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Abstract 

CPU speeds have vastly exceeded those of RAM. As such, developers who aim to achieve high 

performance on modern architectures will most likely need to consider how to use CPU caches 

effectively, hence they will need to consider how to place data in memory so as to exploit spatial 

locality and achieve high memory bandwidth. 

Performing such manual memory optimisations usually sacrifices readability, maintainability, 

memory safety, and object abstraction. This is further exacerbated in managed languages, such 

as Java and C#, where the runtime abstracts away the memory from the developer and such 

optimisations are, therefore, almost impossible. 

To that extent, we present in this thesis a language extension called SHAPES . SHAPES aims 

to offer developers more fine-grained control over the placement of data, without sacrificing 

memory safety or object abstraction, hence retaining the expressiveness and familiarity of OOP. 

SHAPES introduces the concepts of pools and layouts; programmers group related objects into 

pools, and specify how objects are laid out in these pools. Classes and types are annotated 

by pool parameters, which allow placement aspects to be changed orthogonally to how the 

business logic operates on the objects in the pool. These design decisions disentangle business 

logic and memory concerns. 

We provide a formal model of SHAPES , present its type and memory safety model, and its 

translation into a low-level language. We present our reasoning as to why we can expect 

SHAPES to be compiled in an efficient manner in terms of the runtime representation of objects 

and the access to their fields. 

Moreover, we present SHAPES -z, an implementation of SHAPES as an embeddable language, 

and shapeszc , the compiler for SHAPES -z. We provide our our design and implementation 

considerations for SHAPES -z and shapeszc . Finally, we evaluate the performance of SHAPES 

and SHAPES -z through case studies. 
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Chapter 1 

Introduction 

Moore’s law has resulted in significant improvements in the execution speed of CPUs in the 

last decades. DRAM speed, on the other hand, has certainly increased as well, but at a much 

slower rate than that of CPUs. A common belief that seems to be still held even today is 

that accessing main memory is “cheap”; this belief did have merit on older machines, where 

the speed of memory access used to rival that of the CPU, but it no longer necessarily holds. 

Nowadays, a fetch from main memory can be expected to take hundreds of CPU cycles to 

execute. 

To mitigate this gap between CPU and DRAM speed, CPU architects have introduced caches : 

Caches aim to improve average memory access time; the more frequently data is served from 

the cache instead of DRAM, the fewer clock cycles will be spent on memory accesses on aver- 

age [HP11]. 

This positive impact of caches on performance can be significant; fetching data from the cache 

can be an order of magnitude faster compared to fetching data from main memory. As such, 

algorithms that aim to be performant can be expected to need to pay more attention to how 

they layout and access data in memory; “cache-unfriendly” algorithm implementations can be 

expected to perform suboptimally compared to their equivalent “cache-friendly” counterparts. 

However, changing the business logic so as to better utilise the cache can require signifi- 

23



 

24 Chapter 1. Introduction

 

Level Size Latency Line size Associativity

 

L1d cache 32 K B 4 cycles 64 bytes 8-way set assoc. 

L2 cache 1024 K B 14 cycles 64 bytes 16-way set assoc. 

L3 cache 11 264 K B 68 cycles 64 bytes 11-way set assoc.

 

DRAM — 259 cycles 

2 — —

 

Table 1.1: Descriptions of the cache levels of an Intel Haswell i7-7820X 3.6 GHz CPU; numbers 

taken from [Pav14]. 

cant changes to the way data is laid out in memory; such changes usually are at odds with 

conventional approaches, such as object-oriented programming. To that extent, this thesis 

presents SHAPES , a language extension intended to allow developers to more easily accommo- 

date changes data layout to make better use of the cache without having to deviate from the 

spirit of OO programming. 

1.1 CPU caches 

A cache is a smaller, faster memory that resides physically close to or within a CPU core and 

holds copies of data from portions of main memory that are deemed to be accessed frequently. 

The judgement on what data is to be kept in the cache at any point in time is performed in a 

manner transparent to the developer1. As stated earlier, the objective of introducing a cache 

is to provide data from the cache as frequently as possible (thus increasing the cache hit rate), 

rather than resorting to accessing DRAM. 

A CPU design need not be limited to just one cache; a common approach used by CPU designers 

in order to further increase cache hit rates is to introduce multiple caches ( e.g., separate caches 

for data and instructions) or hierarchies of caches, with each level having a gradually larger 

size and a higher access latency; Figure 1.1 presents the specifications and execution latency 

of all cache levels of an Intel Skylake i7-7820X CPU: Indeed, the CPU has 3 cache levels, with 

the L1 data cache being the smallest yet fastest and the L3 data cache being the largest yet 

slowest.

 

1 Quite a lot of CPU instruction sets provide instructions that provide prefetching hints to the CPU, but, 

given that they are hints, they need not be respected. 

2 Reported as “79 cycles + 50 ns”, calculation into cycles assumes a 3.6 GHz operating frequency.
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A noteworthy observation to make is that accessing the cache, even at the “outermost” level, 

can be orders of magnitude faster compared to accessing DRAM. For instance, on the CPU of 

Figure 1.1, a fetch from DRAM costs 259 cycles, whereas a fetch from L3 costs 68 cycles, which 

is at least a 3.5x improvement. As such, effective use of the cache can be extremely vital as a 

means of improving performance. 

Spatial and temporal locality Two observations about most programs is that they exhibit 

spatial and temporal locality . 

• Spatial locality refers to the observation that for a recently accessed memory location X, 

it is likely that memory locations within close proximity to X are also likely to be accessed 

in the near future. 

• Temporal locality refers to the observation that data in recently accessed memory locations 

is likely to be accessed again in the near future. 

Caches aim to exploit these observations in order to improve performance. 

Cache organisation A cache contains multiple cache entries that may be valid or invalid 

( i.e., data is present or absent, respectively) at any given time. Each (valid) cache entry stores 

the data of a contiguous block of memory; this is known as a cache line . All cache lines have 

a fixed size; the size of a cache line for the CPU of Figure 1.1, for instance, is 64 bytes for all 

levels of the cache hierarchy. 

The presence of the concept of cache lines aids in exploiting spatial locality : If we are fetching 

a byte at address a , the entire cache line that a resides into will be kept in the cache as well, 

which will consist of data within proximity to a . Therefore, if we were to fetch the byte at the 

adjacent addresses a − 1 or a +1, we can expect the respective values for these addresses to be 

most likely be present in the cache as well. 

Because caches have a limited size, a cache eviction policy to determine what cache lines need 

to be kept in the cache at any time is necessary. Given the observation of temporal locality , i.e.,
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data accessed recently can be expected to be also accessed in the near future, eviction policies 

such as Least Recently Used (LRU) seem quite appealing. 

Indeed, a common algorithm often used for in CPU caches is N -way set associativity, which aims 

to approximate an LRU eviction policy, whilst being much cheaper to implement in hardware. 

In an N-way associative cache, a cache line will be placed in N potential entries, depending on 

its address; if all N entries are currently occupied, one of them is evicted beforehand. 

1.2 Caches and Data Layouts 

Writing cache-friendly programs can be expected to be more straightforward in unmanaged 

languages than in managed ones, as programmers have more control over data placement. For 

example, a programmer can allocate a large chunk of contiguous memory as a pool from which 

to “sub-allocate” objects that should be close in memory. For improved cache utilisation when 

iterating over many objects, programmers sometimes split a single array of objects into multiple 

arrays, each holding the values of a specific field of the objects; this is commonly referred to 

as an Array-of-Structs (AoS) to Struct-of-Arrays (SoA) transformation. Depending on which 

fields are being accessed together frequently, efficiency can be improved further by clustering 

values of several object fields together in one of the split arrays. Figure 1.2 presents an example 

of these concepts. 

Applying these techniques in managed languages can be difficult and not always possible ; in 

Java, for instance, where object types do not currently have value semantics, the memory 

allocator and garbage collector are not obliged to place objects in an array sequentially in 

memory. Moreover, splitting an array of objects into several arrays of fields destroys object 

integrity and identity (meaning it is no longer possible to have a pointer to the object, and 

referring to it must be done in an ad hoc manner), is memory unsafe (non-existing values 

can be created “out of thin air” by combining fields of different objects), and loses automatic 

garbage collection of individual objects. This affects managed and unmanaged languages alike: 

The authors of the WAVE++ particle simulator (1990), for instance, express their desire for
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1 class Student { 

2 ■ name: String; 

3 ■ age: int ; 

4 ■ supervisor: Professor; 

5 } 

6 def avgAge(arr:Student[]){ 

7 var sum = 0; 

8 for (i=0 .. arr.len()) 

9 sum += arr[i].age; 

10 return sum / arr.len(); 

11 } 

12 

13 

14 

15 

1 class StudentsSoA { 

2 ■ name: String[]; 

3 ■ age: int []; 

4 ■ supervisor: Professor[]; 

5 } 

6 def avgAge(arr:StudentsSoA){ 

7 var sum = 0; 

8 for (i=0 .. arr.age.len()) 

9 sum += arr.age[i]; 

10 return sum / arr.age.len(); 

11 } 

12 

13 

14 

15 

1 class StudentsMixed { 

2 ■■ clu1: StudentsCluster1[]; 

3 ■ clu2: Professor[]; 

4 } 

5 

6 def avgAge(arr:StudentsMixed){ 

7 var sum = 0; 

8 for (i=0 .. arr.clu1.len()) 

9 sum += arr.clu1[i].age; 

10 return sum / arr.clu1.len(); 

11 } 

12 class StudentsCluster1 { 

13 ■ name: String[]; 

14 ■ age: int []; 

15 }

 

(a) AoS representation

 

(b) SoA representation

 

(c) Mixed representation 

Figure 1.2: Language-based field clustering: In-memory representation of class Student , AoS, 

SoA, and mixed 

the ability to automatically apply such techniques in C++ without having to abandon OO 

programming [FWF+90]. 

To that extent, we present SHAPES , a language extension that aims to support efficient cache 

use in both managed and unmanaged languages by achieving such memory optimisations more 

easily, whilst also allowing the developers to write straight-forward OO code and without having 

to abandon key OO concepts. 

SHAPES uses a type-based approach to enable these memory optimisations without having to 

sacrifice object integrity, memory safety, or garbage collection. 

1.3 Thesis outline 

This thesis focuses on SHAPES , the design behind its concepts, and an implementation of it. 

The outline of this thesis is as follows:
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• § 2 presents SHAPES and how it implements memory optimisations via pooling and clus- 

tering . 

• § 3 presents already existing work with respect to the concepts that SHAPES covers; we 

also compare the rationale for their design to that of SHAPES . 

• § 4 formalises SHAPES ; the formalism is done in terms of SHAPESh, a high-level, user- 

facing calculus with pooling and clustering . 

• § 5 presents SHAPESℓ, a low-level intermediate representation, how SHAPESh is trans- 

lated into SHAPESℓ, and the design decisions concerning SHAPESℓ, such as the fact that 

multiple specialised SHAPESℓ 

functions need to be generated for each SHAPESh function. 

We also justify why we expect these design decisions to allow translated SHAPESh code 

to be performant. § 5 also presents meta-theoretic results for SHAPESh and SHAPESℓ: 

Type soundness, “memory safety”, and bisimulation. 

• § 6 presents SHAPES -z, our implementation of SHAPES as an embeddable domain-specific 

language and presents the design and implementation of shapeszc , the SHAPES -z com- 

piler ( § 6.2). 

• § 7 justifies the design of SHAPES through a sequence of case studies where we evaluate 

claims regarding performance and code readability. 

• § 8 presents our conclusions and potential points of future work.



 

Chapter 2 

SHAPES : Memory layouts 

2.1 Getting into SHAPES 

We now give an introduction to the design of the language extension SHAPES , using a simple 

running example: A class Student , with fields name , age and supervisor (which points to a 

Professor , the student’s supervisor ), as in Figure 1.2a. Assume that a method needs to access 

the Student s’ age s consecutively, as in avgAge() . To improve cache performance, we can perform 

a manual transformation from what is called an Array-of-Structs representation (AoS), shown in 

Figure 1.2a, into what is called a Struct-of-Arrays representation (SoA), shown in Figure 1.2b: 

Instead of an array of Student s, we group the students’ name s, age s, and supervisor s (Lines 2–4), 

each into their own array. The in-memory representation of the two (AoS and SoA) is depicted 

in Figure 1.2a and Figure 1.2b, respectively. 

The StudentsSoA transformation shown in Figure 1.2b, however, is a leaky and error-prone 

abstraction . It sacrifices readability, maintainability and abstraction for performance: 

• The look-and-feel of OO is lost: We are now effectively processing arrays of primitives 

instead of objects, e.g., arr.age[i] . We may accidentally fetch the wrong parts of an 

object due to an off-by-one error ( e.g., evaluating arr.name[i++] and then arr.age[i++] ), 

thus inadvertently “mixing” various unrelated object parts into one. References to objects 

29
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belonging to a pool have to be explicitly represented as an index and not as a regular 

object reference. 

• Switching to different layouts is tedious and error-prone ( e.g., from Figure 1.2a to Fig- 

ure 1.2b). Moreover, it is sometimes beneficial to use mixed layouts ( § 7), e.g., we might 

want to group the values for name and age in one cluster (consisting of a chunk of allocated 

memory), and the values for supervisor in another such cluster (Figure 1.2c). This would 

require additional boilerplate code (Lines 12–15 of Figure 1.2c). 

• There is no concept of automatic garbage collection of individual students in StudentsSoA 

and StudentsMixed , as we now have arrays of integers or pointers. 

We can retain the OO look-and-feel and achieve automatic layout changes with a library. 

However, the state of the art of such libraries may require the introduction of syntactical 

extensions that do not compose elegantly with the rest of the underlying language and/or 

the sacrificial of core OO concepts such as encapsulation and object identity. Moreover, any 

flexibility with respect to automatic layout switching will be limited ( e.g., layout switching can 

only be performed on static arrays and/or will be limited to merely AoS vs SoA). Moreover, 

the issue of automatic garbage collection of pooled objects will still persist (more in § 3). As 

such, we propose a language extension-based solution to these issues with SHAPES . 

SHAPES aims to support efficient cache use whilst enabling the programmer to write straight- 

forward OO code and without having to abandon key OO concepts. SHAPES programmers add 

pool parameters to class definitions which allow objects to be flexibly placed in different pools; 

the business logic of classes is thus oblivious to the layouts being used and imposing a specific 

layout is not an onerous task. Programmers, who are aware of how they access the relevant 

data, write layout annotations and declare pools of specific layouts to achieve the best possible 

cache usage for the business logic in question. 

We now give a gradual introduction to SHAPES , in six stages. Each stage extends and refines 

the previous one.
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1 layout : Student = 

2 rec { ■ name, ■ age, 

3 ■ supervisor}; 

1 layout : Student = 

2 rec { ■ name} + rec { ■ age} 

3 + rec { ■ supervisor}; 

1 layout : Student = 

2 rec { ■ name, ■ age} 

3 + rec { ■ supervisor};

 

(a) AoS representation

 

(b) SoA representation

 

(c) Mixed representation 

Figure 2.1: Stage 1: Language-based field clustering 

2.2 Stage 1: Language-based field clustering 

As a first approximation, we place all class instances inside one unique, implicit pool for that 

class. That is, in Stage 1, constructing a Student object will allocate it inside the unique, 

implicit pool corresponding to class Student . 

An optional layout declaration specifies how class instances are laid out inside that implicit pool. 

A layout declaration splits the class’ fields into clusters . Each cluster specifies the fields’ values 

to be stored together and in what order (so as to e.g., eliminate any padding introduced due 

to alignment). Omitting a layout declaration implies an Array-of-Structs (AoS) layout. Thus, 

using the “standard” code from Figure 1.2a and choosing one of the layouts from Figure 2.1 we 

can obtain any of the respective representations as in Figure 2.1a, Figure 2.1b, or Figure 2.1c. 

2.3 Stage 2: Use as many pools as needed 

Not all objects of one class have to be placed in the same pool: For example, the nodes of two 

different binary trees would be better placed in different pools, and sometimes it is beneficial to 

use different memory layouts for objects of the same class ( cf., Currency case study in § 7.4). 

We add explicit declarations for pools and allow many named layout declarations for each class. 

As an example, in Figure 2.2 (which builds on class Student from Figure 1.2a), Lines 1–5 declare 

two layouts for Student : StudentL1 clusters fields name and age together and places supervisor 

in its own cluster; StudentL2 is a Struct-of-Arrays (SoA) layout.
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1 layout StudentL1: Student = 

2 rec { ■ name, ■ age} + rec { ■ supervisor}; 

3 

4 layout StudentL2: Student = 

5 rec { ■ name} + rec { ■ age} 

6 + rec { ■ supervisor}; 

7 ... 

8 pools pStu1: StudentL1, pStu2: StudentL2; 

9 

10 s1 = new Student: pStu1; 

11 s2 = new Student: pStu2; 

12 ...

 

(a) s1 at pStu1

 

(b) s2 at pStu2 

Figure 2.2: Stage 2: As many pools as needed 

Pools are created at runtime—Line 8 creates two new pools: pStu1 with layout StudentL1 , 

and pStu2 with layout StudentL2 . We must now specify the pool in which to place a newly 

created object; Lines 10–11 construct two new Student objects, s1 and s2 and place them inside 

pStu1 and pStu2 , respectively, in accordance with their respective pools’ layouts. Execution of 

Lines 8–11 will result in the memory layout shown in Figures 2.2a and 2.2b. 

Notice that SHAPES supports reference semantics and not copy semantics, thus the concept of 

object identity is preserved. Even though pools contain the fields of the objects they contain, 

all object identifiers are treated as references. For example, s1 and s2 (Lines 10–11) are refer- 

ences to the newly constructed objects in pools pStu1 and pStu2 . Similar to languages such as 

Java [GJS+14], it is possible for two variables to alias to the same object. Additionally, objects 

can only be placed into a pool when they are constructed, but are not copied or moved into 

and out of a pool. Implicit copy construction/assignment (à la e.g., C++ [ISO12]) could be 

added as an extension to SHAPES . 

2.4 Stage 3: Use pools only when you need them 

In some cases, there is no incentive for using pools ( e.g., rarely executed, non-performance- 

critical code). In most OO languages, objects are allocated on the heap, with no placement 

guarantees. SHAPES supports this through the “special” pool none , which can contain objects



 

2.5. Stage 4: Flexible object placement 33

 

1 s3 = new Student: none ;

 

Figure 2.3: Stage 3: Pools only when needed 

of any class, and no layout is applied to the objects. This allows gradual introduction of 

pooling and clustering into a project. For example, in the code of Figure 2.3, Student s3 is 

created “inside” the none pool, hence it will be placed on the heap. 

2.5 Stage 4: Flexible object placement 

If we want to allow the creation of binary trees whose Node s are placed in per-tree pools, we will 

need to provide a way so that functions manipulating these Node s know the pool where to place 

newly generated Node s. To support this in SHAPES , we supply classes with pool parameters. 

Consider, for example, binary trees of Professor s; the relevant definitions appear in Lines 1 

and 2 in Listing 2.1. Class Professor has one pool parameter, pProf , which stands for the pool 

which contains the corresponding Professor . Class Node has two pool parameters: pNode is the 

pool of the corresponding Node , and pProf is the pool which contains the Professors . That is, 

the first pool parameter always corresponds to the pool where this is located (pool pNode for 

Node s and pProf for Professor s, respectively, in our case). 

1 class Professor<pProf> { ... } 

2 class Node<pNode, pProf> { 

3 ... 

4 def addLeft( ... ) { 

5 ... 

6 p = new Professor<pProf>; 

7 this .left = new Node<pNode, ...>; 

8 ... 

9 } 

10 } 

Listing 2.1: Stage 4: Flexible Object Placement 

Method addLeft() (Line 4 in Listing 2.1) now knows that the new Professor (Line 6) is to be 

placed in pool pProf , and the new Node is to be placed in pool pNode (Line 7). This allows the 

developer to ensure that all Node s and all Professor s in one tree are placed in exactly one Node 

and one Professor pool, respectively.
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1 class Node<pNode, pProf>{ 

2 def addLeft( ... ) { 

3 ... new Professor<pProf> ... ; // OK! 

4 ... new Node<pProf, ...> ... ; // BUG 

5 } 

6 } 

1 class Node<pNode:[Node],pProf:[Professor]>{ 

2 def addLeft( ... ) { 

3 ... new Professor<pProf> ... ; // OK! 

4 ... new Node<pProf, ...> ... ; // ERR 

5 } 

6 }

 

(a) Non-uniform pool

 

(b) Uniform pool 

Figure 2.4: Stage 5: Pool bounds 

2.6 Stage 5: Make it safe with uniform pools 

Allowing code to specify the pool where objects are placed in can have unintended consequences, 

because objects of different types can be potentially placed inside the same pool. This is 

undesireable, because the layout of a pool corresponds to only one object type. 

As such, we need to require pools to be uniform . We enforce pool uniformity by introducing 

the concept of pool bounds , which specify the type of objects a pool can contain. 

As an example, in Figure 2.4a, uniformity of pProf would be violated after running Lines 3–4. 

This is because a Professor and a Node would be placed inside the same pool and the layout of 

pProf can only accommodate objects of type Professor , thus violating any semblance of type 

safety. We prevent this from occurring by adding bounds in Line 1 of Figure 2.4b. These bounds 

specify that pProf can only contain instances of Professor s, hence we deduce that Line 4 in 

Figure 2.4b is erroneous. 

Pools created inside methods must always specify a layout, hence their bound can be easily 

deduced. 

2.7 Stage 6: Make it fast with homogeneous pools 

So far, we argue all of our design decisions have been uncontentious: They are either concerned 

with providing a reasonable feature set to the developer or with preventing an unsound situation 

from arising. Our decision to enforce the concept of pool homogeneity , however, is done as a
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(a) Homogeneous Student pool

 

(b) Heterogeneous Student pool 

Figure 2.5: Homogeneous and heterogeneous Student pools 

trade-off: We further restrict what constitutes a valid SHAPES program on the expectation of 

gaining additional performance guarantees thanks to these new restrictions. 

A uniform pool is homogeneous if the corresponding fields of all its objects point to objects in 

the same pool; that is, a pool p is homogeneous if for any objects o1 and o2 belonging to p and 

for any field f , it holds that o1.f and o2.f are either both in the same pool or on the heap ( i.e., 

in pool none ). A pool that is not homogeneous is heterogeneous . 

In Figure 2.5a, we see a homogeneous pool of Student s whose supervisor fields all point to ob- 

jects in the same pool. In Figure 2.5b, we see a heterogeneous pool of Student s: The supervisor s 

of the first two Student s point to Professor s in a different pool to that of the last Student . 

Such heterogeneity could be caused by the following code, wherein we have a Student pool pStu1 

and two Professor pools pProf1 and pProf2 : 

1 s1 = new Student<pStu1, ...>; 

2 s2 = new Student<pStu1, ...>; 

3 s1.supervisor = new Professor<pProf1>; 

4 s2.supervisor = new Professor<pProf2>; 

If we were to support heterogeneous pools, we would have to make the following design decisions 

regarding the runtime and suffer a performance penalty : 

• In a naive implementation, a reference to a pooled object would consist of a reference 

to the pool containing the object and a reference to the object inside the pool itself. 

This would be rather wasteful on RAM and cache. In § 5.5, we show that, by exploiting 

homogeneity, a reference to a pooled object can have the same size as that of a pointer.
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1 class Professor<pProf: [Professor<pProf>]> { 

2 ■ name: String; 

3 ■ ssn: String; 

4 } 

5 class Student< 

6 pStu: [Student<pStu, pProf>], 

7 pProf: [Professor<pProf>]> { 

8 ■ name: String; 

9 ■ age: int ; 

10 ■ supervisor: Professor<pProf>; 

11 } 

12 layout ProfL: Professor = ...; 

13 layout StudentL: Student = ...; 

14 ... 

15 pools pStu1: StudentL<pStu1, pProf1>, 

16 pProf1: ProfL<pProf1>; 

17 pProf2: ProfL<pProf2>; 

18 s1 = new Student<pStu1, pProf1>;// OK! 

19 s2 = new Student<pStu1, pProf1>;// OK! 

20 s3 = new Student<pStu1, pProf2>;// ERR 

21 p1 = new Professor<pProf1>; 

22 p2 = new Professor<pProf2>; 

23 s1.supervisor = p1; // OK! 

24 s2.supervisor = p2; // ERR 

25 ... 

Listing 2.2: Stage 6: Enforcing uniformity and homogeneity via pool bounds 

• Since the layout of the corresponding pool for a pooled object cannot be necessarily 

deduced at compile time, heterogeneity would imply dynamically looking up the layout 

information of that specific pool; this hampers performance and requires the developer 

to not assume that x.f is a “cheap” operation. In § 5.5, we show that the layout of a 

pool can be statically known thanks to homogeneity, hence such dynamic lookups are 

unnecessary. 

To enforce pool homogeneity, we adapt ideas from C++ templates [ISO12], Java Gener- 

ics [GJS+14], and Ownership types [CÖSW13], as follows: 

• As in Stages 4 and 5, classes have several formal pool parameters . These correspond to the 

pools containing the objects pointed to by (some of) their fields. The first pool parameter 

also corresponds to the pool where this is stored. 

• Object types, class instantiations, pool bounds, and pool creations must supply a pool 

argument per formal pool parameter of their respective class. Just like formal pool pa- 

rameters, the first pool parameter specifies the object the pool is allocated into; during 

pool creation, the first pool parameter is the pool itself being created. 

• If a pool p1 has a bound of the form [C<p1, ..., pn>] , then all objects residing in p1 

must also have the type C<p1, ..., pn> . In § 4.3.1, we show how we use this restriction 

to enforce homogeneity in a static manner.
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As an example, consider the code of Listing 2.2. Similar to Listing 2.1, class Professor has one 

pool parameter, pProf , and class Student has two pool parameters, pStu and pProf . The bounds 

of these classes (Lines 6–7 for class Student and Line 1 for class Professor ) are now decorated 

with pool arguments. Pool arguments are supplied at pool creation (Lines 15–17), as well as 

at object creation (Lines 18–22). 

For Listing 2.2, the pool bounds help enforce pool homogeneity as follows: Line 10 mandates 

that the supervisor must belong to the pool referenced by the formal pool parameter pProf . 

Thus, when constructing pool pStu1 (Line 15), we substitute the formal pool parameters of 

Student with pStu1 , pProf1 and deduce that the supervisor of any Student placed in pStu1 must 

have type Professor<pProf1> , i.e., the supervisor must reside in pool pProf1 . However, Line 20 

specifies that the supervisor of s3 has type Professor<pProf2> , hence it must reside in pProf2 . 

This would break homogeneity and is flagged as an error by our type system. 

By using similar reasoning, we deduce that Line 24 would also break homogeneity, given that 

p2 was constructed in pool pProf2 and we mandate that the supervisor of s2 be located inside 

pool pProf1 . 

2.8 Conclusions 

We have reached a design which is sound ( § 4), supports pools and goes beyond AoS/SoA, and 

we argue that it is flexible and transparent. 

Pool parametricity is, as mentioned, similar to Java Generics [GJS+14] in that pool parameters 

have bounds, and these bounds are types which may contain pool arguments. It differs from 

Java Generics in that the pool arguments are not types; instead, they are entities generated at 

runtime. It also differs as SHAPES supports three kinds of types: Object types determine the 

class of the object, and the pools of the object and its fields; layout types determine the class 

of objects stored in pools of that layout and how the objects in the pool are split into clusters ; 

pool bounds characterise pool parameters to classes and specify the pool an object referenced 

by field f will reside in (if any). Finally, SHAPES enforces homogeneity, a concept that is not
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found in Generics. For the rest of this thesis, when we talk about pools, we will be referring to 

homogeneous pools.



 

Chapter 3 

Related work 

We will now present the existing work that has been performed with respect to pooling and 

clustering and evaluate the design of SHAPES ( § 2) against this body of work. We will also 

compare the design of SHAPES against each such piece of work where possible and state the 

benefits SHAPES brings to the table, as well as the parts where SHAPES may be lacking and/or 

can be incorporated as possible future work. 

3.1 Frameworks and libraries 

3.1.1 AoS to SoA 

The C++ world is rich with libraries that transform an array of an AoS to an SoA layout. 

Almost all of these libraries operate on fixed size arrays. We present some of these libraries: 

ASX ASX [Str11] is a C++ library that lets a developer switch between an AoS and an SoA 

format for an array whose size is fixed at compilation. Listing 3.1 presents an ASX example. 

To use ASX, the developer needs to modify the definitions of the class/struct fields in a manner 

similar to that of Lines 1–4 for Vec3 . 

39
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1 static constexpr size_t SIZE = 1024; 

2 template <ASX::ID t_id = ASX::ID_value> 

3 struct Vec3 { 

4 typedef ASX::ASAGroup<Type1, t_id> ASX_ASA; 

5 union { float x; ASX_ASA dummy1; }; 

6 union { float y; ASX_ASA dummy2; }; 

7 union { float z; ASX_ASA dummy3; }; 

8 }; 

9 

10 ASX::Array<Vec3, SIZE, ASX::SOA> vecs; 

11 vecs[5].x = 0.5; 

Listing 3.1: ASX example 

Line 10 defines vecs as an ASX array that contains SIZE elements of type Vec3 and whose fields 

will be laid out in an SoA layout. Accessing and modifying the fields of the Vec3 objects within 

vecs (Line 11) is performed in a uniform manner regardless of whether an AoS or an SoA layout 

is used. 

Due to its implementation, ASX imposes the constraint that the types of the fields must have the 

same size and alignment. If this constraint cannot be satisfied, ASX suggests a “workaround” 

wherein multiple fields are “grouped” within a nested struct type; this resembles the concept 

of clustering in SHAPES ( § 2.1). 

ASX also defines ASA::Vector , which is a dynamically resizeable array. An ASA::Vector does not 

correspond to a container that has an SoA layout similar to that of SHAPES ( § 2.1); rather it is 

a hybrid layout between AoS and SoA, which bears resemblance to what is called as an Array- 

of-Structs-of-Arrays (AoSoA) layout: In an AoSoA layout, container elements are divided into 

equisized chunks of size M (with the exception of a chunk that holds the remaining elements); 

the chunks are laid out sequentially in memory and the elements within each chunk are laid 

out in an SoA manner. 

When comparing ASX to SHAPES , we observe that SHAPES layouts are not bound by the 

limitations imposed by ASX in terms of size and alignment; in a SHAPES layout declaration, 

fields of a type are permitted to be grouped and ordered in any arbitrary manner. 

Additionally, SHAPES does not require modifications to the fields of a class type. However,
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1 SOAX_ATTRIBUTE(id, ' N ' ); 

2 SOAX_ATTRIBUTE(pos, ' P ' ); 

3 SOAX_ATTRIBUTE(vel, ' V ' ); 

4 SOAX_ATTRIBUTE(mass, ' M ' ); 

5 

6 typedef std::tuple< 

7 id< int , 1>, 

8 pos< double , 3>, 

9 vel< double , 3>, 

10 mass< float , 1> 

11 > Particle; 

12 

13 Soax<Particle> soax(42); 

14 

15 soax.id(23) = 0; 

16 soax.pos(23, 0) = 3.14; 

17 soax.posArr(0) = 

18 soax.velArr(1) - soax.velArr(2); 

19 soax.resize(100); 

20 

21 auto particle = soax.getElement(7); 

22 particle.id() = 42; 

23 particle.pos(0) = 3.14; 

24 soax.push_back(particle); 

Listing 3.2: SoAx example [HL18] 

classes do need to be enriched with pool parameters. This raises a possible future direction for 

SHAPES wherein pool parameters become optional to an extent, so that pools and layouts can 

be added to an existing codebase in a gradual manner. 

Another noteworthy point of extension for SHAPES would be the addition of support for AoSoA 

layouts. AoSoA layouts are certainly an interesting approach to layouts and a potentially 

noteworthy addition, as only one cluster needs to be allocated, thus making memory allocation 

simpler. 

SoAx SoAx [HL18] is a C++ library intended for HPC code. It lets the developer declare a 

structure type via a template metaprogramming scheme and then construct an SoA “array”. 

Listing 3.2 presents an SoAx example. The developer initially declares the attributes that are 

to be used with SoAx (Lines 1–4). To define a structure type ( e.g., Particle in Line 11), the 

developer specifies what properties the type uses, their underlying type, as well as their arity 

(Lines 7–10). The pos attribute in Particle , for instance (Line 8) is defined to consist of three 

values of type double . 

An array of Particle s where the Particle s’ properties are laid out in an SoA layout is defined 

in Line 13. The size of this array is not fixed upon construction; array soax can be resized to 

accommodate more elements (Line 19) or a new object can be inserted into it (Line 24). 

