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ABSTRACT

ROBUST ALGORITHMS FOR CLUSTERING WITH
APPLICATIONS TO DATA INTEGRATION

SEPTEMBER 2021

SAINYAM GALHOTRA

B.Tech., INDIAN INSTITUTE OF TECHNOLOGY DELHI

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Barna Saha

A growing number of data-based applications are used for decision-making that

have far-reaching consequences and significant societal impact. Entity resolution,

community detection and taxonomy construction are some of the building blocks of

these applications and for these methods, clustering is the fundamental underlying

concept. Therefore, the use of accurate, robust and scalable methods for clustering

cannot be overstated. We tackle the various facets of clustering with a multi-pronged

approach described below.

1. While identification of clusters that refer to different entities is challenging for

automated strategies, it is relatively easy for humans. We study the robust-

ness of clustering methods that leverage supervision through an oracle i.e an

abstraction of crowdsourcing. Additionally, we focus on scalability to handle

web-scale datasets.

vi



2. In community detection applications, a common setback in evaluation of the

quality of clustering techniques is the lack of ground truth data. We propose a

generative model that considers dependent edge formation and devise techniques

for efficient cluster recovery.

vii
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CHAPTER 1

INTRODUCTION

Recent technological advances have revolutionized the adoption of automated sys-

tems for high-stake decisions. Artificial Intelligence (AI) applications are used to make

decisions such as loan approvals [153], hiring [3], medical diagnosis [179], criminal jus-

tice and sentence assessments [23]. The availability of large amounts of data from a

variety of data sources has been one of the major contributors to improved quality of

such systems. With more than 2.5 quintillion bytes of data generated on the web each

day [5], both the amount of data and the number of data sources are growing at an

unprecedented rate. For example, there are more than one billion websites on the in-

ternet out of which 24 million are e-commerce websites [149]. eBay, one of the largest

e-commerce corporations lists more than 1.3 billion products [149]. Integrating data

from different sources to construct a holistic representation of the entities enhances

their value considerably. This increase in the number of data sources has raised the

importance of designing efficient and scalable techniques for data integration and

organization.

The ease of availability of data has also led to many sources generating noisy, am-

biguous, and incorrect data. The quality of data remains the critical underlying factor

for data-based systems to perform competently [9]. Errors in data can be costly and

disruptive, leading to loss of revenue from incorrect transactions, to even irrevocable

loss of reputation from misguided policy decisions. According to a recent study by

IBM [4], poor-quality data costs the US $3 trillion per year. Gartner Research also
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reports that major organizations lose around $15 million per year due to incidents

traced back to poor data quality [7].

Even when the data collected from different sources is not noisy, linking and in-

tegrating data is challenging due to the heterogeneous representation across sources.

Identifying groups of records that refer to the same entity (known as Entity resolu-

tion, record linkage or de-duplication) is one of the fundamental steps in integrating

data. Additionally, arranging the identified entities in the form of a hierarchy based

on hypernym relationships (often referred to as taxonomy construction) and design-

ing summarization techniques help to improve their usability and organization. These

different components of modern data management systems identify groups of simi-

lar/same records in the input dataset, which is formally studied as clustering.

Clustering refers to a broad class of unsupervised learning techniques that origi-

nated in the 1930s to study similarities between cultural tribes in America [75]. It is

a ubiquitous problem that has been studied for many decades to mine patterns and

perform analytics. It has found applications in various fields like biology, medicine,

business, marketing, social science and many others. However, the advent of data

deluge and explosion of noisy data sources has posed novel challenges that have not

been explored in the literature. Some of these challenges are listed below.

1. Sensitivity to noise: Different data sources generate and store data under var-

ied assumptions and naming conventions. The heterogeneous representation of

records across sources and increase in noise has exposed the lack of robustness

of prior data integration strategies.

2. Lack of ground truth: Clustering is generally an unsupervised task and often

suffers from lack of ground truth data to evaluate the quality of designed tech-

niques. There are a plethora of clustering techniques like k-center, k-means,

k-median, agglomerative clustering that optimize an objective function hoping

to capture ground truth clusters. For a given dataset, all these techniques gen-
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Figure 1.1: Monument images collected from different sources with pairwise similarity
calculated over text description generated by Google Vision API.

erate different outputs and it is unclear which clustering technique performs

better than the rest.

3. Scalability: The increasing volume of data generated by millions of data sources

has exacerbated the importance of designing scalable clustering techniques that

cater to web scale workloads.

We now present an example describing some of these challenges.

Example 1. Consider a collection of nine images of different tourist destinations

collected from various travel websites. Suppose the goal is to identify groups of images

that refer to the same tourist destination. The ground truth clusters are {1, 6, 8, 9}

referring to the Eiffel Tower in Paris, {3, 4, 7} referring to Las Vegas, {5} denoting
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the Leaning Tower of Pisa and {2} corresponding to the Colosseum in Rome. We

calculated pairwise similarity between images using the visual features generated by

the Google Vision API. The pairs (4, 6) and (7, 8) exhibit a similarity of 0.85 while

(8, 9) has a similarity of 0.23. The record 9 has the least similarity with other records

because the Google API identifies many noisy features in the 9th image like birds,

human legs, heels, dancer, etc. The similarity values calculated using such automated

techniques are noisy and traditional clustering techniques (like k-center clustering)

that operate on these similarity values generate incorrect sets of clusters.

This dissertation is devoted to (a) develop a formalism to study the different

facets of clustering, (b) devise robust and scalable clustering techniques, and (c) study

practical data integration applications that benefit from these algorithms.

1.1 Facets of Clustering

Clustering is a challenging task that suffers from various challenges pertaining to

noise, scalability and lack of ground truth. The dissertation is divided into two

parts. The first part explores robust and scalable techniques to handle noise in

datasets by leveraging supervision from humans (abstracted as an oracle). These

techniques have been directly motivated by the ability of humans to understand

the domain and improve the quality of automated decision-making techniques. The

rise of crowdsourcing platforms, such as Mechanical Turk [185], Appen [182], and

Prolific [166] have enabled the use of humans to process data on demand. We consider

two different ways to leverage supervision to improve clustering quality. a) The first

setting focuses on applications like entity resolution (ER), where the clusters refer

to the different entities in the dataset. The clusters in Example 1 correspond to the

output of ER. b) The second setting considers objective-based clustering techniques

where the goal is to generate clusters that optimize for an objective function. For

example, k-center clustering is one of the popular metric-based techniques that aims
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to identify k clusters and corresponding cluster centers such that the maximum radius

of the points from their respective centers is minimized. These techniques have been

widely used for data summarization tasks.

The second part addresses the limitation of lack of ground truth data by studying

generative models. Generative models make simple modelling assumptions to con-

struct synthetic observational data which can be used to benchmark the quality of

different algorithms. We propose a generative model for social network-based appli-

cations like community detection and develop robust techniques to recover ground

truth clusters under this setting.

We now discuss these facets along with their real-world applications in more detail.

1.2 Entity Resolution with Supervision

Entity Resolution (ER, also known as de-duplication or record linkage) refers

to the task of identifying clusters of records that refer to the same entity. Entity

resolution is a fundamental problem in data management and has been studied since

the seminal work of Fellegi and Sunter in 1969 [82]. The goal of ER is to identify

and group different manifestations of the same real-world object, e.g., different ways

of addressing the same person (names, email address, Facebook accounts), web pages

with different descriptions of the same business, different photos of the same object,

etc. We refer the reader to the survey by Getoor and Machanavajjhala [97] and the

book by Dong and Srivastava [74] for more details. ER has evolved from the use of

simple rules to complex deep-learning based classifiers. The challenge of performing

ER using automated strategies is elusive to researchers and practitioners.

To identify the correct set of entities in a dataset, recent frameworks have lever-

aged supervision from crowd workers to improve clustering quality. The majority of

these techniques assume access to a pairwise optimal cluster oracle (an abstraction of

the crowd) that answers queries of type ‘Do u and v refer to the same entity?’. Many
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companies like Google, Yahoo! and Groupon have explored the use of crowdworkers

to help with entity resolution [124, 123, 34]. Given access to such an oracle that

answers every question correctly, prior techniques [194, 197, 83] proposed prioritiza-

tion strategies to order oracle queries such that clusters can be recovered with fewer

queries.

1.2.1 Robustness

Even though the oracle provides additional knowledge as compared to automated

techniques, an oracle can be error-prone as humans can make mistakes and some oracle

queries are harder than the rest. For example, a crowdworker may label records 4 and

6 as the same tourist destination in Example 1 if she is not aware of Eiffel Tower’s

replica in Las Vegas, USA. In such a setting, prior techniques that assume access to

a noise free oracle can generate arbitrarily poor quality clusters. Chapter 3 discusses

the effect of noise in oracle answers and presents an error correction toolkit that can

be applied on top of prior techniques to guarantee high accuracy.

1.2.2 Scalability

ER pipelines rely on comparison of record pairs to identify groups referring to

the same entities. For million-scale datasets, enumerating all pairs of records is not

feasible. To improve the efficiency, record pairs that are highly likely to be non-

matches (refer to different entities) are pruned. This procedure is called blocking

and is often performed as a pre-processing step. For example, token-based standard

blocking techniques do not compare any pair of records that do not share any token.

However, blocking techniques are known to be sensitive to input parameter set-

tings. Stricter values of the blocking parameter improves overall efficiency, but it

tends to prune out many record-pairs that refer to the same entity, leading to poor

recall. On changing the parameter, the recall can improve at the cost of worsening

its efficiency. These techniques are known to suffer from poor efficiency-effectiveness
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trade-off, making it harder to scale to datasets containing millions of records. Chap-

ter 4 presents a progressive blocking framework that fine-tunes blocking by using

feedback from the partial ER output. This approach constructs new blocks and ranks

them based on their quality to quickly capture matching record pairs. This method-

ology is shown to adapt to large-scale datasets with varied cluster size distribution

and noise.

1.3 Objective-based Clustering with Supervision

With the advent of data deluge, it is crucial to develop techniques to summarize

datasets for improved analytics. k-center clustering, one of the popular metric based

clustering techniques, groups records such that most similar records are clustered

together. These techniques are popularly used to generate dataset summaries. How-

ever, the quality of the generated clusters is dependent on the accurate estimation of

distance between record pairs. Due to the presence of noise, automated techniques

for distance computation yield sub-optimal clusters.

To circumvent these challenges, we consider supervision in the form of a com-

parison oracle that compares the relative distance between any two pairs of records.

For example, given two pairs of records (u, v) and (x, y) the oracle returns whether

(u, v) is closer to each other than (x, y), i.e. d(u, v) < d(x, y) or not, where d(u, v)

denotes the distance between u and v. Assuming access to a comparison oracle that

may answer difficult queries incorrectly, Chapter 5 presents robust techniques that

perform k-center clustering with provable theoretical guarantees. It further extends

these methods to generate agglomerative hierarchical clusters. These algorithms are

evaluated based on the summaries generated over various textual and image datasets.
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1.4 Clustering with Generative Models

In many applications like community detection, it is infeasible to gather ground

truth data to evaluate the effectiveness of a clustering algorithm. However, these

datasets are accompanied by network information where nodes refer to records and

edges capture the interaction between them. For example, consider a social network

over individuals with the edges capturing friendship information and the goal is to

identify communities of individuals based on their political inclination.

Community detection is one of the widely studied applications of clustering. It is

particularly used to understand sociological behavior [104, 85], protein-protein inter-

actions [52], gene expressions [65], recommendation systems [139], medical progno-

sis [178], DNA 3D folding [49], image segmentation [174], natural language process-

ing [31], product-customer segmentation [64] and many more. Lack of ground truth

data has been one of the consistent challenges to evaluate the quality of clustering

techniques. Different techniques optimize different objectives and generate very dif-

ferent sets of clusters. Therefore, the key question whether the output of a clustering

algorithm corresponds to the ground truth set of clusters is unsettled. To benchmark

different clustering algorithms, generative models have been proposed to emulate real-

world interaction between records. These models make assumptions about interaction

between records which help to analyze different heuristics rigorously.

Stochastic Block Model (SBM) is one of the most popular generative models.

It assumes that any pair of nodes is connected independently with a probability

that depends on whether the considered pair of nodes belong to the same cluster

or not. The independence assumption of the generative model does not capture

the transitivity property of edge formation, which is commonly observed in social

networks. For example, if u, v are friends and v, w are friends, then more likely than

not u, w are friends. Chapter 6 presents a geometric block model that captures these

properties and validates it over real-world datasets. To recover clusters from these
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Table 1.1: Summary of contributions. Our work [91] is an extension of Chapter 6 and
is not included in the thesis.

Facet Application Chapter Citation

Supervision
Entity Resolution: Robustness Chapter 3 [87]
Entity Resolution: Scalability Chapter 4 [88, 89]

Objective-based Clustering for Data Summarization Chapter 5 [16]
Generative Models Generative Model for Community Detection Chapter 6 [92]

datasets, we propose a simple triangle counting-based algorithm, which is proven to

be order-optimal and evaluated on various real-world datasets.

1.5 Layout

Table 1.1 presents the papers that contributed to this thesis. The rest of the thesis

is organized as follows.

• Chapter 2 discusses the background and related work on the different facets of

clustering and their applications to data integration.

• Chapter 3 presents robust techniques to perform entity resolution in the pres-

ence of noise in supervision.

• Chapter 4 focuses on scalability of ER pipelines and proposes a new methodol-

ogy to continuously feedback partial ER results into the blocking component,

thereby improving its overall effectiveness and efficiency.

• Chapter 5 studies objective based clustering techniques using supervision in the

form of comparison queries.

• Chapter 6 presents a generative model to capture interaction between records

and proposes a simple triangle counting-based algorithm to recover the under-

lying clusters.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter presents the background that is relevant to all the chapters and

discusses related work on clustering and relevant topics.

Clustering refers to the task of partitioning a dataset into subsets (or clusters)

such that similar points share the same cluster and dissimilar points are separated

into different clusters. The identified clusters generally have different interpretations

for different applications. For example, a cluster may refer to a unique ground truth

entity in entity resolution/de-duplication and it may refer to a group of individuals

with similar interests in social network analysis. We now present a primer on relevant

aspects of clustering and its applications to data integration.

2.1 Clustering with Supervision

As discussed in Chapter 1, identifying ground truth clusters with automated tech-

niques is challenging due to presence of noise and ambiguous representation across

different data sources. There has been a lot of interest in leveraging crowd work-

ers to provide high-quality labels to simple multiple choice questions as supervision

and use these answers to guide the clustering algorithm. This mechanism helps to

improve the accuracy of clusters but at an additional cost due to human interven-

tion. Additionally, humans can make mistakes while answering difficult questions and

crowdsourcing is generally time-consuming as compared to automated techniques. To

reduce the cognitive overload of crowd workers, there has been a lot of research on

designing intuitive visualizations and identifying the right crowd worker for an input
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query based on their expertise [57, 53]. This dissertation abstracts the crowdsourcing

platform as an oracle that can employ these techniques at the backend to answer the

input query. We now present a brief summary of the prior literature on these oracle

abstractions and different forms of interaction with the oracle.

2.1.1 Crowdsourcing and Oracle Abstraction

Many crowdsourcing platforms like Amazon Mechanical Turk [185], Appen [182]

and Prolific [166] have made it easier to ask simple questions to individuals. [199]

presented methods to estimate the label of a query response by considering exper-

tise of crowd workers along with their biases. [207] recently proposed a game-based

crowdsourcing mechanism to accurately label rules. Due to the monetary cost of ask-

ing queries to a crowd worker, it is infeasible to ask millions of questions to an oracle.

Therefore, active learning-based techniques are used to identify a small set of queries

to train a classifier that acts as an oracle. Active learning is very effective in learning

a high-quality classifier for balanced datasets [84, 167]. In case of skewed distribution

of records, many weak supervision techniques have been proposed to quickly label a

large set of data points and train a classifier [90, 168, 186]. Crowdsourcing is a vibrant

area of research and there is a lot of interest in understanding the expertise of crowd

workers to develop effective techniques to assign questions. We refer the reader to

[53, 57] for a detailed survey of the recent techniques to implement the oracle.

We now describe the different types of queries that have been studied to leverage

oracle expertise to perform clustering.

2.1.2 Types of Interactions

We categorize the interaction between the clustering algorithm and the crowd-

sourcing platform into two main categories [29]. First, result initiated interaction

refers to the setting where an expert user provides certain input to the clustering

algorithm after exploring the clustering output or the data points. Second, algorithm
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initiated interaction allows the clustering algorithm to ask specific questions to the

user, which are used to generate, verify or refine accurate clusters.

Result initiated interaction includes techniques where the oracle is expected to

provide information about the desired output either by exploring certain data points

or arbitrarily generating constraints [62, 27, 93]. Such mechanisms were initially pro-

posed to capture domain knowledge from the expert who generates the initial set of

clusters using an automated strategy and then fixes mistakes to improve the overall re-

sult. Even though such interactions have been well studied, these techniques reply on

the ability of domain expert to identify mistakes. [152] partially addresses this chal-

lenge by providing hints to the user for improved selection of data points. Recently,

many studies have also considered input constraints for the clustering algorithm that

label certain pairs of records as must-link or cannot-link constraints [47, 30]. Addi-

tionally, [33, 66] have studied techniques to leverage feedback that is used to move

incorrectly clustered points to their correct locations.

Algorithm initiated interaction considers all techniques where the algorithm iden-

tifies specific data points for which it needs supervision (often referred to as a query).

This mechanism is motivated by active learning techniques for supervised learning,

where the algorithm identifies samples for the crowd worker to label. Many types of

queries have been studied for clustering. One of the most commonly studied oracle

abstractions considers pairwise queries [144, 145, 194, 196, 83] where the oracle con-

siders a pair of records as input and outputs if the two records belong to the same

cluster or not. We formally define this oracle in Section 2.1.3. Other extensions of

this interaction model query more than two input records and ask the oracle to gen-

erate a clustering [195, 193]. This interaction paradigm generally assumes that the

query generated by the algorithm can be answered by the oracle without the context

of other data points.
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In this dissertation, we focus on algorithm initiated interactions and present two

specific types of querying formats assumed for different types of clustering techniques.

2.1.3 Binary Oracle for Entity Resolution

A binary oracle considers queries of the form ‘do records u and v belong to the

same optimal cluster?’. Such queries are easy to answer in settings where ground truth

clusters refer to entities, often referred to as entity resolution. Entity Resolution was

first proposed in the seminal work of Fellegi and Sunter in 1969 [82]. We formally

define the entity resolution task and then provide a brief overview of the related work.

Problem 1. Given a set of data sources S, generating a collection of records V =

{v1, . . . , vn}, identify a partitioning C = {Ci : Ci∩Cj = φ, ∀i 6= j} where ∪Ci∈CCi = V

such that each partition Ci ∈ C refers to a distinct entity and no pair of partitions

refer to same entity.

Traditional ER architectures consist of three components (a) Blocking (b) Pair

Matching and (c) Clustering.

Pair Matching and Clustering. Pair matching component of ER considers pairs

of records and performs local decisions of whether they correspond to the same entity.

The output of pair matching can have inconsistencies. For example, a pair matching

algorithm may output that records 1 and 9 refer to the same entity, and records 1 and

6 refer to the same entity but records 6 and 9 refer to different entities. Clustering

processes the output of pair matching to construct disjoint clusters of records, each

referring to a distinct entity.

Pair Matching. Fellegi and Sunter [82] proposed classification-based approach to

identify matching record pairs. The initial approaches that learned classifier required

large training datasets which was later improved upon by active learning-based tech-

niques [172]. In addition to classifier-based techniques, there have been studies on

using rules [118, 80] and distance metrics [78] to speed up the resolution procedure.
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One of the major drawbacks of these techniques has been the sensitivity to parame-

ters. [74] discusses the different aspects of data integration and provides a detailed

discussion about the general paradigm of entity resolution. In Example 1, error in

similarity calculation shows that automated strategies can fail in many cases. Re-

cently, the focus has shifted towards oracle-based techniques that leverage a human

in the loop to provide labels to questions like ‘does u and v refer to the same en-

tity?’ [194, 197, 83]. Oracle can be considered as an abstraction of the crowd platform

or a classifier trained using active learning-based techniques [172]. Traditional strate-

gies considered ER to be an offline task that needs to be completed before results can

be used, which can be expensive in resolving billions of records. To address this con-

cern, recent techniques propose to identify duplicate records early in the resolution

process by leveraging prior similarities to consider a suitable prioritization of queries

to the oracle [83]. Such online strategies have empirically shown to enable higher

recall (i.e. more complete results) if terminated early or if there is limited resolution

time available.

Clustering. In the context of ER, clustering is performed to handle inconsistencies

of pair matcher. We refer the reader to [74] for a detailed discussion of clustering

techniques for traditional ER architecture. Recent oracle-based techniques [194, 197,

83] leveraged transitivity to form clusters: when records u and v refer to the same

entity and records v and w refer to the same entity, it can be inferred that u and w also

refer to the same entity. This approach to construct transitive closure, assumed that

the answers returned by the oracle are always correct. It can lead to poor resolution

in the presence of oracle error. As an example, two different clusters (C1 and C2)

can be incorrectly merged due to noise in a single query between nodes of C1 and C2.

Chapter 3 discusses the impact of noise on prior techniques and presents techniques

to generate precise clusters.
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Blocking. To scale entity resolution, blocking is traditionally performed as a pre-

processing step [39]. Blocking identifies a small set of candidate record pairs that

are considered for subsequent steps of matching and clustering. Intuitively, blocking

considers different groupings of similar records into blocks and then selects record

pairs from the blocks that are expected to be clean i.e. those with fewer non-matching

pairs for further comparisons. One of the most common techniques to construct blocks

is ‘Standard blocking’ [60], where each token in the dictionary corresponds to a block

and any record that contains the token, belongs to the block. A blocking technique

is considered effective if it can prune out the majority of the non-matches without

losing any matching pair. [159] presents a comprehensive survey of various blocking

techniques. We present a detailed discussion on blocking techniques in Chapter 4.

2.1.4 Comparison Oracle for Objective-based Clustering

In many applications, the relative distance between records is compared to gen-

erate clusters. For example, data summarization techniques identify a small repre-

sentative subset of the data where each representative summarizes a group of similar

records in the dataset. Popular metric based clustering algorithms such as k-center

clustering and hierarchical clustering are often used for data summarization.

Definition 1 (k-center clustering). Given a collection of n records V = {v1, . . . , vn},

identify k centers (say S ⊆ V ) and a mapping of records to corresponding centers,

π : V → S, such that the maximum distance of any record from its center, i.e.,

maxvi∈V d(vi, π(vi)) is minimized.

We now formalize a quadruplet comparison oracle that answers Yes/No queries

about the relative distance between two pairs of records.

Definition 2 (Quadruplet comparison oracle). An oracle is a function Oc : V ×V ×

V × V → {Yes, No}. Each oracle query considers two pairs of records as input and

outputs Oc(v1, v2, v3, v4) = Yes if d(v1, v2) ≤ d(v3, v4) and No otherwise.
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Such oracle queries are easy to crowdsource as it does not need the crowdworker

to calculate the distance accurately but needs them to compare them. Distance-based

comparison oracles have been used to study a wide range of problems and we list a few

of them – learning fairness metrics [122], top-down hierarchical clustering with a dif-

ferent objective [79, 51, 99], correlation clustering [181] and classification [180, 120],

identify maximum [111, 189], top-k elements [129, 164, 63, 70, 133, 76], informa-

tion retrieval [126], skyline computation [190]. However, there is no prior work that

considers quadruplet comparison oracle queries to perform k-center clustering and

single/complete linkage based hierarchical clustering.

2.2 Clustering with Generative Models for Community De-

tection

In applications like community detection and social network analysis, all records

can be represented by a graph capturing interaction between them. There are a

plethora of graph clustering algorithms that have been proposed to identify com-

munities. For example, k-center, k-means, k-median, linkage based agglomerative

algorithms are some of the popular clustering algorithms.

However, due to lack of ground truth data, it is impossible to benchmark the

effectiveness of these techniques. To circumvent this challenge, generative models have

been proposed to model interaction between nodes, which is then used to evaluate

the effectiveness of a clustering algorithm. Stochastic block model (SBM) or the

planted-partition model is one of the random graph models for community detection

that generalizes the well-known Erdös-Renyi graphs [12, 13, 56, 71, 77, 115, 119, 150].

Definition 3 (Stochastic Block Model). Consider a graph G(V,E), where V = C1 t

C2 t · · · t Ck is a disjoint union of k clusters denoted by C1, . . . , Ck. The edges of

the graph are drawn randomly: there is an edge between u ∈ Ci and v ∈ Cj with

probability qi,j, 1 ≤ i, j ≤ k.
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This model has been incredibly popular both in theoretical and practical domains

of community detection, and the aforementioned references are just a small sample.

One aspect that the SBM does not account for is a “transitivity rule” (‘friends having

common friends’) inherent to many social and other community structures. To be

precise, consider any three vertices x, y and z. If x and y are friends (connected

by an edge), and y and z are friends (connected by an edge), then it is more likely

than not that x and z are also friends (connected by an edge). This phenomenon

can be seen in many network structures - predominantly in social networks, blog-

networks and advertising. SBM, primarily a generalization of Erdös-Renyi random

graph, does not consider this characteristic, and in particular, the event that an edge

exists between x and z is independent of the events that there exist edges between x

and y, and y and z. We refer the reader to [11] for a detailed survey on stochastic

block model and known algorithms for cluster recovery. Chapter 6 analyzes real-world

social networks to propose a geometric block model, which is motivated by random

geometric graphs [162].

2.3 Notation

Table 2.1 summarizes the notation used in the thesis.
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Table 2.1: Table of Notation.

Symbol Definition
V = {v1, . . . , vn} Set of records
H = (V,A, pm) Graph with initial matching probabilities. pm : A→

[0, 1] is a partial function returning the probability
that u and v are matching, for all (u, v) ∈ E.

C∗ = (V,E+) =
{C∗1 , . . . , C∗k}

Real-world entities, in non-increasing order of size.
C∗(u) ∈ C∗ denotes the entity of u in C∗.

Q = Q+ ∪Q− Oracle responses: Q+ (resp. Q−) contains Yes(resp.
No) answers.

Q[S] Subgraph of Q induced by nodes in S ⊆ V (oracle
responses about S).

C = (V,E′+) =
{C1, . . . , Cl}

Inferred version of C by the oracle strategy in non-
increasing order of size. C(u) ∈ C denotes the entity
of u in C.

pe(u, v) Error probability pe : Q → [0, 0.5] of a specific an-
swer, conditioned on the answer value (YES or NO).

B Block: A subset of records, B ⊆ V
P = (V,A) Blocking graph, A ⊂ V × V
φ Feedback frequency
p(B) Probability score of a block B
u(B) Uniformity score of block B
H(B) Entropy of block B
H Block Hierarchy
Gt Random Geometric graph
γ Fraction of nodes used for scoring blocks
µg Expected similarity of a matching edge
µr Expected similarity of a non-matching edge
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PART I: CLUSTERING WITH
SUPERVISION



CHAPTER 3

ENTITY RESOLUTION WITH SUPERVISION:
ROBUSTNESS TO NOISE

In this chapter, we study the impact of noise in binary oracle answers for set-

tings where ground truth clusters refer to entities and develop an error correction

toolkit that guarantees high quality with minimum effort. The chapter focuses on

scenarios where data is collected from various sources leading to a skewed cluster

size distribution. Section 3.1 discusses a high-level motivation of the problem and

Section 3.2 formalizes the notion of a noisy oracle and defines the problem statement.

In Section 3.3, we describe a random graph-based error correction layer and prove

its theoretical guarantees. Section 3.4 builds ER pipelines by leveraging the error

correction layer with different parameter settings. Section 3.5 presents the empirical

evaluation of the techniques described in the chapter and Section 3.6 presents the

related work.

3.1 Introduction

Entity resolution (ER) seeks to identify clusters of records that refer to the same

underlying real-world entity. As discussed in Chapter 2, ER is an intricate problem

that can leverage humans to match pairs of records based on domain knowledge, but

would be challenging for automated strategies. For these reasons, many frameworks

have been developed to leverage humans (abstracted as an oracle) for performing

entity resolution tasks [194, 196, 83]. These studies introduced the notion of a binary

oracle that correctly answers questions of the form “do records u and v refer to
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the same entity?” and proposed techniques to leverage machine-generated pairwise

matching probabilities to reduce oracle queries. However, certain questions can be

difficult to answer correctly even for humans. Prior techniques can generate arbitrarily

poor quality clusters in the presence of noise. To improve the robustness, we propose

a cost-effective approach that can be added as an extra-layer to any oracle-based

strategy, helping to preserve their performance guarantees while maintaining high

precision. The error correction layer can be tuned (or even turned off) trading off

query budget for accuracy, thereby providing flexibility to adapt to different ER

applications.

Example 1. In Figure 3.1 we show nine pictures along with textual descriptions

taken from web pages of different trip planning websites. The records 1, 6, 8 and 9

refer to Eiffel Tower in Paris, 3, 4, 7 refer to the replica of Eiffel Tower at Las Vegas,

2 is Coliseum in Rome and 5 is the Leaning Tower of Pisa. We used Google Vision

API to generate textual features of all the pictures and used the generated features to

estimate record pair similarity values. Pairs of pictures that got matching similarity

more than 0.5 are connected by a green edge. Pairs of pictures that got scores below or

equal than 0.5 are connected by a red edge. Some edges are removed to ensure clarity.

Table 3.1 shows the title, description and source corresponding to each image.

Table 3.1: Text data associated with pictures in Figure 3.1.

Entity Name Source

1 EF Eiffel Tower Recommended Sightseeing Time: 1-3 hours viator.com
2 CO Colosseum trip.com
3 LV Eiffel Tower Viewing Deck at Paris Las Vegas tripadvisor.in
4 LV Eiffel Tower Experience and Dinner at Paris Las Vegas viator.com
5 LP Leaning Tower of Pisa trip.com
6 EF Eiffel Tower: explore the top toureiffel.paris
7 LV Eiffel Tower Viewing Deck trip.com
8 EF Champagne bar at the Eiffel Tower viewing deck restaurants-toureiffel.com
9 EF Eiffel Tower Tours and Activities, skip the line trip.com
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Figure 3.1: Example pictures from different travel websites. Edges represent match-
ing probabilities (edges are colored green if probability is more than 0.50 and red
otherwise).

For this chapter, we think of records as nodes in a graph (as shown in Figure 3.1)

where edge weight captures the probability that its endpoints refer to same entity.

This graph corresponds to the output of the blocking phase.

3.2 Preliminaries

Consider a collection of records V and a graph C∗ = (V,E+), where E+ is a subset

of V ×V such that (u, v) ∈ E+ represents that u and v refer to the same entity. C∗ is

transitively closed, that is, it partitions V into cliques representing distinct entities.

We call the nodes in each clique a cluster of V , and we refer to the clustering C∗ as

the ground truth for the ER problem. We refer to the cluster containing a given node

u, as C∗(u) ∈ C∗.
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Consider a graph H = (V,A, pm), A ⊆ V × V , with pairwise machine-generated

matching probabilities pm : A→ [0, 1] over a collection of n records V = {v1, . . . , vn}.

Noisy Oracle abstraction. Consider a black box which can answer questions of

the form “do u and v represent the same entity?”. Edges between any pair of records

can be either asked the black box or inferred with the help of previous answers. If the

black box is guaranteed to answer all queries correctly, we can reconstruct C∗ exactly

with a reasonable number of queries [83, 194, 197]. However, in most applications of

crowdsourcing and supervised learning, some answers can be erroneous and we can

only build a noisy version of C∗, which we refer to as C. C(u) refers to the cluster in

C that contains the node u. For the sake of simplicity, we refer to this realistic oracle

as “noisy oracle”.

Definition 1. A noisy pairwise oracle for C∗ is a function Ob : V ×V → {Yes, No}×

[0, 0.5]. If Ob(u, v) = (a, e) with a ∈ {Yes, No} and e ∈ [0, 0.5], then Pr[(u, v) ∈

E+] = 1− e if a=Yes, and e otherwise.

For instance, if Ob(u, v) = (Yes, 0.15), then (u, v) ∈ E+ with probability 0.85 and

if Ob(u, v) = (No, 0.21), then probability of (u, v) ∈ E+ is 0.21. We refer to the

probability of a specific answer for the pair (u, v) being erroneous, conditioned on the

answer being Yes or No, as its error probability pe(u, v). Let Q = Q+∪Q− be a graph

containing all the edges that have been queried at a given moment, along with the

noisy oracle answers, we state pe : Q → [0, 0.5]. In the ideal case, when pe = 0 for

any pair (u, v), the noisy oracle reduces to the perfect oracle [83, 194, 197]. An ER

strategy s takes as input matching probability graph H and grows a clustering C by

asking edges as queries to the noisy oracle. We call inference the process of building

a clustering C from Q. C initially consists of singleton clusters: s can either merge

existing clusters into larger clusters or split an already established cluster. Note that

the subgraph of Q− induced by C(u) (that is, Q−∩C(u)) can be non-empty, because

of wrong answers. We refer to such a subgraph as Q−[C(u)].
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Evaluation Metrics. We evaluate the quality of clusters generated by a strategy by

comparing F-measure of the identified pairs of records that refer to the same entity.

Let Ct be the clustering returned by the strategy, after t = |Q| questions. Ct can

be considered as a transitively closed set of edges E ′+t . Recall and precision of the

identified clusters after t questions are defined as follows.

recall(t) =
|E′+t ∩E+|
|E+| , precision(t) =

|E′+t ∩E+|
|E′+t | , and

fmeasure(t) = 2 recall(t)·precision(t)
recall(t)+precision(t)

.

Classic F-measure cannot distinguish whether a strategy achieves high F-measure

only at a given value of t or earlier in the ER process. Therefore, similar to [83], we use

a progressive F-measure function, denoting the area under the fmeasure-questions

curve. We omit the index t from Ct and E ′+t , when we do not refer to any particular

value of t. Now, we are ready to define our problem.

Problem 2 (Noisy Oracle Strategy). Given a set of records V , a noisy oracle access

to C∗ and a matching probability function pm (possibly defined on a subset of V ×V ),

find the strategy that maximizes the progressive F-measure of the generated clusters

C.

Matching probabilities. There are many ways of estimating the matching proba-

bility function pm. For instance, similarity calculation techniques can provide pairwise

similarities which can be mapped to matching probabilities, as in Section 3.1 of [201].

Error probabilities. There are many ways of accessing error probabilities. For

instance, the crowd platform could return a confidence score associated with each

answer. Another option is to learn a function mapping similarity scores to error

probabilities, akin to matching probabilities [201]. See discussion in Section 3.5.

3.3 Random Graph Toolkit

If the oracle answers every question correctly, constructing a spanning forest over

the set of matching edges is sufficient to recover the ground truth set of clusters. Any
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other matching edge is inferred by using transitivity over the spanning forest. A single

mistake in labelling can affect the precision/recall of the constructed clusters. For

example, two different clusters C1 and C2 could be incorrectly merged if any of the

edges between C1 and C2 is labelled as matching. The effect of error can be reduced

if we query more than one edge between them and merge only if the majority of those

edges are matching.

Analogously, the precision of the queried graph can be improved by strengthening

the min-cuts of the graph formed on the queried edges. Therefore, we exploit the

concept of expander graphs [21], which are sparse graphs with strong connectivity

properties. Connectivity strength can be controlled with a unique parameter tuned

by the user (which we refer to as β). When the user increases β, the precision of the

clustering also increases, at a small price. When the user decreases β, performance

becomes similar to the oracle strategy alone, trading off budget for quality of solution.

Eventually, β = 0 is equivalent to using the oracle strategy alone. The difference

between spanning forests and a random graph with expansion property is illustrated

in Figure 3.2.

Definition 2 (γ-expansion and weighted γ-expansion). A graph G = (V,E) satisfies

γ-expansion if for every subset of nodes V ′ ⊆ V , |V ′| ≤ |V |/2, the total number of

edges crossing the cut (V ′, V \ V ′) is at least γ|V ′|. Analogously, if edges can have

weights, G satisfies weighted γ-expansion if the total weight of edges crossing the cut

(V ′, V \ V ′) is at least γ|V ′|.

Our toolkit has the invariant that every cluster C ∈ C – more precisely, every

subgraph Q+[C] of positive answers1 – has good expansion properties. Specifically,

every time an oracle strategy asks a query involving two nodes – say (x, y) – we ask

other queries incident to the corresponding clusters C(x) and C(y), such as (x1, y1)

1Recall that we use the notation Q−[C(u)] for referring to the subgraph Q− induced by C(u).
Similarly, Q+[C] is the subgraph of Q+ induced by a cluster C.
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Figure 3.2: Comparison of tree-based clusters in the perfect oracle setting (left) and
robust clusters with a noisy oracle (right). Positive (negative) answers are represented
with solid (dashed) edges. Wrong answers are shown in blue.

and (x2, y2), with x1, x2 ∈ C(x) and y1, y2 ∈ C(y). Note that extra queries are

not replicas of (x, y), and they are all distinct. If the answers are positive then the

degree of nodes within C(x) ∪ C(y) increases, and if the degree gets high enough

then we merge C(x) and C(y) together. We know that indeed random regular graphs

have good expansion properties [21], and hence choosing the queries randomly from

C(x) × C(y) helps us to maintain the required expansion. Note that, since every

answer comes with a different error probability (see Section 3.2), we are interested in

the joint error probability of each cut, rather than its cardinality. Under independent

error in answers, that is when answers to different queries are not correlated, this

is equivalent to considering weighted degree regularity, where weight is given by the

function w(x, y) = − log pe(x, y), where (x, y) ∈ Q+.

Expansion properties of clusters translate into two desiderata:

• Robustness: since the joint error probability of each cut is small, all the subsets

of nodes are likely referring to the same entity.

• Cost-effectiveness: the total number of queries is small, as edge density of

the graph is small.
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Algorithm 1 query multiple edges(C(x), C(y), β) method for deciding when two
clusters (or any two sets of nodes) are matching.

1: S ← C(x)× C(y)
2: p← 1 ·∏(u,v)∈S∩Q+

pe(u, v) . joint error probability of answers

3: for (u, v) in shuffle(S \Q) do . random queries
4: if p ≤ 1/(e(|C(x)|+ |C(y)|))β(min(|C(x)|,|C(y)|)) then
5: return true

6: end if
7: if P[C(x) non matching C(y)|Q] ≥ 0.95 then
8: return false

9: end if
10: if Ob(u, v) then
11: p← p · (pe(u, v))
12: end if
13: end for
14: if |S ∩Q+| = |S| then return true else return false

Example 2. In Figure 3.2, we show an example queried graph having expansion prop-

erties (γ = 1) for data in Figure 3.1, compared with spanning trees. Both connected

components of the left figure (i.e., trees in the spanning forest) and graphs of right fig-

ure yield the same, correct, clustering {1, 6, 8, 9}, {3, 4, 7}, {2}, {5}. While connected

components only work in the absence of errors, graphs with expansion property pro-

duce the correct clustering also in the presence of plausible human errors such as (6, 7)

(false positives) and (1, 8) (false negative).

