
Computer Science
Department
Scientific Computing

From Valid Measurements to
Valid Mini-Apps
Zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)
Genehmigte Dissertation von Jan-Patrick Lehr aus Darmstadt
Tag der Einreichung: 20. Juli 2021, Tag der Prüfung: 03. September 2021

1. Gutachten: Prof. Dr. Christian Bischof (Technische Universität Darmstadt)
2. Gutachten: Prof. Dr. Martin Schulz (Technische Universität München)
3. Gutachten: Prof. Sunita Chandrasekaran, Ph.D. (University of Delaware)
Darmstadt – D 17

From Valid Measurements to Valid Mini-Apps

Accepted doctoral thesis by Jan-Patrick Lehr

1. Review: Prof. Dr. Christian Bischof (Technische Universität Darmstadt)
2. Review: Prof. Dr. Martin Schulz (Technische Universität München)
3. Review: Prof. Sunita Chandrasekaran, Ph.D. (University of Delaware)

Date of submission: 20. Juli 2021
Date of thesis defense: 03. September 2021

Darmstadt – D 17

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-209439
URL: http://tuprints.ulb.tu-darmstadt.de/20943

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Keine Bearbeitungen 4.0 International
https://creativecommons.org/licenses/by-nd/4.0/
This work is licensed under a Creative Commons License:
Attribution–NoDerivatives 4.0 International
https://creativecommons.org/licenses/by-nd/4.0/

http://tuprints.ulb.tu-darmstadt.de/20943
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/

Erklärungen laut Promotionsordnung

§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftli-
chen Version übereinstimmt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht
wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthe-
ma und Ergebnis dieses Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter
Verwendung der angegebenen Quellen verfasst wurde.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, 20. Juli 2021
Jan-Patrick Lehr

iii

Preface

This preface is to remind me that putting together a dissertation during a pandemic, with
a newborn, was not the easiest thing to do.

First and foremost I want to thank my wife for her unbelievable and outstanding support
over the years, despite whatever was thrown our way. You are a true hero.

I also want to thank my family and my friends for their support throughout the years
and their understanding when I was “busy with a paper, but will visit once it’s done”.

Moreover, I want to thank my colleagues, and my supervisor Christian Bischof for
their support. I want to especially thank my colleagues at our institute: Alexander Hück,
Christian Iwainsky, Tim Jammer, Yannic Fischler, Michael Burger, Sebastian Kreutzer, Nam
Nguyen, Moritz Schwarzmeier, and Iris Schüßler-Janzon. In addition, I want to thank my
colleagues from the HPC group at the computing center at TU Darmstadt: Andreas Wolf,
Armin Jäger, Benjamin Juhl, and Christian Griebel, and Steffi Vass and Thorsten Reimann
from the Hessian Competence Center for High-Performance Computing (HKHLR).

I would also like to thank every student who worked with me over the years, be it as a
student research assistant, or doing a theses at our institute under my supervision. Every
interaction contributed eventually to this thesis. So thank you Sachin Manawadi, Jonas
Focken, Verena Sieburger, Matthäus Kiehn, Leonard Götz, Usman Ahmad, Peter Arzt,
Moritz Fischer, Julian Hindelang, Aylin Müller-Cin, Janis Mittelstädt, and Jonas Rickert.

iv

Abstract

In high-performance computing, performance analysis, tuning, and exploration are rel-
evant throughout the life cycle of an application. State-of-the-art tools provide capable
measurement infrastructure, but they lack automation of repetitive tasks, such as iterative
measurement-overhead reduction, or tool support for challenging and time-consuming
tasks, e.g., mini-app creation. In this thesis, we address this situation with (a) a compar-
ative study on overheads introduced by different tools, (b) the tool PIRA for automatic
instrumentation refinement, and (c) a tool-supported approach for mini-app extraction.

In particular, we present PIRA for automatic iterative performance measurement refine-
ment. It performs whole-program analysis using both source-code and runtime information
to heuristically determine where in the target application measurement hooks should be
placed for a low-overhead assessment. At the moment, PIRA offers a runtime heuristic to
identify compute-intensive parts, a performance-model heuristic to identify scalability
limitations, and a load imbalance detection heuristic. In our experiments, PIRA compared
to Score-P’s built-in filtering significantly reduces the runtime overhead in 13 out of 15
benchmark cases and typically introduces a slowdown of < 10%.

To provide PIRA with the required infrastructure, we develop MetaCG — an extendable
lightweight whole-program call-graph library for C/C++. The library offers a compiler-
agnostic call-graph (CG) representation, a Clang-based tool to construct a target’s CG,
and a tool to validate the structure of the MetaCG. In addition to its use in PIRA, we show
that whole-program CG analysis reduces the number of allocation to track by the memory
tracking sanitizer TypeART by up to a factor of 2,350×.

Finally, we combine the presented tools and develop a tool-supported approach to
(a) identify, and (b) extract relevant application regions into representative mini-apps.
Therefore, we present a novel Clang-based source-to-source translator and a type-safe
checkpoint-restart (CPR) interface as a common interface to existing MPI-parallel CPR
libraries. We evaluate the approach by extracting a mini-app of only 1,100 lines of code
from an 8.5 million lines of code application. The mini-app is subsequently analyzed, and
maintains the significant characteristics of the original application’s behavior. It is then
used for tool-supported parallelization, which led to a speed-up of 35%.

The software presented in this thesis is available at https://github.com/tudasc.

v

https://github.com/tudasc

Zusammenfassung

Im Hochleistungsrechnen sind Leistungsanalyse, –optimierung und –exploration wäh-
rend des gesamten Lebenszyklus einer Anwendung relevant. Aktuelle Werkzeuge bieten
zwar eine leistungsfähige Messinfrastruktur, jedoch fehlt ihnen die Automatisierung sich
wiederholender Aufgaben wie die iterative Reduzierung des Messaufwands oder die Werk-
zeugunterstützung für anspruchsvolle und zeitaufwändige Aufgaben, z.B. die Erstellung
von Mini-Apps. In dieser Dissertation adressieren wir die Situation mit (a) einer verglei-
chenden Studie zu Overheads, die durch verschiedene Werkzeuge erzeugt werden, (b)
dem Werkzeug PIRA zur automatischen Instrumentierungsverfeinerung und (c) einem
werkzeuggestützten Ansatz zur Mini-App-Extraktion.

Wir präsentieren PIRA zur automatischen iterativen Verfeinerung der Leistungsmes-
sung. Es führt eine Analyse des gesamten Programms durch, wobei sowohl Quelltext- als
auch Laufzeitinformationen verwendet werden, um heuristisch zu bestimmen, wo in der
Zielanwendung Messhaken für eine Messung mit geringem Overhead platziert werden
sollten. Derzeit bietet PIRA eine Laufzeit–, eine Leistungsmodell–, sowie eine Lastun-
gleichgewichtsheuristik. In unseren Experimenten reduziert PIRA den Laufzeit-Overhead
in 13 von 15 Testfällen erheblich und führt meist zu einer Verlangsamung von < 10%.

Um PIRA die nötige Infrastruktur bereitzustellen, entwickeln wir MetaCG — eine
erweiterbare, leichtgewichtige Call-Graph-Bibliothek für C/C++. Sie bietet eine Compiler-
agnostische Call-Graph (CG)-Darstellung, ein Clang-basiertes Werkzeug zum Konstruieren
des CG sowie ein Werkzeug zum Validieren der Struktur des MetaCG. Zusätzlich zur
Verwendung in PIRA zeigen wir, dass die CG-Analyse des Programms die Anzahl der durch
das Werkzeug TypeART zu verfolgenden Allokationen um bis zu 2.350× reduziert.