SoAx enriches its arrays accessor functions to access and modify the fields of objects (Lines 15–
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1 class Car; 

2 class Cell; 

3 class ProducerCell; 

4 

5 using AllocatorT = SoaAllocator< 

6 kNumObjects, 

7 Car, 

8 Cell, 

9 ProducerCell 

10 >; 

11 class Cell: public AllocatorT::Base { 

12 public : 

13 declare_field_types( 

14 Cell, 

15 // incoming_ 

16 DeviceArray<Cell*, kMaxDegree>, 

17 // outgoing_ 

18 DeviceArray<Cell*, kMaxDegree>, 

19 Car*, // car_ 

20 int , // max_velocity_ 

21 int , // current_max_velocity_ 

22 int , // num_incoming_ 

23 int , // num_outgoing_ 

24 float , // x_ 

25 float , // y_ 

26 bool // is_target_ 

27 ) 

28 

29 private : 

30 SoaField<Cell, 0> incoming_; 

31 SoaField<Cell, 1> outgoing_; 

32 SoaField<Cell, 2> car_; 

33 SoaField<Cell, 3> max_velocity_; 

34 SoaField<Cell, 4> current_max_velocity_; 

35 SoaField<Cell, 5> num_incoming_; 

36 SoaField<Cell, 6> num_outgoing_; 

37 SoaField<Cell, 7> x_; 

38 SoaField<Cell, 8> y_; 

39 SoaField<Cell, 9> is_target_; 

40 }; 

Listing 3.3: DynaSOAr example class 

16). It also allows developers to access the objects themselves (Line 21), albeit via value 

semantics ( i.e., a copy of the object is returned). Additionally, the fields of objects stored in an 

SoAx array can be accessed collectively and operations can be applied on them in a collective 

manner (Lines 17–18); this bears resemblance to std::valarray in C++ [ISO12], as well as 

Intel’s Array Building Blocks (Intel ArBB) project [NSL+11]. 

Compared to SoAx, fields can be grouped and ordered arbitrarily in a SHAPES layout decla- 

ration, whereas SoAx only supports SoA layouts. Additionally, the design of SHAPES makes 

accessor methods unnecessary, since fields of an object can be accessed in an identical manner, 

regardless of whether the object belongs to a pool or not. 

With respect to points of extension, support for collective operations in a SHAPES implemen- 

tation is a feature that we argue is worth considering. 

Ikra-Cpp and DynaSOAr Ikra-Cpp [SM18] is a C++/CUDA library that allows switching 

between AoS and SoA for static arrays. It provides some object-oriented capabilities (construc- 

tors, object-specific methods); the developer needs to annotate their classes and use Ikra-Cpp
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specific primitive types. 

DynaSOAr [SM19] builds on top of Ikra-Cpp; it implements dynamic object sets that use an 

SoA layout; like SHAPES pools, arbitrarily many objects can now be allocated inside these 

object sets. 

Listing 3.3 presents an example of a DynaSOAr class definition1. We initially specify an al- 

locator type (Line 5) that will correspond to our class and then make our class inherit from 

a type associated to that allocator type (Line 11). In our allocator type definition, we also 

specify the maximum size of the pool (Line 6), as well as what types of objects class Cell will 

be referencing (Lines 7–9). 

Within the body of class Cell , we need to specify the types of the fields to DynaSOAr (Lines 16– 

27) and then declare proxy fields that correspond to the class’ actual fields (Lines 30–39). 

Compared to Ikra-Cpp, SHAPES does not require the use of nonstandard primitive types. 

Additionally, the duplication of field information in DynaSOAr (compare Lines 16–27 and 

Lines 30–39) is a non-issue for SHAPES , as pooling and clustering are incorporated into the 

language. 

A major benefit of DynaSOAr that should definitely be considered for future work in SHAPES 

is the addition of multithreaded allocation/garbage collection. 

Julia package A package [Kor15] for the Julia language allows transformation of a fixed size 

(at runtime) array into an SoA structure via metaprogramming. It only supports isbits types, 

i.e., immutable scalar types with no references to other objects; SHAPES does not impose such 

limitations in its design. 

Python column-based databases In the dynamic language world, [MHR+15] describe and 

implement an object layout for column-based databases intended to be easily optimisable by the 

PyPy JIT. Access and traversal of the objects in the database is achieved through an iterator

 

1 Taken from https://github.com/prg-titech/dynasoar/blob/a4f956cd13160eb566e8a0caef6aad1e59c26d 

a9/example/traffic/dynasoar/traffic.h , licensed under the MIT License.

https://github.com/prg-titech/dynasoar/blob/a4f956cd13160eb566e8a0caef6aad1e59c26da9/example/traffic/dynasoar/traffic.h
https://github.com/prg-titech/dynasoar/blob/a4f956cd13160eb566e8a0caef6aad1e59c26da9/example/traffic/dynasoar/traffic.h
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1 View node { 

2 Field {x: d} 

3 Field {y: d} 

4 Field {z: d} 

5 } 

Listing 3.4: TALC field specification file 

interface. Supporting such an iteration scheme can be achieved in SHAPES via extensions ( e.g., 

our implementation of SHAPES called SHAPES -z, cf., § 6). Moreover, as we will see in § 5.5, 

SHAPES makes dependency on a JIT redundant. 

3.1.2 Clustering 

OP2 OP2 [GMS+11] is a C++ library intended for computations on unstructured grids 

and is mainly focused on easing parallelisation of such applications (via, e.g., MPI [for15], 

OpenMP [Boa18], CUDA [NC22]). OP2 mainly attempts to tackle the issue of executing a 

kernel over a set of data in parallel in a declarative manner. OP2 also allows the developer to 

perform a limited form of clustering (only fields of the same type can be clustered together) 

whereas the SHAPES design has no such constraint. 

Additionally, OP2 features execution plans: The developer specifies what fields will be accessed 

in a kernel and how. Then, during execution of a computational kernel, an execution plan will 

partition objects so that when we run the kernel in question over two objects residing in the 

same partition, then there will be no data races. SHAPES offers no such feature, considering 

its general purpose nature. However, concurrency is certainly a noteworthy point for future 

extensions. 

We discuss OP2 in more detail in § 7.2. 

TALC TALC [KJQ08] is a C language extension that allows the clustering of static, fixed 

size arrays of struct types. The developer writes object schemas (similar in nature to layout 

declarations) and their business logic in TALC. Then, by specifying which schema to use, a
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TALC compiler generates C code in accordance to the schema specified. This C code has to be 

manually generated anew when switching to a different layout. Later work [SKK+15, SKK+13] 

extends TALC with automatic selection of the most efficient layout via a greedy algorithm. 

Listing 3.4 presents a TALC schema file. Lines 2–4 specify the arrays in the C source code that 

must be clustered together ( x , y , and z ), as well as the underlying type of the array (in this 

case, d corresponds to the type double ). Given Listing 3.4, TALC will modify a given piece of 

code so as to perform clustering on the arrays specified. 

While SHAPES currently offers no automatic layout selection, it is not constrained to fixed size 

arrays. 

3.1.3 Object representation transformations 

For Scala, [UBSO15] proposed an extension for automatic changes to the data layout where 

a developer defines transformations and the compiler applies the transformation during code 

generation. 

3.2 Automatic program transformation 

3.2.1 Pooling 

[CKJA98] attempt to reduce cache misses by automatically partitioning objects into pools of 

popular and unpopular objects. Later work by [LA03, LA05] for C and C++ leverages static 

analysis instead of profiling to partition objects into pools. 

3.2.2 Clustering 

Part of the work done by [HBM+04] consists of automatically determining “hot” and “cold” 

fields of an object and clustering such objects in such a manner that “hot” fields are placed in
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the same cluster. A SHAPES developer will have to explicitly annotate their code; an analysis 

tool can then determine the “hot” and “cold” fields and then produce the relevant layout (which 

the developer can then use). 

[PPSdM01] present a greedy algorithm for determining an optimal clustering strategy tuned 

for embedded applications. Such automatic clustering is performed only on arrays of structures 

with a size that is fixed at compile time. Clustering in SHAPES has to be performed manually, 

but, unlike fixed size arrays, the sizes of pools is not fixed. 

3.3 Programming languages 

3.3.1 Class parameterisation 

SHAPES types have been influenced by Ownership types [CÖSW13], using pool parameters 

instead of ownership contexts. Unlike Ownership types, our type system allows cycles between 

pools. 

The concept of bounds and well-formed types is drawn from Featherweight Generic Java [IPW01], 

although our formalism does not have any concepts of polymorphism. 

Similar to pooling, Petersen et al. [PHCP03] describe a model that uses ordered type theory to 

allow a runtime to coalesce multiple calls to the allocator. 

Class parameterisation has also been used in the context of region based memory management, 

such as Cyclone [GMJ+02], the Rust language [KN18], where types are permitted to be param- 

eterised over lifetimes, and Pony [CDBM15], where types are permitted to be parameterised 

over reference capabilities.
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1 struct Vec3 { 

2 float x, y, z; 

3 }; 

4 typedef soa<4> Vec3 Vec3x4; 

Listing 3.5: ISPC SoA feature 

1 struct Vec3x4 { 

2 float x[4], y[4], z[4]; 

3 }; 

4 

Listing 3.6: Equivalent C++ declaration of Listing 3.5 

3.3.2 ISPC 

The Intel ISPC (Implicit SPMD Program Counter) language [PM12] aims to make it easier for 

developers to write code that can take advantage of SIMD instruction sets found in today’s 

architectures ( cf., § A). 

ISPC provides (partial) support for SoA layouts, by providing a keyword called soa <n> . This 

keyword transforms a structure type into a structure type where each member is an array of 

size n with the same type as the respective member in the existing definition. 

Listing 3.5 presents an example of the soa feature of ISPC applied to struct Vec3 (Line 4); 

Listing 3.6 presents the equivalent type definition in C++. 

Notice that an soa ISPC type does not correspond to a “true” SoA layout; rather, it corresponds 

to an Array-of-Structs-of-Arrays (AoSoA) layout. 

ISPC is presented in more detail in § A.3. 

3.3.3 Sierra 

Like ISPC ( § 3.3.2), Sierra [LHH14] also aims to allow developers to write code that utilises 

SIMD in an efficient, high-level manner, albeit as an extension to C++ (rather than as a 

“standalone” language). 

Sierra enriches the C++ type system with vector types, which are dubbed in Sierra as varying 

types. A varying type consists of an underlying type T and the number n of elements in the 

vector. For instance, float varying (4) represents a vector type that consists of 4 float s.
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1 struct Vec3f { 

2 float x; 

3 float y; 

4 float z; 

5 }; 

6 typedef Vec3f varying (4) Vec3fx4; 

Listing 3.7: Sierra varying modifier on a 

struct type 

1 struct Vec3fx4 { 

2 float varying (4) x; 

3 float varying (4) y; 

4 float varying (4) z; 

5 }; 

6 

Listing 3.8: Equivalent definition for 

Listing 3.7 

In the case where the underlying type T is a primitive or pointer type, the corresponding type 

T varying (n) is represented as an n -tuple of elements of type T at runtime. In the case where 

T is a struct type, however, the derived type is a struct type where the varying keyword is 

recursively applied to all of the struct type’s members. 

Listing 3.7 presents an application of the varying keyword on type Vec3f (Line 6); Listing 3.8 

presents its equivalent definition. This type transformation resembles the concept of mapped 

types present in Typescript [Cor22]. This allows Sierra to express similar layout transformations 

as ones provided by ISPC’s soa keyword. 

Sierra is presented in more detail in § A.4. 

3.4 Heap partitioning 

IBM’s X10 language [SBP+12] partitions the object heap into places , which are intended to 

assist the developer in taking better advantage of memory locality, as well as provide future 

support for distributed and heterogeneous computing. In X10, the current continuation is 

associated with a place and it can access objects from that place only. Objects can be copied 

between places through a place-shifting operation, which, given a set of roots, it copies a subset 

of the object graph into the designated place via serialisation. 

Similar ideas are presented in Offload [CDD+10], which aims to allow developers to allow execu- 

tion of C++ code on heterogeneous cores, such as accelerators. The main use case of Offload is 

to better utilise the SPE (Synergistic Processing Elements) cores of the Cell Broadband Engine
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CPU [Hof05] with relatively few changes to an existing codebase. 

In the realm of Ownership Types [CÖSW13], some works have permitted splitting data in the 

heap conceptually (hence they do affect in-memory representation), to calculate the effects of 

reading and writing to data [BAD+09] or reason about thread-local data [WPM+09]. 

Inference has been used successfully in this context e.g., by Jaber et al. [JK17] for ownership- 

based heap partitioning. 

Franco and Drossopoulou use annotations to control placement on a NUMA node granular- 

ity [FD15] with the aim of improving program performance. 

3.5 Our earlier work 

The SHAPES design builds on and extends prior work [FWD16, FHW+17, FTD+18, TFW+18, 

TFD+20]: 

OHMM [FWD16] is similar to Stage 4 ( § 2.5). That is, pools are not uniform: Objects of a 

specific type are placed in the class-specific subpool of that pool. Moreover, similar to Stage 

1 ( § 2.2), each class can have up to one layout; all subpools corresponding to that class will 

adhere to the class’ layout. 

SHAPES ideas were presented in [FHW+17], which corresponds to Stage 5 ( § 2.6). The paper 

contains neither the complete language design, nor a formal model. Pools are not homogeneous, 

hence runtime type information is necessary for field access and object construction. 

[TFW+18] presents extensions to the SHAPES model to add support for dynamically allocated 

pool-backed arrays with value semantics and a SIMD environment similar to that of [PM12, 

LHH14]; we further expand on SIMD in § A).
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3.6 Conclusion 

In this chapter, we have presented existing work that has been done in terms of pooling and 

clustering. Additionally, we compared this body of work to SHAPES and observed that even 

with the partial overlap of SHAPES with it, SHAPES is still capable of bringing additional 

benefits to the table, especially in terms of usability. As such, we argue that examining and 

delving into the concepts of SHAPES is worth pursuing. 

Additionally, we have also indicated points for future extension. These include but are not 

limited to support for additional layouts ( e.g., AoSoA), support for concurrency ( e.g., perform- 

ing concurrent allocations within a pool), and automatic layout selection (via e.g., heuristics 

or machine learning). We hope that a future version of SHAPES will incorporate some of the 

above features.



 

Chapter 4 

SHAPESh: A formalism of SHAPES 

In § 2, we presented high level language constructs that simultaneously allow a high-level 

business logic and easier fine grained control over data placement. 

To provide these constructs and ensure they can be implemented in a manner we expect to be 

efficient, we developed SHAPESh, a high-level calculus that provides the appropriate constructs 

( § 4), and SHAPESℓ, a low-level intermediate representation designed with efficiency in mind 

for implementing these constructs ( § 5). § 5.5 presents the translation of SHAPESh code into 

SHAPESℓ. 

SHAPESh is a minimal object-oriented calculus with no inheritance, and augmented with pools. 

The most striking feature compared to other OO languages is that SHAPESh types are parame- 

terised with pool variables as parameters ( § 4.3); it is thanks to these pool parameters that the 

SHAPESh type system can statically enforce pool uniformity and homogeneity ( § 2.6, § 2.7). 

Representation of entities in SHAPESh also deviates from a typical OO calculus: Objects carry 

ghost information regarding pools, but the pools themselves do not affect object placement 

or perform any sort of clustering. This simplifies SHAPESh and demonstrates the argument 

that regardless of the pooling and clustering scheme being used, SHAPES allows developers 

to write their business logic with a simpler, object-oriented mental model in mind, where all 

objects (both standalone and pooled) are treated uniformly. Moreover, we only use SHAPESh 
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prog ::= cd 

∗

 

ld 

∗ Program 

cd ::= class C ⟨

 

( p : [ C ⟨ p+ ⟩ ])+ ⟩ { fd 

∗md 

∗ } ClassDecl 

fd ::= f : t ; FieldDecl 

md ::= def m ( x : t ) : t {

 

localPools ; localVars ; stmts } MethodDecl 

localPools ::=

 

pools (

 

p : L ⟨ ps ⟩ )∗; LocalPools 

localVars ::= vars ( x : t )∗ LocalVars 

stmts ::= e | e ; stmts Statements 

e ::= null | x | this | new t | x.m ( x ) | x.f | x.f = x | x = e Expression 

t ::= C

 

⟨ ps ⟩ ObjectType 

ld ::=

 

layout L : [ C ] = ( rec { f+ } ; )+ LayoutDecl 

np ::=

 

p | none PoolVariableOrNone 

ps ::=

 

np | np · ps PoolVariables 

Figure 4.1: Syntax of SHAPESh where p ∈ PoolVariableId , x ∈ LocalVariableId , C ∈ ClassId , 

f ∈ FieldId , m ∈ MethodId , and L ∈ LayoutId . Differences from standard OO languages in

 

hig hl ig ht . 

as a formalism and not as a runtime target, hence we do not need to be concerned with such 

inefficiencies; in § 5, we will demonstrate how SHAPESℓ 

places objects in the same pool close 

to each other in memory and clusters them according to a layout. 

We now present the syntax, type system, and operational semantics of SHAPESh. 

4.1 The SHAPESh language 

Figure 4.1 presents the syntax of SHAPESh;

 

high

 

lighted entities represent the syntactic entities 

that are novel with respect to other object-oriented languages. Classes in SHAPESh are

 

pa

 

ram

 

-

 

e

 

terised

 

with

 

pools. As usual, classes contain field and method definitions. Field definitions 

consist of their identifier and type. Method definitions consist of their identifier, a parameter 

and its type, a return type, and a method body. Method bodies consist of a preamble and 

statements. A preamble consists of declarations for

 

lo

 

cal

 

pools and local variables. Statements 

and expressions are as usual with respect to OO.

 

A

 

lay

 

out

 

dec

 

la

 

ra

 

tion

 

has

 

the

 

form

 

layout

 

L

 

:

 

C

 

=

 

rec { fs1 

} ; .. rec { fsn 

} .

 

It

 

in

 

tro

 

duces

 

a

 

new

 

lay

 

out

 

L ,

 

which

 

de

 

scribes

 

how

 

ob

 

jects

 

of

 

class

 

C

 

re

 

sid

 

ing

 

in

 

a

 

pool

 

with

 

lay

 

out

 

L

 

are

 

split

 

into

 

n

 

clus

 

ters.

 

All

 

of

 

the

 

fields

 

of

 

C

 

must

 

be

 

present

 

in

 

a

 

lay

 

out

 

dec

 

la

 

ra

 

tion

 

with

 

no

 

du

 

pli

 

ca

 

tion.

 

The

 

first

 

clus

 

ter

 

will

 

con

 

tain

 

fields

 

fs1,

 

the

 

sec

 

ond

 

clus

 

ter

 

will

 

con

 

tain

 

fields

 

fs2,

 

and

 

so

 

on.
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X ∈ Heap = Address ⇀ ( Object

 

∪ Pool ) 

Address = ObjectAddress

 

⊎ PoolAddress 

Object = ClassId

 

× PoolArg+ × Record

 

Pool =

 

LayoutId × PoolArg+

 

π ∈ PoolArg =

 

PoolAddress ∪ { none } 

ρ ∈ Record = FieldId → Value 

β ∈ Value = ObjectAddress ∪ { null } 

Φ ∈ SFrame = VariableId ⇀ ( Value

 

∪ PoolArg )

 

∪ ( { none } → { none } ) 

Σ ∈ Stack = SFrame 

∗ 

Figure 4.2: Dynamic Entities of SHAPESh where ω ∈ ObjectAddress . 

Object types consist of the name of a class

 

fol

 

lowed

 

by

 

a

 

se

 

quence

 

of

 

pool

 

ar

 

gu

 

ments,

 

some

 

of

 

which

 

may

 

be

 

none . An object of type C ⟨ p · ps ⟩ will belong to class C ,

 

re

 

side

 

in

 

pool

 

p ,

 

and

 

its

 

fields

 

will

 

point

 

to

 

ob

 

jects

 

whose

 

place

 

ment

 

is

 

de

 

ter

 

mined

 

by

 

the

 

fields’

 

dec

 

la

 

ra

 

tions

 

and

 

the

 

pool

 

ar

 

gu

 

ments

 

p · ps . An object of type C ⟨ none · ps ⟩ will belong to class C , will not 

reside in a pool,

 

and

 

its

 

fields

 

will

 

point

 

to

 

ob

 

jects

 

whose

 

place

 

ment

 

is

 

de

 

ter

 

mined

 

by

 

the

 

fields’

 

dec

 

la

 

ra

 

tions

 

and

 

the

 

pool

 

ar

 

gu

 

ments

 

none · ps .

 

Be

 

cause

 

the

 

first

 

pool

 

pa

 

ram

 

e

 

ter

 

spec

 

i

 

fies

 

which

 

pool

 

an

 

ob

 

ject

 

will

 

be

 

al

 

lo

 

cated

 

into,

 

the

 

first

 

pool

 

pa

 

ram

 

e

 

ter

 

of

 

a

 

class

 

def

 

i

 

ni

 

tion

 

cor

 

re

 

sponds

 

to

 

the

 

pool

 

this

 

is

 

al

 

lo

 

cated

 

into.

 

Pools

 

are

 

cre

 

ated

 

dy

 

nam

 

i

 

cally

 

upon

 

ex

 

e

 

cu

 

tion

 

of

 

a

 

method’s

 

pream

 

ble.

 

A

 

pool

 

p

 

cre

 

ated

 

in

 

-

 

side

 

the

 

pream

 

ble,

 

e.g.,

 

via

 

pools .. p : L ⟨ p · ps ⟩ ,

 

con

 

tains

 

ob

 

jects

 

of

 

type

 

C ⟨ p · ps ⟩ , which are 

organised according to layout L , where C is the class definition the layout L corresponds to. 

Objects are allocated

 

in

 

side

 

a

 

pool

 

p by executing the expression new C ⟨ p · ps ⟩ . 

Notation We will be using the following notation throughout the rest of this thesis: 

We use several shorthand syntaxes in order to define maps. The syntax [ x1 

.. xn 

↦→ y1 

.. yn] 

is a shorthand for [ x1 

↦→ y1 

, .. , xn 

↦→ yn]. Also, [ x1 

.. xn 

↦→ an] is a shorthand for [ x1 

↦→ 

a, .. , xn 

↦→ a ]. Similarly, if xs 

≤ xe, then the syntax [ xs 

, .. , xe 

↦→ a ] is a shorthand for 

[ xs 

↦→ a, xs 

+ 1 ↦→ a, .. , xe 

− 1 ↦→ a, xe 

↦→ a ]. 

We append s to names to indicate sequences: xs is a sequence of x -s. We use · for list 

concatenation: p · ps is a list where we prepend p into ps .
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We use the notation p to indicate a pool variable, and np to indicate a pool variable or none . 

For ease of notation, we use ps to indicate a sequence of np -s, i.e., any elements in ps may be 

none . 

We use the syntax F ( x1 

· .. · xn) as a shorthand for F ( x1) · .. · F ( xn). 

4.2 Execution of SHAPESh Programs 

The execution of SHAPESh corresponds to the execution of a typical OO language when not 

taking the

 

hig hl ig hted parts into account. The SHAPESh heap adds pool entities to standard 

OO; these pool entities consist of the layout L they adhere to. To express the correspondence 

between SHAPESh and SHAPESℓ, we enrich the SHAPESh semantics with ghost information; 

this ghost information consists of all the pool arguments passed into an object or pool at the 

time of its creation ( e.g., an object created through new C ⟨ p1 

.. pn 

⟩ will also contain the 

addresses of the pools p1 

to pn). 

The SHAPESh operational semantics is given in terms of large steps semantics, and has the form 

X , Σ , stmts ↝ X 

′ , Σ′ , β . That is, a heap X , a stack of frames Σ, and a sequence of statements 

stmts are reduced to a new heap X 

′, a new stack Σ′, and a value β . 

Figure 4.2 presents the definitions of the SHAPESh runtime entities. To illustrate them and 

aid in their presentation, we will use the code presented in Listing 4.1 (written in SHAPES ), 

which builds on the definitions of classes Professor and Student (Lines 1 and 5, respectively, in 

Listing 2.2). Figure 4.3 depicts the SHAPESh configuration (stack and heap) after execution of 

the code in Listing 4.1. 

SHAPESh runtime configurations consist of a stack (Σ) of frames (Φ) mapping identifiers to 

values, and heaps ( X ) mapping object and pool addresses to objects ( ω ) or pools ( π ), respec- 

tively. In Figure 4.3, the stack consists of one frame, with variables pStu , at , ec , jf , sd ; the 

heap consists of the objects with addresses π1, ω1, ω2, ω3, ω4. For convenience, if Σ = Φ · Σ′ 

we use Σ( x ) and Σ[ x ↦→ β ] as shorthands for Φ( x ) and Φ[ x ↦→ β ] · Σ′, respectively. That is,
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1 layout StudentL: Student = 

2 rec { ■ name, ■ age} + rec { ■ supervisor}; 

3 ... 

4 pools pStu: StudentL<pStu, none >; 

5 at = new Student<pStu, none >; 

6 ec = new Student<pStu, none >; 

7 jf = new Student<pStu, none >; 

8 

9 sd = new Professor< none >; 

10 jf.supervisor = sd; 

Listing 4.1: SHAPES example used in § 4 and § 5
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Figure 4.3: SHAPESh stack and heap representation for Listing 4.1 

accessing and modifying a variable through a stack only takes the top frame into account. 

Objects consist of a class identifier C (determining its type), a sequence of pool arguments ( i.e., 

pool addresses, some of which may be none ), and a record. A standalone object has none as 

its first pool parameter ( e.g., Professor at address ω4 

in Figure 4.3); an object stored in a pool 

π has a pool address π as its first parameter ( e.g., Student s at addresses ω1, ω2, ω3 

belong to 

pool with address π1. The fields’ values are stored as a record ( ρ ), which maps the object’s 

fields to values. 

Pools consist of a layout identifier L , and a sequence of pool arguments. The layout identifier 

determines how the objects inside the pool are laid out and Pools can only store instances of 

the class corresponding to layout identifier. As mentioned, pools in SHAPESh do not control 

the placement or layout of objects belonging to them; standalone and pooled objects have the 

exact same representation, hence they are treated uniformly. 

Values are either object addresses, or null . Because SHAPESh allows pools to be referenced by 

variables, stack frames (Φ) map variables to either values, pool addresses or none . SHAPESh 

uses sequences of stack frames (Σ). We require for convenience that any frame maps none to 

none . 

The operational semantics of SHAPESh (Figure 4.4) deviate from that of typical OO in two
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[Value]

 

X , Σ , null ↝ X , Σ , null 

[Variable]

 

X , Σ , x ↝ X , Σ , Σ( x ) 

[Assignment] 

X , Σ , e ↝ X 

′ , Σ′ , β

 

X , Σ , x = e ↝ X 

′ , Σ′[ x ↦→ β ] , β 

[Statement sequence] 

X , Σ , e ↝ X 

′ , Σ′ ,

 

X 

′ , Σ′ , stmts ↝ X 

′′ , Σ′′ , β

 

X , Σ , e ; stmts ↝ X 

′′ , Σ′′ , β 

[New Object] 

Σ( ps ) = π s ω / ∈ X fs = F s ( C ) 

X 

′ = X [ ω ↦→ ( C , π s, [ fs ↦→ null| fs |])]

 

X , Σ , new C ⟨ ps ⟩ ↝ X 

′ , Σ , ω 

[Object Read] 

Σ( x ) = ω 

X ( ω ) = ( C ,

 

, ρ )

 

X , Σ , x.f ↝ X , Σ , ρ ( f ) 

[Object Write] 

Σ( x ) = ω Σ( x′) = ω 

′ X ( ω ) = ( C , π s, ρ ) 

X 

′ = X [ ω ↦→ ( C , π s, ρ [ f ↦→ ω 

′])]

 

X , Σ , x.f = x′ ↝ X 

′ , Σ , ω 

′ 

Figure 4.4: Operational semantics for pool-agnostic operations. 

ways: Firstly, we change the semantics so as to store our ghost information ( i.e., addresses 

of the pool parameters ps provided by the new C ⟨ ps ⟩ expression) into objects. Secondly, 

Rule MethodCall is now also tasked with the construction of the method-local pools, as well 

as the passing of references to pools from the caller to the callee. Nevertheless, the syntax for 

constructing objects and accessing/mutating their fields is the same, regardless of whether the 

object is standalone or pooled ( i.e., these rules are pool-agnostic ). 

Method call The operational semantics for method call are presented in Figure 4.5, in two 

different rules. The first, Rule MethodCall , constructs the stack frame corresponding to the 

method that is about to be called, and returns the value yielded from evaluation of the method 

body back to its caller. Passing the value of the implicit this parameter and the method 

parameter is done in the same manner as in a typical OO calculus. It is also necessary, however, 

to set the values of the class parameters. This is because the pool parameters of the class can 

be used as parameters in type declarations inside a method body (more specifically in new 

statements). We pass the pool addresses stored into the object the method is invoked against 

and store them into the frame. 

Evaluation of a method body is defined in Rule MethodBody . Here, we must initialise the local



 

4.3. Type System 57

 

[MethodCall] 

Σ( x ) = ω X ( ω ) = ( C , π s,

 

) 

M ( C , m ) = (

 

, x′ :

 

, localPools ; localVars ; stmts ) 

Σ′ = [ this ↦→ ω , x′ ↦→ Σ( x′′) , P s ( C ) ↦→ π s ] · Σ 

X , Σ′ , localPools ; localVars ; stmts ↝ X 

′ ,

 

, β

 

X , Σ , x.m ( x′′) ↝ X 

′ , Σ , β 

[MethodBody] 

localPools = pools p1: L1 

⟨ ps1 

⟩ .. pn: Ln 

⟨ psn 

⟩ 

localVars = vars x1:

 

.. xm:

 

π1 

, .. , πn 

/ ∈ X ∀ i, j . [ i ̸ = j → πi 

̸ = πj] 

Σ′ = Σ[ p1 

.. pn 

↦→ π1 

.. πn][ x1 

.. xm 

↦→ nullm] 

X 

′ = X [ π1 

↦→ ( L1 

, Σ′( ps1)) , .. , πn 

↦→ ( Ln 

, Σ′( psn))] 

X 

′ , Σ′ , stmts ↝ X 

′′ , Σ′′ , β

 

X , Σ , localPools ; localVars ; stmts ↝ X 

′′ , Σ′′ , β 

Figure 4.5: Operational semantics for method call. 

variables defined in the method’s preamble. Object variables are initialised to null . For pool 

variables, new (empty) pools are constructed in a two-step manner: The pools are first reserved 

on the heap and then they are actually constructed, along with the stack frame. This allows 

us to have cycles among pools. 

4.3 Type System 

The type system has the remit of ensuring that at runtime: 

A1 Objects’ fields point to objects of the appropriate class (as usual). 

A2 Objects are allocated in the appropriate pools and adhere to the layout of that pool 

(hence ensuring memory safety). 

A3 Pool homogeneity is preserved. 

We will be using the lookup functions defined in Figure 4.6. We define the following lookup 

functions. For simplicity, we implicitly assume that layout and class identifiers are unique 

within the same program, and field and method identifiers are unique within the same class.
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C ( C ) ≜ ( pd s fd s md s ) iff ( class C ⟨ pd s ⟩{ fd s md s } ) ∈ prog [0] 

P s ( C ) ≜ p1 

.. pn 

iff C ( C )[0] = ( p1 :

 

, ..., pn :

 

) 

P b ( C ) ≜ pbd1 

.. pbd n 

iff C ( C )[0] = (

 

: pbd1 

, ...,

 

: pbd n) 

B ( C , p ) ≜ pbd iff ( p : pbd ) ∈ C ( C )[0] 

M ( C , m ) ≜ ( t , x : t 

′ , localPools ; localVars , stmts ) iff 

( def m ( x : t 

′) : t { localPools ; localVars ; stmts } ) ∈ C ( C )[2] 

F ( C , f ) ≜ t iff ( f : t ) ∈ C ( C )[1] 

F s ( C ) ≜ f1 

.. fn 

iff C ( C )[1] = ( f1 

:

 

.. fn 

:

 

) 

L ( L ) ≜ ( C , fs1 

.. fsn) iff 

( layout L : C = rec { fs1 

} ; .. rec { fsn 

} ) ∈ prog [1] 

O ( L, f ) ≜ ( i, j ) iff L ( L ) = ( C , fss ) ∧ fss [ i, j ] = f 

O ( C , f ) ≜ i iff F s ( C )[ i ] = f 

C l ( L ) ≜ L ( L )[0] 

R s ( L ) ≜ L ( L )[1] 

Figure 4.6: SHAPESh lookup functions 

Typing takes place in the context of an environment Γ, which maps object variables to object 

types ( t ), and pool variables to pool types ( pt ) or bounds ( pb ). We define a typing environment 

as follows: 

Definition 4.1 (Environment) . 

