h − h2|
11
6 + c6(h − h2)2 ln |h − h2| + O((h − h2)2),

(1.14)

for 0 < −(h − h2) � 1. For a heteroclinic loop Γh2 connecting a hyperbolic saddle and a
nilpotent saddle, the asymptotic expansion of A(h) near Γh2 was first investigated by Asheghi
et al. [6]. The idea of computing the local coefficients is based on the method given in [70],

A(h) = c0 + c1|h − h2|
3
4 + c2(h − h2) ln |h − h2| + c3(δ)(h − h2)

+c4|h − h2|
5
4 + c5|h − h2|

7
4 + c6(h − h2)2 ln |h − h2| + O((h − h2)2), (1.15)

for 0 < −(h − h2) � 1.
The inner boundary of {Γh} is usually an elementary center or a nilpotent center. A(h) has

the following expansion near an elementary center, see [32],

A(h) =
∑
i≥0

bi(h − h1)i+1, (1.16)

for 0 < h − h1 � 1 and the coefficients bi can be obtained by using the Maple program given
in [32]. For the asymptotic expansions ofA(h) near other inner and outer boundaries, a survey
paper is referred [26].

We note that the coefficients in the asymptotic expansions of A(h) are some linear func-
tions of the coefficients of P(x, y) and Q(x, y). For convenience, we denote by η ∈ RN the
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vector composed of the coefficients of P(x, y) and Q(x, y), and we use the symbolA(h, η) when
ever it is needed. The asymptotic expansions of A(h) with its coefficients can be utilized for
identifying zeros ofA(h) near the boundaries. We present a criterion to study the zeros near the
boundaries for a periodic annulus {Γh}, which has an elementary center and a saddle homoclinic
loop to be the inner and outer boundaries, respectively.

Theorem 1.3.1 Consider system (1.9) and the asymptotic expansions (1.10) and (1.16) for the
Abelian integral given in (1.7). If there exists an η0 ∈ R

N satisfying

b0(η0) = b1(η0) = · · · = bk−1(η0) = 0, bk(η0) , 0,

c0(η0) = c1(η0) = · · · = cl−1(η0) = 0, cl(η0) , 0,
(1.17)

and

rank
[
∂(b0, b1, · · · , bk−1, c0, c1, · · · , cl−1)

∂η

]
= k + l, (1.18)

thenA(h, η) can have k + l +
1−sgn(A(h1+ε1,η0)A(h2−ε2,η0))

2 zeros for some η near η0, k zeros of which
near h = h1 in (h1, h1 + ε1), l zeros near h = h2 in (h2 − ε2, h2), 1−sgn(A(h1+ε1,η0)A(h2−ε2,η0))

2 zero in
(h1 + ε1, h2 − ε2), where ε1 and ε2 are some sufficiently small parameters. Therefore, system
(1.9) can have k + l +

1−sgn(A(h1+ε1,η0)A(h2−ε2,η0))
2 limit cycles for some (ε, η) near (0, η0), k limit

cycles of which near the center Γh1 , l limit cycles of which are near the homoclinic loop Γh2 , and
1−sgn(A(h1+ε1,η0)A(h2−ε2,η0))

2 limit cycle is inside the l limit cycles, surrounding the k limit cycles.

Theorem 1.3.1 is a different version of bifurcation theorem firstly proposed in [28]. A simpler
proof of an equivalent theorem is given in Chapter 6 of this thesis. Many good results on the
number of limit cycles for certain systems of (1.9) have been obtained by investigating the
coefficients of the asymptotic expansions ofA(h) via a variation or generalization of Theorem
1.3.1, see [26, 58].

1.4 Bounding the number of zeros ofA(h)

It is rather difficult to identify the exact bound of Z(m, n). Researchers have tried to get some
smaller upper bounds for approximating Z(m, n). In 2010, a historical result was reported by
Binyamini, Novikov and Yakovenko [10],

Z(n + 1, n) ≤ 22Poly(n)
,

where Poly(n) represents an explicit, polynomially growing term with the exponent not ex-
ceeding 61. However, this upper bound is believed to be too much larger than the real ones.
There are some methods to bound the number of zeros of Abelian integrals: the method based
on Picárd-Fuchs equation [20, 21, 22, 23], the method based on the Argument Principle [15],
the averaging method [11], the method by using Chebyshev property [25, 45], and the method
based on complexification of the Abelian integrals [44]. However, each method is only appli-
cable to system (1.7) with certain strict assumptions.

Picárd-Fuchs equation method is applicable to the following special system of (1.9), with
P = 0, Q = f (x)y and the Hamiltonian H(x, y) =

y2

2 +
∫

g(x)dx,

ẋ = y, ẏ = −g(x) + ε f (x)y, (1.19)
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which is a generalized polynomial Liénard system of (1.2) with a weak damping term ε f (x)y.
The related Abelian integral is given in the simper form,

I(h) =

∮
Γh

f (x)ydx = α0I0(h) + α1I1(h) + · · · + αnIn(h),

where f (x) =
n∑

i=0
αixi, and

Ii(h) =

∮
Γh

xiydx, i = 0, 1, · · · , n, (1.20)

which are elementary Abelian integrals, to generate the full Abelian integral I(h). They are
called generating elements of I(h). System (1.19) has a simple form, however it still plays a
very important role in studying limit cycles of general planar systems obtained from modifying
(1.19), see [40, 49]. Further, system (1.19) can be applied to model real world oscillating
phenomena, see [17].

We note that studying the bound on the number of zeros of I(h) can be regarded as a combi-
nation of Smale’s 13th problem [54] and Anorld’s weak version. In fact, Smale’s 13th problem
is another weaker version of the Hilbert’s 16th problem, which restricts the Hilbert’s 16th prob-
lem to the classical polynomial Liénard system,

ẍ + f (x)ẋ + x = 0,

where f (x) is a polynomial of degree n, see [43] for the recent progress reports. Suppose that
the polynomials g(x) and f (x) in (1.19) have the degrees m and n, system (1.19) is usually
called type (m, n). Let ZL(m, n) denote the maximal number of zeros of I(h) for (1.19) of type
(m, n), where L represents Liénard system. There exist few methods to identify ZL(m, n). Most
interests are focused on ZL(m, n) with smaller n, such as n = 2, 3.

If I(h) can be decoupled, the Picárd-Fuchs equation for Ii(h) can be constructed and given
by

G(h)
d
dh


I0(h)
I1(h)
...

In(h)

 = M


I0(h)
I1(h)
...

In(h)

 , (1.21)

where G(h) is a polynomial with a degree less than n,M is an (n+1)×(n+1) matrix depending on
the Hamiltonian. Based on Picárd-Fuchs equation, the Riccati equation and a related geometric
curve can be constructed. The core problem is to determine the intersection of a line and
a related curve on bounding the zeros of I(h). This idea is inspired from algebraic geometry
theory. It has been successfully applied by Dumortier and Li [20, 21, 22, 23] to identify ZL(3, 2)
for system (1.19) of degree 3, and the exact values of ZL(3, 2) for five different topological
portraits were obtained. It was proved that two is the sharp bound on ZL(5, 4) if the quintic
symmetric system (1.19) has a unique periodic annulus bounded by a heteroclinic loop [4, 5,
73]. For these systems, the related Abelian integral I(h) has three generating elements and the
dimension of Picárd-Fuchs equations is three, which make it feasible to conduct the geometric
analysis. However, it becomes much more difficult when system (1.19) is non-symmetric or has
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degree equal or larger than 4, implying that I(h) has more than three generating elements and
the dimensions of the Picárd-Fuchs equation system and Ricatti equations are higher, which
make it intractable in determining the intersection of the related planes and surfaces. To the
best of our knowledge, very fewer results have been reported for I(h) with higher dimensions
by Picárd-fuchs equation method.

It has been shown that the Chybeshev criterion proposed in [25, 45] can be applied to bound
ZL(m, n) for Abelian integrals with more than three generating elements. Chebyshev criterion
is a generalized version of linear independence of analytic functions, see [25, 45].

Definition 1.4.1 Suppose s0(x), s1(x), · · · and sn−1(x) are analytic functions on a real open
interval Ω.

(A) The continuous Wronskian of {s0(x), s1(x), . . . , si−1(x)} for x ∈ Ω is

W[s0(x), s1(x), . . . , si−1(x)] =

∣∣∣∣∣∣∣∣∣∣∣
s0(x) s1(x) · · · si−1(x)
s
′

0(x) s
′

1(x) · · · s
′

i−1(x)
· · · · · · · · · · · ·

s(i−1)
0 (x) s(i−1)

1 (x) · · · s(i−1)
i−1 (x)

∣∣∣∣∣∣∣∣∣∣∣ ,
where s( j)

i (x) is the jth order derivative of si(x), j ≥ 2.

(B) The set {s0(x), s1(x), . . . , sn−1(x)} is called a Chebyshev system if any nontrivial linear
combination,

κ0s0(x) + κ1s1(x) + · · · + κn−1sn−1(x),

has at most n − 1 isolated zeros on Ω. Note that W[s0(x), s1(x), . . . , sn−1(x)] , 0 is one
sufficient condition assuring {s0(x), s1(x), . . . , sn−1(x)} forms a Chebyshev system.

(C) The ordered set {s0(x), s1(x), . . . , sn−1(x)} is called extended complete Chebyshev system
(ECT-system) if for each i ∈ {1, 2, · · · , n} any nontrivial linear combination,

κ0s0(x) + κ1s1(x) + · · · + κi−1si−1(x),

has at most i − 1 zeros with multiplicities counted.

Let the Hamiltonian for the unperturbed system (1.19),

H(x, y) =
y2

2
+

∫
g(x)dx :=

y2

2
+ V(x),

satisfy xV ′(x) > 0 and V(0) = 0. There exists a family of closed ovals {Γh} ⊆ {(x, y)|H(x, y) =

h, h ∈ J} surrounding the origin (0, 0), where J = (0, h∗) and h∗ = H(∂{Γh}). The projection of
{Γh} on the x-axis is an interval (xl, xr) with xl < 0 < xr. There is an analytic involution z = z(x)
for all x ∈ (xl, xr) defined by

V(x) = V(z(x)). (1.22)

Let
Ii(h) =

∮
Γh

ξi(x)y2n∗−1dx for h ∈ (0, h∗), (1.23)
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where n∗ ∈ N and ξi(x) is an analytic function on (xl, xr), (i = 0, 1, . . . , n − 1). Further, define

si(x) :=
ξi(x)
V ′(x)

−
ξi(z(x))
V ′(z(x))

. (1.24)

Then we have

Theorem 1.4.2 ([25]) Consider the integrals (1.23) and the functions (1.24). {I0, I1, · · · , In−1}

is an ECT system on (0, h∗) if n∗ > n − 2 and {s0, s1, · · · , sn−1} is an ECT system on (xl, 0) or
(0, xr).

Theorem 1.4.3 ([45]) Consider the integrals (1.23) and the functions (1.24). If the following
conditions hold:
(a) W[s0, s1, . . . , si] does not vanish on (0, xr) for i = 0, 1, · · · , n − 2;
(b) W[s0, s1, . . . , sn−1] has k zeros on (0, xr) with multiplicities counted; and
(c) n∗ > n + k − 2,
then any nontrivial linear combination of {I0, I1, · · · , In−1} has at most n + k − 1 zeros on (0, h∗)
with multiplicities counted. In this case, we call {I0, I1, · · · , In−1} a Chebyshev system with
accuracy k on (0, h∗).

Theorems 1.4.2 and 1.4.3 have been applied to bound ZL(4, 3) for type (4, 3) system (1.19),
see [7, 56, 57, 62, 63, 64, 74]. However, only an upper bound of ZL(4, 3) was obtained
for each system investigated in these papers. It is still unknown what is the exact bound of
ZL(4, 3). On the other hand, it contains an algebraic problem on bounding ZL(4, 3) by applying
Chebyshev criteria. The algebraic analysis is based on some symbolic computation for larger
semi-algebraic systems, for which it is difficult to conduct real root classification. Therefore,
only the Abelian integral I(h) with four generating elements have been analyzed, even though
Chebyshev criteria may be applicable theoretically for I(h) with arbitrary generating elements.
Efficient computation methods need to be developed or combining other techniques with the
Chebyshev criteria to identify ZL(4, 3).

Research interests have focused on Abelian integrals with two generating elements for sys-
tem (1.19) in the form of

I(h) = a0I0(h) + a1I1(h),

and
I(h) = a0

∮
Γh

f1(x)ydx + a1

∮
Γh

f2(x)ydx,

where f1(x) and f2(x) are polynomials in x without parameters. If I(h) has at most one zero, in
other words, the two generating elements form a Chebyshev system, then the ratios (if they are
well defined) of two generating elements,

R1(h) =
I1(h)
I0(h)

(1.25)

and

R2(h) =

∮
Γh

f2(x)ydx∮
Γh

f1(x)ydx
, (1.26)
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are monotonic. In 1996, Li and Zhang [41] gave a criterion to determine the monotonicity
of the ratio R2(h), which is certainly applicable to the ratio R1(h). Sixteen years later, a new
criterion was developed in [42] to determine the monotonicity of the ratio R1(h).

Theorem 1.4.4 ([42]) Consider the Abelian integral I1(h) and I0(h) for system (1.19). If

x(h) + z(h)

is monotonic on h ∈ J, then the ratio R1(h) is monotonic on J, where z(x) is the involution
defined by (1.22) satisfying V(x(h)) = V(z(h)) = h.

It seems that Theorem 1.4.4 is much easier to be used compared to other methods such as
Chebyshev criterion [25, 45] and the direct analysis [41]. However, the problem becomes hard
when H(x, y) contains a parameter, because the analysis needs root classification for a two-
dimensional parametric-semi-algebraic system, which is usually quite difficult. Therefore, it
needs to combine efficient symbolic computation with the monotonicity analysis.

1.5 Abelian integral method applied to PDEs

As discussed above, it is more realistic to investigate perturbed models when PDEs are used to
model real world problems. One technique to deal with the perturbation problem is to reduce
the PDE to a singularly perturbed ODE (including higher dimension Hamiltonian systems) by
introducing wave transform and successive derivatives, for example, see [12, 13, 18, 19, 46, 48]
and references therein. In these works the Fenichel’s criterion [24] is applied to assure the
existence of the invariant manifold, and then the problem is reduced to a problem with regular
perturbation on the manifold. Then the vanishment of the Abelian integral (usually called
Melnikov integral) along the homoclinic (heteroclinic) loop assures the existence of solitary
(kink) wave. This technique has been successfully established for solving the existence of
solitary and kink waves. For example, the perturbed KdV equation (1.4) is reduced to the
following regular perturbation problem on the related slow manifold,

u̇ = y, ẏ = u(1 − u) + ε(α0 + α1u)y,

where α0 and α2 are expressed in terms of the original equation coefficients. The condition
assuring the vanishment of the Abelian integral along the homoclinic loop establishes the ex-
istence of a solitary wave. However, the Abelian integral is not extended on the whole in-
tegrable structure, but was only estimated along the homoclinic loop or heteroclinic loop, see
[12, 13, 18, 19, 46, 48]. We construct the Abelian integral based on the whole periodic structure
of the Hamiltonian for the regular perturbation problem on the critical manifold. This allows
us to further examine the unknown problems on the periodic traveling waves and their coex-
istence with solitary and kink waves for the weakly dissipative equations. This methodology
and Abelian integral theory will be fully utilized to establish the existence of periodic waves
for two kinds of dissipative PDEs in Chapters 5 and 6.
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1.6 Contributions and outline of the thesis

In this thesis, we study limit cycles and traveling waves in some nonlinear ODEs and PDEs by
Abelian integral method. There are three main contributions. (1) We propose a combination
technique with the Chebyshev criterion to deal with a parametric set of Abelian integrals. With
this new technique, we obtain the exact bound on the number of limit cycles bifurcating from
the periodic annuli of three kinds of Hamiltonian systems, which solves three open questions
in the area. (2) We introduce the boundary polynomial theory in computer algebra to analyze
the monotonicity of ratios of two Abelian integrals, and prove that there exists at most one limit
cycle bifurcating from the periodic annulus surrounding a nilpotent center. The result gives a
positive answer to the two conjectures in [65]. (3) The third contribution is the extension of
applying Abelian integral theory to solve some PDEs. The existence and coexistence problems
on solitary, kink and periodic waves are solved by analyzing the Abelian integrals in the frame
work of singular perturbation.

The outline of this thesis is described below.
In Chapter 2, we study the exact bound on the number of limit cycles bifurcating the peri-

odic annuli for two hyperelliptic Hamiltonian systems of degree four. The Abelian integrals are
analyzed by the combination technique developed in this thesis and the Chebyshev criterion.
We provide a rigorous proof to show that the exact bound is three for both systems.

Chapter 3 is concerned on the cyclicity of the periodic annulus in a quintic Hamiltonian
system. The undamped system is hyperelliptic, non-symmetric with a degenerate heteroclinic
loop, which connects a hyperbolic saddle to a nilpotent saddle. The annulus cyclicity is ob-
tained, which is three, by studying the associated Abelian integral with the combination tech-
nique. This result provides a positive answer to the open question whether the annulus cyclicity
is three or four. For completeness, the Hopf cyclicity is also derived for the smooth and non-
smooth damping terms. When the smooth polynomial damping term has degree n, we first
introduce a transformation based on the involution of the Hamiltonian, and then analyze the
coefficients involved in the bifurcation function to show that the Hopf cyclicity is

[
2n+1

3

]
. Fur-

ther, for piecewise smooth polynomial damping with a switching manifold on the y-axis, we
consider the damping terms to have degrees l and n, respectively, and prove that the Hopf
cyclicity of the origin is

[
3l+2n+4

3

]
(
[

3n+2l+4
3

]
) when l ≥ n (n ≥ l).

In Chapter 4, we study the monotonicity of the ratio of the Abelian integrals,
∮
γi(h)

ydx

and
∮
γi(h)

xydx, in an interval, where i = 1, 2, and γi(h) is a compact component of some
hyperelliptic curves with genus two. The monotonicity implies that there exists at most one
limit cycle bifurcating from a periodic annulus surrounding a nilpotent center. Our results give
positive answers to the two conjectures proposed by Wang et al. [65].

In Chapter 5, we investigate a generalized BBM equation with weak backward diffusion,
dissipation and Marangoni effects. The analysis is reduced to a regular perturbation problem
on a critical manifold, and the Abelian integral is constructed on the whole periodic structure.
Main attention is focused on periodic and solitary waves on a manifold via studying the number
of zeros of some linear combination of Abelian integrals. The uniqueness of the periodic waves
is established when the equation contains one coefficient in backward diffusion and dissipation
terms, by showing that the Abelian integrals form a Chebyshev set. The monotonicity of the
wave speed is proved, and moreover the upper and lower bounds of the limiting wave speeds
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are obtained. Especially, when the equation involves Marangoni effect due to imposed weak
thermal gradients, it is shown that at most two periodic waves can exist. The exact conditions
are obtained for the existence of one and two periodic waves as well as for the coexistence of
one solitary and one periodic waves. The analysis is mainly based on the Chebyshev criterion
and asymptotic expansion of Abelian integrals near the solitary and singularity.

In Chapter 6, we study the cubic-quintic nonlinear Schrödinger equation that involves dis-
sipative terms. Due to the existence of the dissipative term, the Hamiltonian structure of the
equation is destroyed, which makes the equation more challenging to analyze. Under the
framework of singular perturbation theory, we first restrict our equation on a normally hy-
perbolic manifold Mε associated with the slow system, derived from the original cubic-quintic
nonlinear Schrödinger equation, to obtain a planar dynamical system. This allows us to further
examine the dynamics of the equation by constructing the Abelian integral on the whole peri-
odic structure of the Hamiltonian. Some interesting results are obtained, such as the existence
of periodic and kink waves, in particular, the coexistence and uniqueness of periodic and kink
waves, and the least upper bound on the number of isolated periodic waves.

Conclusions and future work are drawn in Chapter 7. Note that each chapter of this thesis
is self-contained.
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Chapter 2

Limit cycles in two perturbed hyperelliptic
Hamiltonian systems of degree 4

2.1 Introduction
Hilbert’s 16th problem [14] asks for the maximal number of limit cycles and their distribution
for a polynomial planar vector field of degree n. It is extremely difficult and still unsolved even
for n = 2. In order to reduce the difficulty, general polynomial systems are restricted to the
following perturbed Hamiltonian systems,

ẋ = Hy(x, y) + εp(x, y), ẏ = −Hx(x, y) + εq(x, y), (2.1)

where p(x, y) and q(x, y) are polynomials of degree n ≥ 2, ε is sufficiently small, H(x, y) is
a polynomial of degree n + 1 which has at least one family of closed orbits denoted by Γh

for the unperturbed system (2.1)ε=0, parameterized by {(x, y)|H(x, y) = h, h ∈ J}, where J is
an open interval. The perturbations destroy integrability and most periodic orbits of (2.1)ε=0

become spirals. Only a finite number of isolated closed orbits with small deformation persist as
limit cycles of (2.1). The main idea for studying the “persisting limit cycles” is to investigate
the zeros of Poincaré map or return map on the periodic annulus. Hence, the “persisting limit
cycles” generated by perturbation is usually called Poincaré bifurcation. When the perturbation
parameter ε is close to zero, the return map is approximated by the following Abelian integral,

A(h) =

∮
Γh

q(x, y)dx − p(x, y)dy, h ∈ J. (2.2)

The zeros of A(h) correspond to the number of the persisting limit cycles of system (2.1) in the
sense of first order Poincaré bifuraction, see [19]. Studying the maximal number of zeros of
A(h) is called weak Hilbert’s 16th problem and was proposed by Anorld [1]. In fact, most of
results on Hilbert’s 16th problem were obtained from studying system (2.1).

However, the weak version is still very difficult, and up to now only the case n = 2 has been
completely solved, see a unified proof in [7] and references therein. A much weaker case is
defined by H(x, y) =

y2

2 +
∫

g(x)dx, p = 0 and q = f (x)y, for which the perturbed Hamiltonian
system is given by

ẋ = y, ẏ = −g(x) + ε f (x)y, (2.3)

21
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which has a simpler form of the Abelian ingral,

I(h) =

∮
Γh

f (x)ydx.

Note that the form of system (2.3) includes, as a special form, the classical Liénard system,

ẍ + f (x)ẋ + x = 0, (2.4)

and Smale proposed to study the maximal number of limit cycles of system (2.4) as one of the
mathematical problems for the 21th century [23].

Although system (2.3) has a simple form, it is important in studying the weak Hilbert’s
16th problem and has many applications in the real world. System (2.3) has been used to
generate a new perturbed Hamiltonian system by replacing the first equation in system (2.3)
with ẋ = y(y2−a2), and the zeros of I(h) for system (2.3) play an important role in studying the
zeros of Abelian integral of the new system. In fact, the best result of 13 limit cycles for cubic
systems was obtained by such a transform [20]. Also, it is noted that system (2.3) often appears
in studying local bifurcations such as Bogdanov-Takens bifurcation with higher codimension
[34], and often occurs in many applications [8].

For convenience, we call system (2.3) type (m, n) if g(x) and f (x) are of degrees m and n,
respectively. Type (m,m − 1) implies that the degree of the perturbation is the same as that of
the unperturbed system. Dumortier and Li [9, 10, 11, 12] obtained the sharp bounds on the
number of zeros of the corresponding Abelian integrals for five cases of system (2.3) with type
(3, 2), for which 5 is the sharp bound on the number of isolated zeros of Abelian integrals when
the unperturbed system has a figure eight loop, while 2 is the sharp bound for the saddle-loop
case. The main tools used in their study are Picárd-Fuchs equations and Ricatti equations in
algebraic geometry, which tansferred the problem to studying the intersections of the related
line with a curve. For type (5, 4) of system (2.3) with symmetry, the perturbation still has three
terms, and the dimension of Picárd-Fuchs equations is the same as that of type (3, 2). It has
been proved that 2 is the sharp bound for the cases of heteroclinic loop [2, 3, 28, 35] and for
double homoclinic loop (corresponding to each bounded periodic annulus) [5]. The methods
used there include Picárd-Fuchs equations and Chebyshev criterion [13, 22]. The latter is a
generalization of Li and Zhang’s criterion [21] for determining the Chebyshev property of two
Abelian integrals. The advantage of using the criterion is to change the complicated geometric
study to a purely algebraic analysis.

A difficulty will arise if the Hamiltonian has degree more than 4 without symmetry, imply-
ing that there will be more than three generating elements in I(h). Thus, the Picárd-Fuchs equa-
tions and Ricatti equations have higher dimensions, which increases difficulty in investigating
the intersection of the related plane and surface. Many results have been obtained for the least
upper bounds on the number of zeros of I(h) by Chybeshev criterion, [6, 26, 27, 33, 31, 32, 36]
for type (4, 3), [4] for type (5, 4) without symmetry and [18, 24, 29] for type (7, 6) with symme-
try. However, it is noted that the upper bounds, obtained in almost all above mentioned results,
are not the exact upper bounds or sharp bounds. Therefore, the sharp bounds are still open,
even for I(h) of type (4, 3) except one case to be discussed below. The type (4, 3) of system
(2.3) is the following perturbed Hamiltonian system of degree 4,

ẋ = y, ẏ = µx(x − 1)(x − α)(x − β) + ε(α0 + α1x + α2x2 + α3x3)y, (2.5)
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where µ=±1, (α, β) ∈R2. The unperturbed system (2.5) has 11 cases according to the outside
boundaries of the periodic annulus, determined by the values of α and β, see [34]. We would
not list all 11 cases of the topological classification except the following cases that have results
on zeros of Abelian integrals:

(I) a cusp-saddle cycle (α = 1 and β = −2
3 , µ = −1),

(II) a nilpotent-saddle loop (α = β = 1, µ = 1),

(III) a saddle loop surrounding a nilpotent center (α = β = 0, µ = 1),

(IV) a saddle loop with a cusp outside but near the saddle (α = −1, β < −1, µ = 1).

For the cases (I), (II) and (III), it has been proved that 4, 4 and 5 are respectively their least
upper bounds. However, only 3 zeros have been obtained for the three cases, see the reports in
[6, 26, 31, 32, 33, 36]. The bounds on the number of zeros of Abelian integrals for the cases
(I) and (II) were first investigated in [6, 33], in which the verification of Chebyshev property
was based on numerical computation. It was pointed out in [32] that 3 was not reliable to
be considered as the sharp bound and it was claimed in [32, 36] that a least upper bound on
the number of zeros of the Abelian integral is 4 based upon interval analysis and symbolic
computation. Therefore, whether 3 or 4 is the sharp bound for the two cases (I) and (II) is still
unknown.

(a) (b)

Figure 2.1: Phase portraits of system (2.5) showing (a) a cusp-saddle cycle (red color) for
α = 1, β = −2

3 , µ = −1, and (b) a nilpotent-saddle loop (red color) for α = β = 1, µ = 1.

For case (I), the corresponding Hamiltonian of system (2.5)ε=0 with α = 1, β = −2
3 and

µ = −1 is

H(x, y) =
y2

2
+

x2

3
−

x3

9
−

x4

3
+

x5

5
. (2.6)

The phase portrait corresponding to H = h for h ∈ (0, 4
45 ) and x ∈ (−2

3 , 1), is given in Fig-
ure 2.1(a), showing a family of closed orbits Γh surrounded by a heteroclinic cycle Γ 4

45
, connect-

ing a hyperbolic saddle at (−2
3 , 0) and a nilpotent cusp of order 1 at (1, 0). The corresponding

Abelian integral is given by

A(h) = α0I0(h) + α1I1(h) + α2I2(h) + α3I3(h), (2.7)
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where
Ii(h) =

∮
Γh

xiydx, i = 0, 1, 2, 3. (2.8)

For case (II), the Hamiltonian of system (2.5)ε=0 with α = β = 1 and µ = 1 is

H∗(x, y) =
y2

2
+

x2

2
− x3 +

3x4

4
−

x5

5
. (2.9)

The phase portrait corresponding to H∗ = h for h ∈ (0, 1
20 ) and x ∈ (−1

4 , 1), is depicted in
Figure 2.1(b), indicating a family of closed orbits Lh surrounded by a homoclinic loop L 1

20
,

with a nilpotent saddle of order 1 at (1, 0). Similarly, we obtain the Abelian integral for this
case,

M(h) = α0I0(h) + α1I1(h) + α2I2(h) + α3I3(h), (2.10)

where
Ii(h) =

∮
Lh

xiydx, i = 0, 1, 2, 3. (2.11)

In this work, we will prove that the sharp bound on the number of zeros ofA(h) andM(h)
is 3. The main results are stated in the following two theorems.

Theorem 2.1.1 The Abelian integral A(h) for Case (I) of system (2.5) has at most 3 zeros on
(0, 4

45 ) for all possible (α0, α1, α2, α3) ∈ R4, and this is the sharp bound.

Theorem 2.1.2 The Abelian integralM(h) for Case (II) of system (2.5) has at most 3 zeros on
(0, 1

20 ) for all possible (α0, α1, α2, α3) ∈ R4, and this is the sharp bound.

The main mathematical tools that we will apply to prove the two theorems are the Cheby-
shev criterion and asymptotic property of the Abelian integrals. However, we will not di-
rectly apply the Chebyshev criterion to {Ii(h), i = 0, 1, 2, 3} and {Ii(h), i = 0, 1, 2, 3}, since that
leads to an upper bound 4, see [6, 31, 32, 36]. Instead, we combine the generating elements
{Ii(h)} or {Ii(h)} (i = 0, 1, 2, 3) and treat one perturbation parameter as a parameter in the al-
gebraic Chebyshev systems. The range of this parameter is then bounded to yield a bounded
3-dimensional parameter set via three different combinations, on which a further analysis is
given to exclude the possibility of 4 zeros of the Abelian integrals. Properly combing the gen-
erating elements plays a crucial role in obtaining the sharp bound. The detailed proof is only
given for Theorem 2.1.1, since Theorem 2.1.2 can be similarly proved.

The rest of this chapter is organized as follows. In section 2, we present expansions of
Abelian integrals near the centers and briefly introduce the Chebyshev criterion. The proof
of Theorem 2.1.1 is given in section 3, and an outline for proving Theorem 2.1.2 is given in
section 4. Conclusion is drawn in section 5.

2.2 Asymptotic expansions and Chebyshev criterion
The asymptotic expansions of Abelian integrals are proposed to study its zeros near the end-
points of the annuli, and these zeros correspond to limit cycles near the centers, homoclinic
loops and heteroclinic loops, see a survey article [15]. In our work, we will use it to study the
dynamics of the Abelian integrals on the whole periodic annulus.
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2.2.1 Asymptotic expansions ofA(h) andM(h) near the centers

Near the center (x, y) = (0, 0),A(h) andM(h) have the following expansions (see [17]):

A(h) =
∑
i≥0

bihi+1 and M(h) =
∑
i≥0

bihi+1, (2.12)

for 0<h�1. The coefficients of bi and bi can be obtained by using the program developed in
[17] as

b0 =
√

6πα0,

b1 =
√

6π
32 (41α0 + 12α1 + 24α2)

b2 =
√

6π
3072 (17017α0 + 5736α1 + 10320α2 + 2880α3)

and
b0 = 2 πα0,

b1 = π
4 (21α0 + 12α1 + 4α2) ,

b2 =
π

32
(1379α0 + 872α1 + 440α2 + 160α3) .

Using the expansions in (2.12), we can easily find the limit of the ratios of two integrals such
as lim

h→0

I2(h)
I0(h) . They will be used in our proof.

2.2.2 Chebyshev criterion

In this subsection, we prsent some results on Chebyshev criterion, which are needed for proving
our main theorems.

Definition 2.2.1 Suppose the analytic functions l0(x), l1(x), · · · and lm−1(x) are defined on a
real open interval J.

(A) The continuous Wronskian of {l0(x), l1(x), . . . , li−1(x)} for x ∈ J is

W[l0(x), l1(x), . . . , li−1(x)] =

∣∣∣∣∣∣∣∣∣∣∣
l0(x) l1(x) · · · li−1(x)
l
′

0(x) l
′

1(x) · · · l
′

i−1(x)
· · · · · · · · · · · ·

l(i−1)
0 (x) l(i−1)

1 (x) · · · l(i−1)
i−1 (x)

∣∣∣∣∣∣∣∣∣∣∣ ,
where l( j)

i (x) is the jth order derivative of li(x), j ≥ 2.

(B) The set {l0(x), l1(x), . . . , lm−1(x)} is called a Chebyshev system if any nontrivial linear
combination,

κ0l0(x) + κ1l1(x) + · · · + κm−1lm−1(x),

has at most m − 1 isolated zeros on J. Note that W[l0(x), l1(x), . . . , lm−1(x)] , 0 is one
sufficient condition assuring {l0(x), l1(x), . . . , lm−1(x)} forms a Chebyshev system.
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(C) The ordered set {l0(x), l1(x), . . . , lm−1(x)} is called an extended complete Chebyshev sys-
tem (ECT-system) if for each i ∈ {1, 2, · · · ,m} any nontrivial linear combination,

κ0l0(x) + κ1l1(x) + · · · + κi−1li−1(x),

has at most i − 1 zeros with multiplicities counted.