Abschließend kombinieren wir die Werkzeuge in einem werkzeuggestützten Ansatz, der
relevante Anwendungsregionen identifiziert und in repräsentative Mini-Apps extrahiert.
Dazu präsentieren wir einen neuen Clang-basierten Source-to-Source-Übersetzer und
eine typsichere, vereinheitlichte Checkpoint-Restart (CPR)-Schnittstelle für bestehende
Bibliotheken. Zur Evaluation extrahieren wir eine Mini-App mit nur 1.100 Codezeilen aus
einer 8,5 Millionen Codezeilen großen Anwendung. Eine Analyse zeigt, dass die Mini-
App einen Großteil des ursprünglichen Verhaltens beibehält. Anschließend wenden wir
werkzeuggestützte Parallelisierung an und erzielen eine Beschleunigung von 35%.

vi

Contents

Preface iv

1. Introduction 1

2. Performance and Program Analysis 7
2.1. Program Representations . 7
2.2. Performance Analysis . 11

2.2.1. Instrumentation . 13
2.2.2. Statistical Sampling . 18
2.2.3. Influence of Measurement . 19

2.3. Kernel and Mini-App Extraction . 20

3. The Influence of Measurement 23
3.1. Influence of Automatic Compiler Instrumentation 24
3.2. Influence of Score-P and HPCToolkit on Hardware Performance Counter . 27
3.3. Summary . 38

4. MetaCG – Annotated Whole-Program Call-Graphs 40
4.1. Call-Graph Library . 41
4.2. Call-Graph Construction . 43

4.2.1. CGCollector . 43
4.2.2. Meta Collectors . 45
4.2.3. Merging of Translation Units . 47
4.2.4. Validation . 48

4.3. Evaluation . 48
4.4. Discussion . 54

5. PIRA: Performance Instrumentation Refinement Automation 56
5.1. Approach . 57
5.2. Software Architecture . 59

vii

5.3. Profile-Guided Instrumentation Selection 61
5.3.1. Statistical Statement Aggregation Heuristic 61
5.3.2. Runtime Heuristic . 63
5.3.3. Performance Model Heuristic . 65
5.3.4. Load Imbalance Heuristic . 66

5.4. Evaluation . 69
5.5. Discussion . 87

6. Mini-AppEx: Tool-Supported Kernel and Mini-app Extraction 89
6.1. Approach . 90

6.1.1. Kernel Identification . 90
6.1.2. Source Transformation . 90
6.1.3. Validation . 93

6.2. Evaluation . 94
6.2.1. Extraction Approach . 95
6.2.2. Mini-app Quality . 97
6.2.3. Tool-supported Parallelization . 102

6.3. Discussion . 103

7. Summary 106

8. Future Work 108

Appendices 110

A. The Influence of Measurement 110

List of Figures 110

List of Tables 120

List of Listings 122

Glossary 123

Bibliography 124

viii

1. Introduction

The increasing complexity of high-performance computing (HPC) systems challenges
application developers, performance analysts and system users. Moreover, the increasing
heterogeneity of these systems poses additional demands on software w.r.t. performance
and portability [89]. Efficient programming of today’s HPC systems commonly includes
challenges concerning distributed memory parallelization, shared memory paralleliza-
tion, and accelerator parallelization [65]. These different parallelization paradigms and
emerging architectures, such as ARM [91], pose specific demands each w.r.t. perfor-
mance analysis and optimization as well as correctness validation. As a consequence,
performance analysis and performance exploration are important aspects of software
development [132]. While the analysis and tuning of a target application seemed to be an
art that followed intuition, more structured approaches are used today and software teams
and compute centers apply performance engineering to maintain and improve execution
performance. The increasing complexity of architectures, programs, and applications,
highlights the need for automated and elaborate tool support.

Analysis, understanding and exploration of performance characteristics of (parallel) ap-
plications has been the target of research for a while and a variety of tools exist. However,
in many cases the tools require significant manual work in applying them and in interpret-
ing their results. While the interpretation of the behavior of complex software systems can
be notoriously challenging, necessary preparation steps are performed manually albeit
being highly repetitive. It is, hence, desirable to increase the degree of automation of
typical steps in such workflows. In addition, tools should enable and support the transition
from the initial assessment of a target application to detailed experimentation, e.g., via
mini-apps, more seamlessly.

Performance Engineering Performance engineering, see Figure 1.1, is the structured
approach to themeasurement, analysis and improvement of application performance [113].
Since the infrastructure cost associated with a target application performing inefficiently
is significant, in particular for frequently-used or long-running codes, devoting time to
performance analysis and subsequent tuning is generally beneficial [15]. Specialized
analysis tools, such as Scalasca [36], Vampir [101], or Cube [35], have been developed to

1

Adjustment

Adjustment

Performance
Measurement

Performance
Analysis

Performance
Tuning

Performance
Exploration

Adjustment

Adjustment

Data Insight

Performance
Measurement

Performance
Analysis

Performance
Tuning

Performance
Exploration

Data Insight

Target
Application

Transfer
Insight

Transfer
Insight

Figure 1.1.: Performance engineering cycles for a target application. Performance measurements
are conducted to generate data about the behavior of the target application. The data
is subsequently analyzed to identify limiting factors and performance bottlenecks. This
insight can be used for application tuning, or performance exploration. The insights
gained are transferred back to the original target application.

handle large-scale multi-level parallelism. They enable developers and analysts to capture
the execution behavior of complex scientific applications that run on heterogeneous
machine architectures. Characteristics captured range from basic timing behavior to more
elaborate technical details, such as hardware performance counter (HWPC). Some tools
even integrate metrics that are particularly HPC-related, such as communication-specific
data. Hence, current tools address technical challenges to capture performance data from
highly parallel applications.

An important second aspect is the manual effort required to use these tools and the
human time associated with it [15]. In particular, the time that application developers
and performance analysts spend with manually configuring and adapting a given tool
for a specific use-case can be extensive. Hence, it is of high interest to reduce the time
spent by persons for highly repetitive work. Consider, as an example, the repetitive
task of identifying an application’s hot-spots, i.e., regions in the target program that

2

consume considerable amounts of resources and limit the overall performance of the
target application. As part of this process, the analyst — conceptually — either (1) starts
from overview measurements and refines the focus onto a particular component of an
application by repetitive measurement and inspection of the profile, or (2) starts from
extensive measurements and iteratively excludes regions that are not of interest. In reality,
an analyst is likely to follow a combination of the two approaches to speed up the process.

Tool Support for Performance Measurement To capture the performance of HPC appli-
cations at the beginning of performance engineering, HPCToolkit [5], [127] and Score-
P [64] are two well established tools. Depending on the specific analysis situation both
have their strengths and weaknesses. For advanced analysis, i.e., to investigate a target
application’s behavior on a detailed machine-level, HWPC are captured for specific regions
using specialized libraries, such as PAPI [18]. Such measurement libraries inevitably inter-
act with the hardware, thus potentially skewing the measurement data — particularly for
low-level measurement facilities. Since runtime overhead is an often observed influence
of the measurement system, it is often used to rate the measurement impact on other
metrics, such as HWPC. However, it is unclear whether all HWPC are influenced to the
same extent as the runtime is influenced by the measurement system.