The rest of this section is organized as follows. We first describe methods to

construct graphs with good expansion (Section 3.3.1). We refer to it as random

expansion as indeed we are building a random graph inside each cluster that is known

to have good expansion property. Then we describe how to plug such methods in

previous perfect oracle strategies, while achieving a target level of robustness (Section

3.3.1).

3.3.1 Algorithms

The random expansion toolkit consists of Algorithms 1 and 2. The input includes

the noisy oracle answers Q, the matching probability function pm, and the error

probabilities pe, as in definition of Problem 2. In addition, the input includes (i) the
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pairs of nodes (x, y) that the oracle strategy is planning to ask and (ii) two parameters

β and τ . The toolkit also uses the following shared data and methods.

• The method query edge(u, v)≡ Ob(u, v), which returns a {Yes, No} noisy oracle

answer for (u, v), and updates Q accordingly.

• The partition C, which can be updated via union, split and find operations. In

our notation, C(u) ∈ C is the cluster of u.

Parameters. The algorithms 1 and 2 use two parameters, β and τ .

• β trades-off queries for precision. Smaller values of β correspond to sparser

clusters, and therefore to fewer queries. Greater values of β correspond to

denser clusters and to higher precision.

• τ is used for optimization purposes. Specifically, it is used for limiting the

absolute number of queries where needed.

Methods. The random expansion toolkit consists of two subroutines.

• Algorithm 1 is meant to be called in place of the perfect oracle with the purpose

of growing clusters with good expansion properties. Given a query (x, y) selected

by an oracle strategy (represented with the two corresponding clusters C(x) and

C(y)), Algorithm 1 provides an intermediate layer between the ER logic and

the query edge(u, v) method: instead of asking the selected query (x, y) as the

oracle strategy would do, Algorithm 1 selects a bunch of random queries between

C(x) and C(y), and returns a Yes answer only if the joint error probability of

the cut is small.

• Algorithm 2 provides functionalities for growing edge cuts that were not con-

sidered during the execution of the ER process, and adjusting spurious weak

cuts. Running Algorithm 2 at a later phase of the ER process can fix premature

decisions.

Algorithm 1. Our method query multiple edges() is used for comparing two sets

of nodes C(x), C(y) and determining if the two clusters C(x) and C(y) refer to the
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same entity or not. Upon a positive outcome, the two clusters (or the cluster and

the singleton node) should be merged into one. The method asks random “inter-

cluster” queries (lines 3–13), and it has positive outcome (line 5) when the joint error

probability of all the previously collected and the new positive answers between C(x)

and C(y) become smaller than a threshold (line 4). The early termination option

(lines 7–9) prevents from iterating through all the inter-cluster queries in case of

negative outcomes.

The threshold for positive outcome (line 4) depends on the size of C(x) and C(y),

because of both practical and technical reasons. Intuitively: (i) in large clusters we

can ask more independent queries than small clusters, and aim for smaller error; (ii)

errors in large clusters have a bigger impact on F-score than errors in small clusters2.

We use a reasonable constant at line 7 for avoiding unnecessary complexity. Indeed

(i) variations in the range (0.9, 1.0) do not have significant impact on progressive

F-score in our experiments because most error probability values we work with are

at least 0.1, and (ii) changes at line 7 do not affect our theory (later in this section).

Algorithm 2. This method helps to correct the mistakes in the clusters by either

merging smaller clusters or by removing erroneous nodes from the clusters. It tries

to maintain the regularity of subgraphs by either adding new edges or splitting the

clusters in regular subgraphs. The major advantage of this subroutine is that it can

be applied for any collection of clusters consisting of few queried edges and it returns

various regular subgraphs which would represent true clusters with high probability.

The algorithm works in two phases. In the merging phase, it examines all the cluster

pairs and whenever query multiple edges() returns Yes, it merges them (line 5).

The query multiple edges() method here ignores the past set of oracle answers Q

2Theoretical guarantees may not extend to small sized clusters. However, in practice, we observed
that even in tiny clusters – with 2 or 3 nodes each – the error probability is small, thanks to high-
quality answers with low pe. This happens especially in datasets where the negative-to-positive error
is negligible or zero.
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Algorithm 2 boost fscore(τ, β) method.

1: (Ci, Cj)← next edge cbn() . Merge phase
2: numc← 0
3: while next edge cbn() ∨ numc ≤

(
τ
2

)
do

4: if query multiple edges(Ci, Cj , β) then
5: Ci.union(Cj)
6: end if
7: numc← numc+ 1
8: (Ci, Cj)← next edge cbn()
9: end while

10: for i ∈ [1, |C|] do . Split phase
11: for u← next node cp(C[i]) do
12: if ¬ query multiple edges(C(u) \ {u}, {u}, β) then
13: C(u).split({u})
14: end if
15: end for
16: end for

that were queried in other phases of the algorithm, for probability estimations. This

helps to get an unbiased, uncorrelated judgment of merging the two clusters. Note

that cluster pairs are processed in non-increasing order of cluster benefit, defined as

cbn(Ci, Cj) =
∑

u,v∈Ci×Cj pm(u, v) (line 3). The merging phase terminates after at

most
(
τ
2

)
iterations. By changing τ (default log n) two extreme behaviors are possible:

• if τ = n then we try to merge all the cluster pairs grown so far;

• if τ = 0, we skip the merge phase and go straight to the split.

In the splitting phase, it examines all the pairs of nodes and clusters, and whenever

query multiple edges() returns No, it pulls out the node of its cluster (line 12).

We give a detailed description of the auxiliary methods used by Algorithm 2 in the

following.

• next edge cbn() iterates over the cluster pairs in C and returns the next cluster

pair, in non-increasing order of benefit (Formally, it starts with arg max
Ci,Cj∈C

cbn(Ci, Cj)).

It has a corresponding “has next” method returning true or false.

• next node cp(C) iterates over the nodes in the cluster C and returns the next

node u in non-increasing order of product of error probabilities of queried match-
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ing edges incident on u i.e.
∏

v∈C,(u,v)∈Q+

pe(u, v). Note that this method can re-

turn the same node multiple times till it gets a Yes in line 12 of boost fscore().

The advantage of boost fscore() is twofold. (i) Quality of clustering is improved

by correcting early false-positive and negative errors (improving precision and recall).

(ii) It comes at a small cost because query multiple edges() asks new queries only

if needed, i.e., if none of the two conditions (lines 4 and 7) is already met.

Analysis. By making use of our toolkit, a perfect oracle strategy can grow clusters

with good expansion properties, rather than just spanning forests. Expansion prop-

erties of clusters guarantee that the precision of the solution C is close to 1 with high

probability, and low density guarantees that the number of queries is small. Formally,

we prove the following theorems, which show that the probability that any cut of a

given cluster C ∈ C is “wrong” (that is, all the positive answers crossing the cut are

wrong) decreases exponentially with γ, provided C satisfies γ-expansion.

Theorem 1. Let G = Q+[C] = (C,E), C ∈ C. The expected number of wrong cuts is

smaller or equal than 2
(e|C|)β−1 , if C satisfies weighted γ-expansion with γ ≥ β log (e|C|)

and β ≥ 1.

Proof. For a given cut, we calculate the probability that all the Yes answers across the

cut are wrong and use it to estimate the expected number of such wrong cuts. It can be

seen that the probability of a cut (A, C\A) being wrong is
∏

u∈A,v∈C\A,(u,v)∈Q+
pe(u, v).

The expected number of wrong cuts is bounded by the following:

E[#Wrong Cuts] =
∑

A⊆C,1≤|A|≤|C|/2

∏
u∈A,v∈C\A,(u,v)∈Q+

pe(u, v)

Since C satisfies weighted γ−expansion, sum of edge weights i.e.∑
u∈A,v∈c\A,(u,v)∈Q+

− log(pe(u, v)) ≥ γ|A|, where γ = β log (e|C|). Hence,
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E[#Wrong Cuts] ≤ ∑
A⊆C,|A|≤|C|/2

(
1
e|C|

)β|A|
=
∑|C|/2

r=1

(|C|
r

) (
1
e|C|

)βr
≤ ∑|C|/2

r=1

(
|C|e
r

)r (
1
e|C|

)βr
≤ (|C|e)1−β∑|C|/2

r=1 1/r2

≤ π2

6(e|C|)β−1

Hence,

E[#Wrong Cuts] =

|C|/2∑
r=1

(|C|
r

)
pγre <

2

(e|C|)β−1

We now show that the probability of a wrong cluster (that is, clusters with at

least a wrong cut) is negligible, for certain values of β. Here n is the total number of

entities.

Theorem 2. If C satisfies weighted γ-expansion ∀C ∈ C, where γ ≥ 3 log (en), then

the probability that there exists a cluster in C with a wrong cut is at most 1
n

.

Proof. With γ ≥ 3 log (en) and following the proof of Theorem 1, the expected num-

ber of erroneously inferred cuts in a single cluster is atmost 1
en2 (denoted by per).

Using union bound, the total number of erroneously inferred cuts in the set of clus-

ters C = {C1, . . . , Cl} is atmost
∑
Ci∈C

per. So the expected number of incorrect partitions

in the set of clusters is calculated as :

∑
C∈C

per ≤ nper ≤
1

en
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We finally show that a given cluster has high expected precision.

Theorem 3. Let G = Q+[C] = (C,E), C ∈ C. The expected precision of C is at

least 1−O
(

1
nβ

)
, if C satisfies weighted γ-expansion with γ ≥ β log (en) and β ≥ 1.

Proof. Referring to Theorem 1, the probability of getting a wrong cut, A,C \ A is

evaluated as
∏

u∈A,v∈C\A,(u,v)∈Q+
pe(u, v) ≤

(
1
en

)β|A|
. Given a wrong cut A, C \ A,

the maximum number of edges, incorrectly labeled as positive is |A| ∗ |C \ A|. So,

the expected number of false positives (fp) within the cluster C can be calculated as

follows

fp =
∑|C|/2

r=1 r(|C| − r)
(|C|
r

) (
1
en

)βr
= |C|(|C| − 1)

(
1
en

)β
+ |C|(|C| − 1)

∑|C|/2
r=2

(|C|−2
r−1

) (
1
en

)βr
≤ |C|(|C| − 1)

(
1
en

)β
+ |C|(|C| − 1)

∑|C|/2
r=2

(
(|C|−2)e
r−1

)r−1 (
1
en

)βr
< 3|C|(|C| − 1)

(
1
en

)β
The total number of edges in C labeled as positive is |C|(|C| − 1)/2. Hence, the

precision ≥ 1−O
(

1
nβ

)
Corollary 1. If β = 1, the expected precision of C ∈ C is 1−O( 1

n
).

Intuitively, we estimate the probability of an incorrect cut in the queried graph to

figure out the false positive error and union bound over all cuts to get the worst-case

error bound. The independence assumption of each error helps us easily estimate the

error of incorrectly merging two different clusters (or the error of an incorrect cut).

Using this worst-case bound, we achieve a bound on the number of queries required

for nearly accurate clustering.

Answer error. Our analysis provides performance guarantees under the assumption

of independent errors in noisy oracle answers, i.e., when answers to different queries
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are not correlated. We are aware that some specific records (e.g. number 9 in Fig-

ure 3.1) can be more difficult to match. In Section 3.5, we provide experimental

results for both datasets with independent error (we refer to these as synthetic error

datasets), and datasets with a significant amount of correlated error, due to real crowd

answers. Results of the former type confirm our theoretical analysis, and results of

the latter demonstrate that the toolkit is robust to correlated error in practice.

Application to perfect oracle strategies. Given a perfect oracle strategy,

query multiple edges() can be used as a substitute of plain connectivity for deciding

if two clusters refer to the same entity or not. In case of node ordering based strategies,

such as [194], a singleton node is added to a cluster by querying a single edge with

it. We can replace that querying step with query multiple edges() which will try

to check if the singleton cluster containing the node refers to the same entity as

the one it was supposed to be queried with. The edge ordering based strategies,

such as [197], query the edges in decreasing order of probabilities to decide if the two

endpoint clusters ought to be merged or not. Similarly, we can make the same decision

by replacing this querying step with query multiple edges() of the two endpoint

clusters. We note that the strategy in [83] combines node and edge ordering, and

can be modified to apply random expansion similarly. Along with the incorporation

of query multiple edges(), any strategy can call the boost fscore() procedure

towards the end for correcting the errors made in earlier stages. This shows that our

toolkit is independent, self-contained and easy to use.

3.4 Pipelines and Trade offs

In the previous section, we have described a simple way to merge the random

graph toolkit with the perfect oracle strategies to minimize the effect of error in the

noisy setting. One of the main advantages of the above described methods is that

they maintain high precision throughout the resolution phase. This high precision is
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Algorithm 3 lazy(τ, θ, β) algorithm.

1: C ← {{u} : u ∈ V }
2: node(τ, θ)
3: edge(0.0, β)
4: boost fscore(τ, β)

Algorithm 4 node(τ, θ) algorithm.

1: P ← max node ecs()

2: while |Q+|
|Q| ≥ θ ∨ |Q| ≤ 5 do

3: v ← max node ecs()
4: (i, C, b)← next cluster cbn(v, P ) . b = cbn(v, C)
5: while i ≤ τ ∧ cbn(v, C) > θ do . θ is a lower-bound for benefit
6: u← C.pick random()
7: if Ob(v, u) then . possibly wrong answer
8: c.union({v})
9: break

10: end if
11: (i, C, b)← next cluster cbn(v, P )
12: end while
13: P ← P ∪ {v}
14: end while

achieved at the cost of lower progressive F-score. A close look at the expansion toolkit

shows that we can possibly improve this shortcoming as well. We now describe three

different pipelines which are devised by building on the ideas of expansion toolkit and

Hybrid [83], the state-of-the-art resolution algorithm for perfect oracle setting.

3.4.1 Progressive F-score: Lazy Pipeline

Our basic pipeline (called lazy()) is focused towards optimizing the progressive F-

score at the cost of lower precision in the start. It does so by following a mix of perfect

oracle strategies node() from [194] and edge() from [197] as in [83] in the beginning

to avoid asking extra queries as required by the error correction toolkit. However, at

Algorithm 5 edge(θ, β) algorithm.

1: (u, v, p)← next edge amp()
2: while p > θ do . θ is a lower-bound for avg. matching prob.
3: if Ob(u, v) then
4: C(u).union(C(v))
5: end if
6: (u, v, p)← next edge amp()
7: end while
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the end, it uses our expansion toolkit through boost fscore() to correct errors, and

achieve higher final F-score as well. It runs in three phases (see Algorithm 3). The

first phase uses node() which has great performance in practice for resolving dataset

with few large clusters, but has much worse performance than [197] if there are many

small clusters. Therefore, we end the first phase when large clusters (if any) have been

resolved, possibly leaving some clusters ungrown. The second phase examines inter-

cluster edges as in [197] and possibly ask them to the oracle. If the answer is positive,

we merge the clusters, aiming at growing all the clusters left ungrown in the first

phase. In the second phase we prioritize cluster pairs with high matching probabilities

(irrespective of their size). Since, the first two phases only maintain a forest, they

do not provide any guarantees when answers can be erroneous, but give the best

performances in the perfect oracle setting for different cluster size distributions. At

the third phase, lazy() uses boost fscore() for error correction–this is where it uses

the expansion property.

Parameter setting. The τ and θ parameters control the “duration” of node() and

edge(). The parameters used for the toolkit are β, and τ . We set default values for

θ and τ to 0.3 and log n respectively (as in [83]), and for β to 1 (as in Corollary 1).

Auxiliary methods. lazy() pipeline makes use of the following auxiliary methods

which are useful to understand the pseudocode provided in Algorithms 3, 4 and 5.

• next cluster cbn(v, P ) iterates over the clusters in C and returns the next

cluster C in P , in non-increasing order of cluster benefit cbn({v}, C). It also

returns the benefit and a count (from the cluster with maximum benefit to v,

which defaults to 0).

• max node ecs() returns the next node v, in non-increasing order of expected

cluster size ecs(v) i.e.
∑

u,v∈V pm(u, v).

• next edge amp() iterates over the cluster pairs in C and returns an arbitrary

inter-cluster edge of the next cluster pair, in non-increasing order of average
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matching probability. Formally, it starts with arg maxCi,Cj∈C avgu∈Ci,v∈Cjpm(u, v).

Together with the edge, it returns the average probability.

Node phase. The node() method in Algorithm 4 processes nodes in non-increasing

order of maximum cluster benefit. It keeps a list of nodes that are processed (lines 1,

13). The list is initialized to max node ecs() (line 1) because expanding the largest

cluster first enables high recall early on. The next node processed is most likely to

belong to the largest cluster (line 4), until such cluster has been fully grown. Then, the

next node processed will seed the second-largest cluster, and so on. Every processed

node is compared to clusters in P (lines 4–12) until either a (possibly wrong) answer

is positive (line 7), or the benefit drops under a threshold θ (line 5). In the first case,

the node is added to the cluster. We limit at most τ comparisons for each node, which

defaults to log n, before a positive answer is obtained. However, if Ob(u, v) mainly

collects negative answers, then the benefit will drop and the loop is terminated. For

the sake of simplicity, we use the same threshold θ for benefit and the fraction of

positive answers (line 2). Also, [83] proposes to use the notion of window w to

provide a handle over the use of high benefit nodes. Since it doesn’t provide much

gain practically [83], we choose w = 1 for simplicity. We can incorporate the same

by modifying line 3 in Algorithm 4 accordingly.

Edge phase. Recall of node() algorithm can be smaller than 1 for two reasons: (1)

positive-to-negative errors in pairwise queries, and (2) positive questions “deferred”

for small benefit. The edge() method in Algorithm 5 compares cluster pairs, in non-

increasing order of average matching probability (lines 1, 6). Every comparison is

done by querying a random intra-cluster edge. If the answer is positive (line 3), then

the two clusters are merged. edge() terminates whenever the matching probability

drops under θ (line 2).

Discussion. The lazy() pipeline can be useful in applications with reasonably few

erroneous answers. In our experiments we show that, in such scenarios lazy() can
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Figure 3.3: Sample execution of node(). Positive (negative) answers are represented
with solid (dashed) edges. Node fill and stroke colors are representative of true and
computed clusters, respectively. Thick edges highlight corrected errors.

provide high F-score at the end of boost fscore() computation. Nevertheless, errors

made in the first two phases can strongly affect progressive F-score.

Example 3 (Figure 3.3). Assume that nodes in Figure 3.3 are processed by node()

(Algorithm 4) in the following order 1, 2, 5, 4, 3, 8, 7, 6, 9, and that every edge has the

same error probability. Assume also that query multiple edges() is set for return-

ing Yes only upon two positive answers between the input clusters C(x) and C(y).

Note that the β parameter is not meant for controlling the number of positive answers

required for merging clusters, but rather for ensuring that nodes in every cluster C

have the right weighted degree with respect to the cluster sizes for achieving good ex-

pansion properties. For size 5 cluster, this corresponds approximately to β = 0.5.

Finally, assume that the noisy oracle answers Yes/No as in Figure 3.1 and they can

correctly classify 4. Initially, 1, 2, 5 get three positive answers and a size 3 cluster C is

created. When node 4 is processed, node() asks at least 2 questions for adding 4 to C,

whereas in the perfect oracle strategy only 1 would be sufficient. If both are positive,

then 4 is added to C and the next node 3 is pulled from the queue and compared with

C. Suppose that 3 gets 1 positive and 1 negative answer, that are (3, 2) and (3, 5)

respectively. A new query between 3 and C (for instance (3, 1)) is asked, and if the
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Algorithm 6 eager(τ, θ, β) algorithm. Default values for parameters are the same
as Algorithm 3.

1: C ← {{u} : u ∈ V }
2: node exp(τ, θ)
3: edge exp(0.0, β)
4: boost fscore(τ, β)

answer is positive, then 3 is added to C, correcting the false negative answer for (3, 5).

Similarly, after the first cluster C = 1, 2, 3, 4, 5 is formed, node() carefully compares

the next node 8 with C with at least 2 queries, for instance (8, 3) and (8, 1). Even

though we get a wrong answer for (8, 3), we can still make a correct decision by asking

(8, 5). This resulted in the creation of a new cluster with the green records.

Example 4. In the same setting, assume that the first 5 edges in Figure 3.2 are

processed by edge() (Algorithm 5) in the following order (1, 2), (2, 5), (5, 1), (3, 4),

(3, 1). The first 4 edges get positive answers and two clusters C1 = {1, 2, 5} and

C2 = {3, 4} are created. When edge (3, 1) is processed, edge() asks 3 questions for

merging C1 and C2, namely (3, 1) itself, and for instance (4, 2) and (4, 5). Nodes that

queries (4, 2) and (4, 5) would never be asked in the perfect oracle setting, and that

(4, 5) may be never asked by node(). Note also that node() tries to grow one cluster

at a time, while edge() grows multiple sub-cluster in parallel and then merges them.

This is also true for their corresponding perfect oracle versions in [194, 197] and for

their progressive variation in [83].

3.4.2 Final F-score: Eager Pipeline

The pipeline eager() in Algorithm 6 maintains high precision at the cost of low

progressive F-score which is orthogonal to lazy(). The method node exp() is a vari-

ant of Algorithm 4, where the basic Ob(u, v) method is replaced by the expansion

method query multiple edges(C(u), C(v), β) (line 7) for comparing clusters to sin-
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Algorithm 7 adaptive(τ, θ, β) algorithm. Default values for parameters are the
same as Algorithm 6.

1: C ← {{u} : u ∈ V }
2: node exp adp(τ, θ)
3: boost fscore(τ, β)
4: edge exp adp(0.0, β)
5: boost fscore(τ, β)

gleton nodes. The method edge exp() is an analogous variant of Algorithm 53. The

method boost fscore() is called at the end (line 4).The parameter β controls how

strong is the intra-cluster connectivity, and trades off precision for cost. High values

of β correspond to high precision and cost. Small values yield low precision; specif-

ically, β = 0 asks a single positive question between a node and a cluster, yielding

a result similar to the lazy() pipeline. We observed in our experiments that β = 1

achieves the best progressive F-measure, and we set this as our default value.

Discussion. The product of false positive probabilities for every node in every cluster

of eager() is below a threshold β log (e|C|). This corresponds to random expansion

with positive edges (u, v) ∈ Q+ having weight of − log pe(u, v). For the special case of

constant error probability pE, every node v of a cluster ends up with the same num-

ber of incident positive answers β log1/pE (e|C(v)|). In practice, maintaining degree

regularity throughout the execution can be overkill and may result in a slow growth

of the F-measure.

3.4.3 Adaptive Pipeline

The pipeline adaptive() in Algorithm 7 achieves the best of eager() and lazy().

It provides the same final F-score of eager() earlier in the querying procedure, along

with the high progressive F-measure of lazy(). The intuition is to switch between

a single Ob query and query multiple edges() depending on the current answer.

We compare clusters with Ob as in lazy(), but we use our robust comparison tool

3that is, replacing Ob with query multiple edges()
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Algorithm 8 Adaptive edge exp adp(θ, β) algorithm.

1: (u, v, p)← next edge amp()
2: while p > θ do
3: q ← Ob(u, v)
4: if q ∧ (p < 0.5) ∨ ¬q ∧ (p ≥ 0.5) then
5: if query multiple edges(C(u), C(v), β) then
6: C(u).union(C(v))
7: end if
8: else
9: if q then

10: C(u).union(C(v))
11: end if
12: end if
13: (u, v, p)← next edge amp()
14: end while

query multiple edges() if the result is in “disagreement” with matching probabil-

ities. Formally: (i) a positive answer in case of low average matching probability

(< 0.5); (ii) a negative answer in case of high average matching probability (≥ 0.5).

We call respectively node exp adp() and edge exp adp() the adaptive versions of

node exp() and edge exp(). The method edge exp adp() is shown in Algorithm 8

(the pseudo-code of the method node exp adp() is analogous). Finally, we add an

extra execution of boost fscore() (line 3), with respect to eager(), for correcting

early errors due to the adaptive nature of node exp adp().

Discussion. The clustering maintained by adaptive() temporarily allows clusters

with low expansion in the node phase, if the answer from the oracle is in agreement

with matching probabilities, irrespective of error probability of the answer. As a

consequence, some cuts of a cluster can have small weight, thus temporarily violating

the expansion property (see Definition 2). We observe in practice that such violations

in the early phase of adaptive() can provide high gains in progressive F-score without

losing precision.
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3.4.4 Application Scenarios.

There are different scenarios for our toolkit strategies, depending on matching and

error probabilities (that is, depending on how accurate machine-based methods and

human workers can be on the specific application).

(HC) The error rate of answers is high and matching probabilities are correlated with

the ground truth, that is, truly positive edges have high probability and truly

negative edges have low probability. In this scenario, we expect eager() to

perform better than lazy(), and adaptive() to perform like eager().

(LC) The error is low and matching probabilities are correlated with the ground truth.

In this scenario, we expect lazy() to be better than eager(), and adaptive()

to be like lazy().

(LU) The error is low and matching probabilities are uncorrelated with the ground

truth. In this scenario, we still expect lazy() to be better, but we expect

adaptive() to be like eager().

(HU) The error is high and matching probabilities are uncorrelated with the ground

truth. Here, we expect eager() to be better than lazy(), and adaptive() to

be like eager().

Finally, there can be mixed cases (MIX) of reasonable error rate and matching prob-

ability noise. We expect the different strategies to have similar progressive F-score

in such cases. In Section 3.5 we provide experiments covering all these cases, except

HU.

3.5 Empirical Evaluation

Datasets. Some datasets have real attribute values, and come with a cache of answers

from the AMT crowd. We refer to such datasets as “Real values/Real oracle” (RR).
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Similarly, we refer to real-world datasets with synthetic noisy oracle answers, as “Real

values/Synthetic oracle” (RS). Other datasets have synthetic attribute values and

synthetic noisy oracle answers (“Synthetic values/Synthetic oracle”, SS). We have

access to the gold standard of each dataset except for dblp. We use the same method

as [161, 83] for computing a labeling of dblp to be used in place of the gold standard

for the purposes of comparing oracle strategies. We refer to the computed labeling

as “silver” standard. Properties of the datasets are given in Table 3.2.

• cora: Title, author, venue, and date of scientific papers.

• skew: Simulated hospital patients data, including name, phone and address,

produced using Febrl [59].

• sqrt: Same as skew, with different cluster sizes.

• captcha: CAPTCHA images, each showing a four-digit number. The number

of records per entity follows a power-law distribution with an exponent of -2.5.

• gym: Images of gymnastics athletes, where it is very difficult to distinguish the

face of the athlete, e.g. when the athlete is upside-down on the uneven bars.

• allsports: Images of athletes from ten different sports such as Tennis, Soccer,

Gymnastics. The pairs of images across sports are easy to distinguish but the

images within the same category of sport are quite difficult due to various angles

of the body, face and uniform.

• dblp: All the computer science articles in the homonym bibliographic index,

up to August, 13th 2015.

Matching probabilities. Matching probabilities of text datasets (cora, skew,

sqrtn and dblp) are computed using string similarity, such as Jaro [205] and Q-grams.

Specifically, similarity scores are mapped to probabilities using buckets as in Section
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Table 3.2: Number of nodes n (i.e., records), number of clusters k (i.e., entities),
size of the largest cluster |C1|, reference to the paper where they appeared first, and
origin (real or synthetic). The scenario column matches the dataset with scenarios of
Section 3.4.3. We provide experiments for both low and high error rate for cora and
dblp, thus we match them with both LC and HC.

dataset n k |C1| |E+| ref. origin scenario

cora 1.9K 191 236 62.9K [146] RS LC, HC
skew 900 93 50 8.2K [83] SS LC
sqrtn 900 30 30 13.1K [83] SS LC
captcha 244 69 8 386 [191] RR MIX
gym 94 12 15 449 [191] RR MIX
allsports 200 64 5 227 [192] RR LU
dblp 3.1M 3.0M 159 299.7K [83] RS LC, HC

3.1 of [201]. Record pairs are evenly divided into buckets of equal size according to

their similarity. Probability for each bucket is computed using the gold standard (for

cora, skew and sqrtn) and the silver standard (for dblp). Computing all pairwise

matching probabilities for dblp is prohibitively expensive, therefore obviously non-

matching pairs have been removed by a machine-based preprocessing technique (i.e.,

blocking). Matching probabilities for remaining pairs are randomly drawn from over-

lapping exponential distributions: e−λx for negative edges and 1− e−λx for positives

(λ = 10). Matching probabilities for captcha and gym are the same in [191].

Error probabilities. We consider two different models of error in the oracle answers.

In our first model, the oracle error is constant irrespective of the pair being queried.

This constant-error model has been widely used in the entity resolution literature

[191, 110]. In our second model, edges may have different probability of errors. It

is reasonable to believe that if workers are not malicious, then false positives and

negatives are more common in high-similarity and low-similarity pairs, respectively.

We validate this observation by our experiments on multiple real datasets, e.g., gym

and captchas. We construct 10 equi-width buckets of matching probabilities and

measure the oracle error for edges in each bucket treating error rate in each bucket

to be constant. This model is similar to a situation where the oracle asks to a fixed
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Figure 3.4: Comparison of SCC-based adaptive() variations and the original imple-
mentation on dense().

number of crowd workers. In such a scenario, each answers’ accuracy is different as

it depends upon the question’s difficulty and the expertise of the worker.

For the synthetic oracle, we generate erroneous answers by flipping the correct

answer with given error probabilities p+, p−.

3.5.1 Comparison with Previous Strategies

In this section, we evaluate our pipelines along with previously proposed algo-

rithms for noisy setting [110], [191], [192], dubbed votes(), dense(), and waldo().

We plot F-score vs number of queries, as progressive F-score can be quantified as the

area under this curve. We refer to the ideal curve as in [83], as ideal().

For a fair comparison, we consider the following settings.

1. dense() implementation in [191] returns, at each step, the result of a clustering

algorithm over both high matching probabilities and oracle answers. Therefore,

the F-score is always in a high range even in absence of answers. This is different

from our algorithms (and also from votes()) that only consider query answers

for clustering, yielding a gradual growth of the F-score.

2. both dense() and votes() can ask multiple times the same query. However, our

algorithms ask each query once.
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3. waldo() employs a “batch” cost model for multi-wise queries.

Clustering. To compare our approach with the original implementation of dense()

in [191], we implement two variants of adaptive() that use the same clustering algo-

rithm as dense() – the so-called “Spectral Connected Components” (SCC) algorithm

– dubbed adaptive-SCC() and adaptive-iSCC(). The two variants differ in whether

SCC computes clusters from scratch (i.e. only based on collected oracle answers) or

from already established clusters by the original adaptive() implementation. The

latter variant adaptive-iSCC() allows only for clusters that are either same or con-

tain the clusters inferred by adaptive() (the “i” stands for “incremental”) and thus

(i) its recall is lower-bounded by the original adaptive() recall, and (ii) its F-score

converges to the original adaptive() F-score. Figure 3.4 compares the above vari-

ants of adaptive() algorithm with the original dense() implementation in [191].

The plots show that adaptive-iSCC() gets the best progressive F-score. Initially,

when the number of questions is 0, the clustering returned is purely SCC over input

matching probabilities. The initial F-score of dense() is higher than both variants of

adaptive(), especially for captchas for which machine-generated matching proba-

bilities are less noisy than gym. As new queries are made, the clustering produced by

the two variants of adaptive() become better, achieving higher final and progressive

F-score. In the remainder of the chapter, we use a variant of dense() that does not

use SCC. In this way it starts from 0 F-score like votes(), waldo() and the original

adaptive() algorithm, making the comparison fair.

Multiple queries. In the table below, we show the distribution of queries for

votes(). Such a strategy can ask the same question up to 8 times for our RR datasets

with the goal of aggregating answers of single crowd workers as part of the ER prob-

lem [110]. dense() rarely asks more than 5 times the same query in all our datasets.
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Figure 3.5: Comparison of strategies over RR datasets.
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of answers and for input to our algorithms.

1 2 3 4 5 6 7 8

captcha 99 57 3330 39 65 39 38 0

gym 13 22 39 76 106 46 40 3

In the following, we count the number of distinct queries if not specified otherwise

(see our cost model in Section 3.2).

Real error. In Figure 3.5, we compare the progressive F-score of our and previous

strategies over RR and RS datasets. We set the x axis to the number of distinct

queries in all the datasets.The plots show that our eager() and adaptive() pipelines

achieve more than 90% F-score with less than 400 queries in case of gym. Similarly

for captchas, the F-score achieved is more than 90% even with the simplest lazy()

pipeline. This is due to the zero false positives in the oracle answers for captchas. In

such a scenario, lazy() pipeline has 100% precision. Benefits of using our pipelines
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Figure 3.7: (a) F-score of adaptive() for different error rates in crowd answers (gym).
(b) Different settings of β for adaptive() over cora dataset with p+ = p− = 0.1.

become evident with more challenging datasets, such as gym. The results of Fig-

ure 3.5 confirms our theory for eager(), and shows the effectiveness of adaptive() in

practice. In order to investigate further the effect of oracle answers on these datasets,

Figure 3.7a shows the adaptive() pipeline over the gym dataset with perfect matching

probability function. That is, we set pm(u, v) = 1 iff (u, v) ∈ E+, and 0 otherwise.

For this experiment, we generate synthetic erroneous answers and plot the results of

adaptive() as the error rate for both false positives and negatives varies in the range

[0, 0.3]. In this setting, performance of adaptive() is almost ideal till error rate is

less than 0.2.

Tuning of β. Figure 3.7b demonstrates the effect of changing the tuning parameter

β on the performance of adaptive() (multiple queries are counted separately). It is

evident that the progressive F-score improves as the β value is reduced. The downside

of this is that it tries to grow a sparser graph, which has lower precision and the

algorithm plateau’s out at a lower final F-score. On the other hand, higher values of

β make the approach conservative to ask more queries and reduces the progressive F-

score. The above described behavior is consistent with our theoretical bounds proven

in Section 3.3. Note that β has no explicit control on the number of positive answers

asked by adaptive() because the actual amount of positive answers depends on the
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specific error probabilities (see discussion on Example 3). Nonetheless, varying β has

predictable effects.

• If the error probability for positive answers is a constant p−, the number of

positive answers per node is bounded by O(β log1/p− n).

• If β = 0, the threshold at line 4 of Algorithm 1 is 1, thus the number of positive

answers per node is bounded by 1, yielding overall n−|C| positive queries, akin

to perfect oracle strategies [194].

• For a given dataset, with arbitrary error probabilities, increasing β yields a

non-decreasing amount of positive queries.

Synthetic error. In Figure 3.6 we compare the progressive F-score of our and

previous strategies with constant error probabilities over SS datasets. We set the x

axis to the total number of queries. The plots show that all our pipelines achieve more

than 90% F-score in most cases, even with constant error probability. One exception

is cora with error rate p+ = p− = 0.2, where final F-score is slightly above 85%. It

is interesting to observe that the adaptive() pipeline is quite close to the ideal()

algorithm even for the noisy oracle setting. Also, the overall overhead to reach perfect

F-score is only 200 for sqrt and skew datasets. Expansion based approach provides

smaller benefits when the clusters being resolved are small. This is evident from the

benefit of using our toolkit in Figures 3.7.

Waldo. waldo() makes a collection of pairwise and multi-item queries (k-node query),

in order to optimize the total cost of resolution of clusters. The major benefit of

asking a multi-item query (k=6 in waldo()) is that the cost of a query is much less

than
(
k
2

)
. Hence, we adopt the cost model from [192] to evaluate the expense of

resolution of records for different F-score values. We consider the cost of a pairwise

query to be 2 cents and a multi-item query to be 5 cents (as opposed to
(

6
2

)
= 15).

Given the sensitivity of error estimates for multi-item queries with respect to datasets

and crowd workers, we use datasets (allSports and cora) from the waldo() [192]
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Figure 3.8: Comparison of waldo() and adaptive()

paper. In allSports we experiment with the same CPM settings in the waldo()

paper [192]; CPM describes the confusing pairs fraction with higher error rate.(We

refer the interested reader to [192] for more details about CPM.) Figure 3.8 shows

that for cora, adaptive() is at least three times cheaper than waldo() to achieve

0.8 F-score. In the case of allSports, the waldo() approach is comparable with

adaptive(). Our default adaptive() setting is slightly worse than waldo() 30 CPM

setting and consistently better than waldo() 50 CPM setting. Among our strategies,

lazy() is much better than both waldo() and adaptive(). This is consistent with

the LU application scenarios in Section 3.4.3. We recall that allSports is a RR

dataset and thus we use real crowd answers and corresponding error probabilities for

expansion.

Running time. adaptive() provides a better query complexity as compared to

dense(), votes() and waldo(). This gain in query complexity reflects directly in the

time taken to resolve the clusters by each of the techniques. Additionally, for gym the

average time taken to issue one query by adaptive() is roughly 2.67 milliseconds for

the first 100 queries. This further reduces to 1.45 as more clusters are resolved. For

votes(), the time taken is roughly 8.89 milliseconds for the first 100 queries which

further increases with increase in queries because it tends to ask the same queries

more frequently which are not counted as new queries by our query model. On
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Figure 3.9: (a-b) adaptive() strategy on different datasets. (c-d) Comparison of our
strategies over our bibliographic dataset.

the other hand, dense() algorithm takes 64.9 milliseconds roughly to issue a query,

irrespective of it being already queried to the oracle or not. This clearly shows that

adaptive() is at least 3 times faster than votes() and roughly 24 times faster than

dense() algorithm. We observe similar behavior for other datasets too. adaptive()

not only provides better query complexity, but the time taken to issue a single query

is also less than votes() and dense() algorithms.

Comparison of datasets. In Figures 3.9a and 3.9b, we compare the progressive

F-score of adaptive() over different datasets. In Figure 3.9a, the x-axis is the frac-

tion of the minimum number of queries for complete resolution, that is n− |C|+
(
k
2

)
(see theoretical analysis in [194]). Please note that the final fraction at the end of

the ER process can be higher than 1. Larger area means that adaptive() has a

comparatively higher progressive F-score on the given dataset. This does not mean

that adaptive() is closer to ideal() on the given dataset. Figure 3.9b shows the

fraction of ideal() F-score that is reached by adaptive() at different points in the

ER process (number of queries is expressed as a fraction of total adaptive() queries).

Within this framework, best cases for adaptive() are the two RR datasets, dubbed,

gym and captchas. Nevertheless, gym has comparatively smaller progressive F-score

than all other datasets, as it constitutes a “hard” case for ideal() in the first place

(in the sense that the best possible progressive F-score is comparatively low) due to

51



uniform cluster size distribution (akin to sqrt).