Let H(x, y) = U(x) +
y2

2 be an analytic function. Assume there exists a punctured neighbor-
hood N of the origin (0, 0) foliated by closed curves Γh ⊆ {(x, y)|H(x, y) = h, h ∈ (0, h∗), h∗ =

H(∂N)}. The projection of N on the x-axis is an interval (xl, xr) with xl < 0 < xr, and
xU′(x) > 0 for all x ∈ (xl, xr)\{0}. U(x) = U(z(x)) defines an analytic involution z = z(x) for all
x ∈ (xl, xr). Let

Ii(h) =

∮
Γh

ηi(x)y2s−1dx for h ∈ (0, h∗), (2.13)

where s ∈ N and ηi(x) are analytic functions on (xl, xr), i = 0, 1, . . . ,m − 1. Further, define

li(x) :=
ηi(x)
U′(x)

−
ηi(z(x))
U′(z(x))

. (2.14)

Then we have

Lemma 2.2.2 ([13]) Consider the integrals (2.13) and the functions (2.14). {I0, I1, · · · , Im−1} is
an ECT system on (0, h∗) if s > m−2 and {l0, l1, · · · , lm−1} is an ECT system on (xl, 0) or (0, xr).

Lemma 2.2.3 ([22]) Consider the integrals (2.13) and the functions (2.14). If the following
conditions hold:
(a) W[l0, l1, . . . , li] does not vanish on (0, xr) for i = 0, 1, · · · ,m − 2,
(b) W[l0, l1, . . . , lm−1] has k zeros on (0, xr) with multiplicities counted, and
(c) s > m + k − 2,
then any nontrivial linear combination of {I0, I1, · · · , Im−1} has at most m + k−1 zeros on (0, h∗)
with multiplicities counted. In this case, we call {I0, I1, · · · , Im−1} a Chebyshev system with
accuracy k on (0, h∗).

2.3 Proof of Theorem 2.1.1

2.3.1 Partition of the parameter space
In this subsection, we divide the parameter space forA(h) to obtain a subset which is the only
set forA(h) to might have 4 zeros on (0, 4

45 ). We writeH(x, y) =
y2

2 + U(x). Then,

q(x, z) �
U(x) − U(z)

x − z
= 0

which defines the involution z(x), x ∈ (0, 1) on the periodic annulus. We have the following
result.
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Lemma 2.3.1 The following equations hold:

8h3Ii(h) =

∮
Γh

S i(x)y7dx ≡ Ĩi(h), i = 0, 1, 2, 3,

where S i(x) =
xigi(x)

354375(2+3x)6(x−1)9 , in which each polynomial gi(x) has degree 15.

Proof First, multiplying Ii(h) by y2+2U(x)
2h = 1 yields

8h3Ii(h) =

∮
Γh

(2U(x) + y2)3xiydx

=

∮
Γh

8 xiU3(x)ydx +

∮
Γh

12 xiU2(x)y3dx

+

∮
Γh

6 xiU(x)y5dx +

∮
Γh

xiy7dx, i = 0, 1, 2, 3.

(2.15)

Then applying Lemma 4.1 in [13] to (2.15) to increase the power of y in the first three integrals
to 7 proves the lemma.

Without loss of generality, we assume that α3 = 1 when α3 , 0. Further, introduce the
following combinations:

I23(h) =

∮
Γh

(
α2x2 + x3

)
ydx,

I13(h) =

∮
Γh

(
α1x + x3

)
ydx,

I03(h) =

∮
Γh

(
α0 + x3

)
ydx.

(2.16)

Then
A(h) = α0I0(h) + α1I1(h) + I23(h)

= α0I0(h) + α2I2(h) + I13(h)

= α1I1(h) + α2I2(h) + I03(h).

The following lemma directly follows from Lemma 2.3.1.

Lemma 2.3.2 The following equations hold:

8h3I23(h) =

∮
Γh

(α2S 2(x) + S 3(x))y7dx 4= Ĩ23(h),

8h3I13(h) =

∮
Γh

(α1S 1(x) + S 3(x))y7dx 4= Ĩ13(h),

8h3I03(h) =

∮
Γh

(α0S 0(x) + S 3(x))y7dx 4= Ĩ03(h).
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Now, let

Li(x) =
( S i

U′
)
(x) −

( S i

U′
)
(z(x)),

Li3(x) =
(αiS i + S 3

U′
)
(x) −

(αiS i + S 3

U′
)
(z(x)).

(2.17)

Then
d
dx

Li(x) =
d
dx

( S i

U′
)
(x) −

d
dz

[( S i

U′
)
(z(x))

]
×

dz
dx
,

d
dx
Li3(x) =

∂

∂x
(Li3(x)) +

∂

∂z
(Li3(x)) ×

dz
dx
,

where dz
dx = −

qx(x,z)
qz(x,z) . Direct computations yield

W[L0](x) =
(x−z)Q0(x,z)

118125 xz(2+3 x)7(x−1)11(2+3 z)7(z−1)11 ,

W[L1](x) =
(x−z)Q1(x,z)

118125 (2+3 x)7(x−1)11(2+3 z)7(z−1)11 ,

W[L0(x), L1(x)] =
(x−z)3Q01(x,z)

13953515625x2z2(z−1)22(3 z+2)13(x−1)22(3 x+2)13P0(x,z)
,

W[L0(x), L2(x)] =
(x−z)3Q02(x,z)

13953515625x2z2(z−1)22(3 z+2)13(x−1)22(3 x+2)13P0(x,z)
,

W[L1(x), L2(x)] =
(x−z)3Q12(x,z)

13953515625x2z2(z−1)22(3 z+2)13(x−1)22(3 x+2)13P0(x,z)
,

W[L0(x), L1(x),L23] =
(x−z)6 M1(x,z,α2)

c∗x3z3(x−1)32(3 x+2)18(z−1)32(3 z+2)18P3
0(x,z)

,

W[L0(x), L2(x),L13] =
(x−z)6 M2(x,z,α1)

c∗x3z3(x−1)32(3 x+2)18(z−1)32(3 z+2)18P3
0(x,z)α1

,

W[L1(x), L2(x),L03] =
(x−z)6 M3(x,z,α0)

c∗x3z3(x−1)32(3 x+2)18(z−1)32(3 z+2)18P3
0(x,z)α0

,

(2.18)

where Q0, Q1, Q01, Q02 and Q12 are polynomials of degree 34, 33, 66, 67 and 64, respectively,
c∗ = 1648259033203125, z = z(x) is determined by q(x, z) = 0 and

P0(x, z) = 9 x3 + 18 x2z + 27 xz2 + 36 z3 − 15 x2 − 30 xz − 45 z2 − 5 x − 10 z + 15.

Applying Sturm’s Theory to the resultant between q(x, z) and P0(x, z) with respect to z shows
that the resultant has no roots for x ∈ (0, 1), which implies that P0(x, z) does not vanish for
x ∈ (0, 1). Hence, the Wronskians are well defined.

The following result indicates that we only need to discuss the case when α3 , 0.

Proposition 2.3.3 When α3 = 0,A(h) has at most 2 zeros on (0, 4
45 ).

The proof of Proposition 2.3.3 relies on computing and verifying the non-vanishment of
Wronskians W[L0], W[L0, L1] and W[L0, L1, L2], and then the application of Lemma 2.2.3.
Since the computation and verification are straightforward, we omit the proof here for brief-
ness.

To prove Theorem 2.1.1, we need to show non-vanishing of certain numerators and de-
nominators of the related Wronskians in (2.18) for x ∈ (0, 1). Taking the numerator Q01(x, z)
of the Wronskian W[L0, L1] for example, we only need to prove that the two-dimensional
system {Q01(x, z), q(x, z)} does not vanish on {(x, z)| − 2

3 < z < 0 < x < 1}, because z in
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Q01(x, z) is determined by q(x, z) = 0, and z(x) ∈ (−2
3 , 0) when x ∈ (0, 1). To do this, we

apply triangular-decomposition and root isolating to {Q01(x, z), q(x, z)} to decompose the non-
linear system into several triangular systems, and then isolate the roots of each triangular-
decomposed system. Since all roots of these triangular systems are the roots of the original
system {Q01(x, z), q(x, z)}, we only need to check if these decomposed systems have roots on
{(x, z)| − 2

3 < z < 0 < x < 1}. This idea has been successfully applied to determine the zeros
of Abelian integrals, see [25, 26, 27, 36]. Instead of the triangular-decomposition method, one
may also use the interval analysis [32], which computes two resultants between Q01(x, z) and
q(x, z) with respect to x and z, respectively, yielding several two dimensional regions. Finally,
one verifies if Q01(x, z) vanishs on these regions by determining the intersection of the curves
Q01(x, z) and q(x, z), see [32] for details.

By applying the triangular-decomposition and root isolating to the numerators of the Wron-
skians, we obtain the following result.

Lemma 2.3.4 Each of the Wronskians, W[L0], W[L1], W[L0, L1], W[L0, L2] and W[L1, L2],
does not vanish for x ∈ (0, 1).

Next, we investigate the last three Wronskians in (2.18). Their numerators have the forms,

M1(x, z, α2) = α2β2(x, z) − β1(x, z),
M2(x, z, α1) = α1γ2(x, z) − γ1(x, z),
M3(x, z, α0) = α0δ2(x, z) − δ1(x, z),

where β1, β2, γ1, γ2, δ1 and δ2 are polynomials of degrees 98, 97, 99, 97, 100 and 97, respec-
tively. Mi(x, z, αi) = 0 defines three functions,

α2(x, z) =
β1(x, z)
β2(x, z)

, α1(x, z) =
γ1(x, z)
γ2(x, z)

, α0(x, z) =
δ1(x, z)
δ2(x, z)

,

and their derivatives,

α2(x, z) =
∂α2(x, z)
∂x

+
∂α2(x, z)

∂z
×

dz
dx

=
β1(x, z)

β2(x, z)
,

α1(x, z) =
∂α1(x, z)
∂x

+
∂α1(x, z)

∂z
×

dz
dx

=
γ1(x, z)
γ2(x, z)

,

α0(x, z) =
∂α0(x, z)
∂x

+
∂α0(x, z)

∂z
×

dz
dx

=
δ1(x, z)

δ2(x, z)
.

The denominators β2(x, z), γ2(x, z), δ2(x, z), β2(x, z), γ2(x, z) and δ2(x, z) do not vanish for x ∈
(0, 1), because they do not have common roots with q(x, z) for (x, z) ∈ (0, 1) × (−2

3 , 0) by
triangular-decomposition and root isolating. Hence, all of the functions αi(x, z) and αi(x, z)
(i = 2, 1, 0) are well defined for x ∈ (0, 1).

We have the following lemma.

Lemma 2.3.5 (i) α2(x, z(x)) is decreasing from (0, 5
2 ) to a minimum (x∗, α∗2) and then increas-

ing to (1,−4
3 );



30

(ii) α1(x, z(x)) is increasing from (0,−5) to a maximum (x†, α†1) and then decreasing to
(1,−1

3 );

(iii) α0(x, z(x)) is increasing from (0, 0) to a maximum (x‡, α‡0) and then decreasing to (1, 2
3 ),

where

x∗, x†, x‡ ∈
[
108804604063
137438953472

,
3400143877
4294967296

]
︸                                   ︷︷                                   ︸

1/1010

and

α∗2 ∈

[
−

64307 . . . 30528
32922 . . . 64125

,−
44191 . . . 26125
22624 . . . 29984

]
︸                                              ︷︷                                              ︸

1/106

≈ [−1.95327706,−1.95327692],

α†1 ∈

[
11707 . . . 14473
17176 . . . 36512

,
84772 . . . 81309
12437 . . . 49248

]
︸                                          ︷︷                                          ︸

1/107

≈ [0.06815643778, 0.06815645227],

α‡0 ∈

[
68092 . . . 44807
73774 . . . 11552

,
78889 . . . 10781
85472 . . . 94528

]
︸                                          ︷︷                                          ︸

1/107

≈ [0.9229843148, 0.9229843212].

Proof We only prove case (i), since the cases (ii) and (iii) can be proved similarly. A direct
computation shows that

lim
x→0

α2(x, z(x)) =
5
2
, lim

x→1
α2(x, z(x)) = −

4
3
.

On {(x, z)| − 2
3 < z < 0 < x < 1}, β1(x, z) and q(x, z) have a unique common root (x∗, z∗) ∈ D0,

where

D0 =

[
108804604063
137438953472

,
3400143877
4294967296

]
×

[
−

41095301255
68719476736

,−
82190602509

137438953472

]
.

x∗ is the unique simple zero of α2(x, z(x)) by verifying that d
dxα2(x, z(x)) has no zeros in[ 108804604063

137438953472 ,
3400143877
4294967296

]
. Therefore, x∗ is the unique critical point of α2(x, z(x)), and thus the

monotonicity of α2(x, z(x)) on (0, x∗)
⋃

(x∗, 1) can be easily determined by comparing the val-
ues of α2(x, z(x)) at x = 0, x∗, 1 as 5

2 , −1.953277, −4
3 . Alternatively, using

lim
x→0+

α2(x, z(x)) = 0− and lim
x→0+

d
dx

(α2(x, z(x))) = −
441
40

< 0,

we know that α2(x, z(x)) is monotonically deceasing on (0, x∗) and monotonically increasing
on (x∗, 1)

It can be further shown that the resultant between ∂βi(x,z)
∂x (for i = 1, 2) and q(x, z) with

respect to z has no roots in the interval [108804604063
137438953472 ,

3400143877
4294967296 ] by Sturm’s Theorem. Hence,

βi(x, z) (i = 1, 2) reaches its maximal and minimum values at the boundaries of D0. Direct
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computation gives

min
D0

β1(x, z) = −
44292 . . . 44113
16265 . . . 68512

≈ −2.723190846 × 1013,

max
D0

β1(x, z) = −
13257 . . . 78375
48683 . . . 66176

≈ −2.723190757 × 1013,

min
D0

β2(x, z) =
98768 . . . 92375
70844 . . . 04416

≈ 1.394165169 × 1013,

max
D0

β2(x, z) =
52797 . . . 66369
37870 . . . 34272

≈ 1.394165228 × 1013.

Then we obtain

α∗2 = α2(x∗, z(x∗)) ∈

min
D0

β1(x, z)

min
D0

β2(x, z
,

max
D0

β1(x, z)

max
D0

β2(x, z)


=

[
−

64307 . . . 30528
32922 . . . 64125

,−
44191 . . . 26125
22624 . . . 29984

]
︸                                              ︷︷                                              ︸

1/106

≈ [−1.95327706,−1.95327692].
Note in the above proof that the exact rational numbers are obtained from symbolic com-

putation, demonstrating the accuracy of computation. It is also noted that the critical point
(x∗, α2(x∗, z(x∗))) divides the curve {(x, α2(x, z(x)))|0 < x < 1} into two simple segments
(curves). The points on the two curves correspond to the simple roots of M1(x, z(x), α2(x, z(x))),
while x∗ is a root of multiplicity 2. The following lemma follows from Lemma 2.3.5.

Lemma 2.3.6 For x ∈ (0, 1), when α2 belongs to the intervals [α∗2,−
4
3 ), [−4

3 ,
5
2 ) and

(−∞, α∗2)
⋃

[ 5
2 ,+∞), W[L0, L1,L23] has 2, 1 and 0 roots with multiplicities counted, respec-

tively.

Combining Lemmas 2.3.4 and 2.3.6 and applying Lemma 2.2.3, we have the following result.

Proposition 2.3.7 A(h) has at most 4, 3, 2 zeros in (0, 4
45 ) when α2 is located in the intervals

[α∗2,−
4
3 ), [−4

3 ,
5
2 ), and (−∞, α∗2)

⋃
[5

2 ,+∞), respectively.

Similarly, we have

Proposition 2.3.8 A(h) has at most 4, 3, 2 zeros in (0, 4
45 ) when α1 belongs to the intervals

(−1
3 , α

†

1], (−5,−1
3 ], and (−∞,−5]

⋃
(α†1,+∞), respectively.

Proposition 2.3.9 A(h) has at most 4, 3, 2 zeros in (0, 4
45 ) when α0 is located in the intervals

( 2
3 , α

‡

0], (0, 2
3 ], and (−∞, 0]

⋃
(α‡0,+∞), respectively.

Define

D‡ =

{
(α0, α1, α2)|α0 ∈

(2
3
, α‡0

]
, α1 ∈

(
−

1
3
, α†1

]
, α2 ∈

[
α∗2,−

4
3

)}
.

Then Propositions 2.3.7, 2.3.8 and 2.3.9 imply that

Proposition 2.3.10 A(h) may have 4 zeros only if (α0, α1, α2) ∈ D‡.
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2.3.2 Non-existence of 4 zeros ofA(h) on D‡

Finally, we prove thatA(h) cannot have 4 zeros when (α0, α1, α2) ∈ D‡. First, we have

Lemma 2.3.11 For h ∈ (0, 4
45 ), the following hold:

(1) the generating element I0(h) is positive;

(2) the ratio I1(h)
I0(h) is increasing from 0 to 2

27 ;

(3) the ratio I2(h)
I0(h) is increasing from 0 to 116

891 ; and

(4) the ratio I3(h)
I0(h) is increasing from 0 to 136

3861 .

Proof By Green formula, I0(h) =
∮

Γh
ydx =

!
D

dxdy, where D is the region bounded by Γh

(periodic annulus), and therefore, I0(h) > 0. The non-vanishing property of W[L0], W[L0, L1],
W[L0, L2] and W[L0, L3] proved in Lemma 2.3.4 implies that I1(h)

I0(h) ,
I2(h)
I0(h) and I3(h)

I0(h) are monotonic
on (0, 4

45 ). By the expansion ofA(h) near h = 0, we have

lim
h→0

I1(h)
I0(h)

= lim
h→0

I2(h)
I0(h)

= lim
h→0

I3(h)
I0(h)

= 0.

Taking the limit as h→ 4
45 yields

lim
h→ 4

45

I1(h)
I0(h)

= lim
h→ 4

45

∮
Γh

xydx∮
Γh

ydx
=

∮
Γ 4

45

xydx∮
Γ 4

45

ydx
=

2
27
,

lim
h→ 4

45

I2(h)
I0(h)

= lim
h→ 4

45

∮
Γh

x2ydx∮
Γh

ydx
=

∮
Γ 4

45

x2ydx∮
Γ 4

45

ydx
=

116
891

,

and

lim
h→ 4

45

I3(h)
I0(h)

= lim
h→ 4

45

∮
Γh

x3ydx∮
Γh

ydx
=

∮
Γ 4

45

x3ydx∮
Γ 4

45

ydx
=

136
3861

.

Proposition 2.3.12 A(h) > 0 for (α0, α1, α2) ∈ D‡.

Proof When (α0, α1, α2) ∈ D‡, by the results obtained in Lemma 2.3.11, it is easy to show that

α0 + α2
I2(h)
I0(h)

>
2
3

+
116
891

α∗2 ≥
2
3

+
116
891
× (−

64307 . . . 30528
32922 . . . 64125

) >
2
3

+
116
891
× (−2) =

362
891

,

and
α1

I1(h)
I0(h)

> −
1
3
×

2
27

= −
2
81
.
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Then, using the results for I3(h)
I0(h) and I0(h) in Lemma 2.3.11, we have, for h ∈ (0, 4

45 ), that

A(h) =
[(
α0 + α2

I2(h)
I0(h)

)
+ α1

I1(h)
I0(h)

+
I3(h)
I0(h)

]
I0(h)

>
(362
891
−

2
81

+ 0
)
I0(h)

=
340
891

I0(h) > 0.

SoA(h) has no zeros for (α0, α1, α2) ∈ D‡.

Proof of Theorem 2.1.1. Combining Propositions 2.3.3, 2.3.10 and 2.3.12 proves Theorem
2.1.1.

2.4 An outline of the proof for Theorem 2.1.2
Theorem 2.1.2 can be similarly proved as that for Theorem 2.1.1. Hence, we give an outline of
the proof for Theorem 2.1.2. Similar to Propositions 2.3.3, 2.3.10 and Lemma 2.3.11, we have
the following results.

Proposition 2.4.1 When α3 = 0,M(h) has at most 2 zeros on (0, 1
20 ).

Proposition 2.4.2 M(h) may have 4 zeros only if (α0, α1, α2) ∈ D∗,
where

D∗ =
{
(α0, α1, α2)|α0 ∈ [α‡0,−1), α1 ∈ (3, α†1], α2 ∈ [α∗2,−3)

}
with

α∗2 ∈

[
−

60508 · · · 90001
17339 · · · 00000

,−
55031 · · · 00000
15770 · · · 80367

]
︸                                              ︷︷                                              ︸

1/109

≈ [−3.4896007790,−3.4896007772],

α†1 ∈

[
61748 · · · 00000
15770 · · · 80367

,−
23327 · · · 84791
59578 · · · 00000

]
︸                                            ︷︷                                            ︸

1/109

≈ [3.9154855416, 3.9154855436],

α‡0 ∈

[
−

23405 · · · 41729
16376 · · · 00000

,−
22538 · · · 00000
15770 · · · 80367

]
︸                                              ︷︷                                              ︸

1/109

≈ [−1.4291710471,−1.4291710464].

Lemma 2.4.3 For h ∈ (0, 1
20 ), the ratio I1(h)

I0(h) increases from 0 to 1
6 , and the ratio I3(h)

I2(h) increases
from 0 to 19

39 .

Proposition 2.4.4 M(h) < 0 when (α0, α1, α2) ∈ D∗.

Proof When (α0, α1, α2) ∈ D∗, considering the above intervals expressed by fractions, I1(h)
I0(h) ∈

(0, 1
6 ) and I3(h)

I2(h) ∈ (0, 19
39 ) in Lemma 2.4.3, it is obvious that

α0 + α1
I1(h)
I0(h)

< 0 and α2 +
I3(h)
I2(h)

< 0.
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By Green formula, Ii(h) =
∮

Γh
ydx =

!
D†

xidxdy, where D† is the region (periodic annulus)
surrounded by Γh, therefore, I0(h) > 0 and I2(h) > 0. Hence, we have

M(h) =
(
α0 + α1

I1(h)
I0(h)

)
I0(h) +

(
α2 +

I3(h)
I2(h)

)
I2(h) < 0.

SoM(h) has no zeros when (α0, α1, α2) ∈ D∗.

Combining Propositions 2.4.1, 2.4.2 and 2.4.4 proves Theorem 2.1.2.

2.5 Conclusion
In this work, we have given a further investigation on the works [6, 31, 32, 33, 36] and proved
that the sharp bound is 3 on the number of zeros of the Abelian integrals of system (2.3) for
the cases with a cusp-saddle and a nilpotent-saddle loop. Previous works have obtained 3 zeros
and an upper bound 4. Our approach narrows the parameters to a set which is the only set to
possibly have 4 zeros of the Abelian integrals. Then we rule out the possibility of 4 zeros and
thus proved the sharp bound to be 3. This completely solved the upper bound problem for the
cases (I) and (II). For case (III), it has been shown in [26, 32] that a least upper bound is 5
but only 3 zeros have been obtained. We can apply the method developed in this chapter to
investigate case (III) and to show that a least upper bound is 4. However, whether 4 is the sharp
bound for case (III) needs a further study.
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Chapter 3

Annulus cyclicity and Hopf cyclicity in a
damping quintic Hamiltonian system

3.1 Introduction
Periodic motions appear in almost all natural and engineering dynamical systems. Determin-
ing the number of periodic solutions and their locations plays an important role in the study of
dynamical systems. For example, in chemical reactions [18], it is important to determine what
may cause oscillation and what may destroy oscillation, and what affects the period and am-
plitude of oscillation. However, it is not easy to determine all possible locations, periods and
amplitudes even for the oscillations in a two-dimensional reactor. The relative open problem
in mathematics is the well-known Hilbert’s 16th problem [24], which considers the maximal
number of limit cycles, denoted by H(n), and their distribution in two-dimensional polynomial
systems. This problem is still not completely solved even for quadratic polynomial systems
(i.e., for the simplest case n = 2). Many theories and methodologies have been developed
for solving the problem, and a lot of good results such as lower bounds on H(n) have been
obtained, see a recent paper [1].

In order to overcome the difficulty in solving the Hilbertls 16th problem, researchers have
tried to study the relative weakened problems or weaker versions of the problem, for example,
studying limit cycles arising from certain special bifurcations, or focusing on systems with sim-
per forms. Anorld’s version of Hilbert’s 16th problem [2] is equivalent to studying limit cycles
by investigating the first-order Poincaré bifurcation of the following perturbed Hamiltonian
system,

ẋ = Hy(x, y) + εP(x, y), ẏ = −Hx(x, y) + εQ(x, y), (3.1)

where P(x, y) and Q(x, y) are polynomials of degree n ≥ 2, ε > 0 is sufficiently small, H(x, y)
is a polynomial of degree n + 1 and has at least one family of closed orbits. Suppose the ovals,
parameterized by {(x, y)|H(x, y) = h, h ∈ J} where J is an open interval, are periodic orbits
of system (3.1)ε=0, forming a periodic annulus denoted by {Γh}. The number of zeros of the
Abelian integral,

A(h) =

∮
Γh

Q(x, y)dx − P(x, y)dy, h ∈ J,

estimates the zeros of the return map that is constructed on the periodic annulus {Γh}. Therefore,

38
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the zeros of A(h) provide the information on the persisting limit cycles of system (3.1) in the
sense of the first order Poincaré bifuraction when ε is sufficiently small, see [23]. Studying the
zeros of A(h) is so-called the weak Hilbert’s 16th problem, which has produced most of results
on the Hilbert’s 16th problem. However, even the weak version of the Hilbert’s 16th problem
is still very difficult to solve, and so far only the case n = 2 has been completely solved, see [8]
and references therein.

Smale [33] proposed a simple version of the Hilbert’s 16th problem based on the classical
polynomial Liénard system,

ẍ + f (x)ẋ + x = 0, (3.2)

where f (x) is a polynomial of degree n. Lins et al. [27] proved that system (3.2) has at most
[n

2

]
limit cycles for n = 1, 2 and conjectured that the result is true for all n ≥ 1. Li and Llibre [26]
proved that the conjecture is true for n = 3. However, in 2007, Dumortier et al. [17] proved
that there exist systems which have at least [ n

2 ] + 1 limit cycles for even n ≥ 6. Four years later,
Maesschalck and Dumortier [11] proved that there exist systems that have at least [n

2 ] + 2 limit
cycles for n ≥ 5. Maesschalck and Huzak [12] proved the results to n − 2 for n ≥ 5, which
improved [n

2 ] + 2 for n ≥ 9. In short, up to now, the sharp bound on the maximal number of
limit cycles of (3.2) is still unknown and the conjecture of Lins et al. is still open for n = 4.

Recently, more interests have focused on the generalized Liénard system, which includes
many various types of oscillators,

ẍ + f (x)ẋ + g(x) = 0, (3.3)

where g(x) and f (x) are polynomials with degrees m and n, respectively, usually called type
(m, n). In Newtonian mechanics, f (x) is the damping term and g(x) is the restoring or potential
term. The sharp bound on the number of limit cycles of system (3.3) depends on the degrees
m and n denoted by HL(m, n), where L represents Liénard system. It is more difficult to de-
termine HL(m, n) for the generalized Liénard system (3.3) than that for system (3.2), because
of the nonlinear restoring term g(x). However, even when system (3.3) has a simple form, it
still plays a very important role in studying limit cycles of general planar systems obtained
from modifying (3.3), see [25, 32]. Further, system (3.3) can be applied to model real world
oscillating phenomena, see [10].

There are two different ways to study HL(m, n). One way is to consider the limit cycles via
Poincaré bifurcation by assuming the damping term in the form of −ε f (x)y. Then system (3.3)
becomes a special form of (3.1),

ẋ = y, ẏ = −g(x) + ε f (x)y, (3.4)

with P(x, y) = 0, Q(x, y) = f (x)y and the Hamiltonian H(x, y) =
y2

2 +
∫

g(x)dx. The corre-
sponding Abelian integral is in the simple form,

I(h) =

∮
Γh

f (x)ydx.

It is known that the sharp bound on the maximal number of zeros of I(h) on a periodic annulus is
the annulus cyclicity (for a concrete system) by Poincaré-Pontryagin-Andronov Theorem [23].
The cyclicity is denoted by ZL(m, n) with L representing the Liénard system. However, even for
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the simple form, it is not easy to determine the cyclicity ZL(m, n), which was only completely
determined for type (m,m − 1) with m = 2, 3, see [13, 14, 15, 16]. Type (m,m − 1) means that
the perturbation term −ε f (x)y and the restoring term g(x) have the same degree. For type (5, 4)
of system (3.4) with symmetry, since there are only three perturbation terms, the Picárd-Fuchs
equation method can be applied. It has been proved that 2 is the sharp bound if the unperturbed
system has a heteroclinic loop [3, 4, 37, 44]. It becomes much more difficult when system
(3.4) is non-symmetric or has degree equal to or larger than 4, implying that I(h) has more
than 3 generating elements. Thus, the dimensions of the Picárd-Fuchs equation system and
Ricatti equations are higher, which makes it troublesome in determining the intersection of the
related planes and surfaces. On the other hand, it has been shown that the Chybeshev criterion
[19, 31] can be applied to bound ZL(m, n) for Abelian integrals with more than 3 elements, see
[6, 34, 35, 40, 41, 42, 45] for type (4, 3), but only an upper bound of ZL(4, 3) was obtained for
each system investigated in these papers. Recently, Sun and Yu [38] improved the results by
introducing a combination technique for two systems with a nilpotent singularity. There is no
sharp bound reported for non-symmetric type (5, 4) systems.

Another way to study limit cycles of the generalized Liénard system (3.3) is to investigate
the small limit cycles bifurcating from Hopf singularities. The exact bound on the maximal
number of small limit cycles due to Hopf bifurcation is usually called Hopf cyclicity. For
convenience, we denote the Hopf cyclicity of system (3.3) by Hs

L(m, n), where s represents
small limit cycles. There are lots of results on Hs

L(m, n) which were obtained by computing
Lyapunov coefficients. In 2006, it was proved by Yu and Han [43] that Hs

L(4, n) = Hs
L(n, 4)

and Hs
L(5, n) = Hs(n, 5) for n = 10, 11, 12, 13, and Hs

L(6, n) = Hs
L(n, 6) for n = 5, 6. Other

exact values of Hs
L(m, n) for some fixed values of m and n were summarized in Table 1 of

[29]. We have noticed that these results were mainly obtained by studying g(x) in the form of
g(x) = −x + εgm(x) with deg gm(x) = m. In other words, they perturb a linear center. When the
degrees m and n are not fixed, two better lower bounds on Hs

L(m, n) were estimated in [29] and
[22]. The averaging method of order 1, 2 or 3 was applied in [29] to system (3.3) by assuming

(g(x), f (x)) =
(∑

k≥1

εkgk
m(x),

∑
k≥1

εk f k
n (x)

)
,

while g(x) = ḡm(x) + εgm(x) was taken in [22]. However, fewer results were reported on
Hs

L(m, n) for arbitrary values of m or n. Up to now, we only know that, see [7, 30],

Hs
L(m, n) =

n
2

if g(x) is an odd degree polynomial;

Hs
L(m, n) =

n
2

if f (x) is an even degree polynomial;

Hs
L(m, 2n + 1) =

[
m − 2

2

]
+ n if f (x) is an odd degree polynomial;

Hs
L(2m, 2) = m if g(x) = x + ge(x) with ge(x) being an even degree polynomial.

The above results were obtained with a strict assumption on f (x) or g(x). Moreover, in the last
three decades, few results were obtained with similar restrictions on the damping and restoring
terms. The main difficulty comes from analyzing the dimension of the related algebraic variety
of the set of the Lyapunov coefficients.
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For fixed m = 2, it was proved respectively by Han [20, 21], and Christopher and Lynch [9]
that

Hs
L(2, n) = Hs

L(n, 2) =

[
2n + 1

3

]
for all n ≥ 1. When m = 3, it was proved in [9] that system (3.3) with g(x) = −x(2 + 3x + 4bx2)
has the Hopf cyclicity at the origin,

Hs
L(3, n) = Hs

L(n, 3) = 2
[
3n + 2

8

]
, 1 ≤ n ≤ 50.

Recently, Tian et.al [39] studied an equivalent system to the one in [9] by taking g(x) = −x(x−
2x + ax2), and proved that the Hopf cyclicity near the origin is

Hs
L(3, n) =

[
3n + 2

4

]
for n ≥ 1 if a =

8
9
.

It should be noted that when m ≥ 3, system (3.3) may have rich topological phase portraits
due to the complicated topological phase portraits of the system ẍ + g(x) = 0, for example,
there may exist more than one singularity of focus type except the singularity at the origin.
Therefore, Hs

L(3, n) (n ≥ 1) only includes the number of small limit cycles bifurcating from the
origin.