Instrumentation, as an intrusive way to capture data, influences the execution of the
target program [88], and with more instrumentation, the observable influence typically
increases. As an example, consider a function instrumentation that adds a function call
to every function in the target program to notify a measurement system that it has been
entered. Obviously, this will influence the performance of the target application. The
effect becomes more visible in applications that are implemented in a programming style
that entails many small functions, and particularly pronounced with high call counts [77].
In such cases, it is important to filter irrelevant functions from the instrumentation
and restrict it to only relevant regions, e.g., actual runtime hot-spots. Otherwise, the
performance data gathered may be misleading or even useless. Currently, however, non-
trivial filters are typically created manually, e.g., via function names or loop depth [54],
[99]. More recently, PerfTaint [27] uses taint analysis, i.e., an analysis to determine
which parts of a program are influenced by input variables, to reduce the amount of
instrumentation to only such regions. While these approaches are valuable, they lack
support to adjust instrumentation automatically to relief the analyst from time-consuming
manual effort. Paradyn [44], [93] implemented such adjustments using a measurement
feedback system and binary instrumentation [20]. Unfortunately, Paradyn is no longer
available to developers and performance engineers.

3

Tool Support for Performance Analysis Typical questions in HPC consider the identifi-
cation of application hot-spots or load imbalances for a particular execution configuration.
In addition, the scalability of the target application is an important aspect in performance
analysis, and performance models have shown useful in uncovering scalability limitations.
However, their manual construction, typically based on the application’s source code, is
time-consuming and tedious. The advent of tools such as Extra-P [23] or SimAnMo [21]
allows the construction of performance models using profile data. These empirical per-
formance models offer an accessible way to analyze an application’s behavior beyond the
currently available hardware capabilities for both parallelism and data set size. They are,
hence, well-suited for studying how a target program will behave when either parallelism
or problem size is increased. For each of these analyses, however, sufficiently accurate
low-overhead profiling data is of the essence. Depending on the measurement tool and the
target application, the picture of the target’s execution hot-spots may be significantly per-
turbed by measurement overhead, leading to wrong conclusions. This currently requires
performance analysts to perform manual filtering and adjustments to the measurement
system. Hence, tool-support beyond the current state of the art is needed.

Tool Support for Performance Improvement Once identified, performance-relevant re-
gions are analyzed in detail [55], e.g., a function’s ability to efficiently use the processor’s
cache, and subsequently improved. Such analysis and tuning is often performed on the
original application, although it may be considerably time-consuming due to the software’s
complexity. An auspicious approach is to use mini-apps for analyses and improvement
together with a transfer of the insight gained back to the original application. Mini-apps
are self-contained and embody essential performance characteristics [82], i.e., they reflect
the design and algorithmic choices of full-scale applications. Shalf et al. present a com-
plexity hierarchy [119] with mini-apps being smaller than the original application, but
larger compared to skeleton-apps or single kernels. This reduction in complexity enables
mini-apps to play an important role in the development process of large-scale software, as
they allow, e.g., the application of emerging tools and practices [139] or the exploration
of new programming models [90]. Likewise, they are used for demonstrating the capabil-
ities of tool prototypes, such as new instrumentation mechanisms [56]. Unfortunately,
their construction usually is prohibitively labor-intensive and requires expertise in many
different domains, limiting their application to experts and a small number of projects.
Albeit code extraction techniques exist [25], [62], [122], they (1) focus on single kernels,
(2) extract code at the compiler intermediate representation (IR) level, or (3) slice code
for analysis without being able to generate C/C++ code again. Given their advantages,
tool-support for the creation of mini-apps is much desired.

4

Current Challenges Given these scenarios, we identify the following current challenges
and impediments for performance analysis tools and tooling support in HPC:

1. Lack of a comparative study for the measurement perturbation introduced by differ-
ent state-of-the-art measurement tools w.r.t. hardware performance counters and
runtime as well as their potential correlation.

2. Lack of available smart instrumentation tools that use profiling data as feedback
mechanism to alleviate performance analysts from repetitive manual tasks. In
particular, tools that fully automatically determine relevant regions to instrument
via static source-code features or dynamic profile-data analysis.

3. Lack of available tool-supported approaches to automatically identify driving kernels
in scientific applications and subsequently create mini-apps in an automated way
from these applications.

Contributions The contributions of this thesis concern the fields of instrumentation-
based performance measurement, program-analysis representation, compiler-assisted
correctness-checking, and compiler-based source-extraction tools. In particular, this thesis
makes the following contributions:

Measurement Perturbation Study In a comparative study, we investigate the influence
of the state-of-the-art measurement tools HPCToolkit [127] and Score-P [64]. In
particular, we investigate the influence of the systems on the validity of values
obtained for hardware performance counters and the runtime overhead introduced.
The experiments are run across different hardware generations, compilers, and
Score-P versions to enable a discussion about trends between different versions of
the tools. We also briefly reflect on the tools’ ability for automatic filtering and the
manual creation of filter lists to reduce measurement perturbation.

MetaCG A whole-program call graph (CG) tool for an extendable program representation
that can be annotated with user-defined meta-information for use across different
program analysis and transformation tools.
It addresses the need for a lightweight program representation to exchange data
between different tools that use a common underlying compiler. The CG is im-
plemented in a reusable C++ library that can also serialize the graph and attach
the user-defined information, i.e., metadata. The MetaCG toolsuite consists of a
CG extractor based on the Clang-tooling layer, and we discuss particularities and
challenges for CG generation at the compiler’s abstract syntax tree (AST) level.

5

PIRA A tool suite for iterative instrumentation refinement and overhead reduction.
To address the current lack of support for automatic instrumentation refinement, we
introduce the PIRA framework. It addresses the need for automatic instrumentation
refinement and automated filter list creation. In particular, we present its extendable
Profile Guided Instrumentation Selection tool which uses static and dynamic heuristics
to refine the instrumentation. Its static heuristics take into account source-code
features, while its dynamic heuristics take into account profile data. We evaluate
PIRA’s ability to automatically keep measurement overhead within acceptable limits
on a variety of benchmarks, and, finally, investigate PIRA’s ability to reduce the
influence on hardware performance counters.

Mini-AppEx A tool-supported approach to extract mini-apps from large-scale C and C++
software packages.
Using automatically determined kernels, the tool extracts C and C++ source code
into an executable mini-app for further analyses. It addresses the bottleneck of
mini-app creation being limited to experts, and strives to make the technology
available much more broadly. Mini-AppEx is presented as part of a tool-supported
approach to extract mini-apps from existing C and C++ applications using PIRA,
MetaCG and a type-safe checkpoint-restart abstraction.

Structure Chapter 2 provides relevant technical background information. Chapter 3
presents the measurement perturbation study. Thereafter, in Chapter 4, we introduce
the MetaCG tool, before Chapter 5 explains PIRA in detail. Finally, Chapter 6 presents a
tool-supported approach to extract mini-apps from existing applications. We summarize
the thesis in Chapter 7 and outline further avenues of research in Chapter 8.

6

2. Performance and Program Analysis

Since the analysis of a target application is at the heart of many of our contributions, we
briefly introduce some general concepts for program analysis in Section 2.1. In particular,
we explain the program representations abstract syntax tree (AST), call graph (CG) and
control-flow graph (CFG). Our compiler-based tools use the Clang/LLVM toolchain, thus
we borrow their representation in examples, unless stated otherwise.

Subsequently, Section 2.2 outlines a high-level approach to performance engineering
and the different technological approaches to program measurement, i.e., statistical
sampling and instrumentation. We explain the fundamental differences and respective
implications that an analyst must take into account. Thereafter, we present in more detail
the state of the art in performance measurement and analysis approaches, and whether
an approach is available as a tool. In addition, the different approaches are contrasted
based on the manual interaction required.

Moving beyond performance measurement, we summarize the current state of the
art for automatic source extraction and, more specifically, for mini-app extraction. This
technique is especially of interest for performance tuning and exploration.