Alternative forms of expansion. Although random expansion is analytically

proven to require less queries than deterministic expansion [21], empirically one can

make use of alternative forms of expansions for selecting “control queries”. The table

below compares the number of queries asked by adaptive() on cora with different

expansion strategies, dubbed high, low, and uncertain, selecting queries with the clos-

est matching probability to 1, 0, and 0.5 respectively. Random expansion gets to the

same F-score of deterministic alternatives with less or comparable number of queries.

F-score p+, p− random high pm low pm uncertain pm

0.9 0.1 2420 2481 2355 2417

0.85 0.2 3041 4683 4028 3744

We observed similar results for all the considered datasets. Even though cora seems

to select uncertain as the best deterministic alternative, a deeper look at the exper-

imental data reveals that the 0.5 matching probability bucket is the one containing

most edges in cora, and drawing edges from this bucket closely resembles random

selection. This confirms the effectiveness of our strategy.

3.5.2 Sparse Graphs

For sake of comparison, the experiments so far report performance of our al-

gorithms and previous strategies in a crowd-only setting. In practice, adopting a

crowd-only approach is prohibitively expensive, and people often remove obvious

non-matching pairs during a pre-processing phase. Then, they ask the crowd to ex-

amine the remaining pairs, which lead to a relatively sparse graph. We note that

even in the crowd-only setting, our strategies are far from asking the crowd the com-

plete graph. For instance, Figure 3.5b shows that adaptive() reaches its maximum

f-score for captchas after less than 200 queries, which is less than 0.6% of the size

of the complete graph (see Table 3.2). Anyway, sparsification is useful in many ER

applications, and necessary when computing all pairwise matching probabilities is
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prohibitively expensive (e.g. dblp dataset with more than 3M records). In this sec-

tion, we evaluate our strategy in different sparse graph experimental settings. We

show that:

• our algorithms outperform previous strategies also when obviously non-matching

pairs are removed (we use cora);

• our techniques can scale over a large number of records, where building a sparse

graph is the only viable option (dblp).

In this framework, cora can be thought of as a portion of dblp based on a small set

of authors. We consider two sparsity models, that we refer to as node partition and

edge filtering.

• In the node partition model, used by waldo(), obviously non-matching nodes

(e.g.,watches and dishwashers in an e-commerce dataset) are put in separate

“domains” and cross-domain edges are consistently removed. The result is a

collection of disconnected complete subgraphs that can be resolved indepen-

dently.

• In the edge filtering model, used by dense() and votes(), obviously non-matching

edges are removed either by a matching probability threshold or other cheap

procedures such as (overlapping) blocking. The result is a sparse graph, possibly

consisting of several connected components (not necessarily cliques).

Node partition. Figure 3.8a shows that our strategies outperform waldo() on cora,

which is akin to a complete subgraph of dblp. Since the cora domain does not have

special characteristics with respect to the others, we expect adaptive() to outperform

waldo() on the whole dblp. We note that time complexity of waldo() is high [192]

and it has been experimentally tested over small datasets. Running waldo() on dblp

does not appear to be feasible.

Edge filtering. Figure 3.9c compares our strategies with dense() and votes(), with

a matching probability threshold set to 0.4. We remove edges below 0.4 and consider
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them as given to be negative. Sparsification removes 96% of the edges generating a

sparse graph with 309 different components. adaptive() is robust to sparsity: its

F-score is close to complete cora experiments, such as Figure 3.6c. In the complete

graph setting, indeed, most low probability edges won’t be queried anyway (only a

few of them for cluster splits).

Scalability. Figure 3.9d shows the progressive F-score of adaptive() over the large

dblp dataset, as the error probability in synthetic oracle answers increases. We do

not show dense() and votes() because of their time and memory requirements (as

a frame of comparison, the computation of dense() took 4 days on cora). Initial

F-score growth of adaptive() closely follows ideal() in the perfect oracle setting,

then flattens out after the initial growth because of the final stage of the node phase,

and eventually after edge phase begins, F-score converges to 100% F-score.

3.6 Related Work

We discussed the background of ER in Chapter 2. This section summarizes the

prior work from the lens of robustness towards oracle error.

Querying individual crowd workers. The strategies in [110] query individual

crowd workers, rather than making use of a crowd abstraction, and every answer

represents a vote. The goal is to achieve a clear majority of Yes or No answers for

some pairs (u, v), and use those high confidence pairs for building clusters. Also, the

strategies described in [191] query individual crowd workers, but assume that they

have a known error rate pE. In this setting, each Yes/No answer for a given pair of

items can be interpreted as a matching probability: 1−pE if the pair is supposed to be

matching, and pE otherwise. (An information theoretic perspective of it is provided

in [143].) Such strategies start from an initial clustering based on prior probabilities

and then refine the solution by asking the crowd. Finally, the work in [192] uses the

same idea of fixed crowd-worker error rate than [191] and considers, in addition, a
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combination of k-node queries involving multiple items (for instance, with k = 3, “are

u, v and z the same entity?”) and classical pairwise queries. The k-node queries can

be asked to a real crowd-sourcing platform with less cost (bit higher error) than the

corresponding sum of
(
k
2

)
pairwise queries, therefore, the cost of replicated queries

for a single pair can be amortized. All the above works use various robust graph

clustering mechanisms before returning the solution to a user. Our work considers

the oracle as an abstraction instead of dealing with individual crowdworkers. The

major benefit behind our approach is that the oracle can leverage answer-quality

mechanisms [42, 198] to better aggregate the responses of different crowd workers.

Additionally, we propose a generic error correction layer that can be applied on top

of other oracle strategies to make them robust.

Other Related Works. Wang et al. [196] describe a hybrid human-machine frame-

work CrowdER, that automatically detects pairs that have a high likelihood of match-

ing, which are then verified by humans. Gokhale et al. [103] propose a hybrid approach

for the end-to-end workflow, making effective use of active learning via human label-

ing. Records are partitioned into entities using the rules learned from classifiers. Chai

et al. [50] provide a grouping mechanism based on similarity for reducing the number

of questions (instead of all pairs in each group, they ask only one pair). In [50] the

authors devise a partial ordering-based technique to resolve entities, which applies for

records of text attributes. Progressive F-score has been discussed in [202, 161, 109].

Finally, estimating or improving crowd accuracy in general [68, 98, 125, 28, 42] is

outside the scope of this work.

3.7 Summary and Future Work

Most of the prior work assumed perfect oracle answers to perform entity resolu-

tion. However, these techniques are sensitive to noise and can generate arbitrarily

worse clusters. This chapter formalizes the problem of generating clusters using noisy
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binary oracle queries and proposes a cost-effective error correction layer which can

be applied on perfect oracle-based strategies to make them robust. Additionally,

we present three pipelines adaptive(), eager() and lazy() which use the ideas of

Hybrid [83] along with a random graph toolkit to provide high progressive F-score

with provable guarantees. The experimental evaluation confirms our theory and su-

periority of proposed techniques over the prior literature.

The key takeaways from the chapter are as follows.

• The random expansion toolkit helps to achieve high precision with a low over-

head in the number of oracle queries.

• The redundancy in oracle queries can be tuned based on noise in oracle answers

and the toolkit can be applied on top of any perfect-oracle strategy.

• Among the different pipelines, adaptive() achieves the best progressive F-score

and generates the most accurate clusters.

• The error correction layer is not helpful to correct mistakes in small clusters

with high noise.

In our future work, we plan to apply our results to temporal record linkage, where

the user is given multiple versions of the same entity, coming from real-world at

different times. In this setting, error probability is expected to be smaller if two

records are farther in time, and higher for similar representations of the same entity.
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CHAPTER 4

ENTITY RESOLUTION WITH SUPERVISION:
SCALABILITY

Chapter 3 presented the effect of error on the quality of generated clusters. It

assumed access to an input graph H with edges A ⊆ V × V , which is the output

of the blocking phase of the ER pipeline. In the absence of blocking A = V × V

contains all pairs of records, which cannot be enumerated for million-scale datasets.

This chapter is devoted to discuss some common challenges with respect to large scale

datasets and present a progressive blocking approach to improve scalability.

Section 4.1 discusses the limitations of prior work and highlights high-level con-

tributions of the chapter with an example. Sections 4.2 and 4.3 provide preliminary

definitions and a high-level description of the proposed approach. Sections 4.4 and 4.5

explain details of the block intersection and block scoring methods, respectively. Sec-

tion 4.6 provides theoretical analysis of its effectiveness and Section 4.7 presents the

empirical evaluation on large-scale datasets. Section 4.8 discusses the related work

specific to blocking and we conclude in Section 4.9.

4.1 Introduction

As discussed in Chapter 2, blocking constitutes the first step of ER that selects

sub-quadratic number of record pairs to compare in the subsequent steps. Blocking

groups similar records into blocks and then selects pairs from the “cleanest” blocks –

i.e., those with fewer non-matching pairs – for further comparisons. The literature is

rich with methods for building and processing blocks [159], but depending on the data
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Table 4.1: Sample records (we omit schema information) referring to 4 distinct enti-
ties. rei represents the i-th record referring to entity e. Records in the first two rows
refer to a Chevrolet Corvette C6 (c6) and a Z6 (z6). Records in the last two rows to
a Chevrolet Malibu (ma) and a Citröen C6 (ci) (same model name as Corvette C6
but different car).

rc61 : ‘chevy corvette c6’ rc62 : ‘chevy corvette c6 navigation’
rc63 : ‘chevrolet corvette c6’ rz61 : ‘corvette z6 navigation’
rma1 : ‘chevy malibu navigation’ rma2 : ‘chevrolet chevy malibu’

rma3 : ‘chevrolet malibu’ rci1 : ‘citroen c6 navigation’

ENTITIESRECORDS Comparison 
Cleaning (Z)

Block Cleaning (Y)Block Building (X) Pair Matching Clustering

c6 c6

c6 z6 ci

ma ma

ma

c6 c6

c6 z6 ci

ma ma

ma malibu
navigationcorvette

c6

chevy

Figure 4.1: Illustration of a standard blocking pipeline. Block building, block cleaning
and comparison cleaning sub-tasks are highlighted in white. The downstream ER
algorithm is shown in gray. Description of each record is reported in Table 4.1.

set at hand, different techniques can either leave too many matching pairs outside,

leading to incomplete ER results and low effectiveness, or include too many non-

matching pairs, leading to low efficiency.

This chapter presents a new progressive blocking technique that overcomes the

above limitations by short-circuiting the two operations – blocking and pair compar-

isons (pair matching and clustering) – that are traditionally solved sequentially. The

method starts with an aggressive blocking step, which is efficient but not very effec-

tive. Then, it computes a limited amount of ER results on a subset of pairs selected

by the aggressive blocking, and sends these partial (matching and non-matching) re-

sults from the ER phase back to the blocking phase, creating a “loop”, to improve

blocking effectiveness. In this way, blocking can progressively self-regulate and adapt

to the properties of each dataset, with no configuration effort. We illustrate the short-

comings of prior approaches and our blocking method, that we call pBlocking, in the

following example.
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Figure 4.2: Block size distribution (standard blocking) for the real cars dataset used
in our experiments.

Example 2. Consider the records in Table 4.1 from the cars dataset used in our

experiments, and a standard schema-agnostic blocking strategy S such as [155]. As

shown in Figure 4.1, we consider three blocking sub-tasks [159]. First, during block

building, S creates a separate block for each text token (we only show the blocks

‘corvette’, ‘navigation’, ‘malibu’, ’c6’ and ‘chevy’). Then, during block cleaning, S

uses a threshold to prune out all the blocks of large size. Depending on the threshold

value (using the block sizes in the entire cars dataset, shown in Figure 4.2), we can

have any of the following extreme behaviors. (Note that no intermediate setting of

the threshold can yield a sparse set of candidates that is at the same time complete.)

• Aggressive blocking: S prunes every block except the smallest one (‘chevy’) and

returns (rc61 , r
c6
2 ), (rc61 , r

ma
1 ), (rc62 , r

ma
1 ) and (rma1 , rma2 ), missing rc63 and rma3 .

• Permissive blocking: S prunes only the largest block (‘chevrolet’) and returns

many non-matching pairs.

Finally, during comparison cleaning, S can use another threshold to further prune

out pairs sharing few blocks, e.g. by using meta-blocking [154]. As in block cleaning,

different threshold values can yield aggressive or permissive behaviours. Note that

matching pairs such as (rc62 , r
c6
3 ) share the same number of blocks (‘corvette’ and ‘c6’)

as non-matching pairs such as (rc62 , r
z6
1 ) (‘corvette’ and ‘navigation’). (Even worse,

‘c6’ is larger than ‘navigation’.)
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pBlocking can solve these problems in a few rounds: the first round does ag-

gressive blocking, the second round does more effective blocking by making targeted

updates according to partial ER results, and so on. Examples of such updates to the

blocking result are discussed below.

1. Creation of new blocks that help inclusion of (rc61 , r
c6
3 ), (rc62 , r

c6
3 ): pBlocking

creates a new block ‘corvette ∧ c6’ with records present in both blocks ‘corvette’

and ‘c6’. This block is much smaller than its two constituents and has only

Corvette C6 cars.

2. Adaptive cleaning to help inclusion of (rma1 , rma3 ), (rma2 , rma3 ): pBlocking can

discourage pruning of block ‘malibu’ that contains Chevrolet Malibu cars, even

if it is a large block;

3. Adaptive cleaning to help exclusion of non-matching pairs: pBlocking can

encourage pruning of block ‘navigation’ that contains no matching pairs, even

if it is a small block.

After a few rounds of updates like the above, pBlocking returns all the matching pairs

with very few non-matching pairs. Note that after the last round, the ER output can

be computed on the resulting pairs as in the traditional setting. Updates of type (1)

are performed via a new block intersection algorithm, while (2) and (3) are performed

by a new block scoring method. By construction, when the blocking scores converge,

the entire blocking result also converges.

The main contribution of this chapter is a new blocking methodology with both

high efficiency and effectiveness in a variety of application scenarios. Since pBlocking

can in principle start off using any blocking strategy, it represents not only a new

approach but also a way to “boost” traditional ones. pBlocking works seamlessly

across different entity cluster size distributions such as:
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• small entity clusters, where, using block intersection, pBlocking can recover

entities such as Corvette C6 consisting of few records sharing large and dirty

blocks.

• large entity clusters, where, using block scoring, pBlocking can recover entities

such as Chevrolet Malibu consisting of many records sharing large and clean

blocks.

We prove theoretically and show empirically that, with a few rounds and a limited

amount of partial ER results, our progressive blocking method can provide a signifi-

cant boost in blocking effectiveness without penalizing efficiency. Specifically, we (i)

demonstrate fast convergence and low space and time complexity (O(n log2 n), where

n is the number of records) of pBlocking; (ii) report experiments achieving up to

60% increase in recall when compared to state-of-the-art blocking [67], and up to 5x

boost in efficiency. Finally, we observe that pBlocking can yield up to 70% increase

on the F-score of the final ER result, thus confirming the substantial benefits of our

approach.

4.2 Blocking Preliminaries

Let V be the input set of records, with |V | = n. Consider an (unknown) graph

C∗ = (V,E+), where (vi, vj) ∈ E+ means that vi and vj represent the same entity. C∗

is transitively closed, that is, each of its connected components C∗ ⊆ V is a clique

representing a distinct entity. We call each clique a cluster of V , and refer to the

partition induced by C∗ as the ER ground truth.

Definition 3 (Pair Recall). Given a set of matching record pairs A ⊆ V ×V , Pair Re-

call is the fraction of pairs (u, v) ∈ E+ that can be either (i) matched directly, because

(u, v) ∈ A, or (ii) indirectly inferred from other pairs (u,w0), (w0, w1), . . . , (wc, v) ∈ A

by connectivity.

A formal definition of the blocking task follows.
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Problem 3 (Blocking Task). Given a set of records V , group records into possibly

overlapping blocks B ≡ {B1, B2, . . . }, Bi ⊆ V and compute a graph P = (V,A), where

A ⊆ {(u, v) : ∃Bi ∈ B s.t. u ∈ Bi ∧ v ∈ Bi}, such that A is sparse (|A| <<
(
n
2

)
) and

A has high Pair Recall. We refer to P as the blocking graph.

The blocking graph P is the final product of blocking and contains all the pairs

that can be considered for pair matching. The efficiency and effectiveness of the

blocking method is measured as Pair Recall (PR) of (the set of edges in) P and the

number of edges in it for a certain PR, respectively. Blocking methods consist of three

sub-tasks as defined by [159]: block building, block cleaning and comparison cleaning.

In the following, we describe each of these steps and the corresponding methods in

the literature.

Block building (BB) takes as input V and returns a block collection B, by assigning

each record in V to possibly multiple blocks. The popular standard blocking [155]

strategy creates a separate block Bt for each token t in the records and assigns to Bt all

the records that contain the token t. To tolerate spelling errors, q-grams blocking [106]

considers character-level q-grams instead of entire tokens. Other strategies include

canopy clustering [147] and sorted neighborhood [117]. Canopy clustering iteratively

selects a random seed record r, and creates a new block Br (or a canopy) with all the

records that have a high similarity with r with respect to a given similarity function

(e.g., using a subset of features [147]). We can use different similarity functions to

build different sets of canopies. Sorted neighborhood sorts all the records according

to multiple sort orders (e.g., each according to a different attribute [117]) and then

it slides a window w of tokens over each ordering, every time creating a new block

Bw. Blocks have the same number of distinct tokens but the number of records in

a block can vary significantly. Multiple block building strategies can be employed at

the same time to generate the collection of blocks B.
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Block cleaning (BC) takes as input the block collection B and returns a subset

B′ ⊆ B by pruning blocks that may contain too many non-matching record pairs.

Block cleaning is typically performed by assigning each block a score : B → IR with a

block scoring procedure and then pruning blocks with low score. Traditional scoring

strategies include functions of block sizes such as TF-IDF [78, 156].

Comparison cleaning (CC) takes as input the set X of all the intra-block record

pairs in the block collection B′ (which is a subset of the intra-block record pairs in

B) and returns a graph P = (V,A), with A ⊆ X, by pruning pairs that are likely to

be non-matching. Comparison cleaning is typically performed by assigning each pair

a weight : X → IR and then pruning pairs with low weight. Weighting strategies

include meta-blocking [154] possibly with active learning [176, 67]. In classic meta-

blocking, weight(u, v) corresponds to the number of blocks in which u and v co-occur,

based on the assumption that that more blocks a record pair shares, the more likely it

is to be matching.1 The recent BLOSS strategy [67] employs active learning on top of

the pairs generated by meta-blocking, and learns a classifier using features extracted

from the blocking graph for further pruning.

We denote with B(X, Y, Z) a blocking strategy that uses the methods X, Y ,

and Z, respectively for block building, block cleaning and comparison cleaning. The

strategy used in our cars example can be thus denoted as B(standard blocking, TF-

IDF, meta-blocking).

After blocking. Typical ER algorithms include pair matching and entity clustering

operations. Such operations label as “matching” the pairs referring to the same entity

and “non-matching” otherwise, and typically require the use of a classifier [151] or a

1This assumption holds for block building methods such as standard blocking, q-grams blocking
and sorted neighborhood with multiple orderings [117], and extends naturally to canopy clustering
by using multiple similarity functions.
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crowd [197]. Clustering consists of building a possibly noisy clustering C ′ according

to labels, and has been discussed in Chapter 3.

4.3 Overview of pBlocking

Analogous to traditional blocking methods, pBlocking takes as input a collection

V of records and returns a blocking graph P . A high-level view of the methods

introduced in pBlocking, for each of the main blocking sub-tasks of Section 4.2, is

provided below. Such methods, unlike previous ones, can leverage feedback of partial

ER results.

Block building in pBlocking constructs new blocks arranged in the form of a

hierarchy. First level blocks are initialized with blocks generated by a traditional

method (e.g., standard blocking, sorted neighborhood, canopy clustering or q-gram

blocking). Subsequent levels contain intersections of the blocks in the previous levels.

pBlocking can use feedback from the partial ER output to build intersections such as

‘corvette ∧ c6’ that can lead to new, cleaner blocks, and avoid bad intersections such

as ‘corvette ∧ chevrolet’ that would not improve the fraction of matching pairs in P

(Chevrolet Corvette C6 and Z6 are different entities). We discuss block intersection

in Section 4.4.

Block cleaning in pBlocking prunes dirty blocks based on feedback-based scores.

First round scores are initialized with a traditional method (e.g. TF-IDF). Then,

scores are refined based on feedback by combining two quantities: the fraction p(B)

of matching pairs in a block B, and the block uniformity u(B), which captures the

distribution of entities within the block (u(B) is the inverse of perplexity [141]). Since

the goal of blocking phase is to identify blocks that have a higher fraction of matching

pairs and fewer entity clusters, we combine the above values as score(B) = p(B)·u(B).

pBlocking can use feedback from the partial ER output to estimate p(B) and u(B),

yielding high scores for clean blocks such as ‘malibu’ (high p(B) and high u(B)) and
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Algorithm 9 Our blocking method pBlocking

Require: Records V , methodsX, Y , and Z for each blocking step. Default: X=token
blocking, Y= TF-IDF and Z=meta-blocking.

Ensure: Blocking graph P
1: C ← ∅
2: B ← build the first level of block hierarchy with method X
3: scores← initialize block scores using method Y
4: P ← block cleaning and comparison cleaning with method Z
5: P new ← ∅
6: for round=2; round ≤ 1/φ ∧ P 6= P new; round++ do
7: while ER progress is less than φ do
8: C ← Execute an incremental step of method W for pair matching and

clustering on P
9: end while

10: score← update the block scores according to C ′ //Feedback

11: B ← update the block hierarchy based on score
12: P ← P new

13: P new ← block cleaning and comparison cleaning with Z
14: end forreturn H

low scores for dirtier blocks such as ‘navigation’ (low p(B) and low u(B)), and ‘c6’

(low u(B)). We discuss block scoring in Section 4.5.

Finally, comparison cleaning in pBlocking is implemented with a traditional

method such as meta-blocking.

Workflow. Algorithm 9 describes the pBlocking workflow and how the intro-

duced blocking methods can be used. We denote with pBlocking(X, Y, Z) a progres-

sive blocking strategy that uses the methods X, Y and Z, respectively for building

the first level of the block hierarchy, initializing the block scores, and performing

comparison cleaning as described in Algorithm 9. In our cars example, we have

pBlocking(standard blocking, TF-IDF, meta-blocking).

We first initialize the set of clusters C, the block hierarchy and the block scores

(lines 1–3). The next step (line 4) consists of computing the first version of the

blocking graph P according to the selected method for comparison cleaning (e.g.,

meta-blocking). The graph P is then progressively updated, round after round (lines

6–12). In order to activate the feedback mechanism, pBlocking needs to interact
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with an ER algorithm W for pair matching and clustering operations (line 7–8).

Algorithm W is executed over P until it makes a progress of φ with φ ∈ [0, 1], that is,

until φ · n log2 n record pairs have been processed since the previous round.2 At that

point, the algorithm W is interrupted, C is updated (line 8) and sent as feedback

to all of pBlocking’s components. Based on such feedback, we update the function

score(B) = p(B) · u(B) (line 9) and construct new blocks in the form of a hierarchy

(line 10). Higher score blocks are used to enumerate the most promising record

pairs and generate the updated blocking graph P new (lines 11-12). When either

the maximum number of rounds 1
φ

has been reached (setting φ = 1 is the same as

switching off the feedback) or the blocking result converges (P = P new), pBlocking

terminates by returning P .

We present a formal analysis of the effectiveness of pBlocking in Section 4.6.

We refer to Section 4.7 for experiments. Due to its robustness to different choices

of the pair matching algorithm W , we do not include W in pBlocking’s parameters

(differently from X, Y , Z). Natural choices for W include progressive ER strategies

that can process P in an online fashion and compute C incrementally [192, 194,

151]. However, traditional algorithms, such as [78] can be used as well by adding

incremental ER techniques [109, 200] on top.

4.3.1 Computational Complexity

For efficiency, it is crucial to ensure that the total time and space taken to compute

P is close to linear in n. Since every round of pBlocking comes with its time and

space overhead, we first describe how to bound the complexity of every round and

then discuss how to set the parameter φ in Algorithm 9 (and thus the maximum

number of rounds) to bound the complexity of the entire workflow.

2For algorithms such as [194], progress can be defined as a fraction φ ·n of processed records since
the previous round.
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Round Complexity. pBlocking implements the following strategies to decrease

overhead of each round.

Efficient block cleaning. We compute the block scores by sampling Θ(log n) records

from each of the top O(n) high-score blocks computed in the previous round.

Efficient comparison cleaning. For simplicity, we build P by enumerating at most

Θ(n log2 n) intra-block pairs by processing blocks in non-increasing block score.

Based on the above discussion, we have Lemma 1.

Lemma 1. A single round of pBlocking(X, Y, Z), such as pBlocking( standard

blocking, TF-IDF, meta-blocking) has O(n log2 n) space and time complexity.

Workflow Complexity. As discussed in Section 4.6, φ can be set to a small con-

stant fraction. Thus, along with Lemma 1, this guarantees an O(n log2 n) complexity

for the entire workflow. Experimentally a smaller φ value yields higher final recall,

thus as a default we set φ = 0.01, yielding a maximum of 100 rounds. Although such a

φ value gets the best trade-off between effectiveness and efficiency in our experiments,

we also observe that slight variations of its setting do not affect the performance much

(Section 4.7), demonstrating the robustness of pBlocking.

4.4 Block Building

One of the major challenges of block building (BB) is that when generating candi-

date pairs that capture matches it can also generate a number of non-matching pairs.

This phenomenon is highly prevalent in datasets with very few matching pairs. To

overcome this challenge, our block building by intersection algorithm takes a collec-

tion of blocks B1, . . . , Bm built by a traditional method for BB and creates smaller

clean blocks out of large dirty ones, thus contributing to the recall of the blocking

graph without adding extra non-matching pairs. An intersection block hierarchy H

is constructed as follows. Let the first layer be B1, . . . , Bm. Then blocks in layer L

consist of the intersection of L distinct blocks in the first layer.
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Example 3. Consider our cars example in Section 4.1, and the blocks corresponding

to tokens ‘corvette’ and ‘c6’, namely Bcorvette, and Bc6. A sample block in the second

level of H is Bcorvette,c6 = Bcorvette∩Bc6. When we build the new block, we only include

records containing the two tokens ‘corvette’ and ‘c6’ (possibly non consecutively), thus

obtaining a cleaner block than the original ones.

Refined blocks. We refer to the newly created block as a refined block, and to the

intersecting blocks as parent blocks. Not all the refined blocks are useful. We need

one of the following correlation-based conditions to hold to decide if a refined block

Bi,j must be kept in H.

• score(Bi,j) > score(Bi) · score(Bj), that is, the score of the refined block is

higher than the combined score of the parent blocks.

• The existence of a randomly chosen record r in blocks Bi and Bj is positively

correlated, i.e. Pr[r ∈ Bi,j] = |Bi,j|/n > Pr(r ∈ Bi) · Pr(r ∈ Bj), which

simplifies to |Bi,j| > |Bi||Bj |
n

. For example, the number of common records

in blocks corresponding to tokens ‘c6’ and ‘corvette’ is much higher than the

common records in blocks corresponding to ‘navigation’ and ‘c6’.

Suppose the maximum depth of the hierarchy is d which is a constant. The construc-

tion of refined blocks can take O(nd) time if the number of blocks considered in the

first layer is O(n). For efficiency, we iterate over the records (linear scan) and for

each record r, we consider all pairs of blocks that contain r as candidates to generate

blocks in the different levels of the hierarchy. The following lemma bounds the total

number of refined blocks across the hierarchy.

Lemma 2. The number of blocks present in H is O(n) if each record r is present in

a constant number of blocks.

Proof. Our algorithm considers each record u ∈ V and generates intersection blocks

by performing conjunction of blocks that contain the record u. Suppose the record u
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Algorithm 10 Block Layers Creation

Require: Set of records V , depth d
Ensure: Layer set {L1, . . . , Ld}

1: for i = 1; i ≤ d; i+ + do
2: Li ← φ
3: end for
4: processed ← φ
5: for v ∈ V do
6: blockLst← getBlocks(v)
7: for i = 2; i <d; i+ + do
8: for B = {Bj : Bj ∈ blockLst}, |B| = i do
9: B′ = ∩Bj∈BBj

10: if B′ /∈ processed then
11: Li.append(B′)
12: processed.append(B′)
13: end if
14: end for
15: blockLst← Li
16: end for
17: end for

is present in γu blocks at the first layer. Then the maximum number of blocks present

in H that contain u is
∑d

i=1

(
γu
i

)
. Assuming γu is a constant, the maximum number

of blocks in the hierarchy is n
∑d

i=1

(
γu
i

)
= O(n).

Refinement algorithm. We are now ready to describe pBlocking’s intersection

method for building the block hierarchy. Our method has two steps:

• (Algorithm 10) The first step creates all possible blocks considering the inter-

section search space.

• (Algorithm 11) The cleaning phase removes the blocks that do not satisfy the

correlation criterion described above.

Algorithm 10 describes the creation step, which iterates over all the records in the

corpus and creates all possible blocks per record. The list of all blocks to which a

record belongs is constructed (denoted by blockLst) and the new blocks are added in

different layers. The layer of the new block depends on the number of intersecting
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Algorithm 11 Layer Cleaning

Require: Layer set {L1, . . . , Ld}
Ensure: Cleaned Layer set {L1, . . . , Ld}

1: for i = 2; i < d; i+ + do
2: for block ∈ Li do
3: parentLst ← getParents(block)

4: if
∏

p∈parentLst score(p) < score(block) or
∏

p∈parentLst
|Li−1[p]|

n
< |Li[block]|

n

then
5: continue
6: else
7: Li.remove(block)
8: end if
9: end for

10: end for

blocks that constitute the new block. Then, the cleaning step in Algorithm 11 iter-

ates over the different layers and keeps only the blocks that satisfy the score or size

requirements. For a block in layer q, getParents() identifies the two blocks which

are in layer (q − 1) whose conjunction generates the block being considered. If these

parents have been removed during the cleaning phase, then their parents are consid-

ered and the process is continued recursively until we end up at the ancestors present

in the list of blocks.

Block Layers Creation (Alg. 10) constructs all blocks in the form of a hierarchy

and Layer Cleaning (Alg. 11) deactivates the blocks that do not satisfy the corre-

lation requirements. Since the result of Block Layers Creation does not change in

different pBlocking iterations, decoupling the creation component from the cleaning

component (which changes dynamically) allows for more efficient computation.

Time complexity. Assuming the depth of the hierarchy is a constant, Algo-

rithms 10 and 11 operate in time linear in the number of records n. Block refinement

takes 3 minutes for a dataset with one million records in our experiments.
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4.5 Block Cleaning

Let A ⊂ V ×V be the pairs selected by blocking phase at a given point (we recall

that A is the edge set of the blocking graph P = (V,A)) and each considered pair

(u, v) ∈ A has a similarity value denoted by pm(u, v). A block B ⊆ V refers to a

subset of records. Using this notation, we discuss the different methods for scoring

blocks and how the scores converge with feedback for effective ER performance.

Block scoring. Block scoring helps to distinguish informative blocks based on

their ability to capture records from a single cluster. By selecting pairs within in-

formative blocks, down-stream ER operations can focus on records pairs that have a

high probability of being a match. The most common mechanism used in the liter-

ature is TF-IDF and it assigns block scores inversely proportional to the block size

prioritizing smaller blocks over larger ones. If the dataset has small clusters, such a

simple method can work well. However, if the dataset has a skewed cluster size dis-

tribution, some large blocks are just uninformative (and are rightfully less preferred

by TF-IDF), but others can represent a large cluster and thus should stand out in

the scoring. Distinguishing these blocks before pair matching can be difficult, but

pBlocking provides a way to leverage the feedback.

Specifically, the scoring algorithm of pBlocking prioritizes blocks having (a) high

fraction of matching pairs measured as matching probability within a block and (b)

fewer number of clusters (especially larger clusters) measured as uniformity (a func-

tion of entropy of the cluster distribution within a given block B). Lower entropy and

hence lower diversity values indicate the representativeness of B towards a particu-

lar cluster as opposed to higher entropy values which refer to the presence of many

fragmented clusters.

More formally, the matching probability score identifies the probability that a

randomly chosen pair (u, v) | u, v ∈ B refers to the same entity and is defined as

follows.
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Definition 4 (Matching Probability score p(B)). The value p(B) is defined as the

fraction of matching pairs within a block B.

The block uniformity, u(B) captures perplexity of cluster distribution within B

measured in terms of its entropy.

Definition 5 (Cluster Entropy H(B)). The cluster entropy of a block, H(B) refers

to the entropy of the cluster distribution when restricted to the records present in block

B. Mathematically, H(B) = −∑C∈C pC log pC, where pC = |C ∩B|/|B| refers to the

probability that a randomly chosen node from B belongs to cluster C.

Using H(B), block uniformity score is defined as follows.

Definition 6 (Block Uniformity u(B)). The block uniformity u(B) = e−H(B) is the

inverse of perplexity [141] of the cluster distribution within the block where perplexity

refers to the exponential of cluster distribution entropy.

Example 4. Suppose that we know that a block B contains records of two clusters C1

and C2 and thus we can compute the uniformity of B exactly. If the two clusters are

perfectly balanced in B, i.e., |C1 ∩B| = 0.5 · |B| and |C2 ∩B| = 0.5 · |B|, the entropy

is H(B) = −0.5 log 0.5− 0.5 log 0.5 ≈ 0.69 and thus u(B) = e−H(B) = 0.5. If there is

some skew, e.g. |C1∩B| = 0.7 · |B| and |C2∩B| = 0.3 · |B|, then the entropy is lower

H(B) = −0.7 log 0.7 − 0.3 log 0.3 ≈ 0.61 and the uniformity is higher u(B) ≈ 0.54.

In the extreme case where C1 ∩B = B and C2 ∩B = ∅, H(B) = 0 and u(B) = 1.

Note that when resolving two duplicate-free datasets where all clusters are of size

2 (also known as Record Linkage) the entropy increases with block size, thus block

uniformity yields comparable results to traditional TF-IDF.

Since the goal of block scoring is to identify blocks that have high matching

probability and high uniformity, we multiply the two values to get a final estimate of

the block score.
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Definition 7 (Block Score, score(B)). The score of a block B, score(B), is defined

as the product of matching probability score and uniformity score of B. That is,

score(B) = p(B)u(B).

Next, we describe the algorithm to estimate these components of block score.

The exact value of matching probability and block uniformity requires complete ER

results. However, pBlocking estimates these scores initially with the similarity esti-

mates of every pair of records and refines these scores with additional feedback from

partial ER results.

Matching probability score. The matching probability score is estimated as the

average matching similarity of pairs of records within the block, i.e.:

p(B) =

∑
u,v∈B pm(u, v)(|B|

2

)
where pm(u, v) is estimated as follows:

• for pairs declared as matches, we set pm(u, v) = 1;

• for pairs declared as non-matches, we set pm(u, v) = 0;

• for unlabelled pairs, we use the pm values computed by common similarity

metrics (e.g. via jaccard similarity or the similarity-to-probability mapping as

in [161]).

Block uniformity estimation. Estimating uniformity score requires the cluster

size distribution in B, which is harder to infer from the prior similarity values. We

next describe a mechanism to estimate entropy H(B) needed to compute the uni-

formity score. We consider each record u ∈ B, and consider the cluster C(u) that

contains u. We are interested in computing |C(u)∩B|
|B| in order to compute entropy

H(B). Instead, we compute the expected size of |C(u)∩B| as Eu = E[|C(u)∩B|] =∑
v∈B pm(u, v) based on pm values of edges incident on u. We compute the expected

cluster size for every record u ∈ B and sort them in non-increasing order. Let L be
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the sorted list. Let the first record in the sorted list L, that is, the node with highest

expected cluster size in B be u. On expectation u has Eu records in B that belong

to C(u). All these records must have similar expected cluster sizes as well. We put

u and the next bEuc records from L to a set SU , assuming that they belong to the

same cluster C(u). We recurse on L \ SU until a partition {SU , SV , . . . } of the block

is generated. The size of each partition can be thought of as a rough estimate of the

true cluster distribution in B and is used to calculate the entropy.

Example 5. Consider a block B, with |B| = 10. Let [u1, u2 . . . u10] be the correspond-

ing list L of records sorted in non-increasing Eui values. If Eu1 =
∑

i∈2...10 pm(u1, ui) =

6.6 we set SU1 = {u1 . . . u1+bEu1c} = {u1 . . . u7} and then consider the next node in

L which is u8. If Eu8 =
∑

i∈9,10 pm(u8, ui) = 2 we set SU8 = {u8 . . . u8+bEu8c} =

{u8 . . . u10} and then finish. As |SU1| = 0.7 · |B| and |SU8| = 0.3 · |B| we estimate

u(B) = e−0.7 log 0.7−0.3 log 0.3 ≈ 0.54.

The value returned by this mechanism is generally an under-estimate of the true

entropy H(B) but in practice it can approach H(B) quickly with increasing feedback

data and turns out to be very efficient. Section 4.6.2 discusses this convergence rate

in different application scenarios.

Efficient block cleaning. Traditional scoring strategies such as TF-IDF are

based on block size computation and thus operate in linear time. Computing our

score(B) values requires instead to process intra-block pairs and thus yields poten-

tially quadratic computation. Hence, we sample Θ(log n) records from each block for

its score computation. This strategy operates in Θ(log2 n) time and takes less than

1 minute for a data set with 1M records in our experiments. Our sampling strategy

can give a constant approximation of the matching probability scores estimated using

all the records within each block.
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4.6 Analysis of pBlocking

In this section we present a theoretical analysis of the effectiveness of pBlocking.

We first analyze the pair recall of blocking in the absence of feedback by considering

a natural generative model for block creation. Next we analyze the effect of feedback

on block scoring and the final recall.

4.6.1 Pair Recall without Feedback

We start by giving the following basic lemma below.

Lemma 3. The blocking graph P = (V,A) contains a spanning tree for each clique

C∗ of C∗ = (V,E+) iff the Pair Recall is 1.

Proof. If A contains a spanning tree for each clique C∗, then any pair (u, v) ∈ A∩E+

contributes directly to the recall. All pairs of records (u, v) that refer to the same

entity, (u, v) ∈ E+ and are not present in A, (u, v) /∈ A can be inferred from the

edges in the spanning tree using transitivity, ensuring PR=1. For the converse, let

us assume that ∃ C∗ ∈ C∗ such that A does not contain any spanning tree over the

matching edges. This implies that C∗ is split into multiple components (say C1, C2)

when restricted to A∩E+ edges. In this case, the collection of matching edges joining

these components, {(x, y), ∀x ∈ C1, y ∈ C2} cannot be inferred as none of these edges

are processed by the mentioned ER operations, yielding pair recall of P less than

1.

Our probabilistic model for block creation is motivated by the standard block-

ing [155], sorted neighborhood [117] and canopy clustering [147] algorithms which

aim to generate blocks that capture high similarity candidate pairs. This model of

block generation is closely related to Random Geometric Graphs [162] which were

proposed by Gilbert in 1961 and have been used widely to analyze spatial graphs.