Γ ∈ TypingContext ::= x : t , Γ | p : u, Γ | ϵ 

u ∈ PoolTypeOrPoolBound ::= pt | pb 

pt ∈ PoolType ::= L ⟨ ps ⟩ 

pb ∈ PoolBound ::= [ C ⟨ ps ⟩ ] | None 

T ::= t | u 

We distinguish three kinds of types: 

Object Types ( C ⟨ ps ⟩ ), where C is a class and ps are pool arguments, some of which may be 

none . They specify objects of class C , and the arguments ps specify the pools containing
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[Value] 

Γ ⊢ C ⟨ ps ⟩

 

Γ ⊢ null : C ⟨ ps ⟩ 

[Variable]

 

Γ ⊢ x : Γ( x ) 

[Assignment] 

Γ ⊢ x : t Γ ⊢ e : t

 

Γ ⊢ x = e : t 

[Statements] 

Γ ⊢ e : t 

′ Γ ⊢ stmts : t

 

Γ ⊢ e ; stmts : t 

[NewObject] 

Γ ⊢ C ⟨ ps ⟩

 

Γ ⊢ new C ⟨ ps ⟩ : C ⟨ ps ⟩ 

[FieldRead] 

Γ ⊢ x : C ⟨ ps ⟩ 

t = F ( C , f )[ P s ( C ) /ps ]

 

Γ ⊢ x.f : t 

[FieldWrite] 

Γ ⊢ x.f : t 

Γ ⊢ x′ : t

 

Γ ⊢ x.f = x′ : t 

[MethodCall] 

Γ ⊢ x : C ⟨ ps ⟩ 

M ( C , m ) = ( t ,

 

: t 

′ ,

 

,

 

) 

Γ ⊢ x′′ : t 

′[ P s ( C ) /ps ]

 

Γ ⊢ x.m ( x′′) : t [ P s ( C ) /ps ] 

Figure 4.7: Typing Expressions and statements. 

the object itself and the pools containing the objects pointed by that object’s fields. 

Pool Types ( L ⟨ ps ⟩ ) describe pools which store objects of type C and are organised accord- 

ing to layout L . The arguments ps specify which pools contain the objects pointed by the 

fields of the objects stored in this pool. Pool types characterise pool values, i.e., pools 

allocated dynamically through execution of a method’s preamble. 

Pool Bounds ([ C ⟨ ps ⟩ ] and None ) Pool bounds characterise both formal pool parameters 

(whose layout is not necessarily known at that scope) and pools instantiated inside a 

method (whose layout is explicitly specified). The type None is only needed when trans- 

lating SHAPESh into SHAPESℓ, specifically during method specialisation ( § 5.5). 

Expression and Statement Types Typing has the standard form Γ ⊢ e : t and Γ ⊢ 

stmts : t . Notice that the type rules only return object types. Pool types and pool bounds are 

only used in ascertaining that types are well-formed. The type rules are presented in Figure 4.7. 

These are the type rules which ensure that Objectives A1–A3 hold. 

The first five rules in Figure 4.7 are standard. null can have any well-formed object type 

(Rule Value ). The type of a variable x is looked-up in Γ (Rule Variable ). Assignment to a 

local variable is valid if both the variable and the right-hand-side expression have the same 

type (Rule Assignment ). Notice that we do not model inheritance or subtyping. A sequence of 

expressions is well-typed if all expressions in it are well-typed (Rule Statements ). Creation of
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[ObjTypeWF] 

∀ i. Γ ⊢ ps [ i ] : : B ( C , P s ( C )[ i ])[ P s ( C ) /ps ]

 

Γ ⊢ C ⟨ ps ⟩ 

[BndWF] 

Γ ⊢ C ⟨ ps ⟩

 

Γ ⊢ [ C ⟨ ps ⟩ ] 

[PoolTypeWF] 

Γ ⊢ C ⟨ ps ⟩ C l ( L ) = C

 

Γ ⊢ L ⟨ ps ⟩ 

[PoolVar]

 

Γ ⊢ p : : Γ( p ) 

[PoolBnd] 

Γ ⊢ p : : L ⟨ ps ⟩ 

C l ( L ) = C

 

Γ ⊢ p : : [ C ⟨ ps ⟩ ] 

[None1]

 

Γ ⊢ none : : None 

[None2] 

Γ ⊢ [ C ⟨ ps ⟩ ]

 

Γ ⊢ none : : [ C ⟨ ps ⟩ ] 

Figure 4.8: Well-formed Types 

a new object is valid and has type C ⟨ ps ⟩ if C ⟨ ps ⟩ is a valid type (Rule NewObject ). 

The following three rules are concerned with pool arguments, These rules are similar to those 

in Featherweight Java [IPW01], or Ownership Types [CÖSW13] (in the sense that classes are 

parameterised), the difference being that in SHAPESh, class parameters are pools instead of 

types (as in Java) or objects (as in Ownership Types). 

Rule FieldRead looks up a field f from a receiver x of type C ⟨ ps ⟩ ; the function F ( C , f ) looks 

up the definition of f as found in class C . The formal parameters from class C must be 

substituted by the pool arguments in ps , hence the substitution [ P s ( C ) /ps ]. For example, the 

term s1.supervisor in Line 18 of Listing 2.2 has type Professor<pProf1> . 

Similar substitutions are applied in Rules FieldWrite and MethodCall to translate between 

the internal names of the class parameters and the arguments used at the call site. With 

these rules, the assignment s1.supervisor = new Professor<pProf1> would be legal, while, given 

an otherStudent of type Student< none , none > , the assignment otherStudent.supervisor = new 

Professor<pProf1> would be illegal. 

Well-formed Types Figure 4.8 describes well-formedness of types, which is the way we 

statically enforce homogeneity in SHAPESh. Rule ObjTypeWF mandates that the type C ⟨ ps ⟩ is 

well formed, if each of the arguments ps [ i ] adheres to the bound of the i -th formal parameter
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of C , ( i.e., B ( C , P s ( C )[ i ])) when we have substituted all formal parameters of C with ps . 

The judgement for pool variables adhering to pool types and bounds has the format Γ ⊢ 

np : : u . By Rule PoolBnd , a pool variable adheres to its bound as given in Γ, and by 

Rule PoolVar , a pool variable which adheres to L ⟨ ps ⟩ also adheres to [ C ⟨ ps ⟩ ], where C is 

the class of the layout L . 

Thus, in Line 18 of Listing 2.2, the type Student<pStu1, pProf1> is well-formed (as pStu1 adheres 

to the bound [Student<pStu1, pProf1>] , and pProf1 adheres to the bound [Professor<pProf1>] ). 

However, in Line 20, the type Student<pStu1, pProf2> is badly formed; for it to be well-formed, 

we would need for pStu1 to adhere to the bound [Student<pStu1, pProf2>] , but this cannot be 

since the bound of pStu1 is [Student<pStu1, pProf1>] . Therefore, Line 20 is rejected with a 

typing error. 

Pools are not first class objects Pools are dynamic entities, as they are created upon 

entry to a method preamble. However, pools are not first class entities, as they cannot be 

the outcome of an execution, cannot be stored in fields, and the same pool variable cannot be 

re-assigned within execution of the same scope. 

All these restrictions are necessary because pool variables are used within types. For instance, 

consider an object o with type C<p1, p2> ; if we were to reassign pool p1 , we would “invalidate” 

the type C<p1, p2> of o , as well as any other type or bound that references p1 . This would 

be further complicated if, for instance, we permitted conditional reassignment of pools ( e.g., 

within an if statement). As such, we have decided to not treat pools as first class entities. 

4.3.1 Homogeneity and Type Safety 

We will now discuss how the type system achieves homogeneity. We will see that homogeneity 

leads to the introduction of some novel constraints on pool bounds. 

As we said in section § 2.1, homogeneity requires that for any two objects o1 

and o2 

allocated 

in the same pool π , and any sequence of field reads f1 

, · · · , fn, if o1 

.f1 

. .. .fn 

and o2 

.f1 

. .. .fn
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are defined and not null , then they must reside in the same pool π 

′. Through an inductive 

argument, we can convince ourselves that homogeneity is equivalent to immediate homogeneity , 

where the latter requires that for any pool π any objects o1 

and o2 

allocated in π , and any field 

f , if o1 

.f and o2 

.f are defined and not null , then they must reside in the same pool π 

′. Our 

objective is to consider how to achieve immediate homogeneity. 

Remember that the static type of an object ( C ⟨ p · ps ⟩ ) determines the pool that object resides 

in, as well as the pools the object’s fields reside in. In particular, if Γ ⊢ x : C ⟨ p · ps ⟩ , then 

Γ ⊢ x : C 

′ ⟨ p′ ·

 

⟩ , where C 

′ is some class, and p′ = p , p′ = none or ∃ i. p′ = ps [ i ], and the 

object pointed at by x.f resides in p′. Uniformity ensures that all objects residing in the same 

pool p will have the type C ⟨ p ·

 

⟩ . If, on top of uniformity, we can enforce pool consistency , i.e., 

all objects in the same pool will have identical types (same class and same pool arguments), 

then we will have achieved immediate homogeneity. 

To enforce pool consistency, we require that any types that coincide in the first pool argument 

will coincide in all pool arguments and be of the same class. That is, for types C ⟨ p · ps ⟩ and 

C 

′ ⟨ p · ps′ ⟩ in the same scope, C = C 

′ and ps = ps′. This is guaranteed by well-formedness of 

environments, which is defined below: 

Definition 4.2 (Well-formed environments) . 

⊢ Γ iff ∀ (

 

: T ) ∈ Γ . Γ ⊢ T ∧ ∀ p. [ Γ ⊢ p : : [ C ⟨ ps ⟩ ] −→ ps [0] = p ] 

In the definition above, the requirement from the first conjunct (well-formedness of types) is 

standard, but the requirement from the second conjunct ( i.e., the type of a pool variable must 

have the variable itself as the first pool parameter) is novel. Such well-formed environments 

ensure pool consistency, i.e., any types which have the same first argument are identical in the 

remainder. 

Lemma 4.3 (Derivation of well-formed types from other well-formed types) . 

If ⊢ Γ , Γ ⊢ C ⟨ ps ⟩ and ΓC 

⊢ C 

′ ⟨ ps′ ⟩ (where ΓC 

is the environment used to typecheck the 

definition of class C , see Definition 4.6), then Γ ⊢ C 

′ ⟨ ps′[ P s ( C ) /ps ] ⟩ .
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1 class C< 

2 p1: [C<p1, p2, p3>], 

3 p2: [C<p2, p3, p1>], 

4 p3: [C<p3, p2, p1>]> 

5 { 

6 f1: C<p2, p3, p1>; 

7 f2: C<p3, p2, p1>; 

8 } 

Listing 4.2: Example of the necessity of pool bounds 

Proof. See § C.3.

 

Lemma 4.4 (Well-formed expressions have well-formed types) . 

If ⊢ Γ and Γ ⊢ e : T , then Γ ⊢ T . 

Proof. By structural induction over the derivation of e and by using Lemma 4.3. See § C.3.

 

Lemma 4.5 (Well-formed environments ensure pool consistency) . 

⊢ Γ ∧ Γ ⊢ C ⟨ p · ps ⟩ ∧ Γ ⊢ C 

′ ⟨ p · q s ⟩ −→ ps = q s ∧ C = C 

′. 

Proof. If Γ ⊢ C ⟨ p · ps ⟩ and Γ ⊢ C 

′ ⟨ p · q s ⟩ , then Γ ⊢ p : : C ⟨ p · ps ⟩ and Γ ⊢ p : : C 

′ ⟨ p · ps′ ⟩ 

from Rule ObjTypeWF and the fact that B ( C , P s ( C )[0]) = P s ( C ) (Definition 4.7). However, 

because Γ is constructed so that p can only adhere to one pool bound (Definition 4.7), then it 

must hold that C = C 

′ and ps = ps′.

 

We now see that our system enforces homogeneity. Namely, given two objects o1 

and o2 

in 

the same pool, and a field f , we will show that o1 

.f and o2 

.f reside in the same pool. Since 

o1 

and o2 

are in the same pool, they have type Γ ⊢ o1 

: C ⟨ p · ps ⟩ and Γ ⊢ o2 

: C ⟨ p · ps′ ⟩ , 

respectively. From the type system, and ignoring the cases for p and none , we obtain there 

exists some class C 

′ and some i such that Γ ⊢ o1 

.f : C 

′ ⟨ p1 

·

 

⟩ and Γ ⊢ o2 

.f : C 

′ ⟨ p2 

·

 

⟩ where 

p1 

= ps [ i ] and p2 

= ps [ i ]. All well-formed expressions have well-formed types, therefore we can 

apply Lemma 4.4, and obtain that pi 

= p′ 

i, hence o1 

.f and o2 

.f will reside in the same pool. 

Necessity of well-formed environments for homogeneity To see why well-formed en- 

vironments are necessary to ensure homogeneity, consider Listing 4.2. If we apply Rule Obj- 

TypeWF and substitute the pool parameters p1, p2, p3 

of bound [ C ⟨ p2 

· p3 

· p1 

⟩ ] (Line 3) with the 

pool parameters p3, p2, p1 

from Line 4 in that exact order, we obtain the bound [ C ⟨ p2 

· p1 

· p3 

⟩ ];
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this bound is different from that of Line 3, hence Listing 4.2 would result in an ill-formed 

enviromnent. 

Now, consider an environment Γ such that Γ ⊢ x : C ⟨ p1 

· p2 

· p3 

⟩ . By applying Rule FieldRead 

for the expression x.f2 

.f1 

.f1 

multiple times, we derive that Γ ⊢ x.f2 

.f1 

.f1 

: C ⟨ p1 

· p3 

· p2 

⟩ . 

The first pool parameter of both x and x.f2 

.f1 

.f1 

is p1, therefore they must belong to the 

same pool. However, by applying Rule FieldRead for field f1 

for both of these expressions, we 

conclude that Γ ⊢ x.f1 

: C ⟨ p2 

· p3 

· p1 

⟩ and Γ ⊢ ( x.f2 

.f1 

.f1) .f1 

: C ⟨ p3 

· p2 

· p1 

⟩ . We have therefore 

encountered a case of two objects that belong to pool p1, but the objects they reference through 

field f1 

belong to different pools, which violates homogeneity. 

4.4 Well-formedness 

To prove soundness of the type system, we need the concepts of a well-formed program and a 

well-formed configuration. 

4.4.1 Well-formed Programs 

A program prog is well-formed if all of its class definitions and layout declarations are well- 

formed. For a class definition to be well-formed, all class parameters must have bounds whose 

first argument is that parameter, and a similar requirement must be made for all local pools. 

For example, (expanding on the code of Listing 2.2) the statement pools pProf2: ProfL<pStu1> 

would be illegal. The rest of the definitions are less surprising. 

We define well-formed (formal) SHAPESh programs as follows: 

Definition 4.6 (Well-formed program) . A SHAPESh program is well-formed if all its layout 

and all its class declarations are well-formed. 

⊢ prog iff ( ∀ cd ∈ p r og [0] . p r og ⊢ cd ) ∧ ( ∀ ld ∈ p r og [1] . p r og ⊢ ld )
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Definition 4.7 (Well-formed class declaration) . A class C is well-formed if: 

• Their first pool parameter has to be annotated with a bound that is of the same class and its 

parameters are the same as in the class declaration (and in the same order). That is, if the 

class pool parameters of the class C are P s ( C ) = p1 

.. pn, then B ( C , p1) = [ C ⟨ p1 

, . . . , pn 

⟩ ] . 

• The parameter list of all pool types must only contain parameters from the class’ pool 

parameter list (i.e. P s ( C ) ). This means that the none keyword is disallowed as a pool 

parameter name. 

• The fields must have class types that are well-formed against the typing context Γ where 

the class’ formal pool parameters have their corresponding bounds as types. Moreover, Γ 

is well-formed. 

• All the methods have a parameter and return type that is well-formed against the context 

Γ . Moreover, for each method, the corresponding method body is typeable against a context 

Γ′ which is an augmentation of Γ and contains the types of this variable, local pool, and 

object variables of the method. Moreover Γ′ is well-formed. Finally, each method must 

use a variable for its return method. This is necessary so as to ensure that the return 

value is not considered eligible for garbage collection.
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p r og ⊢ class C ⟨ p1 : [ C1 

⟨ ps1 

⟩ ] .. pn : [ Cn 

⟨ psn 

⟩ ] ⟩ { fd s md s } iff 

⊢ Γ ∧ C1 

= C ∧ ps1 

= p1 

.. pn 

∧ ∀ i. psi[0] = pi 

∧ ∀ i, j . psi[ j ] ̸ = none 

∧ ∀ f : T ∈ fd s. Γ ⊢ T 

∧ ∀ def m ( x : t ) : t 

′ { localPools ; localVars ; stmts } ∈ md s. [ 

Γ ⊢ t ∧ Γ ⊢ t 

′ 

∧ ⊢ Γ′ ∧ Γ′ ⊢ stmts : t 

′ ] ∧ Γ ⊢ stmts 

where Γ′ = Γ , this : C ⟨ p1 

.. pn 

⟩ , x : t , 

p′ 

1: L1 

⟨ ps′ 

1 

⟩ , .. , p′ 

k: Lk 

⟨ ps′ 

k 

⟩ , 

x1: C 

′ 

1 

⟨ ps′′ 

1 

⟩ , .. , xm: C 

′ 

m 

⟨ ps′′ 

m 

⟩ 

localPools = pools p′ 

1 : L1 

⟨ ps′ 

1 

⟩ .. p′ 

k : Lk 

⟨ ps′ 

k 

⟩ 

localVars = locals x1: C 

′ 

1 

⟨ ps′′ 

1 

⟩ .. xm: C 

′ 

m 

⟨ ps′′ 

m 

⟩ 

where Γ = p1: [ C1 

⟨ ps1 

⟩ ] .. pn: [ Cn 

⟨ psn 

⟩ ] 

We define Γ ⊢ stmts as follows: 

• Γ ⊢ e ; stmts iff Γ ⊢ e ∧ Γ ⊢ stmts 

• Γ ⊢ e iff ( e = new t ) → Γ ⊢ t 

We now define well-formedness of layout declarations: 

Definition 4.8 (Well-formed layout declaration) . A layout declaration for instances of a class 

C is well-formed iff the disjoint union of its clusters’ fields is the set of the fields declared in C . 

p r og ⊢ layout L : [ C ] = rec { fs1 

} .. rec { fsn 

} iff 

{F s ( C ) } = 

⨄︂ 

i ∈ 1 .. n 

{ fsi 

} 

This definition excludes repeated or missing fields. For example, given the class Student from
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Listing 2.2, the following two layout declarations are ill-formed: 

// repeated field 

layout BadStudentL1: Student = rec {name, age} + rec {age, supervisor}; 

// missing field 

layout BadStudentL2: Student = rec {name} + rec {age}; 

4.4.2 Well-formed Configurations 

Defining well-formed configurations for SHAPESh must take into account the fact that the pool 

parameters of the type of the same object may be different in different environments: An object 

o passed through a function call may have the type C ⟨ p1 

· p2 

⟩ in the caller’s environment and 

the type C ⟨ p3 

· p4 

⟩ in the callee’s environment. 

To overcome this limitation of pool parameters when defining well-formed configurations, we 

use runtime types, wherein we replace each pool parameter with a pool address π or none . 

That is, the pool parameters of static types are variables ( e.g., C ⟨ p1 

· p2 

⟩ ), whereas the pool 

parameters of runtime types are pool addresses ( e.g., C ⟨ π1 

· π2 

⟩ ). The benefit of runtime types 

is that object and pool addresses do not change (barring isomorphism); the above object o will 

have a fixed runtime type ( e.g., C ⟨ π1 

· π2 

⟩ ) throughout execution. 

Definition 4.9 (Runtime types) . A runtime type τ is defined as follows: 

τ ∈ RunType ::= RunClassType ∪ RunPoolType ∪ RunBound 

RunClassType ::= C ⟨ π1 

.. πn 

⟩ 

RunPoolType ::= L ⟨ π1 

.. πn 

⟩ 

RunBound ::= [ C ⟨ π1 

.. πn 

⟩ ] 

In the context of a well-formed configuration, we can expect that an object with runtime type 

C ⟨ π · π s ⟩ belongs to the pool with address π and that the pool at address π has a runtime type
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L ⟨ π · π s ⟩ such that C l ( L ) = C . This implies uniformity . Moreover, for two objects o1 

, o2 

with 

runtime type C ⟨ π · π s ⟩ , we require that o1 

.f , o2 

.f point to objects that belong to the same pool 

π 

′. π 

′ is derived purely from the pool addresses π · π s and the type of field f in class C . This 

implies homogeneity . 

Additionally, if, in the environment of a stack frame Φ, an object, pool, or class parameter 

adheres to the static type C ⟨ ps ⟩ , L ⟨ ps ⟩ , or, [ C ⟨ ps ⟩ ] respectively, then we can expect the pool 

parameters to be Φ( ps ) object, pool, or bound to be C or L , respectively. 

Given the above expectations, we now define the well-formedness of a runtime configuration: 

Definition 4.10 (Well-formed high-level configurations) . Well-formedness is defined as follows: 

• Strong agreement for objects and pools: 

• X ⊨ ω ◁ C ⟨ π s ⟩ iff X ( ω ) = ( C , π s, ρ ) ∧ X ⊨ π s [0] : [ C ⟨ π s ⟩ ] ∧ 

∀ f . X ⊨ ρ ( f ) : F ( C , f )[ P s ( C ) /π s ] 

• X ⊨ π ◁ L ⟨ π s ⟩ iff X ⊨ π s [0] : L ⟨ π s ⟩ ∧ C l ( L ) = C ∧ 

∀ i. X ⊨ π s [ i ] : B ( C , P s ( C )[ i ])[ P s ( C ) /π s ] 

• Weak agreement for objects, pools, and bounds: 

• X ⊨ ω : C ⟨ π s ⟩ iff X ( ω ) = ( C , π s,

 

) 

• X ⊨ null : C ⟨

 

⟩ 

• X ⊨ π : L ⟨ π s ⟩ iff X ( π ) = ( L, π s ) ∧ π = π s [0] 

• X ⊨ π : [ C ⟨ π s ⟩ ] iff X ( π ) = ( L, π s ) ∧ π = π s [0] ∧ C l ( L ) = C 

• X ⊨ none : [ C ⟨

 

⟩ ] 

• X ⊨ none : None 

• Well-formed heap: 

⊨ X iff [ ∀ ω ∈ dom( X ) . ∃ τ . X ⊨ ω ◁ τ ] ∧ [ ∀ π ∈ dom( X ) . ∃ τ . X ⊨ π ◁ τ ] 

• Well-formed stack frame and heap against an environment:
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Γ ⊨ X , Φ iff ⊨ X ∧ 

∀ x ∈ dom(Φ) . ∃ C , ps. [Γ( x ) = C ⟨ ps ⟩ ∧ X ⊨ Φ( x ) : C ⟨ Φ( ps ) ⟩ ] ∧ 

∀ p ∈ dom(Φ) . ∃ L, C , ps. [ 

[Γ( p ) = L ⟨ ps ⟩ ∧ X ⊨ Φ( x ) : L ⟨ Φ( ps ) ⟩ ] ∨ 

[Γ( p ) = [ C ⟨ ps ⟩ ] ∧ X ⊨ Φ( x ) : [ C ⟨ Φ( ps ) ⟩ ]] 

] 

• Well-formed sequence of stack frames and heap against a sequence of environments: 

• ϵ ⊨ X , ϵ 

• Γ · Γ s ⊨ X , Φ · Σ iff Γ ⊨ X , Φ ∧ Γ s ⊨ X , Σ

 

Theorem 4.11 guarantees that if a well-formed configuration takes a reduction step, then the 

resulting configuration is well-formed too, and the resulting value agrees with the type of the 

statements. 

Theorem 4.11 (Type Safety) . For a well-formed program prog, given a heap X , stack frame 

sequence Σ , corresponding typing environment sequence Γ s , and sequence of statements stmts: 

If Γ s ⊨ X , Σ ∧ Γ s [0] ⊢ stmts : C ⟨ ps ⟩ ∧ X , Σ , stmts ↝ X 

′ , Σ′ , β 

then Γ s ⊨ X 

′ , Σ′ ∧ X 

′ ⊨ β : C ⟨ Σ′( ps ) ⟩ 

Proof. By structural induction over the derivation X , Σ , stmts ↝ X 

′ , Σ′ , β . More in § C.3.

 

4.5 SHAPES in the large 

We have presented the design of SHAPES through SHAPESh, a minimal OO calculus. Our 

design allows fast type checking, as it only requires a simple substitution. It is also “backwards 

compatible” with existing OO languages, because none can always be used as a pool parameter. 

SHAPES has been conceived as a language extension and should be, ideally, orthogonal to other 

features of OO languages. In particular, our implementation of SHAPES called SHAPES -z ( § 6)
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can support the usual control flow structures ( i.e., conditionals, loops, return statements), 

quality-of-life features present in other languages such as scoping and mixed declarations & 

code. 

With respect to other features present in OO languages, we expect SHAPES would be able to 

ideally support: 

• Global pools, which can be added in an easy manner. 

• Access modifiers for fields ( i.e., private and public ) to enforce encapsulation. Because it 

is possible for layout declarations to expose the inner details of a class and hence violate 

encapsulation, it would also be beneficial to introduce a module system and require that 

all layout types for a class must be defined within the module the class is defined as well. 

This is similar to Rust traits [KN18], where a trait implementation for a struct must be 

defined in either the struct ’s module or the trait’s module. 

• Types present in other languages ( e.g., array types). Regarding array types, inline arrays 

can be currently emulated with multiple fields and getters/setters that receive an index 

and branch on it. Additionally, our work on [TFW+18] presents how pool-backed dynamic 

arrays can be accommodated in SHAPES . 

• Inheritance/polymorphism for standalone objects (in line with other OO languages), but 

not for pools. The rationale is that if class Circle inherits from class Shape , then being 

able to store an instance of Circle into a pool of Shape objects would require us to consider 

schemes for storing the values of the subclasses’ additional fields into a pool; this would 

complicate the design of pools and possibly hinder performance. Additionally, we would 

not be able to store an instance of Shape into a pool of type Circle (in a manner similar 

to how we cannot store an instance of Shape into an array of type Circle[] ). 

• Static trait dispatch (à la Rust [KN18]) with possibly minimal work; this is thanks to the 

fact that we make use of method specialisation ( § 5.5) when we will translate SHAPESh 

into SHAPESℓ, a low-level language ( § 5). Dynamic trait dispatch, on the other hand,
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could be supported, but at the expense of storing additional runtime information (address 

of pool, if any, and its layout). 

• Java-style generics: A significant deviation from Java generics, however, would be the 

fact that the upper bounds on the type parameters would need to express the pools as 

well. We envisage that this can be achieved in a manner similar to that of [PNCB04]. 

Type system extensions can be also added to our design. Structural equality could be added 

with minimal hassle: Two types would be structurally equal if their classes were structurally 

equal, and their pool arguments were nominally equal. Then pools could hold objects of 

structurally equal types. Existential types could be added, but at the expense of homogeneity 

and a runtime lookup of pools’ layouts. 

1 class Professor { 

2 ■ name: String; 

3 ■ ssn: String; 

4 } 

5 class Student<pProf: [Professor<pProf>]> { 

6 ■ name: String; 

7 ■ age: int ; 

8 ■ supervisor: Professor<pProf>; 

9 } 

10 layout ProfL: Professor = ...; 

11 layout StudentL: Student = ...; 

12 ... 

13 pools pStu1: StudentL<pStu1, pProf1>, 

14 pProf1: ProfL<pProf1>; 

15 pProf2: ProfL<pProf2>; 

16 s1 = new Student<pStu1>; 

17 s2 = new Student<pStu1>; 

18 p1 = new Professor<pProf1>; 

19 p2 = new Professor<pProf2>; 

20 s1.supervisor = p1; // OK! 

21 s2.supervisor = p2; // ERR 

22 ... 

Figure 4.9: Listing 2.2 with the suggested syntax simplifications applied 

Another point of extension for SHAPES would be the possibility of syntax succinctness thanks 

to the guarantees provided by homogeneity: If the first pool parameter of a type is not none , we 

can omit the remaining pool parameters. For example, in Line 18 of Listing 2.2, one need only 

write Student<pStu> instead of Student<pStu, pProf> . Additionally, the first pool parameter of 

a class declaration can be replaced with a keyword ( e.g., mine ). For example, the definition of 

pool pStu in Line 6 of Listing 2.2 can be replaced with the mine keyword (with mine having the 

bound Student<mine, pProf> . Figure 4.9 depicts how the example of Listing 2.2 would look like 

with the above syntax simplification proposals.



 

Chapter 5 

SHAPESℓ: Low-level SHAPES 

Our aim for designing SHAPES was to allow developers to improve the cache usage of their 

applications via a high-level and type-safe language. This does not imply that we are content 

with providing a language where performance is an afterthought. After all, our end objective 

is to provide a tool that allows developers to improve the performance of their software; this 

makes performance considerations tantamount to the design of SHAPES . 

Indeed, in § 2.7, we introduced the concept of pool homogeneity and argued in its favour on 

the expectation of additional performance guarantees, despite the fact that it would restrict 

the set of valid SHAPES programs. As such, it is reasonable to expect that we provide our 

justifications for why we expect SHAPES to be performant. 

To that extent, we present SHAPESℓ, an untyped intermediate representation with pool-aware 

instructions that operate on a flat memory model and which offers no explicit support for 

either objects or pools. That is, despite not being standalone entities, pools in SHAPESℓ 

are implicitly represented on the heap (similar to how objects in most language runtimes are 

implicitly represented as contiguous chunks of contiguous memory) and objects allocated into 

SHAPESℓ 

pools are allocated consecutively. Additionally, SHAPESℓ 

provides no support for the 

lookup of layout information at runtime; the code generated must statically know the layout 

a pool uses. Moreover, SHAPESℓ 

instructions can be easily translated to existing low-level 

intermediate representations such as LLVM [LA04] and/or invocations to a standard memory 
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(b) SHAPESℓ 

pool components and nomencla- 

ture 

Figure 5.1: Representation of objects and pools in SHAPESℓ 

allocation library ( e.g., malloc() ). 

§ 5.1 and § 5.2 present the SHAPESℓ 

runtime configuration and syntax, respectively. § 5.3 

presents the operational semantics of SHAPESℓ. In § 5.5, we present how we translate SHAPESh 

into SHAPESℓ 

by performing specialisation ; more specifically, similar to template instantiation 

in C++ [ISO12] and monomorphisation with Rust traits [KN18], multiple specialisations of 

SHAPESh functions are generated, each corresponding to a different combination of pool layouts. 

5.1 Runtime Configuration 

Like SHAPESh, the SHAPESℓ 

runtime configuration consists of a heap ( χ ) and a stack ( σ ) of 

frames ( ϕ ). These runtime entities are presented in Figure 5.2. The heap is modelled as a 

sequence of memory cells that can grow infinitely; each cell contains a value ( γ ). Values can be 

addresses ( α ), natural numbers, or null . That is, we assume for the sake of convenience that 

both numbers and references have the same size. Frames map variable names to values. 

Figure 5.1a shows a SHAPESℓ 

configuration that could occur after executing the example of 

Listing 4.1. This configuration shows the stack values corresponding to the pool pStu (Line 4) 

and the objects at , ec , jf , and sd (Lines 4–7), as well as how these entities are represented 

on the SHAPESℓ 

heap. Figure 5.1b lists the components of a SHAPESℓ 

pool and presents the 

nomenclature used for SHAPESℓ 

pools throughout this section.
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χ ∈ Heap 

ℓ = Address 

ℓ → ( Size 

ℓ ∪ Capacity 

ℓ ∪ Value 

ℓ) 

ϕ ∈ SFrame 

ℓ = Variable 

ℓ → Value 

ℓ 

σ ∈ Stack 

ℓ = ( SFrame 

ℓ)∗ 

γ ∈ Value 

ℓ = Address 

ℓ ∪ Index 

ℓ ∪ { null } 

α ∈ Address 

ℓ = N 

j ∈ Size 

ℓ = N 

M ∈ Capacity 

ℓ = N 

k ∈ Index 

ℓ = N 

Figure 5.2: Low level runtime entities. 

A standalone object ( e.g., the Professor corresponding to sd , Line 9) is modelled as a contiguous 

chunk of allocated memory. A reference to a standalone object consists of the address α to this 

chunk ( e.g., variable sd on the stack of Figure 5.1a). 

A pool is modelled as several such chunks, with one being the header and the rest being the 

clusters . The header consists of the size and capacity of the pool, and the pointers to the pool’s 

clusters . A reference to a pool points to the address of the pool’s header. At any given time, a 

pool can only contain up to a finite number of objects; this number of objects is reflected in the 

pool’s capacity . The pool’s size indicates the number of objects the pool currently contains. 