2.1. Program Representations

Three of the most fundamental representations used within compilers are (1) the abstract
syntax tree (AST), a high-level intermediate representation (IR) within compilers, (2) the
call graph (CG), commonly used to understand how functions are connected, and, (3) the
control-flow graph (CFG), which represents the static control flow in a program. All
analyses presented in this thesis use at least one of the three representations.

Abstract Syntax Tree

An important aspect throughout this thesis is the AST, i.e., the compiler-internal represen-
tation of the input program. The two most-popular open-source compilers expose their
AST to tool developers either through a specialized application programming interface

7

1 int foo(int a, int b) {
2 return a + b;
3 }
4
5 int bar(int k) {
6 if (k < 0) {
7 return foo(-k, k);
8 }
9 return foo(k, k);

10 }
11
12 int main(int argc, char **argv) {
13 int a = 1;
14 int b = 2;
15 foo(a, b);
16 return bar(0);
17 }

(a) Example C++ code.

|-FunctionDecl: bar 'int (int)'
| |-ParmVarDecl: k
| `-CompoundStmt
| |-IfStmt
| | |-BinaryOperator: '<'
| | | |-ImplicitCastExpr
| | | | `-DeclRefExpr: 'k'
| | | `-IntegerLiteral: 0
| | `-CompoundStmt
| | `-ReturnStmt
| | `-CallExpr: 'int'
| | |-ImplicitCastExpr
| | | `-DeclRefExpr: 'foo'
| | |-UnaryOperator: '-'
| | |`-ImplicitCastExpr
| | | `-DeclRefExpr: 'k'
| | `-ImplicitCastExpr
| | `-DeclRefExpr: 'k'
| `-ReturnStmt
| `-CallExpr: 'int'
| |-ImplicitCastExpr
| | `-DeclRefExpr: 'foo'
| |-ImplicitCastExpr
| | `-DeclRefExpr: 'k'
| `-ImplicitCastExpr
| `-DeclRefExpr: 'k'

(b) Clang AST for function bar.

Listing 2.1: Example input program with three functions and a much simplified textual representa-
tion of Clang’s AST for function bar.

(API) or a plugin mechanism. Since our tools rely on the Clang compiler, we present its
AST. Other notable compiler infrastructures are the ROSE source-to-source compiler [107]
and the GNU compiler collection (GCC) [128]. While, conceptually, ASTs across compilers
are similar, their technical details differ.1

Listing 2.1 shows a simplified Clang AST for the C++ function bar. While we omitted
many details for brevity, the high level of detail is obvious and enables the compiler to
perform its analyses. For example, the AST stores that the symbol k in line 6 references
the variable k declared as a function parameter, i.e., the ParmVarDecl. Such semantic con-

1Depending on the particular GCC version, the main representation of the compiler may not be the AST, but
a lower-level representation that is closer to assembler.

8

nections allow implementing (domain) specific program analysis tools. For example, given
the type deduction rules of the programming language, an analysis tool can determine
whether a type change, e.g., for algorithmic differentiation (AD, [40]), would result in
compilation errors [47].

Call Graph

A second important representation for program analysis is the program’s CG, which
represents the potential call relations between the functions in the program as a directed
graph, cf. Figure 2.2a. It can be used, e.g., to determine reachability between two
program entities and is frequently used for analysis and optimization, such as function de-
virtualization [129] or function inlining [45]. While its construction for simple programs
is straightforward, the correct construction of the CG for C/C++ programs in general is
challenging due to the language’s complexity. Moreover, the modular design of large
software systems pose additional technical challenges on CG generation tools. Finally, CGs
are typically tool specific and cannot be easily exported for another client to be useful.

CG construction has received attention in the past for various languages. Murphy et
al. present an empirical study of the capabilities of different CG generation tools for C
in [98]. At the time, most of the tools did not rely on compiler infrastructure, but on
string matching and similar low-level techniques. This limits their ability to construct the
correct CG significantly, as one of the challenges in languages such as C and C++ is the
presence of pointers and pointers to functions. Their particular influence is investigated
in [8]. Phasar [115] is a framework for static analysis based on LLVM that also implements
different CG construction algorithms. It focuses on security analysis and one of its key
components is, thus, the construction of accurate CGs of the target program.

A methodology to compare and rate the quality of CGs is presented by Lhoták in [79].
The method proposed aims to quantify the impact that a missing edge has on validity
of the CG generated. Recently, the unsoundness of CG construction algorithms for Java
programs was systematically evaluated by Reif et al. [108].

An important aspect, particularly for languages where all methods are virtual, such as
Java, is to determine the set of potential call targets as accurately as possible. Tip and Pals-
berg present a large study on the quality of different CG construction algorithms for Java
programs in [129]. The authors compare the algorithms class hierarchy analysis (CHA),
rapid type analysis (RTA), and two different versions of control-flow analysis (CFA). The
algorithms presented vary in complexity with CHA being the simplest one, and extensive
CFA being the most computationally-expensive one.

9

main

foo

bar

int a = 1;
int b = 2;
foo(a, b);
int _t = bar(0);
return _t;

main:

int _t = a + b;
return _t;

foo:

int _t = foo(-k, k);
return _t;

int _t = foo(k, k);
return _t;

if (k < 0)
bar:

T F

int a = 1;
int b = 2;
foo(a, b);
int _t = bar(0);
return _t;

main:

int _t = a + b;
return _t;

foo:

if (k < 0)

bar:

int _t = foo(-k, k);
return _t;

int _t = foo(k, k);
return _t;

T F

main

bar

foo

(a) The CG shows the potential
reachability between the dif-
ferent functions in the target
program.

main

foo

bar

int a = 1;
int b = 2;
foo(a, b);
int _t = bar(0);
return _t;

main:

int _t = a + b;
return _t;

foo:

int _t = foo(-k, k);
return _t;

int _t = foo(k, k);
return _t;

if (k < 0)
bar:

T F

int a = 1;
int b = 2;
foo(a, b);
int _t = bar(0);
return _t;

main:

int _t = a + b;
return _t;

foo:

if (k < 0)

bar:

int _t = foo(-k, k);
return _t;

int _t = foo(k, k);
return _t;

T F

main

bar

foo

(b) The control-flow graph (CFG) commonly reflects the control flow within
each function, but not across functions.

Figure 2.2.: Example graphs for input C++ code from Listing 2.1a. The CFG follows LLVM IR’s
notion that a call is not considered control flow, thus, calling functions foo and bar
does not introduce additional edges.

Control-Flow Graph

A CFG represents the possible control flow through the program and has been studied
extensively [6], [106]. It consists of basic blocks and directed edges connecting the
blocks. All statements within a basic block are executed in sequence from top to bottom,
and a block ends with a branch to at least one successor block, see Figure 2.2b for an
example. To facilitate the analysis of the flow of data through the CFG, the static single
assignment (SSA) form was created [7]. This representation is a typical foundation to
data-flow analyses. Note that binaries after compilation and linking are in the form of a
CFG, i.e., they consist of basic blocks connected via (un)conditional jumps.

10

1 SCOREP_REGION_NAMES_BEGIN
2 EXCLUDE MPI_*
3 INCLUDE bar
4 INCLUDE foo MANGLED _Z3fooiii
5 SCOREP_REGION_NAMES_BEGIN

Listing 2.2: Example of a Score-P instrumentation filter file. The function bar is explicitly included,
while all MPI_* functions are excluded. The function foo is included with an explicitly
spelled name mangling, which includes the types into the function name in C++.