Definition 8 (Random Geometric Graphs). Let St refer to the surface of a t-dimensional

unit sphere, St ≡ {x ∈ Rt+1 | ||x||2 = 1}. A random geometric graph Gt(V,E) of n
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vertices V , has parameters t ∈ Z+ and a real number r ∈ [0, 2]. It assigns each vertex

vi ∈ V to a point chosen independently and uniformly at random within St and any

pair of vertices vi, vj ∈ V are connected if the distance between their respective points

is less than r.

Now, we define the probabilistic block generation model.

Definition 9 (Probabilistic Block Generation). The block generation model places

the records u ∈ V independently and uniformly at random within St. Every record

u constructs a ball of volume (α log n/n) with u as the center, where α is a given

parameter and all points within the ball are referred to as block Bu.

The set of points present within a ball Bu can be seen as high similarity points

that would have been chosen as blocking candidates in the absence of feedback. Our

probabilistic block generation model constructs n blocks, one for each node and every

pair of records that co-occur in a block Bu, u ∈ V , has an edge in the blocking graph

P g(V,E) (subscript g to emphasize generative model). Next we analyze pair recall of

P g(V,E).

Notation. Let d(u, v) refer to the distance between records u and v and rε refer

to the radius of an ε-volume ball3 in t dimensions. Under these assumptions we first

show that the expected number of edges in the blocking graph P g is at least α(n−1) logn
2

and then that P g(V,E) has recall << 1.

Lemma 4. The blocking graph P g(V,E) contains at least α (n−1) logn
2

candidate pairs

on expectation.

Proof. Each record u ∈ V , constructs a spherical ball of volume α log n/n, with

u as the center and all points within the ball are added as neighbors of u in the

blocking graph. Hence, the number of expected neighbors of u within the ball is

3ε = O(rtε).
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α(n − 1) log n/n. There are a total of n such blocks (one ball per record) and each

of the candidate pairs (u, v) is counted twice (once for the block Bu and once for the

block Bv). Hence there are a total of α(n−1) logn
2

such candidate pairs. Notice that this

analysis ignores the candidate pairs (u, v) which are more than rα logn/n from each

other but are connected in the blocking graph. This would happen if they are present

together in another block centered at w ∈ V \ {u, v}, that is ∃w | d(u,w) ≤ rα logn/n

and d(v, w) ≤ rα logn/n. This shows that the total number of candidate pairs in the

blocking graph is at least α(n−1) logn
2

.

Additionally, P g(V,E) has the following property:

Lemma 5. A blocking graph P g is a subgraph of a random geometric graph Gt with

r = 2rα logn/n

Proof. Following the construction of blocking graph, if the distance between any pair

of vertices u, v ∈ V is less than or equal to rα logn/n, then (u, v) ∈ E. Similarly, any

pair of nodes u, v ∈ V such that d(u, v) > 2rα logn/n, then (u, v) /∈ E. However,

if rα logn/n < d(u, v) ≤ 2rα logn/n, the pair (u, v) ∈ Hg only if ∃w ∈ V such that

d(u,w) ≤ rα logn/n and d(v, w) ≤ rα logn/n. This shows that the blocking graph Hg is

a subgraph of a random geometric graph where a pair of vertices (u,v) is connected

only if the distance d(u, v) ≤ 2rα logn/n is connected.

This means that if Gt has suboptimal recall then P g also has poor recall and hence,

we analyze the recall of Gt with r = 2rα logn/n. Lemma 3 shows that the blocking

graph will achieve recall = 1 only if it contains a spanning tree of each cluster. Hence,

we analyze the formation of spanning trees in G′t = Gt(V,E ∩ E+) that refers to Gt

restricted to matching edges. We show the following result,

Lemma 6. The graph Gt restricted to matching edges in the ground truth, E+ splits

a cluster C, where |C| < n/α into multiple components.
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Proof. Using the connectivity result from [162], a random geometric graph Gt of n

nodes is disconnected if the expected degree of the nodes is < log n. Additionally,

it splits the graph Gt into many smaller clusters. Therefore, a cluster C ∈ V is

disconnected in G′t = Gt(V,E ∩ E+) if the degree of each vertex is < log |C|.

The expected degree of a record u ∈ C, restricted to G′t is O(|C|(α logn
n

)) < log n

if |C| < n
α

. Hence, the expected degree of each node within a cluster C is o(log |C|),

leading to formation of disconnected components within C.

Theorem 4. A blocking graph P g(V,E), generated according to the probabilistic block

model has recall < 1 unless all clusters have size Θ(n) assuming α is a constant.

Proof. Lemma 6 shows that the cluster C of size < n/α is split into various discon-

nected components when restricted to matching edges. Hence, the blocking graph P g

does not form a spanning tree of C and will have recall less than 1. Since the cluster

C is broken into many small clusters, the drop in recall is also significant.

This analysis exposes the lack of robustness of performing blocking without feed-

back.

4.6.2 Pair Recall with Feedback

This section analyzes the pair recall of blocking when employed with pBlocking.

For this analysis, we consider the noisy edge similarity model pm(u, v) that builds on

the edge noise model studied in prior work on ER [83].

Definition 10 (Noisy edge model). Noisy edge model defines the similarity of a pair

of records with parameters θ ∈ (0, 1), β = Θ(log n) and β′ = Θ(log n). A matching

edge (u, v) ∈ E+ has a similarity distributed uniformly at random within [θ, 1] with

probability 1− β
n

and remaining edges are distributed uniformly within [0, θ). A non-

matching edge has similar distribution on similarity values with β′ instead of β.
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When β << β′, the matching probability score of a block with a higher frac-

tion of matching edges is much higher than the one with fewer matching edges and

pBlocking algorithm will consider blocks in the correct ordering even in the absence

of feedback. However, it is most challenging when non-matching edges are generated

with a distribution similar to matching edges, that is β and β′ are close. We define

a random variable X(u, v) to refer to the edge similarity distributed according to the

noisy edge model. Following this notion, let µg and µr denote the expected similarity

of a matching and non-matching edge respectively.

µg = (1− β/n)
1 + θ

2
+
β

n

θ

2

and µr has the same value with β′ instead of β.

We show that the feedback-based block score initialized with TF-IDF weights

is able to achieve perfect recall with feedback of Θ(n log2 n) pairs assuming that

the ER phase makes no mistakes on the pairs that it processes, helping to ensure

the correctness of partially inferred entities. Additionally, the feedback from the

ER phase is distributed randomly across edges within a block. We also discuss the

extension when feedback is biased towards pairs from large entity clusters and high

similarity pairs. In those scenarios, pBlocking’s scoring mechanism converges quicker

leveraging the larger feedback due to transitivity.

To prove the convergence, we first estimate the lower and upper bound of matching

probability scores of a block B in the presence of feedback and show that feedback

of Θ(log2 n) is enough to rank blocks with larger fraction of matching pairs higher

than the blocks with fewer matching pairs. Our analysis first considers the blocks

containing more than γ log n records (where γ is a large constant say 72/θ) and we

analyze the smaller blocks separately.
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Convergence for large blocks. First, we evaluate the converged block scores

with feedback F and evaluate the condition that the block scores are in the correct

order.

Lemma 7. For all blocks B, with more than γ log n records, the matching prob-

ability score of B, p(B) after feedback of F randomly chosen pairs is at most

(1 − α)|F |/
(
γ logn

2

)
+ 1.5p′(1 − |F |/

(
γ logn

2

)
) with a probability of 1 − 1/n3, where α

is the fraction of non-matching pairs in B, γ is a constant and p′ = µg(1−α) + µrα.

Similarly, we prove a lower bound on block score.

Lemma 8. For all blocks B with |B| ≥ γ log n, the matching probability score after

a feedback F ≤
(
γ logn

2

)
record pairs in B is at least (1 − α)|F |/

(
γ logn

2

)
+ 0.5p′(1 −

|F |/
(
γ logn

2

)
) with a probability of 1 − 1/n3, where p′ = µg(1 − α) + µrα and γ is a

constant.

Now, we analyze different scenarios of edge noise to understand the trade-off

between required feedback and noise.

Lemma 9. For every pair of blocks, Bc, Bd with more than γ log n records, the match-

ing probability score estimate of Bc with 1 − α fraction of matching edges is greater

than the score of Bd with 1− β (with α < β) fraction of matching edges with a prob-

ability of 1 − 2
n

if ((1− α)µg + αµr) > 3 ((1− β)µg + βµr) even in the absence of

feedback.

Proof. Using Lemma 7 and 8, we can evaluate the condition that score(Bc) >

score(Bd) with a probability of 1 − 2
n3 , in the absence of feedback. In order to

guarantee this for all blocks, we perform a union bound over Θ(n2) pairs of blocks,

guaranteeing the success rate to 1− o(1).

The previous lemma shows a scenario where the noise is not high and the prior

based estimation of matching probability scores give a correct ordering of blocks. Now,
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we consider the more challenging noisy scenario and show that Θ(log2 n) feedback per

block is enough for correct ordering.

Lemma 10. For every pairs of blocks, Bc, Bd with more than γ log n records, the

matching probability score estimate of Bc with 1 − α fraction of matching edges is

greater than the score of Bd with 1−β (where α < β) fraction of matching edges with

a probability of 1− 2
n

whenever the ER phase provides overall feedback of Θ(n log2 n)

randomly chosen edges.

Proof. Using Lemma 8, score(Bc) ≥ |F |/
(
γ logn

2

)
(1 − α) + 0.5(µg(1 − α) + αµr)(1 −

|F |/
(
γ logn

2

)
) and using Lemma 7, score(Bd) ≤ |F |/

(
γ logn

2

)
(1 − β) + 1.5(µg(1 − β) +

βµr)(1 − |F |/
(
γ logn

2

)
) with a probability of 1 − 2

n3 . Hence, score(Bc) > score(Bd)

holds if F = c log2 n, where c is a large constant. With a union bound over
(
n
2

)
pairs

of blocks, the score of any block Bc (with higher fraction of matches) is higher than

that of any block Bd (with lower fraction of matches) with a probability of 1 − 2
n
.

The total feedback to ensure Θ(log2 n) feedback on each block is Θ(n log2 n) as we

consider Θ(n) blocks for scoring.

Similar lemmas hold for the uniformity score calculation.

Convergence for small blocks. The above analysis does not extend to blocks

of size less than γ log n. However, all these blocks are ranked higher than the large

blocks by TF-IDF. Hence, when pBlocking is initialized, the initial set of candidates

generated will consider all these blocks before any of the larger blocks. In the worst

case, there can be δn such blocks, for some constant δ because our approach constructs

a constant number of blocks per record (say δ). Thus, the maximum number of

candidates considered from small blocks is δn
(
γ logn

2

)
and all these candidates are

considered in the first iteration of pBlocking. Following the discussion on small and

large blocks, we prove the main result of the convergence of pBlocking.
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Theorem 5. pBlocking pipeline achieves perfect recall with a feedback of O(n log2 n)

spread randomly across blocks.

Proof. For blocks with more than γ log n records, Lemmas 9 and 10 show that a

block with higher fraction of matching pairs is ranked higher than a block with fewer

matching pairs, if provided with a feedback of Θ(n log2 n). Blocks with less than

γ log n records have not been considered above but in the worst case, these blocks

generate O(n log2 n) candidates as the maximum number of blocks considered is Θ(n).

This ensures that a feedback of Θ(n log2 n) is sufficient to ensure the stated result.

Table 4.2: Number of nodes n (i.e., records), number of clusters k (i.e., entities), size
of the largest cluster |C1|, the total number of matches in the data set |E+| and the
reference to the paper where they appeared first.

dataset n k |C1|
∣∣E+

∣∣ ref. description

songs 1M 1M 0.99M 2 146K [69] Self-join of songs with very few matches.
citations 1.8M 2.5M 3.8M 2 558K [69] Bibliographic records from DBLP and CiteSeer.
products 2554 22K 23.5K 2 1154 [103] A collection of products from retail companies website.
cora 1.9K 191 236 62.9K [146] Title, author, venue, and date of scientific papers.
cars 16.5K 48 1799 5.9M [134] Descriptions of cars with make and model.
camera 29.7K 26K 91 102K [1] A collection of cameras from over 25 retail companies.
febrl1 100M 99.5M 2 500K [61] A collection of hospital patients data, including name,
febrl2 100M 50M 100 2500M [61] address and phone number, that we produced using

the dataset generator of the Febrl system.

Discussion. Lemma 10 considers the convergence of block scores when the feedback

is provided randomly over Θ(log2 n) edges within a block. If the feedback is biased

towards Θ(log2 n) non-matching edges, the scores of noisier blocks will drop quicker

and pBlocking will converge faster. Similarly, if the ER algorithm queries pairs with

higher similarity (e.g. edge ordering [197]) or grows clusters by processing nodes

(e.g. node ordering [194]), providing larger feedback due to transitivity, this will only

facilitate the growth (reduction) in score of blocks with higher (lower) fraction of

matching pairs leading to faster convergence.

Finally, for the presented analysis, we assumed that oracle answers are correct.

Nonetheless, (i) for small amount of oracle errors (∼ 5%), we can leverage methods

such as [87, 191] to correct them, and (ii) in more challenging applications with up
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to 20% erroneous answers, we show experimentally (see Section 4.7) that pBlocking

keeps converging, only at a slightly slower rate and demonstrates robustness.

4.7 Experiments

This section empirically evaluates the ability of pBlocking to boost the efficiency

and effectiveness of blocking and thus to improve the performance of ER. We also

demonstrate the fast convergence of pBlocking thus confirming our theoretical anal-

ysis in Section 4.6, and the robustness of pBlocking in different scenarios, including

errors in ER results. This section is structured as follows.

• Section 4.7.1. We compare the efficiency and effectiveness of pBlocking to

prior work showing higher pair recall and faster running time in all the data

sets.

• Section 4.7.2. We analyze pBlocking when used in conjunction with different

ER methods showing higher F-score (up to 60%) irrespective of the method of

choice.

• Section 4.7.3. We study the dynamic performance of pBlocking and show its

ability to converge monotonically to high effectiveness without compromising

on efficiency in different scenarios including errors in ER results.

Before showing results we describe our experimental setup and the methods consid-

ered in our experiments.

Experimental set-up. We implemented the algorithms in Java and machine

learning tools in Python. The code was run on a server with 500GB RAM and 64

cores. We consider six real-world data sets (see Table 4.2) of various sizes and diverse

cluster distributions. All the datasets are publicly available and come with their own

manually curated ground truth. We use publicly available pre-trained deep learning
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models4 to generate text descriptions of the image data (cars). febrl1 and febrl2

were constructed with uniform and zipfian distributions of cluster sizes. For more

details about these parameters, please refer to [61]. For implementing the hierarchy

we observed that we can trim at a depth of 10 without any significant drop in the

performance. The implementation of blocking strategies is adapted from [159]5.

Blocking methods. We consider 10 strategies for the blocking sub-tasks described

in Section 4.2 and combine such strategies into 20 different pipelines. We study such

pipelines with and without our pBlocking approach on top.

BB) We consider five methods for Block Building (BB) and follow the suggestions

of [160] for their configuration. Standard blocking [155] (StBl) generates a

new block for each text token in the dataset. Q-grams blocking [106] (QGBL)

generates a new block for each 3-gram of characters. Sorted neighborhood [117]

(SoNE) sorts the tokens for each attribute and generates a new block for every

sliding window of size 3 over these sort orders. Dynamic Blocking [148] (DyBl)

generates a new block for each token and constructs a hierarchy containing

intersections of these large blocks. All blocks of size more than 20 are considered

for hierarchy construction6 Canopy clustering [147] (CaCl) generates a new block

for each cluster of high similarity records (calculated as unweighted Jaccard

similarity). We construct multiple instances of canopies (blocks), one based on

the similarity of each attribute of record pairs and one based on all attributes

together.

BC) We consider 2 traditional block scoring methods for Block Cleaning (BC),

dubbed TF-IDF [173] and uniform scoring (Unif). For comparison purposes,

4https://cloud.google.com/vision, https://www.ibm.com/watson/services/

visual-recognition/

5http://sourceforge.net/projects/erframework/

6This threshold on block size was shown to have best blocking quality in [148].
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we process blocks in non-increasing score order until the number of intra-block

pairs equals a parameter M and then prune the remaining blocks. We set

default M to 500 million for febrl and 10 million for all other datasets7.

CC) We consider 2 popular methods for Comparison Cleaning (CC), dubbed meta-

blocking [154] (MB) and BLOSS [67], and follow the suggestions of [154] for

their configuration. Weights of record pairs are set to their Jaccard similar-

ity weighted with the block scores from the BC sub-task. We consider the top

100 high-weight pairs for each record and prune the remaining record pairs.

We recall that variants of our approach are denoted as pBlocking(,,) while traditional

blocking pipelines without feedback are denoted as B(,,) where the parameters corre-

spond to techniques for BB, BC and CC sub-tasks, respectively. Default methods are

StBl for BB, TF-IDF for BC and MB for CC. Default φ for pBlocking is 0.01.
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Figure 4.3: Pair recall of B and pBlocking with TF-IDF for BC and varying BB and
CC. (a-d) use MB and (e-h) use BLOSS for CC. CaCl did not finish within 24 hrs on
songs and citations data set.

Pair matching and Clustering methods. We consider the following 3 strategies

that leverage the notion of an oracle to answer pairwise queries of the form “does u

7We note that setting a score threshold rather than a limit on the number of pairs would not
take into account different scores distributions fairly.
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match with v?” (a) Edge [197] with default parameter setting. (b) Eager [87], the

state-of-the-art technique to solve ER in the presence of erroneous oracle answers. (c)

Node is the ER mechanism derived from [194] and was proposed as an improvement

over Edge. The Eager algorithm handles noise for data sets with matching pairs much

larger than n and performs similar to Edge for data sets that have fewer matching pairs

[83], so we use it as default. Each of these techniques recalculate the prioritization of

the updated set of blocked pairs in each feedback round. We implement the abstract

oracle tool with a classifier using scikit learn8 in Python. We consider two variants,

Random forests (default) and a Neural Network. The random forest classifier is

trained with default settings of scikit learn. The neural network is implemented with

a 3-layer convolutional neural network followed by two fully connected layers. We

used word2vec word-embeddings for each token in the records. In structured data

sets, we extract similarity features for each attribute as in [69]. For cars we use the

text descriptions to calculate text-based features along with image-based features.

Given the unstructured nature of text descriptions for some data sets we extracted

POS tags using Spacy9. All the considered classifiers are trained offline with less

than 1, 000 labelled pairs, containing a similar amount of matching and non-matching

pairs. These labelled record pairs are the ones provided by the respective source for

citations, songs, products and camera (the papers mentioned in Table 4.2, column

“ref.”). For cars and cora we perform active learning (following the guidelines of

[69]) to identify a small set of labelled examples for training, which are excluded from

the evaluation of blocking quality.

8https://scikit-learn.org/stable/

9https://spacy.io/
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Figure 4.4: Pair recall of B and pBlocking with Unif for BC and varying BB and
CC. (a-d) use MB and (e-h) use BLOSS for CC. CaCl did not finish within 24 hrs on
songs and citations data set.

4.7.1 Benefits of Progressive Blocking

In this experiment we evaluate the empirical benefit of pBlocking compared to

previous blocking strategies.

Blocking effectiveness. Figures 4.3 and 4.5 compare the Pair Recall (PR) of

pBlocking and of a traditional blocking pipeline B for different choices of the block

building and comparison cleaning techniques. We use default block cleaning technique

with TF-IDF and default M value. pBlocking achieves more than 0.90 recall for all

data sets and with all the block building strategies, demonstrating its robustness to

different cluster distributions and properties of the data. Conversely, most of the

considered block building strategies (StBl, QGBL, SoNE and DyBl) have significantly

lower recall even when used together with BLOSS for selecting the pairs wisely. QGBL

and SoNE help to improve recall in data sets with spelling errors but due to very

few spelling mistakes in our data sets, StBl has slightly higher recall. DyBl creates

blocks of moderate size that are expected to capture matching pairs. This technique

performs better than StBl but the constructed smaller blocks contain a lot of non-

matching pairs that affect pair recall.
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Figure 4.5: Pair recall of B and pBlocking with varying BB, TF-IDF for BC and MB

for CC. CaCl did not finish within 24 hrs on febrl datasets. We observed similar
results with BLOSS for CC.

In terms of the data sets, the no-feedback blocking approach B has varied behavior.

products and camera yield the best performance due to the presence of relatively

cleaner blocks that help to easily identify matching pairs even without feedback.

songs and citations have higher noise in records and cars has a skewed distribu-

tion of clusters thereby making it harder for previous techniques. Even though cars

and febrl2 have low noise, large blocks that contain the majority of the records

referring to same entity are partitioned by DyBl and ranked lower by TF-IDF weight-

ing of blocks. Across all datasets and blocking strategies, the comparison between

pBlocking and B is statistically significant (p < 0.01) using the student’s paired t-

test. For this analysis, we do not consider cora (the smallest data set) as it has less

than 2M pairs and hence, all techniques achieve perfect recall.

Figure 4.4 performs the same comparison with the pipelines initialized using Unif

weights in place of TF-IDF. Since all blocks are assigned equal weight, we consider

the block cleaning threshold of 100 along with default value of M. pBlocking per-

forms substantially better than B for different settings of block building techniques

across various datasets. With comparison to TF-IDF weighting scheme, Unif performs

slightly worse but the difference is not substantial. The no-feedback pipeline B has

varied performance across different data sets with the best performance on products
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Table 4.3: Running time comparison of B and pBlocking with StBl and DyBl for
BB, TF-IDF for BC and MB for CC. The ‘blocking’ column denotes the time taken to
perform blocking and ‘ER’ denotes the time taken to identify matches over blocked
pairs.

StBl

Dataset 0.95 Pair recall Time budget: 1 hr
pBlocking(StBl,TF-IDF,MB) B(StBl,TF-IDF,MB) Pair Recall

Blocking ER Total Blocking ER Total pBlocking B
songs 4.5 min 24.5 min 29 min 3min 180 min 3hrs 3min 0.96 0.78
citations 12 min 43 min 55 min Did not finish in 24 hrs 0.97 0.64
cars 3hr 20min 50 min 4hr 10min 25 min 11hr 30 min 11hr 55min 0.78 0.54
febrl1 55 min 2hr 35 min 3hr 30min Did not finish in 24 hrs 0.64 0.21
febrl2 95 min 4 hr 15 min 5hr 50min Did not finish in 24 hrs 0.34 0.15
products 35 sec 5min 55 sec 6min 30sec 27 sec 5 min 46 sec 6min 13sec 0.99 0.98
camera 42 sec 11min 38 sec 12min 20sec 33 sec 12 min 30 sec 13min 3sec 0.97 0.96
cora 30 sec 4 min 50 sec 5min 20 sec 27 sec 4min 48sec 5min 15sec 1 1

DyBl

pBlocking(DyBl,TF-IDF,MB) B(DyBl,TF-IDF,MB) Pair Recall
Blocking ER Total Blocking ER Total pBlocking B

songs 6.5 min 24.5 min 31 min 5 min 180 min 3hrs 5min 0.96 0.84
citations 15 min 43 min 58 min 15 min 10 hrs 10 hrs 15 min 0.97 0.67
cars 3hr 30min 50 min 4hr 20min 30 min 11hr 25 min 11hr 55min 0.78 0.64
febrl1 58 min 2hr 35 min 3hr 33min 1hr 7min 15hr 16hr 7min 0.64 0.21
febrl2 100 min 4 hr 15 min 5hr 55min 1hr 7min 15hr 20min 16 hr 27min 0.34 0.15
products 38 sec 5min 55 sec 6min 33sec 32 sec 5 min 46 sec 6min 18sec 0.99 0.98
camera 45 sec 11min 38 sec 12min 23 sec 37 sec 12 min 30 sec 13min 7 sec 0.97 0.96
cora 36 sec 4 min 50 sec 5min 26 sec 32 sec 4min 48sec 5min 20sec 1 1

and cora while poorest performance on citations and songs. We observed similar

behavior for cora, camera and febrl datasets.

This experiment demonstrates that pBlocking helps to improve the pair recall

of all blocking techniques (for the same set of parameters) and datasets. Note that

increasing the block cleaning threshold M improves pair recall further but worsens the

efficiency of the pipeline. As an example, [157] enumerates more than 1010 candidates

for million scale datasets (where maximum possible candidates ≈ 1012), as opposed to

10M candidates in Figure 4.3. As reported in [157], the pipeline with 1010 candidates

requires more than 14.5 hours per dataset to achieve 0.82. For a fair comparison of

blocking efficiency, we compare the pair recall within a time budget of 1hr and time

taken to achieve 0.95 pair recall in ‘Blocking efficiency’ paragraph and Table 4.3.

Multiple blocking methods. Figure 4.6 demonstrates the effectiveness of con-

sidering feedback in pipelines where multiple block building procedures are used to
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Figure 4.6: Pair recall of B and pBlocking with combination of two block building
strategies and TF-IDF for BC and MB for CC.

initialize the pipeline. B has lower than 0.6 pair recall even when we consider different

combinations of block building strategies. Using DyBl along with QGBL achieves the

highest pair recall among the considered combinations, due to the ability of DyBl to

construct smaller blocks that capture matching record pairs. However, pBlocking

achieves more than 0.90 pair recall for all combinations of block building strategies.

Blocking efficiency. In this experiment, we consider two different settings to

compare (i) the time required to achieve more than 0.95 pair recall (ii) the pair recall

when the pipeline is allowed to run for a fixed amount of time (1 hour). We run

each technique for various values of M and choose the best value that satisfies the

required constraints. In the case of a fixed budget of running time = 1hour, we run

pBlocking’s feedback loop for the most iterations that allow the pipeline to process

all records in the required time limit.

Table 4.3 compares the total time required to achieve 0.95 pair recall for each

dataset (‘Blocking’ column denotes the time taken to perform blocking and ‘ER’ col-

umn denotes the time taken in pair matching and clustering phases of the pipeline).

The time taken by the blocking component of the pipeline is higher for pBlocking

as compared to B due to the extra effort spent in incorporating feedback, construct-

ing new blocks and ranking based on their quality. However, pBlocking’s blocking

component is highly effective and substantially reduces the time taken to process the
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candidates generated by the blocking phase to identify matches. Overall, pBlocking

provides more than 3 times reduction in running time for most large scale datasets

in this setting. In terms of total number of pairs enumerated, pBlocking considers

around M=10 million to achieve 0.95 recall for citations as opposed to more than

200 million for B. We observed similar results for other block building (SoNE, QGBL,

CaCl and DyBl) and cleaning strategies with a difference that DyBl runs for febrl

datasets in around 16 hrs.

The last two columns of Table 4.3 compare the pair recall of the generated can-

didates when the technique is allowed to run for 1 hour. pBlocking achieves better

pair recall as compared to B across all datasets. The gain in recall is higher for larger

datasets. The performance of pBlocking for cars is lower than that of pBlocking

in Figure 4.3 because the feedback loop does not converge completely in 1hr. The

pipeline runs for 8 rounds of feedback in this duration. This is consistent with the

performance of pBlocking in Figure 4.10a, where the feedback is turned off after 10

iterations. The performance of pBlocking and B is similar for small datasets of low

noise like products, cora and camera as opposed to songs, citations and cars.

Scalability. Figure 4.7 compares the time taken by pBlocking on different sub-

samples of febrl dataset to reach 0.95 pair recall10. The time taken by pBlocking

increases linearly with increase in dataset size and the pipeline identifies a majority

of the matching records in less than 6 hrs. Since the number of matching pairs in

the ground truth increases linearly with dataset size and low noise in records, the

size of the blocking graph and the time taken by the pair matching and clustering

components scales linearly. The time taken by BLOSS is slightly lower than the time

taken by MB because BLOSS processes the meta-blocking graph to further prune out

non-matching record pairs. This optimization increases the time taken by the blocking

10Each sub-sample was generated by using Febrl dataset generator with a smaller value of n, the
number of records.
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Figure 4.7: Time taken by pBlocking and B with StBl for BB and TF-IDF for BC
for varying dataset size.
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Figure 4.8: Comparison of F-score of B(DyBl,TF-IDF,MB) and
pBlocking(DyBl,TF-IDF,MB) with respect to ER progress.

phase of the pipeline but significantly reduces the number of pairs compared by the

pair matching phase, thereby improving the overall efficiency. On the other hand,

B does not run for more than 20M records in less than 24 hrs. This experiment

demonstrates scalability of pBlocking to achieve high recall over large scale datasets

in a reasonable time.

Progressive behavior. Figure 4.8 compares the F-score of different pipelines

with respect to the progress of the ER phase. F-score of the entities identified by

pBlocking grows faster than B, demonstrating its effectiveness to maintain better

progressive behavior. pBlocking achieves more than 0.9 F-score across all datasets

but B converges at a lower F-score due to the loss in pair recall of the blocking phase.

In terms of datasets, pBlocking and B achieve similar progressive F-score throughout
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Table 4.4: (a) Pair recall of pBlocking on varying ER strategies. (b) Comparison
of the final F-score of the Eager method. The blocking graph is computed with
pBlocking(StBl, TF-IDF, MB) and B(StBl, TF-IDF, MB) (both with default settings).

(a)

Dataset B pBlocking

Edge Node Eager

songs 0.53 0.9 0.9 0.9
citations 0.42 0.90 0.87 0.95
cars 0.54 0.98 0.99 0.98
febrl1 0.32 0.98 0.98 0.98
febrl2 0.41 0.97 0.99 0.98
products 0.95 0.98 0.98 0.98
camera 0.92 0.97 0.97 0.97
cora 1 1 1 1

(b)

Dataset B pBlocking

songs 0.65 0.92
citations 0.56 0.92
cars 0.64 0.94
febrl1 0.48 0.98
febrl2 0.58 0.98
products 0.71 0.72
camera 0.92 0.95
cora 0.99 0.99

the ER progress for products dataset. products has around 0.72 final F-score due

to low precision of pair matching and clustering phase. We observed similar behavior

for other blocking pipelines.

4.7.2 Robustness of Progressive Blocking

In this section, we evaluate the performance of pBlocking with varying strategies

for pair matching and clustering in Algorithm 9 (referred to as W in the pseudo-code).

For this analysis, we use the default setting for M as in Figure 4.3.

Varying ER methods. We recall that pBlocking can be used in conjunction

with a variety of techniques for pair matching and clustering. Table 4.4a com-

pares the Pair Recall of the blocking graph, when using the different progressive ER

methods. The final Pair Recall of pBlocking is more than 0.90 in all data sets and

matching algorithms except citations for node ER and more than 0.85 in all cases.

This observation confirms our theoretical analysis in Section 6.5, demonstrating that

the feedback loop can improve the blocking, irrespective of the ER algorithm under

consideration (which is a desirable property for a blocking algorithm). The above

comparison of ER performance considers the algorithms with a default choice of Ran-

dom Forest classifier as the oracle. We observed that the feedback from the ER phase

when using a Neural Network classifier contains slightly more errors but the blocking
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Figure 4.9: Progressive behavior of pBlocking with varying feedback frequency and
errors in the feedback (cars).

phase with pBlocking shows similar recall. We provide more discussion on ER errors

in Section 4.7.3.

Benefit on the final ER result. Table 4.4b compares the F-score of the final ER

results when blocking is performed with and without pBlocking. In this experiment

we use the state-of-the-art algorithm, Eager as the pair matching algorithm with

default parameter values. Final F-score achieved with feedback is more than 0.9 for all

data sets except products. For songs, citations and cars the F-score of pBlocking

is 1.5 times more than that of traditional blocking pipeline without feedback, thus

demonstrating the effects of better effectiveness and efficiency of blocking.

4.7.3 Progressive Behavior

This section studies the performance of pBlocking dynamically, in terms of (i)

effect of feedback frequency φ, (ii) effect of error on convergence, and (iii) convergence

of the blocking result in the maximum number of rounds.

Feedback frequency. The φ parameter represents the fraction of newly processed

record pairs after which feedback is sent from the partial ER results back to the block-

ing phase. Therefore, the parameter φ can control the maximum number of rounds

of pBlocking and how often the blocking graph is updated. In order to describe

the effect of varying φ, Figure 4.9a shows the F-score of ER results as a function
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of the percentage of rounds completed, that we refer to as the blocking progress. In

the figure, different curves correspond to different feedback frequencies, including the

default one (in blue). This plot shows that by updating the blocking graph more fre-

quently (and thus increasing the number of rounds), the F-score increases faster when

φ is reduced from 0.08 to 0.01. The plot also shows that the F-score corresponding

to smaller values of φ (up to 0.01) is consistently higher or equal as compared to

the F-score corresponding to larger values of φ. Given that the running time of the

pipeline increases with more frequent updates (smaller values of φ), there appears to

be limited value in decreasing φ below 0.01, thus justifying our choice for its default

setting.

Effect of ER errors. As in the previous experiment, Figure 4.9b shows the

effect of synthetic error in the ER results by varying the fraction of erroneous oracle

answers. To this end, we corrupted the oracle answers randomly so as to get the

desired amount of noise. We note that even when 1 out of 5 answers are wrong, the

final F-score is almost 0.8, growing monotonically from the beginning to the end at the

cost of a few extra pairs compared. pBlocking converges slower with higher error but

the error does not accumulate and it performs much better than any other baseline.

Additionally, we observed that even with 20% error, the pair recall of pBlocking is

as high as 0.98 even though the F-score is close to 0.8 due to mistakes made by pair

matching and clustering phase. This confirms that pBlocking is robust to errors in

ER results and maintains high effectiveness to produce ER results with high F-score.

Score Convergence. Figure 4.10a compares the Pair Recall (PR) of the blocking

phase of pBlocking(StBl,TF-IDF,MB) after every round of feedback with the recall

of B(StBl,TF-IDF,MB). Both B and pBlocking start with PR value close to 0.52 and

pBlocking consistently improves with more feedback achieving PR close to 0.9 in less

than 18 rounds. This shows the convergence of pBlocking’s score assignment strategy

to achieve high PR values even with minimal feedback. Figure 4.10b compares the
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Figure 4.10: Effect of feedback loop in cars dataset.

final F-score achieved by our method if the feedback loop is stopped after a few

rounds. It shows that pBlocking achieves more than 0.8 F-score even when stopped

after 10 rounds of feedback. This experiment validates that the convergence of block

scoring leads to the convergence of the entire ER workflow.

4.8 Related Work

We divide the related work into two parts: advanced blocking methods which

we improve upon, and progressive ER methods which can be used to generate a

limited amount of matching/non-matching pairs to send as a feedback to our blocking

computation.

Advanced blocking methods. There are many blocking methods in the liter-

ature with different internal functionalities and solving different blocking sub-tasks.

In this chapter, we considered four representative block building strategies, namely

standard blocking [155], canopy clustering [147], sorted neighborhood [117] and q-

grams blocking [106]. It is well-known that such techniques can yield a fairly dense

blocking graph when used alone. We refer the reader to [159] for an extensive survey

of various blocking techniques and their shortcomings. Such block building strategies

can be used as the X method in our Algorithm 9.

One of the prior blocking techniques, Dynamic Blocking [148] considers conjunc-

tions of large blocks to construct a hierarchy of smaller co-occurring sub-blocks. This
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approach assumes a priori knowledge of the attributes that are used to whittle down

oversized blocks to an acceptable size and was primarily designed for datasets with

small clusters (e.g., of size 2), where smaller blocks are correlated with matching

pairs. On the other hand, pBlocking uses the block scores as a guidance to construct

the hierarchy and rank the blocks. Following the score based hierarchy construction

procedure, pBlocking does not partition large blocks that contain a lot of matching

pairs and partitions all blocks that contain fewer matching pairs irrespective of their

size.

Recent works have proposed advanced methods that can be used in combination

with the mentioned block building techniques by focusing on the comparison cleaning

sub-task (thus improving on efficiency). The first technique in this space is meta-

blocking [154]. Meta-blocking aims at extracting the most similar pairs of records

by leveraging block-to-record relationships and can be very efficient in reducing the

number of unnecessary pairs produced by traditional blocking techniques, but it is

not always easy to configure. To this end, follow-up works such Blast [176] use “loose”

schema information to distinguish promising pairs, while [38] and SNB [158] rely on

a sample of labeled pairs for learning accurate blocking functions and classification

models respectively. Finally, the most recent strategy BLOSS [67] uses active learning

to select such a sample and configure the meta-blocking. Such meta-blocking works

compute the blocking graph statically, prior to ER, and thus can be used as the Z

method in our Algorithm 9. In Figure 4.3 we compare with classic meta-blocking and

BLOSS, as the latter shows its superiority over Blast and SNB.

Progressive ER. Many applications need to resolve data sets efficiently but do

not require the ER result to be complete. Recent literature described methods to

compute the best possible partial solution. Such techniques include pay-as-you-go

ER [202] that use “hints” on records that are likely to refer to the same entity and

more generally progressive ER such as the schema-agnostic method in [177] and the

97



strategies in [22, 161] that consider a limit on the execution time. In our discussion,

we considered oracle-based techniques, namely Node [194], Edge [197], and Eager [87].

Differently from other progressive techniques, oracle-based methods consider a limit

on the number of pairs that are examined by the oracle for matching/non-matching

response. Such techniques were originally designed for dealing with the crowd but

they can also be used with a variety of classifiers due to their flexibility. All these

techniques naturally work in combination with pBlocking by sending as feedback

their partial results.

Other ER methods. In addition to the above methods, we mention works on

ER architectures that can help users to debug and tune parameters for the different

components of ER [103, 69, 132, 160]. Specifically, the approaches in [103, 69] show

how to leverage the crowd in this setting. All of these techniques are orthogonal to

the scope of our work and we do not consider them in our analysis. The previous

work in [203] proposes to greedily merge records as they are matched by ER, while

processing the blocks one at a time. Each merged record (containing tokens from the

component records) is added to the unprocessed blocks, permitting its participation

in the subsequent matching and merging by their iterative algorithm. Limitations of

processing blocks one at a time has been shown in more recent blocking works [154].

4.9 Summary and Future Work

This chapter presents a new blocking algorithm, pBlocking that progressively

updates the relative scores of blocks and constructs new blocks by leveraging a novel

feedback mechanism from partial ER results. pBlocking boosts the effectiveness

and efficiency of blocking across all data sets by initializing blocking with any of the

standard techniques and then using new feedback-based methods for solving blocking

sub-tasks in a data-driven way. To the best of our knowledge, pBlocking is the first
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framework where blocking and pair matching components of ER help each other and

produce high-quality results in a synergy.

The key takeaways from the chapter are summarized below.

• pBlocking improves Pair Recall irrespective of the technique used for block

building, block cleaning or comparison cleaning, thus demonstrating its flexi-

bility.

• Feedback-based scoring helps in particular to boost blocking efficiency and ef-

fectiveness for noisy datasets with many matching pairs (i.e. containing large

clusters) such as cars, by enabling accurate selection of the cleanest blocks.