For fixed m ≥ 4, however, there are no results reported on the Hopf cyclicity for any type
(m, n) of system (3.3) with arbitrary n ≥ 1 due to the difficulty arising from stronger nonlinear
restoring term g(x).

In this chapter, we study a non-symmetric system (3.3) with m = 5. It has a unique singu-
larity of centre-focus type and the undamped system ( f (x) ≡ 0) has a unique periodic annulus.
This periodic annulus is bounded by a non-symmetric heteroclinic loop connecting a degen-

erate singularity. We study the annulus cyclicity for f (x) = ε
4∑

i=0
αixi with ε > 0 sufficiently

small, for which the damping term ε f (x)y has the same degree as that of the undamped system.
We also study the small limit cycles near the origin and determine the Hopf cyclicity when the
damping term is an nth degree smooth polynomial or a piecewise smooth polynomials. The
system is given in the form of

ẋ = y, ẏ = x(x − 1)3
(
x +

1
2

)
+ f (x)y, (3.5)

where f (x) = fi(x) (i = 1, 2, 3) with

f1(x) = ε(α0 + α1x + α2x2 + α3x3 + α4x4),

f2(x) =

n∑
i=0

αixi,

f3(x) =



n∑
i=0

α+
i xi, x > 0,

l∑
i=0

α−i xi, x < 0,
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where ε > 0 is sufficiently small, αi and α±i are bounded parameters. The undamped system
(3.5) is a Hamiltonian system with the Hamiltonian,

H(x, y) =
y2

2
+

x2

4
−

x3

6
−

3x4

8
+

x5

2
−

x6

6
.

There is a family of closed orbits Γh = {(x, y)|H(x, y) = h, h ∈ (0, 1
24 )}, which forms a unique

periodic annulus {Γh} bounded by a degenerate heteroclinic loop, denoted by Γ∗. The hetero-
clinic loop connects a hyperbolic saddle (−1

2 , 0) and a nilpotent saddle (1, 0), see Figure 3.1.
For f (x) = f1(x), the associated Abelian integral is given by

A(h) = α0I0(h) + α1I1(h) + α2I2(h) + α3I3(h) + α4I4(h), (3.6)

where

Ii(h) =

∮
Γh

xiydx, i = 0, 1, 2, 3, 4. (3.7)

As discussed above, the difficulty in studying the bifurcation of limit cycles of system (3.5)
arises from the non-symmetry, stronger nonlinearity of g(x) and the degeneracy, implying that
one has to consider more than 3 generating elements in the Abelian integral for studying the
annulus cyclicity, which requires more efficient computation in dealing with the damping terms
and their independence for studying the Hopf cyclicity. In fact, system (3.5) with f (x) = f1(x)
was first studied by Ashegh et al. [5], who claimed that there are at most three limit cycles
bifurcating from the periodic annulus by analyzing the first order Poincaré bifurcation, and
the three limit cycles can be obtained near the boundary of the annulus. The result implies
that the cyclicity of the periodic annulus is three when f (x) = f1(x). However, the result
was questionable because there exists a discrepancy between the symbolic computation and
numerical analysis. As a matter of fact, two years later, Sun et al. [36] reconsidered the problem
and provided a rigorous proof, but only an upper bound was obtained. For convenience, the
results obtained in [5, 36] are summarized in the following theorem.

Theorem 3.1.1 ([5, 36]) For system (3.5) with f (x) = f1(x),
(i) there exist no closed orbits enclosing three singularities (−1

2 , 0), (0, 0) and (1, 0) for all
possible bounded parameters (α0, α1, α2, α3, α4) ∈ R5;

(ii)A(h) has at most four zeros in (0, 1
24 ), and three zeros can be reached near the endpoints

of the interval (0, 1
24 ), implying that there are at most four limit cycles bifurcating from the

periodic annulus for sufficiently small ε > 0, and three limit cycles can be obtained either near
the singularity (0, 0) or near the heteroclinic loop.

Therefore, it is still unknown whether the annulus cyclicity is three or four for system (3.5)
when f (x) = f1(x). In this chapter, we will provide a rigorous proof to give a positive answer
on the exact cyclicity. This result is stated in the following theorem.

Theorem 3.1.2 For system (3.5) with f (x) = f1(x), the Abelian integralA(h) has at most three
zeros in (0, 1

24 ) for all possible (α0, α1, α2, α3, α4) ∈ R5, and this is the sharp bound, i.e., the
cyclicity of the periodic annulus is three.
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Figure 3.1: The phase portrait of the undamped system (3.5), showing that the heteroclinic
loop (red color) connects a hyperbolic saddle (−1

2 , 0) and a nilpotent saddle (1, 0).

In addition, we study the Hopf cyclicity of the unique center-focus singularity at the origin for
different types of damping terms. In particular, for smooth dampings, we have the result on the
Hopf cyclicity of the origin as follows.

Theorem 3.1.3 For system (3.5) with f (x) = f2(x), the Hopf cyclicity of the origin is
[

2n+1
3

]
.

When the damping term is a piecewise smooth polynomial in x of degree l and n, we have the
following result.

Theorem 3.1.4 For system (3.5) with f (x) = f3(x), the Hopf cyclicity of the origin is
[

3n+2l+4
3

]
if n ≥ l or

[
3l+2n+4

3

]
if l ≥ n.

The main mathematical tools that we will apply to prove Theorem 3.1.2 are asymptotic
property and Chebyshev criterion of the Abelian integrals {Ii(h)}4i=0. We will introduce three
combinations of related two Abelian integrals to obtain three new integral systems including
a parameter, and then apply the Chebyshev criterion to the new systems. The range of each
parameter in the integral system is then bounded via the algebraic property of the curves and
number of zeros of the algebraic system. The algebraic system is derived from the ratio of
two Wronskians. The ranges of three parameters give a bounded 3-dimensional parameter set
on which the full Abelian integral may have four zeros. A further analysis is carried out to
exclude the possibility of 4 zeros of the Abelian integrals. Properly combing the generating
elements plays a crucial role in obtaining the sharp bound, since directly applying Chebyshev
criterion fails [5, 36]. To prove Theorems 3.1.3 and 3.1.4, we properly utilize the potential in
the undamped system (3.5) to define an involution, and then to introduce two transformations
composed of trigonometric functions for the two components of the involution. This makes it
possible to analyze the independence of the elements in algebraic variety, finally yielding the
Hopf cyclicity for the smooth and non-smooth damping system (3.5).

The rest of this chapter is organized as follows. In section 2, we present some preliminaries,
which contain certain new theories and methods on Poincaré bifurcation and Hopf bifurcation,
and an extended Chebyshev criterion. We prove Theorems 3.1.2, 3.1.3 and 3.1.4 in sections 3,
4 and 5, respectively. Conclusion is drawn in section 6.
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3.2 Chebyshev criterion and local bifurcation theory

3.2.1 Chebyshev criterion
In this subsection, we briefly present the Chebyshev criterion developed in [19, 31], which is
one of the basic tools for proving our main results.

Definition 3.2.1 Suppose s0(x), s1(x), · · · and sm−1(x) are analytic functions on a real open
interval Ω.

(A) The continuous Wronskian of {s0(x), s1(x), . . . , si−1(x)} for x ∈ Ω is

W[s0(x), s1(x), . . . , si−1(x)] =

∣∣∣∣∣∣∣∣∣∣∣
s0(x) s1(x) · · · si−1(x)
s
′

0(x) s
′

1(x) · · · s
′

i−1(x)
· · · · · · · · · · · ·

s(i−1)
0 (x) s(i−1)

1 (x) · · · s(i−1)
i−1 (x)

∣∣∣∣∣∣∣∣∣∣∣ ,
where s( j)

i (x) is the jth order derivative of si(x), j ≥ 2.

(B) The set {s0(x), s1(x), . . . , sm−1(x)} is called a Chebyshev system if any nontrivial linear
combination,

κ0s0(x) + κ1s1(x) + · · · + κm−1sm−1(x),

has at most m − 1 isolated zeros on Ω. Note that W[s0(x), s1(x), . . . , sm−1(x)] , 0 is one
sufficient condition assuring {s0(x), s1(x), . . . , sm−1(x)} to form a Chebyshev system.

(C) The ordered set {s0(x), s1(x), . . . , sm−1(x)} is called an extended complete Chebyshev
(ECT) system if for each i ∈ {1, 2, · · · ,m} any nontrivial linear combination,

κ0s0(x) + κ1s1(x) + · · · + κi−1si−1(x),

has at most i − 1 zeros with multiplicities counted.

Let H(x, y) = V(x) +
y2

2 be an analytic function with xV ′(x) > 0 and V(0) = 0. There
exists a family of closed ovals {Γh} ⊆ {(x, y)|H(x, y) = h, h ∈ (0, h∗)} surrounding the origin
(0, 0), where h∗ = H(∂{Γh}). The projection of {Γh} on the x-axis is an interval (xl, xr) with
xl < 0 < xr. V(x) = V(z(x)) defines an analytic involution z = z(x) for all x ∈ (xl, xr). Let

Ii(h) =

∮
Γh

ξi(x)y2n∗−1dx for h ∈ (0, h∗), (3.8)

where n∗ ∈ N and ξi(x) is analytic in (xl, xr), i = 0, 1, . . . ,m − 1. Further, define

si(x) :=
ξi(x)
V ′(x)

−
ξi(z(x))
V ′(z(x))

. (3.9)

Then we have

Lemma 3.2.2 ([19]) Consider the integrals Ii in (3.8) and the functions si in (3.9). {I0, I1,
· · · , Im−1} is an ECT system in (0, h∗) if n∗ > m − 2 and
{s0, s1, · · · , sm−1} is an ECT system in (xl, 0) or (0, xr).
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Lemma 3.2.3 ([31]) Consider the integrals (3.8) and the functions (3.9). If the following con-
ditions hold:
(a) W[s0, s1, . . . , si] does not vanish in (0, xr) for i = 0, 1, · · · ,m − 2,
(b) W[s0, s1, . . . , sm−1] has k zeros in (0, xr) with multiplicities counted, and
(c) n∗ > m + k − 2,
then any nontrivial linear combination of {I0, I1, · · · , Im−1} has at most m + k− 1 zeros in (0, h∗)
with multiplicities counted. In this case, we call {I0, I1, · · · , Im−1} a Chebyshev system with
accuracy k in (0, h∗).

3.2.2 Hopf bifurcation theory for Liénard system
Computing and analyzing the Lyapunov coefficients of Poincaré map, which is locally con-
structed around a foci, is the classical method to study Hopf bifurcation of general planar
differential systems. However, it is not an easy task for computing the Lyapunov coefficients,
which are needed to analyze the algebraic varieties in order to determine Hopf cyclicity. For
Liénard type system, one equivalent method to computing the Lyapunov coefficients was de-
veloped in [20, 21], which is summarized as follows.

Consider the system of the form,

ẋ = P(y) − F(x, η), ẏ = −g(x), (3.10)

where η is an n-dimensional parameter vector, P(y), F(x, η) and g(x) are analytic satisfying
P′(0)g′(0) > 0, F(0, η) = g(0) = P(0) = 0 and Fx(0, η∗) = 0 for some η∗ ∈ Rn. These
assumptions assure that the origin is a center or focus of system (3.10) for η chosen from a
very small neighborhood of η∗. Then one can construct the Poincaré map locally around the
origin, which has the following expansion,

P(r, η) =

∞∑
i=1

vi(η)ri for |r| � 1 and |η − η∗| � 1, (3.11)

where vi(η) ∈ C∞. An isolated positive zero of P(r, η) near r = 0 corresponds to a small limit
cycle of system (3.10) due to Hopf bifurcation. Therefore, it only needs to study the sharp
upper bound on the maximal number of isolated positive zeros of P(r, η) for studying the Hopf
cyclicity of a focus or a center. Particularly, we have the following expansion of the bifurcation
function for the generalized Liénard system (3.10),

F(z(x), η) − F(x, η) =

∞∑
i=1

Bi(η)xi for 0 < x � 1, (3.12)

where z(x) is the involution defined by the potential G(x) =
∫

g(x)dx with G(z(x)) = G(x). It
was proved in [20, 21] that,

v1 = N1(B1)B1,

v2 j = O(B1, B3, · · · , B2 j−1),

v2 j+1 = N2 j+1(B1)B2 j+1 + O(B1, B3, · · · , B2 j−1),

where N2 j+1(B1) ∈ C∞. Therefore, we only need compute Bi and analyze its algebraic variety
{Bi = 0} for all i ≥ 1 to study the Hopf cyclicity. The following Lemma [21] states the criterion.
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Lemma 3.2.4 Consider system (3.10) and the expansion (3.12). Suppose there exists k ≥ 1
such that

F(z(x), η) ≡ F(x, η), B2 j+1 = 0

for j = 0, 1, · · · , k and there exists some η∗ ∈ Rn such that

B2 j+1(η∗) = 0, j = 0, 1, · · · , k,

rank
[
∂(B1, B3, · · · , B2k+1)

∂η

∣∣∣∣
η=η∗

]
= k + 1.

Then the Hopf cyclicity of system (3.10) at the origin is k.

Liu and Han [28] extended the theory to study Hopf bifurcation of the following piecewise
nonsmooth Liénard system,

(ẋ, ẏ) =

 (P(y) − F+(x, η),−g+(x)), x > 0,

(P(y) − F−(x, η),−g−(x)), x < 0,
(3.13)

where η is an n dimensional parameter vector, P(y), g±(x) and F±(x) are analytic and satisfy

P(0) = F±(0, η) = g±(0) = 0

and
(F±x (0, η∗))2 − 4P′(0)(g±)′(0) < 0

for some η∗ ∈ Rn. Similarly, one can construct a Poincaré map expanded for η near η∗ as

d(ρ, η) = v1(η)ρ + v2(η)ρ2 + · · · + v j(η)ρ j + · · · , 0 < ρ � 1,

and the bifurcation function similar to (3.12) is given by

F−(z(x), η) − F+(x, η) =

∞∑
j=1

B j(η)x j, (3.14)

for 0 < x � 1, where z(x) is the involution defined by G+(z(x)) = G−(x) with G±(s) =∫
g±(s)ds. Liu and Han [28] gave that

v1(η) = W1(η)B1,

v j(η) = W j(η)B j + O(|B1, B2, · · · , B j−1|),

where W j ∈ C∞ and W j > 0 for B1 small. The following lemma gives the Hopf cyclicity.

Lemma 3.2.5 ([39]) Let k positive integers satisfy r1 < r2 < · · · < rk and form the ordered
sequence {ri}

k
i=1. If the following items are verified:

(i) B j(η) ≡ 0 for 0 ≤ j < r1;
(ii) B j(η) = O(Br1 , Br2 , · · · , Brs( j)) where rs( j) = max{rs < j};
(i) there exists some η∗ such that Br j(η

∗) = 0 for 0 ≤ j ≤ k and

rank
[
∂(Br1 , Br2 , · · · , Brk)

∂η

∣∣∣∣
η=η∗

]
= k,

then the Hopf cyclicity of system (3.13) at the origin is k − 1.
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3.3 Proof of Theorem 3.1.2
In this section, we prove Theorem 3.1.2. We divide the parameter space for A(h) to obtain a
cube which is the only set for A(h) to might have 4 zeros on h ∈ (0, 1

24 ). As it was shown in
[36] that I1(h) ≡ I2(h),A(h) is spanned by

{I0(h), I1(h), I3(h), I4(h)}.

Hence, it only needs to analyze the set {I0(h), I1(h), I3(h), I4(h)}.
We write V(x) = H(x, y) − y2

2 . Then

v(x, z) :=
V(x) − V(z)

x − z
= 0

defines the involution z(x), x ∈ (0, 1) on the periodic annulus. We have the following result.

Lemma 3.3.1 The following equations hold:

8h3Ii(h) =

∮
Γh

ρi(x)y7dx ≡ Ĩi(h), i = 0, 1, 3, 4,

where ρi(x) =
xigi(x)

22680(1+2x)6(x−1)12 , in which each polynomial gi(x) has degree 18.

Proof First, multiplying Ii(h) by y2+2V(x)
2h = 1 yields

8h3Ii(h) =

∮
Γh

(2V(x) + y2)3xiydx

=

∮
Γh

8 xiV3(x)ydx +

∮
Γh

12 xiV2(x)y3dx

+

∮
Γh

6 xiV(x)y5dx +

∮
Γh

xiy7dx, i = 0, 1, 3, 4.

(3.15)

Then applying Lemma 4.1 in [19] to (3.15) to increase the power of y in the first three integrals
to 7 proves the lemma.

Without loss of generality, we assume that α4 = 1 when α4 , 0. Further, introduce the
following combinations:

I34(h) =

∮
Γh

(
α3x3 + x4

)
ydx,

I14(h) =

∮
Γh

(
α1x + x4

)
ydx,

I04(h) =

∮
Γh

(
α0 + x4

)
ydx.

(3.16)

Then
A(h) = α0I0(h) + α1I1(h) + I34(h)

= α0I0(h) + α3I3(h) + I14(h)

= α1I1(h) + α3I3(h) + I04(h).
The following lemma directly follows from Lemma 3.3.1.
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Lemma 3.3.2 The following equations hold:

8h3I34(h) =

∮
Γh

(α3ρ3(x) + ρ4(x))y7dx 4= Ĩ34(h),

8h3I14(h) =

∮
Γh

(α1ρ1(x) + ρ4(x))y7dx 4= Ĩ14(h),

8h3I04(h) =

∮
Γh

(α0ρ0(x) + ρ4(x))y7dx 4= Ĩ04(h).

Now, let
li(x) =

( ρi

V ′
)
(x) −

( ρi

V ′
)
(z(x)), i = 0, 1, 3, 4.

Li4(x) =
(αiρi + ρ4

V ′
)
(x) −

(αiρi + ρ4

V ′
)
(z(x)), i = 0, 1, 3.

(3.17)

Then
d
dx

li(x) =
d
dx

( ρi

V ′
)
(x) −

d
dz

(( ρi

V ′
)
(z(x))

)
×

dz
dx
,

d
dx
Li4(x) =

∂

∂x
(Li4(x)) +

∂

∂z
(Li4(x)) ×

dz
dx
, i = 0, 1, 3,

where dz
dx = −

vx(x,z)
vz(x,z) . A direct computation yields

W[l0] =
(x−z)W0(x,z)

11340 xz(2x+1)7(x−1)15(2z+1)7(z−1)15 ,

W[l1] =
(x−z)W1(x,z)

11340 (2x+1)7(x−1)15(2z+1)7(z−1)15 ,

W[l0, l1] =
(x−z)3W01(x,z)

128595600 x2z2(z−1)30(2 z+1)13(x−1)30(2 x+1)13w0(x,z)
,

W[l0, l3] =
(x−z)3W03(x,z)

128595600 x2z2(z−1)30(2 z+1)13(x−1)30(2 x+1)13w0(x,z)
,

W[l0, l4] =
(x−z)3W04(x,z)

128595600 x2z2(z−1)30(2 z+1)13(x−1)30(2 x+1)13w0(x,z)
,

W[l1, l3] =
(x−z)3W13(x,z)

128595600 (z−1)30(2 z+1)13(x−1)30(2 x+1)13w0(x,z)
,

W[l0, l1, l3] =
(x−z)6W013(x,z)

w∗x3z3(x−1)45(2 x+1)18(z−1)45(2 z+1)18w3
0(x,z)

,

W[l0, l1,L34] =
(x−z)6W3(x,z,α3)

w∗x3z3(x−1)45(2 x+1)18(z−1)45(2 z+1)18w3
0(x,z)

,

W[l0, l3,L14] =
(x−z)6W1(x,z,α1)

w∗x3z3(x−1)45(2 x+1)18(z−1)45(2 z+1)18w3
0(x,z)

,

W[l1, l3,L04] =
(x−z)6W0(x,z,α0)

w∗x3z3(x−1)45(2 x+1)18(z−1)45(2 z+1)18w3
0(x,z)

,

(3.18)

where z = z(x) is the involution as defined by v(x, z) = 0, w∗ = 729137052000, w0(x, z) =

2x + 4z − 3, W0, W1, W01, W03, W04, W13 and W013 are polynomials of degrees 40, 39, 78, 80,
81, 77 and 115, respectively, and the polynomialsW3,W2 andW1 have the degrees 116, 118
and 119, respectively.

We claim that the Wronskians are well defined for x ∈ (0, 1), because w0(x, z) does not
vanish for x ∈ (0, 1) by showing that the resultant between v(x, z) and w0(x, z) with respect to z
has no roots for x ∈ (0, 1).

The following result indicates that we only need to discuss the case when α4 , 0.
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Proposition 3.3.3 When α4 = 0,A(h) has at most 2 zeros in (0, 1
24 ).

The proof of Proposition 3.3.3 relies on symbolic computation for verifying the nonvanishment
of Wronskians W[l0], W[l0, l1] and W[l0, l1, l3] according to Lemma 3.2.3. Since the symbolic
computation and verification are straightforward, we omit the proof here for briefness.

To prove Theorem 3.1.2, we need to show non-vanishing of certain denominators and nu-
merators of the related Wronskians in (3.18) for x ∈ (0, 1). Taking the numerator W01(x, z)
of the Wronskian W[l0, l1], for example, we only need to prove that the 2-dimensional sys-
tem {W01(x, z), v(x, z)} does not vanish on {(x, z)| − 1

2 < z < 0 < x < 1}, because z in
W01(x, z) is determined by v(x, z) = 0, and z(x) ∈ (−1

2 , 0) when x ∈ (0, 1). To do this, we
apply triangular-decomposition and root isolating to {W01(x, z), v(x, z)} to decompose the non-
linear system into several triangular systems, and then isolate the roots of each triangular-
decomposed system. Since all roots of these triangular systems are the roots of the original
system {W01(x, z), v(x, z)}, we only need to check if these decomposed systems have roots on
{(x, z)| − 1

2 < z < 0 < x < 1}. This idea has been successfully applied to determine the zeros of
Abelian integrals, see [34, 35, 36, 38, 45]. Instead of the triangular-decomposition method, one
may also use the interval analysis [41], which computes two resultants between W01(x, z) and
v(x, z) with respect to x and z, respectively, yielding several two dimensional regions. Finally,
one verifies if W01(x, z) vanishs on these regions by determining the intersection points of the
curves W01(x, z) and v(x, z), see [41] for details.

By applying the triangular-decomposition and root isolating to the numerators of the Wron-
skians, we obtain the following result.

Lemma 3.3.4 All of the Wronskians, W[l0], W[l1], W[l0, l1], W[l0, l3], W[l0, l4] and W[l1, l3],
do not vanish for x ∈ (0, 1).

Next, we investigate the last three Wronskians in (3.18). Their numerators have the forms,

W3(x, z, α3) = α3S 2(x, z) − S 1(x, z),

W1(x, z, α1) = α1S ‡2(x, z) − S ‡1(x, z),

W0(x, z, α0) = α0S ∗2(x, z) − S ∗1(x, z),

where S 1, S 2, S ‡1, S ‡2, S ∗1 and S ∗2, are polynomials of degrees 116, 115, 118, 115, 119 and 115,
respectively. Wi(x, z, αi) = 0 (for i = 3, 1, 0) defines three functions,

α3(x, z) =
S 1(x, z)
S 2(x, z)

, α1(x, z) =
S ‡1(x, z)

S ‡2(x, z)
, α0(x, z) =

S ∗1(x, z)
S ∗2(x, z)

,

and their derivatives,

α̃3(x, z) =
∂α3(x, z)
∂x

+
∂α3(x, z)

∂z
×

dz
dx

=
S̃ 1(x, z)

S̃ 2(x, z)
,

α̃1(x, z) =
∂α1(x, z)
∂x

+
∂α1(x, z)

∂z
×

dz
dx

=
S̃ ‡1(x, z)

S̃ ‡2(x, z)
,

α̃0(x, z) =
∂α0(x, z)
∂x

+
∂α0(x, z)

∂z
×

dz
dx

=
S̃ ∗1(x, z)

S̃ ∗2(x, z)
.
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Each of the denominators S 2(x, z), S ‡2(x, z), S ∗2(x, z), S̃ 2(x, z), S̃ ‡2(x, z) and S̃ ∗2(x, z) does not
vanish for x ∈ (0, 1), because they do not have common roots with v(x, z) for (x, z) ∈ (0, 1) ×
(−1

2 , 0), verified by triangular-decomposition and root isolating. Hence, all of the functions
αi(x, z) and α̃i(x, z) (i = 3, 1, 0) are well defined for x ∈ (0, 1).

We have the following lemma.

Lemma 3.3.5 (i) α3(x, z(x)) is decreasing from (0,−3
5 ) to a minimum (x†, α†3) and then in-

creasing to (1,−5
2 );

(ii) α1(x, z(x)) is increasing from (0, 0) to a maximum (x‡, α‡1) and then decreasing to (1, 2);

(iii) α0(x, z(x)) is decreasing from (0, 0) to a minimum (x∗, α∗0) and then increasing to (1,−1
2 ),

where

x†, x‡, x∗ ∈
[

99571576491449
140737488355328

,
49785788245729
70368744177664

]
︸                                               ︷︷                                               ︸

1/1013

,

and

α†3 ∈

[
−

44214 · · · 40352
12885 · · · 98125

,−
55559 · · · 02475
16191 · · · 11584

]
︸                                              ︷︷                                              ︸

1/1010

≈ [−3.4312932408,−3.4312932406],

α‡1 ∈

[
31388 · · · 59375
94249 · · · 82976

,
16836 · · · 18911
50552 · · · 20000

]
︸                                          ︷︷                                          ︸

1/1010

≈ [3.3303719012, 3.3303719013],

α∗0 ∈

[
−

66176 · · · 98433
72854 · · · 59040

,−
53977 · · · 21875
59424 · · · 65344

]
︸                                              ︷︷                                              ︸

1/1011

≈ [−0.90833169736,−0.90833169731].

Proof We only prove case (i), since other two cases (ii) and (iii) can be similarly proved. A
direct computation shows that

lim
x→0

α3(x, z(x)) = −
3
5
, lim

x→1
α3(x, z(x)) = −

5
2
.

On {(x, z)| − 1
2 < z < 0 < x < 1}, S̃ 1(x, z) and v(x, z) have a unique common root (x†, z†) ∈ D†,

where

D† =

[
99571576491449

140737488355328
,

49785788245729
70368744177664

]

×

[
−

32492637936074023
72057594037927936

,−
129970551744296065
288230376151711744

]
.

x† is the unique simple zero of α̃3(x, z(x)) by verifying that d
dx α̃3(x, z(x)) has no zeros on[ 99571576491449

140737488355328 ,
49785788245729
70368744177664

]
. Therefore, x† is the unique critical point of α3(x, z(x)), and thus

the monotonicity of α3(x, z(x)) in (0, x†)
⋃

(x†, 1) can be easily determined by comparing the
values of α3(x, z(x)) at x = 0, x† and 1 as −3

5 , −3.4312932408 · · · and −5
2 , respectively. Alter-

natively, using
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lim
x→0+

α̃3(x, z(x)) = 0− and lim
x→0+

d
dx

(α̃3(x, z(x))) = −
147
25

< 0,

we know that α3(x, z(x)) is monotonically deceasing in (0, x†) and monotonically increasing in
(x†, 1)

It can be further shown that the resultant between ∂S i(x,z)
∂x (i = 1, 2) and v(x, z) with respect

to z has no roots over the interval[
99571576491449

140737488355328
,

49785788245729
70368744177664

]
by Sturm’s Theorem. Hence, S i(x, z) (i = 1, 2) reaches its maximal and minimal values on the
boundaries of D†. A direct computation yields

min
D†

S 1(x, z) = −
21275 · · · 15705
13764 . . . 10976

≈ −0.154565249238,

max
D†

S 1(x, z) = −
20094 . . . 34375
13000 . . . 54592

≈ −0.154565249236,

min
D†

S 2(x, z) =
26631 . . . 09375
59119 . . . 40896

≈ 0.045045770906,

max
D†

S 2(x, z) =
14098 . . . 51625
31297 . . . 78144

≈ 0.045045770908.

Then we obtain

α†3 = α3(x†, z(x†)) ∈

min
D†

S 1(x, z)

min
D†

S 2(x, z)
,

max
D†

S 1(x, z)

max
D†

S 2(x, z)


=

[
−

44214 · · · 40352
12885 · · · 98125

,−
55559 · · · 02475
16191 · · · 11584

]
︸                                              ︷︷                                              ︸

1/1010

≈ [−3.4312932408,−3.4312932406].

Note in the above proof we have used symbolic computation which gives the exact ex-
pressions using rational numbers, demonstrating the accuracy of our analysis. It is also noted
that the critical point (x†, α3(x†, z(x†))) divides the curve {(x, α3(x, z(x)))|0 < x < 1} into two
simple segments (curves). Each point on the two segments corresponds to a simple root of
W3(x, z(x), α3(x, z(x))), while x† is a root of multiplicity 2. The following lemma follows from
Lemma 3.3.5.

Lemma 3.3.6 For x ∈ (0, 1), when α3 is located in the intervals [α†3,−
5
2 ), [−5

2 ,−
3
5 ) and (−∞, α†3)⋃

[−3
5 ,+∞), W[l0, l1,L34] has 2, 1 and 0 roots with multiplicities counted, respectively.

Combining Lemmas 3.3.4 and 3.3.6 and applying Lemma 3.2.3, we have the following result.

Proposition 3.3.7 A(h) has at most 4, 3 and 2 zeros in (0, 1
24 ) when α3 belongs to the intervals

[α†3,−
5
2 ), [−5

2 ,−
3
5 ), and (−∞, α†3)

⋃
[−3

5 ,+∞), respectively.
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Similarly, we have

Proposition 3.3.8 A(h) has at most 4, 3 and 2 zeros in (0, 1
24 ) when α1 is located in the inter-

vals (2, α‡1], (0, 2], and (−∞, 0]
⋃

(α‡1,+∞), respectively.

Proposition 3.3.9 A(h) has at most 4, 3 and 2 zeros in (0, 1
24 ) when α0 belongs to the intervals

[α∗0,−
1
2 ), [−1

2 , 0), and (−∞, α∗0)
⋃

[0,+∞), respectively.

Define

D =

{
(α0, α1, α3)|α0 ∈

[
α∗0,−

1
2

)
, α1 ∈

(
2, α‡1

]
, α3 ∈

[
α†3,−

5
2

)}
.

Then Propositions 3.3.7, 3.3.8 and 3.3.9 imply that

Proposition 3.3.10 A(h) may have 4 zeros only if (α0, α1, α3) ∈ D.

Finally, we prove thatA(h) cannot have 4 zeros when (α0, α1, α3) ∈ D. First, we have

Lemma 3.3.11 For h ∈ (0, 1
24 ), the following hold:

(1) the generating element I0(h) is positive;

(2) the ratio I1(h)
I0(h) is increasing from 0 to 1

10 ;

(3) the ratio I3(h)
I0(h) is increasing from 0 to 1

28 ; and

(4) the ratio I4(h)
I0(h) is increasing from 0 to 31

1120 .

Proof By Green formula, I0(h) =
∮

Γh
ydx =

!
O

dxdy, where O represents the region bounded
by Γh (a periodic annulus), and therefore, I0(h) > 0. The non-vanishing property of W[l0],
W[l0, l1], W[l0, l3] and W[l0, l4] proved in Lemma 3.3.4 implies that I1(h)

I0(h) ,
I3(h)
I0(h) and I4(h)

I0(h) are
monotonic in (0, 1

24 ). By the expansion ofA(h) near h = 0 (see the formulas given in [36]), we
have

lim
h→0

I1(h)
I0(h)

= lim
h→0

I3(h)
I0(h)

= lim
h→0

I4(h)
I0(h)

= 0.

Taking the limit as h→ 1
24 yields

lim
h→ 1

24

I1(h)
I0(h)

= lim
h→ 1

24

∮
Γh

xydx∮
Γh

ydx
=

∮
Γ 1

24

xydx∮
Γ 1

24

ydx
=

1
10
,

lim
h→ 1

24

I3(h)
I0(h)

= lim
h→ 1

24

∮
Γh

x3ydx∮
Γh

ydx
=

∮
Γ 1

24

x3ydx∮
Γ 1

24

ydx
=

1
28
,

and

lim
h→ 1

24

I4(h)
I0(h)

= lim
h→ 1

24

∮
Γh

x4ydx∮
Γh

ydx
=

∮
Γ 1

24

x4ydx∮
Γ 1

24

ydx
=

31
1120

.
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Proposition 3.3.12 A(h) < 0 for (α0, α1, α3) ∈ D.

Proof When (α0, α1, α3) ∈ D, by the results obtained in Lemma 3.3.11, it is easy to show that
for h ∈ (0, 1

24 ),

A(h) =
(
α0 + α1

I1(h)
I0(h)

+ α3
I3(h)
I0(h)

+
I4(h)
I0(h)

)
I0(h)

<
(
α0 + α1

I1(h)
I0(h)

+
I4(h)
I0(h)

)
I0(h)

<
(
−

1
2

+ α‡1 ×
1
10

+
31

1120

)
I0(h)

< 0.