LLVM IR, the intermediate representation of the LLVM compiler, is based on the CFG
in SSA form [69]. The deliberate choice was made to facilitate program analysis and
transformation. With its modern API, it attracts a lot of attention and is used in many
program analysis research tools, e.g., PARCOACH [112], MACH [59], or CERE [25].

2.2. Performance Analysis

In HPC, the analysis of a target program’s performance and its tuning are important
tasks. Since performance analysts are not always part of the software development team,
the way a target program is approached can greatly vary. Iwainsky et al. [55] propose
a structured approach of the process of performance analysis and tuning itself, as well
as the interaction between performance analysts and developers. Important is that the
workflow distinguishes between overview and focus measurements. For an overview
measurement, a lightweight measurement methodology, e.g., statistical sampling, should
be used, whereas for a focus measurement a more heavyweight approach can be used, e.g.,
program instrumentation. The process to shift from the overview to the focus measurement
is carried out manually and typically involves manual source-code instrumentation or the
creation of filter lists that name functions that should be instrumented or the ones that
should be excluded, cf. Listing 2.2 for an example. In both cases, however, the user must
create such lists and pass them to the measurement system.

More focused measurements are performed to investigate specific hypotheses about the
performance of small parts of the target application. Hence, the performance analyst may
consider the capturing of hardware performance counter (HWPC) data to investigate,
for example, the target’s ability to utilize the processor’s cache-hierarchy. For such
measurements, the influence of the measurement system should remain as small as possible
to capture the target’s behavior as accurately as possible. To ease the transition from
overview measurements to focused measurements an elaborate framework for program

11

foo

bar

main

Flat Profile

bar

main

foo

foo

Call-Path Profile

Trace

foo
foo

mainmain

bar bar

time

time consumed

time consumed

Figure 2.3.: A flat profile shows each function individually with its accumulated runtime irrespective
of the respective calling contexts and can be used for an initial overview of which
functions are most relevant.

foo

bar

main

Flat Profile

bar

main

foo

foo

Call-Path Profile

Trace

foo
foo

mainmain

bar bar

time

time consumed

time consumed

Figure 2.4.: A call-path profile shows each function’s accumulated runtime individually per calling
context and allows a more detailed analysis compared to the flat profile.

instrumentation is presented by Iwainsky in [54]. However, the process to adjust the
instrumentation and move from an overview measurement to more focused measurements
is not automated, but left to the user.

The data obtained through either statistical sampling or instrumentation is then vi-
sualized or interpreted by subsequent tools. Typical kinds of profiles, on a conceptual
level, are (1) a flat profile, i.e., a list of functions and their accumulated metric value,
cf. Figure 2.3, (2) a call-path profile, i.e., a tree of all functions and the accumulated
metric value within the subtree, cf. Figure 2.4, and, (3) a trace, i.e., a time sequence of all
measurement events that happened during program execution, cf. Figure 2.5.

Different tools offer different measurement capabilities and tool-ecosystems. HPC-
Toolkit [127] is a widely-used sampling based profiler, similar to Intel vTune [52], and
allows different types of analyses. Score-P [64] serves as a joint measurement layer for a

12

foo

bar

main

Flat Profile

bar

main

foo

foo

Call-Path Profile

Trace

foo
foo

mainmain

bar bar

time

time consumed

time consumed

Figure 2.5.: A trace records each individual event and makes the exact relation between the events
accessible. This provides the most detail, as individual invocations can be analyzed.

variety of analysis and visualization tools, e.g., Cube [35], Scalasca [36], or Vampir [101].
In addition, the tool Extra-P [23] allows constructing empirically determined performance
models from Score-P profiles. This enables a user to analyze a target program’s behavior
w.r.t. one or multiple varied input parameters, such as the number of processes. Hence,
an application’s scaling behavior can be extrapolated, e.g., to determine whether a larger
number of processors will speed-up the computation, or result in a performance penalty.
As such, the Score-P ecosystem offers tools for analysis for different problems, e.g., com-
munication analysis with the Vampir trace analyzer, or hot-spot analysis using Cube GUI,
on different granularities given its possibility for compiler and manual instrumentation.

Score-P and HPCToolkit are only two of many tools, and most use their own output
format. Given this diversity, Hatchet [13] consolidates the different representations. The
Hatchet representation is exposed via an API to perform common metric evaluations,
e.g., difference, on the respective call-path profiles. Hence, it allows for programmatic
inspection of application profiles from different data sources via a common API.

The next sections elaborate on existing instrumentation tools and approaches, as well
as tools that use statistical sampling, and briefly touch on the existing work about mea-
surement perturbation of instrumentation-based measurements.

2.2.1. Instrumentation

Instrumentation adds statements into the target application to obtain information about
the state or the progress of it and can be used for performance measurements, correctness
analysis, logging, and similar tasks.

Technologically, we distinguish between source instrumentation, compiler instrumenta-
tion (frontend and backend) and binary instrumentation, see Figure 2.6. Source instru-
mentation means that the additional statements are added in the (high-level language)

13

Input
Program

Compiler
Frontend

Compiler
Backend

Program
Binary

Source-level
Instrumentation

Compiler
Instrumentation

Binary
Instrumentation

Source-Level
Instrumentation

Sourve-Level Instrumentation

Manual Automatic

Portable Non-Portable

Compiler Instrumentation (Frontend)

Compiler Instrumentation (Backend)

Binary Instrumentation

H
ig

h-
Le

ve
l C

on
st

ru
ct

s
M

achine D
etails

Figure 2.6.: Levels at which instrumentation can be added with their typical degree of automation
and the respective portability of the instrumentation inserted. Frontend compiler-
instrumentation means processing and transformation at the AST level, whereas
backend compiler-instrumentation refers to adjusting the final code generation.

1 int foo(int a) {
2 __instrumentation_enter(&foo);
3 /* Block of original user code without function exits*/
4 __instrumentation_exit(&foo);
5 }

Listing 2.3: Example function-level instrumentation at source level. The interface receives the
pointer to the function entered as argument for its XX_enter and XX_exit events.

source-code, e.g., C/C++, see Listing 2.3 for an example. The additional statements, thus,
interact with the compiler’s optimizer during the regular compilation process. We refer to
compiler instrumentation at the IR level as compiler-frontend instrumentation, whereas
changes to the compiler’s code generation is regarded as compiler-backend instrumenta-
tion. While the former operates independently of the target platform, the latter may be
specific to the target processor, and, thus, less portable. Finally, binary instrumentation
means that the instrumentation is added at the binary level, e.g., using x64 assembly.

A second important consideration is available tool support to introduce any desired
instrumentation into a target. This is most prominent when approaching new and,
previously, unknown large-scale targets, as finding reasonable well-suited spots to place
instrumentation may be very time-consuming and hard to find. Hence, the manual
introduction of well-suited instrumentation may be prohibitively labor-intensive.

14

Source Instrumentation

Source instrumentation inserts the additional statements into the source code of the target
application. This can be done manually as well as automatically. It is desirable in the
case that developers want to insert and maintain specific instrumentation points in their
software projects, e.g., enable timing of particular phases in the application, and also
allows to freely choose the compiler used. In some software projects such timers are
implemented using the programming language built-in time routines, such as std::chrono
for C++, whereas other software projects rely on dedicated libraries for such timers.

To ease the access to low-level HWPC the Performance Application Profiling Inter-
face (PAPI) [18] has been proposed. The library introduces a common interface, imple-
mented as so-called events, to access the many and machine-specific HWPC. It allows
capturing values for the counters by registering event sets, i.e., a collection of abstract or
machine-specific events. While it offers a rich but low-level API, it requires the user to
add the respective instrumentation statements in the source code.