• The block intersection algorithm helps in particular with data sets having fewer

matching pairs (i.e. with mainly small clusters) such as citations and songs,

by providing a way to build small focused blocks with high fraction of matching

pairs. Block intersection can also help in data sets like products and camera

but the benefit is not as high as that in songs because many records in such

data sets have unique identifiers (e.g. product model IDs) and thus initial blocks

are reasonably clean.

Limitations and future work. pBlocking assumes an initial set of seed blocks to

construct new blocks that prune out non-matching pairs. Any record pair that does

not share any of the seed blocks would never be identified as a candidate even after

running pBlocking. We believe that considering feedback from partial ER results

can be helpful to explore other blocking strategies and is an interesting problem for

future work.
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CHAPTER 5

CLUSTERING WITH COMPARISON ORACLE: DATA
SUMMARIZATION

Until now, we have studied techniques to improve robustness and scalability of

entity resolution when employed with a binary oracle for supervision. These oracle

queries are not helpful in settings where the ground truth clusters may not be known

to the crowd worker. This chapter formalizes the notion of a noisy quadruplet oracle

to provide supervision for metric based clustering methods like k-center clustering.

These methods are particularly useful for data summarization applications.

Section 5.2 presents a formalization of the oracle along with two different noise

models and Section 5.3 describes the well-known greedy algorithm for k-center clus-

tering. Section 5.4 develops algorithms for different components of the greedy k-

center algorithm, i.e. finding the farthest and nearest neighbor. Section 5.5 and

Section 5.6 use these subroutines to solve the k-center and agglomerative cluster-

ing. Section 5.4.1.1 presents the theoretical analysis and Section 5.7 evaluates the

techniques on various real-world case studies.

5.1 Introduction

Many real-world applications such as data summarization, social network analysis,

facility location crucially rely on metric based comparative operations such as finding

maximum, nearest neighbor search or ranking. As an example, data summarization

aims to identify a small representative subset of the data where each representative

is a summary of similar records in the dataset. Popular clustering algorithms such
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Figure 5.1: Data summarization example

as k-center clustering and hierarchical clustering are often used for data summariza-

tion [131, 100]. In this chapter, we study clustering algorithms such as k-center

clustering and agglomerative hierarchical clustering.

Example 6. Consider a data summarization task over a collection of images (shown

in Figure 5.1). The goal is to identify k images (say k = 3) that summarize the

different locations in the dataset. The images 1, 2 refer to Eiffel Tower in Paris, 3

is the Colosseum in Rome, 4 is the replica of Eiffel Tower at Las Vegas, USA, 5 is

Venice and 6 is the Leaning Tower of Pisa. The ground truth output in this case would

be {{1, 2}, {3, 5, 6}, {4}}. We calculated pairwise similarity between images using the

visual features generated from Google Vision API [6]. The pair (1, 4) exhibits the

highest similarity of 0.87, while all other pairs have similarity lower than 0.85. Dis-

tance between a pair of images u and v, denoted as d(u, v), is defined as (1−similarity

between u and v). We ran a user experiment by querying crowd workers to answer

simple Yes/No questions to help summarize the data (Please refer to Section 5.7.1

for more details).

In this example, we make the following observations.
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• Automated clustering techniques generate noisy clusters. Consider the

greedy approach for k-center clustering [105] which sequentially identifies the farthest

record as a new cluster center. In this example, records 1 and 4 are placed in the

same cluster by the greedy k-center clustering, thereby leading to poor quality. In

general, automated techniques are known to generate erroneous similarity values

between records due to missing information or even presence of noise [196, 194, 83].

• Answering pairwise optimal cluster query is infeasible. Answering

whether 1 and 3 belong to the same optimal cluster when presented in isola-

tion is impossible unless the crowd worker is aware of other records present in the

dataset, and the granularity of the optimum clusters. Using the pair-wise Yes/No

answers obtained from the crowd workers for the
(

6
2

)
pairs in this example, the

identified clusters achieved 0.40 F-score for k = 3. Please refer to Section 5.7.1 for

additional details.

• Comparing relative distance between the locations is easy. Answering

relative distance queries of the form ‘Is 1 closer to 3, or is 5 closer to 6?’ does not

require any extra knowledge about other records in the dataset. For the 6 images in

the example, we queried relative distance queries and the final clusters constructed

for k = 3 achieved an F-score of 1.

In summary, we observe that humans have an innate understanding of the do-

main knowledge and can answer relative distance queries between records easily.

Motivated by the aforementioned observations, we consider a quadruplet compari-

son oracle that compares the relative distance between two pairs of points (u1, u2)

and (v1, v2) and outputs the pair with smaller distance between them breaking

ties arbitrarily. Such oracle models have been studied extensively in the literature

[122, 79, 51, 99, 181, 180, 120]. Even though quadruplet queries are easier than binary

optimal queries, some oracle queries maybe harder than the rest. In a comparison
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query, if there is a significant gap between the two distances being compared, then

such queries are easier to answer [70, 44]. However, when the two distances are close,

the chances of an error could increase. For example, ‘Is location in image 1 closer to

3, or 2 is closer to 6?’ maybe difficult to answer.

To capture noise in quadruplet comparison oracle answers, we consider two noise

models. In the first noise model, when the pairwise distances are comparable, the

oracle can return the pair of points that are farther instead of closer. Moreover,

we assume that the oracle has access to all previous queries and can answer queries

by acting adversarially. More formally, there is a parameter µ > 0 such that if

max d(u1,u2),d(v1,v2)
min d(u1,u2),d(v1,v2)

≤ (1 + µ), then adversarial error may occur, otherwise the answers

are correct. We call this ”Adversarial Noise Model”. This model is considered as a

formalism to analyze settings where the oracle is an honest yet fallible adversary, who

may answer certain difficult questions incorrectly [130, 20]. In the second noise model

called ”Probabilistic Noise Model”, given a pair of distances, we assume that the

oracle answers correctly with a probability of 1−p for some fixed constant p < 1
2
. We

consider a persistent probabilistic noise model, where our oracle answers are persistent

i.e., query responses remain unchanged even upon repeating the same query multiple

times. Such noise models have been studied extensively [144, 165, 99, 44, 46, 87]

since the error due to oracles often does not change with repetition, and in fact,

sometimes increases upon repeated querying [144, 165, 87]. This is in contrast to the

noise models studied in [79] where response to every query is independently noisy.

Persistent query models are much more difficult to handle than independent query

models where repeating each query is sufficient to generate the correct answer by

majority voting.
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5.1.1 Chapter Outline and Contributions

We present algorithms for finding the maximum, nearest and farthest neighbors

which are then used to explain techniques for k-center clustering and hierarchical

clustering objectives under the adversarial and probabilistic noise model using com-

parison oracle. We show that the presented techniques have provable approximation

guarantees for both the noise models, are efficient and obtain good query complexity.

We empirically evaluate the robustness and efficiency of our techniques on real world

datasets.

(i) Farthest and Nearest Neighbor: Finding farthest is similar to the problem

of identifying the maximum over the set of considered record pairs. Maximum has

received significant attention under both adversarial and probabilistic models [20, 81,

95, 70, 44, 94, 129, 96]. In this chapter, we provide the following results.

• Adversarial model. We present an algorithm that returns a value within (1+µ)3

of the maximum among a set of n values V with probability 1−δ1 using O(n log2(1/δ))

oracle queries and running time (Theorem 1).

To contrast our results with the state of the art, Ajtai et al. [20] study a slightly

different additive adversarial error model where the answer of a maximum query is

correct if the compared values differ by θ (for some θ > 0) and otherwise the oracle

answers adversarially. Under this setting, they give an additive 3θ-approximation

with O(n) queries. Although our model cannot be directly compared with theirs, we

note that our model is scale invariant, and thus, provides a much stronger bound when

distances are small. As a consequence, our algorithm can be used under an additive

adversarial model as well providing the same approximation guarantees (Theorem 2).

Rest of the work in finding maximum allow repetition of queries and assume the

answers are independent [81, 70]. As discussed earlier, persistent errors are much more

1δ is the confidence parameter and is standard in the literature of randomized algorithms.
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difficult to handle than independent errors. In [81], the authors present an algorithm

that finds the maximum using O(n log 1/δ) queries and succeeds with probability

1 − δ. Therefore, even under persistent errors, we obtain guarantees close to the

existing ones which assume independent error. The algorithms of [81, 70] do not

extend to our model.

Nearest neighbor queries can be cast as “finding minimum” among a set of dis-

tances. Prior techniques have studied nearest neighbor search under noisy distance

queries [142], where the oracle returns a noisy estimate of a distance between queried

points, and repetitions are allowed. Neither the algorithm of [142], nor other tech-

niques developed for maximum [20, 81] and top-k [70] extend for the nearest neighbor

under our noise models.

(ii) k-center Clustering: k-center clustering is one of the fundamental models of

clustering and is extremely well-studied [204, 188].

• k-center under adversarial model. We design an algorithm that returns a clus-

tering that is a 2 +µ approximation for small values of µ with probability 1− δ using

O(nk2 + nk log2(k/δ)) queries (Theorem 3). In contrast, even when exact distances

are known, k-center cannot be approximated better than a 2-factor unless P = NP

[188]. Therefore, we achieve near-optimal results.

• k-center under probabilistic noise model. For probabilistic noise, when opti-

mal k-center clusters are of size at least Ω(
√
n), our algorithm returns a clustering

that achieves constant approximation with probability 1 − δ using O(nk log2(n/δ))

queries (Theorem 5).

To the best of our knowledge, even though k-center clustering is an extremely popular

and basic clustering paradigm, it hasn’t been studied under the comparison oracle

model, and we provide the first results in this domain.
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(iii) Single Linkage and Complete Linkage – Agglomerative Hierarchical

Clustering: Under adversarial noise, we show a clustering technique that loses only

a multiplicative factor of (1 + µ)3 in each merge operation and has an overall query

complexity of O(n2). Prior work [99] considers comparison oracle queries to perform

average linkage in which the unobserved pairwise similarities are generated according

to a normal distribution. These techniques do not extend to our noise models.

Other Related Work. For finding the maximum among a given set of values,

it is known that techniques based on tournament obtain optimal guarantees and

are widely used [70]. For the problem of finding the nearest neighbor, techniques

based on locality sensitive hashing generally work well in practice [24]. Clustering

points using k-center objective is NP-hard and there are many well known heuristics

and approximation algorithms [204] with the classical greedy algorithm achieving

an approximation ratio of 2. All these techniques are not applicable when pairwise

distances are unknown. As distances between points cannot always be accurately

estimated, many recent techniques leverage supervision in the form of an oracle.

Most oracle based clustering frameworks consider ‘optimal cluster’ queries [144, 121,

145, 58, 107] to identify ground truth clusters. Recent techniques for distance based

clustering objectives, such as k-means [25, 54, 127, 128] and k-median [19] use optimal

cluster queries in addition to distance information for obtaining better approximation

guarantees. As ‘optimal cluster’ queries can be costly or sometimes infeasible, there

has been recent interest in leveraging distance based comparison oracles for other

problems similar to our quadruplet oracles [79, 99].

Distance based comparison oracles have been used to study a wide range of

problems and we list a few of them – learning fairness metrics [122], top-down

hierarchical clustering with a different objective [79, 51, 99], correlation cluster-

ing [181] and classification [180, 120], identify maximum [111, 189], top-k ele-

ments [129, 164, 63, 70, 133, 76], information retrieval [126], skyline computation [190].
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To the best of our knowledge, there is no work that considers quadruplet compari-

son oracle queries to perform k-center clustering and single/complete linkage based

hierarchical clustering.

Closely related to finding maximum, sorting has also been well studied under

various comparison oracle based noise models [44, 43]. The work of [70] considers a

different probabilistic noise model with error varying as a function of difference in

the values but they assume that each query is independent and therefore repetition

can help boost the probability of success. Using a quadruplet oracle, [99] studies the

problem of recovering a hierarchical clustering under a planted noise model and is

not applicable for single linkage.

5.2 Preliminaries

Let V = {v1, v2, . . . , vn} be a collection of n records such that each record maybe

associated with a value val(vi),∀i ∈ [1, n]. We assume that there exists a total

ordering over the values of elements in V . For simplicity we denote the value of

record vi as vi instead of val(vi) whenever it is clear from the context.

Given this setting, we define a comparison oracle that compares the values of any

pair of records (vi, vj) and outputs Yes if vi ≤ vj and No otherwise.

Definition 4 (Comparison Oracle). An oracle is a function Oc : V ×V → {Yes, No}.

Each oracle query considers two values as input and outputs Oc(v1, v2) = Yes if

v1 ≤ v2 and No otherwise.

Note that a comparison oracle is defined for any pair of values. Given this oracle

setting, we define the problem of identifying the maximum over the records V .

Problem 1 (Maximum). Given a collection of n records V = {v1, . . . , vn} and ac-

cess to a comparison oracle Oc, identify the arg maxvi∈V vi with minimum number of

queries to the oracle.
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The problem of identifying the record corresponding to the smallest value in V is

a natural extension of Problem 1.

5.2.1 Quadruplet Oracle Comparison Query

In applications that consider distance based comparison of records like nearest

neighbor identification, the records V = {v1, . . . , vn} are generally considered to be

present in a high-dimensional metric space along with a distance d : V × V → R+

defined over pairs of records. We assume that the embedding of records in latent

space is not known, but there exists an underlying ground truth [24]. Prior techniques

mostly assume complete knowledge of accurate distance metric and are not applicable

in our setting. In order to capture the setting where we can compare distances between

pairs of records, we define a quadruplet oracle below.

Definition 5 ( Quadruplet Oracle). An oracle is a function Oc : V × V × V × V →

{Yes, No}. Each oracle query considers two pairs of records as input and outputs

Oc(v1, v2, v3, v4) = Yes if d(v1, v2) ≤ d(v3, v4) and No otherwise.

The quadruplet oracle is equivalent to the comparison oracle discussed before with

a difference that the two values being compared are associated with pairs of records

as opposed to individual records. While implementing the oracle over crowdsourcing

platforms, crowd workers require context of the query to answer comparison queries.

For example, while comparing the distance between pictures in Figure 5.1, oracle

needs context that relative distance query is with respect to geographical distance

between records and not architecture. In terms of architecture, Eiffel tower in Paris

and its replica in Las Vegas would be labelled closer than any of the other pairs in

Figure 5.1, even though they are geographically the farthest. The context used to

evaluate distance may be different between the two pairs (v1, v2) and (v3, v4). For

example, the task to cluster different companies may consider difference in revenue

while comparing well established companies but may consider customer base while
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comparing startups. In this work, we assume that the context is provided as input to

the oracle and do not study different ways to specify the context.

Given this oracle setting, we define the problem of identifying the farthest record

over V with respect to a query point q as follows.

Problem 2 (Farthest point). Given a collection of n records V = {v1, . . . , vn}, a

query record q and access to a quadruplet oracle Oc, identify arg maxvi∈V \{q} d(q, vi).

Similarly, the nearest neighbor query returns a point that satisfies

arg minui∈V \{q} d(q, ui). Now, we formally define the k-center clustering problem.

Problem 3 (k-center clustering). Given a collection of n records V = {v1, . . . , vn}

and access to a comparison oracle Oc, identify k centers (say S ⊆ V ) and a mapping

of records to corresponding centers, π : V → S, such that the maximum distance of

any record from its center, i.e., maxvi∈V d(vi, π(vi)) is minimized.

We assume that the points vi ∈ V exist in a metric space and the distance between

any pair of points is not known. We denote the unknown distance between any pair

of points (vi, vj) where vi, vj ∈ V as d(vi, vj) and use k to denote the number of

clusters. Optimal clusters are denoted as C∗ with C∗(vi) ⊆ V denoting the set of

points belonging to the optimal cluster containing vi. Similarly, C(vi) ⊆ V refers to

the nodes belonging to the cluster containing vi for any clustering given by C(·).

In addition to the k-center clustering, we study single linkage and complete

linkage–agglomerative clustering techniques where the distance metric over the

records is not known apriori. These techniques initialize each record vi in a sep-

arate singleton cluster and sequentially merge the pair of clusters having the least

distance between them. In case of single linkage, the distance between two clusters

C1 and C2 is characterized by the closest pair of records defined as:
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dSL(C1, C2) = min
vi∈C1,vj∈C2

d(vi, vj)

In complete linkage, the distance between a pair of clusters C1 and C2 is calculated

by identifying the farthest pair of records, dCL(C1, C2) = maxvi∈C1,vj∈C2 d(vi, vj).

5.2.2 Noise Models

The oracle models discussed in Problem 1, 2 and 3 assume that the oracle answers

every comparison query correctly. In real world applications, however, the answers

can be wrong which can lead to noisy results. To formalize the notion of noise, we

consider two different models. First, an adversarial noise model considers a setting

where a comparison query can be adversarially wrong if the two values being compared

are within a multiplicative factor of (1 + µ) for some constant µ > 0.

Oc(v1, v2) =


Yes, if v1 <

1
(1+µ)

v2

No, if v1 > (1 + µ)v2

adversarially incorrect if 1
(1+µ)

≤ v1
v2
≤ (1 + µ)

The parameter µ corresponds to the degree of error. For example, µ = 0 implies

a perfect oracle. The model extends to the quadruplet oracle as follows.

Oc(v1, v2, v3, v4) =


Yes, if d(v1, v2) < 1

(1+µ)
d(v3, v4)

No, if d(v1, v2) > (1 + µ)d(v3, v4)

adversarially incorrect if 1
(1+µ)

≤ d(v1,v2)
d(v3,v4)

≤ (1 + µ)

The second model considers a probabilistic noise model where each comparison

query is incorrect independently with a probability p < 1
2

and asking the same query

yields the same response. We discuss ways to estimate µ and p from real data in

Section 5.7.
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5.3 Greedy k-center Clustering Algorithm

In this section, we present the traditional greedy algorithm for k-center cluster-

ing [105]. The greedy algorithm [105] initializes with an arbitrary point as the first

cluster center and then iteratively identifies the next centers. In each iteration, it

assigns all the points to the current set of clusters, by identifying the closest center

for each point. Then, it finds the farthest point among the clusters and uses it as the

new center. This technique requires O(nk) distance comparisons in the absence of

noise and guarantees 2-approximation of the optimal clustering objective. We provide

the pseudo code for this approach in Algorithm 12. If we use Algorithm 12 where we

replace every comparison with an oracle query, the generated clusters can be arbitrar-

ily worse even for small error. In order to improve its robustness, Section 5.4 presents

algorithms to perform assignment of points to respective clusters and farthest point

identification. Section 5.5 uses these subroutines to analyze the quality of k-center

clustering algorithm.

Algorithm 12 Greedy Algorithm

1: Input : Set of points V
2: Output : Clusters C
3: s1 ← arbitrary point from V , S = {s1}, C = {{V }}.
4: for i = 2 to k do
5: si ← Approx-Farthest(S,C)
6: S ← S ∪ {si}
7: C ← Assign(S)
8: end for
9: return C

5.4 Finding Maximum, Farthest and Nearest

In this section, we present robust algorithms to identify the record corresponding

to a maximum value in V using comparison oracle under the noise models. Later we

extend the algorithms to find the farthest and the nearest neighbor. We note that

our algorithms for the adversarial model are parameter free (do not depend on µ) and
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the algorithms for the probabilistic model can use p = 0.5 as a conservative estimate

of the noise.

5.4.1 Adversarial Noise

Consider a trivial approach that maintains a running maximum value while se-

quentially processing the records, i.e., if a larger value is encountered, the current

maximum value is updated to the larger value. This approach requires n − 1 com-

parisons. However, in the presence of adversarial noise, our output can have a sig-

nificantly lower value compared to the correct maximum. In general, if vmax is the

true maximum of V , then the above approach can return an approximate maximum

whose value could be as low as vmax/(1 + µ)n−1. To see this, assume v1 = 1, and

vi = (1 + µ − ε)i where ε > 0 is very close to 0. It is possible that while comparing

vi and vi+1, the oracle returns vi as the larger element. If this mistake is repeated

for every i, then, v1 will be declared as the maximum element whereas the correct

answer is vn ≈ v1(1 + µ)n−1.

To improve upon this naive strategy, we introduce a natural keeping score based

idea where given a set S ⊆ V of records, we maintain Count(v, S) that is equal to the

number of values smaller than v in S.

Count(v, S) =
∑

x∈S\{v}

1{Oc(v, x) == No}

It is easy to observe that when the oracle makes no mistakes, Count(smax, S) =

|S| − 1 and obtains the highest score, where smax is the maximum value in S. Using

this observation, in Algorithm 13, we output the value with the highest Count score.

Given a set of records V , we show in Lemma 1 that Count-Max(V ) obtained

using Algorithm 13 always returns a good approximation of the maximum value in

V .
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Algorithm 13 Count-Max(S) : finds the max. value by counting

1: Input : A set of values S
2: Output : An approximate maximum value of S
3: for v ∈ S do
4: Calculate Count(v, S)
5: end for
6: umax ← arg maxv∈SCount(v, S)
7: return umax

Lemma 1. Given a set of values V with maximum value vmax, Count-Max(V )

returns a value umax where umax ≥ vmax/(1 + µ)2 using O(|V |2) oracle queries.

Proof. Let vmax = max{x ∈ V }. Consider a value w ∈ V such that w <

vmax

(1+µ)2
. We compare the Count values for vmax and w given by, Count(vmax, V ) =∑

x∈V 1{Oc(vmax, x) == No} and Count(w, V ) =
∑

x∈V 1{Oc(w, x) == No}.

We argue that w can never be returned by Algorithm 13, i.e., Count(w, S) <

Count(vmax, V ).

Count(vmax, V ) =
∑
x∈V

1{Oc(vmax, x) == No}

≥
∑

x∈V \{vmax}

1{x < vmax/(1 + µ)}

= 1{Oc(vmax, w) == No} +
∑

x∈S\{vmax,w}

1{x < vmax/(1 + µ)}

= 1 +
∑

x∈V \{vmax,w}

1{x < vmax/(1 + µ)}

Count(w, V ) =
∑
y∈V

1{Oc(w, y) == No} =
∑

y∈S\{w,vmax}

1{Oc(w, y) == No}

≤
∑

y∈V \{w,vmax}

1{y ≤ (1 + µ)w}

≤
∑

y∈V \{w,vmax}

1{y ≤ vmax/(1 + µ)}
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Combining the two, we have :

Count(vmax, V ) > Count(w, V )

This shows that the Count of vmax is strictly greater than the count of any point w

with w < vmax

(1+µ)2
. Therefore, our algorithm would have output vmax instead of w. For

calculating the Count for all values in V , we make at most |V |2 oracle queries as we

compare every value with every other value. Finally, we output the maximum value

as the value with the highest Count. Hence, the claim.

Using Example 7, when µ = 1, we demonstrate that (1+µ)2 = 4 approximation ratio

is achieved by Algorithm 13.

Example 7. Let S denote a set of four records u, v, w and t with ground truth val-

ues 51, 101, 102 and 202, respectively. While identifying the maximum value under

adversarial noise with µ = 1, the oracle must return a correct answer to Oc(u, t) and

all other oracle query answers can be incorrect adversarially. If the oracle answers

all other queries incorrectly, we have, Count values of t, w, u, v are 1, 1, 2, and 2 re-

spectively. Therefore, u and v are equally likely, and when Algorithm 13 returns u,

we have a 202/51 ≈ 3.96 approximation.

From Lemma 1, we have that O(n2) oracle queries where |V | = n, are required to

get (1 + µ)2 approximation. In order to improve the query complexity, we use a

tournament to obtain the maximum value. Algorithm 14 presents pseudo code of the

approach that takes values V as input and outputs an approximate maximum value.

It constructs a balanced λ-ary tree T containing n leaf nodes such that a random

permutation of the values V is assigned to the leaves of T . In a tournament, the

internal nodes of T are processed bottom-up such that at every internal node w, we

assign the value that is largest among the children of w. To identify the largest value,
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we calculate arg maxv∈children(w) Count(v, children(w)) at the internal node w, where

Count(v,X) refers to the number of elements in X that are considered smaller than

v. Finally, we return the value at the root of T as our output. In Lemma 2, we show

that Algorithm 14 returns a value that is a (1+µ)2 logλ n multiplicative approximation

of the maximum value.

Algorithm 14 Tournament : finds the maximum value using a tournament tree

1: Input : Set of values V , Degree λ
2: Output : An approximate maximum value umax

3: Construct a balanced λ-ary tree T with |V | nodes as leaves.
4: Let πV be a random permutation of V assigned to leaves of T
5: for i = 1 to logλ |V | do
6: for internal node w at level logλ |V | − i do
7: Let U denote the children of w.
8: Set the internal node w to Count-Max(U)
9: end for

10: end for
11: umax ←value at root of T
12: return umax

Lemma 2. Suppose vmax is the maximum value among the set of records V . Algo-

rithm 14 outputs a value umax such that umax ≥ vmax
(1+µ)2 logλ n

using O(nλ) oracle queries.

Proof. From Lemma 1, we have that we lose a factor of (1 + µ)2 in each level of

the tournament tree, we have that after logλ n levels, the final output will have an

approximation guarantee of (1 + µ)2 logλ n. The total number of queries used is given

by :
∑logλ n

i=0
|Vi|
λ
λ2 = O(nλ) where Vi is the number of records at level i.

According to Lemma 2, Algorithm 14 identifies a constant approximation when

λ = Θ(n), µ is a fixed constant and has a query complexity of Θ(n2). By reducing

the degree of the tournament tree from λ to 2, we can achieve Θ(n) query complexity,

but with a worse approximation ratio of (1 + µ)logn. The idea of using a tournament

for finding maximum has been studied in the past [70, 81].
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Now, we describe our main algorithm (Algorithm 16) that uses the following

observation to improve the overall query complexity.

Observation 1. At an internal node w ∈ T , the identified maximum is incorrect

only if there exists x ∈ children(w) that is very close to the true maximum (say

wmax), i.e. wmax

(1+µ)
≤ x ≤ (1 + µ)wmax.

Based on the above observation, our Algorithm Max-Adv uses two steps to

identify a good approximation of vmax. Consider the case when there are a lot of

values that are close to vmax. In Algorithm Max-Adv, we use a subset Ṽ ⊆ V of

size
√
nt (for a suitable choice of parameter t) obtained using uniform sampling with

replacement. We show that using a sufficiently large subset Ṽ , obtained by sampling,

we ensure that at least one value that is closer to vmax is in Ṽ , thereby giving a good

approximation of vmax.

In order to handle the case when there are only a few values closer to vmax, we

divide the entire data set into l disjoint parts (for a suitable choice of l) and run the

Tournament algorithm with degree λ = 2 on each of these parts separately (Algo-

rithm 15). As there are very few points close to vmax, the probability of comparing

any such value with vmax is small, and this ensures that in the partition contain-

ing vmax, Tournament returns vmax. We collect the maximum values returned by

Algorithm 14 from all the partitions and include these values in T in Algorithm Max-

Adv. We repeat this procedure t times and set l =
√
n, t = 2 log(2/δ) to achieve the

desired success probability 1 − δ. We combine the outputs of both the steps, i.e., Ṽ

and T and output the maximum among them using Count-Max. This ensures that

we get a good approximation as we use the best of both the approaches.

Theoretical Guarantees. In order to prove approximation guarantee of Algo-

rithm 16, we first argue that the sample Ṽ contains a good approximation of the

maximum value vmax with a high probability. Let C denote the set of values that

are very close to vmax. Suppose C = {u : vmax/(1 + µ) ≤ u ≤ vmax}. In Lemma 3,
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Algorithm 15 Tournament-Partition

1: Input : Set of values V , number of partitions l
2: Output : A set of maximum values from each partition
3: Randomly partition V into l equal parts V1, V2, · · ·Vl
4: for i = 1 to l do
5: pi ← Tournament(Vi, 2)
6: T ← T ∪ {pi}
7: end for
8: return T

Algorithm 16 Max-Adv : Maximum with Adversarial Noise

1: Input : Set of values V , number of iterations t, partitions l
2: Output : An approximate maximum value umax

3: i← 1, T ← φ
4: Let Ṽ denote a sample of size

√
nt selected uniformly at random (with replace-

ment) from V .
5: for i ≤ t do
6: Ti ← Tournament-Partition(V, l)
7: T ← T ∪ Ti
8: end for
9: umax ← Count-Max(Ṽ ∪ T )

10: return umax

we first show that Ṽ contains a value vj ∈ Ṽ such that vj ≥ vmax/(1 + µ), whenever

the size of C is large, i.e., |C| > √n/2. Otherwise, we show that we can recover vmax

correctly with probability 1− δ/2 whenever |C| ≤ √n/2.

Lemma 3. 1. If |C| > √n/2, then there exists a value vj ∈ Ṽ satisfying vj ≥

vmax/(1 + µ) with probability of 1− δ/2.

2. Suppose |C| ≤ √n/2. Then, T contains vmax with probability at least 1− δ/2.

Proof. Case 1: Consider the first step where we use a uniformly random sample Ṽ of

√
nt = 2

√
n log(2/δ) values from V (obtained by sampling with replacement). Given

|C| ≥
√
n

2
, probability that Ṽ contains a value from C is given by

Pr[Ṽ ∩ C 6= φ] = 1−
(

1− |C|
n

)|Ṽ |
> 1−

(
1− 1

2
√
n

)2
√
n log(2/δ)

> 1− δ/2

So, with probability 1− δ/2, there exists a value u ∈ C ∩ Ṽ .
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Case 2:

In every iteration i ≤ t of Algorithm 16, we have that vmax ∈ Ti with probability 1
2

(Using Lemma 4). To increase the success probability, we run this procedure t times

and obtain all the outputs. Among the t = 2 log(2/δ) runs of Algorithm 14, we have

that vmax is never compared with any value of C in at least one of the iterations with

a probability at least

1− (1− 1/2)2 log(2/δ) ≥ 1− δ

2

Hence, T = ∪iTi contains vmax with a probability 1− δ
2
.

Now, we briefly provide a sketch of the proof of Lemma 3. Consider the first step,

where we use a uniformly random sample Ṽ of
√
nt points from V (obtained with

replacement). When |C| ≥ √n/2, probability that Ṽ contains a value from C is given

by 1− (1− |C|/n)|Ṽ | = 1− (1− 1
2
√
n
)2
√
n log(2/δ) ≈ 1− δ/2.

In the second step, Algorithm 16 uses a modified tournament tree that partitions

the set V into l =
√
n parts of size n/l =

√
n each and identifies a maximum pi

from each partition Vi using Algorithm 14. We have that the expected number of

elements from C in a partition Vi containing vmax is |C|/l =
√
n/(2
√
n) = 1/2. Thus

by Markov’s inequality, the probability that Vi contains a value from C is ≤ 1/2.

With 1/2 probability, vmax will never be compared with any point from C in the

partition Vi. To increase the success probability, we run this procedure t times and

obtain all the outputs. Among the t runs of Algorithm 14, we argue that vmax is never

compared with any value of C in at least one of the iterations with a probability at

least 1− (1− 1/2)2 log(2/δ) ≥ 1− δ/2.

In Lemma 1, we show that using Count-Max we get a (1 + µ)2 multiplicative

approximation. Combining it with Lemma 3, we have that umax returned by Al-

gorithm 16 satisfies umax ≥ vmax

(1+µ)3
with probability 1 − δ. For query complexity,

Algorithm 15 identifies
√
nt samples denoted by Ṽ . These identified values, along
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with T are then processed by Count-Max to identify the maximum umax. This step

requires O(|Ṽ ∪ T |2) = O(n log2(1/δ)) oracle queries.

Theorem 1. Given a set of values V , Algorithm 16 returns a (1+µ)3 approximation

of maximum value with probability 1− δ using O(n log2(1/δ)) oracle queries.

Proof. In Algorithm 16, we first identify an approximate maximum value using

Sampling. If |C| ≥
√
n

2
, then, from Lemma 3, we have that the value returned is

a (1 + µ) approximation of the maximum value of V . Otherwise, T contains vmax

with a probability 1− δ/2. As we use Count-Max on the set Ṽ ∪ T , we know that

the value returned, i.e., umax is a (1 +µ)2 of the maximum among values from Ṽ ∪T .

Therefore, umax ≥ vmax

(1+µ)3
. Using union bound, the total probability of failure is δ.

For query complexity, Algorithm 15 obtains a set Ṽ of
√
nt sample values. Along

with the set T obtained (where |T | = nt
l

), we use Count-Max on Ṽ ∪T to output the

maximum umax. This step requires O(|Ṽ ∪ T |2) = O((
√
nt + nt

l
)2) oracle queries. In

an iteration i, for obtaining Ti, we make O(
∑

j |Vj|) = O(n) oracle queries (Claim 1),

and for t iterations, we make O(nt) queries. Using t = 2 log(2/δ), l =
√
n, in total,

we make O(nt+ (
√
nt+ nt

l
)2) = O(n log2(1/δ)) oracle queries. Hence, the theorem.

Extension to Farthest and Nearest Neighbor. Given a set of records V , the

farthest record from a query u corresponds to the record u′ ∈ V such that d(u, u′)

is maximum. This query is equivalent to finding maximum in the set of distance

values given by D(u) = {d(u, u′) | ∀u′ ∈ V } containing n values for which we already

developed algorithms in Section 5.4. Since the ground truth distance between any

pair of records is not known, we require quadruplet oracle (instead of comparison

oracle) to identify the maximum element in D(u). Similarly, the nearest neighbor

of query record u corresponds to finding the record with minimum distance value
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Figure 5.2: Example for Lemma 1 with µ = 1.

in D(u). Algorithms for finding maximum from previous sections, extend for these

settings with similar guarantees.

Example 8. Figure 5.2 shows a worst-case example for the approximation guarantee

to identify the farthest point from s (with µ = 1). Similar to Example 7, we have,

Count values of t, w, u, v are 1, 1, 2, 2 respectively. Therefore, u and v are equally

likely, and when Algorithm 13 outputs u, we have a ≈ 3.96 approximation.

5.4.1.1 Helper Lemmas

In this section, we present the helper lemmas that are required to analyze the

proposed algorithm. Let the maximum value among V be denoted by vmax and the

set of records for which the oracle answer can be incorrect is given by

C = {u | u ∈ V, u ≥ vmax

1 + µ
}

Claim 1. For any partition Vi, Tournament(Vi) uses at most 2|Vi| oracle queries.

Proof. Consider the ith round in Tournament. We can observe that the number of

remaining values is at most |Vi|
2i

. So, we make |Vi|
2i+1 many oracle queries in this round.

Total number of oracle queries made is

logn∑
i=0

|Vi|
2i+1

≤ 2|Vi|

We now prove the helper lemma to consider the case when |C| ≤ √n/2.

120



Lemma 4. Suppose the partition Vi contains the maximum value vmax of V . If |C| ≤
√
n/2, then, Tournament(Vi) returns the vmax with probability 1/2.

Proof. Algorithm 16 uses a modified tournament tree that partitions the set V into

l =
√
n parts of size n

l
=
√
n each and identifies a maximum pi from each partition

Vi using Algorithm 14. If vmax ∈ Vi, then,

E[|C ∩ Vi|] =
|C|
l

=

√
n

2
√
n

=
1

2

Using Markov’s inequality, the probability that Vi contains a value from C is given

by :

Pr[|C ∩ Vi| ≥ 1] ≤ E[|C ∩ Vi|] ≤
1

2

Therefore, with at least a probability of 1
2
, vmax will never be compared with any

point from C in the partition Vi containing vmax. Hence, vmax is returned by

Tournament(Vi) with probability 1/2.

5.4.2 Probabilistic Noise

For probabilistic noise, the algorithms described in Section 5.4.1 do not extend. In

this section, we show that it is possible to compute the farthest point within a small

additive error under the probabilistic model, if the data set satisfies an additional

property discussed below. For the simplicity of exposition, we assume p ≤ 0.40,

though our algorithms work for any value of p < 0.5.

One of the challenges in developing robust algorithms for farthest identification

is that every relative distance comparison of records from u (Oc(u, vi, u, vj) for some

vi, vj ∈ V ) may be answered incorrectly with constant error probability p and the

success probability cannot be boosted by repetition. We overcome this challenge by

performing pairwise comparisons in a robust manner. Suppose the desired failure
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probability is δ, we observe that if Θ(log(1/δ)) records closest to the query u are

known (say S) and maxx∈S{d(u, x)} ≤ α for some α > 0, then each pairwise compar-

ison of the form Oc(u, vi, u, vj) can be replaced by Algorithm PairwiseComp and

use it to execute Algorithm 16. Algorithm 17 takes the two records vi and vj as

input along with S and outputs Yes or No where Yes denotes that vi is closer to u.

We calculate FCount(vi, vj) =
∑

x∈S 1{Oc(vi, x, vj, x) == Yes} as a robust estimate

where the oracle considers vi to be closer to x than vj. If FCount(vi, vj) is smaller

than 0.3|S| ≤ (1 − p)|S|/2 then we output No and Yes otherwise. Therefore, ev-

ery pairwise comparison query is replaced with Θ(log(1/δ)) quadruplet queries using

Algorithm 17.

We argue that Algorithm 17 will output the correct answer with a high probability

if |d(u, vj) − d(u, vi)| ≥ 2α (See Fig 5.3). In Lemma 5, we show that, if d(u, vj) >

d(u, vi) + 2α, then, FCount(vi, vj) ≥ 0.3|S| with probability 1− δ.

Lemma 5. Suppose maxvi∈S d(u, vi) ≤ α and |S| ≥ 6 log(1/δ). Consider two records

vi and vj such that d(u, vi) < d(u, vj) − 2α then FCount(vi, vj) ≥ 0.3|S| with a

probability of 1− δ

Proof. Since d(u, vi) < d(u, vj)− 2α, for a point x ∈ S,

d(vj, x) ≥ d(u, vj)− d(u, x)

> d(u, vi) + 2α− d(u, x)

≥ d(vi, x)− d(u, x) + 2α− d(u, x)

≥ d(vi, x) + 2α− 2d(u, x)

≥ d(vi, x)

So, O(vi, x, vj, x) is No with a probability p. As p ≤ 0.4, we have :
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In this example,
Oc(u, vi, u, vj) is answered
correctly with a probabil-
ity 1 − p. To boost the
correctness probability,
FCount uses the queries
Oc(x, vi, x, vj), ∀x in the
red region around u, de-
noted by S.

Figure 5.3: Algorithm 17 returns ‘Yes’ as d(u, vi) < d(u, vj)− 2α.

E[FCount(vi, vj)] = (1− p)|S|

Pr[FCount(vi, vj) ≤ 0.3|S|] ≤ Pr[FCount(vi, vj) ≤ (1− p)|S|/2]

From Hoeffding’s inequality (with binary random variables), we have with a proba-

bility exp(− |S|(1−p)2
2

) ≤ δ (using |S| ≥ 6 log(1/δ), p < 0.4) : FCount(vi, vj) ≤ (1 −

p)|S|/2. Therefore, with probability at most δ, we have, FCount(vi, vj) ≤ 0.3|S|.

