116 research outputs found

    Error-Tolerant Exact Query Learning of Finite Set Partitions with Same-Cluster Oracle

    Full text link
    This paper initiates the study of active learning for exact recovery of partitions exclusively through access to a same-cluster oracle in the presence of bounded adversarial error. We first highlight a novel connection between learning partitions and correlation clustering. Then we use this connection to build a R\'enyi-Ulam style analytical framework for this problem, and prove upper and lower bounds on its worst-case query complexity. Further, we bound the expected performance of a relevant randomized algorithm. Finally, we study the relationship between adaptivity and query complexity for this problem and related variants.Comment: 28 pages, 2 figure

    Optimal Clustering with Noisy Queries via Multi-Armed Bandit

    Full text link
    Motivated by many applications, we study clustering with a faulty oracle. In this problem, there are nn items belonging to kk unknown clusters, and the algorithm is allowed to ask the oracle whether two items belong to the same cluster or not. However, the answer from the oracle is correct only with probability 12+δ2\frac{1}{2}+\frac{\delta}{2}. The goal is to recover the hidden clusters with minimum number of noisy queries. Previous works have shown that the problem can be solved with O(nklognδ2+poly(k,1δ,logn))O(\frac{nk\log n}{\delta^2} + \text{poly}(k,\frac{1}{\delta}, \log n)) queries, while Ω(nkδ2)\Omega(\frac{nk}{\delta^2}) queries is known to be necessary. So, for any values of kk and δ\delta, there is still a non-trivial gap between upper and lower bounds. In this work, we obtain the first matching upper and lower bounds for a wide range of parameters. In particular, a new polynomial time algorithm with O(n(k+logn)δ2+poly(k,1δ,logn))O(\frac{n(k+\log n)}{\delta^2} + \text{poly}(k,\frac{1}{\delta}, \log n)) queries is proposed. Moreover, we prove a new lower bound of Ω(nlognδ2)\Omega(\frac{n\log n}{\delta^2}), which, combined with the existing Ω(nkδ2)\Omega(\frac{nk}{\delta^2}) bound, matches our upper bound up to an additive poly(k,1δ,logn)\text{poly}(k,\frac{1}{\delta},\log n) term. To obtain the new results, our main ingredient is an interesting connection between our problem and multi-armed bandit, which might provide useful insights for other similar problems.Comment: ICML 202

    SHAPES : Easy and high-level memory layouts

    Get PDF
    CPU speeds have vastly exceeded those of RAM. As such, developers who aim to achieve high performance on modern architectures will most likely need to consider how to use CPU caches effectively, hence they will need to consider how to place data in memory so as to exploit spatial locality and achieve high memory bandwidth. Performing such manual memory optimisations usually sacrifices readability, maintainability, memory safety, and object abstraction. This is further exacerbated in managed languages, such as Java and C#, where the runtime abstracts away the memory from the developer and such optimisations are, therefore, almost impossible. To that extent, we present in this thesis a language extension called SHAPES . SHAPES aims to offer developers more fine-grained control over the placement of data, without sacrificing memory safety or object abstraction, hence retaining the expressiveness and familiarity of OOP. SHAPES introduces the concepts of pools and layouts; programmers group related objects into pools, and specify how objects are laid out in these pools. Classes and types are annotated by pool parameters, which allow placement aspects to be changed orthogonally to how the business logic operates on the objects in the pool. These design decisions disentangle business logic and memory concerns. We provide a formal model of SHAPES , present its type and memory safety model, and its translation into a low-level language. We present our reasoning as to why we can expect SHAPES to be compiled in an efficient manner in terms of the runtime representation of objects and the access to their fields. Moreover, we present SHAPES -z, an implementation of SHAPES as an embeddable language, and shapeszc , the compiler for SHAPES -z. We provide our our design and implementation considerations for SHAPES -z and shapeszc . Finally, we evaluate the performance of SHAPES and SHAPES -z through case studies.Open Acces