Caliper [16] offers a lightweight instrumentation library to annotate the program source
with convenience macros and does not require a specialized compiler to be used. The
user inserts calls to Caliper and either captures a start/stop pair for a full function, or
defines a named region within two Caliper calls. Before the target application is executed,
the user defines which metrics, e.g., wall-clock time, or HWPC using PAPI, the Caliper
system should record. This allows for easy exchange of metrics to capture for the already
annotated regions in the source code. A more recent library that allows to capture a
variety of metrics is timemory [86], which provides a modern C++ API.

A similar interface for user annotations is provided by the tool Score-P [64], which
we introduce in more detail in Section 2.2.1. Convenience macros are used to insert
measurement points and capture full functions or regions defined on a more granular
scale, e.g., around a loop. The likwid measurement tool [130] also offers an annotation
API that lets a user annotate specific code regions for measurement. likwid is particularly
built for measurements of low-level events, similar to PAPI.

The libraries and interfaces mentioned so far require the user to insert the instrumenta-
tion. This can be limiting when approaching a new application for analysis. Hence, various
approaches have been proposed to insert source-level instrumentation automatically.

The TAU [120] framework enables selective program instrumentation by facilitating
the Program Database Toolkit (PDT) [84]. Given PDT’s representation of the target
application, an analyst can programmatically define insertion points for instrumentation
calls. The approach can be regarded as a specialized and domain-specific adaptation of
the pointcuts specified in aspect-oriented programming [61]. An aspect-inspired GCC
plugin for program instrumentation was proposed by Seyster et al. in [118].

15

An even more elaborate way to define selective instrumentation is introduced in the
InstRO framework [53], [54]. This compiler-based tooling framework allows specifying
program parts of interest using their properties. It introduces the concept of a Construct
Set, which can refer to any behavior-exposing part of a target application. The construct
sets can then be freely combined using boolean operations, and — eventually — are
passed to an instrumentation back-end. The separation of selection and instrumentation
allows to easily introduce new measurement back-ends, and, e.g., combine thread-safe
measurement routines for parallel regions with non-thread-safe routines for sequential
regions. Hence, fairly advanced instrumentation tools can be constructed using InstRO. A
prototype heuristic for InstRO that performs statement aggregation across the application’s
CG was proposed in [56] and builds the basis for one heuristic in PIRA, see Chapter 5.

Compiler Instrumentation

Most modern compilers offer automatic instrumentation for different interfaces during
the compilation process. A well-known interface is the mcount interface that is used by
the GNU profiler gprof [39]. In each function, the compiler insert a call to the mcount
function to record the function visit-count, i.e., how often the function has been called.
Thus, the gprof profiler uses the instrumentation to capture exact function visit-counts
and keep track of the current calling context. The runtime distribution across all functions
is, however, obtained using statistical sampling.

Another instrumentation interface available across major compilers2, is an enter/exit
instrumentation that we will refer to as Cyg Instrumentation. The interface was introduced
in GCC and adopted by the other, GCC compatible, compilers. It inserts a call to an enter
hook at every function start and calls to an exit hook at every exit of the function. Client
tools can implement and link a runtime library, e.g., to measure the time between the
respective enter and exit call to determine the runtime of the function. A user can give a
list of function names or paths to GCC to exclude them from the instrumentation, while
in Clang, the user has additionally the option to apply this instrumentation before or after
the optimizer’s inliner passes. Applying the instrumentation before the inliner typically
results in a significant performance penalty, which is alleviated to some extent when
instrumenting after inlining. Section 3 will discuss this in more detail when different
measurement approaches are compared for their impact.

Score-P [64] provides a runtime-library implementation for the Cyg Instrumentation
API. However, for GCC, it provides a plugin that implements a different API. With the
introduction of the GCC plugin, Score-P also includes compile-time filtering of functions.

2GCC, Clang, and Intel

16

In addition, functions marked inline or those that are inlined by the compiler are filtered
by default. Hence, a user can provide a filter list to exclude or explicitly include certain
functions in the measurement. The functionality was also presented for the Clang compiler
in [131], but is, unfortunately, not yet part of the Score-P release.

As an approach to lightweight instrumentation, the X-Ray instrumentation [12] in
LLVM is noteworthy. The approach inserts nop-slides at the start of functions, which, in
this case, generate multiple potential entry points into the function. Its first entry point
contains instrumentation, whereas the second entry point does not. All calls are then
indirected through look-up tables and can be enabled and disabled at runtime. This allows
to enable the observation of a particular part of the target application on demand and for
a user-chosen amount of time. The insertion of nop-slides is also available in GCC3 and
allows to subsequently insert instrumentation via binary instrumentation tools.

Binary Instrumentation

The last approach for instrumentation presented in this thesis is binary instrumentation,
i.e., injecting machine instructions into an already compiled and linked executable. One
of the advantages is that the compilation is not affected by additional program statements,
hence, the binary-after-compilation is unchanged compared to a production-run binary.

With probe-based binary instrumentation, the target binary is changed at instrumenta-
tion time, as the approach uses so-called trampolines to insert the additional instructions.
Trampolines can be thought of as (sequences of) assembly instructions that replace an
existing instruction and allow branching to the instrumentation inserted. As a result,
probe-based binary instrumentation tools have to address several technical challenges, in
particular, with complex instruction sets and instructions of varying size, as in x64.

Just in Time (JIT)-based approaches perform on-the-fly binary transformation, e.g.,
assembly to assembly, or first into an IR and then to the target assembly. Hence, such
approaches do not modify the existing binary, but duplicate and modify it at runtime.
The modified version is then executed. While this addresses some of the complexities of
trampoline insertion, depending on the process and its IR, the overhead may be significant.

The probe-based DynInst tool [20] provides a class-based API to inject instrumentation
into a target binary. Its API is machine-code independent, meaning that the user does
not need to take care of instruction-set differences. Hence, the translation to the target
binary assembly language is fully transparent and the technical details are handled by the
DynInst tool. This allows to implement portable instrumentation tools. Other tools that
implement this approach are DTrace [24], DynamoRIO [19], or PEBIL [70].
3see compiler flag -fpatchable-function-entry at https://gcc.gnu.org/onlinedocs/gcc/
Instrumentation-Options.html.

17

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

A JIT-based binary instrumentation tool is PIN [85], which allows to insert instrumen-
tation into a running target binary. The user, similar to DynInst, implements a PIN tool,
i.e., high-level C++ code, that is compiled and injected at user-selected points into the
binary. When the target application is started under PIN’s control, each basic block is
JITed and the user-defined functions are invoked or inserted, respectively. The resulting
code is stored in a code cache to improve overall execution performance.

Probably one of the most well-known binary instrumentation tools is Valgrind [102]
with its tools Call-Grind [136] or memcheck [117]. In contrast to PIN, Valgrind translates
a binary into its own machine-independent IR. The IR is manipulated and the user-defined
instrumentation is inserted in a JIT-like fashion. Compared to PIN, Valgrind’s approach
introduces considerably more overhead in many cases.

The COBI [99] tool performs binary instrumentation and relies on the DynInst library.
Hence, it allows inserting instrumentation instructions after the compiler has fully opti-
mized the target application. Moreover, the tool introduced a specification language that
allows to restrict the instrumentation to particular points in the application. This, similar
to TAU or InstRO, introduces a possibility for a high-level description of which parts of an
application to instrument.

The Paradyn [93] tool relies on binary instrumentation using DynInst to insert its instru-
mentation. Most importantly, however, it proposes the W 3 model to analyze the program
and determine which parts of it to instrument, following the three model axes What,
Where, and Why. Paradyn, thus, provides a feedback-driven approach to automatically
identify program parts that limit its performance and change instrumentation towards
such regions. The tool, unfortunately, is no longer available as it is incompatible with
modern DynInst versions. Its automatic adaption of instrumentation is similar to our
approach in PIRA, which we discuss in Chapter 5.