With the help of Algorithm 17, relative distance query of any pair of records

vi, vj from u can be answered correctly with a high probability provided |d(u, vi) −

d(u, vj)| ≥ 2α. Therefore, the output of Algorithm 17 is equivalent to an additive ad-

versarial error model where any quadruplet query can be adversarially incorrect if the

distance |d(u, vi)−d(u, vj)| < 2α and correct otherwise. Algorithm 16 can be extended

to the additive adversarial error model, such that each comparison Oc(u, vi, u, vj) is

replaced by PairwiseComp (Algorithm 17).We give an approximation guarantee,

that loses an additive 6α following a similar analysis of Theorem 1.

Algorithm 17 PairwiseComp (u, vi, vj , S)

1: Calculate FCount(vi, vj) =
∑

x∈S 1{Oc(x, vi, x, vj) == Yes}
2: if FCount(vi, vj) < 0.3|S| then
3: return No

4: else return Yes

5: end if
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Farthest under probabilistic noise. For the sake of completeness, we restate the

Count definition that is used in Algorithm Count-Max. For every oracle compari-

son, we replace it with the pairwise comparison query described in Section 5.4.1. Let

u be a query point and S denote a set of Θ(log(n/δ)) points within a distance of α

from u. We maintain a Count score for a given point vi ∈ V as :

Count(u, vi, S, V ) =
∑

vj∈V \{vi}

1{Pairwise-Comp(u, vi, vj, S) == No}

Theorem 2. Given a query vertex u and a set S with |S| = Ω(log(n/δ)) such that

maxv∈S d(u, v) ≤ α then the farthest identified using Algorithm 16 (with PairwiseC-

omp), denoted by umax is within 6α distance from the optimal farthest point, i.e.,

d(u, umax) ≥ maxv∈V d(u, v)− 6α with a probability of 1− δ. Further the query com-

plexity is O(n log3(n/δ)).

Proof. The proof is similar to Theorem 1. We first identify an approximate maximum

value using Sampling. If |C| ≥
√
n

2
, then we have that one of the sampled values is a

2α additive approximation of the maximum value of V . Otherwise, T contains vmax

with a probability 1− δ/2. As we use Count-Max on the set Ṽ ∪ T , we know that

the value returned, i.e., umax is a 4α of the maximum among values from Ṽ ∪ T .

Therefore, d(u, umax) ≥ d(u, vmax) − 6α. Using union bound over n · t comparisons,

the total probability of failure is δ.

For query complexity, Algorithm obtains a set Ṽ of
√
nt sample values. Along

with the set T obtained (where |T | = nt
l

), we use Count-Max on Ṽ ∪ T to output

the maximum umax. This step requires O(|Ṽ ∪ T |2|S|) = O((
√
nt + nt

l
)2 log(n/δ))

oracle queries. In an iteration i, for obtaining Ti, we make O(
∑

j |Vj| log(n/δ)) =

O(n log(n/δ)) oracle queries (Claim 1), and for t iterations, we make O(nt log(n/δ))

queries. Using t = 2 log(2n/δ), l =
√
n, in total, we make O(nt log(n/δ) + (

√
nt +

nt
l

)2 log(n/δ)) = O(n log3(n/δ)) oracle queries. Hence, the theorem.
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5.5 k-center Clustering

We now use the subroutines discussed in Section 5.4 to solve k-center clustering

problem with quadruplet oracles.

5.5.1 Adversarial Noise

In this case, the algorithm to identify k-centers is same as Algorithm 12 with

modified functions for assignment and finding the farthest point. Now, we describe

the two steps (Approx-Farthest and Assign) of the Greedy Algorithm that will

complete the description of Algorithm 12.

Approx-Farthest. Given a clustering C, and a set of centers S, we construct the

pairs (vi, sj) where vi is assigned to cluster C(sj) centered at sj ∈ S. Using Al-

gorithm 16, we identify the point, center pair that have the maximum distance i.e.

arg maxvi∈V d(vi, sj), which corresponds to the farthest point. For the parameters, we

use l =
√
n, t = log(2k/δ) and number of samples Ṽ =

√
nt.

Assign. After identifying the farthest point, we reassign all the points to the centers

(now including the farthest point as the new center) closest to them. We calcu-

late a movement score called MCount for every point with respect to each center.

MCount(u, sj) =
∑

sk∈S\{sj} 1{Oc((sj, u), (sk, u)) == Yes}, for any record u ∈ V and

sj ∈ S. This step is similar to Count-Max Algorithm. We assign the point u to the

center with the highest MCount value.

Example 9. Suppose we run k-center algorithm with k = 2 and µ = 1 on the points

in Example 8. The optimal centers are u and t with radius 51. On running our

algorithm, suppose w is chosen as the first center and Approx-Farthest calculates

Count values similar to Example 7. We have, Count values of s, t, u, v are 1, 2, 3, 0

respectively. Therefore, our algorithm identifies u as the second center, achieving

3-approximation.
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Theoretical Guarantees. We now prove the approximation guarantee obtained by

Algorithm 12. In each iteration, we show that Assign reassigns each point to a

center with distance approximately similar to the distance from the closest center.

This is surprising given that we only use MCount scores for assignment. Similarly,

we show that Approx-Farthest (Algorithm 16) identifies a close approximation to

the true farthest point. Concretely, we show that u is assigned to a center which

is a (1 + µ)2 approximation; Algorithm 16 identifies the farthest point w which is a

(1 + µ)5 approximation.

In every iteration of the Greedy algorithm, if we identify an α-approximation

of the farthest point, and a β-approximation when reassigning the points, then, we

show that the clusters output are a 2αβ2-approximation to the k-center objective.

Combining all the claims, for a given error parameter µ, we obtain:

Theorem 3. For µ < 1
18

, Algorithm 12 achieves a (2 +O(µ))-approximation for the

k-center objective using O(nk2 +nk · log2(k/δ)) oracle queries with probability 1− δ.

We first prove the helper lemmas that analyze Assign and Approx-Farthest

separately, which are then used to prove Theorem 3.

Lemma 6. Suppose in an iteration t of Greedy algorithm, centers are given by St

and we reassign points using Assign which is a β-approximation to the correct as-

signment. In iteration t + 1, using this assignment, if we obtain an α-approximate

farthest point using Approx-Farthest, then, after k iterations, Greedy algorithm

obtains a 2αβ2-approximation for the k-center objective.

Proof. Consider an optimum clustering C∗ with centers u1, u2, .., uk respectively:

C∗(u1), C∗(u2), · · · , C∗(uk). Let the centers obtained by Algorithm 12 be denoted

by S. If |S ∩C∗(ui)| = 1 for all i, then, for some point x ∈ C∗(ui) assigned to sj ∈ S

by Algorithm Assign, we have

d(x, S ∩ C∗(ui)) ≤ d(x, ui) + d(ui, S ∩ C∗(ui)) ≤ 2OPT
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=⇒ d(x, sj) ≤ β minsk∈S d(x, sk) ≤ β d(x, S ∩ C∗(ui)) ≤ 2βOPT

Therefore, every point in V is at a distance of at most 2βOPT from a center

assigned in S.

Suppose for some j we have |S ∩ C∗(uj)| ≥ 2. Let s1, s2 ∈ S ∩ C∗(uj) and s2

appeared after s1 in iteration t+ 1. As s1 ∈ St, we have minw∈St d(w, s2) ≤ d(s1, s2).

In iteration t, we know that the farthest point s2 is an α-approximation of the

farthest point (say ft). Moreover, suppose s2 assigned to cluster with center sk in

iteration t that is a β-approximation of it’s true center. Therefore,

1

α
min
w∈St

d(w, ft) ≤ d(sk, s2) ≤ β min
w∈St

d(w, s2) ≤ βd(s1, s2)

Because s1 and s2 are in the same optimum cluster, from triangle inequality we have

d(s1, s2) ≤ 2OPT . Combining all the above we get minw∈St d(w, ft) ≤ 2αβOPT

which means that farthest point of iteration t is at a distance of 2αβOPT from St. In

the subsequent iterations, the distance of any point to the final set of centers, given

by S only gets smaller. Hence,

max
v

min
w∈S

d(v, w) ≤ max
v

min
w∈St

d(v, w) = min
w∈St

d(ft, w) ≤ 2αβOPT

However, when we output the final clusters and centers, the farthest point after k-

iterations (say fk) could be assigned to center vj ∈ S that is a β-approximation of

the distance to true center.

d(fk, vj) ≤ β minw∈S d(fk, w) ≤ 2αβ2 OPT

Therefore, every point is assigned to a cluster with distance at most 2αβ2 OPT .

Hence the claim.
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Lemma 7. Given a set S of centers, Algorithm Assign assigns a point u to a cluster

sj ∈ S such that d(u, sj) ≤ (1 + µ)2 minst∈S{d(u, st)} using O(nk) queries.

Proof. The proof is essentially the same as Lemma 1 and uses MCount instead of

Count.

Lemma 8. Given a set of centers S, Algorithm 16 identifies a point vj with probability

1− δ/k, such that

min
sj∈S

d(vj, sj) ≥ max
vt∈V

min
st∈S

d(vt, st)

(1 + µ)5

Proof. Suppose vt is the farthest point assigned to center st ∈ S. Let vj, assigned to

sj ∈ S be the point returned by Algorithm 16. From Theorem 1, we have :

d(vj, sj) ≥
maxvi∈V d(vi, si)

(1 + µ)3

≥ d(vt, st)

(1 + µ)3
≥ mins′t∈S d(vt, s

′
t)

(1 + µ)3

Due to error in assignment, using Lemma 7

d(vj, sj) ≤ (1 + µ)2 min
s′j∈S

d(vj, s
′
j)

Combining the above equations we have

min
s′j∈S

d(vj, s
′
j) ≥

mins′t∈S d(vt, s
′
t)

(1 + µ)5

For Approx-Farthest, we use l =
√
n and t = log(2k/δ) and Ṽ =

√
nt. So,

following the proof in Theorem 1, we succeed with probability 1 − δ/k. Hence, the

lemma.

Lemma 9. Given a current set of centers S,
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1. Assign assigns a point u to a cluster C(si) such that d(u, si) ≤ (1 +

µ)2 minsj∈S{d(u, sj)} using O(nk) oracle queries additionally.

2. Approx-Farthest identifies a point w in cluster C(si) such that

minsj∈S d(w, sj) ≥ maxvt∈V minst∈S d(vt, st)/(1 + µ)5 with probability 1 − δ
k

using O(n log2(k/δ)) oracle queries .

Proof. (1) From Lemma 7, we have the claim. We assign a point to a cluster based

on the scores the cluster center received in comparison to other centers. Except for

the newly created center, we have previously queried every center with every other

center. Therefore, number of new oracle queries made for every point is O(k); that

gives us a total of O(nk) additional new queries used by Assign.

(2) From Lemma 8, we have that minsj∈S d(w, sj) ≥ maxvt∈V minst∈S
d(vt,st)
(1+µ)5

with probability 1 − δ/k. As the total number of queries made by Algorithm 16 is

O(nt+ (nt
l

+
√
nt)2). For Approx-Farthest, we use l =

√
n and t = log(2k/δ) and

Ṽ =
√
nt, therefore, the query complexity is O(n log2(k/δ)).

Theorem 4 (Theorem 3 restated). For µ < 1
18

, Algorithm 12 achieves a (2 +O(µ))-

approximation for the k-center objective using O(nk2 + nk · log2(k/δ)) oracle queries

with probability 1− δ.

Proof. From the above discussed claim and Lemma 9, we have that Algorithm 12

achieves a 2(1 + µ)9 approximation for k-center objective. When µ < 1
18

, we can

simplify the approximation factor to 2 + 18µ, i.e., 2 +O(µ). From Lemma 9, we have

that in each iteration, we succeed with probability 1− δ/k. Using union bound, the

failure probability is given by δ. For query complexity, as there are k iterations, and

in each iteration we use Assign and Approx-Farthest, using Lemma 9, we have

the theorem.
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5.5.2 Probabilistic Noise

For probabilistic noise, each query can be incorrect with probability p and there-

fore, Algorithm 12 may lead to poor approximation guarantees. Algorithm 18 presents

the pseudo-code of our algorithm for probabilistic noise. We denote the size of mini-

mum cluster among optimum clusters C∗ to be m, and total failure probability of our

algorithms to be δ. We assume p ≤ 0.40, a constant strictly less than 1
2
. Let γ = 450

be a large constant used in our algorithms which obtains the claimed guarantees.

Overview. Algorithm 18 operates in two phases. In the first phase (lines 3-12),

we sample each point with a probability γ log(n/δ)/m to identify a small sample

of ≈ γn log(n/δ)
m

points (denoted by Ṽ ) and use Algorithm 18 to identify k centers

iteratively. In this process, we also identify a core for each cluster (denoted by R).

Formally, core is defined as a set of Θ(log(n/δ)) points that are very close to the

center with high probability. The cores are then used in the second phase (line 15)

for the assignment of remaining points.

Algorithm 18 Greedy Clustering

1: Input : Set of points V , smallest cluster size m.
2: Output : Clusters C
3: For every u ∈ V , include u in Ṽ with probability γ log(n/δ)

m

4: s1 ← select an arbitrary point from Ṽ , S ← {s1}
5: C(s1)← Ṽ
6: R(s1)← Identify-Core(C(s1), s1)
7: for i = 2 to k do
8: si ← Approx-Farthest(S,C)
9: C,R← Assign(S, si, R)

10: S ← S ∪ {si}
11: end for
12: C ← Assign-Final(S,R, V \ Ṽ )
13: return C

Now, we describe the main challenge in extending Approx-Farthest and

Assign ideas of Algorithm 12. Given a cluster C containing the center si, when

we find the Approx-Farthest, the ideas from Section 5.4.1 give poor approxima-

tion. As shown in section 5.4.1, we can improve the approximation guarantee by
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considering a set of Θ(log(n/δ)) points closest to si, denoted by R(si) and call them

core of si. We argue that such an assumption of set R is justified. For example,

consider the case when clusters are of size Θ(n) and sampling k log(n/δ) points gives

us log(n/δ) points from each optimum cluster; which means that there are log(n/δ)

points within a distance of 2 OPT from every sampled point where OPT refers to the

optimum k-center objective.

Assign. Consider a point si such that we have to assign points to form the cluster

C(si) centered at si. We calculate an assignment score (called ACount in line 4) for

every point u of a cluster C(sj) \ R(sj) centered at sj. ACount captures the total

number of times u is considered to belong to the same cluster as that of x for each

x in the core R(sj). Intuitively, points that belong to the same cluster as that of si

are expected to have higher ACount score. Based on the scores, we move u to C(si)

or keep it in C(sj).

Algorithm 19 Assign(S, si, R)

1: C(si)← {si}
2: for sj ∈ S do
3: for u ∈ C(sj) \R(sj) do
4: ACount(u, si, sj) =

∑
vk∈R(sj)

1{Oc(u, si, u, vk) == Yes}
5: if ACount(u, si, sj) > 0.3|R(sj)| then
6: C(si)← C(si) ∪ {u};C(sj)← C(sj) \ {u}
7: end if
8: end for
9: end for

10: R(si)← Identify-Core(C(si), si)
11: return C, R

Algorithm 20 Identify-Core(C(si), si)

1: for u ∈ C(si) do
2: Count(u)=

∑
x∈C(si)

1{Oc(si, x, si, u) == No}
3: end for
4: R(si) denote set of 8γ log(n/δ)/9 points with the highest Count values.
5: return R(si)
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Identify-Core. After forming cluster C(si), we identify the core of si. For this, we

calculate a score, denoted by Count and captures the number of times it is closer to

si compared to other points in C(Si). Intuitively, we expect points with high values

of Count to belong to C∗(si) i.e., optimum cluster containing si. Therefore we sort

these Count scores and return the highest scored points.

Approx-Farthest. For a set of clusters C, and a set of centers S, we construct the

pairs (vi, sj) where vi is assigned to cluster C(sj) centered at sj ∈ S and each center

sj ∈ S has a corresponding core R(sj). The farthest point can be found by finding

the maximum distance (point, center) pair among all the points considered. To do

so, we use the ideas developed in section 5.4.1.

We leverage ClusterComp (Algorithm 21) to compare the distance of two points,

say vi, vj from their respective centers si, sj. ClusterComp gives a robust answer to

a pairwise comparison query to the oracle Oc(vi, si, vj, sj) using the cores R(si) and

R(sj). ClusterComp can be used as a pairwise comparison subroutine in place of

PairwiseComp for the algorithm in Section 5.4 to calculate the farthest point. For

every si ∈ S, let R̃(si) denote an arbitrary set of
√
R(si) points from R(si). For a

ClusterComp comparison query between the pairs (vi, si) and (vj, sj), we use these

subsets in Algorithm 21 to ensure that we only make Θ(log(n/δ)) oracle queries for

every comparison. However, when the query is between points of the same cluster,

say C(si), we use all the Θ(log(n/δ)) points from R(si). For the parameters used to

find maximum using Algorithm 16, we use l =
√
n, t = log(n/δ).

Example 10. Suppose we run k-center Algorithm 18 with k = 2 and m = 2 on the

points in Example 8. Let w denote the first center chosen and Algorithm 18 identifies

the core R(w) by calculating Count values. If Oc(u,w, s, w) and Oc(s, w, t, w) are

answered incorrectly (with probability p), we obtain Count values of v, s, u, t as 3, 2, 1, 0

respectively; and v is added to R(w). We identify the second center u by calculating
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FCount for s, u and t (See Fig. 5.3). After assigning (using Assign), the clusters

identified are {w, v}, {u, s, t}, achieving 3-approximation.

Algorithm 21 ClusterComp (vi, si, vj , sj)

1: comparisons ← 0, FCount(vi, vj)← 0
2: if si = sj then
3: Let FCount(vi, vj) =

∑
x∈R(si)

1{Oc(vi, x, vj, x) == Yes}
4: comparisons ← |R(si)|
5: else Let FCount(vi, vj) =

∑
x∈R̃(si),y∈R̃(sj)

1{Oc(vi, x, vj, y) == Yes}
6: comparisons ← |R̃(si)| · |R̃(sj)|
7: end if
8: if FCount(vi, vj) < 0.3 · comparisons then
9: return No

10: else return Yes

11: end if

Assign-Final. After obtaining k clusters on the set of sampled points Ṽ , we assign

the remaining points using ACount scores, similar to the one described in Assign. For

every point that is not sampled, we first assign it to s1 ∈ S, and if ACount(u, s2, s1) ≥

0.3|R(s1)|, we re-assign it to s2, and continue this process iteratively. After assigning

all the points, the clusters are returned as output.

Theoretical Guarantees. Our algorithm first constructs a sample Ṽ ⊆ V and runs

the greedy algorithm on this sampled set of points. Our main idea to ensure that

good approximation of the k-center objective lies in identifying a good core around

each center. Using a sampling probability of γ log(n/δ)/m ensures that we have at

least Θ(log(n/δ)) points from each of the optimal clusters in our sampled set Ṽ . By

finding the closest points using Count scores, we identify O(log(n/δ)) points around

every center that are in the optimal cluster. Essentially, this forms the core of each

cluster. These cores are then used for robust pairwise comparison queries (similar

to Section 5.4.1), in our Approx-Farthest and Assign subroutines. We give the

following theorem, which guarantees a constant, i.e., O(1) approximation with high

probability.
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Theorem 5. Given p ≤ 0.4, a failure probability δ, and m = Ω(log3(n/δ)/δ).

Then, Algorithm 18 achieves a O(1)-approximation for the k-center objective using

O(nk log(n/δ) + n2

m2k log2(n/δ)) oracle queries with probability 1−O(δ).

In this proof, we first calculate the number of elements from different optimal

clusters in Ṽ and the analyze the quality of clusters.

Lemma 10. Consider the sample Ṽ ⊆ V of points obtained by selecting each point

with a probability 450 log(n/δ)
m

. Then, we have 400n log(n/δ)
m

≤ |Ṽ | ≤ 500n log(n/δ)
m

and for

every i ∈ [k], |C∗(si) ∩ Ṽ | ≥ 400 log(n/δ) with probability 1 − O(δ) for sufficiently

large γ > 0.

Proof. We include every point in Ṽ with a probability 450 log(n/δ)
m

where the size of the

smallest cluster is m. Using Chernoff bound, with probability 1−O(δ), we have :

400n log(n/δ)

m
≤ |Ṽ | ≤ 500n log(n/δ)

m

Consider an optimal cluster C∗(vi) with center vi. As every point is included with

probability 450 log(n/δ)
m

:

E[|C∗(si) ∩ Ṽ |] = |C∗(si)| ·
450 log(n/δ)

m
≥ 450 log(n/δ)

Using Chernoff bound, with probability at least 1− δ/n, we have

|C∗(si) ∩ Ṽ | ≥ 400 log(n/δ)

Using union bound for all the k clusters, we have the lemma.

Assignment. We now analyze the quality of assignment in each iteration of the

algorithm.

ACount(u, si, sj) =
∑

x∈R(si)

1{Oc(u, x, u, sj) == Yes}
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Lemma 11. Consider a point u and sj 6= si such that d(u, si) ≤ d(u, sj)−2 OPT and

|R(si)| ≥ 12 log(n/δ), then, ACount(u, si, sj) ≥ 0.3|R(si)| with a probability of 1− δ
n2 .

Proof. Using triangle inequality, for any x ∈ R(si)

d(u, x) ≤ d(u, si) + d(si, x) ≤ d(u, sj)− 2 OPT +d(si, x) ≤ d(u, sj)

So, Oc(u, x, u, sj) is Yes with a probability at least 1− p. We have:

E[ACount(u, si, sj)] =
∑

x∈R(si)

E[1{Oc(u, x, u, sj) == Yes}] ≥ (1− p)|R(si)|

Using Hoeffding’s inequality, with a probability of exp(−|R(si)|(1 − p)2/2) ≤ δ
n2

(using p ≤ 0.4), we have

ACount(u, si, sj) ≤ (1− p)|R(si)|/2

We have Pr[ACount(u, si, sj) ≤ 0.3|S|] ≤ Pr[ACount(u, si, sj) ≤ (1 − p)|S|/2].

Therefore, with probability δ
n2 , we have ACount(u, si, sj) ≤ 0.3|S|. Hence, the lemma.

Lemma 12. Suppose u ∈ C∗(si) and for some sj ∈ S, if d(si, sj) ≥ 6 OPT, then,

Algorithm 19 assigns u to center si with probability 1− δ
n2 .

Proof. As u ∈ C∗(si), we have d(u, si) ≤ 2 OPT. Therefore,

d(sj, u)− d(si, u) ≥ d(si, sj)− 2d(si, u) ≥ 2 OPT

d(sj, u) ≥ d(si, u) + 2 OPT

From Lemma 11, we have that if d(u, si) ≤ d(u, sj) − 2 OPT, then, we will assign u

to si with probability 1− δ
n2 .
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Lemma 13. Given a set of centers S, every u ∈ V is assigned to a cluster si such

that d(u, si) ≤ minsj∈S d(u, sj) + 2 OPT with a probability of 1− 1/n2.

Proof. From Lemma 11, we have that a point u is assigned to sl from sm if d(u, sl) ≤

d(u, sm)− 2 OPT. If si is the final assigned center of u, then, for every sj, it must be

true that d(u, sj) ≥ d(u, si)−2 OPT, which implies d(u, si) ≤ minsj∈S d(u, sj)+2 OPT.

Using union bound over at most n points, we have with a probability of 1− δ
n
, every

point u is assigned as claimed.

Core Calculation. Consider a cluster C(si) with center si. Let Sba denote the

number of points in the set |{x : a ≤ d(x, si) < b}|.

Count(u) =
∑

x∈C(si)

1{Oc(si, x, si, u) == No}

Lemma 14. Consider any two points u1, u2 ∈ C(si) such that d(u1, si) ≤ d(u2, si),

then E[Count(u1)]− E[Count(u2)] = (1− 2p)S
d(u2,si)
d(u1,si)

Proof. For a point u ∈ C(si)

E[Count(u)] = E

 ∑
x∈C(si)

1{O(si, x, si, u) == No}


= S

d(u,si)
0 p+ S∞d(u,si)

(1− p)

E[Count(u1)]− E[Count(u2)] =
(
S
d(u1,si)
0 p+ S

d(u2,si)
d(u1,si)

(1− p) + S∞d(u2,si)
(1− p)

)
−
(
S
d(u1,si)
0 p+ +S

d(u2,si)
d(u1,si)

p+ S∞d(u2,si)
(1− p)

)
= (1− 2p)S

d(u2,si)
d(u1,si)
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Lemma 15. Consider any two points u1, u2 ∈ C(si) such that d(u1, si) ≤ d(u2, si)

and |Sd(u2,si)
d(u1,si)

| ≥
√

100|C(si)| log(n/δ). Then, Count(u1) > Count(u2) with probability

1− δ/n2.

Proof. Suppose u1, u2 ∈ C(si). We have that Count(u1) and Count(u2) is a sum of

|C(si)| binary random variables.

Using Hoeffding’s inequality, we have with probability exp(−β2/2|C(si)|) that

Count(u1) ≤ E[Count(u1)]− β

2

Count(u2) > E[Count(u2)] +
β

2

Using union bound, with probability at least 1−2 exp(−β2/2|C(si)|), we can conclude

that

Count(u1)− Count(u2) > E[Count(u1)− Count(u2)]− β > (1− 2p)S
d(u2,si)
d(u1,si)

− β

Choosing β = (1− 2p)S
d(u2,si)
d(u1,si)

, we have Count(u1) > Count(u2) with a probability

(for constant p ≤ 0.4)

1− 2 exp(−(1− 2p)2
(
S
d(u2,si)
d(u1,si)

)2

/2|C(si)|) ≥ 1− 2 exp(−0.02
(
S
d(u2,si)
d(u1,si)

)2

/|C(si)|).

Further, simplifying using S
d(u2,si)
d(u1,si)

≥
√

100|C(si)| log(n/δ), we get probability of

failure is 2 exp(−2 log(n/δ)) = O(δ/n2)

Lemma 16. If |C(si)| ≥ 400 log(n/δ), then, |R(si)| ≥ 200 log(n/δ) with probability

1− |C(si)|2δ/n2.

Proof. From Lemma 15, we have that if there are points u1, u2 with√
100|C(si)| log(n/δ) many points between them, then, we can identify the closer one
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correctly. When |C(si)| ≥ 400 log(n/δ), we have
√

100|C(si)| log(n/δ) ≥ 200 log(n/δ)

points between every point and the point with the rank 200 log(n/δ). Therefore,

|R(si)| ≥ 200 log(n/δ). Using union bound over all pairs of points in the cluster, we

get the claim.

Lemma 17. If x ∈ C∗(si), then, x ∈ C(si) or x is assigned to a cluster sj such that

d(x, sj) ≤ 8 OPT.

Proof. If x ∈ C∗(si), we argue that it will be assigned to C(si). For the sake of

contradiction, suppose x is assigned to a cluster C(sj) for some sj ∈ S. We have

d(x, si) ≤ 2 OPT and let d(si, sj) ≥ 6 OPT

d(si, sj) ≤ d(sj, x) + d(si, x)

d(sj, x) ≥ 4 OPT

However, we know that d(sj, x) ≤ d(si, x) + 2 OPT ≤ 4 OPT from Lemma 11. We

have a contradiction. Therefore, x is assigned to si. If d(si, sj) ≤ 6 OPT, we have

d(x, sj) ≤ d(x, si) + 2 OPT ≤ 8 OPT. Hence, the lemma.

Farthest point computation. Let R(si) represent the core of the cluster C(si) and

contains Θ(log(n/δ)) points. We define FCount for comparing two points vi, vj from

their centers si, sj respectively. If si 6= sj, we let :

FCount(vi, vj) =
∑

x∈R̃(si),y∈R̃(sj)

1{Oc(vi, x, vj, y) == Yes}

Otherwise, we let FCount(vi, vj) =
∑

x∈R(si)
1{Oc(vi, x, vj, x) == Yes}. First,

we observe that each of the summation is over |R(si)| many terms, because

|R̃(si)| =
√
|R(si)|.
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Lemma 18. Consider two records vi, vj in different clusters C(si), C(sj) respectively

such that d(si, vi) < d(sj, vj) − 4 OPT then FCount(vi, vj) ≥ 0.3|R̃(si)||R̃(sj)| with a

probability of 1− δ
n2 .

Proof. We know maxvi∈R̃(si)
d(u, vi) ≤ 2 OPT and maxvj∈R̃(sj)

d(vj, sj) ≤ 2 OPT.

For a point x ∈ R(si), y ∈ R(sj)

d(vj, y) ≥ d(sj, vj)− d(sj, y)

> d(vi, si) + 4 OPT−d(sj, y)

> d(vi, x)− d(x, si) + 4 OPT−d(sj, y)

> d(vi, x)

So, O(vi, x, vj, y) is No with a probability p. As p ≤ 0.4, we have :

E[FCount(vi, vj)] = (1− p)|R̃(si)||R̃(sj)|

Pr[FCount(vi, vj) ≤ 0.3|R̃(si)||R̃(sj)|] ≤ Pr[FCount(vi, vj) ≤ (1− p)|R̃(si)||R̃(sj)|/2]

From Hoeffding’s inequality (with binary random variables), we have with a prob-

ability exp(− |R̃(si)||R̃(sj)|(1−p)2
2

) ≤ δ
n2 (using |R̃(si)||R̃(sj)| ≥ 12 log(n/δ), p < 0.4) :

FCount(vi, vj) ≤ (1 − p)|R̃(si)||R̃(sj)|/2. Therefore, with probability at most δ/n2,

we have, FCount(vi, vj) ≤ 0.3|R̃(si)||R̃(sj)|.

In order to calculate the farthest point, we use the ideas discussed in Section 5.4 to

identify the point that has the maximum distance from its assigned center. As noted

in Section 5.4.1, our approximation guarantees dependend on the maximum distance

of points in the core from the center. In the next lemma, we show that assuming

a maximum distance of a point in the core (See Lemma 17), we can obtain a good

approximation for the farthest point.
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Lemma 19. Let maxsj∈S,u∈R(sj) d(u, sj) ≤ α. In every iteration, if the farthest

point is at a distance more than (6α + 3 OPT), then, Approx-Farthestoutputs

a (6α/OPT +3)-approximation. Otherwise, the point output is at most (6α+3 OPT)

away.

Proof. The farthest point output Approx-Farthestis a 6α additive approximation.

However, the assignment of points to the cluster also introduces another additive ap-

proximation of 2 OPT, resulting in a total 6α+2 OPT approximation. Suppose in the

current iteration, the distance of the farthest point is βOPT, then the point output

by Approx-Farthestis at least βOPT−(6α+2 OPT) away. So, the approximation

ratio is β
β−(6α+2 OPT)

. If βOPT ≥ 6α + 3 OPT, we have βOPT
βOPT−(6α+2 OPT)

≤ β. As we

are trying to minimize the approximation ratio, we set βOPT = 6α+ 3 OPT and get

the claimed guarantee.

Final Guarantees. Throughout this section, we assume that m = Ω
(

log3(n/δ)
δ

)
for

a given failure probability δ > 0.

Lemma 20. Given a current set of centers S, and maxvj∈S,u∈R(vj) d(u, vj) ≤ α, we

have :

1. Every point u is assigned to a cluster C(si) such that d(u, si) ≤ minsj∈S d(u, sj)+

2 OPT using O(nk log(n/δ)) oracle queries with probability 1−O(δ).

2. Approx-Farthest identifies a point w in cluster C(si) such that

minvj∈S d(w, vj) ≥ maxvj∈V minsj∈S d(vj, sj)/(6α/OPT +3) with probability 1−

O(δ/k) using O(|Ṽ | log3(n/δ)) oracle queries.

Proof. (1) First, we argue that cores are calculated correctly. From Lemma 12,

we have that a point u ∈ C∗(si) is assigned to the center correctly si.

Therefore, all the points from Ṽ ∩ C∗(Si) move to C(Si). As the size of

|C(Si)| ≥ |Ṽ ∩ C∗(Si)| ≥ 400 log(n/δ), we have |R(si)| ≥ 200 log(n/δ) with a
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probability 1− |C(si)|2δ/n2(From Lemma 15). Using union bound, we have that all

the cores are calculated correctly with a failure probability of
∑

i |C(si)|2/n2 = δ.

For every point, we compare the distance with every cluster center by maintaining

a center that is the current closest. From Lemma 11, we have that the query will fail

with a probability of δ/n2. Using union bound, we have that the failure probability

is O(knδ/n2) = δ. From Lemma 11, we have the approximation guarantee.

(2) From Lemma 19, we have our claim regarding the approximation guaran-

tees. For Approx-Farthest, we use the parameters t = 2 log(2k/δ), l =

√
|Ṽ |.

As we make O(|Ṽ | log2(k/δ)) cluster comparisons using Algorithm ClusterComp

(for Approx-Farthest), we have that the total number of oracle queries is

O(|Ṽ | log(n/δ) log2(k/δ)) = O(|Ṽ | log3(n/δ)). Using union bound, we have that the

failure probability is O(δ/k + |Ṽ | log2(k/δ)/n2) = O(δ/k).

Theorem 6. [Theorem 5 restated] Given p ≤ 0.4, a failure probability δ, and m =

Ω
(

log3(n/δ)
δ

)
. Then, Algorithm 18 achieves a O(1)-approximation for the k-center

objective using O(nk log(n/δ)+ n2

m2k log2(n/δ)) oracle queries with probability 1−O(δ).

Proof. Using similar proof as Lemma 6, we have that the approximation ratio of

Algorithm 18 is 4(6α/OPT +3) + 2. Using α = 8 OPT from Lemma 17, we have

that the approximation factor is 206. For the first stage, from Lemma 20, we have

that for all the k iterations, the number of oracle queries is O(|Ṽ |k log3(n/δ)). Using

union bound over k iterations, success probability is 1 − O(δ). For the calculation

of core, the query complexity is O(|Ṽ |2k). For assignment, the query complexity is

O(nk log(n/δ)). Therefore, total query complexity is O(nk log(n/δ) + n
m
k log4(n/δ) +

n2

m2k log2(n/δ)) = O(nk log(n/δ) + n2

m2k log2(n/δ)).
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5.6 Hierarchical Clustering

In this section, we present robust algorithms for agglomerative hierarchical clus-

tering using single linkage and complete linkage objectives. The naive algorithms

initialize every record as a singleton cluster and merge the closest pair of clusters

iteratively. For a set of clusters C = {C1, . . . , Ct}, the distance between any pair of

clusters Ci and Cj, for single linkage clustering, is defined as the minimum distance

between any pair of records in the clusters, dSL(C1, C2) = minv1∈C1,v2∈C2 d(v1, v2).

For complete linkage, cluster distance is defined as the maximum distance between

any pair of records. All algorithms discussed in this section can be easily extended

for complete linkage, and therefore we study single linkage clustering. The main

challenge to implement single linkage clustering in the presence of adversarial noise

is identification of minimum value in a list of at most
(
n
2

)
distance values. In each

iteration, the closest pair of clusters can be identified by using Algorithm 16 (with

t = 2 log(n/δ)) to calculate the minimum over the set containing pairwise distances.

For this algorithm, Lemma 21 shows that the pair of clusters merged in any iteration

are a constant approximation of the optimal merge operation at that iteration. The

proof of this lemma follows from Theorem 1.

Lemma 21. Given a collection of clusters C = {C1, . . . , Cr}, our algorithm to cal-

culate the closest pair (using Algorithm 16) identifies C1 and C2 to merge according

to single linkage objective if dSL(C2, C2) ≤ (1 + µ)3 minCi,Cj∈C d(Ci, Cj) with 1 − δ

probability and requires O(r2 log2(n/δ)) queries.

Proof. In each iteration, our algorithm considers a list of
(
r
2

)
distance values and

calculates the closest using Algorithm 16. The claim follows from the proof of Theo-

rem 1

Overview. Agglomerative clustering techniques are known to be inefficient. Each

iteration of merge operation compares at most
(
n
2

)
pairs of distance values and the
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Algorithm 22 Greedy Algorithm

1: Input : Set of points V
2: Output : Hierarchy H
3: H ← {{v} | v ∈ V }, C ← {{v} | v ∈ V }
4: for Ci ∈ C do
5: C̃i ←NearestNeighbor of Ci among C \ {Ci} using Sec 5.4.1
6: end for
7: while |C| > 1 do

8: Let (Cj, C̃j) be the closest pair among (Ci, C̃i),∀Ci ∈ C
9: C ′ ← Cj ∪ C̃j

10: Update Adjacency list of C ′ with respect to C
11: Add C ′ as parent of C̃j and Cj in H.

12: C ←
(
C \ {Cj, C̃j}

)
∪ {C ′}

13: C̃ ′ ← NearestNeighbor of C ′ from its adjacency list
14: end while
15: return H

algorithm operates n times to construct the hierarchy. This yields an overall query

complexity of O(n3). To improve their query complexity, SLINK algorithm [175] was

proposed to construct the hierarchy in O(n2) comparisons. To implement this algo-

rithm with a comparison oracle, for every cluster Ci ∈ C, we maintain an adjacency list

containing every cluster Cj in C along with a pair of records with the distance equal to

the distance between the clusters. For example, the entry for Cj in the adjacency list

of Ci contains the pair of records (vi, vj) such that d(vi, vj) = minvi∈Ci,vj∈Cj d(vi, vj).

Algorithm 22 presents the pseudo code for single linkage clustering under the adver-

sarial noise model. The algorithm is initialized with singleton clusters where every

record is a separate cluster. Then, we identify the closest cluster for every Ci ∈ C,

and denote it by C̃i. This step takes n nearest neighbor queries, each requiring

O(n log2(n/δ)) oracle queries. In every subsequent iteration, we identify the closest

pair of clusters (Using section 5.4.1), say Cj and C̃j from C.

After merging these clusters, the data structure is updated as follows. To up-

date the adjacency list, we need the pair of records with minimum distance between

the merged cluster C ′ ≡ Cj ∪ C̃j and every other cluster Ck ∈ C. In the previous

iteration of the algorithm, we already have the minimum distance record pair for
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(Cj, Ck) and (C̃j, Ck). Therefore a single query between these two pairs of records

is sufficient to identify the minimum distance edge between C ′ and Ck (formally:

dSL(Cj ∪ C̃j, Ck) = min{dSL(Cj, Ck), dSL(C̃j, Ck)}). The nearest neighbor of the

merged cluster is identified by running a minimum calculation over its adjacency list.

In Algorithm 22, as we identify the closest pair of clusters, each iteration requires

O(n log2(n/δ)) queries. As our Algorithm terminates in at most n iterations, it has

an overall query complexity of O(n2 log2(n/δ)). In Theorem 7, we gave an approxi-

mation guarantee for every merge operation of Algorithm 22.