    On the Enhancement of Remote GPU Virtualization in High Performance Clusters

    Full text link
    Graphics Processing Units (GPUs) are being adopted in many computing facilities given their extraordinary computing power, which makes it possible to accelerate many general purpose applications from different domains. However, GPUs also present several side effects, such as increased acquisition costs as well as larger space requirements. They also require more powerful energy supplies. Furthermore, GPUs still consume some amount of energy while idle and their utilization is usually low for most workloads. In a similar way to virtual machines, the use of virtual GPUs may address the aforementioned concerns. In this regard, the remote GPU virtualization mechanism allows an application being executed in a node of the cluster to transparently use the GPUs installed at other nodes. Moreover, this technique allows to share the GPUs present in the computing facility among the applications being executed in the cluster. In this way, several applications being executed in different (or the same) cluster nodes can share one or more GPUs located in other nodes of the cluster. Sharing GPUs should increase overall GPU utilization, thus reducing the negative impact of the side effects mentioned before. Reducing the total amount of GPUs installed in the cluster may also be possible. In this dissertation we enhance one framework offering remote GPU virtualization capabilities, referred to as rCUDA, for its use in high-performance clusters. While the initial prototype version of rCUDA demonstrated its functionality, it also revealed concerns with respect to usability, performance, and support for new GPU features, which prevented its used in production environments. These issues motivated this thesis, in which all the research is primarily conducted with the aim of turning rCUDA into a production-ready solution for eventually transferring it to industry. The new version of rCUDA resulting from this work presents a reduction of up to 35% in execution time of the applications analyzed with respect to the initial version. Compared to the use of local GPUs, the overhead of this new version of rCUDA is below 5% for the applications studied when using the latest high-performance computing networks available.Las unidades de procesamiento gráfico (Graphics Processing Units, GPUs) están siendo utilizadas en muchas instalaciones de computación dada su extraordinaria capacidad de cálculo, la cual hace posible acelerar muchas aplicaciones de propósito general de diferentes dominios. Sin embargo, las GPUs también presentan algunas desventajas, como el aumento de los costos de adquisición, así como mayores requerimientos de espacio. Asimismo, también requieren un suministro de energía más potente. Además, las GPUs consumen una cierta cantidad de energía aún estando inactivas, y su utilización suele ser baja para la mayoría de las cargas de trabajo. De manera similar a las máquinas virtuales, el uso de GPUs virtuales podría hacer frente a los inconvenientes mencionados. En este sentido, el mecanismo de virtualización remota de GPUs permite que una aplicación que se ejecuta en un nodo de un clúster utilice de forma transparente las GPUs instaladas en otros nodos de dicho clúster. Además, esta técnica permite compartir las GPUs presentes en el clúster entre las aplicaciones que se ejecutan en el mismo. De esta manera, varias aplicaciones que se ejecutan en diferentes nodos de clúster (o los mismos) pueden compartir una o más GPUs ubicadas en otros nodos del clúster. Compartir GPUs aumenta la utilización general de la GPU, reduciendo así el impacto negativo de las desventajas anteriormente mencionadas. De igual forma, este mecanismo también permite reducir la cantidad total de GPUs instaladas en el clúster. En esta tesis mejoramos un entorno de trabajo llamado rCUDA, el cual ofrece funcionalidades de virtualización remota de GPUs para su uso en clusters de altas prestaciones. Si bien la versión inicial del prototipo de rCUDA demostró su funcionalidad, también reveló dificultades con respecto a la usabilidad, el rendimiento y el soporte para nuevas características de las GPUs, lo cual impedía su uso en entornos de producción. Estas consideraciones motivaron la presente tesis, en la que toda la investigación llevada a cabo tiene como objetivo principal convertir rCUDA en una solución lista para su uso entornos de producción, con la finalidad de transferirla eventualmente a la industria. La nueva versión de rCUDA resultante de este trabajo presenta una reducción de hasta el 35% en el tiempo de ejecución de las aplicaciones analizadas con respecto a la versión inicial. En comparación con el uso de GPUs locales, la sobrecarga de esta nueva versión de rCUDA es inferior al 5% para las aplicaciones estudiadas cuando se utilizan las últimas redes de computación de altas prestaciones disponibles.Les unitats de processament gràfic (Graphics Processing Units, GPUs) estan sent utilitzades en moltes instal·lacions de computació donada la seva extraordinària capacitat de càlcul, la qual fa possible accelerar moltes aplicacions de propòsit general de diferents dominis. No obstant això, les GPUs també presenten alguns desavantatges, com l'augment dels costos d'adquisició, així com major requeriment d'espai. Així mateix, també requereixen un subministrament d'energia més potent. A més, les GPUs consumeixen una certa quantitat d'energia encara estant inactives, i la seua utilització sol ser baixa per a la majoria de les càrregues de treball. D'una manera semblant a les màquines virtuals, l'ús de GPUs virtuals podria fer front als inconvenients esmentats. En aquest sentit, el mecanisme de virtualització remota de GPUs permet que una aplicació que s'executa en un node d'un clúster utilitze de forma transparent les GPUs instal·lades en altres nodes d'aquest clúster. A més, aquesta tècnica permet compartir les GPUs presents al clúster entre les aplicacions que s'executen en el mateix. D'aquesta manera, diverses aplicacions que s'executen en diferents nodes de clúster (o els mateixos) poden compartir una o més GPUs ubicades en altres nodes del clúster. Compartir GPUs augmenta la utilització general de la GPU, reduint així l'impacte negatiu dels desavantatges anteriorment esmentades. A més a més, aquest mecanisme també permet reduir la quantitat total de GPUs instal·lades al clúster. En aquesta tesi millorem un entorn de treball anomenat rCUDA, el qual ofereix funcionalitats de virtualització remota de GPUs per al seu ús en clústers d'altes prestacions. Si bé la versió inicial del prototip de rCUDA va demostrar la seua funcionalitat, també va revelar dificultats pel que fa a la usabilitat, el rendiment i el suport per a noves característiques de les GPUs, la qual cosa impedia el seu ús en entorns de producció. Aquestes consideracions van motivar la present tesi, en què tota la investigació duta a terme té com a objectiu principal convertir rCUDA en una solució preparada per al seu ús entorns de producció, amb la finalitat de transferir-la eventualment a la indústria. La nova versió de rCUDA resultant d'aquest treball presenta una reducció de fins al 35% en el temps d'execució de les aplicacions analitzades respecte a la versió inicial. En comparació amb l'ús de GPUs locals, la sobrecàrrega d'aquesta nova versió de rCUDA és inferior al 5% per a les aplicacions estudiades quan s'utilitzen les últimes xarxes de computació d'altes prestacions disponibles.Reaño González, C. (2017). On the Enhancement of Remote GPU Virtualization in High Performance Clusters [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86219TESISPremios Extraordinarios de tesis doctorale