As an example, the size and capacity of pool pStu (Line 4) is 3 and 5, respectively. Note that 

the header contains no information regarding the pool’s layout. 

All pooled objects that belong to the same pool have the values of their fields placed in chunks 

of contiguous memory that correspond to the pool’s clusters ; the pool header keeps a pointer 

to each of these clusters. A pool has the same number of clusters as the layout it adheres to. 

In our example, pool pStu adheres to layout StudentL (Line 1), hence it consists of two clusters: 

One corresponding to fields name and age and another corresponding to field supervisor . 

Different clusters store different fields of a pooled object, hence pooled objects are effectively 

subdivided into record splits , with each record split being located on a specific cluster. For 

example, in Figure 5.1a, the objects at , ec , jf (Lines 5–7) are each subdivided into one record 

split consisting of fields name and age and another consisting of field supervisor . These record 

splits are each placed in the first and second cluster, respectively, of pool pStu .
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In a SHAPESℓ 

pool, the k -th record split from each cluster will store the values for the respective 

fields of the k -th (zero-indexed) object in a pool. The pool’s layout determines which record 

split contains which field of an object and how the fields are ordered in a record split. For 

example, in Figure 5.1a, the pooled object jf (Line 7) is the 2nd (zero-indexed) object in pool 

pStu , hence the 2nd record split from each cluster will contain the values of jf for fields name 

(for the first cluster), and age , supervisor (for the second cluster). The same applies to objects 

at and ec (Lines 5–6), which are the 0th and 1st objects in pStu , respectively. 

A pooled object is uniquely identified by the address of the pool it belongs to and the index 

k indicating its position inside the pool. As an example, object jf (Line 7) in Figure 5.1a, is 

uniquely identified by the address of pool pStu ( i.e., 0xC000 ) and its index inside pStu ( i.e., 2 ). 

Despite that, references to pooled objects in SHAPESℓ 

do not have to store the pool address . 

This is because we rely on the pool storing that object to always be in scope . This is indeed 

the case with SHAPESh: If Γ ⊢ o : C ⟨ p · ps ⟩ , then o resides in pool p . As an example, the 

references to objects at , ec , jf (Lines 5–7) need only store the index of them inside pStu ( i.e., 

0 , 1 , and 2 , respectively). 

Since reference density can sometimes be non-trivial ( e.g., two applications on the SPECjvm98 

benchmark used at least 40% of their allocated memory to store references to objects [DH99]), 

storing only the index can be a noteworthy improvement in terms of cache utilisation and 

memory usage. It is worth pointing out that some of the currently existing libraries for pooling 

and clustering ( e.g., DynaSOAr [SM19]) also attempt to compress the reference to the pool 

and the index in one machine word. However, this imposes an inherent limit on the number 

of objects in a pool on these implementations; SHAPESℓ 

suffers from no such constraints. In 

§ 8.2, we discuss how SHAPES can be extended so that developers can reduce the footprint of 

references even further.
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prog 

ℓ ::= ( fun 

ℓ)+ Program 

fun 

ℓ ::= fun fn ( this , p+ , x ) { vars 

ℓ; stmts 

ℓ } Function 

stmts 

ℓ ::= rhs 

ℓ | rhs 

ℓ ; stmts 

ℓ Statements 

rhs 

ℓ ::= null | x = rhs 

ℓ | x | fn ( x+) | alloc ( N ) | read ( x, i ) | write ( x, x′ , i ) Instruction 

| plalloc ( p, N 

∗) | plread ( p, x, i, N , j ) | plwrite ( p, x, x′ , i, N , j ) 

vars 

ℓ ::= locals ( p = plcreate ( N 

∗)ℓ)∗ x∗ LocalsDecl 

Figure 5.3: SHAPESℓ 

syntax where x, p ∈ Variable 

ℓ, fn ∈ FunctionId 

ℓ, N , i, j ∈ N . 

5.2 Syntax of SHAPESℓ 

Figure 5.3 presents the syntax of SHAPESℓ. A program consists of functions ( fun 

ℓ), each with 

parameters, local variables, and a body. Unlike SHAPESh, SHAPESℓ 

makes no distinction 

between object and pool variables. 

SHAPESℓ 

provides instructions that construct new objects or pools and access their fields. 

These come in pool-unaware ( alloc , read , write ) and pool-aware variants ( plalloc , plread , 

plwrite , plcreate ). 

5.3 Operational Semantics 

SHAPESℓ 

execution has the format χ, σ, stmts 

ℓ ↝ χ′ , σ 

′ , γ . Thus, a SHAPESℓ 

configuration 

(heap χ and stack σ ) is reduced to a new configuration and return value γ . 

Pool-agnostic operations Pool-agnostic operations in SHAPESℓ 

are similar to what we 

would expect from a typical intermediate representation: 

• alloc constructs a new standalone object in memory (of size N ). Construction of a new 

standalone Professor object is performed with the instruction alloc (2) (since Professor s 

have 2 fields). 

• read and write access an object’s field f given its address and the offset i of f inside 

the object. Instruction read (sd, 1) , for example, fetches the value of field ssn (declared 

in Professor , Listing 2.2) from object sd .
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[Assignment] 

χ, σ, rhs 

ℓ ↝ χ′ , σ 

′ , γ

 

χ, σ, x = rhs 

ℓ ↝ χ′ , σ 

′[ x ↦→ γ ] , γ 

[Var]

 

χ, σ, x ↝ χ, σ, σ ( x ) 

[Val]

 

χ, σ, null ↝ χ, σ, null 

[Sequence] 

χ, σ, rhs 

ℓ ↝ χ′′ , σ 

′′ ,

 

χ′′ , σ 

′′ , stmts 

ℓ ↝ χ′ , σ 

′ , γ

 

χ, σ, rhs 

ℓ; stmts 

ℓ ↝ χ′ , σ 

′ , γ 

[Garbage Collection] 

χ, σ ≃σ 

χ′′ , σ 

′′ 

χ′′ , σ 

′′ , stmts 

ℓ ↝ χ′ , σ 

′ , γ

 

χ, σ, stmts 

ℓ ↝ χ′ , σ 

′ , γ 

[Alloc] 

α = max { dom( χ ) } + 1

 

χ, σ, alloc ( N ) ↝ χ [ α .. α + ( N − 1) ↦→ null ] , σ, α 

[Object Read] 

α = σ ( x ) + i

 

χ, σ, read ( x, i ) ↝ χ, σ, χ ( α ) 

[Object Write] 

α = σ ( x ) + i γ = σ ( x′)

 

χ, σ, write ( x, x′ , i ) ↝ χ [ α ↦→ γ ] , σ, γ 

Figure 5.4: Operational semantics of SHAPESℓ 

of pool-agnostic operations. 

Pool-aware operations The SHAPESℓ 

pool-aware operations are as follows: 

• plread and plwrite : Suppose that the pooled object o belongs to pool p with layout L 

and at α and that it has an index k inside p . Then, to access field f of o : 

– We first determine the index i of the cluster field f belongs to in L , thus obtaining 

address α 

′ = χ ( α + i + 2). 

– We then determine the address of the record split corresponding to o . The size of 

each record split is N , with N being the number of fields in the cluster f belongs to 

in L . Thus, our record split is located at address α 

′′ = α 

′ + k ∗ N . 

– The address of the cell corresponding to field f of o is α 

′′ + j , where j is the offset 

j of the field f inside the record split in question. 

For example, to read field age of object jf in in pool pStu , we execute the instruction 

plreadc(pStu, jf, 0, 2, 1) . This is because for layout StudentL , field age is placed in 

the 0-th cluster ( i = 0), the size of a record split in that cluster is N = 2 and age is the 

1-st (zero-based) field in such a record split ( j = 1).
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[Fun] 

F un ( fn ) = ( this · ps · x , vars 

ℓ , stmts 

ℓ) 

vars 

ℓ = locals p1 

= plcreate ( Ns1) .. pn 

= plcreate ( Nsn) x1 

.. xm 

χi − 1 

, ϵ, plcreate ( Nsi) ↝ χi 

, ϵ, αi 

for i = 1 .. n 

σ 

′ = [ this ↦→ σ ( x ) , x ↦→ σ ( x ) , ps ↦→ σ ( ps )][ p1 

.. pn 

↦→ α1 

.. αn 

, x1 

.. xm 

↦→ null ] · σ 

χn 

, σ 

′ , stmts 

ℓ ↝ χ′ ,

 

, γ

 

χ0 

, σ, fn ( x · ps · x ) ↝ χ′ , σ, γ 

Figure 5.5: Operational semantics of SHAPESℓ 

functions. 

• plalloc constructs a new pooled object in pool p . Alongside p , it takes a sequence 

N0 

.. Nm − 1 

of parameters that specify the size of a record split in each of the m clusters. 

These parameters will allow plalloc to initialise the fields of the newly created object 

to null . As an example, plalloc (pStu, 2, 1) will construct a new Student inside pool 

pStu ; the constants 2 and 1 correspond to the number of fields each cluster of StudentL 

contains, given that pStu is of layout StudentL . 

Allocation of pooled objects is trivial when the underlying pool can still accommodate 

objects ( i.e., size less than capacity): Similar to a bump allocator, we need to only 

increment the pool’s size. For example, allocating a pool in pStu (Figure 5.1a) would 

increase the size of pStu to 4 and yield 3 as the new object’s index. If the pool cannot 

accommodate any more objects, then the garbage collector ( § 5.3.1) will grow the pool in 

question beforehand. 

• plcreate creates a new pool and returns its address. It takes the sizes of record splits 

in each cluster. The runtime picks an initial capacity for the pool, allocates the header 

and clusters and marks the pool as initially empty ( i.e., size of 0). For example, we use 

instruction plcreate (2, 1) to create a pool that adheres to layout StudentL . We discuss 

possible strategies for picking an initial pool capacity in § 8.2. 

Method call It behaves similar to method calls in imperative languages, with the exception 

that pools are passed as arguments and pools are constructed explicitly (by using plcreate ) at 

the beginning of the method’s body. 

The rules for pool-agnostic, pool-aware operations, and Rule Fun are given in Figure 5.4,
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[Pool Read] 

σ ( p ) = α σ ( x ) = k 

α 

′ = χ ( α + i + 2) + N ∗ k + j

 

χ, σ, plread ( p, x, i, N , j ) ↝ χ, σ, χ ( α 

′) 

[Pool Write] 

σ ( p ) = α σ ( x ) = k σ ( x′) = γ 

α 

′ = χ ( α + i + 2) + N ∗ k + j

 

χ, σ, plwrite ( p, x, x′ , i, N , j ) ↝ χ [ α 

′ ↦→ γ ] , σ, γ 

[Pool Alloc] 

σ ( p ) = α χ ( α ) = j j < χ ( α + 1) n = | Ns | 

αi 

= χ ( α + i + 2) + Ns [ i ] ∗ j for i = 0 .. n − 1 

α 

′ 

i 

= αi 

+ Ns [ i ] − 1 for i = 0 .. n − 1

 

χ, σ, plalloc ( p, Ns ) ↝ χ [ α +1 ↦→ j +1][ α0 

.. α 

′ 

0 

↦→ null , .. , αn − 1 

.. α 

′ 

n − 1 

↦→ null ] , σ, j +1 

[Pool Create] 

α = max { dom( χ ) } + 1 n = | Ns | M ≥ 0 

αi 

= ( α +2)+ i for i = 0 .. n − 1 

α 

′ 

0 

= αn − 1 

+ 1 

α 

′ 

i 

= α 

′ 

i − 1 

+ Ns [ i ] ∗ M for i = 1 .. n − 1 

α 

′ 

e 

= α 

′ 

n − 1 

+ Ns [ n − 1] ∗ M − 1 

χ′ = χ [ α ↦→ 0 , α + 1 ↦→ M ][ α0 

.. αn − 1 

↦→ α 

′ 

0 

.. α 

′ 

n − 1][ α 

′ 

0 

, .. , α 

′ 

e 

↦→ null ]

 

χ, σ, plcreate ( Ns ) ↝ χ′ , σ, α 

Figure 5.6: Pool-oriented operational semantics of SHAPESℓ. 

Figure 5.6, and Figure 5.5, respectively. 

For simplicity and similar to § 4.2, we also use the convention that accessing and modifying a 

variable through a stack of frames σ addresses only the variable on the top-most stack frame 

ϕ . That is, if σ = ϕ · σ 

′, then σ ( x ) and σ [ x ↦→ γ ] are a shorthand for ϕ ( x ) and ϕ [ x ↦→ γ ] · σ 

′, 

respectively. 

SHAPESℓ 

method lookup is defined as follows: 

F un ( fn ) ≡ (( this , ps, x ) , vars 

ℓ , stmts 

ℓ) iff ∃ fun 

ℓ ∈ prog 

ℓ . fun 

ℓ = fun fn ( this , ps, x ) { vars 

ℓ; stmts 

ℓ }
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5.3.1 The Garbage Collection rule 

As we mentioned in § 5.3, if a pool has exhausted its capacity before an execution of a plalloc 

statement, the garbage collector is run so as to grow the pool in question and/or free up space 

within the pool by removing unreachable objects from the pool. Rule Garbage Collection 

(Figure 5.5) dictates how a garbage collector designed or retrofitted to accommodate SHAPES 

must operate. 

Rule Garbage Collection states that the GC can only run in-between SHAPESℓ 

statements. 

During a GC cycle, both standalone and pool-allocated objects can be garbage collected. More- 

over, the GC can not only collect and reorganise standalone objects in memory (as usual), but 

it can also relocate, grow, and shrink pools as well as collect and reorder the objects belonging 

to a pool to achieve compaction. Along with our pool representation, it is this compaction of 

pooled objects that allows us to achieve spatial locality within pools. 

The GC reorganises the current runtime configuration χ, σ into a new configuration χ′ , σ 

′ such 

that the two are equivalent ( χ, σ ≃σ 

χ′ , σ 

′). That is, all objects and pools reachable in χ, σ 

through must have an isomorphic counterpart in χ′ , σ 

′ and, additionally, pooled objects cannot 

be moved into another pool. We present the definition of ≃σ 

in § C.2. 

Note that pool growth does not necessary imply a partial or full GC invocation: The semantics 

of Rule Garbage Collection and the use of indices for references to pooled objects do permit 

a pool to be grown by merely having each of its clusters grown ( e.g., à la realloc() in C); 

in fact, we expect this to be the behaviour observed in the vast majority of cases in a future 

implementation. 

Additionally, note that the pools themselves (as opposed to the objects in them) need not be 

garbage collected — their lifetime is bound to the frame where they are defined, allowing an 

entire pool to be released from memory in a single hit at the return from such a frame. This 

will not cause dangling pointers as the types necessary to point to objects in the pool are no 

longer nameable in the system. 

We do not expect the design of SHAPESℓ 

to rely on any particular garbage collection technique
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or algorithm, hence we do not expect writing a pool-aware garbage collector to be even more 

daunting and excruciating compared to writing a “typical” garbage collector. For a discussion 

on movement and compaction in pools, see [FHW+17]. Additionally, in § 8.2, we discuss 

possible future directions with respect to SHAPES and garbage collection. 

5.4 Lack of concurrency support 

An observation that needs to be pointed out is that SHAPESℓ 

does not lend itself to an easier 

support for concurrency with respect to pools. As an example, consider an object o belonging 

to pool p and two threads T1, T2. Additionally, consider that pool p is currently at full capacity 

and construction of a new object within p would require the clusters of p to be resized. 

Now, suppose thread T1 

constructs a new object within pool p and thread T2 

accesses field f 

of object o . If we do not require any mutual exclusion, one possible execution scenario would 

be the following: 

1. T2 

fetches the address of the cluster that values of f belong to. 

2. T1 

resizes and relocates the clusters of p , then constructs a new object within p . 

3. T2 

uses the now stale cluster address to fetch the value o.f , thus resulting in a use-after- 

free scenario. 

As such, a solution supporting concurrency within SHAPESℓ 

pools would need to ensure that 

pool resizing is synchronised with respect to other operations on the pool, such as field access 

and object construction. We discuss a few such possible solutions in § 8.2. 

5.5 Translation 

We now describe the process of translating SHAPESh into SHAPESℓ. The most significant 

difference between SHAPESh and SHAPESℓ 

that we need to take into account during translation
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is that SHAPESh classes are polymorphic with respect to the layouts of pools (hence their 

member methods are also polymorphic), whereas SHAPESℓ 

does not provide any functionality to 

implement any such polymorphism. This implies that when translating SHAPESh to SHAPESℓ: 

• We need to know whether an object is standalone or pool allocated so as to emit the 

appropriate variant of an instruction ( e.g., read vs plread ). 

• When dealing with a pooled object, we need to know the layout of the pool it belongs 

to, so that we can specify the appropriate constant values for parameters such as cluster 

index, record split size, etc. 

• When translating a method invocation, we need to propagate any layout information we 

already know about the callee’s pool parameters (so that when translating the called 

function, we will know the appropriate instructions to emit) or the method itself should 

be able to obtain the layout information regarding its pool parameters from scratch. 

As an example, consider the translation of method clone() for class Student (Listing 2.2): 

1 def clone(): Student<pStu, pProf> { 

2 var obj = new Student<pStu, pProf>; 

3 obj.name = this .name; 

4 obj.age = this .age; 

5 obj.supervisor = this .supervisor; 

6 obj 

7 } 

The SHAPESℓ 

code emitted for clone() needs to behave differently when called on an object 

of type Student< none , none > , compared to when called on an object of type Student<p, none > , 

where p is a pool of Student s. 

To tackle this, we can modify SHAPESℓ 

to provide features for polymorphism and rely on the 

runtime to resolve layout information ( e.g., to perform field access) or we can assume that all 

layout information inside a method body is already known at compile time (hence all layout 

information for e.g., field access is known at compile time) and require method specialisation 

in the case of method call. We decided to make use of specialisation in SHAPESℓ. We use
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specialised environments (∆), where pool bounds are eliminated and pool variables have layout 

types or None : 

Definition 5.1. ∆ ::= x : t , ∆ | p : L ⟨ np+ ⟩ , ∆ | p : None , ∆ | none : None 

Definition 5.2 (Environment specialisation) . We define that ∆ specialises Γ ( Γ ⊢ ∆ ) as 

follows: 

Γ ⊢ ∆ iff dom(Γ) = dom(∆) ∧ 

∀ x. [ Γ( x ) = C ⟨

 

⟩ → ∆( x ) = Γ( x ) ] ∧ 

∀ p. [ Γ( p ) = L ⟨

 

⟩ → ∆( p ) = Γ( p ) ] ∧ 

∀ p. [ Γ( p ) = [ C ⟨ ps ⟩ ] → ∆( p ) = None ∨ ∃ L. [ C l ( L ) = C ∧ ∆( p ) = L ⟨ ps ⟩ ] ] 

For two sequences of environments Γ s , ∆ s , we state that ∆ s specialises Γ s ( Γ s ⊢ ∆ s ) as follows: 

Γ s ⊢ ∆ s iff ∀ i. Γ s [ i ] ⊢ ∆ s [ i ] 

In our examples, we shall be using two specialized environments, ∆1 

and ∆2, such that: 

∆1( s ) = Student<pStu1, pProf1> ∆2( s ) = Student<pStu1, pProf1> 

∆1( pStu1 ) = StudentL<pStu1, pProf1> ∆2( pStu1 ) = None 

∆1( pProf1 ) = ProfL<pProf1> ∆2( pProf1 ) = ProfL<pProf1> 

We will be using the following definition of StudentL : 

layout StudentL: Student = rec {name, age} + rec {supervisor}; 

Translation also makes use of lookup functions that provide information about the various 

layouts – full definitions are in Figure 4.6. 

Translating Expressions and statements Figure 5.8 defines the translation of SHAPESh 

expressions and statements in terms of rules of the form [[ e ]]∆ 

and [[ stmts ]]∆, where e and stmts 

are SHAPESh expressions or statement sequences, and ∆ is a specialised typing environment. 

Translating Expressions and statements The first five rules are not that surprising: Vari- 

ables and values are mapped to themselves; an assignment leaves the left hand side unmodifed
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Expression

 

∆1

 

∆2

 

new Student<pStu1, pProf1>

 

plalloc (p, 2, 1)

 

alloc (3)

 

s.age

 

plread (pStu1, s, 0, 1, 1)

 

read (s, 1)

 

s.getAge()

 

#Student_getAge_StudentL_ProfL(

 

#Student_getAge_None_ProfL(

 

s, pStu1, pProf1)

 

s, null , pProf1)

 

Figure 5.7: Example translations 

and translates the right hand side; a sequence of expressions is translated into a sequence of 

their translations. 

Translating Object Creation and Field Access The next rule describes object creation. 

For a non-pooled object, i.e., for an object of type C ⟨ np ·

 

⟩ where ∆( np ) = None , we emit 

the instruction alloc ( N ) where N is the number of fields in class C . For a pooled object, i.e., 

an object of type C ⟨ p ·

 

⟩ where ∆( p ) = L ⟨

 

⟩ we emit the instruction plalloc ( p, N1 

.. Nm) 

where m is the number of clusters in L , and Ni 

is the number of fields in the i -th cluster of 

layout L . 

Similarly, for field access x.f , we distinguish between standalone and pooled objects. In the 

fist case, we emit read ( x, k ) where k is the offset of f in the class of x . In the second case, we 

emit plread ( p, x, i, N , j ), where p is the pool that contains x , and i is the cluster that contains 

f in the layout of p , and j is the offset of f within that cluster’s corresponding record split, 

and N is the number of cells in that record split. Similar ideas apply to field write. 

Figure 5.7 shows how the SHAPESh expressions new Student<pStu1, pProf1> and s.age are 

translated into SHAPESℓ 

under environments ∆1 

and ∆2, respectively. 

Translating Method Call For method call, we make use of name mangling to determine 

the correct method to invoke, in a similar manner to what languages such as C++ do [ISO12]. 

The name of the method to be called is generated from N ame . N ame generates a mangled 

method name by combining the member method’s name and the specialised typing environment 

∆ being used.
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[[ x ]]∆ 

≜ x [[ this ]]∆ 

≜ this [[ null ]]∆ 

≜ null 

[[ x = rhs 

ℓ]]∆ 

≜ x = [[ rhs 

ℓ]]∆ 

[[ e ; stmts ]]∆ 

≜ [[ e ]]∆; [[ stmts ]]∆ 

[[ new C ⟨ np ·

 

⟩ ]]∆ 

≜ 

⎧ ⎪⎨ ⎪⎩ 

alloc ( |F s ( C ) | ) if ∆( np ) = None 

plalloc ( p, | fs0 

| .. | fsn 

| ) if np = p ∧ ∆( p ) = L ⟨

 

⟩ 

∧ fs0 

.. fsn 

= R s ( L ) 

[[ x.f ]]∆ 

≜ 

⎧ ⎪⎨ ⎪⎩ 

read ( x, O ( C , f )) if ∆( x ) = C ⟨ np,

 

⟩ ∧ ∆( np ) = None 

plread ( p, x, i, N , j ) if ∆( x ) = C ⟨ p,

 

⟩ ∧ ∆( p ) = L ⟨

 

⟩ 

∧ O ( L, f ) = ( i, j ) ∧ N = |R s ( L )[ i ] | 

[[ x.f = x′]]∆ 

≜ 

⎧ ⎪⎨ ⎪⎩ 

write ( x, x′ , O ( C , f )) if ∆( x ) = C ⟨ np,

 

⟩ ∧ ∆( np ) = None 

plwrite ( p, x, x′ , i, N , j ) if ∆( x ) = C ⟨ p,

 

⟩ ∧ ∆( p ) = L ⟨

 

⟩ 

∧ O ( L, f ) = ( i, j ) ∧ N = |R s ( L )[ i ] | 

[[ x.m ( x′)]]∆ 

≜ N ame∆′( m )( x, np′ 

1 

.. np′ 

k 

, x′) 

if ∆( x ) = C ⟨ np1 

.. npk 

⟩ 

∧ ∆′ = this : C ⟨ np1 

.. npk 

⟩ , p1 : ∆( np1) , .. , pk : ∆( npk) 

∧ ∀ i ∈ 1 ..k . np′ 

i 

= 

{︄ 

null if ∆( npi) = None 

npi 

otherwise 

[[ pools p1 :

 

.. pn :

 

; locals x1 :

 

.. xm:

 

; stmts ]]∆ 

≜ 

locals p1 

= plcreate ( Ns1); .. pn 

= plcreate ( Nsn) x1 

.. xm; [[ stmts ]]∆ 

where 

∀ i. [ R s (∆( pi)) = fs0 

.. fsn 

→ Nsi 

= | fs0 

| .. | fsn 

| ] 

Figure 5.8: Translation of Expressions 

N ame∆( m ) ≡ # C

 

m

 

G1

 

..

 

Gn 

where ∆( this ) = C ⟨ p1 

, ..., pn 

⟩ ∧ Gi 

= 

⎧ ⎪⎪⎨ ⎪⎪⎩ 

None if ∆( pi) = None 

L if ∆( pi) = L ⟨

 

⟩ 

Figure 5.7 shows the translation of the method call s.getAge() under ∆1 

and ∆2. Notice that 

in the case of ∆2, as the pool parameter pStu1 is of type None , hence it will never be used
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inside getAge() , we set the argument corresponding to pStu1 in getAge() to null . 

Translating Methods and Classes Specialisation of SHAPESh functions is performed by 

enumerating all possible specialised environments. We obtain all such environments through 

the S pecialiseClass function, which substitutes the types of formal pool parameters with layout 

types or None . 

S pecialiseClass ( C ) ≡ 

{ ∆ | dom(∆) = P s ( C ) ∧ 

∀ p ∈ P s ( C ) . [ B ( C , p ) = [ C 

′ ⟨ ps ⟩ ] → ∆( p ) = None ∨ ∃ L. C l ( L ) = C 

′ ∧ ∆( p ) = L ⟨ ps ⟩ ] } 

Thus, we define translation of a method as: 

S pecialiseMethod ( C , m ) ≡ 

{ N ame∆′( m )( this , p1 

, .. , pn 

, x′) { [[ localPools ; localVars ; stmts ]]∆′ } | 

∆ ∈ S pecialiseClass ( C ) ∧ 

∆′ = ∆ , this : C ⟨ p1 

.. pn 

⟩ , x′ : t 

′ , p′ 

1: L1 

⟨ ps′ 

1 

⟩ , .. , p′ 

k: Lk 

⟨ ps′ 

k 

⟩ , 

x1: C 

′ 

1 

⟨ ps′′ 

1 

⟩ , .. , xm: C 

′ 

m 

⟨ ps′′ 

m 

⟩} 

where M ( C , m ) = (

 

, x′ : t 

′ , localPools ; localVars , stmts ) , 

and localPools = pools p′ 

1 : L1 

⟨ ps′ 

1 

⟩ .. , p′ 

k : Lk 

⟨ ps′ 

k 

⟩ ; 

and localVars = vars x1: C 

′ 

1 

⟨ ps′′ 

1 

⟩ .. xm: C 

′ 

m 

⟨ ps′′ 

m 

⟩ 

Specialisation will always terminate . This is because a specialisation replaces the pool bound 

[ C ⟨ ps ⟩ ] of each formal pool parameter with a layout type L ⟨ ps ⟩ (such that C l ( L ) = C ) or None 

and each class C has a finite number of layouts and formal pool parameters. 

5.5.1 Correctness of Translation 

We now show that translation is correct; that is, executing well-typed high-level SHAPESh 

code in a high level configuration gives equivalent results as executing the translation of that 

SHAPESh code in an equivalent specialised low-level configuration and vice versa. We state
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soundness and completeness of translation in Theorems 5.4 and 5.5. In both theorems, we use 

a utility predicate ( X , Σ ≃Γ s, ∆ s, I , stmts 

χ, σ ) to ensure that: 

• We have an initial high-level configuration X , Σ that is well-formed against a specialised 

environment ∆ s (otherwise we are dealing with the wrong method specialisation). 

• The high-level ( X , Σ) and low-level configurations ( χ, σ ) are equivalent. 

• The SHAPESh statements stmts we are translating into SHAPESℓ 

are well-typed under 

the typing environment Γ s used for compilation. 

We define X , Σ ≃Γ s, ∆ s, I , stmts 

χ, σ as follows: 

X , Σ ≃Γ s, ∆ s, I , stmts 

χ, σ iff Γ s ⊢ ∆ s ∧ ∆ s ⊨ X , Σ 

∧ [[ stmts ]]∆ s [0] 

= stmts 

ℓ ∧ X , Σ ≃∆ s, I 

χ, σ 

The relation X , Σ ≃∆ s, I 

χ, σ (defined in § C.2) asserts that the high-level and low-level config- 

urations X , Σ and χ, σ are equivalent under the typing environment ∆ s modulo renaming; the 

renaming is defined by injection I . 

The theorems also use the relation β ≃I 

′ ,ps,σ 

γ to express object equivalence between the high 

and low-level configurations. That is, the object with address β in the high level corresponds 

to the standalone object with address γ or the pooled object with index γ in the low level. The 

pool the object belongs to in the low-level (if any) is derived from the stack σ and the pool 

parameters ps . 

Definition 5.3 (Equivalence between low-level configurations) . We define χ, σ ≃∆ s, J 

χ′ , σ 

′ 

under an injection J : Address 

ℓ ∪ ( Address 

ℓ × Index 

ℓ) as follows:
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χ, σ ≃∆ s, J 

χ′ , σ 

′ iff 

[ ∀ i. ∀ p ∈ dom(∆ s [ i ]) . [ σ [ i ]( p ) = σ 

′[ i ]( p ) = null ∨ J ( σ [ i ]( p )) = σ 

′[ i ]( p )] ∧ 

[ ∀ i, path . [∆ s [ i ] ⊢ path : C ⟨ p ·

 

⟩ ∧ 

∆ s [ i ] , χ, σ [ i ] , path ↝ γ ∧ 

∆ s [ i ] , χ′ , σ 

′[ i ] , path ↝ γ 

′ → σ [0]( p ) , γ ≃J 

σ 

′[0]( p ) , γ 

′] 

] 

We define α , γ ≃J 

α 

′ , γ 

′ as follows: 

α , γ ≃J 

α 

′ , γ 

′ iff 

[ γ = γ 

′ = null ] ∨ [ α = α 

′ = null ∧ J ( γ ) = γ 

′] ∨ 

[ α ̸ = null ∧ α 

′ ̸ = null ∧ I ( α ) = α 

′ ∧ I ( α , γ ) = ( α 

′ , γ 

′)] 

Theorem 5.4 (Sound Translation) . For two SHAPESh and SHAPESℓ 

configurations that are 

well-formed and equivalent, a sequence of well-typed SHAPESh statements will yield SHAPESh 

configurations and return values equivalent to the SHAPESℓ 

configurations and return values (re- 

spectively) yielded by the execution of a specialisation of the SHAPESh statements into SHAPESℓ. 

That is: 

∀X , Σ , χ, σ, Γ s, ∆ s, I , stmts , stmts 

ℓ , C , ps, χ′ , σ 

′ . 

If X , Σ ≃Γ s, ∆ s, I , stmts 

χ, σ ∧ Γ s [0] ⊢ stmts : C ⟨ ps ⟩ ∧ χ, σ, stmts 

ℓ ↝ χ′ , σ 

′ , γ 

Then ∃I 

′ , X 

′ , Σ′ , β . 

X , Σ , stmts ↝ X 

′ , Σ′ , β ∧ X 

′ , Σ′ ≃∆ s, I 

′ χ′ , σ 

′ ∧ β ≃I 

′ ,ps,σ 

γ 

Proof. By structural induction over the derivation χ, σ, stmts 

ℓ ↝ χ′ , σ 

′ , γ . See § C.3.

 

Theorem 5.5 (Translation is complete) . For two well-formed and equivalent SHAPESh and 

SHAPESℓ 

configurations, the specialised translation of a sequence of well-typed SHAPESh state- 

ments will yield SHAPESℓ 

configurations and return values equivalent to the SHAPESh configu- 

rations and return values (respectively) yielded by the execution of the SHAPESh statements.
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That is: 

∀X , Σ , χ, σ, Γ s, ∆ s, I , stmts , stmts 

ℓ , C , ps, X 

′ , Σ′ . 

If X , Σ ≃Γ s, ∆ s, I , stmts 

χ, σ ∧ Γ s [0] ⊢ stmts : C ⟨ ps ⟩ ∧ X , Σ , stmts ↝ X 

′ , Σ′ , β 

Then ∃I 

′ , χ′ , σ 

′ , γ . 

χ, σ, stmts 

ℓ ↝ χ′ , σ 

′ , γ ∧ X 

′ , Σ′ ≃∆ s, I 

′ χ′ , σ 

′ ∧ β ≃I 

′ ,ps,σ 

γ 

Proof. By structural induction over the derivation X , Σ , stmts ↝ X 

′ , Σ′ , β . See § C.3.