Theorem 7. In any iteration, suppose the distance between a cluster Cj ∈ C and

its identified nearest neighbor C̃j is α-approximation of its distance from the optimal

nearest neighbor, then the distance between pair of clusters merged by Algorithm 22

is α(1 +µ)3 approximation of the optimal distance between the closest pair of clusters

in C with a probability of 1− δ using O(n log2(n/δ)) oracle queries.

Proof. Algorithm 22 iterates over the list of pairs (Ci, C̃i),∀Ci ∈ C and identifies the

closest pair using Algorithm 16. The claim follows from the proof of Theorem 1

Probabilistic Noise model. The above discussed algorithms do not extend to the

probabilistic noise due to constant probability of error for each query. However, when

we are given apriori, a partitioning of V into clusters of size > log n such that the

maximum distance between any pair of records in every cluster is smaller than α (a

constant), Algorithm 22 can be used to construct the hierarchy correctly. For this

case, the algorithm to identify the closest and farthest pair of clusters is the same as

the one discussed in Section 5.4.1.

Note that agglomerative clustering algorithms are known to require Ω(n2) queries,

which can be infeasible for million scale datasets. However, blocking based techniques

present efficient heuristics to prune out low similarity pairs [159]. Devising provable

algorithms with better time complexity is outside the scope of this work.
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5.7 Experiments

This section evaluates the effectiveness of our techniques on various real world

datasets and answers the following questions.

Q1: Is quadruplet oracle practically feasible? How do the different types of queries

compare in terms of quality and time taken by annotators?

Q2: Are proposed techniques robust to different levels of noise in oracle answers?

Q3: How does the query complexity and solution quality of proposed techniques

compare with optimum for varied levels of noise?

Datasets. We consider the following real-world datasets.

(1) cities dataset [10] comprises 36K cities of the United States. The different

features of the cities include state, county, zip code, population, time zone, latitude

and longitude.

(2) caltech dataset comprises 11.4K images from 20 categories. The ground truth

distance between records is calculated using the hierarchical categorization described

in [108].

(3) amazon dataset contains 7K images and textual descriptions collected from

amazon.com [116]. For obtaining the ground truth distances we use Amazon’s hi-

erarchical catalog.

(4) monuments dataset comprises 100 images belonging to 10 tourist locations around

the world.

(5) dblp contains 1.8M titles of computer science papers from different areas [208].

From these titles, noun phrases were extracted and a dictionary of all the phrases

was constructed. Euclidean distance in word2vec embedding space is considered as

the ground truth distance between concepts.

Baselines. We compare our techniques with the optimal solution (whenever possible)

and the following baselines. (a) Tour2 constructs a binary tournament tree over the
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entire dataset to compare the values and the root node corresponds to the identified

maximum/minimum value (Algorithm 14 with λ = 2). This approach is an adaptation

of the maximum calculation algorithm in [70] with a difference that each query is not

repeated multiple times to increase success probability. We also use them to identify

the farthest and nearest point in the greedy k-center Algorithm 12 and closest pair

of clusters in hierarchical clustering. (b) Samp considers a sample of
√
n records and

identifies the farthest/nearest by performing a quadratic number of comparisons over

the sampled points using Count-Max. For k-center, Samp considers a sample of

k log n points to identify k centers over these samples using the greedy algorithm. It

then assigns all the remaining points to the identified centers by querying each record

with every pair of centers.

Calculating optimal clustering objective for k-center is NP-hard even in the pres-

ence of accurate pairwise distance [204]. So, we compare the solution quality with

respect to the greedy algorithm on the ground truth distances, denoted by TDist.

For farthest, nearest neighbor and hierarchical clustering, TDist denotes the optimal

technique that has access to ground truth distance between records.

Our algorithm is labelled Far for farthest identification, NN for nearest neighbor, kC

for k-center and HC for hierarchical clustering with subscript a denoting the adversarial

model and p denoting the probabilistic noise model. All algorithms were implemented

in C++ and run on a server with 64GB RAM. The reported results are averaged over

100 randomly chosen iterations. Unless specified, we set t = 1 in Algorithm 16 and

γ = 2 in Algorithm 18.

Evaluation Metric. For finding maximum and nearest neighbors, we compare dif-

ferent techniques by evaluating the true distance of the returned solution from the

queried points. For k-center, we use the objective value, i.e., maximum radius of

the returned clusters as the evaluation metric and compare against the true greedy

algorithm (TDist) and other baselines. For datasets where ground truth clusters are
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known (amazon, caltech and monuments), we use F-score over intra-cluster pairs for

comparing it with the baselines [87]. For hierarchical clustering, we compute the pairs

of clusters merged in every iteration and compare the average true distance between

these clusters. In addition to the quality of the returned solution, we compare the

query complexity and running time of the proposed techniques with the baselines

described above.

Noise Estimation. For cities, amazon, caltech, and monuments datasets, we ran

a user study on Amazon Mechanical Turk to estimate the noise in oracle answers over

a small sample of the dataset, often referred to as the validation set. Using crowd

responses, we trained a classifier (random forest [184] obtained the best results) using

active learning to act as the quadruplet oracle, and reduce the number of queries to

the crowd. Our active learning algorithm [183] uses a batch of 20 queries and we

stop it when the classifier accuracy on the validation set does not improve by more

than 0.01 [103]. To efficiently construct a small set of candidates for active learning

and pruning low similarity pairs for dblp, we employ token based blocking [159] for

the datasets. For the synthetic oracle, we simulate a quadruplet oracle with different

values of the noise parameters.

5.7.1 User study

In this section, we evaluate the users ability to answer quadruplet queries and

compare it with other types of queries.

Setup. We ran a user study on Amazon Mechanical Turk platform for four datasets

cities, amazon, caltech and monuments. We consider the ground truth distance

between record pairs and discretize them into buckets, and assign a pair of records

to a bucket if the distance falls within its range. For every pair of buckets, we query

a random subset of log n quadruplet oracle queries (where n is size of dataset). Each
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Figure 5.4: Accuracy values (denoted by the color of a cell) for different distance
ranges observed during our user study. The diagonal entries refer to the quadruplets
with similar distance between the corresponding pairs and the distance increases as
we go further away from the diagonal.

query is answered by three different crowd workers and a majority vote is taken as

the answer to the query.

Qualitative Analysis of Oracle. In Figure 5.4, for every pair of buckets, using

a heat map, we plot the accuracy of answers obtained from the crowd workers for

quadruplet queries. For all datasets, average accuracy of quadruplet queries is more

than 0.83 and the accuracy is minimum whenever both pairs of records belong to the

same bucket (as low as 0.5). However, we observe varied behavior across datasets as

the distance between considered pairs increases.

For the caltech dataset, we observe that when the ratio of the distances is more

than 1.45 (indicated by a black line in the Figure 5.4a) , there is no noise (or close to

zero noise) observed in the query responses. As we observe a sharp decline in noise as

the distance between the pairs increases, it suggests that adversarial noise is satisfied

for this dataset. We observe a similar pattern for the cities and monuments datasets.

For the amazon dataset, we observe that there is substantial noise across all distance
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ranges (See Figure 5.4b) rather than a sharp decline, suggesting that the probabilistic

model is satisfied.

Comparison with Pairwise Querying Mechanisms. To evaluate the benefit of

quadruplet queries, we compare the quality of quadruplet comparison oracle answers

with the following pairwise oracle query models. (a) Optimal cluster query: This

query asks questions of type ‘do u and v refer to the same/similar type?’. (b) Distance

query: How similar are the records x and y? In this query, the annotator scores the

similarity of the pair within 1 to 10.

We make the following observations. (i) Optimal cluster queries are answered cor-

rectly only if the ground truth clusters refer to different entities (each cluster referring

to a distinct entity). Crowd workers tend to answer ‘No’ if the pair of records refer

to different entities. Therefore, we observe high precision (more than 0.90) but low

recall (0.50 on amazon and 0.30 on caltech for k = 10) of the returned labels. (ii)

We observed very high variance in the distance estimation query responses. For all

record pairs with identical entities, the users returned distance estimates that were

within 20% of the correct distances. In all other cases, we observe the estimates to

have errors of upto 50%. We provide more detailed comparison on the quality of

clusters identified by pairwise query responses along with quadruplet queries in the

next section.

5.7.2 Crowd Oracle: Solution Quality & Query Complexity

In this section, we compare the quality of our proposed techniques for the datasets

on which we performed the user study. Following the findings of Section 5.7.1, we use

the probabilistic model based algorithm for amazon(with p = 0.50) and adversarial

noise model based algorithm for caltech, monuments and cities.

Finding Max and Farthest/Nearest Neighbor. Figure 5.5 compares the quality

of farthest and nearest neighbor (NN) identified by proposed techniques along with
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Figure 5.5: Comparison of farthest and NN techniques for crowdsourced oracle
queries.

other baselines. The values are normalized according to the maximum value to present

all datasets on the same scale. Across all datasets, the point identified by Far and

NN is closest to the optimal value, TDist. In contrast, the farthest returned by Tour2

is better than that of Samp for cities dataset but not for caltech, monuments and

amazon. We found that this difference in quality across datasets is due to varied

distance distribution between pairs. The cities dataset has a skewed distribution of

distance between record pairs, leading to a unique optimal solution to the farthest/NN

problem. Due to this reason, the set of records sampled by Samp does not contain any

record that is a good approximation of the optimal farthest. However, ground truth

distances between record pairs in amazon, monuments and caltech are less skewed

with more than log n records satisfying the optimal farthest point for all queries.

Therefore, Samp performs better than Tour2 on these datasets. We observe Samp

performs worse for NN because our sample does not always contain the closest point.

k-center Clustering. We evaluate the F-score2 of the clusters generated by our

techniques along with baselines and techniques for pairwise optimal query mechanism

2Optimal clusters are identified from the original source of the datasets (amazon and caltech)
and manually for monuments.
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Figure 5.6: Comparison of Hierarchical clustering techniques with crowdsourced ora-
cle.

(denoted as Oq)3. Table 5.1 presents the summary of our results for different values

of k. Across all datasets, our technique achieves more than 0.90 F-score. On the

other hand, Tour2 and Samp do not identify the ground truth clusters correctly,

leading to low F-score. Similarly, Oq achieves poor recall (and hence low F-score) as

it labels many record pairs to belong to separate clusters. For example, a frog and a

butterfly belong to the same optimal cluster for caltech (k=10) but the two records

are assigned to different clusters by Oq.

Hierarchical Clustering. Figure 5.6 compares the average distance of the merged

clusters across different iterations of the agglomerative clustering algorithm. Tour2

has O(n3) complexity and does not run for cities dataset in less than 48 hrs. The ob-

jective value of different techniques are normalized by the optimal value with Tdist

denoting 1. For all datasets, HC performs better than Samp and Tour2. Among

datasets, the quality of hierarchies generated for monuments is similar for all tech-

niques due to low noise.

3We report the results on the sample of queries asked to the crowd as opposed to training a
classifier because the classifier generates noisier results and has poorer F-score than the quality of
labels generated by crowdsourcing
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Technique kC Tour2 Samp Oq*
caltech (k = 10) 1 0.88 0.91 0.45
caltech (k = 15) 1 0.89 0.88 0.49
caltech (k = 20) 0.99 0.93 0.87 0.58
monuments (k = 5) 1 0.95 0.97 0.77
amazon (k = 7) 0.96 0.74 0.57 0.48
amazon (k = 14) 0.92 0.66 0.54 0.72

Table 5.1: F-score comparison of k-center clustering. Oq is marked with ∗ as it was
computed on a sample of 150 pairwise queries to the crowd3. All other techniques
were run on the complete dataset using a classifier.
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Figure 5.7: Comparison of farthest identification techniques for adversarial and prob-
abilistic noise models.

Query Complexity. To ensure scalability, we trained active learning based classi-

fier for all the aforementioned experiments. In total, amazon, cities, and caltech

required 540 (cost: $32.40), 220 (cost: $13.20) and 280 (cost: $16.80) queries to the

crowd respectively.

5.7.3 Simulated Oracle: Solution Quality & Query Complexity

In this section, we compare the robustness of the techniques where the query

response is simulated synthetically for given µ and p.

Finding Max and Farthest/Nearest Neighbor. In Figure 5.7a, µ = 0 denotes

the setting where the oracle answers all queries correctly. In this case, Far and Tour2

identify the optimal solution but Samp does not identify the optimal solution for
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Figure 5.8: Comparison of nearest neighbor techniques for adversarial and proba-
bilistic noise model (lower is better).

cities. In both datasets, Far identifies the correct farthest point for µ < 1. Even

with an increase in noise (µ), we observe that the farthest is always at a distance

within 4 times the optimal distance (See Fig 5.7a). We observe that the quality of

farthest identified by Tour2 is close to that of Far for smaller µ because the optimal

farthest point vmax has only a few points in the confusion region C (See Section 5.4)

that contains the points that are close to vmax. For e.g., less than 10% are present

in C when µ = 1 for cities dataset, i.e., less than 10% points return an erroneous

answer when compared with vmax.

In Figure 5.7b, we compare the true distance of the identified farthest points for the

case of probabilistic noise with error probability p. We observe that Farp identifies

points with distance values very close to the farthest distance Tdist, across all data

sets and error values. This shows that Far performs significantly better than the

theoretical approximation presented in Section 5.4. On the other hand, the solution

returned by Samp is more than 4× smaller than the value returned by Farp for an

error probability of 0.3. Tour2 has a similar performance as that of Farp for p ≤ 0.1,

but we observe a decline in solution quality for higher noise (p) values.

In Figures 5.8a, 5.8b, we compare the true distance of the identified nearest neigh-

bor with different baselines. NN shows superior performance as compared to Tour2
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Figure 5.9: k-center clustering objective comparison for adversarial and probabilistic
noise model.

across all error values. This justifies the lack of robustness of Tour2 as discussed in

Section 5.4. The solution quality of NN does not worsen with increase in error. We

omit Samp from the plots because the returned points had very poor performance

(as bad as 700 even in the absence of error). We observed similar behavior for other

datasets. In terms of query complexity, NN requires around 53×103 queries for cities

dataset and the number of queries grows linearly with the dataset size. Among base-

lines, Tour2 uses 37× 103 queries and Samp uses 18× 103.

“In conclusion, we observe that our techniques achieve the best quality across all data

sets and error values, while Tour2 performs similar to Far for low error, and its

quality degrades with increasing error.”

k-center Clustering. Figure 5.9 compares the k-center objective of the returned

clusters for varying k in the adversarial and probabilistic noise model. Tdist denotes

the best possible clustering objective, which is guaranteed to be a 2-approximation

of the optimal objective. The set of clusters returned by kC are consistently very

close to TDist across all datasets, validating the theory. For higher values of k, kC

approaches closer to TDist, thereby improving the approximation guarantees. The

quality of clusters identified by kC are similar to that of Tour2 and Far for adversarial

noise (Figure 5.9a,b) but considerably better for probabilistic noise (Figure 5.9c,d).

Running time. Table 5.2 compares the running time and the number of required

quadruplet comparisons for various problems under adversarial noise model with µ =

1 for the largest dblp dataset. Far and NN requires less than 6 seconds for both
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Problem Our Approach Tour2 Samp

Time # Comp Time # Comp Time # Comp
Farthest 0.1 2.2M 0.06 2M 0.07 1M
Nearest 0.075 2M 0.07 2M 0.61 1M

kC (k=50) 450 120M 375.3 95M 477 105M
Single Linkage 1813 990M DNF 1760 940M

Complete Linkage 1950 940M DNF 1940 920M

Table 5.2: Running time (in minutes) and number of quadruplet comparisons (de-
noted by # Comp, in millions) of different techniques for dblp dataset under the
adversarial noise model with µ = 1. DNF denotes ‘did not finish’.

adversarial and probabilistic error models. Our k-center clustering technique requires

less than 450 min to identify 50 centers for dblp dataset across different noise models;

the running time grows linearly with k. While the running time of our algorithms

are slightly higher than Tour2 for farthest, nearest and k-center, Tour2 did not finish

in 48 hrs due to O(n3) running time for single and complete linkage hierarchical

clustering. We observe similar performance for the probabilistic noise model. Note

that even though the number of comparisons are in millions, this dataset requires

only 740 queries to the crowd workers to train the classifier.

5.8 Summary and Future Work

This chapter formalizes the notion of a noisy comparison oracle and develops

robust techniques to perform metric based clustering. The presented oracle models

are validated by running case studies on Amazon Mechanical Turk. The proposed

technique is demonstrated to be highly effective in recovering ground truth summaries

over these datasets. The key takeaways from the chapter are summarized below.

• Quadruplet comparison queries are easy to answer when the two distances being

compared are well separated. Crowdworkers (oracle in general) can provide

accurate knowledge about the relative ordering of distance values.

• k-center clustering technique scales linearly with n and achieves a constant

approximation.
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• Empirically, the proposed algorithms generate accurate clusters even in the

presence of noise.

Future Work. In this chapter, we studied data summarization assuming that the

ground truth clusters are fixed with respect to a given distance function. However,

a dataset may have different summaries based on the application at hand [140]. For

example, a traveler who is planning to visit different tourist locations maybe interested

in clustering based on geographical distance between records. However, an artist who

is looking for different types of pictures to paint maybe interested in clustering them

based on architecture. Extending our techniques to generate a personalized data

summary is an interesting direction for further exploration.

Additionally, the presented techniques do not use pairwise similarity values (cal-

culated by automated techniques) to optimize for the oracle queries. It would be

interesting to design techniques that consider noisy similarity values (calculated us-

ing automated techniques like jaccard similarity over textual features) to guide the

oracle querying procedure. Extending the proposed techniques for other metric-based

clustering algorithms like k-median and k-means clustering is also an interesting di-

rection for future research. The presented oracle strategy presents a mechanism to

compare ground truth distance between pairs of records. In terms of other appli-

cations, it would be interesting to consider comparison oracle-based supervision for

various NLP tasks like sentiment prediction, information extraction, etc.

156



PART II: GENERATIVE
MODELS FOR CLUSTERING



CHAPTER 6

CLUSTERING WITH GENERATIVE MODELS

In this chapter, we propose the geometric block model, a novel generative model

that captures correlated edge formation. This generative model is validated on two

different real-world datasets. In order to recover ground truth clusters, we propose a

simple triangle counting-based algorithm and analyze its efficacy.

Section 6.2 defines the geometric block model (GBM) and the cluster recovery

problem. Section 6.3 verifies our hypothesis about GBM on academic collaboration

networks and Amazon co-purchase networks. Section 6.4 proposed the motif-counting

algorithm to recover clusters and Section 6.5 analyzes its quality. Section 6.6 empir-

ically evaluates the quality of proposed techniques on three real-world datasets.

6.1 Introduction

Graph Clustering consists of partitioning the vertices into clusters that refer to

similar type of entities. Clustering forms one of the important problems in machine

learning and data mining with applications in data integration, outlier detection,

community detection, medical analysis, among others. Due to the lack of ground

truth in most applications, clustering techniques have been studied to optimize for

an objective hoping to identify meaningful communities. This motivated the study

of generative models to better understand the interactions between nodes of different

clusters and benchmark clustering techniques on these models.

The planted-partition model or the stochastic block model (SBM) is a random graph

model for community detection that generalizes the well-known Erdös-Renyi graphs
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[119, 77, 71, 13, 12, 115, 56, 150]. It is one of the most popular models to study graph

clustering. Consider a graph G(V,E), where V = C1tC2t· · ·tCk is a disjoint union

of k clusters denoted by C1, . . . , Ck. The edges of the graph are drawn randomly:

there is an edge between u ∈ Ci and v ∈ Cj with probability qi,j, 1 ≤ i, j ≤ k. Given

the adjacency matrix of such a graph, the task is to find exactly (or approximately)

the partition C1 t C2 t · · · t Ck of V .

Recent theoretical works focus on characterizing a sharp threshold of recovering

the partition in the SBM. For example, when there are only two communities of

exactly equal sizes, and the inter-cluster edge probability is b logn
n

and intra-cluster

edge probability is a logn
n

, it is known that perfect recovery is possible if and only

if
√
a −
√
b >

√
2 [12, 150]. The regime of the probabilities being Θ

(
logn
n

)
has

been put forward as one of the most interesting ones because in an Erdös-Renyi

random graph, this is the threshold for graph connectivity [40]. This result has been

subsequently generalized for k communities [13, 14, 114] (for constant k or when k =

o(log n)), and under the assumption that the communities are generated according to

a probabilistic generative model (there is a prior probability pi of an element being

in the ith community) [13]. Note that, the results are not only of theoretical interest,

many real-world networks exhibit a “sparsely connected” community feature [138],

and any efficient recovery algorithm for SBM has many potential applications.

One aspect that the SBM does not account for is a “transitivity rule” (‘friends

having common friends’) inherent to many social and other community structures.

To be precise, consider any three vertices x, y and z. If x and y are connected by an

edge (or they are in the same community), and y and z are connected by an edge

(or they are in the same community), then it is more likely than not that x and z

are connected by an edge. This phenomenon can be seen in many network structures

- predominantly in social networks, blog-networks and advertising. SBM, primarily

a generalization of Erdös-Renyi random graph, does not consider this characteristic,
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and in particular, probability of an edge between x and z there is independence of

the fact that there exist edges between x and y and y and z. However, one needs to

be careful such that by allowing such “transitivity”, the simplicity and elegance of

the SBM is not lost.

Inspired by the above question, we propose a random graph community detection

model analogous to the stochastic block model, that we call the geometric block model

(GBM). The GBM depends on the basic definition of the random geometric graph

that has found a lot of practical use in wireless networking because of its inclusion of

the notion of proximity between nodes [162].

Definition 11 (Random Geometric Graph). A random geometric graph (RGG) on

n vertices has parameters n, an integer t > 1 and a real number β ∈ [−1, 1]. It

is defined by assigning a vector Zi ∈ Rt to vertex i, 1 ≤ i, n, where Zi, 1 ≤ i ≤ n

are independent and identical random vectors uniformly distributed in the Euclidean

sphere St−1 ≡ {x ∈ Rt : ‖x‖`2 = 1}. There will be an edge between vertices i and j if

and only if 〈Zi, Zj〉 ≥ β.

Note that, the definition can be further generalized by considering Zis to have a

sample space other than St−1, and by using a different notion of distance than inner

product (i.e., the Euclidean distance). We simply stated one of the many equivalent

definitions [48].

Random geometric graphs are often proposed as an alternative to Erdös-Renyi

random graphs. They are quite well studied theoretically (though not nearly as much

as the Erdös-Renyi graphs), and very precise results exist regarding their connectivity,

clique numbers and other structural properties [112, 163, 73, 26, 102]. For a survey of

early results on geometric graphs and the analogy to results in Erdös-Renyi graphs, we

refer the reader to [162]. A very interesting question of distinguishing an Erdös-Renyi

graph from a geometric random graph has also recently been studied [48]. This will
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provide a way to test between the models which better fits a scenario, a potentially

great practical use.

As mentioned earlier, the “transitivity” feature led to random geometric graphs

being used extensively to model wireless networks (for example, see [113, 37]). Sur-

prisingly, however, to the best of our knowledge, random geometric graphs are never

used to model community detection problems. In this chapter we take the first step

towards this direction. The chapter is organized as follows.

• We define a random generative model (Section 6.2) to study canonical problems

of community detection, called the geometric block model (GBM). This model

takes into account a measure of proximity between nodes and this proximity

measure characterizes the likelihood of two nodes being connected when they

are in the same or different communities. The geometric block model inherits

the connectivity properties of the random geometric graphs, in particular the

likelihood of “transitivity” in triplet nodes (or more).

• We experimentally validate the GBM on various real-world datasets (Sec-

tion 6.3). We show that many practical community structures exhibit properties

of the GBM. We also compare these features with the corresponding notions in

SBM to show how GBM better models data in many practical situations.

• We propose a simple motif-based efficient algorithm for community detection

on the GBM (Section 6.4). We rigorously show that this algorithm is optimal

up to a constant fraction (to be properly defined later) even in the regime of

sparse graphs (average degree ∼ log n).

• The motif-counting algorithms are extensively tested on both synthetic and

real-world datasets. They exhibit very good performance in three real datasets,

compared to the spectral-clustering algorithm (see Section 6.6). Since simple

motif-counting is known to be far from optimum in stochastic block model (see
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Section 6.5), these experiments give further validation to GBM as a real-world

model.

Given any simple random graph model, it is possible to generalize it to a random

block model of communities much in line with the SBM. We, however, stress that the

geometric block model is perhaps the simplest possible model of real-world commu-

nities that also captures the transitive/geometric features of communities. Moreover,

the GBM explains behaviors of many real-world networks as we will exemplify sub-

sequently.

6.2 The Geometric Block Model

Let V ≡ C1 t C2 t · · · t Ck be the set of vertices that is a disjoint union of k

clusters, denoted by C1, . . . , Ck. Given an integer t ≥ 2, for each vertex u ∈ V ,

define a random vector Zu ∈ Rt that is uniformly distributed in St−1 ⊂ Rt, the

t− 1-dimensional sphere.

Definition 12 (Geometric Block Model (V, t, βi,j, 1 ≤ i < j ≤ k)). Given V, t and

a set of real numbers βi,j ∈ [−1, 1], 1 ≤ i ≤ j ≤ k, the geometric block model is a

random graph with vertices V and an edge exists between v ∈ Ci and u ∈ Cj if and

only if 〈Zu, Zv〉 ≥ βi,j.

The case of t = 2: In this chapter we particularly analyze our algorithm for t = 2.

In this special case, the above definition is equivalent to choosing random variable θu

uniformly distributed in [0, 2π], for all u ∈ V . Then there will be an edge between two

vertices u ∈ Ci, v ∈ Cj if and only if cos θu cos θv + sin θu sin θv = cos(θu − θv) ≥ βi,j

or min{|θu − θv|, 2π − |θu − θv|} ≤ arccos βi,j. This in turn, is equivalent to choosing

a random variable Xu uniformly distributed in [0, 1] for all u ∈ V , and there exists

an edge between two vertices u ∈ Ci, v ∈ Cj if and only if

dL(Xu, Xv) ≡ min{|Xu −Xv|, 1− |Xu −Xv|} ≤ ri,j,
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where ri,j ∈ [0, 1
2
], 0 ≤ i, j ≤ k, are a set of real numbers.

For the rest of this chapter, we concentrate on the case when ri,i = rs for all

i ∈ {1, . . . , k}, which we call the “intra-cluster distance” and ri,j = rd for all i, j ∈

{1, . . . , k}, i 6= j, which we call the “inter-cluster distance,” mainly for the clarity of

exposition. To allow for edge density to be higher inside the clusters than across the

clusters, assume rs ≥ rd.

The main problem that we seek to address is the following.

Problem 4. Given the adjacency matrix of a geometric block model with k clusters,

and t, rd, rs, rs ≥ rd, find the partition C1, C2, . . . , Ck.

6.3 Real-world Validation

We experiment with two different types of real-world datasets to verify our hy-

pothesis about geometric block model and the role of distance in the formation of

edges. The first one is a dataset with academic collaboration, and the second one is

a product purchase dataset from Amazon.

6.3.1 Academic Collaboration Network

We consider the collaboration network of academicians in Computer Science in

2016 (data obtained from csrankings.org). According to the area of expertise of

the authors, we consider five different communities: Data Management (MOD), Ma-

chine Learning and Data Mining (ML), Artificial Intelligence (AI), Robotics (ROB),

Architecture (ARCH). If two authors share the same affiliation, or shared affiliation

in the past, we assume that they are geographically close.

We would like to hypothesize that two authors in the same communities might

collaborate even when they are geographically far. However, two authors in different

communities are more likely to collaborate only if they share the same affiliation

(or are geographically close). Table 6.1 describes the number of edges across the
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Table 6.1: On the left we count the number of inter-cluster edges when authors
shared the same affiliation and different affiliations. On the right, we count the same
for intra-cluster edges.

Area 1 Area 2 same different
MOD AI 10 2
ARCH MOD 6 1
ROB ARCH 3 0
MOD ROB 4 0
ML MOD 7 1

Area same different
MOD 19 35
ARCH 13 15
ROB 24 16
AI 39 32
ML 14 42

communities. It is evident that the authors from the same community are likely to

collaborate irrespective of the affiliations and the authors of different communities

collaborate much frequently when they share affiliations or are close geographically.

This clearly indicates that the inter cluster edges are likely to form if the distance

between the nodes is quite small, motivating the fact rd < rs in the GBM.

6.3.2 Amazon Co-purchase Network

The next dataset that we use in our experiments is the Amazon product meta-

data on SNAP (https://snap.stanford.edu/data/amazon-meta.html), that has

548552 products and each product is one of the following types {Books, Music CD’s,

DVD’s, Videos}. Moreover, each product has a list of attributes, for example, a book

may have attributes like 〈“General”, “Sermon”, “Preaching”〉. We consider the co-

purchase network over these products. We make two observations here: (1) edges get

formed (that is items are co-purchased) more frequently if they are similar, where we

measure similarity by the number of common attributes between products, and (2)

two products that share an edge have more common neighbors (no of items that are

bought along with both those products) than two products with no edge in between.

Figures 6.1 and 6.2 show average similarity of products that were bought together,

and not bought together. From the distribution, it is quite evident that edges in a

co-purchase network gets formed according to distance, a salient feature of random

geometric graphs, and the GBM.
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Figure 6.1: Histogram: similar-
ity of products bought together
(mean ≈ 6)

Figure 6.2: Histogram: similarity
of products not bought together
(mean≈ 2)

Figure 6.3: Histogram of common neighbors of edges and non-edges in the co-purchase
network, from left to right: Book-DVD, Book-Book, DVD-DVD

We next take equal number of product pairs inside Book (also inside DVD, and

across Book and DVD) that have an edge in-between and do not have an edge respec-

tively. Figure 6.3 shows that the number of common neighbors when two products

share an edge is much higher than when they do not–in fact, almost all product pairs

that do not have an edge in between also do not share any common neighbor. This

again strongly suggests towards GBM due to its transitivity property. On the other

hand, this also suggests that SBM is not a good model for this network, as in SBM,

two nodes having common neighbors is independent of whether they share an edge

or not.

Difference between SBM and GBM. It is important to stress that the net-

work structures generated by the SBM and the GBM are quite different, and it is

significantly difficult to analyze any algorithm or lower bound on GBM compared to

SBM. This difficulty stems from the highly correlated edge generation in GBM (while
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edges are independent in SBM). For this reason, analyses of the sphere-comparison

algorithm and spectral methods for clustering on GBM cannot be derived as straight-

forward adaptations. Whereas, even for simple algorithms, a property that can be

immediately seen for SBM, will still require a proof for GBM.

6.4 The Motif-Counting Algorithm

Suppose, we are given a graph G = (V,E) that comprises of two disjoint clusters,

C1, C2 ⊆ V and is generated according to GBM(V, t, rs, rd). Our clustering algorithm

is based on counting motifs, where a motif is simply defined as a configuration of

triplets in the graph. Let us explain this principle by one particular motif, a triangle.

For any two vertices u and v in V , where (u, v) is an edge, we count the total number

of common neighbors of u and v. We show that, whenever rs ≥ 4rd, this count is

different when u and v belong to the same cluster, compared to when they belong

to different clusters. We assume G is connected, because otherwise it is impossible

to recover the clusters with certainty. For every pair of vertices in the graph that

share an edge, we decide whether they are in the same cluster or not by this count

of triangles. In reality, we do not have to check every such pair, instead we can stop

when we form a spanning tree. At this point, we can transitively deduce the partition

of nodes into clusters.

The main new idea of this algorithm is to use this triangle-count (or motif-count

in general), since they carry significantly more information regarding the connectivity

of the graph than an edge count. However, we can go to statistics of higher order

(such as the two-hop common neighbors) at the expense of increased complexity.

Surprisingly, the simple greedy algorithm that rely on triplets can separate clusters

when rd and rs are Ω( logn
n

), which is also a minimal requirement for connectivity of

random geometric graphs [162]. Therefore this algorithm is optimal up to a constant

factor. It is interesting to note that this motif-counting algorithm is not optimal
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for SBM (as we observe), in particular, it will not detect the clusters in the sparse

threshold region of logn
n

, however, it does so for GBM.

The pseudocode of the algorithm is described in Algorithm 23. The algorithm

looks at individual pairs of vertices to decide whether they belong to the same cluster

or not. We go over pair of vertices and label them same/different, till we have enough

labels to partition the graphs into clusters.

At any stage, the algorithm picks up an unassigned node v and queries it with

another node u : (u, v) ∈ E that has already been assigned to one of the clusters.

Note that it is always possible to find such a vertex v because otherwise the graph

would not be connected. To decide whether these two points u and v belong to the

same cluster, the algorithm calls a subroutine named process. The process function

counts the number of common neighbors of u and v to make a decision. The node v is

assigned to its respective cluster depending upon the output of process subroutine.

This procedure is continued till all nodes in V are assigned to one of the clusters.

Algorithm 23 Cluster recovery in GBM

Require: GBM G = (V,E), rs, rd
Ensure: V = C1 t C2

1: Choose any u ∈ V
2: C1 ← {u}, C2 ← ∅
3: while V 6= C1 t C2 do
4: Choose (u, v) ∈ E | u ∈ C1 t C2, v ∈ V \ (C1 t C2)
5: if process(u, v, rs, rd) then
6: if u ∈ C1 then
7: C1 ← C1 ∪ {v}
8: else
9: C2 ← C2 ∪ {v}

10: end if
11: else
12: if u ∈ C1 then
13: C2 ← C2 ∪ {v}
14: else
15: C1 ← C1 ∪ {v}
16: end if
17: end if
18: end while
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Algorithm 24 process

Require: u,v, rs, rd
Ensure: true/false

1: count ← |{z : (z, u) ∈ E, (z, v) ∈ E}|
2: if | count

n
− ES(rd, rs)| < | count

n
− ED(rd, rs)| then return true

3: end ifreturn false

The process function counts the number of common neighbors of two nodes and

then compares the difference of the count with two functions of rd and rs, called ED

and ES.

We have compiled the distribution of the number of common neighbors along with

other motifs (other patterns of triplets, given (u, v) ∈ E) in Table 6.2. We provide

the values of ED and ES in Theorem 6 for the regime of rs > 4rd. In this table we

have assumed that there are only two clusters of equal size. The functions change

when the cluster sizes are different. Our analysis described in later sections can be

used to calculate new function values. In the table, u ∼ v means u and v are in the

same cluster.

Similarly, the process function can be run on other set of motifs by fixing two

nodes. On considering a larger set of motifs, the process function can take a majority

vote over the decisions received from different motifs. Note that our algorithm counts

motifs only for edges, and does not count motifs for more than n− 1 edges, as there

are only n vertices to be assigned to clusters.

Remark 1. If we are given k clusters (k > 2), our analysis can be extended to

calculate new values of ES and ED. If there exists a palpable gap between the two

values, we can extend Algorithm 23 to identify the true assignment of each node.

6.5 Analysis of the Algorithm

The critical observation that we have to make to analyze the motif-counting

algorithm is the fact that given a GBM graph G(V,E) with two clusters V = C1tC2,
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Table 6.2: Distribution of motif count for an edge (u, v) conditioned on the distance
between them dL(Xu, Xv) = x, when there are two equal sized clusters. Here Bin(n, p)
denotes a binomial random variable with mean np.

Motif: (u, v) ∈ E Distribution of count (rs > 2rd) Distribution of count (rs ≤ 2rd)
dL(Xu, Xv) = x u ∼ v, x ≤ rs u � v, x ≤ rd u ∼ v, x ≤ rs u � v, x ≤ rd

Motif 1: z | (z, u) ∈ E, (z, v) ∈ E Bin(n
2
− 2, 2rs −

x) + 1{x ≤
2rd}Bin(n

2
, 2rd −

x)

Bin(n− 2, 2rd) Bin(n
2
− 2, 2rs −

x)+Bin(n
2
, 2rd−

x)

Bin(n − 2,min(rs +
rd − x, 2rd))

Motif 2: z | (z, u) ∈ E, (z, v) /∈ E Bin(n
2
− 2, x) +

Bin(n
2
,min(x, 2rd))

Bin(n
2
−1, 2(rs−

rd))
Bin(n− 2, x) Bin(n

2
− 1, rs − rd +

x + max(rs − x −
rd, 0)) + Bin(n

2
−

1,max(x + rd −
rs, 0))

Motif 3: z | (z, u) /∈ E, (z, v) ∈ E Bin(n
2
− 2, x) +

Bin(n
2
,min(x, 2rd))

Bin(n
2
−1, 2(rs−

rd))
Bin(n− 2, x) Bin(n

2
− 1, rs + rd −

x + max(rs − x −
rd, 0)) + Bin(n

2
−

1,max(x + rd −
rs, 0))

Motif 4: z | (z, u) /∈ E, (z, v) /∈ E Bin(n
2
− 2, 1 −

(x+2rs))+1{x ≤
2rd}Bin(n

2
, 1 −

(x+2rd))+1{x >
2rd}Bin(n

2
, 1 −

4rd)

Bin(n − 2, 1 −
2rs)

Bin(n
2
− 2, 1 −

(x + 2rs)) +
Bin(n

2
, 1 − (x +

2rd))

1{x ≤ rs −
rd}Bin(n − 2, 1 −
2rs) + 1{x >
rs − rd}Bin(n −
2, 1− (x+ rs + rd))

and a pair of vertices u, v ∈ V , the events Eu,vz , z ∈ V of any other vertex z being a

common neighbor of both u and v given (u, v) ∈ E are dependent (this is not true

in SBM); however given the distance between the corresponding random variables

dL(Xu, Xv) = x, the events are independent. Moreover, the probabilities of Eu,vz |

(u, v) ∈ E are different when u and v are in the same cluster and when they are

in different clusters. Therefore the count of the common neighbors are going to

be different, and substantially separated with high probability for two vertices in

cases when they are from the same cluster or from different clusters. This will lead

the function process to correctly characterize two vertices as being from same or

different clusters with high probability.

Let us now show this more formally. We have the following two lemmas for a GBM

graph G(V,E) with two equal-sized (unknown) clusters V = C1tC2, and parameters

rs, rd.
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Lemma 11. For any two vertices u, v ∈ Ci : (u, v) ∈ E, i = 1, 2 belonging to

the same cluster, the event Eu,vz ≡ {(u, z), (v, z) ∈ E} is independent with Eu,vw ≡

{(u,w), (v, w) ∈ E} conditional on the distance between Xu and Xv, dL(Xu, Xv) = x.

Proof. Let us assume that z, w belong to the same cluster as that of u, v (the proof

is similar for other cases too, and we omit those cases here). The event Eu,vz ∩ Eu,vw

given dL(Xu, Xv) = x is equivalent to having both Xz and Xw (the random variable

corresponding to vertices z and w respectively) within a range of 2rs − x if x ≤ 2rs

and can never happen if x > 2rs. Hence Pr(Eu,vz ∩ Eu,vw |dL(Xu, Xv) = x) = (2rs − x)2

for x ≤ 2rs.