2.2.2. Statistical Sampling

Statistical sampling denotes the interruption of a target application based on specific
events, e.g., a timer or a certain HWPC crossing a threshold, and is commonly used
for application performance profiling. It is mostly used in conjunction with call-stack
unwinding, in which the current calling context is obtained by walking the program stack
“upwards”, i.e., from the current function towards the main function. A popular library to
implement call-stack unwinding is libunwind [96], which is also used in the Clang/LLVM
compiler to print stack traces in case of program assertions failing.

For a runtime profiler, statistical sampling works as follows: When a sample is taken,
it records the current function together with its calling context, e.g., using call-stack
unwinding. Over time, the statistical picture of the target application shows which

18

foo

bar

main

Flat Profile

bar

main

foo

foo

Call-Path Profile

Trace

bar bar
main

foo
foo

main

Sampling-based Profile

time

time consumed

time consumed

time

bar barmain foo foo main

main: 2 bar: 2 foo: 9 total: 13Visit Count

Figure 2.7.: Statistical sampling interrupts the application at a specific frequency (black bars) and
counts how many samples are taken for each function to compute the runtime share
of each function.

functions are hit frequently, hence, where the application spends most of its time. While
call-stack unwinding is employed by the popular tool HPCToolkit [5], [127], other
approaches to maintain the calling context, or aid to reconstruct it, have been proposed.

The tool gprof [39] uses a combination of statistical sampling and instrumentation.
While the call relationships, i.e., the reconstruction of the calling context, is obtained by
a full instrumentation, it captures the runtimes by employing statistical sampling. Its
instrumentation surrounds every function call with a call to the mcount interface. This has
significant runtime overhead for (object-oriented) programs that prefer a programming
style with many small functions.

A combination of both techniques to reduce the overall measurement impact is proposed
by Morris et al. with their system TAUebs [95]. It uses instrumentation to mark not only
functions, but also more abstract regions, e.g., phases of the application. This information
can be used by the sampling-based tool to enrich the profiling information it obtains. In
addition, the call context obtained through the instrumentation is stored and can help to
unwind the call-stack faster by comparing the addresses to the already stored context.

Similarly, Iwainsky et al. [57] use compiler-based CG analysis to place instrumentation
calls in functions such that every path through the CG can be uniquely identified by only
these probes. In addition, they allow a cut-off depth from which no more instrumentation
is added to keep instrumentation overhead small. Hence, an unwinding library only needs
to unwind to the last instrumented node, from which it can fully reconstruct the context.
This can significantly reduce the runtime overhead introduced by the measurement.

2.2.3. Influence of Measurement

In performance analysis for HPC, even low-level behavior of the target machine is assessed
to derive an as-complete-as-possible picture of the target’s performance. These low-level
details are typically obtained by measuring so-called hardware performance counter

19

(HWPC). HWPC are special purpose registers built into the processor and present in every
recent major model. Their purpose was initially to provide feedback to hardware engineers
during the development of a processor architecture [135]. Since then, these counters
emerged and evolved as a useful vehicle for performance analysts to obtain and derive
characteristics of an application’s ability to saturate a particular processor component [51,
Appendix B.7]. However, HWPC are prone to measurement perturbation [135], as they
count any occurrence of a particular event and do not distinguish between the target
application and the measurement system. In addition, small changes to the working
environment can have significant impact on experiment results [100]. Hence, HWPC
require careful experiment setup for valid results [66] that may even go beyond the
generally required rigorous experimental setup for reliable benchmarking results [43].

Specifically for automated instrumentation approaches it is important to note that the
additionally inserted instructions can perturb the target application. Moreover, these
additional instructions may not only perturb the execution, but also influence a compiler’s
decision during the optimization stages. However, the influence of themeasurement system
on the target application’s behavior is not limited to instrumentation-based measurements.

The influence of measuring the performance of a target application has received attention
in the past. Since in most experiments the measurement infrastructure is running on the
same physical device, it naturally competes for resources with the target application [87].
Hence, it influences the behavior of the physical system, which eventually, influences the
execution of the target application. It becomes apparent when analyzing timing data that
also lists how long, e.g., measurement buffer flush operations, take. For example, runtime
overhead can lead to a misleading picture when assessing communication behavior of
parallel applications, i.e., affect the temporal alignment in tracing data [88]. The authors
also propose on-the-fly mitigation algorithms to account for observed time-skew due to
the measurement overhead.

2.3. Kernel and Mini-App Extraction

Once relevant regions in the target application are identified, a developer or analyst
wants to investigate the root cause, improve the code base, or perform performance
exploration. Due to the vastness of many large-scale scientific software projects, this can
be a challenging endeavor. Thus, reducing the amount of code to enable or improve its
analysis is of interest not only in HPC. Slicing [138] has been proposed and introduced
as the fundamental technique to extract a subset of statements. It has been used and
implemented in several research tools, such as change impact analysis [3], software
product-line extraction [67], or elaborate type analysis [4]. Typically, a specific statement

20

in the source code is selected and the slice contains (1) all statements impacting the
selected one (backward slicing), or (2) all statements impacted by the selected one
(forward slicing). For mini-app extraction, however, it is of more interest to extract the
compute-heavy parts, i.e., the kernels of an application, and all code required to execute
them. In addition, although a substantial body of work exists for slicing, working tools for
C and C++ seem to be missing.

The approach presented by Liao et al. [81] aims at whole-program auto-tuning and
consists of a profiling stage, an outlining stage and auto-tuning at runtime. First, the
target application is profiled. Second, the results are used to identify relevant parts of the
code that limit its performance. Third, the ROSE compiler is used to extract such code
parts into their own (parameterized) functions. The parameters are subsequently used by
an auto tuner to generate different kernel versions and select the best performing one.

Isolating and extracting single kernels, i.e., functions or loops that dominate the exe-
cution of a target application w.r.t. a certain metrics, e.g., runtime, has been tackled in
the past. PEMOGEN [14] is an approach for the automatic identification of kernels and a
subsequent construction of empirical performance models. The kernel identification is
performed on a static graph that contains all loops and function calls, hence, it is referred
to as loop call-graph (LCG). Suitable kernels are considered as the call chains within the
LCG, and instrumentation is added for the subsequent performance model creation at
runtime. This approach does not extract identified kernels, but leaves this task to the user.

The CERE tool [25] is an LLVM-based codelet extractor, which performs profiling of
target application, extracts the most significant loops or loop nests, i.e., hot spots, and
enables their replay. Compared to the approach mentioned before, it does not generate
performance models, but uses thresholding on the profile generated to determine which
hot spots to extract. It, subsequently, extracts LLVM IR, hence, it is not primarily suitable for
manual inspection, but allows, e.g., compiler-flag tuning. It performs elaborated memory
capturing to enable the most similar replay of execution across all replays, i.e., it restores
complete memory pages and performs cache warming before taking measurements. Other
slicing tools also operate on LLVM IR, e.g., Slabý et al. [123], and focus on the analysis
and cannot extract C/C++ code.

KGEN [62] is an automatic kernel extraction tool for Fortran programs. Compared to the
CERE tool, it does not operate on LLVM IR, but extracts high-level language source code
for subsequent analysis and processing. It separates the process into the two conceptual
stages of (1) identifying the relevant set of source code, and, (2) capturing and restoring
the required machine and system state for execution. The identification of source code step
requires the user to specify which kernels should be extracted, together with potentially
required paths to Fortran modules and macro definitions. Given this input, the tool
automatically extracts the kernels and its dependencies, together with code to capture the

21

execution state of the original application. As a final step, KGEN performs validation of
the generated kernels through perturbation measurement of captured metrics.