 

5.6 Conclusion 

We have presented SHAPESℓ, a low-level language that we expect can be easily utilised to pro- 

vide an efficient runtime for a SHAPES implementation. We claim that the design of SHAPESℓ 

results in a pool representation we expect to allow the emission of efficient code. In particular, 

we do not need to retain pool parameters or any other additional runtime type information and 

calculating addresses of fields only requires multiplications and additions by a constant (which 

can sometimes be reduced to more efficient computations, e.g., shift-and-add). This would also 

apply even if the primitive values of SHAPESℓ 

(integers and pointers) were of different sizes. 

We also expect that, thanks to our runtime design decisions with respect to pools, SHAPES 

can be also implemented in unmanaged languages: Even if such memory optimisations can be 

performed manually in unmanaged languages, we argue that being able to implement them in 

an easy-to-use manner is beneficial. 

Similar to SHAPESh, extensions could also be added to SHAPESℓ. One such extension to 

SHAPESℓ 

would be to include representations for more sophisticated layouts ( e.g., AoSoA, cf., 

§ 3).



 

Chapter 6 

SHAPES -z: A DSL implementation of 

SHAPES 

In § 4, we introduced SHAPESh, a high-level formalism of SHAPES and provided its memory 

safety guarantees. in § 5, we introduced SHAPESℓ, a low-level representation of SHAPES and 

argued that SHAPESℓ 

can be can be translated to existing low-level intermediate representations 

in an easy manner. 

While formal models are undoubtedly necessary in terms of demonstrating that the desired 

properties of a language do hold, it is also vital for us to demonstrate the viability of an 

implementation and measure its performance. To that extent, we developed SHAPES -z, an 

unmanaged implementation of the SHAPES idea and an accompanying compiler; Listing 6.1 

presents a SHAPES -z example. 

SHAPES -z implements the idea of SHAPES as an embedded DSL; the developer writes their 

business logic in SHAPES -z and then invokes it from C/C++ code. SHAPES -z is also an 

unmanaged language; SHAPES -z code is compiled into assembly code; it does not run within 

the confines of a runtime environment, such as the JVM. 

Our rationale for designing SHAPES -z as an embeddable language is due to practicality reasons; 

if we were to develop SHAPES -z as a standalone language, we would need to introduce e.g., 

90
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rudimentary file I/O for unit tests or a custom benchmarking framework, which is bound to lack 

in features and possibly introduce unexpected biases. These side objectives would distract us 

from our original objective of a SHAPES implementation and could even result in unintentional 

feature creep seeping in. 

Furthermore, we ruled out the possibility of extending an existing host language with SHAPES 

constructs; SHAPES is bound to present incompatibilities with some features of the host lan- 

guage. For instance, C unions would be incompatible with SHAPES ; C struct s can be passed by 

value; SHAPES objects can be only passed by reference. This implies that a subset of the host 

language would need to be carefully carved out to ensure smooth interoperability with SHAPES . 

Additionally, modifying an existing compiler so as to embed SHAPES might end up requiring a 

significant amount of tinkering and fighting with the source code of the host language’s compiler 

and/or runtime (especially when having to take garbage collection into account). Besides, the 

amount of effort to experiment and bend (for practical reasons) the grammar and semantics 

of SHAPES -z within an existing language would certainly make performing iterations to the 

design of SHAPES -z more challenging. 

Additionally, our rationale for making SHAPES -z unmanaged is to demonstrate our claim that 

SHAPES can achieve its aim of making it easy to experiment with and modify object layouts, 

even when interacting with other unmanaged languages, such as C & C++. 

SHAPES -z is embeddable in a manner similar to that of Lua and Tcl; Lua [IdFC07] and 

Tcl [O+89] are designed to be embedded into and invoked from C & C++ code within ex- 

isting applications. However, the main difference between SHAPES -z and, e.g., Lua, is that 

Lua is a general purpose language; SHAPES -z does not aim to be one. Additionally, SHAPES -z 

is statically typed, whereas Lua is dynamically typed. 

6.1 The SHAPES -z language 

SHAPES -z expands on SHAPES by introducing additional features and constructs; Listing 6.1 

presents some of them. These features include but are not limited to primitive types (Lines 4–
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1 class Vec3<p> 

2 where p: [Vec3<p>] 

3 { 

4 x: f32 ; 

5 y: f32 ; 

6 z: f32 ; 

7 

8 fn mag_sq(): f32 { 

9 return x*x + y*y + z*z; 

10 } 

11 

12 fn mixed_decls_code(n: u64 ): u64 { 

13 n += 1; 

14 pool q: Vec3Soa<q>; 

15 return n; 

16 } 

17 

18 fn count_equal(): u64 { 

19 let n: u64 = 0; 

20 foreach (v: p) { 

21 if x != v.x { continue ; } 

22 if y != v.y { continue ; } 

23 if z != v.z { continue ; } 

24 

25 n += 1; 

26 } 

27 

28 return n; 

29 } 

30 } 

31 

32 layout Vec3Soa: Vec3 = 

33 rec {x} + rec {y} + rec {z}; 

34 

Listing 6.1: SHAPES -z feature showcase 

6), expressions (Line 9), control flow statements (Lines 21–23), and compound assignment 

(Line 25), with semantics similar to those in other conventional languages. 

Moreover, SHAPES -z also introduces more convenient syntax, such as the ability to mix pool 

declarations and code (thus allowing pools to be instantiated in the middle of a method, cf., 

Line 14). Adding support for mixed pool declarations and code does not require any significant 

amendments; the SHAPES type system ( § 4.3) need not be modified to accommodate this 

feature. Additionally, SHAPES -z allows iteration over all objects contained inside a pool with 

the foreach statement (Line 20). Support for iteration over pools is required so that we can 

implement our case studies ( cf., § 7) in SHAPES -z. 

SHAPES -z compilation generates object code (similar to C & C++), as well as a C/C++ header 

that allows external code to invoke SHAPES -z code directly. Given that we designed SHAPES -z 

to be embeddable, SHAPES -z has no notion of a main() function, hence it is up to external 

code to invoke SHAPES -z functions. Unlike Lua, SHAPES -z does not support the invocation of 

arbitrary C functions. 

§ B presents the SHAPES -z grammar.
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Figure 6.1: shapeszc compiler stages 

6.2 shapeszc : The SHAPES -z compiler 

We implemented shapeszc , a compiler for SHAPES -z written in C++; its repository is located 

at https://github.com/octurion/shapes-compiler . shapeszc amounts to approximately 

8.6K source lines of code (SLoC) in total1. Figure 6.1 presents an overview of the compiler’s 

architecture. 

We will now present an overview of the shapeszc frontend and backend: 

6.2.1 The shapeszc frontend 

Lexing and parsing shapeszc uses GNU Flex [PEM16] and GNU Bison [DS21] for lexing 

and parsing. Given our choice of C++ as the implementation language for shapeszc , these 

seemed to be the most mature utilities with respect to writing C and C++ parsers. 

We aimed to make use of their features to the largest possible extent; during development, we 

were pleasantly surprised to discover that Flex and Bison can be configured to support the 

generation of line and column number spans when parsing, as well as the ability of Bison to 

support error recovery, as well as operator precedence and associativity (or its lack thereof for 

comparison operators). 

sloccount reports that the lexer and parser consist of approximately 1.8K SLoC. 

After parsing, a syntax tree is generated and shapeszc proceeds to perform semantic analysis.

 

1 Calculated by using sloccount [Whe04].

https://github.com/octurion/shapes-compiler
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Semantic analysis Semantic analysis within SHAPES -z consists of collecting all types, lay- 

outs, pool names, etc, and then performing typechecking as described in § 4.3. This multi-pass 

approach is necessary because SHAPES (and, consequently, SHAPES -z) permits cyclic refer- 

ences between classes ( e.g., classes A and B can have fields of type B and A , respectively). This 

approach is similar to compilers such as javac2. 

shapeszc performs multi-pass semantic analysis as follows: 

Pass 1 Collection of classes’, fields’, pool parameters’, and methods’ names. 

Pass 2 Collection of class layouts. 

Pass 3 Collection of fields’, pool parameters’, and methods’ types. 

Pass 4 Typechecking of all types collected from Phases 1, 2, and 3. 

Pass 5 Collection and typechecking of the methods’ bodies; annotation of all expressions in 

the AST with type information. 

The end result of semantic analysis is the generation of an Abstract Syntax Tree (AST). At each 

pass, the AST is augmented with the additional information collected from it. The exception 

to this is Pass 4 , which performs type checking, as described in § 4.3. 

With respect to error reporting and multiple passes, we only proceed with the next pass if the 

current pass reported no errors. This is to prevent unnecessary “cascading” errors from being 

reported ( e.g., no typechecking in method bodies will be performed if a field of a class contains 

an undefined pool parameter). Moreover, we report all semantic errors on a specific pass, since 

we expect them to occur independently of all other reported errors. 

sloccount reports that semantic analysis consists of approximately 4.0K SLoC. 

Error reporting The features provided by Flex and Bison regarding line and column number 

spans, as well as the multiple pass design of shapeszc made it easier for us to output compiler

 

2 https://github.com/openjdk/jdk/blob/739769c8fc4b496f08a92225a12d07414537b6c0/src/jdk.compile 

r/share/classes/com/sun/tools/javac/comp/TypeEnter.java

https://github.com/openjdk/jdk/blob/739769c8fc4b496f08a92225a12d07414537b6c0/src/jdk.compiler/share/classes/com/sun/tools/javac/comp/TypeEnter.java
https://github.com/openjdk/jdk/blob/739769c8fc4b496f08a92225a12d07414537b6c0/src/jdk.compiler/share/classes/com/sun/tools/javac/comp/TypeEnter.java
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1 class Main<p1> where 

2 p1: [Main<p1>] 

3 { 

4 f1: i32 ; 

5 } 

6 

7 layout Foo: Main = rec {f1, f2}; 

8 layout Foo: Main = rec {f1}; 

9 

10 

11 

Listing 6.2: Malformed SHAPES -z code 

1 |Line 7| Field ' f2 ' has not been defined. 

2 layout Foo: Main = rec{f1, f2}; 

3 ˆˆ 

4 

5 |Line 8| Layout ' Foo ' is already defined. 

6 layout Foo: Main = rec{f1}; 

7 ˆˆˆ 

8 

9 |Line 7| Existing definition is here: 

10 layout Foo: Main = rec{f1, f2}; 

11 ˆˆˆ 

Listing 6.3: Compiler errors of Listing 6.2 

errors in a manner that we claim that is not only user friendly, but also aesthetically pleasing. 

Listing 6.2 presents an example of malformed SHAPES -z code; Listing 6.3 presents the error 

messages generated by shapeszc for Listing 6.2. 

Our implementation of compiler error reporting in shapeszc is heavily inspired by similar work 

performed in rustc , the Rust compiler [KN18]. Although the focus on outputting user friendly 

error messages might seem unnecessary at first, especially for a research project, it did pay 

dividends and saved us from lots of annoyances ( e.g., dealing with misleading and/or cryptic 

error messages) when coding our case studies ( cf., § 7) and shapeszc unit tests. 

6.2.2 The shapeszc backend 

Since we aim SHAPES -z to be an unmanaged language, we decided on using LLVM [LA04] 

within shapeszc for optimisation and code generation. LLVM is written in C++; while unoffi- 

cial bindings for other languages do exist, we were not confident with regards to the maturity 

and stability of these bindings. This is the main reason why we decided to pick C++ as our 

implementation language (which also affected our choice of Flex and Bison in part). 

The design of SHAPES , and, consequently, SHAPES -z, provides the potential to exploit a great 

variety of possible optimisations. For instance, when performing address calculation to access 

the fields of a pooled object, we can deduce that this address calculation can never overflow, 

hence by providing such a hint to the LLVM optimiser, we allow it to emit potentially better
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optimised code. This is, effectively, our primary reason why we ruled out the possibility of com- 

piling SHAPES -z code into C or C++ code: We expect to be able to provide more information 

to the optimiser compared to a conventional C/C++ compiler. 

Because SHAPES -z is an unmanaged embeddable language, a scheme for invoking SHAPES -z 

code from the host language is necessary. To that extent, shapeszc generates a C/C++ header, 

so that SHAPES -z pools and objects can be instantiated from C/C++ code. 

We now present how shapeszc performs code generation and optimisation; we will initially 

present a short introduction to the LLVM intermediate representation (IR) and then explain 

in detail how shapeszc makes use of LLVM to generate and optimise code. With respect to 

code generation, we follow § 5.5, with the exception that we are generating LLVM IR rather 

than SHAPESℓ 

code. 

sloccount reports that LLVM IR generation and optimisation consists of approximately 2.4K 

SLoC. 

An LLVM IR primer The LLVM IR [Pro21] is a statically typed, machine-independent 

intermediate representation (IR) used by LLVM. An LLVM IR source file corresponds to a 

module ; a module defines and declares functions and global variables3. 

Similar to conventional intermediate representations, LLVM functions consist of basic blocks ; 

each basic block consists of sequential instructions and is terminated by a branch or return 

instruction. Moreover, LLVM functions must adhere to what is known as Static Single Assign- 

ment (SSA) form [RWZ88]: Every local variable of an LLVM function must be assigned exactly 

once. 

LLVM variables and expressions are typed; the LLVM type system bears quite a lot of resem- 

blance to that of C and provides, among others, integer and floating-point types, structures 

(identical to C struct s), and pointer types. 

Listing 6.4 presents a C++ code example; Listing 6.5 presents its equivalent LLVM IR. Lines 1–

 

3 shapeszc does not make use of global variables.
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1 struct A { 

2 int x; 

3 }; 

4 struct B { 

5 int y; 

6 }; 

7 void copy(A* a, B* b) { 

8 a->x = b->y; 

9 } 

Listing 6.4: C++ sample code 

1 %st.A = type { i32 } 

2 %st.B = type { i32 } 

3 define void @copy(%st.A* %0, %st.B* %1) { 

4 %3 = getelementptr %st.B, %st.B* %1, i64 0, i32 0 

5 %4 = load i32 , i32 * %3, align 4 

6 %5 = getelementptr %st.A, %st.A* %0, i64 0, i32 0 

7 store i32 %4, i32 * %5, align 4 

8 ret void 

9 } 

Listing 6.5: Equivalent LLVM IR of Listing 6.4 

2 declare two struct types corresponding to the struct definitions of Lines 1 and 4 in Listing 6.4. 

Line 3 declares function foo , along with its parameters and (lack of a) return type. Lines 4 

and 6 are getelementptr expressions (also known as GEP expressions). A GEP expression takes 

one or more expressions as indices and performs address calculation; it can be used to calculate 

the address of the i -th element in an array and/or the k -th field of a struct. Line 4 calculates 

the address of field y within struct %0 . Similarly, Line 6 calculates the address of field x within 

struct %1 . Line 5 represents a memory load and corresponds the right-hand side of Line 8 within 

Listing 6.4; Line 7 represents a memory store and corresponds to the left-hand side of Line 8 

within Listing 6.4. 

Specialisation Before code generation takes place, shapeszc performs specialisation. As we 

described in § 5.5, during specialisation, each formal pool parameter is specialised to correspond 

to either a pool of a specific layout or the heap ( none ). This is done in a combinatorial manner, 

and all possible specialisations for each class is generated. Afterwards, for each specialisation, 

shapeszc generates all class methods, object/pool constructors and destructors. 

C/C++ header generation We will now present an example of the C/C++ header gener- 

ated by shapeszc . Listing 6.6 presents a two-dimensional vector with floating-point coordinates 

in SHAPES -z, along with a Struct-of-Arrays layout; Listing 6.7 presents the part of the header 

generated by shapeszc that corresponds to layout Soa . Line 5 is the definition of Soa pools; 

Lines 3–4 define the clusters’ layouts. The representation of pools is identical to that of § 5 

(with the exception of types).
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1 class Vec2<p> 

2 where p: [Vec2<p>] 

3 { 

4 x: f32 ; 

5 y: f32 ; 

6 

7 fn mag_sq(): f32 { return x*x + y*y; } 

8 } 

9 layout Soa: Vec2 = rec {x} + rec {y}; 

Listing 6.6: 2D vector in SHAPES -z 

Lines 16–19 are the declarations of the object and pool methods. Line 16 corresponds to the 

pool constructor. Line 17 corresponds to the pool destructor, which deallocates the pool, as 

well as all the objects contained within the pool. Line 18 corresponds to the object constructor, 

which allocates memory, constructs, and initialises an object inside the pool. 

The rationale for exposing object and pool constructors and destructors to the host environment 

is practicality: Because SHAPES -z does not currently have expose a main() method or an 

entry point, invoking a SHAPES -z method requires pools and objects to have been constructed 

initially; after SHAPES -z code is executed, the host will most likely want to deallocate SHAPES - 

z pools and objects that have been constructed so as to be a “good citizen” and not, e.g., leak 

memory. 

Line 19 corresponds to method mag_sq ; in the Soa specialisation of this method, two arguments 

need to be passed: The reference to the pool (which has layout Soa ) and the reference to the 

this parameter. The reference to this is represented as a pool index of type uintptr_t , which 

is an integer type capable of holding any pointer [ISO12]. 

The type and method names in the header are mangled to prevent accidental name clashing. 

Since no C/C++ application binary interface (ABI) seems to permit hashes ( # ) in method 

names, we use a name mangling strategy that borrows heavily from ideas used for name man- 

gling in the C++ Itanium ABI [ita ]. For instance, class Vec2 , specialised under the Soa layout, 

has its class name mangled as follows: 

• The number of pool parameters in the class (one for Vec2 ), along with the character C .
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1 #include <stdint.h> 

2 

3 struct _shapes_cluster_0_1C4Vec23Soa { float x; }; 

4 struct _shapes_cluster_1_1C4Vec23Soa { float y; }; 

5 struct shapes_pool_1C4Vec23Soa { 

6 uintptr_t size; 

7 uintptr_t capacity; 

8 struct _shapes_cluster_0_1C4Vec23Soa* cluster0; 

9 struct _shapes_cluster_1_1C4Vec23Soa* cluster1; 

10 }; 

11 

12 #ifdef __cplusplus 

13 extern "C" { 

14 #endif 

15 

16 void _shapes1C4Vec23Soa_P( struct shapes_pool_1C4Vec23Soa*); 

17 void _shapes1C4Vec23Soa_D( struct shapes_pool_1C4Vec23Soa*); 

18 uintptr_t _shapes1C4Vec23Soa_C( struct shapes_pool_1C4Vec23Soa*); 

19 float _shapes1C4Vec23Soa_M6mag_sq(uintptr_t, struct shapes_pool_1C4Vec23Soa*); 

20 

21 #ifdef __cplusplus 

22 } 

23 #endif 

Listing 6.7: C++ header generated for Listing 6.6 ( Soa layout only) 

• The length of the SHAPES -z class name ( 4 ), followed by the class name Vec2 . 

• For each of the pool parameters, N if the specialisation corresponds to the heap, otherwise 

the layout name length ( 3 ), followed the layout name ( Soa ). 

Hence, the mangled class name generated is 1C4Vec23Soa . 

Method names consist of the mangled class name and one of the following suffixes: 

• _C for object constructors. 

• _P for pool constructors. 

• _D for pool destructors. 

• _M for object methods, followed by the SHAPES -z name length, and the name itself ( e.g., 

_M6mag_sq for mag_sq ).
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1 %struct.pool.1C4Vec23Soa = type { i64 , i64 , %struct.cluster.0.1C4Vec23Soa*, %struct.cluster.1.1C4Vec23Soa* } 

2 %struct.cluster.0.1C4Vec23Soa = type { float } 

3 %struct.cluster.1.1C4Vec23Soa = type { float } 

4 

5 define float @_shapes1C4Vec23Soa_M6mag_sq( i64 , %struct.pool.1C4Vec23Soa* nocapture readonly ) 

6 local_unnamed_addr norecurse nounwind readonly { 

7 entry: 

8 %2 = getelementptr inbounds %struct.pool.1C4Vec23Soa, %struct.pool.1C4Vec23Soa* %1, i64 0, i32 2 

9 %3 = load %struct.cluster.0.1C4Vec23Soa*, %struct.cluster.0.1C4Vec23Soa** %2, align 8 

10 %4 = getelementptr inbounds %struct.cluster.0.1C4Vec23Soa, %struct.cluster.0.1C4Vec23Soa* %3, i64 %0, i32 0 

11 %5 = load float, float* %4, align 4 

12 %6 = fmul float %5, %5 

13 %7 = getelementptr inbounds %struct.pool.1C4Vec23Soa, %struct.pool.1C4Vec23Soa* %1, i64 0, i32 3 

14 %8 = load %struct.cluster.1.1C4Vec23Soa*, %struct.cluster.1.1C4Vec23Soa** %7, align 8 

15 %9 = getelementptr inbounds %struct.cluster.1.1C4Vec23Soa, %struct.cluster.1.1C4Vec23Soa* %8, i64 %0, i32 0 

16 %10 = load float, float* %9, align 4 

17 %11 = fmul float %10, %10 

18 %12 = fadd float %6, %11 

19 ret float %12 

20 } 

Listing 6.8: LLVM IR for Soa layout of Listing 6.6 

shapeszc uses the LLVM API to build the IR representation; Listing 6.8 presents a simplified 

version (for the sake of brevity) of the LLVM IR code generated for method mag_sq of Listing 6.6, 

when specialised under the Soa layout. 

The LLVM IR generation aspect of shapeszc is, for the most part, conventional and unsurpris- 

ing. The only noteworthy aspect is the fact that the object/pool construction and allocation 

logic is also implemented within LLVM IR, but performs calls to malloc() , realloc() , and free 

() (or semantically equivalent functions corresponding to a custom memory allocator). This is 

the only case where we depend on external functions in SHAPES -z. 

This minimal dependency only on a memory allocator is made possible thanks to specialisa- 

tion. A welcome side effect of specialisation is the massive simplification with respect to code 

generation: Thanks to specialisation, the memory representation of objects and pools is always 

known at compile time; runtime introspection to determine the location of an object’s field 

(via, e.g., “field virtual tables”) is therefore unnecessary. An elaborate scheme to represent 

a reference to a pooled object is also superfluous: Pools are represented in such a way that 

only an index into a pool is necessary to reference an object in it; we can always determine at 

compile time the pool an object belongs to, as well as the layout of that specific pool. 

Due to historical reasons, LLVM implements two pass managers: A new pass manager (which
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makes use of llvm::PassManagerBuilder4) and a legacy pass manager (which makes use of llvm 

::legacy::PassManager5). 

SHAPES -z performs optimisation on the LLVM IR with the new pass manager , which “set[s] 

up a standard optimization sequence for languages like C and C+”. Our setup of the optimi- 

sation pipeline uses LLVM’s TBAA pass § 6.2.3 explicitly and is set to an optimisation level 

of OptimizationLevel::O36. Generation of machine code is performed using LLVM’s legacy pass 

manager (due to technical reasons, we could not use the new pass manager for machine code 

generation); while setting an optimisation level for machine code emission seemed impossible, 

we observed that the machine code generated seemed optimised for trivial examples ( e.g., no 

redundant instructions, register allocation seemed to have been performed). 

6.2.3 Alias analysis in SHAPES -z 

In typed programming languages, in many cases, references to objects of distinct types are 

guaranteed to never alias. For instance, two references to a Java ArrayList and HashMap , respec- 

tively, are guaranteed to never alias. According to the C standard, if T and U are distinct types, 

two pointers of type T* and U* , respectively, can be assumed in most cases7 to never alias. This 

is known as the strict aliasing rule [fS18]. 

This observation allows us to perform what is known as Type-based Alias Analysis [DMM98], 

also known as TBAA. 

A benefit regarding the design of SHAPES , and, therefore, SHAPES -z is that we can expand 

on the idea of TBAA beyond the scope of merely standalone objects: References to pools of 

different layouts are guaranteed to never alias, therefore references to objects that are known

 

4 https://llvm.org/doxygen/classllvm

 

1

 

1PassManagerBuilder.html 

5 https://llvm.org/doxygen/classllvm

 

1

 

1legacy

 

1

 

1PassManager.html 

6 https://llvm.org/doxygen/classllvm

 

1

 

1OptimizationLevel.html#a097296a5feaefc188dafa71b192047 

14 

7 Some exceptions apply. For instance, char * pointers are permitted to alias to any other pointer. This is 

because, similar to void * pointers, a pointer of an arbitrary type can be converted to char * and back and yield 

the original pointer [fS18].

https://llvm.org/doxygen/classllvm_1_1PassManagerBuilder.html
https://llvm.org/doxygen/classllvm_1_1legacy_1_1PassManager.html
https://llvm.org/doxygen/classllvm_1_1OptimizationLevel.html#a097296a5feaefc188dafa71b19204714
https://llvm.org/doxygen/classllvm_1_1OptimizationLevel.html#a097296a5feaefc188dafa71b19204714
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1 %struct.A = type { i32 } 

2 %struct.B = type { i32 } 

3 

4 define void @copy(%struct.A* %0, %struct.B* %1) { 

5 %3 = getelementptr %struct.B, %struct.B* %1, i64 0, i32 0 

6 %4 = load i32 , i32 * %3, align 4, !tbaa !4 ; TBAA access tag 

7 %5 = getelementptr %struct.A, %struct.A* %0, i64 0, i32 0 

8 store i32 %4, i32 * %5, align 4, !tbaa !5 

9 ret void 

10 } 

11 

12 !0 = !{!"TBAA_root"} ; Root node for all TBAA metadata 

13 !1 = !{!"int", !0, i64 0} ; Scalar type ` i32 ̀  

14 !2 = !{!"A", !1, i64 0, !1, i64 4} ; Struct type ` A ̀  

15 !3 = !{!"B", !2, i64 0, !1, i64 8} ; Struct type ` B ̀  

16 !4 = !{!3, !1, i64 0} ; Field access for field ` A.x ̀  

17 !5 = !{!4, !1, i64 8} ; Field access for field ` B.y ̀  

Listing 6.9: LLVM IR of Listing 6.4, augmented with TBAA metadata. 

to belong to different pools will also never alias; a reference to a standalone object can never 

alias to a reference to a pooled object. It is thus natural to attempt to take advantage of these 

guarantees provided by SHAPES / SHAPES -z to produce more efficient code. 

The LLVM IR type system, however, provides us with no implicit or explicit guarantees about 

type-based aliasing; LLVM mandates that it is well-defined for any pointer of type T* to be 

reinterpreted as a pointer of type U*8. Therefore, LLVM has to conservatively assume that 

pointers of different types may alias [Pro21]; any information regarding type-based aliasing will 

need to be provided in a different manner. 

Indeed, within LLVM, taking advantage of TBAA (or any other alias analysis scheme for that 

matter) requires the IR to be annotated with additional metadata. The two kinds of TBAA 

metadata that can be supplied to LLVM are as follows: 

• Type descriptors corresponding to the scalar types (Line 13) and struct types (Lines 14– 

15) being used. Struct type descriptors must also specify the fields’ types and offsets of 

a struct type.

 

8 In fact, this is how e.g., unions and inheritance can be implemented without additional LLVM language 

constructs.
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• Access tags annotations on load and store operations (Lines 6 and 8). Each access tag 

consists of the scalar type and offset of the (possibly nested) field being accessed. 

As an example, consider Listing 6.4; due to the strict aliasing rule of C++ [ISO12], two 

respective pointers to structs Foo and Bar cannot alias. Listing 6.9 presents the equivalent 

LLVM IR representation for Listing 6.4, now enriched with TBAA metadata to explicitly 

express this aliasing constraint. 

Supplying this metadata for standalone SHAPES -z objects is conceptually simple. The challenge 

lies on whether or not we can use TBAA metadata for pools and pooled objects. Given the 

fact that we make use of method specialization, we statically know the layout of each pool in 

a given method. As such, supplying TBAA metadata to handle pooled objects turns out to be 

quite easier than anticipated. 

Consider Listing 6.6; in method mag_sq , under an Soa specialisation, we can guarantee that 

fields x , y , and z are each stored within separate clusters. As such, we ideally want to express 

this property with TBAA metadata, so that LLVM can exploit this, if possible. Listing 6.10 

presents the LLVM IR of method mag_sq , now augmented with TBAA metadata. 

Due to the presence of pools and layouts in SHAPES -z, we expand on the approach of generating 

TBAA metadata compared to a “conventional” procedural language as follows: 

• Every pool header gets associated with a TBAA struct type of a specific class and layout 

(Line 29); this ensures that pointers to pools of different types and/or layouts will be 

considered unaliasable. 

• The clusters of each pool are represented as an array of record splits; we associate each 

record split with a distinct TBAA struct type (Lines 32–33). This ensures that struc- 

turally equivalent but distinct record splits are also considered to never alias. This is 

what ensures two pooled objects that differ in their layout to be considered unaliasable: 

Indeed, given a field f in class C , and two layouts L1 and L2 , the value of f will be stored
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1 %struct.pool.1C4Vec23Soa = type { i64 , i64 , %struct.cluster.0.1C4Vec23Soa*, %struct.cluster.1.1C4Vec23Soa* } 

2 %struct.cluster.0.1C4Vec23Soa = type { float } 

3 %struct.cluster.1.1C4Vec23Soa = type { float } 

4 

5 define float @_shapes1C4Vec23Soa_M6mag_sq( i64 , %struct.pool.1C4Vec23Soa* nocapture readonly ) { 

6 entry: 

7 %2 = getelementptr inbounds %struct.pool.1C4Vec23Soa, %struct.pool.1C4Vec23Soa* %1, i64 0, i32 2 

8 %3 = load %struct.cluster.0.1C4Vec23Soa*, %struct.cluster.0.1C4Vec23Soa** %2, align 8, !tbaa !10 

9 %4 = getelementptr inbounds %struct.cluster.0.1C4Vec23Soa, %struct.cluster.0.1C4Vec23Soa* %3, i64 %0, i32 0 

10 %5 = load float, float* %4, align 4, !tbaa !12 

11 %6 = fmul float %5, %5 

12 %7 = getelementptr inbounds %struct.pool.1C4Vec23Soa, %struct.pool.1C4Vec23Soa* %1, i64 0, i32 3 

13 %8 = load %struct.cluster.1.1C4Vec23Soa*, %struct.cluster.1.1C4Vec23Soa** %7, align 8, !tbaa !11 

14 %9 = getelementptr inbounds %struct.cluster.1.1C4Vec23Soa, %struct.cluster.1.1C4Vec23Soa* %8, i64 %0, i32 0 

15 %10 = load float, float* %9, align 4, !tbaa !13 

16 %11 = fmul float %10, %10 

17 %12 = fadd float %6, %11 

18 ret float %12 

19 

20 !0 = !{!"shapes_tbaa_root"} ; TBAA root 

21 !1 = !{!"intptr", !0, i64 0} ; Scalar type for pool index 

22 !2 = !{!"f32", !0, i64 0} ; Scalar type ` f32 ̀  

23 

24 ; Scalar type for pointer to clusters for layout Soa 

25 !3 = !{!"_tbaa_cluster_ptr0_1C4Vec23Soa", !0, i64 0} ; Cluster 0 

26 !4 = !{!"_tbaa_cluster_ptr1_1C4Vec23Soa", !0, i64 0} ; Cluster 1 

27 

28 ; Struct type for pool header for Soa 

29 !5 = !{!"_tbaa_pool1C4Vec23Soa", !1, i64 0, !1, i64 8, !3, i64 16, !4, i64 24} 

30 

31 ; Struct type for the clusters of Soa 

32 !6 = !{!"_tbaa_cluster0_1C4Vec23Soa", !2, i64 0} ; Cluster 0 

33 !7 = !{!"_tbaa_cluster1_1C4Vec23Soa", !2, i64 0} ; Cluster 1 

34 

35 ; Field accesses 

36 !8 = !{!5, !1, i64 0} ; Pool size 

37 !9 = !{!5, !1, i64 8} ; Pool capacity 

38 !10 = !{!5, !3, i64 16} ; Pool cluster 0 ptr 

39 !11 = !{!5, !4, i64 24} ; Pool cluster 1 ptr 

40 !12 = !{!6, !2, i64 0} ; Field x 

41 !13 = !{!7, !2, i64 0} ; Field y 

Listing 6.10: LLVM IR of Listing 6.6, augmented with TBAA metadata. 

in record splits of different TBAA struct types, accessing f in pooled objects of different 

layouts will be always considered to never alias. 

As we can see, the design of SHAPES / SHAPES -z does allow alias analysis to be performed by 

leveraging already existing schemes (TBAA). What is more, we were initially expecting support 

for alias analysis to be a daunting and gruelling task; we were pleasantly surprised to find out 

the llvm::MDBuilder class9 made this process much than anticipated. 