SoA(h) has no zeros for (α0, α1, α3) ∈ D.

Proof of Theorem 3.1.2. Combining Propositions 3.3.3, 3.3.10 and 3.3.12 proves Theorem
3.1.2.

3.4 Proof of Theorem 3.1.3
Taking the transformation, ỹ = y −

∫ x

0
f2(s)ds, x̃ = x, reduces system (3.5) to the following

form, after dropping the tilde,

ẋ = y − F(x, δ), y = x(x − 1)3
(
x +

1
2

)
, (3.19)

where

F(x, δ) = −

∫ x

0
f2(s)ds = −

n∑
i=0

αi

i + 1
xi+1 :=

N∑
i=1

γixi

with N = n + 1, γi = −1
iαi−1 for 1 ≤ i ≤ N, and δ = (γ1, · · · , γN) ∈ RN .

In order to prove our main result on the Hopf cyclicity, we first introduce some known
results.

Lemma 3.4.1 ([39]) The following equalities hold for any constant ν ∈ R,

1.
π∫

−π

sink(θ + ν) sin(iθ) = 0 if i > k;

2.
π∫

−π

sink(θ + ν) cos(iθ) = 0 if i > k;

3.
π∫

−π

sink(θ + ν) sin(kθ) =
π

2k−1 cos
(
kν −

k − 1
2

π
)

if k ∈ N+;
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4.
π∫

−π

cosk(θ + ν) sin(kθ) =
π

2k−1 sin
(
kν −

k − 1
2

π
)

if k ∈ N+.

As discussed above, there exists an analytic involution z(x) for the potential of the un-
damped system (3.5), defined on the periodic annulus by v(x, z) = 2 x2+2 xz+2 z2−3 x−3 z = 0.
Next, we introduce

x = Θ(θ) =
1
2

+

√
3

2
sin(θ) +

1
2

cos(θ), (3.20)

then

z = Θ(−θ) =
1
2
−

√
3

2
sin(θ) +

1
2

cos(θ). (3.21)

Let Jk = Θk(−θ) − Θk(θ), and Kk = Θk(−θ) + Θk(θ) for k ∈ N+. Then we have the following
lemma, which establishes a key successful step in deriving the Hopf cyclicity.

Lemma 3.4.2 For any k ∈ N+, we have

Jk(θ) =
k∑

i=1
cki sin(iθ), Kk(θ) =

k∑
i=1

c̃ki cos(iθ), (3.22)

where cki = 0 for i satisfying i mod 3 = 0, ckk = − 1
2k−2 cos

( kπ
6 −

k−1
2 π

)
, c̃kk = 1

2k−2 sin
( kπ

6 −
k−1

2 π
)
.

Proof It is obvious that Θ(θ) can be expressed as a linear combination of sin(iθ) and cos(iθ),
i = 1, 2, · · · , k. Then we have the formula (3.22) because Jk(θ) is an odd function and K(θ) an
even one. By (3.20), we have

x = Θ(θ) =
1
2

+ sin
(
θ +

π

6

)
.

By theory of Fourier series, we have

ckk =
1
π

π∫
−π

Θk(−θ) sin(kθ)dθ −
1
π

π∫
−π

Θk(θ) sin(kθ)dθ

=
1
π

π∫
−π

Θk(−θ) sin(−kθ)d(−θ) −
1
π

π∫
−π

Θk(θ) sin(kθ)dθ

= −
2
π

π∫
−π

Θk(θ) sin(kθ)dθ

= −
2
π

π∫
−π

( k∑
s=0

C s
k

1
2k−s sins(θ +

π

6
)
)

sin(kθ)dθ.

Applying Lemma 3.4.1, we obtain

ckk = −
2
π

π∫
−π

sink
(
θ +

π

6

)
sin(kθ)dθ = −

1
2k−2 cos

(kπ
6
−

k − 1
2

π
)
.
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Similarly, we have

c̃kk =
1
π

π∫
−π

Θk(−θ) cos(kθ)dθ +
1
π

π∫
−π

Θk(θ) cos(kθ)dθ

= −
1
π

π∫
−π

Θk(−θ) cos(−kθ)d(−θ) +
1
π

π∫
−π

Θk(θ) cos(kθ)dθ

=
2
π

π∫
−π

Θk(θ) cos(kθ)dθ

=
2
π

π∫
−π

( k∑
s=0

C s
k

1
2k−s sins(θ +

π

6
)
)

cos(kθ)dθ.

It follows from Lemma 3.4.1 that

c̃kk =
2
π

π∫
−π

sink
(
θ +

π

6

)
cos(kθ)dθ =

1
2k−2 sin

(kπ
6
−

k − 1
2

π
)
.

A direct computation shows that

Θ
(
u +

2π
3

)
= Θ(−u).

Then

Θk
(
u +

2π
3

)
= Θk(−u) for k ∈ N+.

Further, for i = 3 j < k, j = 1, 2, · · · ,
[

k
3

]
, we can show that

π∫
−π

Θk(θ) sin(3 jθ)dθ =

π
3∫

− 5π
3

Θk
(
u +

2π
3

)
sin

(
3 j(u +

2π
3

)
)
du

=

π
3∫

− 5π
3

Θk
(
u +

2π
3

)
sin

(
3 ju

)
du

=

π
3∫

− 5π
3

Θk(−u) sin
(
3 ju

)
du

=

π∫
−π

Θk(−u) sin
(
3 ju

)
du.
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Therefore,

ck,3 j =
1
π

π∫
−π

(
Θk(−u) − Θk(θ)

)
sin

(
3 ju

)
du = 0.

The proof is complete.

Proof of Theorem 3.1.3. It only needs to prove that the cyclicity of system (3.19) at the
origin is

[
2N−1

3

]
.

By Lemma 3.2.4, we construct the following power series

F(z(x)) − F(x) =

N∑
k=1

γk(zk − xk) =
∑
i≥1

Bixi (3.23)

for |x| � 1, where z(x) is the involution defined by v(x, z) = 0. We have two goals aiming
at proving our result on the Hopf cyclicity. One goal is to prove the following relationship
between the coefficients in F(z(x)) − F(x),

B2 j+1 = O(|B1, B3, · · · , B2N∗+1|), j ≥ N∗ + 1, (3.24)

where

N∗ = N −
[N

3

]
− 1 =

[
2N − 1

3

]
.

Another one is to show that

rank
[
∂(B1, B3, · · · , B2N∗+1)
∂(γ1, γ2, · · · , γN)

]
= N∗ + 1. (3.25)

First, substituting the trigonometric transformations (3.20) and (3.21) into F(z(x)) − F(x),
we have

F(z(x)) − F(x) =

N∑
k=1

γk(Θk(−θ) − Θk(θ)) =

N∑
k=1

γkJk(θ) := F̃(θ). (3.26)

By Lemma 3.4.2,

F̃(θ) =

N∑
k=1

γkJk(θ) =

N∑
k=1

γk

k∑
i=1

cki sin(iθ) =

N∑
i=1

b̃i sin(iθ), (3.27)

where

b̃i =

N∑
k=1

γkcki (3.28)

and
b̃i = 0 for i satisfying i mod 3 = 0. (3.29)

We have the following expansion of F̃(θ) for θ near π,
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F̃(θ) =

N∑
i=1

b̃i sin(iθ) =

N∑
i=1

b̃i

∑
j≥0

cos(iπ)
(−1) j

(2 j + 1)!
i2 j+1(θ − π)2 j+1

=

N∑
i=1

b̃i(−1)i
∑
j≥0

(−1) j

(2 j + 1)!
i2 j+1(θ − π)2 j+1.

=
∑
j≥0

(−1) j

(2 j + 1)!
B̃2 j+1(θ − π)2 j+1,

(3.30)

where

B̃2 j+1 =

N∑
i=1

(−1)ii2 j+1b̃i. (3.31)

By (3.20), θ − π = x + O(x2) for |x| � 1. The equalities (3.23) and (3.30) show that

B2 j+1 =
(−1) j

(2 j + 1)!
B̃2 j+1 + O(|B̃1, B̃3, · · · , B̃2 j−1|), j ≥ 0, (3.32)

which implies that

B̃2 j+1 =
(2 j + 1)!

(−1) j B2 j+1 + O(|B1, B3, · · · , B2 j−1|), j ≥ 0. (3.33)

Therefore, it only needs to prove the following result in order to reach our first goal.

B̃2 j+1 = O(|B̃1, B̃3, · · · , B̃2N∗+1|), for j ≥ N∗ + 1. (3.34)

Note from (3.27) and (3.29) that F̃(θ) should be a linear collection of N −
[

N
3

]
functions

sin(iθ), where i ∈ S, which is the ordered sequence,

S = {1, 2, · · · ,N}/{i mod 3 = 0} = {m1,m2, · · · ,mN∗+1}.

Note N −
[

N
3

]
= N∗ + 1, and so the equality (3.31) guarantes the matrix equation

(B̃1, B̃3, · · · , B̃2N∗+1) = ((−1)m1 b̃m1 , (−1)m2 b̃m2 , · · · , (−1)mN∗+1 b̃mN∗+1)M0, (3.35)

whereM0 is an (N∗ + 1) × (N∗ + 1) matrix withM0[i, j] = m2 j−1
i . A direct computation shows

that

detM0 =

N∗+1∏
i=1

mi

∏
1≤i< j≤N∗+1

(m2
j − m2

i ) , 0.

Then we have that
B̃2 j+1 = 0 for 0 ≤ j ≤ N∗

if and only if b̃i = 0 for i = m1,m2, · · · ,mN∗+1, which implies that F̃(θ) = 0 if and only if
B̃2 j+1 = 0 for all 0 ≤ j ≤ N∗. Thus, (3.34) holds.
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Finally, we need to prove that

rank
[
∂(B1, B3, · · · , B2N∗+1)
∂(γ1, γ2, · · · , γN)

]
= N∗ + 1. (3.36)

The equation (3.32) gives the following matrix equation,

(B1, B3, · · · , B2N∗+1) = (B̃1, B̃3, · · · , B̃2N∗+1)M1, (3.37)

where

M1 =


(−1)0

1! ∗ · · · ∗
(−1)1

3! · · · ∗

. . .
...0 (−1)N∗

(2N∗+1)!


and

detM1 =

N∗∏
j=0

(−1) j

(2 j + 1)!
, 0.

It follows from (3.28) and Lemma 3.4.2 that

(b̃1, b̃2, 0, b̃3, b̃4, 0, · · · , b̃N) = (γ1, γ2, γ3, γ4, · · · , γN)M2,

where

M2 =



c11 0 0 0 · · · 0
c21 c22 0 0 · · · 0
c31 c32 0 0 · · · 0
c41 c42 0 c44 · · · 0
...

...
...

...
. . . 0

cN1 cN2 0 cN4 · · · cNN


,

which is an N × N triangular matrix with the 3 jth column being zero for j = 1, 2, · · · ,
[N

3

]
.

Then we can delete all 3 jth columns and rows inM2 and assume α3 j = 0 for j = 1, 2, · · · ,
[N

3

]
.

Therefore, we have the following result, by similarly using the ordered sequence S,

(b̃m1 , b̃m2 , · · · , b̃mN∗+1) = (γm1 , γm2 , · · · , γmN∗+1)M3, (3.38)

where

M3 =



c11 0 0 0 · · · 0
c21 c22 0 0 · · · 0
c41 c42 c44 0 · · · 0
c51 c52 c54 c55 · · · 0
...

...
...

...
. . . 0

cmN∗+1,1 cmN∗+1,2 cmN∗+1,4 cmN∗+1,5 · · · cmN∗+1,mN∗+1


,

with
detM3 =

∏
k=m1,m2,··· ,mN∗+1

ckk =
∏

k=m1,m2,··· ,mN∗+1

−
1

2k−2 cos
(kπ

6
−

k − 1
2

π
)

= 3
N∗
2 2−N∗

∏
k=m1,m2,··· ,mN∗+1

−
1

2k−2 , 0
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by Lemma 3.4.2.
Combining (3.35), (3.37) and (3.38) completes the proof for (3.36). With the reached two

goals, we have proved our result on the Hopf cyclicity by Lemma 3.2.4. Therefore, system
(3.19) has the Hopf cyclicity

[
2N−1

3

]
, so it is

[
2n+1

3

]
for system (3.5) with f (x) = f2(x). This

completes the proof of Theorem 3.1.3.

3.5 Proof of Theorem 3.1.4
We only prove Theorem 3.1.4 for the case l ≥ n, as the other case l ≤ n can be similarly proved.
Like (3.19), we can rewrite system (3.5) as

ẋ = y − F±(x, δ), y = x(x − 1)3
(
x +

1
2

)
, (3.39)

where

F−(x, δ) = −

∫ x

0

l∑
i=0

α−i sids = −

l∑
i=0

1
i + 1

α−i xi+1 :=
L∑

i=1

γ−i xi

and

F+(x, δ) = −

∫ x

0

n∑
i=0

α+
i sids = −

n∑
i=0

1
i + 1

α+
i xi+1 :=

N∑
i=1

γ+
i xi

with L = l + 1, N = n + 1, γ±i = −1
iα
±
i−1 for i ≥ 1, and

δ = (γ−1 , · · · , γ
−
L , γ

+
1 , · · · , γ

+
N) ∈ RN+L.

Proving Theorem 3.1.4 is equivalent to showing that the Hopf cyclicity of system (3.39) is[
3L+2N−1

3

]
.

We have the bifurcation function of system (3.39) for 0 < x � 1, given by

F(z(x)) − F(x) = F−(z(x)) − F+(x) =
L∑

k=1
γ−k zk(x) −

N∑
k=1
γ+

k xk

=
L∑

k=1

[
bk(zk(x) − xk) + ek(zk(x) + xk)

]
,

(3.40)

where

bk =

 γ−k +γ+
k

2 , 1 ≤ k ≤ N,
γ−k
2 , N < k ≤ L,

ek =

 γ−k −γ
+
k

2 , 1 ≤ k ≤ N,
γ−k
2 , N < k ≤ L.

We again use the transformations (3.20) and (3.21) to obtain with Lemma 3.4.2,

F(z(x)) − F(x) =
L∑

k=1
bkJk(θ) + ekKk(θ)

=
L∑

k=1

(
bk

k∑
i=1

cki sin(iθ) + ek

k∑
i=0

c̃ki cos(iθ)
)
,

=
N∑

i=1
b̃i sin(iθ) +

N∑
i=0

ẽi cos(iθ) +
L∑

i=N+1
γ−i Ri(θ) := F̃(θ),

(3.41)
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where

b̃i =

L∑
k=i

bkcki, ẽ0 =

L∑
k=1

ekc̃k0, ẽi =

L∑
k=i

ekc̃ki,

for 1 ≤ i ≤ N and

Ri(θ) =
1
2

i∑
j=N+1

(
ci j sin( jθ) + c̃i j cos( jθ)

)
,

for N + 1 ≤ i ≤ L, with b̃i = 0 if i mod 3 = 0 for 1 ≤ i ≤ N. We have

ẽ0 = −

N∑
i=1

ẽi −

L∑
i=N+1

γ−i
2

i∑
j=N+1

c̃i j

by F̃(π) = 0. Then

F̃(θ) =

1≤i≤N∑
i mod 3,0

b̃i sin(iθ) +

N∑
i=1

ẽi(cos(iθ) − 1) +

L∑
i=N+1

γ−i R̃i(θ), (3.42)

with

R̃i(θ) =
1
2

i∑
j=N+1

(
ci j sin( jθ) + c̃i j(cos( jθ) − 1)

)
, N + 1 ≤ i ≤ L.

We define the parameter vector

v = (b̃1, b̃2, b̃4, b̃5, b̃7, · · · , ẽ1, · · · , ẽN , γ
−
N+1, γ

−
N+2, · · · , γ

−
L),

which has the dimension L + N −
[

N
3

]
. Thus, we can show that

rank
[

∂v
∂(b1, b2, · · · , bN , e1, e2, · · · , eN , γ

−
N+1, · · · , γ

−
L)

]
= L + N −

[N
3

]
by a similar proof for (3.38). Then

rank
[

∂v
∂(γ+

1 , · · · , γ
+
N , γ

−
1 , · · · , · · · , γ

−
L)

]
= L + N −

[N
3

]
. (3.43)

F̃(θ) can be expanded near θ = π as below,

F̃(θ) = B̃1(θ − π) + B̃2(θ − π)2 + B̃3(θ − π)3 + · · · , (3.44)

where each coefficient B̃i is a linear combination of the entries of v. Let s be the maximal
number of linear independent coefficients in (3.44), S = {r1, r2, · · · , rs} with ri < ri+1 and these
coefficients be denoted by

B̃r1 , B̃r2 , · · · , B̃rs .

Obviously, these independent coefficients can be determined one by one by taking B̃r1 to be the
first nonzero coefficient in (3.44) and B̃r j the first one that independent of B̃r1 , · · · , B̃r j−1 , up to
the sth one. Then s ≤ L + N −

[
N
3

]
and

B̃ j = LC j(B̃r1 , B̃r2 , · · · , B̃r∗j ), (3.45)
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where j < S and j < rs with r∗j = max{ri ∈ S |ri < j}, LC j denotes a linear combination, and

B̃ j = O(B̃r1 , · · · , B̃rs) for j > rs. There exists an s ×
(
L + N −

[
N
3

])
matrixM1 such that,(

B̃r1 , B̃r2 , · · · , B̃rs

)T
=M1vT , (3.46)

In the following, we prove the claim,

rankM1 = L + N −
[N

3

]
,

which only need prove all B̃r j = 0, j = 1, 2, · · · , s, if and only if v = 0. By definition of B̃r j ,
j = 1, 2, · · · , s, it only need to prove F̃(θ) ≡ 0 if and only if v = 0.

The elements in (3.42), {sin iθ, cos jθ − 1, R̃u(θ)} with 1 ≤ i ≤ N, i mod 3 , 0, 1 ≤ j ≤ N
and N + 1 ≤ u ≤ L is a Chebyshev system of dimension L + N −

[
N
3

]
. Then F̃(θ) ≡ 0 if and

only if v = 0.
Suppose

F−(z(x)) − F+(x) = B1x + B2x2 + · · · + B jx j + · · · , 0 < x � 1. (3.47)

By (3.20), θ−π = x+O(x2) for |x| � 1. We substitute it into (3.47) and compare the coefficients
to get

B j = B̃ j + Ẽi(B̃1, B̃2, · · · , B̃ j−1), j = 1, 2, · · · , (3.48)

where Ẽi is a linear function. Then, by (3.45) and (3.48), we have

B j = O(B̃r1 , B̃r2 , · · · , B̃r∗j ) for j < S (3.49)

and
Br j = B̃r j + Ẽ∗r j

(B̃1, B̃2, · · · , B̃r j−1) for r j ∈ S (3.50)

which further imply

B̃r j = Br j + Er j(Br1 , Br2 , · · · , Br j−1) for r j ∈ S , (3.51)

where Ẽ∗r j
and Er j are linear functions. Then combining (3.49) and (3.51) yields

B j = O(Br1 , Br2 , · · · , Br∗j )

for j < S . The reminder of the proof is to show

rank
[

∂(Br1 , Br2 , · · · , Brs)
∂(γ+

1 , · · · , γ
+
N , γ

−
1 · · · , γ

−
L)

]
= L + N −

[N
3

]
. (3.52)

By (3.50), we have

rank
∂(Br1 , Br2 , · · · , Brs)

∂(B̃r1 , B̃r2 , · · · , B̃rs)

 = L + N −
[N

3

]
, (3.53)

and so

rank
∂(B̃r1 , B̃r2 , · · · , B̃rs)

∂v

 = rankM1 = L + N −
[N

3

]
(3.54)

by (3.46). Combining (3.43), (3.53) and (3.54), we have shown that (3.52) holds. Therefore,
the Hopf cyclicity of system (3.39) is L + N −

[
N
3

]
− 1 =

[
3L+2N−1

3

]
. This completes the proof of

Theorem 3.1.4.
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3.6 Conclusion
In this chapter, we conduct a further study on a Liénard system and give a rigorous proof to the
open question remained in [5, 36]. We prove that the cyclicity of the periodic annulus of the
Hamiltonian is 3 by showing the sharp bound to be 3 on the maximal number of zeros of the
associated Abelian integral. The annulus cyclicity can be extended to the elementary center
because the displacement map is analytic for h = 0. The non-symmetry and degeneracy of the
system causes much difficulty in the computation and analysis for the Poincaré bifuraction, as
well as in the study of Hopf bifurcation. We have obtained the Hopf cyclicity as

[ 2n+1
3

]
when the

damping term is a smooth polynomial with an arbitrary degree n. The involution determined
by the annulus is well utilized, based on which a transformation composed of trigonometric
functions is introduced, which provides a tool to overcome the difficulty in analysis and com-
putation. However, it is not easy to find such kind of a transformation for the involution in a
general undamped Liénard system. It is even unknown if there exists such a transformation for
the involution of a Hamiltonian. In this chapter, we find such a transform for our system that
belongs to hyperelliptic Hamiltoinian. We have also studied the Hopf cyclicity of the origin
when the damping term is a non-smooth polynomial with the switching manifold at the y-axis,
having respectively degrees l and n, and proved that the Hopf cyclicity is

[
3l+2n+4

3

] ([
3n+2l+4

3

])
when l ≥ n (n ≥ l).
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Chapter 4

The monotonicity of ratios of some
Abelian integrals

4.1 Introduction and main results

The well-known weak Hilbert’s 16th problem [1] asks for the maximal number of isolated
zeros of the following Abelian integral,

I(h) =

∮
Γh

f (x, y)dx − g(x, y)dy, h ∈ Σ,

where f (x, y) and g(x, y) are polynomials of degree m, {Γh} is a family of ovals of the level
set {H(x, y) = h, h ∈ Σ}, where Σ represents an interval and the Hamiltonian H(x, y) is an
(n + 1)th-degree polynomial. This open problem is extremely difficult, and researchers choose
some simpler forms of H(x, y), f (x, y) and g(x, y) to study, see [12] for a relatively new survey
work.

Suppose that H(x, y) = y2 + Pn+1(x), where Pn+1(x) is a polynomial of degree n + 1. In
this case, the Abelian integral is usually called elliptic integral if [ n

2 ] < 2, and hyperelliptic
integral if [n

2 ] ≥ 2. When n = 2, Petrov [15] proved that the sharp bound on the maximal
number of zeros of I(h) is m − 1 for arbitrary m. When n = 3, Dumortier and Li [4, 5, 6, 7]
obtained the sharp bound on the maximal number of zeros of I(h) for m ≤ 3. Later, it was
proved that the bound is linearly dependent on m, see [16, 24] and references therein. I(h) is a
hyperelliptic integral if n > 3, and it is rather difficult to find an upper bound on the maximal
number of zeros of such an I(h). However, it is still very interesting and important to study the
hyperelliptic integrals with m = 2. In this respect, if the ratio of two Abelian integrals,∮

Γ(h)
ydx∮

Γ(h)
xydx

,

is monotonic, in other words, the integral set {
∮

Γ(h)
ydx,

∮
Γ(h)

xydx} is a Chebyshev system, then
I(h) = a0

∮
Γ(h)

ydx + a1

∮
Γ(h)

xydx has at most one isolated zero for any a0 and a1. We note that
Gavrilov and Iliev [8] proved the ratio of the two complete hyperelliptic integrals of the first

66
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kind, associated with the hyperelliptic curve H(x, y) = y2 + P5(x),∮
Γ(h)

1
y dx∮

Γ(h)
x
y dx

,

is monotonic.
In [13], Li and Zhang first provided a criterion to determine the monotonicity of the ratio

of two Abelian integrals. 15 years later, the criterion was generalized by Grau et al. [9] to
bound the number of zeros of a linear combination of m Abelian integrals with m > 2. The new
criterion was first applied to bound the number of zeros of I(h) for quartic damping Hamiltonian
systems in [2, 11, 17, 19]. Later, Liu and Xiao [14] established a new criterion to determine the
monotonicity of

∮
Γ(h)

ydx/
∮

Γ(h)
xydx, where {Γ(h)} are the ovals defined by y2+Φ(x) = h, Φ(x) is

an analytic function and has a local minimum at the center type singularity of the corresponding
Hamiltonian system. Using this new method, they gave the sufficient and necessary conditions
for monotonicity of

∮
Γ(h)

ydx/
∮

Γ(h)
xydx on the hyperelliptic closed curves defined by {(x, y)|y2 +

P5(x) = h}.
In [20], Wang et al. studied the ratio of

∮
Γ(h)

ydx and
∮

Γ(h)
xydx on the hyperelliptic curves,

given by

H(x, y) = y2 +

∫
x(x − α)(x − β)(x − γ)(x − 1)dx (4.1)

and

H∗(x, y) = y2 −

∫
x(x − α)(x − β)(x − γ)(x − 1)dx. (4.2)

The corresponding Hamiltonian systems are respectively described by

ẋ = −2y, ẏ = x(x − α)(x − β)(x − γ)(x − 1) (4.3)

and
ẋ = 2y, ẏ = x(x − α)(x − β)(x − γ)(x − 1), (4.4)

where 0 ≤ α ≤ β ≤ λ ≤ 1.
Moreover, in [20], the authors gave a complete classification of hyperelliptic curves and

investigated the monotonicity of the ratios of
∮

Γ(h)
ydx and

∮
Γ(h)

xydx on these hyperelliptic
curves. A number of good results were obtained in [20]. In particular, when λ < 1 and
α = β = 0, system (4.3) is reduced to

ẋ = −2y, ẏ = x3(x − λ)(x − 1) (4.5)

with the Hamiltonian function,

H(x, y) = y2 +
λ

4
x4 −

1 + λ

5
x5 +

1
6

x6. (4.6)

When 0 < α < 1 and β = λ = 0, system (4.3) becomes

ẋ = −2y, ẏ = x(x − α)(x − 1)3 (4.7)
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with the Hamiltonian

H(x, y) = y2 +
α

2
x2 −

1 + 3α
3

x3 +
3 + 3α

4
x4 −

3 + α

5
x5 +

1
6

x6. (4.8)

The two compact components of the level sets of H(x, y) = h andH(x, y) = h surrounding the
nilpotent point (0, 0) of system (4.5) and the nilpotent point (1, 0) of system (4.7), are denoted
by γ1(h) and γ2(h), as shown in Figures 4.1(a) and 4.1(b), respectively. It should be pointed
out that it is more difficult to analyze the bifurcation and related problems for these degenerate
cases.

(a) (b)

Figure 4.1: The level set of the Hamiltonians: (a) for system (4.5) and (b) for system (4.7).

Let

I0(h) =

∮
γ1(h)

ydx, I1(h) =

∮
γ1(h)

xydx, I0(h) =

∮
γ2(h)

ydx and I1(h) =

∮
γ2(h)

xydx.

It has been proved in [20] that

Theorem 4.1.1 (i) I1(h)
I0(h) is monotonic in (0,H(λ, 0)) for λ ∈ (0, 2

3 ], and (ii) I1(h)
I0(h) is monotonic in

(H(1, 0),H(α, 0)) for α ∈ [ 1
3 , 1).

Note that no answers are given in [20] for part (i) of Theorem 4.1.1 when λ ∈ ( 2
3 , 1) and for

part (ii) when α ∈ (0, 1
3 ). Instead, the authors proposed the following conjecture.

Conjecture: (i) I1(h)
I0(h) is monotonic in (0,H(λ, 0)) for λ ∈ ( 2

3 , 1), and (ii) I1(h)
I0(h) is monotonic

in (H(1, 0),H(α, 0)) for α ∈ (0, 1
3 ).

The aim of this chapter is to give a positive answer to the above conjecture. Our main
results are given in the following two theorems.

Theorem 4.1.2 I1(h)
I0(h) is monotonic in (0,H(λ, 0)) for λ ∈ ( 2

3 , 1).

Theorem 4.1.3 I1(h)
I0(h) is monotonic in (H(1, 0),H(α, 0)) for α ∈ (0, 1

3 ).

Combing Theorems 4.1.1, 4.1.2 and 4.1.3 shows that I1(h)
I0(h) is monotonic in (0,H(λ, 0)) when

λ ∈ (0, 1), and I1(h)
I0(h) is monotonic for h ∈ (H(1, 0),H(α, 0)) when α ∈ (0 1). Thus, any non-

trivial linear combination, a0I0 + a1I1 (or a0I0 + a1I1), has at most one zero. By the Poincaré
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theorem (see [10]), system (4.5) (or system (4.7)) perturbed by (a0 + a1x)y (or (α0 +α1x)y) can
have at most one limit cycle, which can be reached.

Theorems 4.1.2 and 4.1.3 will be proved in Sections 4.2 and 4.3, respectively. The proofs
are based on the criterion given in [14] and theory on the boundary of polynomial algebraic
systems [22, 23]. The techniques developed in this chapter greatly simplify the analysis and
can be applied to other types of differential equations.

4.2 Proof of Theorem 4.1.2
Let

Φ(x) = H(x, y) − y2 =
λ

4
x4 −

1 + λ

5
x5 +

1
6

x6.

It is not difficult to prove that Φ′(x)x > 0 and there exist two analytic functions µ(h) and ν(h)
satisfying

Φ(µ(h)) ≡ Φ(ν(h)) ≡ h, aλ < µ(h) < 0 < ν(h) < λ,

where λ ∈ (−0.43708017 · · · , 0) with Φ(aλ) = Φ(λ). Further, define the function

U(h) := µ(h) + ν(h).

Then, in the following, we prove that U′(h) does not vanish for h ∈ (0,H(λ, 0)) when λ ∈ ( 2
3 , 1),

and thus the conclusion is true by using the criterion in [14].
Φ(ν) = h and Φ′(ν) > 0 imply that ν′(h) > 0 in (0,H(λ, 0)). Therefore, ν(h) has an inverse

function h = h−1(ν), which is substituted into µ(h) to yield µ(h) = µ(ν),where µ(ν) is defined by
Φ(µ) − Φ(ν) = 0, satisfying aλ < µ < 0 < ν < λ. Factorizing Φ(µ) − Φ(ν) gives − ν−µ60 q(ν, µ, λ),
where

q(ν, µ, λ) = 12 (λ + 1)(µ4 + µ3ν + µ2ν2 + µ ν3 + ν4) − 15λ(µ + ν)(µ2 + ν2)

−10(µ + ν)(µ2 + ν2 + µν)(µ2 + ν2 − µν).

In fact, µ(ν) is determined by q(µ, ν, λ). Hence,

U′(h) =

[
dµ
dν

+ 1
]
ν′(h) =

[
−

qµ(ν, µ, λ)
qν(ν, µ, λ)

+ 1
]
ν′(h) = 2(µ − ν)

U1(ν, µ, λ)
U2(ν, µ, λ)

ν′(h),

where

U1(ν, µ, λ) = 6(λ + 1)(3 µ2 + 4 µ ν + 3 ν2) − 15 λ (µ + ν) − 10 (2µ3 + 3 µ2ν + 3 µ ν2 + 2 ν3),

U2(ν, µ, λ) = 12 λ (4 µ3 + 3 µ2ν + 2 µ ν2 + ν3) − 15 λ (3 µ2 + 2 µ ν + ν2)

−10 (5µ4 + 4 µ3ν + 3 µ2ν2 + 2 µ ν3 + ν4) + 12 (4 µ3 + 3 µ2ν + 2 µ ν2 + ν3).

It is sufficient to prove Ui(ν, µ, λ) , 0 for i = 1, 2 on

D :
{

(ν, µ, λ)
∣∣∣κλ < µ < 0 < ν < λ,

2
3
< λ < 1

}
.

Computing the resultant between U2 and q with respect to ν gives

r0 = −1296000000000µ12(µ − 1)4(λ − µ)4,
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which has no zeros on D. Therefore, U2 and q have no common roots on D, which implies that
U2(ν, µ, λ) , 0 on D.

Similarly, computing the resultant between U1 and q with respect to µ and ν respectively,
we obtain

r1(ν, λ) = g(ν, λ) and r2(µ, λ) = g(µ, λ), (4.9)

where g(ω, λ) is a polynomial, given by

g(ω, λ) = −54000ω4(λ + 1)
[
64λ2ω4(81λ4 − 162λ3ω + 261λ2ω2 − 300λω3 + 125ω4)

−16λω3(648λ5 − 567λ4ω + 990λ3ω2 − 951λ2ω3 − 900λω4 + 875ω5)
+8ω2(648λ6 + 1620λ5ω − 1521λ4ω2 + 2790λ3ω3 − 5997λ2ω4 + 1800λω5 + 1000ω6)
−12ω (270λ6 + 747λ5ω − 60λ4ω2 + 801λ3ω3 − 1860λ2ω4 − 1268λω5 + 1600ω6)
+18 (225λ6 + 210λ5ω + 303λ4ω2 + 40λ3ω3 − 676λ2ω4 − 880λω5 + 928ω6)
− 27 (325 λ5 − 140 λ4ω + 332 λ3ω2 − 480 λ2ω3 − 336 λω4 + 384ω5)
+2 (2025 λ4 − 1620 λ3ω + 2592 λ2ω2 − 5184 λω3 + 2592ω4)

]
.