On the other hand, the event Eu,vz given dL(Xu, Xv) = x is equivalent to having

Xz within a range of 2rs − x if x ≤ 2rs and 0 otherwise. Similarly the event Eu,vw

given dL(Xu, Xv) = x is equivalent to having Xw within a range of 2rs−x. Therefore

Pr(Eu,vz ∩ Eu,vw |dL(Xu, Xv) = x) = Pr(Eu,vz |dL(Xu, Xv) = x) Pr(Eu,vw |dL(Xu, Xv) = x).

This observation leads to the derivation of distributions of counts of triangles

involving (u, v) ∈ E for the cases when u and v are in the same cluster and when

they are not.

Lemma 12. For any two vertices u, v ∈ Ci : (u, v) ∈ E, i = 1, 2 belonging to the same

cluster and dL(Xu, Xv) = x, the count of common neighbors Countu,v ≡ |{z ∈ V :

(z, u), (z, v) ∈ E}| is a random variable distributed according to Bin(n
2
− 2, 2rs− x) +

Bin(n
2
, 2rd−x) if x ≤ min(2rd, rs) and according to Bin(n

2
−2, 2rs−x) if 2rd < x ≤ rs,

where Bin(n, p) is a binomial random variable with mean np.

Proof of Lemma 12. Let Xw ∈ [0, 1] be the uniform random variable associated with

w ∈ V . Let us also denote by dL(X, Y ) ≡ min{|X − Y |, 1 − |X − Y |}, X, Y ∈ R.

Without loss of generality, assume u, v ∈ C1. For any vertex z ∈ V , let Eu,vz (x) ≡

{(u, z), (v, z) ∈ E| (u, v) ∈ E, dL(u, v) = x} be the event that z is a common neighbor
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given that the vertices u and v have an edge and the distance between those vertices

is x. For z ∈ C1,

Pr(Eu,vz (x)) = 2rs − x, 0 ≤ x ≤ rs.

For z ∈ C2,

Pr(Eu,vz (x)) =


2rd − x, if x ≤ 2rd

0, if 2rd < x ≤ rs.

Since we are conditioning on the fact that the vertices u and v have an edge, x can

take a maximum value of rs. Now since there are n
2
− 2 points in C1 \ {u, v} and n

2

points in C2, we have the statement of the lemma.

Lemma 13. For any two vertices u ∈ C1, v ∈ C2 : (u, v) ∈ E belonging to different

clusters and dL(Xu, Xv) = x, the count of common neighbors Countu,v ≡ |{z ∈ V :

(z, u), (z, v) ∈ E}| is a random variable distributed according to Bin(n− 2, 2rd) when

rs > 2rd and according to Bin(n− 2,min(rs + rd − x, 2rd)) when rs ≤ 2rd.

Proof. Here u, v are from different clusters. For any vertex z ∈ V , let Eu,vz (x) ≡

{(u, z), (v, z) ∈ E | (u, v) ∈ E, dL(Xu, Xv) = x} be the event that z is a common

neighbor. For z ∈ V \ {u, v},

Pr(Eu,vz (x)) = Pr((z, u) ∈ E, (z, v) ∈ E | (u, v) ∈ E, dL(Xu, Xv) = x)

= min{2rd, rd + rs − x}

=


2rd if 2rd < rs

rs + rd − x otherwise

.

Now since there are n−2 points in V \{u, v}, we have the statement of the lemma.
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These expressions can also be generalized when the clusters are of unequal sizes,

but we omit those for clarity of exposition.

Consider the case when rs ≥ 4rd. The above lemmas show that for all values

of dL(Xu, Xv), the expected count of the number of triangles involving (u, v) ∈ E

is higher when u and v belong to the same cluster as opposed to different clusters.

By leveraging the concentration of binomial random variables, we bound the count

of the number of triangles in these two cases. We use Lemma 12 to first estimate

the minimum value of triangle count when u and v belong to the same cluster and

Lemma 13 to estimate the maximum value of triangle count when u and v belong

to different clusters. Our algorithm will correctly resolve whether two points are in

the same cluster or not if the minimum value in the former case is higher than the

maximum value in the latter. While more general statements are possible, we give a

theorem concentrating on the special case when rs, rd ∼ logn
n

, which is at the order of

the connectivity threshold of geometric random graphs [162].

Theorem 6. Let rs = a logn
n

and rd = b logn
n

, a > 4b, and g(y) ≡ y +
√

2a− y +
√

2b− y. Algorithm 23 with ED = (2b+
√

6b) logn
n

and

ES = min

(
a

2
−√a, a+ b− max

0≤ν≤2b
g(ν)

)
log n

n
,

can recover the clusters C1, C2 accurately with a probability of 1− o(1) if

min

(
a

2
−√a, a+ b− max

0≤ν≤2b
g(ν)

)
≥ 2b+

√
6b.

Proof. We need to consider the case of rs > 2rd from Lemma 12 and Lemma 13. Let

Z denote the random variable that equals the number of common neighbors of two

nodes u, v ∈ V : (u, v) ∈ E. Let us also denote µs = E(Z|u ∼ v, dL(Xu, Xv) = x)

and µd = E(Z|u � v, dL(Xu, Xv) = x), where u ∼ v means u and v are in the
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same cluster. We can easily find µs and µd from Lemmas 12, 13. We see that,

µs =


n(rs + rd − x)− 4rs + 2x, if x ≤ 2rd

(n
2
− 2)(2rs − x), if 2rd < x ≤ rs

and µd = (n− 2)2rd.

The value of µs is greater than that of µd for all values of x when rs ≥ 4rd. We try

to bound the values of Z in these two cases and then achieve the condition of correct

resolution. Given a fixed dL(Xu, Xv), since Z is a sum of independent binary random

variables, using the Chernoff bound, Pr(Z < (1− δ)E(Z)) ≤ e−δ
2E(Z)/2 = 1

n logn
, when

δ =
√

2(logn+log logn)
E(Z)

. Now when u, v belong to the same cluster and dL(Xu, Xv) = x,

with probability at least 1− 2
n logn

,

Z ≥ F∼(x) ≡



n(rs + rd − x)− 4rs + 2x−
√

(log n+ log log n)(n− 4)(2rs − x)

−
√

(log n+ log log n)n(2rd − x), if x ≤ 2rd

(n
2
− 2)(2rs − x)−

√
(log n+ log log n)(n− 4)(2rs − x),

if 2rd < x ≤ rs.

Using Chernoff bound, we also know that Pr(Z > (1 + δ)E(Z)) ≤ e−δ
2E(Z)/3 = 1

n logn
,

when δ =
√

3(logn+log logn)
E(Z)

. Hence, with probability at least 1 − 1
n logn

, Z is at most

F� ≡ µd +
√

3(log n+ log log n)µd when u, v belong to different clusters.

We calculate the minimum value of F∼(x) over all values of x to find the value

closest to F�. When 2rd < x < rs, F∼(x) is a decreasing function with the minimum

value of (n
2
− 2)rs −

√
(log n+ log log n)(n− 4)rs at x = rs. Plugging in rs = a logn

n
,

rd = b logn
n

and x = ν logn
n

we get that the algorithm will be successful to label correctly

with probability 1− 3
n logn

as long as,

min(
a

2
−√a, min

0≤ν≤2b
(a+ b− ν −

√
2a− ν −

√
2b− ν)) log n ≥

(
2b+

√
6b
)

log n.
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Now we need the correct assignment of vertices for n− 1 pairs of vertices (according

to Algorithm 23). Applying union bound over n − 1 distinct pairs guarantees the

probability of recovery as 1− 3/ log n.

Instead of relying only on the triangle (or common-neighbor) motif, we can con-

sider other different motifs (as listed in Table 6.2) and use them to make similar

analysis. Aggregating the different motifs by taking a majority vote decision may im-

prove the results experimentally but it is difficult to say anything theoretically since

the decisions of the different motifs are not independent. We refer the reader to Sec-

tion 6.5.1 for the detailed analysis of incorporating other motifs to obtain analogous

theorems.

Remark 2. Instead of using Chernoff bound we could have used better concentra-

tion inequality (such as Poisson approximation) in the above analysis, to get tighter

conditions on the constants. We again preferred to keep things simple.

Remark 3 (GBM for t = 3 and above). For GBM with t = 3, to find the number of

common neighbors of two vertices, we need to find out the area of intersection of two

spherical caps on the sphere. It is possible to do that. It can be seen that our algorithm

will successfully identify the clusters as long as rs, rd ∼
√

logn
n

again when the constant

terms satisfy some conditions. However tight characterization becomes increasingly

difficult. For general t, our algorithm should be successful when rs, rd ∼
(

logn
n

) 1
t−1

,

which is also the regime of connectivity threshold.

Remark 4 (More than two clusters). When there are more than two clusters, the

same analysis technique is applicable and we can estimate the expected number of

common neighbors. This generalization can be straightforward but tedious.

Motif counting algorithm for SBM. While our algorithm is near optimal for

GBM in the regime of rs, rd ∼ logn
n

, it is far from optimal for the SBM in the same

regime of average degree. Indeed, by using simple Chernoff bounds again, we see that
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the motif counting algorithm is successful for SBM with inter-cluster edge probability

q and intra-cluster probability p, when p, q ∼
√

logn
n

. The experimental success of

our algorithm in real sparse networks therefore somewhat enforce the fact that GBM

is a better model for those network structures than SBM.

6.5.1 Results for Other Motifs

Next, we describe two lemmas for a GBM graph G(V,E) with two unknown

clusters V = C1tC2, and parameters rs, rd on considering other motifs than triangles

(Motif 1). These results are used to populate Table 6.2. When we run Algorithm 23

with other motifs, the subroutine process uses the corresponding motifs to compute

the variable ‘count’. Other than this the algorithm remains same.

Motif 2 and Motif 3.

Lemma 14. For any two vertices u, v ∈ V : (u, v) ∈ E, i = 1, 2 belonging to the

same cluster and dL(Xu, Xv) = x, the count of number of nodes forming Motif 2

(see Table 6.2) with u and v (i.e., neighbors of u and non neigbors of v), |{z ∈ V :

(z, u) ∈ E, (z, v) /∈ E}| is a random variable distributed according to Bin(n
2
− 2, x) +

Bin(n
2
,min(2rd, x)), where Bin(n, p) is a binomial random variable with mean np.

Proof. Without loss of generality, assume u, v ∈ C1. For any vertex z ∈ V , let

Eu,vz (x) = {(u, z) ∈ E, (v, z) /∈ E | (u, v) ∈ E, dL(Xu, Xv) = x} be the event that z is

a neighbor of u and non neighbor of v. For z ∈ C1,

Pr(Eu,vz (x)) = Pr((z, u) ∈ E, (z, v) /∈ E | (u, v) ∈ E, dL(Xu, Xv) = x) = rs − (rs − x) = x.

For z ∈ C2, we have,
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Pr(Eu,vz (x)) = Pr((z, u) ∈ E, (z, v) /∈ E | (u, v) ∈ E, dL(Xu, Xv) = x)

=


2rd if x > 2rd

x otherwise

.

Now since there are n
2
− 2 points in C1 \ {u, v} and n

2
points in C2, we have the

statement of the lemma.

Lemma 15. For any two vertices u ∈ C1, v ∈ C2 : (u, v) ∈ E belonging to different

clusters and dL(Xu, Xv) = x, the count of number of nodes forming Motif 2 (see

Table 6.2) with u and v (i.e. neighbor of u and non neighbor of v), |{z ∈ V : (z, u) ∈

E, (z, v) /∈ E}| is a random variable distributed according to Bin(n
2
− 1, 2(rs − rd)),

assuming rs > 2rd.

Proof. For any vertex z ∈ C1, let Eu,vz (x) = {(u, z) ∈ E, (v, z) /∈ E | (u, v) ∈

E, dL(Xu, Xv) = x} be the event that z is a neighbor of u and a non neighbor of

v. For z ∈ C1 \ {u}

Pr(Eu,vz (x)) = Pr((z, u) ∈ E, (z, v) /∈ E | (u, v) ∈ E, dL(Xu, Xv) = x)

= 2(rs − rd).

Now for z ∈ C2 \ {v}, there cannot be an edge with u and no edge with v because

rs > 2rd. Since there are n
2
− 1 points in C1 \ {u}, we have the statement of the

lemma.

Theorem 7 (Motif 2 or 3). If rs = a logn
n

and rd = b logn
n

, a > 4b, Algorithm 23 with

ES =
(
b+ a

2
+
√

3b+
√

3a
2

)
logn
n

and ED =
(

(a− b)−
√

2(a− b)
)

logn
n

, where the

process subroutine counts Motif 2, can recover the clusters C1, C2 accurately with a

probability of at least 1− o(1) if

(a− b)−
√

2(a− b) > b+
a

2
+
√

3b+

√
3a

2
.
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Proof. We need to consider the case of rs ≥ 2rd from Lemma 14 and Lemma 15.

For u, v ∈ V : (u, v) ∈ E, let Z denote the random variable that equals the number

of nodes that are neighbors of u and not-a-neighbor of v. Let us also denote µs =

E(Z|u ∼ v, dL(Xu, Xv) = x) and µd = E(Z|u � v, dL(Xu, Xv) = x), where u ∼ v

means u and v are in the same cluster. We can easily find µs and µd from Lemmas

14 and 15. We see that,

µs =


(n− 2)x, if x ≤ 2rd

(n
2
− 2)x+ nrd, if 2rd < x ≤ rs.

and µd = (n− 2)(rs − rd).

The value of µs is less than that of µd for all values of x when rs ≥ 4rd. We try

to bound the values of Z in the two cases possible and then achieve the condition of

correct resolution. Given a fixed dL(Xu, Xv), since Z is a sum of independent binary

random variables, using the Chernoff bound, Pr(Z < (1 − δ)E(Z)) ≤ e−δ
2E(Z)/2 =

1
n logn

, when δ =
√

2(logn+log logn)
E(Z)

. Now with probability at least 1− 1
n logn

, Z is atleast

F 1
�(x) ≡ µd −

√
2(log n+ log log n)µd when u and v belong to different clusters.

Using Chernoff bound, we also know that Pr(Z > (1 + δ)E(Z)) ≤ e−δ
2E(Z)/3 =

1
n logn

, when δ =
√

3(logn+log logn)
E(Z)

. Hence, with probability at least 1− 2
n logn

,

Z ≤ F 1
∼(x) ≡



(n− 2)x+
√

3(log n+ log log n)n
2
x+

√
3(log n+ log log n)(n

2
− 2)x,

if x ≤ 2rd

nrd + (n
2
− 2)x+

√
3(log n+ log log n)nrd

+
√

3(log n+ log log n)(n
2
− 2)x, if 2rd < x ≤ rs.

when u, v belong to the same cluster and dL(Xu, Xv) = x.

We calculate the maximum value of F 1
∼(x) over all values of x to find the value

closest to F 1
�(x). F 1

∼(x) is an increasing function ∀x ≤ rs with maximum value of
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nrd + (n
2
− 2)rs +

√
3(log n+ log log n)nrd +

√
3(log n+ log log n)(n

2
− 2)rs at x = rs.

Therefore the algorithm will be successful to label correctly with probability 1− 3
n logn

as long as,

(
(a− b)−

√
2(a− b)

)
log n ≥

(
b+

a

2
+
√

3b+

√
3a

2

)
log n.

The rest of the argument follows similar to Theorem 6.

Motif 4. In this part we are concerned with the motif where for (u, v) ∈ E, we seek

nodes that are neighbors of neither u nor v.

Lemma 16. For any two vertices u, v ∈ V : (u, v) ∈ E, i = 1, 2 belonging to the

same cluster and dL(Xu, Xv) = x, the count of nodes that form Motif 4 with u, v

(i.e., non-neighbors of both u and v), |{z ∈ V : (z, u) /∈ E, (z, v) /∈ E}| is a random

variable distributed according to Bin(n
2
−2, 1− (x+ 2rs)) +1{x ≤ 2rd}Bin(n

2
, 1− (x+

2rd)) + 1{x > 2rd}Bin(n
2
, 1− 4rd), when rs > 2rd.

Proof. Without loss of generality, assume u, v ∈ C1. For any vertex z ∈ V , let

Eu,vz (x) = {(u, z) /∈ E, (v, z) /∈ E} be the event that z is neither a neighbor of u nor

a neighbor of v. For z ∈ C1,

Pr(Eu,vz (x)) = Pr((z, u) /∈ E, (z, v) /∈ E | (u, v) ∈ E, dL(Xu, Xv) = x)

= 1− Pr((z, u) ∈ E or (z, v) ∈ E | (u, v) ∈ E, dL(Xu, Xv) = x)

= 1− (x+ 2rs).

For z ∈ C2, we have,
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Pr(Eu,vz (x)) = Pr((z, u) /∈ E, (z, v) /∈ E | (u, v) ∈ E, dL(Xu, Xv) = x)

= 1− Pr((z, u) ∈ E or (z, v) ∈ E | (u, v) ∈ E, dL(Xu, Xv) = x)

=


1− (2rd + x) if x ≤ 2rd

1− 4rd otherwise

.

Now since there are n
2
− 2 points in C1 \ {u, v} and n

2
points in C2, we have the

statement of the lemma.

Lemma 17. For any two vertices u ∈ C1, v ∈ C2 : (u, v) ∈ E belonging to different

clusters and dL(Xu, Xv) = x, the count of number of nodes forming Motif 4 with u and

v (i.e. non-neighbor of u and non-neighbor of v), |{z ∈ V : (z, u) /∈ E, (z, v) /∈ E}| is

a random variable distributed according to Bin(n− 2, 1− 2rs), when rs > 2rd.

Proof. For any vertex z ∈ C1, let Eu,vz (x) = {(u, z) /∈ E, (v, z) /∈ E | (u, v) ∈

E, dL(Xu, Xv) = x} be the event that z is neither a neighbor of u and nor a neighbor

of v. For z ∈ C1 \ {u}

Pr(Eu,vz (x)) = Pr((z, u) /∈ E, (z, v) /∈ E | (u, v) ∈ E, dL(Xu, Xv) = x)

= 1− 2rs.

Similarly, for z ∈ C2 \ {v}

Pr(Eu,vz (x)) = Pr((z, u) /∈ E, (z, v) /∈ E | (u, v) ∈ E, dL(Xu, Xv) = x)

= 1− 2rs.

Now since there are n
2
− 1 points in C1 \ {u} and n

2
− 1 points in C2 \ {v}, we have

the statement of the lemma.
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It turns out that the simple Chernoff bound is not sufficient to prove any mean-

ingful result for this motif. We recall Bernstein’s inequality in Lemma 18 in order to

prove Theorem 8 for the 4th motif.

Lemma 18 (Bernstein’s Inequality [41]). Let X1, . . . , Xn be iid real-valued random

variables with mean zero, such that |Xi| ≤M ∀i. Then with probability at least 1− δ,

we have

|
n∑
i=1

Xi |≤
√

2nEX2
1 log

2

δ
+

2M log 2
δ

3
.

Theorem 8 (Motif 4). If rs = a logn
n

and rd = b logn
n

, a > 4b, Algorithm 23 with

ES = 1− 3

2
rs − 2rd −

√
3rs

log n

n
−
√

4rd
log n

n
− 4 log n

3n

and

ED = 1− 2rs +

√
4rs

log n

n
+

2 log n

3n
,

where the process subroutine counts Motif 4, can recover the clusters C1, C2 accu-

rately with a probability of 1− o(1) if | a− 4b |≥ 2(
√

3a+
√

4b+
√

4a+ 2).

Proof. We need to consider the case of rs ≥ 2rd. Let Z denote the ran-

dom variable that equals the number of common non-neighbors of two nodes

u, v ∈ V : (u, v) ∈ E. Let us also denote µs = E(Z|u ∼ v, dL(Xu, Xv) = x) and

µd = E(Z|u � v, dL(Xu, Xv) = x), where u ∼ v means u and v are in the same

cluster. We can easily find µs and µd from Lemmas 16, 17. We see that, µs =
(n

2
− 2)(1− x− 2rs) + n

2
(1− x− 2rd), if x ≤ 2rd

(n
2
− 2)(1− x− 2rs) + n

2
(1− 4rd), if 2rd < x ≤ rs.

and µd = (n− 2)(1− 2rs).

The value of µs is more than that of µd for all values of x when rs ≥ 4rd. We try

to bound the values of Z in the two cases possible and then achieve the condition of

correct resolution. Now we will use Bernstein’s inequality as defined in Lemma 18.
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For a Bernoulli(p) random variable X we can define a corresponding zero mean

random variable X̂ ≡ X − E[X]. It is easy to observe that E[X̂
2
] = p(1− p) ≤ 1− p

and |X̂| ≤ 1. We use this simple translation for every random variable corresponding

to each node forming such a motif with u and v and hence with a probability of at

least 1− 2
n logn

, we must have

Z ≥ F 2
∼(x) ≡



(n
2
− 2)(1− x− 2rs) + n

2
(1− x− 2rd)−

√
n(x+ 2rs)(log 2n+ log log n)

−
√
n(x+ 2rd)(log 2n+ log log n)− 4(log 2n+log logn)

3
,

if x ≤ 2rd

(n
2
− 2)(1− x− 2rs) + n

2
(1− 4rd)−

√
n(x+ 2rs)(log 2n+ log log n)

−
√

4nrd(log 2n+ log log n)− 4(log 2n+log logn)
3

,

if 2rd < x ≤ rs,

when u and v are in the same cluster. Similarly, with probability at least 1− 1
n logn

, Z

is at most F 2
� ≡ µd +

√
4(n− 2)rs(log n+ log log n) + 2(logn+log logn)

3
when u, v belong

to different clusters.

We calculate the minimum value of F 2
∼(x) over all values of x to find the value

closest to F 2
�. It can be easily observed that F 2

∼(x) is a decreasing function with

the minimum value of (n
2
− 2)(1 − 3rs) + n

2
(1 − 4rd) −

√
3nrs(log 2n+ log log n) −√

4nrd(log 2n+ log log n) − 4(log 2n+log logn)
3

at x = rs. Plugging in rs = a logn
n

, rd =

b logn
n

we get that the algorithm will be successful to resolve correctly with probability

1− 3
n logn

as long as,

(n
2
− 2
)

(1− 3rs) +
n

2
(1− 4rd)−

√
3nrs(log 2n+ log log n)

−
√

4nrd(log 2n+ log log n)− 4(log 2n+ log log n)

3

≥ (n− 2)(1− 2rs) +
√

4(n− 2)rs(log n+ log log n) +
2(log n+ log log n)

3
.
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Plugging in rs = a logn
n

, rd = b logn
n

and ignoring o(log n) factors, we get that

a− 4b ≥ 2(
√

3a+
√

4b+
√

4a+ 2).

6.6 Experimental Results

In addition to validation experiments in Section 6.3.1 and 6.3.2, we also conducted

an in-depth experimentation of our proposed model and techniques over a set of syn-

thetic and real world networks. Additionally, we compared the efficacy and efficiency

of our motif-counting algorithm with the popular spectral clustering algorithm using

normalized cuts1 and the correlation clustering algorithm [32].

Real Datasets. We use three real datasets described below.

• Political Blogs. [15] It contains a list of political blogs from the 2004 US Election

classified as liberal or conservative, and links between the blogs. The clusters are of

roughly the same size with a total of 1200 nodes and 20K edges.

• DBLP. [206] The DBLP dataset is a collaboration network where the ground truth

communities are defined by the research community. The original graph consists of

roughly 0.3 million nodes. We process it to extract the top two communities of size

∼ 4500 and 7500 respectively. This is given as input to our algorithm.

• LiveJournal. [137] The LiveJournal dataset is a free online blogging social network

of around 4 million users. Similar to DBLP, we extract the top two clusters of sizes

930 and 1400 which consist of around 11.5K edges.

We have not used the academic collaboration (Section 6.3.1) dataset here because it

is quite sparse and below the connectivity threshold regime of both GBM and SBM.

1http://scikit-learn.org/stable/modules/clustering.html#spectral-clustering
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Synthetic Datasets. We generate synthetic datasets of different sizes according to

the GBM with t = 2, k = 2 and for a wide spectrum of values of rs and rd, specifically

we focus on the sparse region where rs = a logn
n

and rd = b logn
n

with variable values of

a and b.

Experimental Setting. For real networks, it is difficult to calculate an exact thresh-

old as the exact values of rs and rd are not known. Hence, we follow a three step

approach. Using a somewhat large threshold T1 we sample a subgraph S such that

u, v will be in S if there is an edge between u and v, and they have at least T1 com-

mon neighbors. We now attempt to recover the subclusters inside this subgraph by

following our algorithm with a small threshold T2. Finally, for nodes that are not

part of S, say x ∈ V \ S, we select each u ∈ S that x has an edge with and use a

threshold of T3 to decide if u and x should be in the same cluster. The final decision

is made by taking a majority vote. We can employ sophisticated methods over this

algorithm to improve the results further, which is beyond the scope of this work.

We use the popular f-score metric which is the harmonic mean of precision (frac-

tion of number of pairs correctly classified to total number of pairs classified into

clusters) and recall (fraction of number of pairs correctly classified to the total num-

ber of pairs in the same cluster for ground truth), as well as the node error rate for

performance evaluation. A node is said to be misclassified if it belongs to a cluster

where the majority comes from a different ground truth cluster (breaking ties arbitrar-

ily). Following this, we use the above described metrics to compare the performance

of different techniques on various datasets.

Table 6.3: Performance on real world networks

Dataset Total no. T1 T2 T3 Accuracy Running Time (sec)
of nodes Motif-Counting Spectral clustering Motif-Counting Spectral clustering

Political Blogs 1222 20 2 1 0.788 0.53 1.62 0.29
DBLP 12138 10 1 2 0.675 0.63 3.93 18.077

LiveJournal 2366 20 1 1 0.7768 0.64 0.49 1.54
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Figure 6.5: Results of the motif-counting algorithm on a synthetic dataset with 5000 nodes.

Results. We compared our algorithm with the spectral clustering algorithm where we

extracted two eigenvectors in order to extract two communities. Table 6.3 shows that

our algorithm gives an accuracy as high as 78%. The spectral clustering performed

worse compared to our algorithm for all real world datasets. It obtained the worst

accuracy of 53% on political blogs dataset. The correlation clustering algorithm

generates various small sized clusters leading to a very low recall, performing much

worse than the motif-counting algorithm for the whole spectrum of parameter values.

We can observe in Table 6.3 that our algorithm is much faster than the spec-

tral clustering algorithm for larger datasets (LiveJournal and DBLP). This confirms

that motif-counting algorithm is more scalable than the spectral clustering algorithm.

The spectral clustering algorithm also works very well on synthetically generated SBM

networks even in the sparse regime [136, 169]. The superior performance of the sim-
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Figure 6.6: Results of the spectral clustering on a synthetic dataset with 5000 nodes.

ple motif clustering algorithm over the real networks provide a further validation

of GBM over SBM. Correlation clustering takes 8-10 times longer as compared to

motif-counting algorithm for the various range of its parameters. We also compared

our algorithm with the Newman algorithm [101] that performs really well for the

LiveJournal dataset (98% accuracy). But it is extremely slow and performs much

worse on other datasets. This is because the LiveJournal dataset has two well de-

fined subsets of vertices with very few intercluster edges. The reason for the worse

performance of our algorithm is the sparseness of the graph. If we create a subgraph

by removing all nodes of degrees 1 and 2, we get 100% accuracy with our algorithm.

Finally, our algorithm is easily parallelizable to achieve better improvements. This

clearly establishes the efficiency and effectiveness of motif-counting.

We observe similar gains on synthetic datasets. Figures 6.4, 6.5a and 6.5b report

results on the synthetic datasets with 5000 nodes. Figure 6.4 plots the minimum

gap between a and b that guarantees exact recovery according to Theorem 6 vs min-

imum value of a for varying b for which experimentally (with only triangle motif) we

were able to recover the clusters exactly. Empirically, our results demonstrate much

superior performance of our algorithm. The empirical results are much better than

the theoretical bounds because the concentration inequalities applied in Theorem 6

assume the worst value of the distance between the pair of vertices that are under con-
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sideration. We also see a clear threshold behavior on both f-score and node error rate

in Figures 6.5a and 6.5b. We have also performed spectral clustering on this 5000-

node synthetic dataset (Figures 6.6a and 6.6b). Compared to the plots of figures 6.5a

and 6.5b, they show suboptimal performance, indicating the relative ineffectiveness

of spectral clustering in GBM compared to the motif counting algorithm.

6.7 Summary and Future Work

This chapter studied the geometric block model, a generative model that is mo-

tivated by random geometric graphs. The proposed model is validated on Amazon

co-purchase network and academic collaboration networks. We then explored the use

of a simple triangle counting-based algorithm to recover the clusters and analyzed its

effectiveness. Experiments on various real-world datasets justified the efficacy of the

proposed techniques. Some of the key takeaways are:

• Geometric block model captures dependent edge formation which is motivated

by random geometric graphs.

• Given a pair of nodes u and v such that (u, v) ∈ E, the chances that w forms

a triangle with them is independent of x forming an edge with them. Due to

this property, calculating the number of triangles formed by each edge helps to

classify it as intra-cluster or inter-cluster.

• Motif-counting based algorithm is efficient and accurate over real-world net-

works.

As future work, we plan to explore the use of supervision to improve the recovery

algorithm and extend these generative models for hierarchical clustering.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this dissertation, we formalized the different facets of clustering and devel-

oped algorithms with specific focus towards robustness and scalability. While our

techniques are general, we illustrate their applications for different aspects of data

integration tasks. Specifically, we explore the applications of entity resolution, data

summarization and community detection. We proved robustness guarantees of the

proposed techniques under different noise models and validated their quality over

various real-world datasets.

In Chapter 3, we developed an error correction toolkit to ensure high quality of

clusters while optimizing for the number of queries to the oracle. Chapter 4 proposed

a novel progressive blocking framework to improve scalability.

In Chapter 5, we introduced two different noise models for comparison queries:

adversarial and probabilistic noise. We designed approximation algorithms to per-

form k-center clustering and agglomerative hierarchical clustering using a quadruplet

comparison oracle.

In Chapter 6, we proposed a generative model to model the interactions between

records. For this model, we designed a simple triangle counting based algorithm to

recover the ground truth set of clusters.
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7.1 Future Directions

This dissertation has raised several questions pertaining to the different facets of

clustering. We now describe some research directions that we believe are the next

steps to cater to the modern needs of data-based applications.

7.1.1 Alternate Forms of Supervision

In applications like entity resolution, the crowd-based oracle supervision provides

noisy labels for pairs of records which are then corrected by our random graph-based

algorithm. Most commonly, these oracle models use crowdsourcing along with active

learning to train a classifier [34, 172]. This procedure is equivalent to a supervised

learning task and techniques like weak supervision and transfer learning can help to

effectively reduce the dependence of classifier training on crowd workers [168, 186, 90].

Knowledge graphs are known to contain well curated information about various

real-world entities. These sources provide high-quality domain knowledge which can

be used as supervision to circumvent the dependence on crowdworkers, thereby re-

ducing the monetary cost. A future direction for effective design of oracle would be

to exploit openly available domain knowledge along with transfer learning techniques

to reduce the dependence on crowdworkers.

7.1.2 Entity Resolution over Data Markets and Federated Data Sources

Designing scalable techniques for integrating data from heterogeneous sources will

be an increasingly important area for businesses and government. The availability

of open data sources has increased the heterogeneity and ambiguity across sources.

Data markets and federated data sources have raised the importance of privacy in

data integration systems. One of the recent techniques [187] has explored privacy-

aware techniques for entity resolution. Designing privacy preserving ways to leverage

supervision for entity resolution is an interesting direction for further exploration.
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Record id Title Price Picture Type 

1 General Lighting, Soft White, 60W 
Equivalent A29 LED Light Bulb  

21.56 

 

General 
LED 

2 Sylvania Ultra LED Night Chaser, 250W 
Equivalent, Replacement for Halogen 

Flood SpotLight 

20.64 

 

General 
LED 

3 Kasa Smart Light Bulb, LED Smart WiFi 
Alexa Bulbs  

13.99 

 

Smart 
LED 

4 Philips Hue White 4-Pack A19 LED Smart 
Bulb, Bluetooth Zigbee compatible  

49.99 

 

Smart 
LED 

5 GE Lighting 38-watt Halogen Floodlight 
Bulb with Medium Base 

31.99 

 

Halogen 
light 

6 Lithonia Lighting Mini Single-Head Flood 
Light 150-Watt Double Ended Quartz 

Halogen Lamp 

13.99 

 

Halogen 
light 

7 Luxrite T8 Fluorescent Tube Light Bulb, 
Cool White 

29.99 
 

Tube 
light 

8 Luxrite U Bend LED Tube Light, T8 T12, 
18W (32WEquivalent), 2100 Lumens, 

Direct or Ballast Bypass 

24.99 

 

Tube 
light 

9 F8T5/CW 8W T5 12" Cool White 4100k 
FluorescentLight Bulb 

9.99 
 

Tube 
light 

10 Sony VAIO Core i7 17.3-Inch Laptop  395 

 

Laptop 

11 Sony VAIO EJ2 Series VPCEJ28FX/B 
17.3-InchLaptop  

435 

 

Laptop 

12 Sony vaio i7 laptop, 17 inch 399 
 

Laptop 

Figure 7.1: Example collection of products. Records 1, 2 refer to Regular LED bulbs,
3, 4 to Smart LED bulbs, 5, 6 to halogen bulbs, 7, 8, 9 to tube lights and 10, 11, 12 to
laptops.

7.1.3 Hierarchical Clustering with Supervision: Taxonomy Construction

In many applications, records (which refer to real-world entities) need to be or-

ganized in ways that capture entities and type relationships between entities. For

example, a retail website that recognizes which records refer to the same product

and organizes such products in the form of a product taxonomy can enable better

search and recommendation. Consider a sample of products in Figure 7.1 collected

from a retail website, and focus on records 6, 7, 8 and 9. A partial solution would be

to identify that records 7 and 8 refer to the same entity – “Luxrite T8” tube light,

while 6 and 9 refer to other products. A better solution would be to recognize that

9 - even if it refers to a different “F8T5/CW” tube light - is closer to 7 and 8 than
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u2
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7
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e1 e2
e3 e4

e5
e6

12

e7 9

(a) Ground truth hierarchy

Which hierarchy best represents the 
following?

A B C D

Id: 4 Id: 11Id: 1

(b) Example triplet query

Figure 7.2: (a) Hierarchical relationships for products in Figure 7.1. Dark gray nodes
like e9 represent entities. E.g., records 10, 11 and 12 indeed refer to the same ‘Vaio
laptop’ (denoted by e9), sold by different vendors. Light gray nodes (u1 – u7) represent
types. Deepest light gray nodes (u1, u2, u4, u5) which are parents of dark gray nodes,
correspond directly to the “Type” column of Figure 7.1. E.g., u2 corresponds to
Smart LED. (b) Example of a triplet query about nodes 1, 4 and 11.

to 6, which refers to a halogen bulb which is of a different entity type. Even more,

when considering other records such as 10, which refers to a laptop, we can identify

that 6 is now closer to 7, 8 and 9 (which are all “lighting” items) than to 10 and so

on, hierarchically. Figure 7.2a shows the entire set of relationships for the records in

Figure 7.1. In this context, types can be thought of as clusters of entities, possibly

included in other more general types, and entities can be thought of sui generis types

consisting only of themselves. Reconstructing the entire set of hierarchical relation-

ships can be challenging because types and entities may not be known a priori (i.e.,

some may need to be discovered during the process) and even the number of types

or their size distribution may not be known; some types might have many entities in

the dataset while others may be niche types with few entities.

As a future work, we plan to investigate a new hierarchical ER task, where records

need to be clustered in a tree-like structure capturing entities as parents of leaf records

and types from the level immediately above. In terms of supervision, we assume access

to oracles that can answer the following types of queries.

• Binary optimal cluster query: “do records u and v refer to the same entity?”
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• Comparison query: “which records among u, v and w are most similar?” (shown

in Figure 7.2b).

The above query forms have been used separately for solving ER [194, 83, 87] and

hierarchical clustering [79] but not for the proposed problem.

Limitations of using existing strategies. One approach to solve hierarchical ER

could be to run ER first followed by hierarchical clustering (or vice versa). However,

pipelining the two processes turns out to be sub-optimal. Let n be the number of

records.

• Running a hierarchical clustering technique like [79] first and then post-

processing the bottom level in order to detect entities can require O(n2) queries

for non-binary hierarchies in the worst case, before even identifying the entities.

• Running an ER technique like [83] first and post-processing entities after that

to detect types can be very efficient in case of large entities but can require

O(n2) queries to identify small entity clusters, before even starting to process

types.

Designing effective techniques to leverage both oracle models to recover the hier-

archical representation of records is an interesting direction for future research.

7.1.4 Overlapping Clusters with Supervision

This dissertation focused on settings where the output clusters are disjoint. How-

ever, in some applications the ground truth clusters may be overlapping. For example,

clustering group photos based on different individuals present in the photograph. Re-

cent techniques have studied oracle models to recover overlapping clusters in the

absence of pairwise similarity/probability values [45, 121]. Automated techniques to

calculate similarity between such records can be noisy. Our ER techniques (Chap-

ter 3) do not extend to these settings directly. The immediate next step is to study
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supervision based techniques that can leverage similarity information between records

to generate overlapping clusters.

7.1.5 Fair Clustering with Supervision

Using biased data in AI application development has had many disastrous conse-

quences. For example, the COMPAS software used by the Wisconsin Supreme Court

was found to erroneously consider a black defendant twice as likely as a white defen-

dant to be a recidivist [8]. In another example, Amazon’s automated AI-based hiring

tool infamously discriminated against women [2]. Given the societal impact of such

applications, every effort of ensuring fairness in outcomes must be employed in the

development process at every stage.

Clustering algorithms are known to be used for team formation, shortlisting re-

sumes for hiring applications and many other applications that have societal im-

pact [72]. Traditional clustering techniques are observed to produce biased results [55].

There has been a lot of research interest in developing fair techniques for cluster-

ing [55, 170, 36, 18, 35, 17]. However, all these techniques generate approximate

solutions and are dependent on the input fairness constraints. Use of supervision

to generate fair clusters has not been explored. We believe that supervision based

techniques can also be helpful to reduce the dependence on accurate specification of

fairness constraints and techniques for different fairness constraints [93].

7.1.6 Interpretable Clustering

Clustering results are expected to be inherently interpretable as the aim of cluster-

ing is to group similar nodes together. Many application domains are characterized

by high-dimensional data and the interpretability may be diminished since no clear

patterns may be easy to recognize for an end-user. There has been a growing interest

in developing interpretable methods for machine learning based classifiers. However,

there is limited prior research in improving interpretability of clusters [86, 171, 135].
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Further, the increased importance of fairness along with other requirements like pri-

vacy and interpretability have justified the need to study multi-constraint clustering

techniques. We believe that multi-constraint clustering is a challenging problem with

a high potential of impact.
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