One aspect that our current shapeszc implementation does not consider with respect to aliasing 

is that for two different objects o1, o2 

belonging to the same pool and a field f , the memory 

locations where o1 

.f and o2 

.f are placed are guaranteed to never alias. This fact cannot be

 

9 https://llvm.org/doxygen/classllvm

 

1

 

1MDBuilder.html

https://llvm.org/doxygen/classllvm_1_1MDBuilder.html
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provided to LLVM through TBAA, but it can be provided through LLVM’s noalias feature10; 

we leave this to a future implementation. 

6.3 Conclusion 

We have presented SHAPES -z, an implementation of SHAPES as an unmanaged embedded 

language, and its design considerations. We have also presented shapeszc , a compiler for 

SHAPES -z, as well as its implementation considerations, both with respect to the frontend 

( i.e., lexing, parsing, semantic analysis) and with respect to the backend ( i.e., LLVM IR code 

generation and optimisation via LLVM). We also do not expect any of our design considerations 

with respect to SHAPES -z to hinder any possible further development or introduction of further 

extensions. 

A noteworthy aspect of shapeszc is that, with respect to its design, it does not deviate in a 

significant manner from either SHAPESh ( § 4) or SHAPESℓ 

( § 5). That is, our implementation 

of SHAPES -z follows our formalism: We did not need to resort to additional decisions when 

implementing type checking; merely following the definition for a well-formed SHAPES program 

was sufficient. 

Furthermore, we did not need to make significant changes or sacrifices to adapt SHAPESℓ 

into 

LLVM, with the exception of name mangling. This is to be expected, however, as we had to 

provide a name mangling scheme that allowed code to be invoked from C and C++, as well as 

not cause accidental collisions with C or C++ symbols.

 

10 https://llvm.org/docs/LangRef.html#noalias-and-alias-scope-metadata

https://llvm.org/docs/LangRef.html#noalias-and-alias-scope-metadata


 

Chapter 7 

Case studies 

We will now investigate the usefulness of the concepts of SHAPES ; we consider a sequence of 

examples and discuss whether the use of SHAPES turns out to be beneficial for readability, 

maintainability, and performance. 

To that extent, we implemented five case studies . These case studies are: 

• OP2 ( § 7.2): Numerical computations on unstructured grids. 

• 3D Skeletal animation ( § 7.3): Animation of 3D models with skeletal animation and 

calculation of relevant attributes ( e.g., positions of vertices) on each frame. 

• Currency ( § 7.4): Simple querying on a sorted flat database. 

• Traffic ( § 7.5): Traffic simulation on a street network with optional speed limits and 

traffic lights. 

• Doors ( § 7.6): Small case study with actors and doors, each of a specific allegiance; we 

must determine which doors should be opened with respect to proximity of characters of 

the same allegiance. 

For our case studies, we selected examples that should ideally consist of a non-trivial SLoC 

count and/or correspond to real-world use cases. We group these case studies into 2 categories: 

106



 

107

 

• Different layouts : Case studies OP2 and Skeletal Animation are mainly concerned with 

switching between AoS, Mixed, and SoA layouts. In OP2 , we compare against an existing 

open source library that provides a more limited form of pooling and clustering compared 

to what is achievable by SHAPES . Skeletal Animation explores the use of different layouts 

to determine the fastest layout for a specific algorithm, as does Traffic . 

• Multiple pools : Case study Currency is mainly concerned with the usefulness of multiple 

pools. It reflects a query system with real-world data and made-up queries, with observ- 

able performance improvements occurring from using multiple pools of the same class 

and having each pool use a different layout. Doors also partitions objects into pools to 

improve performance. 

Due to practical considerations (our implementation of shapeszc was still underway at the 

time), we initially hand-compiled them into equivalent C++ code. § 7.2–7.6 evaluate the 

performance of the handwritten C++ variants of these case studies. 

After we completed our implementation of shapeszc , we wrote SHAPES -z versions of the Doors 

and Currency case studies; in § 7.7, we evaluate the performance of our SHAPES -z impemen- 

tation against our original handwritten C++ code with respect to these two case studies. 

We group our case studies into 2 categories: 

– Different layouts : Case studies OP2 ( § 7.2), Skeletal Animation ( § 7.3), and Traffic ( § 7.5) 

are mainly concerned with switching between AoS, Mixed, and SoA layouts. In OP2 , we 

compare against an existing open source library that provides a more limited form of pooling 

and clustering compared to what is achievable by SHAPES . Skeletal Animation and Traffic 

explore the use of different layouts to determine the fastest layout for a specific algorithm. 

– Multiple pools : Case study Currency ( § 7.4) is mainly concerned with the usefulness of 

multiple pools. It reflects a query system with real-world data and made-up queries, with 

observable performance improvements occurring from using multiple pools of the same class 

and having each pool use a different layout. Doors ( § 7.6) also partitions objects into pools 

to improve performance.
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Additionally, we make the following claims regarding our case studies with respect to SHAPES : 

C1 The use of SHAPES should make it easy for the developer to experiment with various 

layouts to determine the most optimal one for each domain, thus providing a potential 

improvement in readability and maintainability. 

C2 This ease in development SHAPES provides means that a developer can expect perfor- 

mance that is on par or better to already existing solutions with respect to pooling and 

clustering. 

C3 There is merit in making SHAPES more flexible and allowing the developer to use Mixed 

layouts; that is, there are cases where Mixed layouts outperform AoS and SoA. 

C4 Placing objects of the same type into multiple pools (rather than one pool) can improve 

cache utilisation and/or allow further algorithmic improvements. 

§ 7.8 presents our conclusions, as well as our judgement on whether or not Claims C1–C4 are, 

indeed, satisfied. 

The C++ code for our our case studies is publicly available1. 

7.1 Implementation & evaluation considerations for our 

case studies 

Given the absence of pools and layouts in C++, we made use of C++-specific features that 

are not present in SHAPES -z ( e.g., template metaprogramming) so as to make our code more 

succinct. Although such features in SHAPES -z would be certainly convenient to have, it is still 

possible to write them in SHAPES -z by making use of alternative constructs. 

Three of our case studies ( Currency , Traffic , Doors ) generate their datasets randomly (fully 

or in part) by using the C++11 Mersenne Twister RNG [ISO12]. To ensure that we are not

 

1 https://github.com/octurion/ecoop-artifact

https://github.com/octurion/ecoop-artifact
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Name

 

CPU (Intel)

 

L3 size

 

RAM size - type - MHz

 

OS

 

Compiler

 

desktop

 

i7-6700K

 

8 MB

 

16 GB - DDR3 - 2133

 

Ubuntu 16.04

 

gcc 5.4.0

 

graphic

 

Xeon E5-1620 v2

 

10 MB

 

16 GB - DDR3 - 1866

 

Ubuntu 18.04

 

gcc 7.4.0

 

voxel

 

i7-4790

 

8 MB

 

16 GB - DDR3 - 1600

 

Ubuntu 18.04

 

gcc 7.4.0

 

ray

 

i7-7700K

 

8 MB

 

16 GB - DDR4 - 2400

 

Ubuntu 18.04

 

gcc 7.4.0

 

Table 7.1: Machine specifications 

1 class Point<pPt: [Point<pPt>]> 

2 {x: double ; y: double ;} 

3 class Segment< 

4 pSeg: [Segment<pSeg, pPt>], 

5 pPt: [Point<pPt>]> { 

6 p1: Point<pPt>; p2: Point<pPt>; 

7 def len(): double { 

8 var dx = p2.x - p1.x, dy = p2.y - p1.y; 

9 return sqrt(dx * dx + dy * dy); 

10 } 

11 } 

12 layout PointL: Point = rec {x} + rec {y}; 

13 layout SegmentL: Segment = rec {p1} + rec {p2}; 

14 

15 def main() { 

16 pools pPt1: PointL<pPt1>, 

17 pSeg1: SegmentL<pSeg1, pPt1>; 

18 ... // Create objects in pPt1, pSeg1 

19 print(sum_lens_shapespp<pPt1, pSeg1>()); 

20 } 

21 <ps: [Segment<ps, pp>], pp: [Point<pp>]> 

22 def sum_lens_shapespp(): double { 

23 var sum = 0; 

24 foreach ( var e: ps) 

25 sum += e.len(); 

26 return len_sum; 

27 } 

28 ... 

Listing 7.1: Example SHAPES -z code 

introducing any accidental randomness bias, we use 100 seeds derived from the first 500 decimal 

digits of π (first 5 decimal digits correspond to the first seed, next 5 correspond to the second 

seed, etc .). 

We ran our case studies on four machines; Figure 7.1 lists their specifications. We used CMake 

as our build system; all case studies were compiled as a Release build (which implies the -O3 

-DNDEBUG flags). We used the Google C++ Benchmark library for our measurements2 except 

for OP2 ; its long running time renders this library useless in this case. Instead, we measure 

wall clock time ( CLOCK_REALTIME ), which is what both OP2 programs measure as well. 

When we compare SHAPES -z against our handwritten C++ code, we do not make use of the 

voxel machine; this is due to the fact that this machine had been decommissioned by the time 

we had completed our implementation of shapeszc . 

With respect to the presentation of our results, we mainly use notched box plots; a notched box 

plot introduces a narrowing around the box plot median which indicates the 95% confidence 

interval. We also use the geometric mean to derive summary data.

 

2 https://github.com/google/benchmark

https://github.com/google/benchmark
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1 class Point { double x, y; }; 

2 class Segment { Point *p1, *p2; }; 

3 

4 void sum_lens( double * acc, 

5 double * x1, double * y1, 

6 double * x2, double * y2) { 

7 double dx = *x2 - *x1, dy = *y2 - *y1; 

8 acc += sqrt(dx * dx + dy * dy); 

9 } 

10 ... 

11 op_set segs = op_decl_set(NUM_SEGS, "segs"); 

12 op_set points = op_decl_set(NUM_POINTS, "points"); 

13 

14 double * x_data = calloc(NUM_POINTS, sizeof (*x_data)); 

15 double * y_data = calloc(NUM_POINTS, sizeof (*y_data)); 

16 double * p1_data = calloc(NUM_SEGS, sizeof (*p1_data)); 

17 double * p2_data = calloc(NUM_SEGS, sizeof (*p2_data)); 

18 

19 ... // Fill x_data, y_data, p1_data, p2_data 

20 op_dat x = op_decl_dat(points, 1, "double", x_data, "x"); 

21 op_dat y = op_decl_dat(points, 1, "double", y_data, "y"); 

22 op_map seg_p1 = 

23 op_decl_map(segs, points, 1, p1_data, "seg_p1"); 

24 op_map seg_p2 = 

25 op_decl_map(segs,points, 1, p2_data, "seg_p2"); 

26 ... 

27 

28 ... 

29 double sum = 0; 

30 op_par_loop(sum_lens, segs, 

31 op_arg_gbl(&sum, 1, "double", OP_INC), 

32 op_arg_dat(x,1,seg_p1,1,"double",OP_READ), 

33 op_arg_dat(y,1,seg_p1,1,"double",OP_READ), 

34 op_arg_dat(x,1,seg_p2,1,"double",OP_READ), 

35 op_arg_dat(y,1,seg_p2,1,"double",OP_READ)); 

36 ... 

Listing 7.2: Equivalent OP2 code for Listing 7.1 

We now present our case studies in detail. 

7.2 OP2 

As we mentioned in § 3.1.2, OP2 [GMS+11] is a C++ library intended for computations on 

unstructured grids and is mainly focused on easing parallelisation of such applications (via, 

e.g., MPI [for15], OpenMP [Boa18], CUDA [NC22]). OP2 mainly attempts to tackle the issue 

of executing a kernel over a set of data in parallel in a declarative manner. Moreover, it 

also provides capabilities for pooling and clustering, albeit more limited compared to those of 

SHAPES . 

We will first introduce OP2 through an artificial example that calculates the sum of the lengths 

of line Segment s: Listing 7.1 presents the corresponding SHAPES -z code. Lines 1–11 present the 

Point and Segment types, respectively; we will be using an SoA layout for both (Lines 12–13). 

Method sum_lens_shapespp (Line 22) calculates the length sum by traversing all objects in pSeg1 

(Line 24). 

We present the equivalent OP2 code in Listing 7.2; In OP2, objects of the same type can be 

grouped into sets (Lines 11–12). To perform clustering, the developer must allocate and fill 

in the data of the clusters manually (Lines 14–19); OP2 will then keep track of the clusters 

(Lines 20–25) so as to access the appropriate fields during kernel execution. Maps (Lines 22–
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25) correspond to references to objects in other sets, but the developer has to manually use an 

index to create a reference to an object in a set. As observed, clustering and set creation have 

to be performed at runtime and in an ad-hoc and type-unsafe manner. 

Execution of kernel sum_lens will run over the line Segment s in segs (Line 30). OP2 will ob- 

tain pointers to the x , y components of p1 and p2 for each Segment ; these correspond to the 

parameters of sum_lens (Lines 4–6). The process of obtaining pointers to the fields of Point s 

is not automatic; the arguments of Lines 32–35 specify how OP2 will obtain these pointers (in 

this case, by dereferencing fields p1 and p2 of each point. It is easy to see that, compared to 

SHAPES -z, readability and type safety must be sacrificed in order to use OP2 and improve 

performance. 

The OP2 project provides two example C++ case studies that make use of parallelism (through 

OpenMP). These are called airfoil and aero . 

aero consists of 408 SLoC (in C++)3, out of which 311 SLoC correspond to the actual compu- 

tations. We implemented aero (including the exact original OpenMP directives being used) in 

C++ in a manner that is identical to the runtime pool representation used by SHAPES -z and 

compare a Mixed and AoS version of our implementation against the original. 

airfoil consists of 321 SLoC (in C++), out of which 282 correspond to the actual calculations. 

We implemented airfoil in C++ in a manner that is identical to the runtime pool represen- 

tation used by SHAPES -z and compare a Mixed , AoS , and SoA version of our implementation 

against the original (Figure 7.3). 

The original implementations of both aero and airfoil use a Mixed layout. Results for aero 

and airfoil are presented in Figures 7.2 and 7.3, respectively. Our measurement methodology 

is to run each variant of Airfoil and Aero on each machine 20 times. 

With respect to aero , we observe that our Mixed implementation (geometric mean for all exe- 

cutions of 10 . 799 s) is virtually identical to that of the original OP2 implementation (geometric 

mean for all executions of 10 . 837 s); we also argue that a rewrite in SHAPES -z would also

 

3 Calculated using sloccount [Whe04].
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Figure 7.2: OP2 Aero results for the original OP2 implementation, and the AoS and Mixed 

ports, respectively. (Lower times are better) 

improve readability, usability, and type safety. We argue that this supports Claim C2. 

Moreover, we observe that with respect to our implementation, SoA outperforms AoS (no 

loading of unrelated fields in memory, hence no cache pollution), yet Mixed outperforms SoA . 

This supports Claim C3. We speculate Mixed fares better for two reasons: 

• When accessing a field f of an object in an SoA layout, it is possible that the values 

corresponding to field f of adjacent objects are also loaded into the cache due to spatial
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Figure 7.3: OP2 Airfoil results for the original OP2 implementation, and the AoS , Mixed , and 

SoA ports, respectively. (Lower times are better) 

NB: X axis has been trimmed at the left to save space. 

locality. If we are accessing objects laid out in SoA in a random manner (in this case 

indirectly), this loading of adjacent values will amount to cache pollution. 

• The hardware prefetcher can only keep track of up to a specific number of sequential access 

patterns [Fog12]; the prefetcher cannot keep up with the excessive clustering resulting 

from the SoA layout.
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Results for airfoil are presented in Figure 7.3; we observe that these results follow nearly 

identical patterns to those of our aero comparison: Our Mixed implementation (geometric 

mean for all executions of 180 . 946 s) is almost identical (albeit with a small slowdown) to the 

original airfoil implementation (geometric mean for all executions of 175 . 628 s). Despite this 

slowdown, we argue it would improve readability, usability, and type safety if it were to be 

written in SHAPES -z, hence we argue that this is a worthwhile tradeoff and that it supports 

Claim C2. 

7.3 3D skeletal animation 

In the MD5Anim [Hen05] skeletal animation format, a 3D model (“stickman”) consists of joints, 

weights, and vertices. Joints are organised in a tree; there is a 1-N relationship between joints 

and weights and a 1-N relationship between vertices and weights. 

Animation of the model includes the following 2 phases: 

Phase 1 Calculate the joints’ new orientations in a top-down recursive manner. 

Phase 2 Calculate the position of each weight from the weight’s current position and the 

orientation of the joint it belongs to. 

Our case study consists of creating instances of such stickmen from given data, then measuring 

the time taken to animate them. 

It is not initially obvious how to layout our data in an optimal manner. We decided to focus 

on the following two “axes” of data layouts: 

• Joints are either Scattered in memory ( i.e., none pool) or the joints for one instance of a 

“stickman” are placed close to each other in memory in an array, hence Pooled . 

• Weights use an AoS , an SoA , or a Mixed layout.
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Figure 7.4: Skeletal animation results for Scattered-AoS , Pooled-AoS , Scattered-Mixed , Pooled- 

Mixed , Scattered-SoA , and Pooled-SoA layouts, respectively (where N = 5000). (Lower times 

are better) 

NB: Y axis has been trimmed at the bottom to save space.
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This results in 6 possible data layouts. It is not obvious at first which of these data layouts is 

optimal for the animation algorithm. Unfortunately, since we are handcoding our implementa- 

tion in when writing it in C++, we have to manually write all 6 versions of it (once per layout). 

This is a monotonous, time-consuming, and error-prone task. Indeed, a striking observation 

regarding our C++ implementation is that we have duplicated the code that performs the 

necessary mathematical operations, in order to deal with the different layouts. 

With SHAPES -z, however, we would only need to write the two and three possible layouts for 

the joints and weights, respectively and since model animation is oblivious to layouts of the 

pools we are using, we only need to modify their layouts at the site they are defined, then 

measure. We argue that this supports Claim C1. 

Figure 7.5 presents our results. To make the differences in execution more visible, we ran our 

code 100 times for the case where N = 5000; we present the results of this specific execution 

in Figure 7.4. Notice that due to the way we were making use of Google Benchmark, the 

extraction of confidence intervals for each data point is unfortunately infeasible. 

In Figure 7.4, we observe a form of “tiering”: A couple of layouts have almost identical perfor- 

mance and have consistently the best times (the “fast tier”), whereas the remaining pools lag 

behind them, all close to each other (the “slow tier”). 

We observe that Pooled joints outperform Scattered ones, irrespective of the layout used for 

the weights. This is expected (due to better cache locality), but the speedup is not significant; 

this can be explained by the expectation that the number of joints in a 3D model will be much 

smaller compared to the number of weights. 

Additionally, we observe that, similar to OP2 , the Mixed layout outperforms both AoS and 

SoA . We speculate that this occurs for the exact same reasons as the Mixed layout used in OP2 

( § 7.2). 

Therefore, the optimal layout for the animation algorithm is PooledMixed (and both Figure 7.4 

and Figure 7.5 support this). To that extent, we argue that there is, indeed, merit in making 

use of mixed layouts (Claim C3).
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Figure 7.5: Skeletal animation results for Scattered-AoS , Pooled-AoS , Scattered-Mixed , Pooled- 

Mixed , Scattered-SoA , and Pooled-SoA layouts, respectively, with N being variable. (Lower 

times are better) 

7.4 Currency 

The European Central Bank keeps a record of all daily exchange rates of 41 currencies against 

the Euro since 1st January 19994. As a case study, we implemented a query system that looks 

up the exchange rate of a specific currency against the Euro on a specific date. The range of

 

4 https://www.ecb.europa.eu/stats/eurofxref/eurofxref-hist.zip , Wayback Machine URL: https: 

//web.archive.org/www.ecb.europa.eu/stats/eurofxref/eurofxref-hist.zip

https://www.ecb.europa.eu/stats/eurofxref/eurofxref-hist.zip
https://web.archive.org/www.ecb.europa.eu/stats/eurofxref/eurofxref-hist.zip
https://web.archive.org/www.ecb.europa.eu/stats/eurofxref/eurofxref-hist.zip
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Figure 7.6: Currency results for one AoS pool , one AoS and one Mixed pool , and one AoS and 

one SoA pool , respectively. (Lower times are better) 

NB: Y axis has been trimmed at the bottom to save space.
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sates we are using spans from 1st April 1999 up to 8th May 2019. We assume the following: 

• Most queries will refer to dates that are “recent”; we assume 80% of our queries will refer- 

ence exchange rates since 2018-01-01 and the remaining 20% to reference older exchange 

rates. 

• For the sake of simplicity, we only support the lookup of USD and GBP exchange rates, 

each at a 50% probability. 

In our case study, we perform a number ( N = 5000) of queries against three different imple- 

mentations of this query system. The differences in these implementations are as follows: 

• All exchange rates are placed in One Pool (in an AoS layout) or are partitioned into Two 

Pools (“recent” and the remaining dates). 

• In the case of Two Pools , either an SoA layout is used for the “recent” dates or a Mixed 

layout. An AoS layout is used for the pool of not “recent” dates. 

We present our results in Figure 7.6. We observe that, compared to the Two pools, Mixed 

approach (geometric mean for all executions of 82 . 929 µ s), the One Pool approach (geometric 

mean for all executions of 214 . 553 µ s) appears to be slower by a factor of 2.58x (with respect 

to the derived geometric means). The Two pools, SoA approach (geometric mean for all execu- 

tions of 83 . 093 µ s) is almost on par with the Two pools, Mixed approach with respect to their 

geometric means. This gives some credence (albeit weak) to Claim C4. 

7.5 Traffic 

We implement a case study [SSM18] that simulates road traffic according to the Nagel-Schre- 

ckenberg traffic model [NS92]. For our evaluation, we ported a version of that benchmark5 into

 

5 Hosted in https://github.com/prg-titech/dynasoar/blob/9dab3900c142aa8ee41966647bd97ef3d035768c 

/example/traffic/baseline

 

aos/traffic.cu

https://github.com/prg-titech/dynasoar/blob/9dab3900c142aa8ee41966647bd97ef3d035768c/example/traffic/baseline_aos/traffic.cu
https://github.com/prg-titech/dynasoar/blob/9dab3900c142aa8ee41966647bd97ef3d035768c/example/traffic/baseline_aos/traffic.cu
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Figure 7.7: Traffic results for AoS and Mixed layouts, respectively. (Lower times are better) 

vanilla C++. The simulation consists of iterating over a collection of cells and a collection of 

traffic lights . 

Roads in this model are split into equally-sized cells ; each cell contains up to one car. Uni- 

directional edges between cells represent traffic flow; because cells are equally-sized, edges are 

weightless. Cells also represent intersections; edges from and to an intersection cell represent 

how traffic from and to adjacent cells flows via this intersection. A street network is therefore 

represented as a graph of cells. 

Cells have a maximum velocity ; this is intended to represent speed limits. Moreover, cells 

adjacent to intersections are controlled by traffic lights ; these dictate whose cell’s traffic can 

pass through the intersection at any given time. 

The original implementation constructs a random street network, places cars in random cells, 

then runs the simulation for 1000 iterations; we decided to follow this approach as well. Each
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iteration consists of two steps: 

• First, determine and store the path each car will take. The length of a path is capped 

by the car’s velocity . A car’s velocity is mutable and it only affects the path length for 

the current iteration. At an intersection, a random outgoing cell is chosen. If a currently 

being calculated path would pass through an occupied cell, the path will end on the 

current cell. 

• Then, determine destination cells for all cars. The cars are then moved to their respective 

cells. 

We implement an AoS and a Mixed variant. The Mixed variant is a best-effort SoA layout for 

two reasons: 

• Each Cell contains a random number generator state (to e.g., simulate random car 

speedups/slowdowns, etc .) which is effectively a black box, hence it is not transformed 

into SoA. 

• Cells and traffic lights contain resizeable arrays of a maximum size (to e.g., track in- 

coming/outgoing cells, track the path the car (if any) on that cell is going to take). An 

implementation of an array with a size capped at compile time would consist of an array 

of a fixed size and a size field. Using such an implementation would mean that we would 

use an abstraction, hence we do not place the array size and contents in different clusters. 

Results are presented in Figure 7.7. The geometric mean of all executions for the AoS and 

Mixed variants amounts to 392 . 741ms and 304 . 332ms, respectively. This corresponds to a 

ratio of 1.29x between these two geometric means. We attribute this difference in performance 

to less cache pollution (as in OP2 ). 

Thus, being able to easily switch from an AoS to an Mixed layout if we were using SHAPES -z 

would easily result in an easy speedup. This supports Claims C1 and C3.
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Figure 7.8: Doors results for one and many pools, respectively. (Lower times are better)
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7.6 Doors 

Consider a list of characters placed in a 2D space; each character belongs to one of two teams 

(Red team vs. Blue team). Now, consider a list of automatic doors in the same space; doors 

also have an allegiance and they can only open when a character of the same allegiance is in 

their proximity6. Given a list of characters and doors, our objective is to determine which doors 

have a character of the same allegiance within proximity of themselves, hence must be opened. 

An obvious optimisation is to partition doors and characters into allegiance-specific pools ( i.e., 

one red, one blue character pool, and one red, one blue door pool), therefore allegiance checks 

can be eliminated (which is what we have done in our code). 

To that extent, we compare the performance of checking 100 randomly generated doors and 

characters. We run our case study with 50%, 70%, and 90% of characters and doors belonging 

to the Red team. We assume an AoS layout in both cases. Figure 7.8 presents the relevant 

results. We observe the following geometric means for each category: 

• 50%: 9 . 386 µ s for One pool , 5 . 546 µ s for Many pools 

• 70%: 9 . 799 µ s for One pool , 6 . 411 µ s for Many pools 

• 90%: 11 . 303 µ s for One pool , 8 . 868 µ s for Many pools 

In aggregate, the geometric mean for the One pool approach is 10 . 131 µ s, whereas for the Many 

pools approach, the geometric mean is 6 . 807 µ s. 

As such, we observe that the use of multiple pools achieves non-trivial speedups, even with 90% 

of characters and doors being red (which results in fewer eliminated checks). This supports 

Claim C4.

 

6 Inspired from material from the following URL: https://web.archive.org/web/20190517194356/https: 

//deplinenoise.files.wordpress.com/2015/03/gdc2015

 

afredriksson

 

simd.pdf

https://web.archive.org/web/20190517194356/https://deplinenoise.files.wordpress.com/2015/03/gdc2015_afredriksson_simd.pdf
https://web.archive.org/web/20190517194356/https://deplinenoise.files.wordpress.com/2015/03/gdc2015_afredriksson_simd.pdf
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7.7 Evaluation of shapeszc 

We will now evaluate shapeszc by comparing the compiled SHAPES -z code against its equiv- 

alent handwritten C++ counterpart. As stated in § 7.1, we have performed this comparison 

only for the Doors and Currency case studies; this is due to practical considerations ( i.e., time 

constraints) and does not imply that the remaining case studies cannot be implemented in 

SHAPES -z. 

Our comparison will be twofold: Firstly, we will compare how SHAPES -z fares against hand- 

written C++ in terms of execution speed ( direct comparison ). Secondly, we will compare what 

sort of performance improvement/degradation we observe between different layouts in SHAPES - 

z and compare them to the respective improvement/degradation we observe between different 

layouts in handwritten C++ ( indirect comparison ). 

Notice that with respect to our comparisons, there are three noteworthy caveats that need to 

be taken into consideration: 

V1 shapeszc was developed by a single person within a timespan of approximately 7 months; 

mature compilers such as GCC and Clang have been in development for years and the 

amount of engineering time put into either of them is orders of magnitude bigger than 

that of shapeszc . 

V2 We are making use of the public LLVM API to generate a “standard” -O3 optimisation 

pipeline ( § 6.2.2); it is possible that Clang is making use of a different optimisation 

pipeline. 

V3 Even though both shapeszc and Clang generate LLVM IR (which is then optimised by 

LLVM), considering that the LLVM and Clang projects are under the LLVM umbrella, 

it may be possible for LLVM to have been better tailored to better optimise LLVM IR 

generated by Clang or for Clang to emit LLVM IR that happens to be more amenable 

to optimisation by LLVM. While such information is most likely publicly available ( e.g., 

within posts in the LLVM mailing list), considering that LLVM is open source, performing
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the appropriate research is bound to require additional time to be spent, especially to a 

person with little to no internal familiarity with projects under the LLVM umbrella. 

We now present our measurements for the Doors and Currency case studies. Note that, as we 

stated in § 7.1, we are not running results on voxel machines. 

Doors Figure 7.9 presents the C++ measurements against our shapeszc implementation for 

the Doors case study. Figure 7.10 aggregates the medians of all of these executions and compares 

the median C++ and SHAPES -z execution times for each layout, machine, and allegiance 

probability: A median that is located “above” the diagonal line indicates a faster SHAPES -z 

median execution time; a median located “below” the diagonal line indicates a faster C++ 

median execution time. 

With respect to a direct comparison , when comparing the execution time of C++ and SHAPES - 

z, we observe that the geometric mean of all C++ executions is 8 . 220 µ s, whereas the geometric 

mean of all SHAPES -z executions is 8 . 247 µ s. While this may suggest an almost identical 

execution speed, Figure 7.10 indicates that there is, indeed, some variance in the results. For 

instance, SHAPES -z tends to perform better on the graphic machine, whereas C++ tends to 

perform better on the desktop machine. 

With respect to an indirect comparison , when comparing the One pool and Many pools ap- 

proaches in SHAPES -z, we obtain a geometric mean of 8 . 969 µ s and 7 . 582 µ s, respectively. 

While this is certainly a result that is consistent with our C++ results in § 7.6, one point of 

concern is that the geometric mean of the C++ variant of the Many pools approach is 6 . 807 µ s. 

We argue that our SHAPES -z results for Doors appear quite promising, and that with respect 

to Doors SHAPES -z appears to be on more-or-less equal footing with C++, especially when 

taking Caveats V1–V3 into account. We argue that this gives credence to Claim C2. 

Currency Figure 7.11 presents the measurements of C++ against our shapeszc implementa- 

tion for the Currency case study. Figure 7.12 aggregates the medians of all of these executions
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Figure 7.9: Doors results: C++ vs. SHAPES -z variant for one and many pools, respectively. 

(Lower times are better)
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Figure 7.10: Comparison of medians of Doors results: C++ vs. SHAPES -z variant. 

and compares the median C++ and SHAPES -z execution times for each layout and machine: 

similar to Figure 7.10, a median located “above” the diagonal line indicates a faster SHAPES -z 

median execution time; a median located “below” the diagonal line indicates a faster C++ 

median execution time. 

With respect to a direct comparison , when comparing the execution time of C++ and SHAPES - 

z, we observe that the geometric mean of all C++ executions is 113 . 920 µ s, whereas the geo- 

metric mean of all SHAPES -z executions is 278 . 204 µ s. Indeed, Figure 7.12 indicates that the 

median execution of C++ is much faster than its median SHAPES -z counterpart. This indicates 

a possible optimisation issue in our compiler, which is certainly alarming.
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Figure 7.11: Currency results: C++ vs. SHAPES -z variant for one AoS pool , one AoS and one 

Mixed pool , and one AoS and one SoA pool , respectively. (Lower times are better)
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Figure 7.12: Comparison of medians of Currency results: C++ vs. SHAPES -z variant. 

With respect to an indirect comparison , when comparing the One pool , Many pools, Mixed 

and Many pools, SoA approaches in SHAPES -z, we obtain a geometric mean of 371 . 426 µ s, 

243 . 095 µ s and 238 . 474 µ s, respectively. While this is certainly a result that is consistent with 

our C++ results in § 7.6, one point of concern is that, with respect to the geometric mean, the 

ratio between the Many pools, SoA and One pool approaches is approximately 1.56x, whereas 

in § 7.6, we observed this ratio to be approximately 2.58x. 

We argue that our SHAPES -z results for Doors appear quite promising, and that with respect 

to Doors SHAPES -z appears to be on more-or-less equal footing with C++, especially when 

taking Caveats V1–V3 into account. We argue that this gives credence to Claim C2. 

Attempting to close the direct comparison gap With respect to the direct comparison 

in the Currency case study, we tried a variety of approaches so as to close the gap in execution 

time. More specifically: 

• We compiled our C++ code with Clang and compared our SHAPES -z code against it 

(since we were using GCC). With respect to Doors , the SHAPES -z version was virtually
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on an equal footing compared to the C++ version compiled with Clang; with respect to 

Currency , the slowdown of the SHAPES -z version was more-or-less similar regardless of 

the compiler choice for the C++ version. 

• We tried using different LLVM versions compared to LLVM 8, which was the version 

we initially used (specifically, LLVM versions 10–13). This did not seem to be of great 

significance. 

• We peeked at the machine code generated for our SHAPES -z and compared it against the 

one generated for our C++ code in a purely empirical manner. The most striking differ- 

ence we observed was that, in the case of shapeszc , we observed loop alignment [FHM99] 

performed by LLVM. However, we could not determine how to disable this with respect 

to code generation. 