Taking ν = λ
1+t and λ = 3

4 + 1
4(1+s) yields

g(ν, λ) =
3375(4 + 3s)8(8 + 7s)

10456576(1 + s)15(1 + t)12 g∗(t, s),

where all coefficients of g∗(t, s) are positive with g∗(0, 0) = 1600. Therefore, g∗(t, s) > 0 on
{(t, s)|t ∈ (0,+∞), s ∈ [0,+∞]}, which implies that U1 and q have no common roots on

D1 :
{

(ν, µ, λ)|κλ < µ < 0 < ν < λ,
3
4
≤ λ < 1

}
.

Hence, U1(ν, µ, λ) , 0 on D1, and so we have

Proposition 4.2.1 I1(h)
I0(h) is monotonic in (0,H(λ, 0)) for λ ∈ [3

4 , 1).

The remaining task is to investigate the problem on the region:

D\D1 =

{
(ν, µ, λ)|κλ < µ < 0 < ν < λ,

2
3
< λ <

3
4

}
.

We will apply the following techniques in polynomial theory, see [22, 23] for more details.
Let k be a field, x1 ≺ x2 ≺ · · · ≺ xn be n ordered variables and R(x) = k[x1, · · · , xn] be

the polynomial ring on k. The greatest variable xi in f (x1, · · · , xi) is called its main variable,
denoted by mvar( f ). The coefficient of the main variable of f is called leading coefficient,
denoted by lc(f ).

Definition 4.2.2 (Semi-Algebraic Systems) A semi-algebraic system (SAS for short) is a
conjunctive polynomial formula of the following form:

SAS, S :


p1(x1, · · · , xn) = 0, · · · , ps(x1, · · · , xn) = 0,
g1(x1, · · · , xn) ≥ 0, · · · , gr(x1, · · · , xn) ≥ 0,
gr+1(x1, · · · , xn) > 0, · · · , gt(x1, · · · , xn) > 0,
h1(x1, · · · , xn) , 0, · · · , hm(x1, · · · , xn) , 0,

(4.10)

where n, s ≥ 1, t ≥ r ≥ 0, m ≥ 0, all pi, gi, hi ∈ R(x) are polynomials with integer coefficients.
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An SAS is called a parametric SAS if s < n (s indeterminates are viewed as independent vari-
ables and the other n−s indeterminates are treated as parameters, denoted by u = (xs+1, · · · , xn)).
An SAS is usually denoted by [F,N, P,H], where F = [p1, · · · , ps], N = [g1, · · · , gr], P =

[gr+1, · · · , gt] and H = [h1, · · · , hm].
There exist several well-known methods, such as the Ritt-Wu method, Gröbner basis method

and subresultant method [3, 18, 21], which enable us to transform an SAS (4.10) equivalently
to one or more triangular semi-algebraic systems: T1, · · · ,Tl in the form of

Tj :


f j
1 (u, x1) = 0, f j

2 (u, x1, x2) = 0, f j
3 (u, x1, x2, x3) = 0, · · · , f j

s (x1, · · · , xs) = 0,
g1(x1, · · · , xn) ≥ 0, · · · , gr(x1, · · · , xn) ≥ 0,
gr+1(x1, · · · , xn) > 0, · · · , gt(x1, · · · , xn) > 0,
h1(x1, · · · , xn) , 0, · · · , hm(x1, · · · , xn) , 0,

(4.11)

where { f j
1 (u, x1), f j

2 (u, x1, x2), f j
3 (u, x1, x2, x3), · · · , f j

s (x1, x2, x3, · · · , xs)} is a triangular set, or a
normal ascending chain.

Let dis( fi) denote the discriminant of a polynomial fi with respect to xi, res(·, �, x j) denote
the Sylvester resultant of · and � with respect to x j, and gcd( f1, f2, · · · , fi) denote the greatest
common factor of f1, f2, · · · , fi.

Definition 4.2.3 (Border Polynomial of a Triangular System) Consider the parametric tri-
angular semi-algebraic system (4.11): Tj. For convenience, f j

i is denoted by fi (only for this
definition). The following polynomial is called border polynomial of (4.11):

BTj = lc( f1)dis( f1)
∏
2≤i≤s

res(lc( fi)dis( fi); fi−1, · · · , f1)
∏
1≤ j≤t

res(g j; fs, · · · , f1)
∏

1≤k≤m

res(hk; fs, · · · , f1),

where
res(∗; fi, · · · , f1) = res(· · · (res(res(∗, fi, xi), fi−1, xi−1), · · · ), f1, x1).

For two TSA: Tj and Tj̃, let

r j j̃
i = gcd

(
res( f j

i ; f j̃
i , f j̃

i−1, · · · , f j̃
1 ), res( f j̃

i ; f j
i , f j

i−1, · · · , f j
1 )

)
, 1 ≤ i ≤ s,

and
C j j̃ = gcd(r j j̃

1 , · · · , r
j j̃
s ).

Definition 4.2.4 (Border Polynomial of SAS) If a parametric SAS S is transformed equiva-
lently to regular TSAs {T1, · · · ,Tl}, then

BS =
∏

1≤ j≤ j̃≤l

C j̃ j

l∏
j=1

BTj

is called the border polynomial of S.

Lemma 4.2.5 ([22, 23]) The number of distinct real solutions of the SAS S is invariant in
each connected component of the complement of BS = 0 in Rn−s.
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Remark 4. 2.1 When the parameter values satisfy the boundary BS = 0, it is usually called
degenerate case, for which it should be analyzed by other methods, see [22, 23].

Based on the above described idea, Yang and Xia [22, 23] developed a practical method
for computing the border polynomial of S, which has been included into the computer algebra
system – Maple.

To complete the proof of Theorem 4.1.2, we construct the following SAS

SAS, SA :
{

q(ν, µ, λ) = 0, q(λ, κ, λ) = 0, U1(ν, µ, λ) = 0,
ν > 0, −µ > 0, λ − ν > 0, µ − κ > 0, −κ > 0

(4.12)

which has no roots. Computing its border polynomial we obtain

BSA =
(
λ9 − 5

2λ
8 + 41641 λ7

24592 + 15855 λ6

6148 −
693 λ5

212 + 575721 λ4

196736 −
4279635 λ3

1573888 −
395847 λ2

196736 + 1563705 λ
393472 −

133407
98368

)
×
(
λ8 − 121 λ7

38 + 337543 λ6

57456 −
443339 λ5

57456 + 792185 λ4

76608 −
443339 λ3

57456 + 337543 λ2

57456 −
121 λ

38 + 1
)

×
(
λ6 − 4

3λ
5 − 13 λ4

48 + 2939 λ3

864 −
13 λ2

48 −
4
3λ + 1

) (
λ2 − 7

4λ + 1
) (
λ2 + λ

2 + 1
)

× (λ + 1)
(
λ − 4

3

) (
λ − 3

2

) (
λ − 2

3

) (
−3

4 + λ
)
λ.

It can be shown that BSA = 0 has a unique root, λ∗ = 0.70513143 · · · , in (2
3 ,

3
4 ), which is actually

the root of the first factor of BSA . Therefore, the complement of BSA = 0 restricted to λ ∈ ( 2
3 ,

3
4 )

is (2
3 , λ

∗) ∪ (λ∗, 3
4 ).

By Lemma 2.1, the number of zeros of (4.12) is invariant for λ ∈ (2
3 , λ

∗) and for λ ∈ (λ∗, 3
4 ).

Therefore, we may choose a λ ∈ (λ∗, 3
4 ) to investigate if U1(ν, µ, λ) vanishes on

D2 =

{
(ν, µ, λ)|κλ < µ < 0 < ν < λ, λ∗ < λ <

3
4

}
,

and take a λ ∈ ( 2
3 , λ

∗) to investigate if U1(ν, µ, λ) vanishes on

D3 =

{
(ν, µ, λ)|κλ < µ < 0 < ν < λ,

2
3
< λ < λ∗

}
.

First, taking λ = 72
100 ∈ (λ∗, 3

4 ) and substituting it into (4.9) yield

r2(µ, 72
100 ) = 10336 x8

5 − 5333376 x7

625 + 5061371904 x6

390625 − 79435137024 x5

9765625 + 250937411616 x4

244140625 + 190180493568 x3

244140625

−50040379584 x2

244140625 + 4225074048 x
48828125 −

442158912
9765625 ,

which has no roots on (− 9
25 , 0) = (−0.36, 0), while

κλ = κ 72
100
∈

[
−

92651
262144

,−
46325

131072

]
≈ [−0.3534355164,−0.3534317017]

when λ = 72
100 . Hence, r2(µ, 72

100 ) , 0 on (κ 72
100
, 0) which implies that U1 and q have no common

roots on D2, and so U1(ν, µ, λ) , 0 on D2. Therefore, the following result holds.

Proposition 4.2.6 I1(h)
I0(h) is monotonic in (0,H(λ, 0)) for λ ∈ (λ∗, 3

4 ).
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Next, we choose a value of λ ∈ ( 2
3 , λ

∗) to investigate if U1(ν, µ, λ) vanishes on D3. Taking
λ = 7

10 ∈ ( 2
3 , λ

∗) and substituting it into (4.9) give

r1

(
ν,

7
10

)
= r(ν) and r2

(
µ,

7
10

)
= r(µ), (4.13)

where

r(ω) = 2120ω8− 43248ω7

5 + 8172924ω6

625 − 26278668ω5

3125 + 46507833ω4

31250 + 7359912ω3

15625 − 1901151ω2

15625 + 157437ω
3125 −

64827
2500 .

By applying Sturm’s Theorem, we obtain that r1(ν, 7
10 ) has a unique root ν1 ∈ [0, 7

10 ], and
r2(µ, 7

10 ) has a unique root µ1 ∈ [κ 7
10
, 0]. By real root isolating,

ν1 ∈

[
57315

131072
,

114631
262144

]
≈ [0.4372787476, 0.4372825623],

µ1 ∈

[
−

86919
262144

,−
43459
131072

]
≈ [−0.3315696716,−0.3315658569],

where κ 7
10

= −0.34603108 · · · . Therefore, if U1(ν, µ, 7
10 ) and q1(ν, µ, 7

10 ) have a common root
on D3 with λ = 7

10 , the root must be in the region defined by

D̃ :
[

57315
131072

,
114631
262144

]
×

[
−

86919
262144

,−
43459

131072

]
.

In the following, we will prove that U1(ν, µ, 7
10 ) and q(ν, µ, 7

10 ) have no common roots by show-
ing that q(ν, µ, 7

10 ) , 0 on D̃.
The resultant res(∂q

∂ν
, ∂q
∂µ
, µ) has no roots on

[
57315

131072 ,
114631
262144

]
by Sturm’s Theorem, implying

that there is no maximal or minimum value inside D̃. Thus, the maximal and minimum values
of q(ν, µ, 7

10 ) are reached on the boundary of D̃. However, a direct computation shows that
q(ν, µ, 7

10 ) > 0 on the boundary of D̃, indicating that both the maximal and minimum values of
q(ν, µ, 7

10 ) are positive. Hence, q(ν, µ, 7
10 ) , 0 on D̃, leading to U1(ν, µ, 7

10 ) , 0 on D̃. The above
discussion gives the following proposition.

Proposition 4.2.7 I1(h)
I0(h) is monotonic in (0,H(λ, 0)) for λ ∈ ( 2

3 , λ
∗).

The rest of this section is to prove U1(ν, µ, λ∗) , 0 on

D4 = {(ν, µ, λ)|κλ < µ < 0 < ν < λ, λ = λ∗}.

Recall that λ∗ is the root of the first factor of BSA , denoted by

w(λ) = λ9− 5
2λ

8+ 41641 λ7

24592 + 15855 λ6

6148 −
693 λ5

212 + 575721 λ4

196736 −
4279635 λ3

1573888 −
395847 λ2

196736 + 1563705 λ
393472 −

133407
98368 . (4.14)

By computation and Sturm’s Theorem, we can show that the resultant res(r2,w, λ) has a unique
zero µ∗1 = −0.34794635 · · · in (−1, 0), and the resultant res(p(κ, λ),w, λ) has a unique zero
κλ∗ = −0.34794635 · · · in (−1, 0).
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If µ∗1 = κλ∗ , then r2(µ, λ∗) has no roots in the interval (κλ∗ , 0), implying that there are no
common roots of U1(ν, µ, λ∗) and q(ν, µ, λ∗) on D4. Thus, U1(ν, µ, λ∗) , 0 on D4. In fact, it
is true that µ∗1 = κλ∗ , because res(r2,w, λ) and res(p(κ, λ),w, λ) have only one common factor,
given by

c f = 2477123436544 µ18 − 22294110928896 µ17 + 88660409909248 µ16

−208881731469312 µ15 + 339714939006976 µ14 − 439074987073536 µ13

+503505982218240 µ12 − 516729993408000 µ11 + 456405726382272 µ10

−350788104117504 µ9 + 238040277061248 µ8 − 133699127790168 µ7

+ 58621983725097 µ6 − 20391635790324 µ5 + 3828815281827 µ4

+1375428475098 µ3 − 983422004562 µ2 + 354781508544 µ − 142379421192,

which has a unique root (= −0.34794635 · · · ) in (−1, 0), while other factors of res(r2,w, λ) and
res(p,w, λ) have no common roots in (−1, 0). Thus, we have

Proposition 4.2.8 I1(h)
I0(h) is monotonic in the interval (0,H(λ, 0)) for λ = λ∗.

Combining Propositions 4.2.1, 4.2.6, 4.2.7 and 4.2.8, we have proved Theorem 4.1.2.

4.3 Proof of Theorem 4.1.3
In this section, we prove Theorem 4.1.3 corresponding to system (4.7). We simply transform
system (4.7) to (4.5), and then the proof for Theorem 4.1.2 also works for Theorem 4.1.3. To
achieve this, taking x = −x̃ + 1, y = ỹ and dt = −dτ, into system (4.7), we obtain a new system,

ẋ = −2y, ẏ = x3(x − (1 − α))(x − 1) (4.15)

by dropping the tilde, with the Hamiltonian function H̃(x, y) = y2 + 1−α
4 x4 − 1+1−α

5 x5 + 1
6 x6.

The center level set γ2(h) of H(x, y) = h has been transformed to the origin, which is exactly
the same as γ1(h). So it is obvious that system (4.15) is exactly the same as system (4.5) if
denoting 1 − α = λ, and I0(h) = I0(h), I1(h) = I1(h). Therefore, I1(h)

I0(h) on (H(1, 0),H(α, 0))
has the same monotonicity as I1(h)

I0(h) on (0,H(λ, 0)). The proof of Theorem 4.1.3 is complete.
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Chapter 5

Periodic traveling waves in a generalized
BBM equation with weak backward
diffusion and dissipation terms

5.1 Introduction

Traveling waves in nonlinear wave equations can model many nonlinear complex phenomena
in physics, chemistry, biology, mechanics, optics, etc. The wave profiles of long waves in shal-
low water with different conditions can be modeled by the famous Korteweg-de Vries (KdV)
[26], Benjamin-Bona-Mahony [4], the Green-Naghdi [15] and Camassa-Holm [6] equations.
In solving real world problems, certain relatively weak influences due to the existence of un-
certainty or perturbation are unavoidable, for example in describing the shallow water waves
in nonlinear dissipative media [8] and dispersive media [23]. In other words, one should add
certain type of small terms in modelling the problems. Topper and Kawahara [42] studied the
wave motions on a liquid layer over an inclined plane and established the following Partial
Differential Equation (PDE),

ut + uux + αuxx + βuxxx + γuxxxx = 0, (5.1)

for which the wave motion is assumed depending only on the gradient direction. When the
inclined plane is relatively long and the surface tension is relatively weak, the uxx and uxxxx

terms are relatively small, and the following equation is more appropriate for describing the
real situation,

ut + uux + uxxx + ε(uxx + uxxxx) = 0, (5.2)

where 0 < ε � 1 represents small perturbations to the system. When ε = 0, the backward
diffusion (uxx) and dissipation (uxxxx) vanish and (5.2) becomes the classical KdV equation
[26], and so (5.2) is usually called a perturbed KdV equation. The KdV equation has played
an important role in describing various physical problems, and many researchers have studied
this equation and particularly paid attention to solitary and periodic waves. In 1993, Derks and
Gils [9] discussed the uniqueness of traveling waves of equation (5.2). A year later, Ogawa
[37] studied the existence of solitary and periodic waves of equation (5.2).

77
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When the Marangoni effect is considered on the surface of a thin layer, additional nonlin-
earity in the form of (uux)x appears, see [12, 20]. For this model, Velarde et.al. [44] showed
the consistent way of incorporating the Marangoni effect (heating the liquid layer from the air
side) into the one-way long-wave assumption and derived the following equation:

ut + 2α1uux + α2uxx + α3uxxx + α4uxxxx + α5(uux)x = 0, (5.3)

which contains the nonlinear term (uux)x due to the Marangoni effect, describing the opposite
to the Bénard convection [36, 45]. For the sake of completeness here, we notice that different
cases by setting some parameters αi = 0 in Eq. (5.3) have been considered in many works, for
example [10, 24, 27, 28]. In particular, Mansour [32] studied the existence of solitary waves
in Eq. (5.3) with all small non-vanishing parameters α2, α4 and α5, and in addition established
the existence of solitary waves for the following equation [33].

ut + α1u2ux + α2uxx + α3uxxx + α4uxxxx + α5(uux)x = 0.

It has been noted that the solitary waves and the traveling waves with periodic spatial pro-
files are very sensitive to weak external influence. For example, stationary periodic patterns in
thermal convection may not be observed in a weakly windy circumstance [5]. However, the
weak Marangoni effect may destabilize the waves [21], and different perturbations may gen-
erate different dynamics of systems, leading to, for example, breaking the periodic traveling
waves, changing its stability and yielding quasi-periodic motions on invariant tori, etc. One ef-
ficient way to deal with such problems is to apply bifurcation techniques from the view point of
dynamical systems by taking the weak external effects as perturbations, and many good results
have been obtained for certain nonlinear wave problems, see [13, 17, 22, 49].

In general, perturbations to a dynamical system may be classified into three types: peri-
odic or quasi-periodic forcing, singular perturbation and regular perturbation. When a PDE
is perturbed by quasi-periodic forcing terms, one method developed to investigate dynamics
(quasi-periodic motion on some invariant tori) of the system is based on an infinite dimensional
KAM theory. This theory is an extension of the well-known classical KAM theory, which was
established by Kolmogorov [25], Anorld [2] and Moser [35]. It asserts that the majority of tori
is persistent under perturbations if the Kolmogorov non-degenerate condition is satisfied.

When a perturbed system can be reduced to a singularly perturbed system, the first question
is about the existence of traveling wave solutions of the system. There are lots of publications
on this topic, such as singularly perturbed KdV equations [3, 16, 31, 37, 41], the perturbed
dispersive-dissipative equations and reaction-diffusion systems [1, 30, 50, 43]. One classical
method to deal with singular perturbations is to apply Fenichel’s theory (e.g. see [11]), which
assures the existence of an invariant manifold and then the problem is reduced to a regular
perturbed system on this manifold, see [3, 16, 31, 37, 41]. In these cases, the perturbation
always has only one or two terms with lower degrees on the invariant manifold, see above
mentioned references and also the works of Derks and Gils [9] and Ogawa [37, 38, 39].

However, very few problems can be directly reduced to regularly perturbed systems. Thus,
perturbations are usually not restricted on manifolds. Moreover, there exist fewer mathematical
tools which can be used to study the dynamics of perturbed systems, and yet, the analysis and
computation based on these approaches are difficult to be used for proving the existence of
periodic traveling waves. Thus, when Zhou et al studied the Burgers-Huxley equation [53] and
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Burgers-Fisher equation [54], they assumed that one coefficient in the equation and the wave
speed are small so that these two small terms can be treated as two perturbations, which greatly
simplifies the analysis and the proof on the existence of periodic waves [53, 54]. In general, if
three or more perturbation terms are involved, the analysis becomes much more difficult.

After the works of Derks and Gils [9] and Ogawa [37], in 2014 Yan et al. [48] investigated
the perturbed generalized KdV equation,

ut + (un)x + uxxx + ε(uxx + uxxxx) = 0.

When ε = 0 and n = 2, the above equation is reduced to the classical KdV equation,

ut + (u2)x + uxxx = 0.

Yan et al. [48] proved that there exists one periodic wave by choosing some wave speed c for
sufficiently small ε > 0. However, the uniqueness of the periodic wave is still open.

Another well-known model describing the propagation of surface water waves in a uniform
channel is the Benjamin-Bona-Mahony (BBM) equation,

ut + uux − uxxt = 0.

This model describes surface waves of long wavelength in liquids, acoustic-gravity waves in
compressible fluids, hydromagnetic waves in cold plasma, acoustic waves in harmonic crys-
tals, see [34]. Due to its wide applications and rich dynamics, researchers have developed
many different forms of BBM equations which are usually called generalized BBM equations,
see [40, 47, 52] and the reference therein. Wazwaz studied the following generalized BBM
equation [47],

(um)t + (un)x + (ul)xxx = 0, (5.4)

and found its compaction of dispersive structures.
More recently, Chen et al. [7] investigated a perturbed generalized BBM equation,

(u2)t + (u3)x + uxxx + ε(uxx + uxxxx) = 0, (5.5)

and established the existence of solitary waves and uniqueness of periodic waves. Both of
the works [7] and [48] studied the perturbation problems restricted on manifolds, by using
geometric singular perturbation theory. In [7], the authors applied Picárd-Fuchs equations to
determine the existence of periodic waves, and developed a good approach to prove that the
dominating factor of the Melnikov function is monotonic, see Lemma 4.10 in [7]. Using the
same approach, they also proved that the perturbed generalized defocusing mKdV equation,

ut − u2ux + uxxx + ε(uxx + uxxxx) = 0,

has a unique periodic wave. However, this approach failed to deal with the unperturbed equa-
tion having a nilpotent saddle or more degenerate cusp, corresponding to m > 2 in (5.4). This
is because, taking m = 3 for example, one needs to consider more terms in Lemma 4.10 in
[7] in order to find some combination of the terms in order to prove the monotonicity of the
dominating part of the Melnikov function. However, in general this is very difficult in higher
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degenerate cases, which is similar to dealing with the cases when more than two perturbation
terms are involved in the equations.

In this chapter, we study the BBM equation (5.4) for m = 3, n = 4 and l = 1 with two
different kinds of weak dissipative effects P1 and P2, described by

(u3)t + (u4)x + uxxx + εPi = 0, i = 1, 2, (5.6)

where
P1 = uxx + uxxxx, P2 = ((α0 + α1u + α2u2)ux)x, (5.7)

in which α0, α1 and α2 are bounded parameters. P1 describes the weak second and fourth
derivative diffusions without Marangoni effect. P2 describes a generalized Marangoni effect.
The unperturbed problem has a more degenerate singularity which is a nilpotent saddle. Espe-
cially, for the case with weak Marangoni effect P2, the problem is not restricted on a manifold
but is reduced to a regular problem with more parameters. It can be seen from our reduc-
tion of the problem with P1 that the weak Marangoni effect P2 is equivalent to the compound
dissipative-Marangoni effect γ0uxx + γ1uxxxx + γ2(uux)x. The main mathematical tools we will
use in this chapter are based on the relatively new theory of weak Hilbert’s 16th problem and
bifurcation theory.

The rest of this chapter is organized as follows. In section 2, we give a reduction analysis
and state our main results. In section 3, we present some perturbation theories and derive a spe-
cial form of Abelian integral, also called Melnikov function, for periodic and solitary waves.
It will be shown that our method without using Picárd-Fuchs Equation is more effective com-
pared to that used in the existing works. In section 4, we study the problem with perturbation
P1 by applying the Chebyshev criterion [14]. In section 5, we investigate the problem with
perturbation P2 and obtain the conditions on the existence of periodic waves. In particular,
we derive the exact conditions on the existences of one and two periodic waves. Further, we
establish a criterion on the coexistence of one solitary wave and one unique periodic wave.
Conclusion is drawn in section 6.

5.2 Main results
In this section, we present our main results for system (5.6). First, we consider system (5.6)
with perturbation P1, that is,

(u3)t + (u4)x + uxxx + ε(uxx + uxxxx) = 0. (5.8)

Taking ξ = x − ct into (5.8) yields

−3cu2(ξ)u′(ξ) + 4u3(ξ)u′(ξ) + u′′′(ξ) + ε(u′′(ξ) + u′′′′(ξ)) = 0.

Then, integrating this equation and omitting the integral constant, we obtain

−cu3 + u4 + u′′(ξ) + ε(u′(ξ) + u′′′(ξ)) = 0. (5.9)

Further introducing the transformations ξ = τ

c
3
2

and u = cµ into (5.9) yields

−µ3(τ) + µ4(τ) + µ′′(τ) + ε(c−
3
2 u′(τ) + c

3
2 u′′′(τ)) = 0. (5.10)
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Similarly, system (5.6) with perturbation P2 can be transformed to

−µ3(τ) + µ4(τ) + µ′′(τ) + ε(a0 + a1µ(τ) + a2µ
2(τ))µ′(τ) = 0, (5.11)

where a0 = c−
3
2α0, a1 = c−

1
2α1 and a2 = c

1
2α2. Because α′i s are independent, we will use a′i s in

our analysis for convenience.
Correspondingly, the unperturbed system of (5.10) (with ε = 0) is given by −µ3(τ)+µ4(τ)+

µ′′(τ) = 0, which is equivalent to the system,

dµ
dτ

= ν,

dν
dτ

= µ3 − µ4,

(5.12)

which has a hyperelliptic Hamiltonian function, given by

H(µ, ν) =
ν2

2
−
µ4

4
+
µ5

5
, (5.13)

satisfyingH(1, 0) = − 1
20 andH(0, 0) = H(5

4 , 0) = 0. The function H = h for h ∈ (− 1
20 , 0) and

µ ∈ (0, 5
4 ), depicted in Figure 5.1, shows a family of closed orbits surrounded by a homoclinic

loop Γ0, with a nilpotent saddle of order 1 at the origin.

Γ0

Figure 5.1: The portrait of system (5.12). The periodic orbits and homolcinc loop correspond
to the periodic waves and the solitary wave of equation (5.6)ε=0.

In order to state our main results clearly and systematically, we use the following notations:
Γh denoting the closed curve defined by H(µ, ν) = h; µ(τ, h) representing the closed orbit of
system (5.12) corresponding to Γh; µ(τ, ε, h, c(ε, h)) being the periodic wave of system (5.10)
near Γh under the condition c = c(ε, h); µ(τ, ε, h) denoting the traveling wave of system (5.11)
near Γh. Our main results are given in the following Theorem 5.2.1 and Theorem 5.2.2.

Theorem 5.2.1 For the perturbed BBM equation (5.6) with perturbation P1, the following
hold.
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(i) For any sufficiently small ε > 0 and any h ∈ (− 1
20 , 0), there exists a smooth function

c(ε, h) in ε and h such that system (5.6) has one unique isolated periodic wave in a
sufficiently small neighborhood of Γh, given by u = cµ(τ, ε, h, c(ε, h)), satisfying

lim
ε→0

µ(τ, ε, h, c) = µ(τ, h),
∂
∂τ
µ(0, ε, h, c) = ∂2

∂τ2µ(0, ε, h, c) = 0, ∂3

∂τ3µ(0, ε, h, c) < 0,

and
lim
ε→0

c(ε, h) = c(h),

where c(h) is a monotonically increasing function in h satisfying 1 < c(h) <
(

39
25

) 1
3 .

(ii) For any sufficiently small ε > 0, there exists a critical wave speed c = (39
25 )

1
3 + O(ε) such

that system (5.6) has one solitary wave in a sufficiently small neighborhood of Γ0.

Theorem 5.2.2 For any sufficiently small ε > 0, the perturbed BBM equation (5.6) with per-
turbation P2 has at most two isolated periodic waves. More precisely, we have the following
results.

(i) The Abelian integral M(h) given in (5.25) has one unique simple zero for any h∗ ∈
(− 1

20 , 0) if and only if

a1 = λ ∈

(
−∞,−

5
3

]⋃[
−

10
11
,+∞

)
and a0 = −κ(h∗, λ),

where κ(h, λ) is defined in (5.45). Therefore, for any sufficiently small ε > 0, system (5.6)
has one unique isolated periodic wave u = cµ(τ, ε, h∗), in sufficiently small neighborhood
of any closed curve Γh∗ by taking a1 = λ + O(ε) and a0 = −κ(h∗, λ) + O(ε), satisfying

lim
ε→0

µ(τ, ε, h∗) = µ(τ, h∗),
∂
∂τ
µ(0, ε, h∗) = ∂2

∂τ2µ(0, ε, h∗) = 0, ∂3

∂τ3µ(0, ε, h∗) < 0.

(ii) The Abelian integralM(h) has exactly two simple zeros h1 and h2 if and only if

a1 = λ ∈

(
−

5
3
,−

10
11

)
and a0 = −κ(h1, λ) = −κ(h2, λ),

where

κ(h1, λ) = κ(h2, λ) ∈
 min

h∈(− 1
20 ,0)
{κ(h, λ)}, min

{
κ
(
−

1
20
, λ

)
, κ(0, λ)

} ,
under which, for any sufficiently small ε > 0, system (5.6) has exactly two isolated
periodic waves u1 = cµ(τ, ε, h1) and u2 = cµ(τ, ε, h2), in sufficiently small neighborhoods
of the closed curves Γh1 and Γh2 by choosing a1 = λ∗ + O(ε) and a0 = −κ(h1, λ) + O(ε),
satisfying

lim
ε→0

µ(τ, ε, hi) = µ(τ, hi),
∂
∂τ
µ(0, ε, hi) = ∂2

∂τ2µ(0, ε, hi) = 0, ∂3

∂τ3µ(0, ε, hi) < 0, i = 1, 2.



5.3. Perturbation theory and analysis 83

(iii) The Abelian integralM(h) has a unique zero at h = 0 if and only if

a0 = −
5
6

a1 −
25
33
, (5.14)

and further, under (5.14),M(h) has a unique simple zero in (− 1
20 , 0) if and only if a1 =

λ∗∗ ∈ (−16
11 ,−

10
11 ). Therefore, for any sufficiently small ε > 0, system (5.6) can have a

solitary wave by taking a0 = −5
6a1 −

25
33 + O(ε), and coexistence of a solitary wave and a

unique periodic wave by choosing a0 = −5
6λ
∗∗ − 25

33 + O(ε) and a1 = λ∗∗ + O(ε).

Before further analysis, in the next section we will present some definitions and lemmas in
perturbation theory, which are needed for proving Theorems 5.2.1 and 5.2.2.

5.3 Perturbation theory and analysis
Lemma 5.3.1 (Fenichel Criteria) Consider the system

ẋ = f1(x, y, ε),
ẏ = ε f2(x, y, ε),

(5.15)

where x ∈ Rm, y ∈ Rl and 0 < ε � 1 is a real parameter, f1 and f2 are C∞ on the set V × I,
V ⊆ Rn+l, I is an open interval containing zero. Assume that for ε = 0, system (5.15) has a
compact normally hyperbolic manifold M0 which is contained in the set f1(x, y, 0) = 0. The
manifold M0 is said to be normally hyperbolic if the linearization of (5.15) at each point in M0

has exactly dim(M0) eigenvalues on the imaginary axis. Then, for any 0 < r < +∞, there exists
a manifold Mε for ε sufficiently small such that the following conclusions hold.

(i) Mε is locally invariant under the flow of (5.15).

(ii) Mε is Cr in x, y and ε.

(iii) Mε = {(x, y)|x = hε(y)} for some Cr function hε, and y in some compact set K.

(iv) There exist locally invariant stable and unstable manifolds Ws(Mε), Wu(Mε), that lie
within O(ε) of, and are diffeomorphic to Ws(M0) and Wu(M0).

Definition 5.3.2 Suppose f0(x), f1(x), . . . , fn−1(x) are analytic functions on an real open inter-
val J.

(i) The family of sets { f0(x), f1(x), . . . , fn−1(x)} is called a Chebyshev system provided that
any nontrivial linear combination,

k0 f0(x) + k1 f1(x) + · · · + kn−1 fn−1(x),

has at most n − 1 isolated zeros on J.
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(ii) An ordered set of n functions { f0(x), f1(x), . . . , fn−1(x)} is called a complete Chebyshev
system (CT-system for short) provided any nontrivial linear combination,

k0 f0(x) + k1 f1(x) + · · · + ki−1 fi−1(x),

has at most i − 1 zeros for all i = 1, 2, · · · , n. Moreover it is called an extended complete
Chebyshev system (ECT-system for short) if the multiplicities of zeros are taken into
account.