    The 10th Jubilee Conference of PhD Students in Computer Science

    Get PDF

    From Valid Measurements to Valid Mini-Apps

    Get PDF
    In high-performance computing, performance analysis, tuning, and exploration are relevant throughout the life cycle of an application. State-of-the-art tools provide capable measurement infrastructure, but they lack automation of repetitive tasks, such as iterative measurement-overhead reduction, or tool support for challenging and time-consuming tasks, e.g., mini-app creation. In this thesis, we address this situation with (a) a comparative study on overheads introduced by different tools, (b) the tool PIRA for automatic instrumentation refinement, and (c) a tool-supported approach for mini-app extraction. In particular, we present PIRA for automatic iterative performance measurement refinement. It performs whole-program analysis using both source-code and runtime information to heuristically determine where in the target application measurement hooks should be placed for a low-overhead assessment. At the moment, PIRA offers a runtime heuristic to identify compute-intensive parts, a performance-model heuristic to identify scalability limitations, and a load imbalance detection heuristic. In our experiments, PIRA compared to Score-P’s built-in filtering significantly reduces the runtime overhead in 13 out of 15 benchmark cases and typically introduces a slowdown of < 10 %. To provide PIRA with the required infrastructure, we develop MetaCG — an extendable lightweight whole-program call-graph library for C/C++. The library offers a compiler-agnostic call-graph (CG) representation, a Clang-based tool to construct a target’s CG, and a tool to validate the structure of the MetaCG. In addition to its use in PIRA, we show that whole-program CG analysis reduces the number of allocation to track by the memory tracking sanitizer TypeART by up to a factor of 2,350×. Finally, we combine the presented tools and develop a tool-supported approach to (a) identify, and (b) extract relevant application regions into representative mini-apps. Therefore, we present a novel Clang-based source-to-source translator and a type-safe checkpoint-restart (CPR) interface as a common interface to existing MPI-parallel CPR libraries. We evaluate the approach by extracting a mini-app of only 1,100 lines of code from an 8.5 million lines of code application. The mini-app is subsequently analyzed, and maintains the significant characteristics of the original application’s behavior. It is then used for tool-supported parallelization, which led to a speed-up of 35 %. The software presented in this thesis is available at https://github.com/tudasc

    Exploiting BSP Abstractions for Compiler Based Optimizations of GPU Applications on multi-GPU Systems

    Get PDF
    Graphics Processing Units (GPUs) are accelerators for computers and provide massive amounts of computational power and bandwidth for amenable applications. While effectively utilizing an individual GPU already requires a high level of skill, effectively utilizing multiple GPUs introduces completely new types of challenges. This work sets out to investigate how the hierarchical execution model of GPUs can be exploited to simplify the utilization of such multi-GPU systems. The investigation starts with an analysis of the memory access patterns exhibited by applications from common GPU benchmark suites. Memory access patterns are collected using custom instrumentation and a simple simulation then analyzes the patterns and identifies implicit communication across the different levels of the execution hierarchy. The analysis reveals that for most GPU applications memory accesses are highly localized and there exists a way to partition the workload so that the communication volume grows slower than the aggregated bandwidth for growing numbers of GPUs. Next, an application model based on Z-polyhedra is derived that formalizes the distribution of work across multiple GPUs and allows the identification of data dependencies. The model is then used to implement a prototype compiler that consumes single-GPU programs and produces executables that distribute GPU workloads across all available GPUs in a system. It uses static analysis to identify memory access patterns and polyhedral code generation in combination with a dynamic tracking system to efficiently resolve data dependencies. The prototype is implemented as an extension to the LLVM/Clang compiler and published in full source. The prototype compiler is then evaluated using a set of benchmark applications. While the prototype is limited in its applicability by technical issues, it provides impressive speedups of up to 12.4x on 16 GPUs for amenable applications. An in-depth analysis of the application runtime reveals that dependency resolution takes up less than 10% of the runtime, often significantly less. A discussion follows and puts the work into context by presenting and differentiating related work, reflecting critically on the work itself and an outlook of the aspects that could be explored as part of this research. The work concludes with a summary and a closing opinion
    corecore