• We tried using llvm-opt for optimisations; llvm-opt is a standalone LLVM IR optimiser 

provided by LLVM. While we did observe cases where some optimisation opportunities 

were picked by llvm-opt , compared to LLVM’s PassManagerBuilder pipeline, this improve- 

ment did not turn out to be significant. Moreover, llvm-opt did not seem to perform loop 

alignment during code generation; given that we did not observe any significant difference, 

it seems unlikely that loop alignment would have been a culprit. 

• We tinkered with LLVM’s PassManagerBuilder API in the hopes of finding an additional 

switch that would allow us to eke out some additional optimisability by LLVM, to no 

avail. We considered explicitly fiddling with what optimisation passes were being run 

and in what order, but due to our lack of expertise with optimisation pass order and lack 

of knowledge with the LLVM internals, we abandoned this idea. 

• The Currency case study uses binary search, by invoking std::lower_bound() in the C++ 

version; we tried modifying our SHAPES -z version to behave exactly like the GNU C++ 

STL version of std::lower_bound() , as well as replace std::lower_bound() with an equiv- 

alent C++ version, but to no avail. 

• Since our C++ code makes heavy use of std::vector , we peeked into the internals of the
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GNU C++ STL to determine if there was anything noteworthy. We did observe that, 

unlike our pools (which store the pool size and pointers to clusters), that particular version 

of std::vector used pointers to indicate the beginning and end of elements ( _M_start and 

_M_finish , respectively). While certainly a possible approach for micro-optimisations, 

this difference is definitely not enough to close the gap in the direct comparison. 

As such, we are suspecting that Caveats V1–V3 seem to be the most significant culprits. 

7.8 Conclusions 

We have taken examples from a range of applications; we claim that SHAPES makes our 

code more readable compared to the version where we perform these optimisations by hand 

(Claim C2). When the developer is uncertain of what data structure to use, SHAPES makes it 

easier to experiment with several and pick the most performant one for the use case at hand 

(Claim C1). Finally, we have shown that layout/pool consideration, i.e., use of Mixed layouts 

(Claim C3) and of multiple pools (Claim C4) can affect performance significantly. 

Additionally, when convenience and ease of use is the primary concern, shapeszc does show 

that it has potential to be on par with C++ in terms of performance. We anticipate that a 

future shapeszc version has the potential to be within a close range in terms of performance 

against handwritten C++ code ( i.e., C++). 

As such, we believe that incorporating the concepts of pooling and clustering as proposed by 

SHAPES into existing and/or new languages is worth considering. Moreover, we hope that a 

future version of shapeszc will be able to perform optimisations in a manner that is close to 

the optimisation capabilities of current compilers.



 

Chapter 8 

Conclusions 

We have presented SHAPES , a language extension that uses a type-based approach to inte- 

grate memory optimisation in managed languages to enable greater control of the memory 

layout (hence potentially improving cache utilisation), whilst keeping the business logic layout- 

oblivious. It relies on types both to document and enforce aspects of data locality and to 

protect object abstraction and combat high-level memory safety bugs which may arise when 

manually deconstructing objects in structure-of-arrays transformations. 

8.1 Achievements 

We presented SHAPES as a means of allowing developers to utilise CPU caches in a high-level 

manner, while also staying close to the spirit of object-oriented programming. We initially dove 

into the design and architecture of CPU cache hierarchies ( § 1), so as to make better informed 

decisions with respect to how to best design SHAPES . We then presented the core ideas of 

SHAPES ( pooling and clustering ) and introduced its design through gradually more extended 

and refined stages, whilst also presenting our rationale for our design decisions ( § 2), which also 

demonstrates that our design was not done in an ad hoc manner. We also presented our aims 

with respect to ensuring memory safety in SHAPES . 

In § 3, we presented existing work with respect to pooling and clustering and compared it with 

132
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the design of SHAPES ; we concluded that SHAPES does, indeed, bring additional benefits into 

the table, hence it is worth pursuing. We also took note of possible future extensions that 

SHAPES could benefit from. 

In § 4, we formalised SHAPES via SHAPESh, a formal language; we presented the SHAPESh 

operational semantics and type system, as well as formulated the concept of SHAPESh well- 

formedness, which we then proved. In § 5, we presented SHAPESℓ, a low-level language that can 

be easily implemented as a runtime, presented how SHAPESh can be compiled into SHAPESℓ 

and proved that this compilation is correct and complete. We also argued why we expect the 

translation from SHAPESh to SHAPESℓ 

to be performant during program execution. ( e.g., our 

use of specialisation means that an ahead-of-time approach to compilation can be used). 

In § 6, we introduced SHAPES -z, our implementation of SHAPES as an embedded domain- 

specific language, as well as the design of shapeszc , our SHAPES -z compiler. We also presented 

the design of the shapeszc frontend (syntactic and semantic analysis), as well as the backend 

(LLVM code generation). In § 7, we introduced our case studies through which we evaluated 

the claims we made by SHAPES : We concluded that the benefits of SHAPES we claim do indeed 

have merit. 

8.2 Future work 

In § 3, when comparing SHAPES with existing work, we indicated some points for possible 

future extensions, such as additional layouts. We now reflect on how SHAPES (and SHAPES -z) 

can be extended to implement these extensions and also present a few potential extensions: 

Support for SIMD In § A, we introduce SHAPESSIMD, our future extension of SHAPES , 

which we expect to allow developers to also reap the benefits of SIMD in a high-level and 

easy-to-use manner.
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Additional layouts A common pattern among the work we examined in § 3 was the sup- 

port for a hybrid layout, called Arrays-of-Structs-of-Arrays (AoSoA). Support for AoSoA is 

certainly worth considering, since only one pool cluster needs to be allocated; furthermore, 

our observation that mixed layouts are worth considering ( § 7) and our discussion of SIMD 

instruction sets ( § A) strengthens our argument. 

We expect that AoSoA layouts can be added to SHAPES in a straightforward manner, by 

mainly extending the layout declaration syntax. One consideration that should also be taken 

into account is whether or not we should allow the number N of elements per chunk to also be 

variable to an extent, so as to e.g., simultaneously accommodate machines with differing SIMD 

register width ( e.g., 128-bit SSE and 256-bit AVX [Int11]). 

Automatic layout selection With respect to automatic layout selections, we consider the 

addition of an optional advisory keyword in pool declarations, which would indicate that the 

compiler is free to select a different layout; we envision that automatic layout selection can 

be determined via e.g., machine learning or profile-guided optimisation ( e.g., data collected 

regarding cache misses via the perf tool in Linux [Gre20]). 

Parallelism and concurrency DynaSOAr [SM19] and OP2 [GMS+11] each provide features 

that aid the developer with respect to concurrency: DynaSOAr allows concurrent object allo- 

cation within pools; OP2 generates execution plans wherein objects are logically partitioned 

in a manner that prevents an object’s field from being potentially modified by two concurrent 

threads. 

As discussed in § 5.4, in order to support concurrency in SHAPES , we would need to ensure 

that pool resizing is synchronised with respect to other operations on the pool, such as field 

access and object construction. One possible approach would be to introduce a per-pool lock 

that synchronises all operations within that specific pool. This approach, while certainly easy 

to implement, is suboptimal for applications that primarily access object fields. 

We can eliminate the necessity for locking by introducing pool borrowing , akin to the concept
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of borrowing present in Rust [KN18]. More specifically, a pool is owned by exactly one thread, 

but borrows of this specific pool can be created and passed to other threads. While the pool is 

bing borrowed, object allocation within the pool is disallowed; only when all borrows of a pool 

cease can object construction within the pool be performed. 

An alternative approach would be to change the in-memory representation of pools, so as 

to make concurrent allocation and pool resizing easier to implement; we leave such a pool 

representation for a future SHAPES or SHAPES -z implementation. 

Additional performance considerations SHAPES is also capable of accommodating addi- 

tional features concerning performance: A layout can be extended to accommodate additional 

features, such as padding (to address false sharing [TLH94]), alignment, and placement of 

auxiliary fields ( e.g., mark word and klass pointer on the HotSpot VM [hot06]). 

The layout syntax can be also extended to allow the developer to constrain the index of an 

object in a specific pool to a range smaller than the machine word size ( e.g., 16-bit or 32-bit 

indices on 64-bit machines) so as to further improve on memory usage and cache utilisation. 

This can be achieved thanks to the use of specialisation and it can be syntactically implemented 

by e.g., adding annotations to the respective layout. 

Another possible consideration with respect to performance would be to provide a means of 

limiting the number of specialisations generated, so as to allow the developer to mitigate the 

justified concern of possible code bloat. One approach to tackling this would be to explicitly 

indicate which specialisations are allowed to be generated. This is similar to the concept of 

extern template introduced in C++11 [ISO12]. 

Additional garbage collection considerations In § 5.3.1, we stated our cautious optimism 

about the possibility of creating a pool-aware garbage collector. A further logical step would 

be to make a preliminary judgement on how easy would the addition of support for SHAPESℓ 

to existing GCs be. This is certainly a very ambitious goal, especially when taking into account 

the potential amount of engineering effort required even conceptually. However, we argue that
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considering our objective to have SHAPES support managed languages, it is natural to demand 

interoperability with existing garbage collectors and consider whether or not this is worth 

pursuing. 

Our design does not specify how the initial capacity of a pool will be picked. As possible 

options, we are currently envisaging either an implementation-defined default, a user-specified 

initial capacity ( e.g., via annotations) or a capacity derived from profile-guided optimisation. 

In § 5.3.1, we presented how SHAPES can be integrated into a garbage collector. A possible 

extension on SHAPES GC would be to provide a custom API for reordering objects in a pool. 

This would, for instance, allow the nodes of a tree to be reordered sequentially in memory in 

the order that an algorithm traverses the tree. 

8.3 Reflections 

We started developing SHAPES with the intent to allow developers to better utilise the cache. 

However, our approach was certainly not the most conventional: Rather that starting imple- 

menting various constructs as prototypes and then build a type system on top of them, we 

initially began developing a formal model, which we then revised frequently. Such an approach 

is certainly not risk-free: If we failed to develop a correct and complete model, we would have 

to make use of models with glaring issues and/or weaknesses. The upside of this approach, 

however, is that once we have a correct and complete formal model, we do not need to resort 

to solutions that “work for 90% of the cases”. 

Moreover, we also developed a fully-fledged SHAPES compiler; this decision was also a risky 

one: Developing a compiler is certainly a non-trivial and time-consuming task, especially as a 

single-developer project. This means that should the compiler approach fail or pan out for any 

reason, the time spent on it will have been completely wasted. Thankfully, this turned out to 

not be the case and we are quite satisfied with our end results.
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Appendix A 

Future work: Entering the SIMD 

territory 

Modern CPU architectures have introduced SIMD instructions ( Single Instruction, Multiple 

Data ) in their instruction sets [Int11, Lim]. The premise of SIMD is twofold: SIMD introduces 

registers that can fit multiple units of data simultaneously ( e.g., k floating-point numbers). 

Additionally, SIMD introduces operations that can be simultaneously applied to such multiple 

units of data. That is, on a CPU where a SIMD register can hold k elements, a SIMD addition 

instruction will perform k additions simultaneously and produce k sums. This implies a speedup 

of up to k with respect to single-core performance, which makes SIMD an attractive approach 

in terms of maximising performance. 

Indeed, before fully carving out our case studies ( § 7), we implemented handwritten versions 

of the OP2 airfoil application ( § 7.2), albeit running only on a single thread, and measured 

their performance in a preliminary fashion ; these consisted of the implementations presented in 

Figure 7.3 ( AoS , Mixed and SoA layouts), as well as an SoA version that used SIMD wherever 

possible . We ran this preliminary test on the machines of Figure 7.1. 

Figure A.1 presents our results, which show our SIMD version outperforming all other imple- 

mentations. While the speedup we obtain with SIMD in an SoA layout is certainly less than 
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Figure A.1: OP2 airfoil single-threaded execution for the original OP2 version, with our 

handwritten AoS , Mixed , and SoA versions, as well as an SoA version that uses SIMD , lower 

times are better. 

2x1, it is certainly a direction for future SHAPES extensions that deserves consideration. 

However, even with that certainly enticing potential for a performance speedup, it appears that 

SIMD is underutilised by developers. We argue that this can be attributed to an extent to the 

following challenges: 

Portability concerns Instruction set architectures can vary greatly with respect to their im- 

plementation of SIMD. 

Mismatch between the scalar and SIMD paradigms We argue that a scalar language 

( e.g., C) is not necessarily well-fitted to handle SIMD in what we consider to be an 

intuitive manner. 

SIMD requires data layouts that are at odds with OOP As we will see in § A.2, com- 

pared to an Array-of-Structs (AoS) layout, a Struct-of-Arrays (SoA) data layout ( cf., 

§ 2.1) makes it easier for the developer to incorporate SIMD into their business logic. 

To tackle these challenges, we will present SHAPESSIMD in this chapter. SHAPESSIMD is our 

vision of extending SHAPES with concepts and semantics that make taking advantage of SIMD 

much easier compared to current practices.

 

1 A further investigation showed us that airfoil spends a major portion of its execution on a loop that is 

excruciatingly hard to parallelise with SIMD manually, hence we did not attempt it.
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1 #include <xmmintrin.h> 

2 void square( float * arr, size_t n) { 

3 for (size_t i = 0; i < n; i += 4) { 

4 __m128 v = _mm_loadu_ps(&arr[i]); 

5 __m128 sq = _mm_mul_ps(v, v); 

6 _mm_storeu_ps(&arr[i], sq); 

7 } 

8 } 

Listing A.1: SSE example: Vector scaling by a constant 

§ A.1 presents the tradeoffs of the current mainstream approaches to SIMD. § A.2 presents 

the challenges a developer faces with regards to memory layouts when incorporating SIMD. In 

§ A.3 and § A.4, we introduce the ISPC and Sierra languages, respectively; in § A.5 reason why 

their designs are worth considering with respect to the design of SHAPESSIMD. 

A.1 Current mainstream approaches to SIMD 

We now present an overview to SIMD through the SSE instruction set for the Intel x86 and 

x86-64 architectures [Int11]. 

SSE introduces vector registers to the x86 and x86-64 architectures, which are dubbed as xmm 

registers. SSE vector registers are 128-bit wide and can simultaneously hold, e.g., two 64-bit 

integers, or four 32-bit floating-point numbers, etc . SSE also introduces SIMD instructions that 

operate on these vector registers; instruction addps , for instance, performs four simultaneous 

32-bit floating-point additions and generates four 32-bit floating-point sums. 

Use of SSE in languages such as C and C++ is usually done directly through intrinsic functions 

or indirectly through autovectorisation as part of optimisation. 

Intrinsics In the case of intrinsics, the compiler provides a set of intrinsic functions that 

expose the instruction set to the language. During assembly code generation, calls to these 

intrinsic functions will be explicitly converted to the invocation of the specific CPU instruction 

they correspond to.
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1 float sum_gt10( float * arr, int len) 

2 { 

3 float sum = 0; 

4 for ( int i = 0; i < len; i++) { 

5 if (arr[i] > 10) { 

6 sum += arr[i]; 

7 } 

8 } 

9 return sum; 

10 } 

Listing A.2: Autovectorisation 

example: Conditional sum 

1 .LBB0_4: 

2 movss xmm3, dword ptr [rdi + 4*rcx] 

3 movaps xmm0, xmm1 

4 cmpltss xmm0, xmm3 

5 addss xmm3, xmm2 

6 andps xmm3, xmm0 

7 andnps xmm0, xmm2 

8 orps xmm0, xmm3 

9 add rcx, 1 

10 movaps xmm2, xmm0 

11 cmp rax, rcx 

12 jne .LBB0_4 

13 

14 

Listing A.3: Clang 7.0.1 

output (main loop body) 

1 .LBB0_7: 

2 movups xmm2, xmmword ptr [rdi + 4*rdx] 

3 movaps xmm3, xmm1 

4 cmpltps xmm3, xmm2 

5 addps xmm2, xmm0 

6 andps xmm2, xmm3 

7 andnps xmm3, xmm0 

8 movaps xmm0, xmm3 

9 orps xmm0, xmm2 

10 add rdx, 4 

11 cmp rcx, rdx 

12 jne .LBB0_7 

13 

14 

Listing A.4: Clang 8.0.0 

output (main loop body) 

Listing A.1 presents a C++ example that makes use of SSE intrinsics. Function square() 

squares each element of an array of float s. To use SSE intrinsics, we must include the 

xmmintrin.h header Line 1). 

Intrinsic functions _mm_loadu_ps() and _mm_storeu_ps() in Lines 4 and 6 perform a contiguous 

load and store of 4 float s from memory, respectively. Intrinsic function _mm_mul_ps() performs 

4 multiplications of float s simultaneously and yields 4 products. Thanks to these intrinsics, we 

can now square 4 elements of arr simultaneously; as such, we can modify the index i (Line 3) 

to be increased by 4 at each iteration, rather than 1. 

Automatic vectorisation Another approach to using SIMD is by delegating its use to a 

compiler optimisation pass that detects pieces of code where SIMD can be used and transforms 

them accordingly ( e.g., SLP vectorisation [LA00]). 

The benefit of autovectorisation is that the task of using SIMD is left to the compiler, hence 

developers need not modify their original, scalar code. This is also beneficial in terms of 

portability, as it is unnecessary to write architecture-specific variations of the same business 

logic. 

In practice, however, it is not unusual for autovectorisation to yield varying results depending 

on the compiler vendor and/or version being used. Listing A.2 presents a function, sum_gt10 

that yields the sum of an array of float s, but only for elements greater than 10. Listing A.3 

presents the x86-64 assembly generated for the loop body in Clang 7.0.1 (released in December 

2018); this assembly has not been autovectorised. Listing A.4, on the other hand, presents the
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(a) AoS representation

 

(b) SoA representation 

Figure A.2: In-memory representation of AoS and SoA layouts 

x86-64 assembly generated for the main loop body by Clang 8.0.0 (released in December 2019); 

this loop has been successfully vectorised2. 

Indeed, if we observe the generated code, the significant difference between the two listings 

corresponds to Lines 2, 4 and 5. In Listing A.3, the instructions on these lines are scalar , hence 

they operate on one element at a time, whereas in Listing A.4 the instructions on these lines 

are SIMD instructions [Int11]. 

As such, although autovectorisation is certainly beneficial, we cannot necessarily rely on it if 

we want to ensure that performance guarantees regarding our code are explicitly met. 

A.2 The impact of layouts 

Another barrier to the wider usage of SIMD is the behaviour of memory access instructions. 

Typically, SIMD memory instructions access memory in a contiguous manner . This makes 

memory layouts such as Struct-of-Arrays (SoA) better suited for SIMD compared to an Array- 

of-Structs (AoS) layout (Figure A.2). 

To mitigate this lack of flexibility, some instruction sets have recently introduced scatter – gather 

instructions ( e.g., the AVX extension on the x86-64), which allow much greater flexibility 

with respect to accessing memory. However, even with scatter–gather instructions taken into 

account, an SoA layout is bound to be better at exploiting spatial locality ( § 1.1), which implies 

better cache utilisation. As such, use of SoA layouts for SIMD is still worthwhile.

 

2 Examined with https://godbolt.org and by passing the arguments -O2 -ffast-math -fno-unroll- 

loops .

https://godbolt.org


 

A.3. Related work: ISPC 153

 

A.3 Related work: ISPC 

With regards to extending SHAPES with concepts and constructs tailored to SIMD, we will 

be drawing inspiration from the Intel ISPC project [PM12]. ISPC (Implicit SPMD Program 

Counter) is a compiled, statically typed language developed with the intent to allow the writing 

of code in a scalar, C-like language with concepts and semantics that make it easier to emit 

performant SIMD code. This makes it possible to write high-level code that is portable across 

various SIMD architectures ( e.g., SSE, ARM Neon [Lim]) while making it easier to predict 

what the generated assembly code will be, compared to autovectorisation. 

Similar to SHAPES -z ( § 6), ISPC is also designed to be an embeddable language: Developers 

write their performance-critical portions in ISPC and then invoke ISPC code from within their 

existing C and C++ code. 

A.3.1 ISPC execution model 

The ISPC execution model consists of k instances or lanes3 that are executing concurrently. 

The number k of instances is architecture-specific ( e.g., k = 4 for SSE, k = 8 for AVX). These 

lanes run in a lock-step manner: All lanes are always executing the exact same instruction at 

the exact same address; to execute the subsequent statement, all lanes must have completed 

execution of the previous statement. 

ISPC variables and expressions are either uniform or varying : 

• uniform variables or expressions are guaranteed to evaluate to the same value across all 

lanes. 

• varying variables or expressions, on the other hand, can evaluate to different values across 

different lanes. 

Variables without a uniform or varying declaration are implicitly treated as varying .

 

3 Also called “gangs” in the ISPC documentation.
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1 int f( int a) { 

2 if (a > 5) 

3 a += 2; 

4 else 

5 a -= 1; 

6 return a; 

7 } 

Listing A.5: Handling branches with an execution mask
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The concepts of uniform and varying variables and expressions are borrowed from shader lan- 

guages ( e.g., GLSL for OpenGL [KBR14] and HLSL for DirectX [Cor15]), as well as Pixar’s 

Renderman shader language [HL90]. 

A.3.2 Execution mask: Handling divergence 

The “multiple lanes running in lockstep” execution model of § A.3.1 handles sequential code 

trivially. To handle branching and looping constructs, these languages introduce the concept 

of an execution mask . An execution mask indicates which lanes are active or inactive at any 

given time; a statement executed by an inactive lane is effectively turned into a no-op. 

Listing A.5 presents an execution mask example, with respect to an if statement. Initially, the 

condition is evaluated for all lanes and an execution mask is generated (Line 2). This execution 

mask determines which lanes correspond to either the then or else branch, respectively. 

The then statement is executed afterwards (Line 3). During execution, only the currently active 

lanes ( i.e., the ones where the condition was evaluated to true ) are running; the other lanes 

are inactive and they cannot, therefore, produce side effects. To execute the else branch, all 

lanes that were active now become inactive and vice-versa (Line 4). Then, the else branch is 

executed only for the newly active lanes (Line 5). On Line 6, all lanes have now converged, 

hence the execution mask indicates that all lanes are active. 

The execution mask model can be used to implement a plethora of constructs with diverging 

execution such as if , while , break / continue , and switch . For instance, within a while loop, the
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1 export void example( uniform float varr[], uniform int count) { 

2 foreach (i = 0 ... count) { 

3 float v = varr[i]; 

4 if (v < 3.) 

5 v = v * v; 

6 else 

7 v = sqrt(v); 

8 varr[i] = v; 

9 } 

10 } 

Listing A.6: ISPC code that traverses and modifies an array 

execution mask expresses which lanes are still executing the loop and which ones have exited 

it; the loop will be exited only when the execution mask indicates that all lanes have exited 

the loop. 

A noteworthy observation is that despite the usefulness of the execution mask model, it cannot 

be used to implement constructs such as calls to varying function pointers ( e.g., virtual function 

tables) or a goto where divergence may be possible. 

A.3.3 An ISPC example 

We will now demonstrate the syntax and semantics of ISPC with an example. Listing A.6 

presents an example method written in ISPC. Function example() is declared as export (Line 1), 

which indicates that example() is intended to be called from external C/C++ code. 

Parameters varr and count (Line 1) are declared as uniform , hence they are guaranteed to have 

the same value across all lanes. Local variable v (Line 3) is implicitly defined as varying ; its 

value can differ between different lanes. 

The foreach statement (Line 2) allows the developer to, among other things, write code that 

iterates over an array of N elements. At every loop iteration, k elements will be processed 

(where k is the number of lanes), hence the foreach loop will be executed N /k times. If k does 

not evenly divide N , then an additional iteration corresponding to the “leftover” N mod k 

elements will be executed.
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1 template < int L> 

2 class Vec3 { 

3 public : 

4 simd (L) Vec3( float varying (L) xx, 

5 float varying (L) yy, 

6 float varying (L) zz): x(xx), y(yy), z(zz) {} 

7 simd (L) Vec3 <L> operator +(Vec3 <L> v) { 

8 Vec3 <L> result; 

9 result.x = x + v.x; 

10 result.y = y + v.y; 

11 result.z = z + v.z; 

12 return result; 

13 } 

14 float varying (L) x, y, z; 

15 }; 

Listing A.7: Sierra future extensions suggested in [LHH14]. 

A.4 Related work: Sierra 

Similar to ISPC, Sierra [LHH14] is an extension on top of the C++ syntax and semantics with 

the aim of writing code that better exploits SIMD capabilities. 

Sierra also provides a SIMD environment, wherein, similar to ISPC, execution consists of k 

lanes executing in a lockstep manner. The main difference with respect to Sierra is that a 

SIMD environment is annotated explicitly as simd (k) , with k being the number of SIMD lanes. 

In § 3.3.3, we presented the layout transformation capabilities of the varying keyword on struct 

types. These capabilities can be also extended: Two future extensions that have been dis- 

cussed [LHH14] for Sierra are the possibility of allowing the varying keyword to also affect 

classes, as well as the possibility of allowing an explicit template parameter to specify the 

constant k in a varying (k) declaration. 

Listing A.7 presents an example that combines these two extensions.
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A.5 SHAPESSIMD 

From our examination of the ISPC and Sierra syntax and semantics, we argue that both ISPC 

and Sierra are worthwhile languages in terms of concepts and semantics to expand upon. To 

that extent, and given the data placement constructs that SHAPES exhibits, we believe that 

incorporating the concept of SIMD lanes of execution into SHAPES is a worthwhile endeavour. 

We will call this enrichment of SHAPES with SIMD constructs SHAPESSIMD. 

Because SHAPES is primarily a scalar language, we argue that an explicit simd execution 

environment should be added, similar to that of Sierra. Within this execution environment, 

SHAPESSIMD exits scalar mode and enters SIMD mode (and the semantics of the code within 

the simd block are changed accordingly). 

We envision that our syntax will mostly resemble that of ISPC, due to our expectation that 

ISPC will “feel” more familiar to developers who are accustomed to shader languages. 

A feature of ISPC which we argue that it should be an essential part of SHAPESSIMD is a 

construct similar to that of ISPC’s foreach statement. For instance, the foreach statement as 

implemented currently in SHAPES -z ( § 6.1) allows the traversal of all elements within a pool. 

However, as it stands right now, we introduced the pool traversal introduced in SHAPES -z in 

an ad hoc fashion, so as to primarily support the implementation of our case studies. 

As such, we argue that it is necessary to formalise the concept of pool-backed arrays within 

the formal model of SHAPES . One possible approach we envision this could be performed is as 

follows: 

Pool-backed arrays A common implementation of arrays with respect to managed languages 

( e.g., Java [GJS+14]) is that arrays are implemented as arrays to references of objects, hence it 

is possible to have two array elements that point to the same object. Considering that this would 

introduce an additional level of indirection and our aim is to eliminate unnecessary scatter– 

gather SIMD operations, such an implementation detail would be undesirable for SHAPESSIMD.
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A possible solution would be to implement value semantics: Indexing into the array yields a 

copy of the object and assigning into it replaces the object to be assigned with a copy of the 

value assigned. This way, each array element contains a unique object. However, this approach 

may not be always suitable and it may incur additional complexity and overhead. Instead, we 

make use of unique pointers to array elements. 

Unique pointers A unique pointer [Hog91] is a pointer that takes ownership of an object. 

Uniqueness can be leveraged to, e.g., achieve automatic memory management in an unmanaged 

language ( e.g., std::unique_ptr in C++11 [ISO12]). We exploit this property for our imple- 

mentation: An array of n unique pointers to objects can be simply implemented via a section 

of memory with enough capacity to accommodate n objects. 

Since assigning to a unique pointer drops the currently present object, one possible way of 

implementing assignment to unique pointers would be to incorporate move semantics [ISO12]: 

The unique pointer effectively takes ownership of the value assigned to it. 

Borrowing A downside of unique pointers is the fact that due to move semantics, reading 

the underlying value will cause the unique pointer to release ownership of that value. Borrow- 

ing [Boy01] relaxes the constraints of unique pointers for a specific (usually a lexical) scope and 

is intended to alleviate the issue of move semantics of unique pointers. We use borrowing to 

access the array elements and obtain references to both objects themselves and fields of objects. 

Pools exclusive to arrays In some cases, it can be vital from a performance perspective 

to ensure that an array spans the entire pool. This bears a lot of resemblance to the current 

implementation of foreach in SHAPES -z. As such, we argue that formalising this approach of 

array representation within SHAPES is something worth considering.
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A.5.1 Discussion 

The combination of arrays and pools allows a developer to specify an array object that uses the 

already familiar syntax of accessing/modifying array elements, and also gives them the ability 

to change the underlying representation from AoS to SoA by simply changing a pool’s layout. 

Now, an array A with an exclusive pool P whose elements have type unique T , can automatically 

be represented in memory as a contiguous storage of objects (laid out according to the layout 

specification of P ) in the same order as they are held by the array. (Unique pointers even make 

it possible to obtain the same layout for a singly linked list.) 

Inside a simd block, the borrowing construct allows us to directly manipulate elements in arrays, 

voiding the need to assign to all of the fields of an object simultaneously. 

Gaps in the Data The implementation details of pools in SHAPES are abstracted away from 

the developer. One such detail is the possibility of gaps between objects inside a pool. That 

is, these gaps can be filled in later when a new object is constructed inside a pool. We believe 

that making pool-backed arrays expose this feature is beneficial to the developer. The ability 

to guarantee that no gaps exist in the array ( e.g., by leveraging moving GC) can be added as 

a later extension. 

Moreover, despite the possibility of gaps in our implementation, we expect that the code gen- 

erated will not be suboptimal, as we can exploit the fact that reading from and writing into 

the fields of empty slots should not affect the semantics of well-behaving programs and that 

conditional statements will not be translated into suboptimal code. 

A.6 Conclusion 

All of the extensions to SHAPES we proposed in § A.5 are useful on their own, regardless of 

whether or not we are taking SIMD into account. By combining them and the simd environment,
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we hope that these features will provide an environment that, thanks to intersectionality, allows 

better exploitation of SIMD compared to existing approaches. 

Moreover, despite the possibility of gaps in our implementation, we expect that the code gen- 

erated will not be suboptimal, as we can exploit the fact that reading from and writing into 

the fields of empty slots should not affect the semantics of well-behaving programs and that 

conditional statements will not be translated into suboptimal code.



 

Appendix B 

The SHAPES -z Grammar 

We now present the SHAPES -z grammar. Note that, for the sake of conciseness, we omit 

parts such as the precedence and associativity of binary operators, as well as features such 

as allowing trailing commas in method call arguments. As such, the grammar presented is 

deliberately incomplete. 