(iii) The continuous Wronskian of { f0(x), f1(x), . . . , fk−1(x)} at x ∈ R is

W[ f0(x), f1(x), . . . , fk−1(x)] =

∣∣∣∣∣∣∣∣∣∣∣
f0(x) f1(x) · · · fk−1

f
′

0(x) f
′

1(x) · · · f
′

k−1(x)
· · · · · · · · · · · ·

f (k−1)
0 (x) f (k−1)

1 (x) · · · f (k−1)
k−1 (x)

∣∣∣∣∣∣∣∣∣∣∣ ,
where f ′(x) is the first order derivative of f (x) and f (i)(x) is the ith order derivative of
f (x), i ≥ 2. The definitions imply that if the function tuple { f0(x), f1(x), · · · , fk−1(x)} is
an ECT-system on J, then it is a CT-system on J, and thus a T-system on J. However the
inverse is not true.

Let res( f1, f2) denote the resultant of f1(x) and f2(x), where f1(x) and f2(x) are two univari-
ate polynomials of x on rational number field Q. As it is known, res( f1(x), f2(x)) = 0 if and
only if f1(x) and f2(x) have at least one common root.

Let res( f , g, x) and res( f , g, z) denote respectively the resultants between f (x, z) and g(x, z)
with respect to x and z, where f (x, z) and g(x, z) are two polynomials in {x, z} on rational number
field. res( f , g, x) is a polynomial in z and res( f , g, z) is a polynomial in x. About the relation
between the common roots of two polynomials and their resultants, the following result can be
found in many works on polynomial algebra, such as [46]. For completeness we give a short
proof.

Lemma 5.3.3 ([46]) (i) Let (x0, z0) be a common root of f (x, z) and g(x, z). Then res( f , g, x0) =

0 and res( f , g, z0) = 0. However, the inverse is not true.
(ii) Let res( f , g, z) have a unique real root on some open interval (α, β), and res( f , g, x) have

a unique real root on some open interval (γ, θ). Then there exists at most one common real root
of f (x, z) and g(x, z) on (α, β) × (γ, θ).

Proof (ii) is obvious if (i) is true. So we only prove (i). A two-variable polynomial can be
treated as one univariate polynomial of one variable with the other treated as a parameter.
Taking f (x, z) = fz(x) and g(x, z) = gz(x) which are polynomials of x with parameter z. Let x0

be the common root of fz0(x) and gz0(x). Then res( fz0(x), gz0(x)) = res( f , g, z0) = 0, where z0 is
the common root of fx0(z) and gx0(z), and therefore, res( fx0(z), gx0(z)) = res( f , g, x0) = 0.

Let H(x, y) = A(x) +
y2

2 be an analytic function. Assume there exists a punctured neighbor-
hood P of the origin foliated by ovals Γh ⊆ {(x, y)|H(x, y) = h, h ∈ (0, h0), h0 = H(∂P)}. The
projection of P on the x-axis is an interval (xl, xr) with xl < 0 < xr. Under these assumptions



5.3. Perturbation theory and analysis 85

it is easy to verify that xA′(x) > 0 for all x ∈ (xl, xr)\{0}, and A(x) has a zero of even multi-
plicity at x = 0 and there exists an analytic involution z(x), defined by A(x) = A(z(x)) for all
x ∈ (xl, xr). Let

Ii(h) =

∮
Γh

fi(x)y2s−1dx for h ∈ (0, h0), (5.16)

where fi(x), i = 0, 1, . . . , n − 1, are analytic functions on (xl, xr) and s ∈ N. Further, define

li(x) :=
fi(x)

A′(x)
−

fi(z(x))
A′(z(x))

.

Then we have

Lemma 5.3.4 ([14]) Under the above assumption, {I0,I1, · · · ,In−1} is an ECT system on
(0, h0) if {l0, l1, · · · , ln−1} is an ECT system on (xl, 0) or (0, xr) and s > n − 2.

Lemma 5.3.5 ([29]) Under the above assumption, if the following conditions are satisfied:
(i) W[l0, l1, . . . , li] does not vanish on (0, xr) for i = 0, 1, · · · , n − 2,
(ii) W[l0, l1, . . . , ln−1] has k zeros on (0, xr) with multiplicities counted, and
(iii) s > n + k − 2,
then, any nontrivial linear combination of {I0,I1, · · · ,In−1} has at most n + k − 1 zeros on
(0, h0) with multiplicities counted. In this case, {I0,I1, · · · ,In−1} is called a Chebyshev system
with accuracy k on (0, h0), where W[l0, l1, . . . , li] denotes the Wronskian of {l0, l1, . . . , li}.

Now we consider system (5.10), which can be rewritten in the form of

dµ
dτ

= ν,

dν
dτ

= ω,

εc
3
2
dω
dτ

= µ3 − µ4 − ω −
ε

c
3
2

ν.

(5.17)

Introducing the time scaling σ = τ
ε

into (5.17) yields

dµ
dσ

= εν,

dν
dσ

= εω,

c
3
2
dω
dσ

= µ3 − µ4 − ω −
ε

c
3
2

ν.

(5.18)

When ε > 0, system (5.17) is equivalent to (5.18). System (5.17) is called the slow system,
while system (5.18) is called the fast system.

The slow system (5.17) determines its critical manifold, which is a two-dimensional sub-
manifold in R3:

M0 =
{

(µ, ν, ω) ∈ R3
∣∣∣ω = µ3 − µ4

}
.
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The Jacobian matrix of the fast system (5.18) restricted on M0 is given by
0 0 0
0 0 0

c−
3
2 (3µ2 − 4µ3) 0 −c−3/2


which has three eigenvalues λ1 = λ2 = 0, λ3 = −c−3/2, with λ1 and λ2 being on the imaginary
axis. Therefore, M0 is normally hyperbolic. Consequently, it follows from Lemma 5.3.1 that
for ε > 0 sufficiently small, there exists a two-dimensional submanifold Mε in R3, which is
invariant under the flow of system (5.17), within the Hausdorff distance ε of M0.

Let
Mε =

{
(µ, ν, ω) ∈ R3 : ω = µ3 − µ4 + η(µ, ν, ε)

}
,

where η(µ, ν, ε) is smooth in µ, ν and ε, satisfying η(µ, ν, 0) = 0, and expanded as

η(µ, ν, ε) = εη1(µ, ν) + O(ε2). (5.19)

Substituting (5.19) into the last equation of (5.17) and comparing its coefficients yield

η1(µ, ν) = c
3
2
(
(−3µ2 + 4µ3)ν − c−3ν

)
.

The dynamics of (5.17) on Mε is determined by

dµ
dτ

= ν,

dν
dτ

= µ3 − µ4 + εc
3
2
(
(−3µ2 + 4µ3)ν − c−3ν

)
+ O(ε2).

(5.20)

For any h ∈ (− 1
20 , 0),H(µ, ν) = h defines a periodic orbit Γh of (5.12) (or the system (5.20)

with ε = 0). Let (α(h), 0) denote the intersection point of Γh and the positive µ-axis, T the
period of Γh. Further, let Γh,ε be the positive orbit of (5.20) starting from the point (α(h), 0) at
time τ = 0, and (β(h, ε), 0) the first intersection point of Γh,ε with the positive µ-axis at time
τ = τ∗(ε). LetH∗(µ, ν) denote the small perturbation ofH(µ, ν). Then the difference between
the two points is given by

H∗((β(h, ε), 0)) −H∗((α(h), 0)) =

∫
Γh,ε

dH∗ =

∫
Γh,ε

(
− µ3 + µ4)dµ + νdv

=

∫ τ∗(ε)

0

(
(−µ3 + µ4)ν − ν

(
(−µ3 + µ4) − εc

3
2
(
− 3µ2ν + 4µ3ν − c−3ν

)))
dτ

=

∫ τ∗(ε)

0
ενc

3
2
((
− 3µ2+4µ3)ν−c−3ν

)
dτ = ε

∫ τ∗(ε)

0
c−

3
2
(
c3( − 3µ2+4µ3)ν2−ν2

)
dτ

4
= εF(h, ε).

By continuousness theorem, we have

lim
ε→0

Γh,ε = Γh, lim
ε→0

b(h, ε) = a(h), lim
ε→0

τ∗(ε) = T,



5.4. Analysis of system (5.6) with perturbation P1 87

and thus,

F(h, ε) =

∫ T

0
c−

3
2
(
c3(−3µ2 + 4µ3)ν2 − ν2

)
dτ + O(ε),

= c−
3
2

∫
Γh

(
c3(−3µ2 + 4µ3)ν − ν

)
dµ + O(ε)

4
= c−

3
2 M(h) + O(ε),

(5.21)

where M(h) is called Abelian integral or Melnikov function, given by

M(h) =

∫
Γh

(
c3(−3µ2 + 4µ3)ν − ν

)
dµ =

∫
Γh

(
−1 + c3(−3µ2 + 4µ3)

)
νdµ. (5.22)

It has been noted that compared with the application of Picárd-Fuchs equation method (eg.
see [7]) which is often used to derive the Abelian integral, here our approach developed above
is much simpler.

Similarly, for system (5.11), we take µ′(τ) = ν and follow the above procedure to obtain
the following regular perturbation problem which is not restricted on a manifold,

dµ
dτ

= ν,

dν
dτ

= µ3 − µ4 + ε(a0 + a1µ + a2µ
2)ν.

(5.23)

Let (α∗(h), 0) be the intersection point of Γh and the positive µ-axis, T the period of Γh, Γ∗h,ε
the positive orbit of (5.23) starting from the point (α∗(h), 0) at time τ = 0, and (β∗(h, ε), 0) the
first intersection point of Γh,ε with the positive µ-axis at time τ = τ∗(ε). Then, the difference
between the two points (α∗(h), 0) and (β∗(h, ε), 0) can be expressed as

H∗(β∗(h, ε), 0) −H∗(α∗(h), 0) =

∫
Γ∗h,ε

dH∗

= ε

∫
Γh

(a0 + a1µ + µ2)νdµ + O(ε) 4= εM(h) + O(ε2),
(5.24)

where the Abelian integralM(h) is given by

M(h) =

∫
Γh

(a0 + a1µ + µ2)νdµ. (5.25)

To investigate the existence of periodic and solitary waves for the two perturbation prob-
lems, we need study the zeros of the functionsH∗(β(h, ε), 0)−H∗(α(h), 0) andH∗(β∗(h, ε), 0)−
H∗(α∗(h), 0) and their distributions. It follows from (5.21) and (5.24) that it suffices to consider
the Abelian integrals M(h) andM(h).

5.4 Analysis of system (5.6) with perturbation P1

In the section, we study system (5.6) with perturbation P1. Based on the discussion in the
previous sections, we need only study the Abelian integral M(h). Let

Jn(h) =

∮
Γh

µnνdµ. (5.26)
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Then
M(h) = c3(−3J2 + 4J3) − J0.

Lemma 5.4.1 For h ∈ (− 1
20 , 0), J′0(h) > 0 and J0(h) > 0.

Proof It is easy to obtain

J′0(h) =

∮
Γh

dµ
ν

=

∮
Γh

νdτ
ν

=

∫ T (h)

0
dτ = T (h) > 0,

where T (h) denotes the period of Γh.
Since ν→ 0 as h→ − 1

20 , we have

J0(−
1

20
) = lim

h→− 1
20

∮
Γh

νdµ = lim
h→− 1

20

∫ T

0
ν2dτ = 0.

which, together with J′0(h) > 0, implies J0(h) > 0 for h ∈ (− 1
20 , 0).

It follows from Lemma 5.4.1 that the following ratio is well defined,

X(h) =
−3J2 + 4J3

J0
. (5.27)

Then
M(h) = J0(c3X(h) − 1). (5.28)

In the remaining of this section we mainly prove the following proposition, which is needed
for proving Theorem 5.2.1.

Proposition 5.4.2 For h ∈ (− 1
20 , 0), X′(h) < 0. Moreover,

25
39

< X(h) < 1, lim
h→− 1

20

X(h) = 1, lim
h→0

X(h) =
25
39
.

To prove Proposition 5.4.2, we need the following lemmas.

Lemma 5.4.3 Suppose B(p, q) =
∫ 1

0
xp−1(1−x)q−1dx is the Beta function with p > 0 and q > 0.

Then the following hold:

J0(0) =
√

2
(
5
4

)3

B
(
3
2
, 3

)
, J2(0) =

√
2
(
5
4

)5

B
(
3
2
, 5

)
, J3(0) =

√
2
(
5
4

)6

B
(
3
2
, 6

)
.

In addition,
J2(0)
J0(0)

=
25
33
,

J3(0)
J0(0)

=
625
858

,
J3(0)
J2(0)

=
25
26
.
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Proof LetH − ν2

2 = 0. Then we have

Jn(0) =
√

2
∫ 5

4

0
µn+2

√
1 − 4

5µ dµ.

Let 1 − 4
5µ = t, and so µ = 5

4 (1 − t), dµ = −5
4dt. Then we obtain

Jn(0) =
√

2
∫ 1

0

(5
4

)n+3
(1 − t)n+2t

1
2 dt =

√
2
(5
4

)n+3
B
(3
2
, n + 3

)
,

which proves the first part of the lemma.
Next, it follows from

B(p, q) =
Γ(p)Γ(q)
Γ(p + q)

and Γ(s + 1) = sΓ(s),

where Γ(s) =
∫ +∞

0
xs−1e−xdx (s > 0) is the Gamma function, that

J2(0)
J0(0)

=
( 5

4 )5B(3
2 , 5)

( 5
4 )3B(3

2 , 3)
=

(
5
4

)2

×
Γ(3

2 )Γ(5)

Γ( 13
2 )

×
Γ( 9

2 )

Γ(3
2 )Γ(3)

=

(
5
4

)2

×
4 × 3 × Γ(3) × Γ(9

2 )
11
2 ×

9
2 × Γ( 9

2 ) × Γ(3)
=

25
33
.

Similarly, we obtain
J3(0)
J0(0)

=
625
858

and
J3(0)
J2(0)

=
25
26
.

Lemma 5.4.4 The following rates at h = − 1
20 hold:

J2(− 1
20 )

J0(− 1
20 )

= lim
h→− 1

20

J2(h)
J0(h)

= 1,

J3(− 1
20 )

J0(− 1
20 )

= lim
h→− 1

20

J3(h)
J0(h)

= 1,

J3(− 1
20 )

J2(− 1
20 )

= lim
h→− 1

20

J3(h)
J2(h)

= 1.

Proof Let µ = r cos θ + 1, ν = r sin θ. ThenH − h = 0 becomes

F (r, ρ) 4=
r5

5
cos5 θ +

3
4

r4 cos4 θ + r3 cos3 θ +
r2

2
− ρ2 = 0,

where ρ = (h+ 1
20 )

1
2 . Applying the implicit function theorem to F (r, ρ) at (r, ρ) = (0, 0), we can

show that there exist a smooth function r = χ(ρ) and a small positive number δ, 0 < ρ < δ � 1
such that F (χ(ρ), ρ) = 0, and χ(ρ) can be expanded as

χ(ρ) =
√

2ρ − 2ρ2 cos3 θ +
√

2
(
−

3
2

cos4 θ + 5 cos6 θ
)
ρ3

+
(
−

4
5

cos5 θ + 18 cos7 θ − 32 cos9 θ
)
ρ4 + O(ρ5).

(5.29)
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Therefore,

Jn(h) =

∮
Γh

µnνdµ =

"
intΓh

µndµdν =

∫ 2π

0
dθ

∫ χ(ρ)

0
rn+1 cosn θdr. (5.30)

Noticing ρ = (h + 1
20 )

1
2 and substituting (5.29) into (5.30) yield

J0(h) = 2π(h + 1
20 ) + 21π

4 (h + 1
20 )2 + O((h + 1

20 )3),

J1(h) = 2π(h + 1
20 ) + 9π

4 (h + 1
20 )2 + O((h + 1

20 )3),

J2(h) = 2π(h + 1
20 ) + π

4 (h + 1
20 )2 + O((h + 1

20 )3),

J3(h) = 2π(h + 1
20 ) − 3π

4 (h + 1
20 )2 + O((h + 1

20 )3)

(5.31)

for 0 < h + 1
20 � 1. Therefore,

Ji(− 1
20 )

J j(− 1
20 )

= lim
h→− 1

20

Ji(h)
J j(h)

= 1, i, j = 0, 1, 2, 3.

This completes the proof of Lemma 5.4.4.

Lemma 5.4.5 Jn(h) =
n∑

i=0
(−1)iCi

nIi(h), where Ii(h) =
∮
H̃=h

µ̃ĩνdµ̃, in which µ̃ = −µ + 1, ν̃ = −ν,

and
H̃ (̃µ, ν̃) = H(1 − µ̃,−ν̃). (5.32)

In particular,
J0(h) = I0(h),
J2(h) = I2(h) − 2I1(0) + I0(h),
J3(h) = −I3(h) + 3I2(0) − 3I1(h) + I0(h).

(5.33)

Proof A direct computation shows that

Jn(h) =

∮
Γh

µnνdµ =

∮
H̃=h

(1 − µ̃)n(−ν̃)d(1 − µ̃)

=

∮
H̃=h

 n∑
i=0

Ci
n(−1)iµ̃iν̃

 dµ̃ =

n∑
i=0

Ci
n(−1)i

∮
H̃=h

µ̃iν̃dµ̃

=

n∑
i=0

(−1)iCi
nIi(h).

Then substituting n = 0, 2, 3 respectively into Jn(h) yields (5.33).

Lemma 5.4.6 On (− 1
20 , 0), J2(h)

J0(h) is decreasing monotonically from 1 to 25
33 , and J3(h)

J2(h) is decreas-
ing monotonically from 1 to 25

26 .
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Proof By Lemmas 5.4.3 and 5.4.4, we need only prove that J2(h)
J0(h) and J3(h)

J2(h) are monotonic on
the interval (− 1

20 , 0), which implies that each of the linear combination α1J0(h) + α2J2(h) and
α∗1J2(h) + α∗2J3(h) has at most one zero on (− 1

20 , 0). Let

f0(̃µ) = 1, f2(̃µ) = µ̃2 − 2µ̃ + 1, f3(̃µ) = −µ̃3 + 3µ̃2 − 3µ̃ + 1.

By Lemma 5.4.5, we have

Jk(h) =

∮
H̃=h

fk (̃µ)̃νdµ̃, k = 0, 1, 2, 3.

Then, for each fi(̃µ), i = 0, 2, 3, set

li(̃µ) =

(
fi

A′

)
(̃µ) −

(
fi

A′

)
(z(̃µ)), (5.34)

where z(̃µ) is an analytic involution defined by A(̃µ) = A(z(̃µ)) on (−1
4 , 1), and

A(̃µ) = H̃ (̃µ, ν̃) −
ν̃2

2
. (5.35)

Factorizing A(̃µ) − A(z) gives − 1
20 (̃µ − z)q(̃µ, z), where

q(̃µ, z) = 4
4∑

i=0

µ̃iz4−i − 15
3∑

i=0

µ̃iz3−i + 20
2∑

i=0

µ̃iz2−i − 10(̃µ + z).

In fact, z(̃µ) is defined implicitly by q(̃µ, z). Therefore,

d
dµ̃

li(̃µ) =
d

dµ̃

(
fi

A′

)
(̃µ) +

d
dz

((
fi

A′

)
(z(̃µ))

)
dz
dµ̃

with
dz
dµ̃

= −
∂q(̃µ, z)
∂µ̃

/
∂q(̃µ, z)
∂z

.

Further, a direct computation shows that

l0(̃µ) =
(̃µ − z) P1(̃µ)

µ̃ (̃µ − 1)3 z (z − 1)3
,

W[l0(̃µ), l2(̃µ)] =

∣∣∣∣∣∣ l0(̃µ) l2(̃µ)
l′0(̃µ) l′2(̃µ)

∣∣∣∣∣∣ =
− (̃µ − z)3 P2(̃µ)

µ̃2z2 (z − 1)5 (̃µ − 1)5 P0(̃µ)
,

and
l2(̃µ) =

(x − z) (z + x − 1)
(z − 1) z (x − 1) x

,

W[l2(̃µ), l3(̃µ)] =

∣∣∣∣∣∣ l2(̃µ) l3(̃µ)
l′2(̃µ) l′3(̃µ)

∣∣∣∣∣∣ =
(̃µ − z)3 P3(̃µ)

µ̃2z2 (z − 1)2 (̃µ − 1)2 P0(̃µ)
,
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where

P0(̃µ) = 4
3∑

i=0
(4 − i)̃µiz3−i − 15

2∑
i=0

(3 − i)̃µiz2−i + 20 µ̃ + 40 z − 10,

P1(̃µ) =
3∑

i=0
µ̃iz3−i − 3

2∑
i=0
µ̃iz2−i + 3(̃µ + z) − 1,

P2(̃µ) = 8
(
4 µ̃4 + 3 µ̃3z + 6 µ̃2z2 + 3 µ̃z3 + 4 z4

)
(̃µ + z)3

+ 20 (̃µ + z)
(
83 µ̃2 + 97 µ̃z + 83 z2

)
− (250 µ̃6 + 850 µ̃5z

+ 1398 µ̃4z2 − 1604 µ̃3z3 + 1398 µ̃2z4 + 850 µ̃z5 + 250 z6)

+ (̃µ + z)
(
834 µ̃4 + 1683 µ̃3z + 2026 µ̃2z2 + 1683 µ̃z3 + 834 z4

)
− (1531 µ̃4 + 3997 µ̃3z + 5074 µ̃2z2 + 3997 µ̃z3 + 1531 z4)
− 5(211 µ̃2 + 350 µ̃z + 211 z2 + +360(̃µ + z£ c©− 50,

P3(̃µ) = 4
(̃
µ2 + z2

) (
4 µ̃2 + 7 µ̃z + 4 z2

)
− (̃µ + z)

(
61 µ̃2 + 38 µ̃z + 61 z2

)
+ 5(17 µ̃2 + 24 µ̃z + 17 z2) − 50(̃µ + z) + 10.

Now, computing the resultant of z + µ̃ − 1 and q(̃µ, z) with respect to z, we obtain

res(z + µ̃ − 1, q, z, ) = 4µ̃4 − 8µ̃3 + 6µ̃2 − 2µ̃ − 1,

which has no real roots on (0, 1). This implies that l2(̃µ) does not vanish for µ̃ ∈ (0, 1).
Similarly, computing the resultant of Pi(̃µ, z) and q(̃µ, z) with respect to z and applying the

Sturm’s Theorem, we can show that Pi(̃µ, z) (i = 0, 1, 2, 3) does not vanish for µ̃ ∈ (0, 1). This
means that l0(̃µ), W[l0, l2] and W[l2, l3] do not vanish for µ̃ ∈ (0, 1). By Lemma 5.3.3, we have
shown that {J0, J2} and {J2, J3} are all Chebyshev systems, and therefore, J2(h)

J0(h) and J3(h)
J0(h) are all

monotonic on (− 1
20 , 0).

Based on the above results, the proof for Proposition 5.4.2 is straightforward.

Proof [For Proposition 5.4.2] Since J3(h)
J2(h) is decreasing monotonically from 1 to 25

26 , it implies
that −3 + 4 J3(h)

J2(h) is positive and decreasing monotonically from 1 to 11
13 . Because J2(h)

J0(h) is also
positive and decreasing monotonically, we obtain that X(h) = −3J2+4J3

J0
= J2

J0

(
− 3+ 4J3

J2

)
, which is

decreasing monotonically on (− 1
20 , 0). This implies that X′(h) < 0, and so

25
39

= lim
h→0

X(h) < X(h) < lim
h→− 1

20

X(h) = 1.

Now, we are ready to prove Theorem 5.2.1.

Proof [For Theorem 5.2.1] By (5.28), we choose c = c(h) = (X(h))−
1
3 for each h ∈ (− 1

20 , 0),
then M(h) = 0. The monotonicity of X(h) means that the zero h is unique, and c(h) satisfies
c′(h) > 0. Thus,

1 < c(h) <
(
39
25

) 1
3

, lim
h→− 1

20

c(h) = 1, lim
h→0

c(h) =

(
39
25

) 1
3

.



5.5. Analysis of system (5.6) with perturbation P2 93

The above results, together with the implicit function theorem imply that choosing c = c(h) +

O(ε) leads to that M(h) + O(ε) has a unique zero near h. This proves the first part of Theo-
rem 5.2.1 sinceH(β(h, ε), 0)−H(α(h), 0) = ε

(
c−

3
2 M(h)+O(ε)

)
. The second part of the theorem

is the limit case of M(h) as h→ 0, which can be proved similarly.

5.5 Analysis of system (5.6) with perturbation P2

In this section, we study the BBM equation (5.6) with perturbation P2. As discussed in sections
2 and 3, we need only consider the Abelian integralM(h). Using the same notation in (5.26),
we have

M(h) = a0J0(h) + a1J1(h) + a2J2(h).

5.5.1 Asymptotic expansion of the Abelian integral

One efficient method for studying the weak Hilbert’s 16th problem is to investigate the asymp-
totic expansions of Abelian integrals, see [18, 51, 19]. M(h) has the following expansion (see
[51, 19]):

M(h) = c0(δ) + c1(δ)|h|
3
4 +

[
c2(δ) + b∗0c1(δ)

]
h ln |h|

+
[
c3(δ) + b∗1c1(δ) + b∗2c2(δ)

]
h + O((−h)

5
4 )

(5.36)

for 0 < −h � 1, where the coefficients c j(δ) are obtained by using the methods and formulas
developed in [19] as follows:

c0(δ) = 25
√

2
72072 (715 a1 + 650 a2 + 858 a0), c1(δ) = 4Ã0a0,

c2(δ) = −
√

2
2 a1, c3(δ) = 5

√
2a2,

with Ã0 < 0. Therefore, we obtain the expansions of J0, J1, J2, J3, J′0, J′1, J′2 and J′3 as follows:

J0(h) = 25
√

2
84 + 4Ã0|h|

3
4 + 4Ã0b∗0h ln(−h) + 4b∗1Ã0h + O((−h)

5
4 ),

J1(h) = 125
√

2
504 −

√
2

2 h ln |h| −
√

2
2 b∗2h + O((−h)

5
4 ),

J2(h) = 625
√

2
2772 + 5

√
2h + O((−h)

5
4 ),

J3(h) = 15625
√

2
72072 + 25

√
2

6 h + O((−h)
5
4 ),

(5.37)

and
J′0(h) = − 3Ã0(−h)−

1
4 + 4Ã0b∗0 ln(−h) + 4Ã0b∗0 + 4Ã0b∗1 + h.o.t.,

J′1(h) = −
√

2
2 ln(−h) −

√
2

2 −
√

2
2 b∗2 + h.o.t.,

J′2(h) = 5
√

2h + h.o.t.,

J′3(h) = 25
√

2
6 + h.o.t.,

(5.38)

where h.o.t. denotes higher order terms.
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5.5.2 Existence of periodic waves
It follows from Lemma 5.4.5 that

Ji(h) =

∮
H̃=h

fi(̃µ)̃νdµ̃ =

i∑
j=0

(−1) jC j
i I j(h),

where fi(̃µ) = (−µ̃ + 1)i, I j(h) =
∮
H̃=h

µ̃ j̃νdµ̃. Then we have

Lemma 5.5.1 8
(
h + 1

20

)3
I j(h) =

∮
H̃=h

f j(̃µ)̃ν5dµ̃ ≡ Ĩ j(h), where f j(̃µ) = µ̃ j + G j(̃µ) + G̃ j(̃µ),

with G j(̃µ) =
µ̃ jg j (̃µ)

30(̃µ−1)4 and G̃ j(̃µ) =
µ̃ jg̃ j (̃µ)

1500(̃µ−1)8 , in which g j(̃µ) and g̃ j(̃µ) are polynomials in µ̃.

Proof Multiplying I j(h) by ν̃2+2A(̃µ)
2(h+ 1

20 )
= 1 yields

I j(h) =

∮
H̃=h

2A(̃µ) + ν̃2

2(h + 1
20 )

µ̃ jν̃dµ̃

=
1

2(h + 1
20 )

(∮
H̃=h

2µ̃ jA(̃µ)̃νdµ̃ +

∮
H̃=h̃
µ jν̃3dµ̃

)
, i = 0, 1, 2, 3.

(5.39)

By Lemma 4.1 of [14] (with k = 3 and F (̃µ) = 2µ̃ jA(̃µ)), we have∮
H̃=h

2µ̃ jA(̃µ)̃νdµ̃ =

∮
H̃=h

G j(̃µ)̃ν3dµ̃, (5.40)

where G j(̃µ) = d
3dµ̃

2µ̃ jA(̃µ)
A′ (̃µ) =

µ̃ jg j (̃µ)
30(̃µ−1)4 with

g j(̃µ) = 4 j̃µ4 − 19 j̃µ3 + 4 µ̃4 + 35 j̃µ2 − 16 µ̃3 − 30 j̃µ + 25 µ̃2 + 10 j − 20 µ̃ + 10.

Substituting (5.40) into (5.39) and multiplying 2A(̃µ)+ν̃2

2(h+ 1
20 )

= 1 give

I j(h) =
1

2(h + 1
20 )

∮
H̃=h

(̃µ j + G j(̃µ))̃ν3dµ̃

=
1

4(h + 1
20 )2

∮
H̃=h

(2A(̃µ) + ν̃2)(̃µ j + G j(̃µ))̃ν3dµ̃

=
1

4(h + 1
20 )2

∮
H̃=h

2A(̃µ)(̃µ j + G j(̃µ))̃ν3dµ̃

+
1

4(h + 1
20 )2

∮
H̃=h

(̃µ j + G j(̃µ))̃ν5dµ̃.

(5.41)

Again by Lemma 4.1 of [14] (here k = 5 and F (̃µ) = 2A(̃µ)(̃µ j + G j(̃µ))), we obtain∫
H̃=h

2A(̃µ)(̃µ j + G j(̃µ))̃ν3dµ̃ =

∫
H̃=h

G̃ j(̃µ)̃ν5dµ̃, (5.42)

where G̃ j(̃µ) = d
5dµ̃ ( 2A(̃µ)(̃µ j+G j (̃µ))

A′ (̃µ) ) =
µ̃ jg̃ j (̃µ)

1500(̃µ−1)8 , and g̃ j(̃µ) is a lengthy polynomial and omitted
here for brevity. Substituting (5.42) into (5.41) proves Lemma 5.5.1.
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Without loss of generality, we assume that a1 = λ and a3 = 1. Further, let

J1(h) =

∮
Γh

(
µ +

1
λ
µ2

)
νdµ. (5.43)

ThenM(h) = α0J0(h) + λJ1(h). By Lemma 5.5.1, we have

Lemma 5.5.2
8
(
h +

1
20

)3
Ji(h) =

∮
H̃=h

f̃i(̃µ)̃ν5dµ̃ 4= J̃i(h),

and
8
(
h +

1
20

)3
J1(h) =

∮
H̃=h

( f̃1(̃µ) +
1
λ

f̃2(̃µ))̃ν5dµ̃ 4= J̃1(h),

where f̃i(̃µ) =
i∑

j=0
(−1) jC j

i f j(̃µ).

Now, let

Li(̃µ) =
( f̃i

A′
)
(̃µ) −

( f̃i

A′
)
(z(̃µ)),

L1(̃µ) =
( f̃1 + 1

λ
f̃2

A′
)
(̃µ) −

( f̃2 + 1
λ

f̃3

A′
)
(z(̃µ)).

Then
d

dµ̃
Li(̃µ) =

d
dµ̃

( fi

A′
)
(̃µ) −

d
dz

(( fi

A′
)
(z(̃µ))

)
×

dz
dµ̃
,

d
dµ̃
Li(̃µ) =

∂

∂µ̃
(Li(̃µ)) +

∂

∂z
(Li(̃µ)) ×

dz
dµ̃
,

and we obtain

W[L0](̃µ) =
3(̃µ−z)Q1 (̃µ,z)

500µ̃z(̃µ−1)11(z−1)11 ,

W[L0(̃µ),L1(̃µ)] =

∣∣∣∣∣∣ L0(̃µ) L1(̃µ)
L′0(̃µ) L′1(̃µ)

∣∣∣∣∣∣ =
−(̃µ−z)3Q2 (̃µ,z)

250000µ̃2z2λ(z−1)22 (̃µ−1)22P0 (̃µ,z) ,

W[L0(̃µ), L1(̃µ)] =

∣∣∣∣∣∣ L0(̃µ) L1(̃µ)
L′0(̃µ) L′1(̃µ)

∣∣∣∣∣∣ =
−(̃µ−z)3Q3 (̃µ,z)

250000µ̃2z2(z−1)22 (̃µ−1)22P0 (̃µ,z) ,

where Q1(̃µ, z) is a two-variate polynomial of degree 19, Q2(̃µ, z) = S 12(̃µ, z)λ − S 11(̃µ, z), in
which S 11(̃µ, z) and S 12(̃µ, z) are two-variate polynomials of degree 41 and 40, respectively,
and Q3(̃µ, z) is of degree 40.