⟨ program ⟩ ::= ( ⟨ program-definition ⟩ )* EOF 

⟨ program-definition ⟩ ::= ⟨ class-definition ⟩ 

| ⟨ layout-definition ⟩ 

⟨ class-definition ⟩ ::= ‘ class ’ ⟨ IDENT ⟩ ‘ < ’ ⟨ identifier-list ⟩ ‘ > ’ ‘ where ’ ⟨ pool-bound-list ⟩ ‘ { ’ 

( ⟨ class-member ⟩ )* ‘ } ’ 

⟨ layout-definition ⟩ ::= ‘ layout ’ ⟨ IDENT ⟩ ‘ : ’ ⟨ IDENT ⟩ ‘ = ’ ⟨ cluster-list ⟩ ‘ ; ’ 

⟨ pool-bound-list ⟩ ::= ⟨ pool-bound ⟩ (‘ , ’ ⟨ pool-bound ⟩ )* 

⟨ pool-bound ⟩ ::= ⟨ IDENT ⟩ ‘ : ’ ⟨ bound-type ⟩ 

⟨ bound-type ⟩ ::= ‘ [ ’ ⟨ IDENT ⟩ ‘ < ’ ⟨ identifier-list ⟩ ‘ > ’ ‘ ] ’ 

⟨ layout-type ⟩ ::= ⟨ IDENT ⟩ ‘ < ’ ⟨ layout-ident-list ⟩ ‘ > ’ 

⟨ layout-ident-list ⟩ ::= ⟨ layout-ident ⟩ (‘ , ’ ⟨ layout-ident ⟩ )* 

⟨ layout-ident ⟩ ::= ⟨ IDENT ⟩ | ‘ none ’ 

161
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⟨ object-type ⟩ ::= ⟨ IDENT ⟩ ‘ < ’ ⟨ identifier-list ⟩ ‘ > ’ 

⟨ primitive-type ⟩ ::= ‘ bool ’ | ‘ i8 ’ | ‘ u8 ’ | ‘ i16 ’ | ‘ u16 ’ | ‘ i32 ’ | ‘ u32 ’ | ‘ i64 ’ | ‘ u64 ’ 

| ‘ f32 ’ | ‘ f64 ’ 

⟨ type ⟩ ::= ⟨ object-type ⟩ | ⟨ primitive-type ⟩ 

⟨ class-member ⟩ ::= ⟨ field-declarations ⟩ | ⟨ method-declaration ⟩ 

⟨ cluster-list ⟩ ::= ⟨ cluster ⟩ (‘ + ’ ⟨ cluster ⟩ )* 

⟨ cluster ⟩ ::= ‘ rec ’ ‘ { ’ ⟨ identifier-list ⟩ ‘ } ’ 

⟨ field-declarations ⟩ ::= ⟨ declaration-list ⟩ ‘ ; ’ 

⟨ method-declaration ⟩ ::= ‘ fn ’ ⟨ IDENT ⟩ ‘ ( ’ ( ⟨ declaration-list ⟩ )? ‘ ) ’ (‘ : ’ ⟨ type ⟩ )? ⟨ block-stmt ⟩ 

⟨ declaration ⟩ ::= ⟨ IDENT ⟩ ‘ : ’ ⟨ type ⟩ 

⟨ expr ⟩ ::= ‘ ( ’ ⟨ expr ⟩ ‘ ) ’ 

| ⟨ un-op ⟩ expr 

| ⟨ expr ⟩ ⟨ bin-op ⟩ ⟨ expr ⟩ 

| ⟨ expr ⟩ ‘ . ’ ⟨ IDENT ⟩ 

| ⟨ expr ⟩ ‘ . ’ ⟨ IDENT ⟩ ‘ ( ’ ( ⟨ method-call-args ⟩ )? ‘ ) ’ 

| ⟨ IDENT ⟩ ‘ ( ’ ( ⟨ method-call-args ⟩ )? ‘ ) ’ 

| ⟨ IDENT ⟩ 

| ⟨ IDENT ⟩ ‘ [ ’ ⟨ expr ⟩ ‘ ] ’ 

| ‘ new ’ ⟨ object-type ⟩ 

| ⟨ expr ⟩ ‘ as ’ ⟨ primitive-type ⟩ 

| ‘ this ’ | ‘ null ’ 

| ⟨ INT-CONST ⟩ | ⟨ DOUBLE-CONST ⟩ | ‘ true ’ | ‘ false ’ 

⟨ un-op ⟩ ::= ‘ + ’ | ‘ - ’ | ‘ ! ’ 

⟨ bin-op ⟩ ::= ‘ + ’ | ‘ - ’ | ‘ * ’ | ‘ / ’ | ‘ << ’ | ‘ >> ’ | ‘ & ’ | ‘ | ’ | ‘ ̂  ’ | ‘ && ’ | ‘ || ’ 

| ‘ < ’ | ‘ > ’ | ‘ <= ’ | ‘ >= ’ | ‘ == ’ | ‘ != ’ 

⟨ method-call-args ⟩ ::= ⟨ expr ⟩ (‘ , ’ ⟨ expr ⟩ )*
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⟨ stmt ⟩ ::= ⟨ block-stmt ⟩ 

| ‘ ; ’ 

| ‘ let ’ ⟨ declaration-list ⟩ ‘ ; ’ 

| ‘ pools ’ ⟨ pool-declaration-list ⟩ ‘ ; ’ 

| ‘ pool ’ ⟨ pool-declaration ⟩ ‘ ; ’ 

| ⟨ expr ⟩ ‘ = ’ ⟨ expr ⟩ ‘ ; ’ 

| ⟨ expr ⟩ ⟨ op-assign ⟩ ⟨ expr ⟩ ‘ ; ’ 

| ‘ if ’ ⟨ expr ⟩ ⟨ block-stmt ⟩ (‘ else ’ ⟨ block-stmt ⟩ )? 

| ‘ while ’ ⟨ expr ⟩ ⟨ block-stmt ⟩ 

| ‘ foreach ’ ⟨ IDENT ⟩ ‘ = ’ ⟨ expr ⟩ ‘ .. ’ ⟨ expr ⟩ ⟨ block-stmt ⟩ 

| ‘ foreach ’ ⟨ IDENT ⟩ ‘ : ’ ⟨ IDENT ⟩ ⟨ block-stmt ⟩ 

| ‘ break ’ ‘ ; ’ 

| ‘ continue ’ ‘ ; ’ 

| ‘ return ’ ( ⟨ expr ⟩ )? ‘ ; ’ 

| ⟨ expr ⟩ ‘ ; ’ 

⟨ block-stmt ⟩ ::= ‘ { ’ ( ⟨ stmt ⟩ )* ‘ } ’ 

⟨ op-assign ⟩ ::= ‘ += ’ | ‘ -= ’ | ‘ *= ’ | ‘ /= ’ | ‘ <<= ’ | ‘ >>= ’ | ‘ &= ’ | ‘ |= ’ | ‘ ̂ = ’ 

⟨ pool-declaration ⟩ ::= ⟨ IDENT ⟩ ‘ : ’ ⟨ layout-type ⟩ 

⟨ declaration-list ⟩ ::= ⟨ declaration ⟩ (‘ , ’ ⟨ declaration ⟩ )* 

⟨ pool-declaration-list ⟩ ::= ⟨ pool-declaration ⟩ (‘ , ’ ⟨ pool-declaration ⟩ )* 

⟨ identifier-list ⟩ ::= ⟨ IDENT ⟩ (‘ , ’ ⟨ IDENT ⟩ )*
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Proof sketches 

C.1 Paths 

In order to express the definition of reachable objects, we make use of paths. We define paths 

as follows: 

path ∈ Path ::= x | path .f 

Given a specialised typing context ∆, we would like to require that our paths are well-formed 

with respect to ∆. That is, ∃ t. ∆ ⊢ path : t for a given path path . Because for simplicity 

reasons the syntax of SHAPESh as defined in § 4 does not permit complex paths, i.e., x.f .g , we 

define the following typing rules for paths:

 

∆ ⊢ x : ∆( x ) 

∆ ⊢ path : C ⟨ ps ⟩

 

∆ ⊢ path .f : F ( C , f )[ P s ( C ) /ps ] 
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C.1.1 High-Level Paths 

To evaluate paths, we define the following variant of the operational semantics, wherein a 

specialised context, a high-level configuration and a path reduce to an object address. This 

variant is of the form ∆ , X , Φ , path ↝ β . 

Variable Path (HL)

 

∆ , X , Φ , x ↝ Φ( x ) 

Null Path (HL) 

∆ , X , Φ , path ↝ null

 

∆ , X , Φ , path .f ↝ null 

Object Path (HL) 

∆ ⊢ path : C ⟨

 

⟩ ∆ , X , Φ , path ↝ ω X ( ω ) = ( C ,

 

, ρ )

 

∆ , X , Φ , path .f ↝ ρ ( f ) 

C.1.2 Low-Level Paths 

To evaluate paths in SHAPESℓ, we define the following variant of the operational semantics, 

wherein a specialised context, a low-level configuration and a path reduce to either an address 

(in the case of a standalone object), or an index (in the case of a pool-allocated object) corre- 

sponding to an object in the pool (and we can determine the address of the pool in question 

by inferring the type of path under ∆). This variant is, similarly, of the form ∆ , χ, ϕ, path ↝ γ .
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Variable Path (LL)

 

∆ , χ, ϕ, x ↝ σ ( x ) 

Null Path (LL) 

∆ , χ, ϕ, path ↝ null

 

∆ , χ, ϕ, path .f ↝ null 

Heap Object Path (LL) 

∆ ⊢ path : C ⟨ np ·

 

⟩ ∆ ⊢ np : None 

∆ , χ, ϕ, path ↝ α O ( C , f ) = i

 

∆ , χ, ϕ, path .f ↝ χ ( α + i ) 

Pool Object Path (LL) 

∆ ⊢ path : C ⟨ np ·

 

⟩ ∆ ⊢ np : L ⟨

 

⟩ 

∆ , χ, ϕ, path ↝ k O ( L, f ) = ( i, j ) N = |C l ( L )[ i ] |

 

∆ , χ, ϕ, path .f ↝ χ ( χ ( ϕ ( np ) + i + 2) + N ∗ k + j ) 

Apart from the Null Path , the rest of the rules are standard. The rationale for Null Path is to 

handle the case of a possible null dereference whilst traversing a path. 

To define equivalence between a high-level and a low-level configuration, we will make use of 

an injection I : Address → Address 

ℓ ∪ ( Address 

ℓ × Index 

ℓ) 

For a given sequence of typing contexts ∆ s , equivalence between a high level and a low level 

configuration via an injection I is represented using the notation X , Σ ≃∆ s, I 

χ, σ and is defined 

as follows: 

C.2 Correctness of Compilation Theorems 

We will now prove that translation is meaning preserving. 

Definition C.1. Equivalence between high-level and low-level addresses under an injection 

I : Address ↦→ Address 

ℓ ∪ ( Address 

ℓ × Index 

ℓ) is defined as:
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β ≃I ,ps,σ 

γ iff 

[ β = γ = null ] ∨ [ σ ( ps [0]) = null ∧ I ( β ) = γ ] ∨ [ σ ( ps [0]) = α ̸ = null ∧ I ( β ) = ( α , γ )] 

Equivalence between a high-level and a low-level configuration is defined as: 

X , Σ ≃∆ s, I 

χ, σ iff 

[ ∀ p, i. (Σ[ i ]( p ) = none ∧ σ [ i ]( p ) = null ) ∨ I (Σ[ i ]( p )) = σ [ i ]( p )] ∧ 

[ ∀ np, i, path , C , β , γ . [∆ s [ i ] ⊢ path : C ⟨ np ·

 

⟩ ∧ 

∆ s [ i ] , X , Σ[ i ] , path ↝ β ∧ ∆ s [ i ] , χ, σ [ i ] , path ↝ γ → β ≃I ,np,σ 

γ ] 

Garbage collection 

We use the notation χ, σ ≃∆ s, J 

χ′ , σ 

′ to indicate that two low-level configurations χ, σ and 

χ′ , σ 

′ are equivalent under the injection J for a given sequence of specialised contexts. The 

definition of equivalence under J is presented in Definition 5.3 (found in § 5.5.1). 

The definition ensures that if a path path yields two standalone or pool-allocated object ad- 

dresses in the two configurations, then a mapping between them must exist and if both are 

allocated in a pool, then a mapping between the corresponding pool addresses must also exist. 

Furthermore, we require that all variables in a stack frame corresponding to pools must have a 

mapping between them (assuming they point to pools). 

We now define the following theorem, which states that evaluating the same statement sequence 

under two equivalent low-level configurations reaches two low-level configurations that are also 

equivalent. This theorem allows us to reason that performing a GC on SHAPESℓ 

will preserve 

the execution semantics. It shows that as long as two configurations are equivalent with respect 

to reachable objects, then the resulting configurations and values yielded will also be equivalent. 

Theorem C.2 (Equivalent low-level configurations will transition into new equivalent low-level 

configurations) . Let χ1 

, σ1 

and χ2 

, σ2 

be two low level configurations, let ∆ s be their correspond- 

ing typing contexts and let J be an injection such that χ1 

, σ1 

≃∆ s, J 

χ2 

, σ2. Then, for a sequence 

of statements stmts such that ∆ s [0] ⊢ stmts : C ⟨ p1 

.. pk 

⟩ , if χ′ 

1 

, σ 

′ 

1 

, γ1 

and χ′ 

2 

, σ 

′ 

2 

, γ2 

exist such
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that: 

χ1 

, σ1 

, [[ stmts ]]∆ s [0] 

↝ χ′ 

1 

, σ 

′ 

1 

, γ1 

and χ2 

, σ2 

, [[ stmts ]]∆ s [0] 

↝ χ′ 

2 

, σ 

′ 

2 

, γ2 

And ∆′ = this : C ⟨ np1 

.. npk 

⟩ , np1 : ∆ s [0]( np1) , .. , npn : ∆ s [0]( npn) , then there exists an injec- 

tion J 

′ such that χ′ 

1 

, ϕ′ 

1 

· σ 

′ 

1 

≃∆′ · ∆ s, J 

′ χ′ 

2 

, · σ 

′ 

2. where 

ϕ′ 

1 

= [ this ↦→ γ1 

, np1 

.. npk 

↦→ σ 

′ 

1( np1 

.. npk)] 

ϕ′ 

2 

= [ this ↦→ γ2 

, np1 

.. npk 

↦→ σ 

′ 

2( np1 

.. npk)] 

C.3 Proof sketches 

Proof of Lemma 4.3. For this proof, we will make use of the utility predicate pbd s1 

≃ pbd s2 

that is defined as follows: 

pbd s1 

≃ pbd s2

 

pbd s2 

≃ pbd s1 

pbd s1 

≃ pbd s2 

pbd1 

≃ pbd2

 

pbd1 

· pbd s1 

≃ pbd2 

· pbd s2

 

ϵ ≃ ϵ

 

[ C ⟨ ps ⟩ ] ≃ [ C ⟨ ps ⟩ ]

 

None ≃ None

 

None ≃ [ C ⟨ ps ⟩ ] 

C l ( L ) = C

 

L ⟨ ps ⟩ ≃ [ C ⟨ ps ⟩ ] 

Thus we can redefine ∀ i. Γ ⊢ ps [ i ] : pbd s [ i ] as Γ( ps ) ≃ pbd s . Let: 

q s = P s ( C ) q bs = P b ( C ) 

r s = P s ( C 

′) r bs = P b ( C 

′) 

From Rule ObjTypeWF and from the above definition of ≃ , to show that Γ ⊢ C 

′ ⟨ ps′[ q s/ps ] ⟩ , we 

need to show that:
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Γ( ps′[ q s/ps ]) ≃ r bs [ r s/ps′[ q s/ps ]] (C.1) 

Because Γ ⊢ C ⟨ ps ⟩ , we have that 

Γ( ps ) ≃ q bs [ q s/ps ] (C.2) 

Because our program prog is well-formed, if ΓC 

is the environment used to compile class C ( cf., 

Definition 4.6), then: 

ΓC( ps′) ≃ r bs [ r s/ps′] (C.3) 

We now define the following: 

Qs = q s · none QB s = q bs · None 

R s = r s · none R B s = r bs · None 

P s = ps · none 

P s′ = ps′ · none 

For convenience, let Γ( none ) = None . Because none is the last pool parameter in P s , P s′, 

Qs , R s (hence the substitution e.g., [ Qs/P s ] will replace none with none ), it will also hold 

from Equations (C.2) and (C.3) that:
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Γ( P s ) ≃ QB s [ Qs/P s ] (C.4) 

ΓC( P s′) ≃ R B s [ R s/P s′] (C.5) 

Furthermore, if we can show that: 

Γ( P s′[ Qs/P s ]) ≃ R B s [ R s/P s′[ Qs/P s ]] (C.6) 

Then this suffices to show that Equation (C.1) holds. 

Let Im f be the image of function f . 

Well-formedness of prog implies that each of the parameters in ps′ will be either none or 

originate from r s , therefore there exists a function σ : { 0 , . . . , | P s′ | − 1 } ↦→ { 0 , . . . , | Qs | − 1 } 

such that ∀ i. P s′[ i ] = Qs [ σ ( i )]. 

Because prog is well-formed, each pool parameter from P s′ will also agree to their pool bound 

defined in C , hence: 

Γ( P s′) ≃ QB s [Im σ ] 

Thus: 

R B s [ R s/P s′][dom( σ )] ≃ QB s [Im σ ] (C.7)
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Therefore: 

Γ( P s′[ Qs/P s ]) = Γ( P s [Im σ ]) From the definition of σ 

≃ QB s [ Qs/P s ][Im σ ] From Equation (C.4) 

≃ R B s [ R s/P s′][dom( σ )][ Qs/P s ] From Equation (C.7) 

= R B s [ R s/P s′][ Qs/P s ][dom( σ )] By structure 

= R B s [ R s/P s′][ Qs/P s ] Since | dom( σ ) | = | P s′ | = | R s | 

= R B s [ R s/P s′[ Qs/P s ]] By structure 

Hence Equation (C.6) holds.

 

Proof of Lemma 4.4. We prove this theorem by structural induction over the derivation of e : 

• Rule Value ( null ): Trivial. 

• Rules Variable and New Object ( x / this and new t , respectively): From Definition 4.6 

(well-formed program). 

• Rule Object Read ( x.f ): Let Γ ⊢ x : C ⟨ ps ⟩ . Then we apply Lemma 4.4 given that 

⊢ Γ, Γ ⊢ C ⟨ ps ⟩ , and ΓC 

⊢ F ( C , f ), where ΓC 

is the typing environment class C was 

typechecked against. 

• Rule Object Write ( x.f = x ): The type of the variable x is well-formed from Definition 4.6 

(well-formed program). 

• Rule MethodCall ( x.m ( x′′)): Shown in a manner similar to that of Rule Object Read , 

except with respect to the return type of method m in class C . 

• Rule Assignment ( x = e ): By structural induction over the derivation of e .
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Proof of Theorem 4.11. We prove the theorem by cases: 

• Rule Value : Configuration is not mutated and null weakly agrees with any object type. 

• Rule Variable : Configuration is not mutated and it holds that X ⊨ Σ( x ) : C ⟨ Σ( ps ) ⟩ from 

the definition of well-formed configuration. 

• Rule Assignment : By structural induction over the derivation of e , we obtain a new well- 

formed configuration X 

′ , Σ′ and a value β such that X 

′ ⊨ β : C ⟨ Σ′( ps ) ⟩ . Variable x 

corresponds to an object and from the definition of well-formed configuration it holds 

that X 

′ ⊨ Σ′( x ) : C ⟨ Σ′( ps ) ⟩ , therefore assigning β to x will not break well-formedness of 

the configuration or break the weak agreement requirement for β . 

• Rule New Object : We augment the heap X with a new object ω ; we only need to show 

that X 

′ ⊨ ω ◁ C ⟨ Σ( ps )) ⟩ in the augmented heap X 

′. Since we set the object’s type to C , 

its pool parameters to Σ( ps )) and initialise its fields fs = F s ( C ) to null , we only need to 

show that X ⊨ Σ( ps [0]) : [ C ⟨ Σ( ps ) ⟩ ]. 

Because Γ s [0] ⊢ C ⟨ ps ⟩ , it holds from Rule ObjTypeWF that Γ s [0] ⊢ ps [0] : : [ C ⟨ ps ⟩ ], 

hence from the definition of well-formed configuration, X ⊨ Σ( ps [0]) : [ C ⟨ Σ( ps ) ⟩ ] will 

hold, regardless of whether ps [0] is none , corresponds to a pool with layout L such that 

C l ( L ) = C or a formal pool parameter from P s ( C ). And because X 

′ is an augmentation 

of X , it will also hold that X 

′ ⊨ Σ( ps [0]) : [ C ⟨ Σ( ps ) ⟩ ]. 

• Rule Object Read : Configuration is not mutated, hence well-formedness of the configura- 

tion is preserved. 

Suppose that Γ ⊢ x : C 

′ ⟨ ps′ ⟩ , hence Γ ⊢ x.f : F ( C 

′ , f )[ P s ( C 

′) /ps′] and suppose that 

C ⟨ ps ⟩ = F ( C 

′ , f )[ P s ( C 

′) /ps′]. If X ( ω ) = ( C , π s, ρ ) and ρ ( f ) = β , then we want to show 

that X 

′ ⊨ β : C ⟨ Σ( ps ) ⟩ . 

From the definition of well-formed configuration, it holds that X ⊨ Σ( x ) ◁ C 

′ ⟨ Σ( ps′) ⟩ , 

hence X ⊨ β : F ( C 

′ , f )[ P s ( C 

′) / Σ( ps′)]. 

Because C ⟨ ps ⟩ = F ( C 

′ , f )[ P s ( C 

′) /ps′], each pool parameter ps [ i ] is either none or it 

comes from ps′ ( i.e., there exists j such that ps [ i ] = ps′[ j ]). This is because each pool
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parameter of the type F ( C 

′ , f ) can be none or come from P s ( C 

′) and the pool parameters 

P s ( C 

′) are substituted by ps′. Therefore C ⟨ Σ( ps ) ⟩ = F ( C 

′ , f )[ P s ( C 

′) / Σ( ps′)], hence 

X 

′ ⊨ β : C ⟨ Σ( ps ) ⟩ . 

• Rule Object Write : Similar to Rule Object Read , it can be shown that if Γ ⊢ x.f : C ⟨ ps ⟩ , 

X ( ω ) = ( C , π s, ρ ), then X ⊨ ρ ( f ) : C ⟨ Σ( ps ) ⟩ . From the definition of well-formed configu- 

ration, it holds that X ⊨ Σ( x′) : C ⟨ Σ( ps ) ⟩ . Because ρ ( f ) and Σ( x′) have the same runtime 

type C ⟨ Σ( ps ) ⟩ , the assignment will maintain the well-formedness of the new configuration 

X 

′ , Σ and it will hold that X 

′ ⊨ Σ( x′) : C ⟨ Σ( ps ) ⟩ . 

• Rule Statement sequence : By structural induction over the derivation of stmts and, sub- 

sequently, the derivation of e . 

• Rule MethodCall : When invoking a method, we construct a new stack Σ′ and augment 

the heap X with new pools, thus resulting in the heap X 

′. We will show that Γ′ · Γ s ⊨ X 

′ , Σ′ 

(where Γ′ is the context of the function being called); because we push a new stack frame 

and augment the heap, we only need to show that all object and pool variables in the 

new stack frame in Σ′ weakly agree to their “appropriate” runtime types and that the 

new pools in X 

′ strongly agree to their “appropriate” runtime types. 

Let Φ and Φ′ be the top stack frame of Σ and Σ′, respectively, and that Γ′ corresponds 

to the environment of Φ. Then, with respect to the local variables of Φ′: 

– For the this parameter , it holds that X 

′ ⊨ Φ′( this ) : C ⟨ Φ′( P s ( C )) ⟩ , given that it 

holds that Γ′ ⊢ this : C ⟨P s ( C ) ⟩ . Suppose that the variable x corresponding to 

this in Φ′ has the type C ⟨ ps ⟩ under Γ. Then, since X 

′ augments X , it holds that 

X 

′ ⊨ Φ( x ) : C ⟨ Φ( ps ) ⟩ . From the operational semantics of Rule MethodCall , we 

have that Φ( x ) = Φ′( this ) and Φ( ps ) = Φ′( P s ( C )), hence we conclude that X 

′ ⊨ 

Φ′( this ) : C ⟨ Φ′( P s ( C )) ⟩ . 

– For the method parameter x′′, let x , x′ be the arguments corresponding to this , 

x′′, respectively, in the method call x.m ( x′). Assume that Γ ⊢ x : C ⟨ ps ⟩ , Γ′ ⊢ 

this : C ⟨P s ( C ) ⟩ , and Γ′ ⊢ x′′ : C 

′ ⟨ ps′ ⟩ . Then, Γ ⊢ x′ : C 

′ ⟨ ps′ ⟩ [ P s ( C ) /ps ] holds.
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Since our program is well-formed, each pool parameter ps′[ i ] can be either none 

or originate from P s ( C ) ( i.e., there exists j such that ps′[ i ] = P s ( C )[ j ]), each of 

the pool parameters of the type of x′′ is either none or originates from ps , there- 

fore it holds that X 

′ ⊨ Φ( x′) : C 

′ ⟨ ps′ ⟩ [ P s ( C ) / Φ( ps )]. Thus, it holds that X 

′ ⊨ 

Φ′( x′′) : C 

′ ⟨ ps′ ⟩ [ P s ( C ) / Φ′( P s ( C ))], given that Φ( x′) = Φ′( x′′), Φ( ps ) = Φ′( P s ( C )). 

And given the aforementioned limitation on ps′, we reach the conclusion that it holds 

that X 

′ ⊨ Φ′( x′′) : C 

′ ⟨ Φ′( ps′) ⟩ . 

– Weak agreement on pool bounds is shown in a manner similar to that of the method 

argument. 

– Object local variables (declared via locals ) are initialised to null , hence weak agree- 

ment holds. 

– If a Pool local variable p (declared via pools ) has type L ⟨ ps ⟩ under Γ′, then X 

′ ⊨ 

Φ′( p ) : C ⟨ Φ′( ps ) ⟩ holds by construction (we set the pool’s pool parameters to Φ′( ps )). 

We now show that ⊨ X 

′. Let p be a pool variable such that Γ′ ⊢ p : : L ⟨ ps ⟩ and let 

C = C l ( L ). In order to show that X 

′ ⊨ Φ′( p ) ◁ L ⟨ Φ′( ps )) ⟩ , we must show that for every i 

it holds that X 

′ ⊨ Φ′( ps [ i ]) : B ( C , P s ( C )[ i ])[ P s ( C ) / Φ′( ps )]. 

If Φ′( ps [ i ]) = none , then weak agreement easily holds. Otherwise, since Γ′ ⊢ L ⟨ ps ⟩ , it 

holds that Γ′ ⊢ ps [ i ] : : B ( C , P s ( C )[ i ])[ P s ( C ) /ps ]. Because Φ′( ps [ i ]) ̸ = none , it holds 

that ps [ i ] ̸ = none , hence from the definition of Γ′, ps [ i ] can only adhere to the bound 

B ( C , P s ( C )[ i ])[ P s ( C ) /ps ]. 

Since we have shown that all variables in Φ′ weakly agree to their “appropriate” runtime 

type, it holds that X 

′ ⊨ Φ′( ps [ i ]) : B ( C , P s ( C )[ i ])[ P s ( C ) / Φ′( ps )]. 

Therefore Γ′ · Γ s ⊨ X 

′ , Σ′. By structural induction over the statement sequence stmts , 

we deduce that Γ′ · Γ s ⊨ X 

′′ , Σ′′, where X 

′′ , Σ′′ is the configuration resulting from the 

evaluation stmts . 

Let β be the value yielded by evaluating stmts . Then if C 

′ ⟨ ps′ ⟩ is the return type 

of method m , then by structural induction over stmts it will also hold that X 

′′ ⊨
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β : C 

′ ⟨ Σ′′( ps′) ⟩ . We want to show that if Γ ⊢ x.m ( x′′) : C 

′ ⟨ ps′′ ⟩ , then it holds that 

X 

′′ ⊨ β : C 

′ ⟨ Σ′′[1]( ps′′) ⟩ . 

Indeed, each pool parameter in ps′ can be either none or originate from P s ( C ). As such, 

each pool parameter in ps′′ can be either none or originate from ps . Following a similar 

reasoning to the one used in proving weak agreement for method arguments and given 

that Σ′′( P s ( C )) = Σ′′( ps ), we conclude that X 

′′ ⊨ β : C 

′ ⟨ Σ′′[1]( ps′′) ⟩ .

 

We will use the following lemma to prove part of Theorem 5.5: 

Lemma C.3 (GC and high-level – low-level equivalence) . If it holds that X , Σ ≃∆ s, I 

χ, σ and 

it holds that χ, σ ≃∆ s, J 

χ′ , σ 

′, then X , Σ ≃∆ s, I 

′ χ, σ , where I 

′ = J ◦ I . 

Proof. By structural induction over the path s that are well-typed under each of the specialised 

contexts ∆ s .

 

Proof of Theorem 5.4. We prove this theorem on a case-by-case basis: 

• Rule Value : High-level configuration need not be altered, hence I 

′ = I . 

• Rule Variable : High-level configuration need not be altered, hence I 

′ = I . 

• Rule Assignment : We obtain a new high-level configuration and injection I 

′′ by structural 

induction over the derivation of e . I 

′′ will also map the high-level value yielded ( β ) to its 

low-level counterpart ( γ ), thus assignment will not violate equivalence, hence I 

′ = I 

′′. 

• Rule New Object : Assume that p is the variable of the pool the object is being allocated 

into. We distinguish two cases: 

– New Standalone Object ( i.e., p = none or ∆( p ) = None ): I 

′ extends I by mapping 

the address of the new high-level object to the address of the low-level one.
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– New Pooled Object ( i.e., ∆( p ) = L ⟨

 

⟩ ): I 

′ extends I by mapping the address of the 

new high-level object to the low-level address of p and the offset of the new low-level 

object. 

• Rule Object Read : We assume no null dereference (which would cause the low-level to get 

stuck). High-level configuration need not be altered, hence I 

′ = I . Equivalence between 

values yielded holds because x.f is a reachable path from the top stack frame. 

• Rule Object Write : We assume no null dereference (which would cause the low-level to 

get stuck). Because the addresses of x , x′ are already equivalent between the high-level 

and low-level, mutation of the object pointed to by x will not break equivalence, hence it 

holds that I 

′ = I . 

• Rule Statement sequence : Before the low-level statements are executed, it is possible 

that the GC is invoked. In such a case, according to Lemma C.3, we will be able to 

obtain a new injection I 

′ for the new low-level configuration. Then the theorem holds, 

by structural induction over the derivation of e and then by structural induction over the 

derivation of stmts . 

• Rule MethodCall : High-level configuration will have n new empty pools constructed; I 

′ 

will extend I to map them to their low-level counterparts. Moreover, to obtain the new 

high-level configuration, we have to create the new stack frame Φ and populate it with 

the method’s parameters and initialise the local variables. The values of these variables 

are already equivalent under I , hence I 

′ as well. Then, by structural induction over the 

body of the method, we obtain a new injection I 

′′. I 

′′ will also map the high-level value 

yielded ( β ) to its low-level counterpart ( γ ).

 

Proof of Theorem 5.5. Theorem 5.5 is proven in a manner similar to that of Theorem 5.4, with 

the exception that we derive a new low-level configuration instead. The following rules need to 

be considered in more detail:
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• Rule New Object (when constructed inside a pool): Construction of a new object in the 

high-level will never get “stuck”, regardless of whether this object is standalone or pool- 

allocated. In the case of the low-level, however, if the capacity of a has been exhausted 

prior to allocation, execution will get stuck. 

Because pool allocation is an instruction, it is a statement, hence a statement sequence, 

thus Rule Garbage Collection can run before it and reduce the low-level configuration 

to one where the pool’s capacity has not been exhausted. Thus, there exists a low-level 

execution wherein the execution will not have become stuck by the time we construct the 

object, hence there exists an injection I 

′, which we can derive in a manner similar to the 

one given in Theorem 5.4 (Rule New Object ). 

• Rule Statement sequence : Although the operational semantics allow the GC to run in- 

finitely many times before the execution of a statement sequence, we can select one 

such configuration where the GC has run at most once and permits statements such as 

Rule Pool Alloc to not get stuck due to the lack of capacity. Then, by Lemma C.3, we 

will obtain an injection I 

′ from the high-level configuration to the configuration obtained 

by GC. The proof is then followed by structural induction over the derivation of e and 

then by structural induction over the derivation of stmts in a typical fashion. 

• Rule MethodCall : Translation of the method call x.m ( x′′) into SHAPESℓ 

involves invoking 

a specialisation m′ of m . Suppose that ∆ s [0] ⊢ x : C ⟨ ps ⟩ . Then, the types pool parame- 

ters ps will be specialised ( i.e., they will be L ⟨

 

⟩ or None ). Method m′ is compiled under 

an environment ∆ such that for all i , if ∆ s [0]( ps [ i ]) = L ⟨

 

⟩ or ∆ s [0]( ps [ i ]) = None , then 

∆( P s ( C )[ i ]) = L ⟨

 

⟩ or ∆( P s ( C )[ i ]) = None , respectively. Therefore, if Φ is the stack 

frame corresponding to m , then ∆ · ∆ s ⊨ X , Φ · Σ. The proof continues by structural 

induction on stmts , in a similar manner to that of Theorem 5.4 for Rule MethodCall .

 

Proof of Theorem C.2. We prove this theorem on a case-by-case basis:
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• Rules Value , Variable and Object Read : It holds that J 

′ = J , since they do not modify 

the configuration and the references returned are either null or they both correspond to 

reachable objects. 

• Rule Assignment : We obtain two new low-level configurations that are equivalent over 

an injection J by structural induction over the derivation of e . J will also map the 

reference to the object yielded for the first configuration maps to its counterpart in the 

second configuration. 

• Rule New Object : We distinguish two cases: 

– New Standalone Object ( i.e., Rule Alloc ): We extend J to map the address of the 

object in the first configuration to the one in the second configuration. 

– New Pooled Object ( i.e., Rule Pool Alloc ): We extend J to map the address of pool 

p and the index of the object in the first configuration to the address of pool p and 

the index of the object in the second configuration. 

• Rule Object Write : It holds that J 

′ = J . This is because J maps the objects referenced 

by x , x′ in first configuration to their counterparts in the second configuration, thus field 

assignment will not break the isomorphic property of the configurations. 

• Rule Statement sequence : Garbage collection is performed on two initial configurations, 

yielding two new configurations that are each equivalent to the initial ones. Thus, the two 

new configurations are transitively equivalent. The proof is then completed by structural 

induction over the sequence of statements. 

• Rule MethodCall : n pools are created in each case; we extend J so that it maps the 

newly constructed pools one by one (and according to construction order). The proof is 

completed by structural induction over the method’s body.
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