Computing the resultant of Q1 and q with respect to z, and applying Strum’s Theorem, we
can show that Q1 and q have no common zeros for µ̃ ∈ (0, 1). Therefore, W[L0] does not vanish
for µ̃ ∈ (0, 1).

Similarly, computing the resultant of S 12 and q with respect to z, and applying Strum’s
Theorem, we can prove that S 12 and q have no common zeros for µ̃ ∈ (0, 1). Therefore, S 12

does not vanish for µ̃ ∈ (0, 1). Solving S 12(̃µ, z)λ − S 11(̃µ, z) = 0 gives

λ(̃µ, z) =
S 11(̃µ, z)
S 12(̃µ, z)

, (5.44)

for which we have the following result.
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Lemma 5.5.3 λ(̃µ, z) is monotonic for µ̃ ∈ (0, 1), and λ(̃µ, z) ∈ (−5
3 , 0).

Proof A direct computation shows that

λ′(̃µ, z) =
∂λ(̃µ, z)
∂µ̃

+
∂λ(̃µ, z)
∂z

×
dz
dµ̃

=
S 21(̃µ, z)
S 22(̃µ, z)

.

Computing the corresponding resultant res(S 22, q, z) and applying Sturm’s theorem, we can
show that S 22(̃µ, z) has no zeros for µ̃ ∈ (0, 1). Similarly, computing the resultant res(S 21, q, z)
and applying Strum’s Theorem, we can prove that res(S 21, q, z) has a unique zero in

[
40125
65536 ,

80251
131072

]
⊆ (0, 1). Further, computing the resultant res(S 21, q, x) and applying Strum’s Theory show that
res(S 21, q, x) has three zeros for z in the three intervals:[

−
64373

262144
,−

128745
524288

]
,

[
−

125503
1048576

,−
62751
524288

]
and

[
−

56117
524288

,−
112233

1048576

]
.

Therefore, if S 21 and q have common roots on (−1
4 , 0) × (0, 1), the roots must lie in one of the

following three domains:

D1 :
[
−

64373
262144

,−
128745
524288

]
×

[
40125
65536

,
80251

131072

]
,

D2 :
[
−

125503
1048576

,−
62751
524288

]
×

[
40125
65536

,
80251
131072

]
,

D3 :
[
−

56117
524288

,−
112233

1048576

]
×

[
40125
65536

,
80251
131072

]
.

The resultant res( ∂q
∂µ̃
, ∂q
∂z , z) has no zeros in [40125

65536 ,
80251
131072 ], implying that q reaches its extreme

values on the boundary of Di. By Sturm’s Theorem, we know that the derivatives of the four
functions obtained by restricting q(x, z) on the four line segments of the boundary of Di (i =

1, 2, 3) have no zeros. Therefore, q(̃µ, z) gets its maximal and minimum values at the four
vertexes on each Di. A direct computation yields

max
D1

q(̃µ, z) = 48507113359773182621
1180591620717411303424 , min

D1
q(̃µ, z) = 775590116374354945381

18889465931478580854784 ,

max
D2

q(̃µ, z) = −306099632527480469877479
302231454903657293676544 , min

D2
q(̃µ, z) = −19131393530721391794519

18889465931478580854784 ,

max
D3

q(̃µ, z) = −20507964148271211547259
18889465931478580854784 , min

D3
q(̃µ, z) = −328130217324045232444719

302231454903657293676544 .

The minimum and maximum values have the same signs on each Di. Hence, q and S 21 have
no common zeros on each Di. Therefore, S 21 does not vanish for µ̃ ∈ (0, 1). This implies that
λ′(̃µ, z) , 0 for µ̃ ∈ (0, 1). Thus, λ(̃µ, z) is monotonic for µ̃ ∈ (0, 1), and so

lim
µ̃→0

= λ(̃µ, z) = −
5
3
, lim

µ̃→1
= λ(̃µ, z) = 0.

This completes the proof of Lemma 5.5.3.
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Lemma 5.5.3 implies that when λ ∈ (−5
3 , 0), W[L0,L1] has a simple root for µ̃ ∈ (0, 1), and

W[L0,L1] has no roots for µ̃ ∈ (0, 1) when λ ∈ (−∞,−5
3 ]

⋃
(0,+∞). By Lemmas 5.3.3 and

5.3.4, we have the following result.

Lemma 5.5.4 M(h) has at most two zeros (counting multiplicities) for λ ∈ (−5
3 , 0), and at

most one zero (counting multiplicity) for λ ∈ (−∞,−5
3 ]

⋃
(0,+∞).

Let
κ(h) =

λJ1(h) + J2(h)
J0(h)

. (5.45)

Then
M(h) = J0(h)(a0 + κ(h)).

Lemma 5.5.4 implies the following proposition.

Proposition 5.5.5 The ratio κ(h) is monotonic for λ ∈ (−∞,−5
3 ]

⋃
[0,+∞).

Lemma 5.5.6 If κ′(h) has zeros, they must be simple. Moreover, κ′(h) has 2n + 1 simple zeros
on (− 1

20 , 0) for any λ ∈ (−5
3 ,−

10
11 ), and 2n simple zeros on (− 1

20 , 0) for any λ ∈ (−10
11 , 0).

Proof Firstly, we give a short proof for the first assertion by using an argument of contradic-
tion. Let h∗ be a zero of κ′(h) with l multiplicities, l ≥ 2. Then there must exist an a0 such
that a0 + κ(h) has a zero at h = h∗ with l + 1 (≥ 3) multiplicities. Because J0(h) > 0, the
relationship betweenM(h) and a0 + κ(h) implies thatM(h) has a zero at h = h∗ with l + 1 (≥ 3)
multiplicities. This contradicts Lemma 5.5.4.

With the expansion of Ji(h) near h = − 1
20 , given in (5.31), a direct computation shows that

κ′
(
−

1
20

)
= lim

h→− 1
20

κ′(h) = lim
h→− 1

20

(λJ′1(h) + J′2(h))J0(h) − (λJ1(h) + J2(h))J′0(h)

J2
0(h)

= −
3
2
λ −

5
2
.

Further, using the expansions of Ji(h) and J′i (h) near h = 0 given respectively in (5.37) and
(5.38), we can prove that

κ′(0) = lim
h→0

κ′(h) = lim
h→0

(λJ′1(h) + J′2(h))J0(h) − (λJ1(h) + J2(h))J′0(h)

J2
0(h)

= sign(Ã0(11λ + 10))∞.

Because Ã0 < 0, it is obvious that κ′(h) has different signs at the two endpoints of the interval
(− 1

20 , 0) if λ ∈ (−5
3 ,−

10
11 ), and has the same sign at the two endpoints of (− 1

20 , 0) if λ ∈ (−10
11 , 0).

This completes the proof.

Proposition 5.5.7 κ′(h) has a unique simple zero on (− 1
20 , 0) for any λ ∈ (−5

3 ,−
10
11 ), namely,

κ(h) decreases from κ(− 1
20 ) to a minimum value and then increases to κ(0) for any λ ∈ (−5

3 ,−
10
11 ).

Proof By Lemma 5.5.6, for a fixed λ ∈ (−5
3 ,−

10
11 ), if κ′(h) has three or more than three simple

zeros on (− 1
20 , 0), then there must exist an a0 such that a0 + κ(h) has at least three zeros. This

implies that M(h) can have at least three zeros, which contradicts Lemma 5.5.4. Therefore,
κ′(h) has a unique zero on (− 1

20 , 0) for any λ ∈ (−5
3 ,−

10
11 ). The signs of κ′(− 1

20 ) and κ′(0) when
λ ∈ (−5

3 ,−
10
11 ) determines the property of κ(h).
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Proposition 5.5.8 κ′(h) has no zeros on (− 1
20 , 0) for any λ ∈ (−10

11 , 0), that is, κ(h) is monotonic
on (− 1

20 , 0) for any λ ∈ (−10
11 , 0).

Proof By Lemma 5.5.6, for a fixed λ ∈ (−10
11 , 0), if κ′(h) has four or more than four zeros

on (− 1
20 , 0), then there must exist an a0 such that a0 + κ(h) has at least three zeros counting

multiplicities. This contradicts Lemma 5.5.4.
Next, we prove that κ′(h) does not have two zeros. Suppose otherwise κ′(h) has two zeros

for λ ∈ (−10
11 , 0). We have known that κ′(− 1

20 ) < 0, and κ′(0) < 0, which imply that κ(h) is
decreasing at the endpoints of the interval (− 1

20 , 0). Further, for λ ∈ (−10
11 , 0), λ + 1 = κ(− 1

20 ) >
κ(0) = 5

6λ + 25
33 . This clearly indicates that there must exist an a0 such that a0 + κ(h) has at least

three zeros. This contradicts Lemma 5.5.4, and so the proof is complete.

5.5.3 Coexistence of one solitary wave and one periodic wave
In this subsection, we will investigate the condition for the existence of one solitary wave, for
which we need study the condition satisfyingH(β∗(h, ε), 0)−H(α∗(h), 0) = εM(h)+O(ε2) = 0
at h = 0 (and so α∗(0) = 0). Firstly, solvingM(0) =

∮
Γ0

(a0 + λµ + µ2)νdµ = 0 gives

λ = −
10
11
−

6
5

a0, (5.46)

under which
κ
(
−

1
20

)
=

1
11
−

6
5

a0, κ(0) = −a0. (5.47)

We need discuss two cases for λ. If λ ∈ (−∞,−5
3 ]

⋃
[−10

11 ,+∞), then (5.46) yields a0 ∈

(−∞, 0]
⋃

[ 5
9 ,+∞), and κ(h) is monotonic by Propositions 5.5.5 and 5.5.8. Therefore, a0 + κ(h)

increases from 0 to 1
11 −

6
5a0 for a0 ∈ (−∞, 0), and decreases from 0 to 1

11 −
6
5a0 for a0 ∈ [ 5

9 ,+∞).
Hence,M(h) = J0(h)(a0 +κ(h)) has no zeros for λ ∈ (−∞,−5

3 ]
⋃

[−10
11 ,+∞) under the condition

(5.46).
If λ ∈ (−5

3 ,−
10
11 ), then it follows from (5.46) that a0 ∈ (0, 5

9 ). Further, we divide the interval
(0, 5

9 ) into three parts by using κ(− 1
20 ) and κ(0).

(i) When a0 = 5
11 , κ(− 1

20 ) = κ(0) = −a0. The property of κ(h) given in Proposition 5.5.7
implies that a0 + κ(h) < a0 + κ(− 1

20 ) = a0 + κ(0) = 0 for h ∈ (− 1
20 , 0). Thus, M(h) =

J0(h)(a0 + κ(h)) has no zeros.
(ii) When a0 ∈ ( 5

11 ,
5
9 ), κ(− 1

20 ) ≤ κ(0) = −a0. The property of κ(h) given in Proposition 5.5.7
shows that a0 + κ(h) < a0 + κ(0) = 0 for h ∈ (− 1

20 , 0). Thus,M(h) = J0(h)(a0 + κ(h)) has no
zeros.

(iii) When a0 ∈ (0, 5
11 ), κ(− 1

20 ) > κ(0) = −a0 and a0 + κ(− 1
20 ) > a0 + κ(0) = 0. The property

of κ(h) given in Proposition 5.5.7 shows that in the h-κ plane, the graph of a0 + κ(h) decreases
form the point (− 1

20 , a0 + κ(− 1
20 )), passing through the h-axis at some h = h∗ ∈ (− 1

20 , 0), then
to a minimum point and then increases to (0, 0). This implies that a0 + κ(h) has a unique zero
h = h∗ in (− 1

20 , 0). Summarizing the above results gives the following proposition.

Proposition 5.5.9 M(h) has a zero at h = 0 and anther zero at h = h∗ ∈ (− 1
20 , 0) if and only if

a0 ∈ (0, 5
11 ) with λ = −10

11 −
6
5a0.
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Finally, we prove Theorem 5.2.2.

Proof [For Theorem 5.2.2] With the above results, we have proved the first parts of Theo-
rem 5.2.2 (i), (ii) and (iii), as Propositions 5.5.5 and 5.5.8 for (i), Proposition 5.5.7 for (ii) and
Proposition 5.5.9 for (iii). The second parts of (i) (ii) and (iii) of Theorem 5.2.2 can be directly
proved by applying the implicit function theorem.

5.6 Conclusion
In this chapter, we have used bifurcation theory to study the existence of periodic and solitary
waves in a BBM equation under weak dissipative influences and Marangoni effect. A special
transformation given in (5.32) is introduced so that the Chebyshev criteria can be applied to
overcome the difficulty arising from higher-order degenerate singularities, and then the exact
condition on the number of periodic waves is obtained for the case with regular multiple-
parameter perturbations. Also, the condition on the coexistence of one solitary wave and one
periodic waves is derived. The methodologies developed in this chapter include the reduction
of three generating elements to special two ones, asymptotic expansion of Abelian integrals,
and asymptotic analysis on the dominating part of the Abelian integrals. Combination of these
methods is not only useful in the study of other types of wave equations, but also has potential
to be generalized to consider perturbations on hyperelliptic Hamiltonian systems.
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Chapter 6

Singular perturbation approach to
dynamics of a cubic-quintic nonlinear
Schrödinger equation with weakly
dissipative effects

6.1 Introduction
It is well-known that in solving real world problems, certain relatively weak influences or
perturbations are unavoidable due to the existence of uncertainty and higher order correction
to the original mathematical models. To better understand the dynamics of the model problem,
these influences or perturbations should be involved in the mode, and corresponding perturbed
models need to be studied carefully.

For perturbed equations, very often, two techniques are applied. One technique is based on
the inverse scattering transformation (IST), which has been proved to be a powerful method
to deal with many kinds of perturbed equations, such as the perturbed KdV, NLS and mKdV
equations [17, 34]. Moreover, it turns out that combining the Lie group theory and homotopy
theory with the IST method can solve these perturbed equations more efficiently [3, 23]. More
detailed descriptions related to the perturbation theory for nearly integrable equations can be
found in [26, 27]. The other technique to deal with perturbation problems is to reduce the par-
tial differential equations into a singularly perturbed system of ordinary differential equations
(including higher dimension Hamiltonian systems) by introducing wave transform and succes-
sive derivatives, see [4, 5, 6, 8, 30, 31, 32]. Along this direction, the Fenichel’s criterion [9]
is applied to assure the existence of an invariant manifold, and the underlying problem is then
reduced to a regularly perturbed problem on the manifold.

The following generalized nonlinear Schrödinger equation with different perturbationsP(u)
has been studied in many classical works [2, 18, 20, 24, 25, 33, 36, 39] and some relatively
new papers, such as [21, 37].

iut + uxx + f (|u|2)u = εP(u). (6.1)

Generally, the perturbation includes three types: (i) up(|u|2)x describing the Raman effect [39,
40], (ii) i|u|2ux describing the self-steepening [24, 25, 40, 41], and (iii) iuxxx describing the
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higher dispersion correction [18, 21, 37], as well as their linear combination of weakly various
effects [40]. More detailed explanations on other various perturbations can be found in [35].

However, along this direction, there are some interesting problems need to be further stud-
ied. For example, can the solitary (kink) and periodic waves coexist in the perturbed equations?
What is the amplitude of the coexisting periodic wave? How many periodic waves with dif-
ferent amplitudes can coexist? Furthermore, what are the exact parameter conditions for these
physical phenomena to occur? To attack these problems, we consider the cubic-quintic nonlin-
ear Schrödinger (CQNLS) equation with weak Raman effect, which represents the macroscopic
wave propagation in Bose-Einstein condensates (BEC for short),

i
∂u
∂t

+
∂2u
∂x2 + γ1|u|2u + γ2|u|4u + V(x)u = εP, (6.2)

where γ1 and γ2, represent the effects due to an intrinsic nonlinear resonance in the material,
giving rise to strong two-photon absorption in optics; while in the BEC they take account of
two-body and three-body interactions, and their signs determine whether the interactions are
repulsive or attractive; V(x) is an external potential and can be chosen as an arbitrary function
or constant, to be specific, in our work, we take V(x) ≡ ω, where ω is the propagation constant
in the wave profile

u(x, t) = u(x)eiωt. (6.3)

In particular, we take the weak dissipative perturbation P = α1ux + α2|u2|ux + α3uxxx, where
α1, α2 and α3 are some constants.

We would like to point out that Yang and Kaup [39] studied the dynamics and stability of

the solitary wave of the perturbed CQNLS equation by choosing P =
n∑

k=0
pk(|u|2)∂

ku
∂xk and setting

the external potential V(x) = 0.

Our main interest in this work is to examine the dynamics of solitary waves, in particular,
kink and periodic waves in nearly integrable equations with nonzero external potential V(x).
Our main tool is the Abelian integral associated with the reduced near-Hamiltonian systems,
which is related to the well-known weak Hilbert’s 16th problem [1]. We comment that our
approach can be used to deal with many kinds of nearly integrable equations, including the
equations with local and nonlocal distributed delays described by spatial-temporal convolution.

The rest of this chapter is organized as follows. Section 6.2 is devoted to the problem
reduction. We provide a phase analysis for the unperturbed equation based on bifurcation
theory of planar systems, and construct our tools on the periodic structure of the Hamiltonian.
Section 6.3 consists of two subsections, in subsection 6.3.1, we focus on the condition on
the existence of kink under perturbations and the periodic wave with different amplitudes, in
particular, the coexistence of the kink and periodic waves. In subsection 6.3.2, we discuss the
uniqueness of the periodic wave when the kink persists. In section 6.4, we show that there exist
at most two periodic waves with different amplitudes under perturbations. Finally, concluding
remarks are given in section 6.5.
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6.2 Reduction of equation (6.2)

Recall that in our system, we take V(x) = ω. Substituting the wave profile (6.3) into (6.2) and
replacing u(x) by φ, the real part reads

φxx + γ1φ
3 + γ2φ

5 + ε(α1φx + α2φ
2φx + α3φxxx) = 0, (6.4)

where we assume 0 < ε � 1, dφ
dx , d2φ

dx2 and d3φ

dx3 all approach 0 as x → +∞. This is a singularly
perturbed ordinary differential equation.

Upon introducing dφ
dx = y and dy

dx = w, equation (6.4) can be written as a system of first order
equations, the so-called slow system under the framework of geometric singular perturbation
theory,

dφ
dx

= y,

dy
dx

= w,

εα3
dw
dx

= w + γ1φ
3 + γ2φ

5 − εα1y − εα2φ
2y.

(6.5)

For 0 < ε � 1, the rescaling x = εξ yields the so-called fast system

dφ
dξ

= εy,

dy
dξ

= εw,

α3
dw
dξ

= w + γ1φ
3 + γ2φ

5 − εα1y − εα2φ
2y.

(6.6)

We would like to point put that systems (6.5) and (6.6) are equivalent for 0 < ε � 1. When
ε→ 0 in (6.5) and (6.6), we obtain the limiting slow system

dφ
dx

= y,
dy
dx

= w, 0 = w + γ1φ
3 + γ2φ

5, (6.7)

and the limiting fast system

dφ
dξ

= 0,
dy
dξ

= 0,
dw
dξ

= w + γ1φ
3 + γ2φ

5. (6.8)

Thus, the flow of system (6.7) is confined to the set

M0 = {(φ, y,w) ∈ R3 | w + γ1φ
3 + γ2φ

5 = 0},

which is the equilibrium set of (6.8). Under the framework of classical geometric singular
perturbation theory, M0 is called critical manifold or slow manifold.

Lemma 6.2.1 For system (6.8), the slow manifold M0 is normally hyperbolic.
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Proof The slow manifold M0 is precisely the set of equilibria of (6.8). The linearization of
(6.8) at each point of (φ, y,w) ∈ M0 has two zero eigenvalues whose generalized eigenspace
is the tangent space of the two-dimensional slow manifold M0 of equilibria, and the other
eigenvalue is 1. Thus, the slow manifold M0 is normally hyperbolic.

Due to the normal hyperbolicity of M0 (see [9] for a reasoning), one can expect that there
exists a locally invariant manifold Mε associated with system (6.5) that converges to M0 as
ε→ 0, in the form of

Mε = {(φ, y,w) ∈ R3 | w = −γ1φ
3 − γ2φ

5 + εΘ(φ, y, ε)},

where the function Θ(φ, y, ε) has the form

Θ(φ, y, ε) = Θ0(φ, y) +

∞∑
i=1

εi Θi. (6.9)

This allows us to detect the kink wave of (6.2) by tracking the heteroclinic loop of the ODEs
on the invariant manifold Mε. It then follows that, on Mε, the third equation in system (6.5)
becomes

εα3

[
− (3γ1φ

2 + 5γ2φ
4)y + ε

(∂Θ

∂φ
y + ε

∂Θ

∂y
(−γ1φ

3 − γ2φ
5 + εΘ)

)]
= − γ1φ

3 − γ2φ
5 + εΘ + γ1φ

3 + γ2φ
5 − εα1y − εα2φ

2y.

Comparing the coefficient of ε on both sides, one has

Θ0(φ, y) =
(
α1 + (α2 − 3γ1α3)φ2 − 5γ2α3φ

4)y. (6.10)

Then system (6.5) or (6.4) reduced to Mε has the form,

dφ
dx

= y,
dy
dx

= −φ3(γ1 + γ2φ
2) + ε f (φ2)y, (6.11)

where f (φ2) = σ0 + σ1φ
2 + σ2φ

4 with σ0 = α1, σ1 = α2 − 3γ1α3 and σ2 = −5γ2α3. There
exists a Hamiltonian structure when ε = 0,

H(φ, y) =
y2

2
+
γ1φ

4

4
+
γ2φ

6

6
. (6.12)

Recall the fact that for both integrable and near-integrable equations, a solitary wave solu-
tion of (6.2) corresponds to a homoclinic orbit of (6.11); a kink (or anti-kink) wave solution
of (6.2) corresponds to a heteroclinic orbit (or so-called connecting orbit) of (6.11); and a pe-
riodic orbit (limit cycle) of (6.11) corresponds to an isolated periodic wave solution of (6.2).
Thus, investigating all bifurcations of solitary, kink and periodic waves of (6.2) is equivalent
to analyzing homoclinic loops, heteroclinic loops and limit cycles of (6.11), respectively.

Note that the phase orbits defined by the vector field of system (6.11)ε=0 determine all
traveling wave solutions of (6.2)ε=0. We shall investigate the bifurcation of phase portraits
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of system (6.11)ε=0 in (φ, y)-phase plane as the parameters are varied. Clearly, on the (φ, y)-
phase plane, for system (6.11)ε=0, there are three equilibria E0(0, 0), E1(−

√
−γ1/γ2, 0) and

E2(
√
−γ1/γ2, 0) if γ1γ2 < 0, and only one equilibrium E0(0, 0) if γ1γ2 > 0.

Let M(Ei) be the coefficient matrix of the linearized system of (6.11)ε=0 at the equilibrium
point (φi, 0). By theory of planar dynamical systems [11], the equilibrium point is a saddle if
det M(Ei) < 0, a center if det M(Ei) > 0, and a cusp with zero Poincaré index if det M(Ei) = 0.
When the singular point is nilpotent, the method developed by Han et al. [15] can be applied
to determine its type and order, yielding three types of bounded solutions for the unperturbed
system, as shown in Figure 6.1. In this chapter, we focus on the case with kink wave and
degenerate center, that is, case (a).

(a) (b)

(c) (d)

Figure 6.1: Phase portraits of system (6.11)ε=0 for (a) γ1 > 0, γ2 < 0; (b) γ1 < 0, γ2 > 0; (c) γ1, γ2 > 0;
and (d) γ1, γ2 < 0.

Upon introducing the following dimensionless re-scalings,

φ =

√
−
γ1

γ2
φ̃, y = −

γ
3
2
1

γ2
ỹ, x =

√
−γ2

γ1
τ, ε =

γ2
2

σ2γ1
√
−γ2

ε̃,

system (6.11) reads (dropping the tilde for simplicity)

φ′ = y, y′ = φ3(φ2 − 1) + ε(a0 + a1φ
2 + φ4)y, (6.13)
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I

I

H(B)•H(A)•

Figure 6.2: Poincaré map of system (6.13)

where a0 =
γ2

2σ0

γ2
1σ2

and a1 = −
γ2σ1
γ1σ2

. The corresponding Hamiltonian is

H(φ, y) =
y2

2
+
φ4

4
−
φ6

6
.

The phase portrait of system (6.13)ε=0 is shown in Figure 6.1(a). There is a heteroclinic loop
denoted by L 1

12
which connects the two hyperbolic saddles E1(−1, 0) and E2(1, 0) with the

Hamiltonian quantity H(−1, 0) = H(1, 0) = 1
12 . A family of periodic orbits defined by Lh =

{H(φ, y) = h, 0 < h < 1
12 } surrounds the nilpotent center E0(0, 0). Investigating the periodic

waves of (6.2) is equivalent to studying the isolated closed orbits of system (6.13).
First, we construct a displacement map on the periodic annulus of (6.13)ε=0 (see Figure 6.2)

given by
P(h) = H(B) −H(A).

By Poincaré-Pontryagin Theorem [16], P(h) = εA(h, η)+O(ε2), whereA(h, η) is the following
Abelian integral defined on the periodic annulus {Lh},

A(h, η) =

∮
Lh

(a0 + a1φ
2 + φ4)ydφ, (6.14)

where η = (a0, a1), h ∈ (0, 1
12 ). An isolated zero of A(h, η) corresponds to an isolated zero

of P(h) for ε positive and sufficiently small, implying the existence of an isolated closed orbit
(heteroclinic loop if A( 1

12 , η) = 0) in system (6.13). Thus, our problem is reduced to studying
the zeros of A(h, η). In the next two sections, we give a detailed analysis on the existence of
zeros of A(h, η) and the condition such that A( 1

12 , η) = 0, and investigate the uniqueness and
distribution of the zeros of A(h, η) when A( 1

12 , η) = 0. The solutions of the zeros provide the
estimation on the amplitudes of the periodic waves of (6.2). We will also consider the maximal
number of zeros ofA(h, η) which determines the maximal number of periodic waves of (6.2).

6.3 Periodic and kink waves of (6.2)

We will use the asymptotic expansion of the Abelian integralA(h, η) defined in (6.14) near the
heteroclinic loop L 1

12
and the center E0, to find their zeros near the endpoints 0 and 1

12 , which
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characterizes the existence of the periodic waves and kinks. In particular, we will discuss the
global existence and uniqueness of the periodic waves when the kink persists, in other words,
the coexistence of periodic waves and kink.

6.3.1 Existence and coexistence of periodic and kink waves
Following the method developed by Han et al. [14], careful calculation gives

A(h, η) = c0(η) + c1(η)
(
h −

1
12

)
ln

∣∣∣∣h − 1
12

∣∣∣∣ + c2(η)
(
h −

1
12

)
+ h.o.t. (6.15)

for 0 < −(h − 1
12 ) � 1, where h.o.t. denotes higher order terms. Further, applying the formulas

given by Yang and Han [38] and Jiang and Han [22], we obtain

A(h, η) = h
3
4
(
b0(η) + b1(η)h

1
2 + b2(η)h + h.o.t.

)
(6.16)

for 0 < h � 1. Here, the first four coefficients ci and bi can be further expressed by using the
methods developed in [14, 38]:

c0 = J00a0 + J01a1 + J02,

c1 = J10a0 + J11a1 + J12,

c2 = J20a0 + J21a1 + J22,

(6.17)

where J00 = 3
√

2−3J∗

8 , J01 = 18
√

2−5J∗

96 , J02 = 39
√

2−7J∗

512 , J10 = J11 = J12 = −
√

2, J20 = 0, J21 =

4J∗, J22 = 3J∗ − 3
√

2, and

b0 = 8
3 s1a0,

b1 = 1
5 s2(16a0 + 32a1),

b2 = 4
63 s1(15a0 + 20a1 + 24),

b3 = 56
405 s2(55a0 + 66a1 + 72).

(6.18)

Here, J∗ = −
√

3arcsinh
(√

2
)
, s1 = π

3
2
√

2

(Γ( 3
4 ))2 and s2 =

(Γ( 3
4 ))2 √

2
√
π

.

The following result is a different version of bifurcation theorem in [13] for system (6.13),
which will be used to identify the zeros of A(h, η). For readers’ convenience, we state the
criterion in a new form and provide a simpler proof.

Lemma 6.3.1 Considering system (6.13) and the expansions (6.15) and (6.16), it is supposed
that there exists η0 ∈ R

N such that

c0(η0) = c1(η0) = · · · = cl−1(η0) = 0, cl(η0) , 0,
b0(η0) = b1(η0) = · · · = bk−1(η0) = 0, bk(η0) , 0

(6.19)

and

rank
[
∂(c0, c1, · · · , cl−1, b0, b1, · · · , bk−1)

∂η

]
= m + k. (6.20)
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Then A(h, η) can have l + k +
1−sgn(A(ε1,η0)A( 1

12−ε2,η0))
2 zeros for some η near η0, l zeros of which

are near h = 1
12 in ( 1

12 −ε2,
1

12 ), k zeros of which near h = 0 in (0, ε1), 1−sgn(A(ε1,η0)A( 1
12−ε2,η0))

2 zero
in (ε1,

1
12 − ε2), with ε1 and ε2 are positive and sufficiently small. Therefore, system (6.13) can

have l+k +
1−sgn(A(ε1,η0)A( 1

12−ε2,η0))
2 isolated periodic orbits for some (ε, η) near (0, η0), m isolated

periodic orbits of which are near the heteroclinic loop L 1
12

, k isolated periodic orbits of which

near the center E0(0, 0), and 1−sgn(A(ε1,η0)A( 1
12−ε2,η0))

2 isolated periodic orbit surrounds the center
E0(0, 0).

Proof We only prove the case l = 2, and other cases can be proved similarly. By (6.19), we
get

A(h, η0) = h
3
4

(
bk(η0)h

k
2 + O(h

k+1
2 )

)
, 0 < h � 1,

A(h, η0) = c2(η0)
(
h −

1
12

)
+ O

((
h −

1
12

)2
ln

∣∣∣∣h − 1
12

∣∣∣∣)), 0 < −
(
h −

1
12

)
� 1.

Taking ε1, ε2 > 0 sufficiently small, thenA(h, η0) has

1 − sgn(A(ε1, η0)A( 1
12 − ε2, η0))

2

zero, which is either 0 or 1. When it is 1, the zero is denoted by h∗0 ∈ (ε1,
1
12 − ε2). By (6.20)

we know that c0, c1, c2, b0, b1, · · · , bk−1 can be taken as free parameters. Next, we change the
signs of them in turn to obtain the zeros ofA(h, η). Let

|c0| � |c1| � |c2(η0)|, c2(η0)c1 > 0, c1c0 < 0,
|b0| � |b1| � · · · � |bk−1| � |bk(η0)|, bk(η0)bk−1 < 0, b j−1b j < 0, (6.21)

for j = 1, 2, · · · , k − 1. Then we find 2 zeros of A(h, η) near h = 1
12 inside ( 1

12 − ε2,
1

12 ) and k
zeros ofA(h, η) near h = 0 inside (0, ε1).

Let U(η0) = {η|(6.21) holds} be a subset of a neighborhood of η0 with a very sufficiently
small radius ε∗. Taking an η ∈ U(η0), thenA(h, η) = A(h, η0) + O(ε∗). Therefore,

1 − sgn(A(ε1, η)A( 1
12 − ε2, η))

2
=

1 − sgn(A(ε1, η0)A( 1
12 − ε2, η0))

2

which implies that there exists 1−sgn(A(ε1,η0)A( 1
12−ε2,η0))

2 zero of A(h, η) near h∗0 (if it exists). This

shows thatA(h, η) can have 2 + k +
1−sgn(A(ε1,η0)A( 1

12−ε2,η0))
2 zeros for the case l = 2. The proof is

complete.

In the following, the coefficients in the expansions of A(h, η) and Lemma 6.3.1 will be
applied to determine the zeros of A(h, η). These zeros correspond to the periodic standing
waves.



112

Solving c0(η) = c1(η) = 0 gives
a0 =

1
16

−101
√

3arcsinh
(√

2
)

+ 315
√

2

41
√

3arcsinh
(√

2
)

+ 9
√

2
≈ 0.1626564078 := a†0,

a1 = −
3

16

185
√

3arcsinh
(√

2
)

+ 153
√

2

41
√

3arcsinh
(√

2
)

+ 9
√

2
≈ −1.162656408 := a†1.

Further, taking η0 = (a†0, a
†

1) yields
c2(η0) =

189
(
arcsinh

(√
2
))2
− 141 arcsinh

(√
2
) √

6 − 216

164
√

3arcsinh
(√

2
)

+ 36
√

2
≈ −0.965646921,

b0(η0) =
s1

6

−101
√

3arcsinh
(√

2
)

+ 315
√

2

41
√

3arcsinh
(√

2
)

+ 9
√

2
≈ 2.274637142.

Therefore, taking ε1 > 0 and ε2 > 0 sufficiently small, one hasA( 1
12 − ε2, η0) = c2(η0)

(
− ε2

)
+

h.o.t. > 0, A(ε1, η0) = ε
3
4
1
(
b0(η0) + h.o.t.

)
> 0. Hence,

1 − sgn(A(ε1, η0)A( 1
12 − ε2, η0))

2
= 0.

It is not difficult to show that rank
[
∂(c0,c1)
∂(a0,a1)

]
= 2. Applying Lemma 6.3.1, and taking ε > 0

sufficiently small, one can show that system (6.13) has two isolated periodic orbits near the
heteroclinic loop for some η inside a sufficiently small region enclosing η0. Summarizing the
above discussions, we have the following result.

Theorem 6.3.2 Let ε > 0 be sufficiently small. Then equation (6.2) has two isolated periodic
waves with different amplitudes near the kink wave L 1

12
for some (a0, a1) near (a†0, a

†

1).

Let (l, k, 1) and (l, k, 0) denote the distribution of the periodic waves. The distribution of the
two periodic waves in Theorem 6.3.2 is (2, 0, 0). Using the same procedure in proving Theorem
6.3.2, we can use Lemma 6.3.1 to prove the following theorem.

Theorem 6.3.3 There exist some values of (a0, a1) such that equation (6.2) has two periodic
waves, with the distributions (1, 0, 1), (0, 1, 1), (1, 1, 0) and (0, 0, 2).

Remark 6.3.4 From the proof of Lemma 6.3.1, we know that A( 1
12 , η0) = c0(η0) , 0. There-

fore, the kink wave L 1
12

is broken when the two periodic waves exist by Theorem 6.3.2. Simi-
larly, the kink wave L 1

12
is broken when the two periodic waves exist with a distribution given

in Theorem 6.3.3.
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Let c0 = 0, we have a0 = β1a1 + β2, where

β1 =
5
√

3arcsinh
(√

2
)
− 27

√
2

36
√

3arcsinh
(√

2
)

+ 36
√

2
≈ −0.2308926097,

β2 =
−7
√

3arcsinh
(√

2
)
− 39

√
2

192
√

3arcsinh
(√

2
)

+ 192
√

2
≈ −0.1057923643.

(6.22)

Thus, fixing η as
η∗ = (β1a1 + β2, a1), (6.23)

we haveA( 1
12 , η

∗) = 0. Then the heteroclinic loop L 1
12

persists under an arbitrary perturbation.
Solving b0 = 0 gives

a0 = 0 and a1 =
21
√

3arcsinh
(√

2
)

+ 117
√

2

80
√

3arcsinh
(√

2
)
− 432

√
2
≈ −0.4581886118 := a∗∗1 .

Letting η∗∗ = (0, a∗∗1 ) and substituting η∗∗ into c1 and b1 yield

c1(η∗∗) ≈ −0.7662370141 and b1(η∗∗) ≈ −3.513434941.

Therefore, taking 0 < ε1, ε2 � 1, we have

A(−ε2, η
∗∗) = c1(η∗∗)(−ε2) ln | − ε2| + h.o.t. < 0,

A(ε1, η
∗∗) = ε

3
4
1 (b1(η∗∗)ε

1
2
1 + h.o.t.) < 0.

Hence, 1−sgn(A(h1,η
∗∗)A(h2,η

∗∗))
2 = 0. Taking b0 as the unique free parameter in Lemma 6.3.1, we

can show that there exist values of η near η∗∗ such that system (6.13) has one isolated closed
orbit in the neighborhood of the center E0(0, 0). This means that the heteroclinic loop L 1

12
still

exists for c0 = A( 1
12 , η) = 0. It then follows that

Theorem 6.3.5 Let ε > 0 be sufficiently small. Then equation (6.2) can have one periodic
wave in a neighborhood of the center E0(0, 0) and the kink wave L 1

12
persists for some (a0, a1)

near (0, a∗∗1 ).

Using the same approach described as above, we can prove the following theorem.

Theorem 6.3.6 Taking ε positive and sufficiently small, there exist values of (a0, a1) such that
equation (6.2) can have one periodic wave with the distribution (1, 0, 0) or (0, 0, 1) and the kink
wave L 1

12
persists.

Remark 6.3.7 Theorems 6.3.5 and 6.3.6 imply that when the kink wave persists under the
weakly dissipative influence, there exists a periodic wave, which can have a small amplitude
or a large amplitude.



114

6.3.2 Uniqueness of periodic wave when kink wave persists
In this subsection, we discuss the global existence and uniqueness of periodic wave when the
kink wave persists. Rewrite the Hamiltonian function of system (6.13) as

H(φ, y) =
y2

2
+
φ4

4
−
φ6

6
:= Ψ(y) + Φ(φ) = h, (6.24)

where h ∈ (0, 1
12 ), φ(h) ∈ (−1, 1) and y(h) ∈ (−

√
6

6 ,
√

6
6 ). Then, the Abelian integral (6.14) can

be rewritten as

A(h, η) =

∮
Lh

(a0 + a1φ
2 + φ4)ydφ = a0I0(h) + a1I1(h) + I2(h), (6.25)

where
Ii(h) =

∮
Lh

φ2iydφ, i = 0, 1, 2. (6.26)

We have for h ∈ (0, 1
12 ), i = 0, 1, 2,

Ii(h) =

∮
Lh

φ2iydφ = 4
∫ φ+(h)

0
φ2iydφ = 4

∫ φ+(h)

0
φ2i 1

6

√
12 φ6−18 φ4+72 h dφ > 0,

where φ+(h) > 0 denotes the intersection point of the oval Lh with the positive φ-axis. Then the
following ratios are introduced and well-defined on h ∈ (0, 1

12 ),

P(h) =
I1(h)
I0(h)

and Q(h) =
I2(h)
I0(h)

.

The following result can be now established.

Lemma 6.3.8 With h ∈ (0, 1
12 ), P(h) increases from (0, 0) to ( 1

12 ,−β1), and Q(h) increases from
(0, 0) to ( 1

12 ,−β2), where β1 and β2 are given in (6.22).

Proof For any φ(h) ∈ (0, 1) and y(h) ∈ (0,
√

6
6 ), there exist z(h) = −φ(h) < 0 and ỹ(h) = −y(h) <

0 such that
H(φ(h), 0) = H(z(h), 0) = H(0, y(h)) = H(0, ỹ(h)) = h.

Taking f1(φ) = 1, f2(φ) = φ2 and g(y) = y, we have

ξ(φ) =
f2(φ)Φ′(z) − f2(z)Φ′(φ)
f1(φ)Φ′(z) − f1(z)Φ′(φ)

= φ2,

ζ(y) =

(
g(̃y) − g(y)

)
Ψ′(̃y)Ψ′(y)

g′(̃y)Ψ′(y) − g′(y)Ψ′(̃y)
= y2,

which imply that ξ′(φ)ζ′(y) = 4φ(h)y(h) > 0, so it follows from Li and Zhang (1996) that
P′(h) > 0. Taking f1(φ) = 1, f2(φ) = φ4 and g(y) = y, we obtain ξ′(φ)ζ′(y) = 8φ3(h)y(h) > 0,
so it follows again from Li and Zhang (1996) that Q′(h) > 0. The remaining part of the proof
is to compute the limits of P(h) and Q(h) at the endpoints of the interval (0, 1

12 ), which is
straightforward by using the expansion ofA(h) with the coefficients given in (6.17) and (6.18)
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Recall that we have proved A(h, η∗) has a zero at h = 1
12 , where η∗ is given in (6.23). We

have a further result as given below.

Lemma 6.3.9 A(h, η∗) has a unique zero h† ∈ (0, 1
12 ), which increases from 0 to 1

12 as a1

decreases form −β2
β1

to −a†1, where

a†1 =
555
√

3arcsinh
(√

2
)

+ 459
√

2

656
√

3arcsinh
(√

2
)

+ 144
√

2
≈ 1.162656408.

Proof Considering (6.23), we have

A(h, η∗) =

∮
Lh

a1(β1 + φ2)ydφ +

∮
Lh

(β2 + φ4)ydφ := a1A1(h, η∗) +A2(h, η∗).

We first prove that the ratio A2(h,η∗)
A1(h,η∗) is well defined for h ∈ (0, 1

12 ) by showing thatA1(h, η∗) , 0
for h ∈ (0, 1

12 ). By the property and range of P(h) given in Lemma 6.3.8, we have

A1(h, η∗) = I0(h)
(
β1 + P(h)

)
< 0.

Let ψ1(φ) =
α+φ2

Φ′(φ)−
α+z2

Φ′(z) , ψ2(φ) =
β+φ4

Φ′(φ)−
β+z4

Φ′(z) ,where z = −φ, which is defined by Φ(φ) = Φ(z).
(φ, 0) and (z, 0) are respectively the right and left intersection points of the closed orbit Lh(φ) on
the φ axis. Direct computation gives the Wronskian,∣∣∣∣∣∣ ψ1(φ) ψ2(φ)

ψ′1(φ) ψ′2(φ)

∣∣∣∣∣∣ =
8(φ4 + 2 β1 φ

2 − β2)

φ5 (
φ2 − 1

)2 , 0, φ ∈ (0, 1).

Therefore, {ψ1, ψ2} forms a Chebyshev system, and so is {A1(h, η∗),A2(h, η∗)} by the criterion
in [10]. It follows that any non-trivial linear combination of A1(h, η∗) and A2(h, η∗) has at
most one zero in (0, 1

12 ). This also implies that the ratio A2(h,η∗)
A1(h,η∗) is monotonic for h ∈ (0, 1

12 ), see
Figure 6.3. A direct computation yields

lim
h→0+

A2(h, η∗)
A1(h, η∗)

=
β2

β1
≈ 0.4581886118,

lim
h→ 1

12
−

A2(h, η∗)
A1(h, η∗)

=
β2J10 + J12

β1J10 + J11
= a†1.

Therefore, for any a1 belonging to (−a†1,−
β2
β1

), a1 +
A2(h,η∗)
A1(h,η∗) has a unique zero h† ∈ (0, 1

12 ) with
the location depending on a1. Hence, the conclusion of the Lemma is true since A(h, η∗) =

A1(h, η∗)
(
a1 +

A2(h,η∗)
A1(h,η∗)

)
.

Lemma 6.3.9 implies that

Theorem 6.3.10 There exists a unique periodic wave that coexists with the kink wave for pa-
rameter vector η = η∗ = (β1a1 + β2, a1) with a1 ∈ (−a†1,−

β2
β1

), and the amplitude of the unique
periodic wave increases as a1 decreases.

Remark 6.3.11 We proved the monotonicity of the related ratios of some Abelian integrals in
Lemmas 6.3.8 and 6.3.9 based on different criteria. The criterion given by Li and Zhang [28]
for proving Lemma 6.3.8 is not applicable for proving Lemma 6.3.9.
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A2(h,η∗)
A1(h,η∗)

h

•

•

Figure 6.3: Simulation of A2(h,η∗)
A1(h,η∗) on h ∈ (0, 1

12 ).

6.4 The least upper bound on the number of periodic waves
In this section, we discuss the least upper bound on the number of periodic waves of equation
(6.2) by applying the methods developed on the basis of geometry [7, 19] and algebra [10, 29].
We have written the Hamiltonian function of system (6.13) as the form in (6.24) with h ∈
(0, 1

12 ), φ(h) ∈ (−1, 1) and y(h) ∈ (−
√

6
6 ,

√
6

6 ). And the Abelian integral (6.14) has been rewritten
in the form of (6.26), with

Ii(h) =

∮
Lh

φ2iydφ > 0 for i = 0, 1, 2.

Lemma 6.4.1 For h ∈ (0, 1
12 ), d

dh (Q(h)
P(h) ) > 0.

Proof By Lemma 6.3.8, Q(h)
P(h) is well defined for h ∈ (0, 1

12 ). Further, Q(h)
P(h) =

I2(h)
I1(h) , which is

monotonically increasing for h ∈ (0, 1
12 ) by the method used in Lemma 6.3.8. Hence, the claim

holds.

Then, by Lemma 6.3.8, letting P = P(h), we have h = P−1(P). Define the curve in the
(P,Q)-plane,

Σ =

{
(P,Q)(h)|Q(P) = Q(P−1(P)) =: ψ(P), h ∈

(
0,

1
12

)}
. (6.27)

By Lemma 6.4.1, ψ′(P) > 0. It is not difficult to know that the number of zeros of A(h, η)
equals the number of intersection points of the straight line,

L : a0 + a1P + Q = 0, (6.28)

and the curve Σ.

Lemma 6.4.2 lim
h→0+

d2Q
dP2 > 0.
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Proof A direct calculation shows that

P′(h) =
I0(h)I′1(h) − I′0(h)I1(h)

I0
2(h)

, Q′(h) =
I0(h)I′2(h) − I′0(h)I2(h)

I0
2(h)

,

d2Q

dP2 =
Q′′(h)P′(h) − Q′(h)P′′(h)

P3(h)

= −
I0(I′′2I0I

′
1 − I

′′
2I
′
0I1 − I

′′
0I2I

′
1 − I

′′
1I0I

′
2 + I′′1I

′
0I2 + I′′0I1I

′
2)

(−I′1I0 + I′0I1)3 .

By (6.16) with the coefficients in (6.18), we obtain the expansions of Ii, I′i and I′′i for i =

0, 1, 2, which are substituted into the above equation and then taking limit yields,

lim
h→0+

d2Q

dP2 =
25 π4

126 (Γ (3/4))8 ≈ 3.801006321.

Lemma 6.4.3 For a sufficiently small ε∗ > 0 and h ∈ ( 1
12 − ε

∗, 1
12 ), d2Q

dP2 > 0.

Proof By definition, one has

lim
h→ 1

12

P(h) =
J01

J00
, lim

h→ 1
12

Q(h) =
J02

J00
, lim

h→ 1
12

Q(h)
P(h)

=
J02

J01
.

Since dQ
dP =

Q′(h)
P′(h) =

I0(h)I′2(h)−I′0(h)I2(h)
I0(h)I′1(h)−I′0(h)I1(h) , and for k = 0, 1, 2,

I′k(h) = J1k ln
( 1
12
− h

)
+ J1k + J2k + · · ·

= ln
( 1
12
− h

) J1k +
J1k

ln( 1
12 − h)

+
J2k

ln( 1
12 − h)

+ · · ·

 ,
we obtain

lim
h→ 1

12

dQ
dP

=
J00J12 − J10J02

J00J11 − J10J01
.

Let ε∗ > 0 be sufficiently small, and define

Σ∗ =

{
(P,Q)(h)|Q(P) = Q(P−1(P)), h ∈

( 1
12
− ε∗,

1
12

)}
,

which is a very small arc of the curve Σ near (P∗,Q∗) = (P( 1
12 ),Q( 1

12 )) = ( J01
J00
, J02

J00
). The tangent

line to Σ∗ at the point (P∗,Q∗), denoted by L∗, is given by

L∗ : Q − Q∗ =
dQ
dP

∣∣∣∣∣
h= 1

12

(P − P∗).

The vertical distance between the point (P(h),Q(h)) on the curve Σ∗ and the point (P,Q) =

(P(h),Q) on the tangent line L∗ near (P∗,Q∗) is

Q(h) − Q = Q(h) − Q∗ −
dQ
dP
|h= 1

12
(P − P∗)

=
1
I0(h)

(I2(h) − Q∗I0(h) −
dQ
dP
|h= 1

12
(I1(h) − P∗I0(h)))

=
%

I0(h)

(( 1
12
− h

)
+ O

(( 1
12
− h

)2
ln

( 1
12
− h

)))
,
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where

% =
−J0J11J22 + J0J12J21 + J1J10J22 − J1J12J20 − J2J10J21 + J2J11J20

J0J11 − J1J10
≈ 0.9656469152.

We have shown I0(h) > 0. Hence, Q(h) − Q > 0 for h ∈ ( 1
12 − ε

∗, 1
12 ). Therefore, the arc Σ∗

is located above the tangent line L∗, which implies that Σ∗ is convex, and so d2Q
dP2 > 0 on Σ∗.

Next, we consider A′′(h, η). The equation H(φ, y) =
y2

2 +
φ3

4 −
φ6

5 = h implies that ∂y
∂h = 1

y .

It follows that I′′i (h) = ∂
∂hI

′
i(h) = ∂

∂h

( ∮
Lh

φ2i

y dφ
)

for i = 1, 2.

Lemma 6.4.4 For i = 0, 1, 2, we have

(i) 2hIi(h) =

∮
Lh

f ∗i (φ)y3dφ, 4h2Ii(h) =

∮
Lh

f ∗∗i (φ)y5dφ,

(ii) 8h3I′′i (h) =

∮
Lh

fi(φ)y3dφ := Îi(h),

where f ∗i (φ) and f ∗∗i (φ) are given later in the proof, and fi(φ) =
φ2iµi(φ)

648(φ−1)6(φ+1)6 with

µi(φ) =
(
64 x12 − 480 x10 + 1488 x8 − 2440 x6 + 2232 x4 − 1080 x2 + 216

)
i3

+
(
384x12−2544x10+7104x8−10812x6+9540x4−4644x2+972

)
i2

+
(
192 x12 − 944 x10 + 2020 x8 − 2582 x6 + 2394 x4 − 1674 x2 + 594

)
i

+192 x12 − 944 x10 + 2020 x8 − 2582 x6 + 2394 x4 − 1674 x2 + 594.

Proof (i) It is obvious that 2Φ(φ)+y2

2h = 1 holds on each periodic orbit Lh = {H(φ, y) = h}. Then,
for i = 0, 1, 2, 3,

Ii(h) =
1

2h

∮
Lh

(2Φ(φ) + y2)φ2iydφ =
1
2h

(∮
Lh

2φ2iΦ(φ)ydφ +

∮
Lh

φ2iy3dφ
)
. (6.29)

By Lemma 4.1 in [10] (for this case k = 3 and F(φ) = 2φ2iΦ(φ)), we have∮
Lh

2φ2iΦ(φ)ydφ =

∮
Lh

Gi(φ)y3dφ,

where Gi(φ) = d
3dφ ( 2φ2iΦ(φ)

Φ′(φ) ) =
φ2i(4iφ4+2φ4−10iφ2−3φ2+6i+3)

18(φ−1)2(φ+1)2 . Therefore,

Ii(h) =
1

2h

∮
Lh

(φ2i + Gi(φ))y3dφ :=
∮

Lh

f ∗i (φ)y3dφ, (6.30)

with f ∗i (φ) = φ2i + Gi(φ) =
φ2i(4 iφ4+20 φ4−10 iφ2−39 φ2+6 i+21)

18(φ−1)2(φ+1)2 . Further, using 2Φ(x)+y2

2h = 1 we have

Ii(h) =
1

2h

∮
Lh

(
2Φ(φ) + y2

2h

)
f ∗i (φ)y3dφ

=
1

4h2

∮
Lh

(2Φ(φ) + y2)(φ2i + Gi(φ))y3dφ

=
1

4h2

∮
Lh

2Φ(φ)(φ2i + Gi(φ))y3dφ +
1

4h2

∮
Lh

(φ2i + Gi(φ))y5dφ.

(6.31)
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Again by Lemma 4.1 in [10] (for this case k = 5 and F(φ) = 2Φ(φ)(φ2i + Gi(φ)), we obtain∮
Lh

2Φ(φ)(φ2i + Gi(φ))y3dφ =

∮
Lh

G̃i(φ)y5dφ, (6.32)

where G̃i(φ) = d
5dφ

(2Φ(φ)(φ2i+Gi(φ))
Φ′(φ)

)
=

φ2ig̃i(φ)
540(φ−1)4(φ+1)4 with

g̃i(φ) =16 i2φ8 + 88 iφ8 − 80 i2φ6 + 40 φ8 − 380 iφ6 + 148 i2φ4 − 142 φ6

+ 628 iφ4 − 120 i2φ2 + 213 φ4 − 480 iφ2 + 36 i2 − 162 φ2 + 144 i + 63.

Substituting (6.32) into the last equation in (6.31) completes the proof of this part.
(ii) It follows from (6.31) and (6.32) that

Ii(h) =
1

4h2

∮
Lh

(φ2i + Gi(φ) + G̃i(φ))y5dφ :=
∮

Lh

f ∗∗i (φ)y5dφ, (6.33)

where f ∗∗i (φ) =
φ2ig∗∗i (φ)

540(φ+1)2(φ−1)2 with

g∗∗i (φ) =16 i2φ8 + 208 iφ8 − 80 i2φ6 + 640 φ8 − 920 iφ6 + 148 i2φ4 − 2512 φ6

+ 1528 iφ4−120 i2φ2+3783φ4−1140 iφ2+36 i2−2592 φ2+324 i+693.

Differentiating both sides of the first equation in part (i) with respect to h, we have

2Ii(h) + 2hI′i(h) = 3
∮

Lh

f ∗i (φ)ydφ. (6.34)

Similarly, differentiating both sides of the second equation in (i), we obtain

8hIi(h) + 4h2I′i(h) = 5
∮

Lh

f ∗∗i (φ)y3dφ. (6.35)

Then further differentiating both sides of (6.35) yields

8Ii(h) + 16hI′i(h) + 4h2I′′i (h) = 15
∮

Lh

f ∗∗i (φ)ydφ. (6.36)

Now, combining (6.26), (6.34) and (6.36), we have

4h2I′′i =

∮
Lh

(15 f ∗∗i (φ) − 24 f ∗i (φ) + 8φ2i)ydφ. (6.37)

Similar to the proof for part (i), multiplying both sides of (6.37) by 2h = 2Φ(φ) + y2, and
applying Lemma 4.1 in [10] (in this case k = 3 and F(φ) = 2Φ(φ)(15 f ∗∗i (φ) − 24 f ∗i (φ) + 8φ2i)),
we obtain

8h3I′′i (h) =

∮
Lh

fi(φ)y3dφ = Îi(h).

Lemma 6.4.5 A′′(h, η) has at most 2 zeros for h ∈ (0, 1
12 ) counting multiplicity.
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Proof We have 8h3A′′(h, η) = a0 Î0(h) + a1 Î1(h) + Î2(h) by Lemma 6.4.4. Therefore, we only
need to prove that a0 Î0(h) + a1 Î1(h) + Î2(h) has at most two zeros for any possible values of a0

and a1. The following proof is based on Theorem B in (Grau et al., 2011). Defining

li(φ) :=
( fi

Φ′

)
(φ) −

( fi

Φ′

)
(−φ), i = 0, 1, 2. (6.38)

A direct computation of the related Wronskian on li(φ) (i = 0, 1, 2) gives

W[l1] =
5w1(φ)

324 (φ + 1)7 (φ − 1)7 φ
, W[l0, l1] =

5w2(φ)
17496 φ5 (φ + 1)13 (φ − 1)13 ,

W[l0, l1, l2] =
5w3(φ)

5668704 φ6 (φ + 1)22 (φ − 1)22 ,

where

w1(φ) = 32φ10 − 200φ8 + 531φ6 − 765φ4 + 621φ2 − 243,

w2(φ) = 2048φ18 − 19456φ16 + 81632φ14 − 191952φ12 + 253233φ10

− 118125φ8 − 159894φ6 + 295974φ4 − 188811φ2 + 45927,

w3(φ) = 47710208φ35 + 135790592φ34 − 845021184φ33 − 2340552704φ32

+ 7033815040φ31 + 18907004928φ30 − 36326408192φ29

− 94266368000φ28 + 129089712000φ27 + 320235321728φ26

− 329219992672φ25 − 765640649760φ24 + 603892207740φ23

+ 1259178557868φ22 − 754467514569φ21 − 1220180873751φ20

+ 488325017682φ19 − 12046198122φ18 + 280465675443φ17

+ 2337686705781φ16 − 1198522735704φ15 − 4519717615224φ14

+ 1698938411814φ13 + 5135082714090φ12 − 1529485387164φ11

− 3973076491860φ10 + 954545022774φ9 + 2131705287306φ8

− 413339142132φ7 − 766638284580φ6 + 118314060291φ5

+ 169498323981φ4 − 19877664870φ3 − 19356852690φ2

+ 1432233495φ + 859340097.

Applying Sturm’s Theorem to w1(φ), w2(φ) and w3(φ), respectively, shows that they have no
roots for φ ∈ (0, 1). By Theorem B in (Grau et al., 2011), {̂I0(h), Î1(h), Î2(h)} forms a Chebyshev
system, and therefore a0 Î0(h) + a1 Î1(h) + Î2(h) has at most two zeros in (0, 1

12 ) counting the
multiplicity for all possible values (a0, a1).

Finally, we obtain our main result.

Theorem 6.4.6 For all possible values of (a0, a1) ∈ R2,A(h, η) has at most two zeros counting
multiplicity for h ∈ (0, 1

12 ), and this is the sharp bound. Hence, system (6.2) can have at most
two periodic waves, and this bound is sharp.
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Proof First, we show by contradiction that the curve Σ defined in (6.27) is globally convex for
h ∈ (0, 1

12 ). Σ is locally convex for 0 < h � 1 and 0 < 1
12 − h � 1 by Lemmas 6.4.2 and 6.4.3.

Then Σ has 2n inflection points with n ≥ 0. If n ≥ 1, then there must exist constants a?0 and a?1
such that the straight line,L : a0+a1P+Q = 0, cuts Σ at least four times (counting multiplicity)
for (a0, a1) = (a?0 , a

?
1 ). This implies that A(h, η) has at least four zeros for h ∈ (0, 1

12 ) for these
a?0 and a?1 . However, noticing A(0, η) ≡ 0, it follows that A′′(h, η) has at least three zeros
(counting multiplicity) in (0, 1

12 ) by the mean value theorem, which contradicts Lemma 6.4.5.
Therefore, n = 0, which implies that Σ does not have inflection points and so the curve Σ is
globally convex.

Since Σ, except the h, does not contain any varying parameter coefficients, it is a globally
convex curve. However, the straight line L can be located anywhere in the P-Q plane by
varying a0 and a1, so we can choose different values of (a0, a1) such that L cuts Σ for zero, one
or two times, but at most twice. For h ∈ (0, 1

12 ), the number of zeros of A(h, η) = a0I0(h) +

a1I1(h) + I2(h) is the number of the intersection points of the straight line L given in (6.28)
and the curve Σ in the (P,Q)-plane. Therefore, A(h, η) has at most two zeros in (0, 1

12 ) and
there indeed exist a?0 and a?1 such that L intersects Σ twice.

This completes the proof.

Remark 6.4.7 (i) To find one upper bound of the number of zeros of A(h, η), the Cheby-
shev criterion (Theorem B, [10] and Theorem A, [29]) cannot be directly applied to consider
{I0,I1,I2}, because the second Wronskian of the criterion functions with respect to {Ii,I j}

having any powers of y in I0, I1 and I2 always has one zero for x ∈ (0, 1), i, j = 0, 1, 2, i , j.
(ii) We have combined the algebraic method (Chebyshev Criterion) and the geometric

method to carefully analyze the zero bifurcation of the Abelian integral. Theorem 6.4.6 also
presents a new result on the bound of the number of zeros of Abelian integral, which is related
to Hilbert’s 16th problem.

6.5 Concluding remarks
In this work, we examine the dynamics of the cubic-quintic nonlinear Schrödinger equation
involving weak dissipative terms, which is treated as a perturbed problem. A technical step
is to reduce the perturbed partial differential equations into a singularly perturbed system of
ordinary differential equations, from which the Fenichel’s criterion can be applied to assure
the existence of an invariant manifold, and the underlying problem is then further reduced
to a regularly perturbed problem on the manifold. The Abelian integral is employed in our
study as the main tool to establish the existence of kink and periodic waves, in particular, their
coexistence. Furthermore, we have shown that there exist at most two periodic waves with
different amplitudes for the equation under specific parameter conditions. This well solves the
problem imposed in our introduction part and provides deep insights into the dynamics of the
underlying equation. The strategy proposed in this chapter is a sophisticated combination of
algebraic and geometric methods, which is more efficient and much simpler compared to other
existing methods.
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Chapter 7

Conclusion and future work

7.1 Conclusion

In this thesis, we have studied the limit cycle bifurcation in some perturbed Hamiltonian sys-
tems and the existence of solitary, kink and periodic waves in some dissipative partial differen-
tia equations by applying Abelian integral method.

We have studied the number of limit cycles bifurcating from the periodic annuli of two quar-
tic hyperelliptic Hamiltonian systems, which have a nilpotent-saddle loop and a heteroclinic
loop connecting a cusp to a hyperbolic saddle, respectively. Both of the related full Abelian
integrals are decoupled into four generating elements, which are the elementary Abelian inte-
grals generating the full Abelian integrals. We introduce three different combinations to the
four generating elements and obtain three Abelian integrals including a parameter. Then each
of the new parametric Abelian integrals has three generating elements. The Chebyshev cri-
terion is applied to each parametric Abelian integral set, which gives the parameter partition
based on the number of the zeros of each parametric Abelian integral. Thus, a cubic set of the
three-dimensional parameter space is obtained, only on which the original full Abelian inte-
gral may have four zeros. A further analysis excludes the possibility of four zeros. Thus, the
sharp bound on the maximal number of zeros of the associated full Abelian integrals is proved
to be three for both systems. Therefore, there are at most three limit cycles bifurcating from
the periodic annuli for the two perturbed quartic hyperelliptic Hamiltonian systems. Using the
similar idea, we investigate a quintic Hamiltonian system with a more degenerate heteroclinic
loop. We have proved that the sharp bound on the maximal number of zeros of the associ-
ated Abelian integral is three. The sharp bounds we obtained in this thesis give the answer to
the open questions left in previous works that whether the sharp bound is three or four. The
small limit cycles bifurcating from the origin of the quintic Hamiltonian system is also inves-
tigated for smooth and piecewise smooth polynomial damping terms. The Hopf cyclicities are
obtained.

We extend the theory of Abelian integrals to the study on nonlinear wave equations. In
solving real world problems, some dissipative effects should be included in nonlinear wave
equations due to uncertain environments and external disturbing factors, such as shears in the
layer of water, wind and temperatures. Thus, the integrability is destroyed and the study on the
existence of solitary, kink and periodic waves becomes much challenging. We have investigated
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a nonlinear BBM equation and a Schrödinger equation with weakly external disturbing factors.
The weakly dissipative equations are reduced into two singularly perturbed ODE systems by
applying singular perturbation theory. For each system, the normally hyperbolic property of
the equilibrium set of the fast system assures the related slow manifold, on which a regular
perturbation problem is formed as a planar dynamical system. By studying the Abelian integral
with various techniques, the existence of solitary, kink and periodic waves as well as their
coexistence are established for both the perturbed BBM equation and the Schrödinger equation.

7.2 Future work
There are many interesting yet challenging problems that remain open and need future research.

As we discussed in Chapter 2, the quartic hyperelliptic Hamiltonian system has 12 topolog-
ical portraits. We only identify ZL(4, 3) for the periodic annulus bounded by a nilpotent saddle
homoclinic loop or a heteroclinic loop connececting a hyperbolic saddle to a nilpotent cusp.
ZL(4, 3) for other periodic annuli has not been studied. We have applied our methods devel-
oped in Chapter 2 to the unperturbed system which has a nilpotent center and a saddle loop,
and obtained a smaller upper bound to be four, which is better than that obtained in previous
works. However, we could not determine the exact bound, whether it is four or three, since so
far only three limit cycles are obtained. Our conjecture on the sharp bound is three and needs
further investigation.

Through the study on the quintic Hamiltonian system in Chapter 3, we find that the degen-
eracy in the system leads to similar properties like those in the quadratic elliptic Hamiltonian
system, such as that the dimension of first three Abelian integrals is two because of their linear
dependance. Thus, an interesting question arises: What is the annulus cyclicity of the system
if the damping is a full polynomial perturbation in the form of

Q(x, y)
∂

∂y
− P(x, y)

∂

∂x
, (7.1)

where max(deg(P(x, y)), deg(Q(x, y))) = n? Is it n − 1? This is exactly the same as that in
classical work [3]. We conjecture that the cyclicity is n − 1 when the periodic annulus is
perturbed by the full polynomial perturbation. We also conjecture that the cyclicity for Liénard

type damping (
n∑

i=0
αix)y ∂

∂y is
[

2n+1
3

]
. These conjectures are worth for future research and may

need to develop new methodologies.
We have successfully applied the Abelian integral method to study the waves in some

nonlinear PDEs. There exist many models involving other type dissipative effects, such as
continuous delay dissipation in Camassa–Holm equation [1]. However, the problems on the
existence of periodic waves and the coexistence of solitary and periodic waves are found to be
challenging. Moreover, for the non-dissipative Camassa–Holm equation, the stability of small
amplitude waves has not been investigated due to the complex structure of the Hamiltonian.
Our method may be combined with the results in [2, 4] to attack stability problem of such
systems.

In general, the stability of waves is an interesting and important research topic that is worth
for further study. We have established the existence of solitary and kink waves, however we did
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not discuss the stability in this thesis. Studying the stability needs to analyze the point spectrum
of the related differential operators when the dissipation is considered. It is a challenging task
and need further investigation.
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