Gong et al. [37] extract single loops and loop nests for subsequent empirical analysis of
compiler stability. In their work, they mutate the extracted loops in a source-to-source
fashion with semantics-preserving transformations and compile these different versions
with the same compiler and flags. Their results show that the compilers are very sensitive
to loop structuring w.r.t. the performance of the resulting code.

All aforementioned approaches for mini-app or kernel extraction use either instrumen-
tation to capture the data, or export the full process memory. Moreover, the extraction
typically is done at such a low-level that a manual correction or enhancement is im-
possible, e.g., at the LLVM IR level. A different method to capture application data is
checkpoint/restart (CPR). For CPR, several well-tested libraries exist that offer additional
benefits, such as fault-tolerant checkpointing schemes [11], or multi-level checkpoint-
ing [103]. However, these libraries rely on low-level interfaces, in which a user needs to
(correctly) specify data type and size of an allocation. This comes with similar challenges
as the Message Passing Interface (MPI) [92] API.

22

3. The Influence of Measurement

The chapter is based on the following publications.

Lehr, Jan-Patrick and Iwainsky, Christian and Bischof, Christian. 2017. The
Influence of HPCToolkit and Score-p on Hardware Performance Counters [77]

Lehr, Jan-Patrick. 2016. Counting Performance: Hardware Performance Counter
and Compiler Instrumentation [71]

For the analysis of a target program, further briefly referred to as target, a performance
analyst runs measurement experiments to observe the target’s behavior. In such measure-
ments, the data is obtained using either statistical sampling or instrumentation. Both
techniques have advantages and disadvantages and both influence the behavior of the
target. To obtain a valid picture of its execution, it is relevant to the analyst to know of
the potential effects of the measurement. The effect most commonly observed is runtime
increase in the target’s execution, i.e., runtime overhead. It is, however, unclear to which
extent low-level events, e.g., hardware performance counters, correlate with such increase.

In this chapter, we investigate the influence of both measurement approaches in more
detail, and, more importantly, perform these measurements with state-of-the-art measure-
ment tools and hardware. Compared to previous work, which investigated the influence
of manual instrumentation, we focus on the effects of automatic compiler instrumentation.
This means that we investigate (1) the static change in the instruction mix of the target
binary generated by the compiler, and, (2) the change in measured hardware perfor-
mance counter events generated at runtime. For the experiments, we use HPCToolkit and
Score-P in recent versions and obtain values for runtime and PAPI events on the hardware
architectures of Intel Sandy-Bridge and Haswell.

23

1 void __cyg_profile_func_enter(void *f_addr, void *ret_ip);
2 void __cyg_profile_func_exit(void *f_addr, void *ret_ip);

Listing 3.1: Interface functions of GCC: f_addr is the address of the target function, and ret_ip
is the calling instruction pointer, i.e., the return address within the target binary.

3.1. Influence of Automatic Compiler Instrumentation

Different tools use automatic compiler instrumentation for various use cases, e.g., GProf
for function visit counts [39], TypeART for memory allocation tracking [48], or Clang’s
thread sanitizer for inspection of synchronization errors in multi-threaded programs [116].
Many Score-P versions use the compiler flag -finstrument-functions, available
with many compilers1, which inserts calls to the API from Listing 3.1 at the beginning and
the end of each function, respectively. This can be problematic in multiple non-obvious
ways, as the command-line flag and the additionally inserted instructions (1) change the
actually activated optimizations the compiler performs, (2) influence the compiler’s code
generation, as well as, (3) change the execution characteristics of the target application.
The influence is particularly articulated in code bases that make use of many small
functions. Hence, applications written in C++ with, e.g., many template functions being
instantiated to only forward arguments, suffer significantly from measurement overhead.

While the subsequent section assesses the influence of these different approaches to
instrumentation w.r.t. instruction selection on the generated binary, we focus on the
change in observed, i.e., measured, values of HWPC throughout the chapter. Consider the
example function to compute the factorial of a number given in Listing 3.1a. Switching on
automatic compiler instrumentation via -finstrument-functions results in the code
presented in Listing 3.1b actually being compiled. Another observation that we can make
from this example is that the instrumentation completely disables the tail-call optimization.
As a consequence of this, the subsequent vectorization cannot be performed, which, finally,
leaves us with a fairly unoptimized version of the recursive C++ implementation. Note
that manually adding such instrumentation statements may not interfere as much with
the compiler’s decisions during optimization.

Influence on Target Binary: Static Instruction Mix

To assess the influence, we developed a tool for static instruction mix comparison between
two different binaries. Binary instruction mix comparison has previously been used to

1As of this writing, the flag is available in Clang, GCC and Intel compilers.

24

1 int factorial (int n) {
2 if (n == 0) {
3 return 1;
4 }
5
6 return n*factorial(n-1);
7 }

(a) Original C++ implementation.

1 int factorial (int n) {
2 __cyg_profile_func_enter(_,_);
3 if (n == 0) {
4 __cyg_profile_func_exit(_,_));
5 return 1;
6 }
7 int _t_val = n*factorial(n-1);
8 __cyg_profile_func_exit(_,_);
9 return _t_val;

10 }

(b) Instrumented C++ implementation.

Listing 3.2: Recursive implementation to compute the factorial of n and its instrumented counter-
part. The arguments to the instruction calls are omitted for brevity.

study the performance differences between different compiler versions and optimization
selections [97]. However, we are not interested in the changes of performance for particular
regions, but want to quantify the overall impact of automatic compiler instrumentation.
Compared to other binary analysis approaches, e.g., for malware identification in driver
code [63], the recovery of program structure [26] or software-clone detection [109], our
approach is fairly straightforward. The tool2 relies on the assembly analyzer framework
MAQAO [30] to read the target binary. It then assigns each instruction read to its respective
instruction category. We introduce the abstract categories Arith, Mem, Calls, Branches,
Unconditional Branches, Stack Ops and Misc. Note that the Mem category only includes
mov operations with at least one operand going to memory, i.e., register-to-register mov
instructions are not counted. The Misc category includes instructions that should be less
frequent in compute-intensive code, such as system calls.

We apply automatic compiler instrumentation to the C/C++ subset of the SPEC CPU
2006 benchmark suite [42]. Thereafter, we apply the MAQAO-based static instruction mix
comparison tool. We restrict the benchmark suite to only the C/C++ benchmarks, since
our toolchain for automatic instrumentation refinement is, due to the compiler employed
currently, limited to those two languages. Also, we exclude the XalancBMK XML parser
benchmark, due to Score-P being unable to perform measurements for it. The problem
is that the benchmark uses C++ exceptions while parsing, which results in inconsistent
region stacks in Score-P and, eventually, Score-P terminates the execution.

In Table 3.1, we can see the change, i.e., increase or decrease, of the different instruc-
tion mix categories for the SPEC CPU benchmarks, when compiled with GCC 9.1 and

2The tool will be released on github in the near future.

25

Benchmark Arith Mem Calls Branches U-Branches Stack Misc
403.gcc — n/a —
429.mcf 15 64 3 2 -5 -3 -4
433.milc 43 269 -23 -50 -27 -19 -53
444.namd -17 195 20 -129 -7 -4 -27
447.dealII — n/a —
450.soplex 36 480 -45 -202 -21 20 -57
453.povray -3191 2620 -538 -4692 -996 -16 -149
456.hmmer -423 33 -106 -499 -26 10 -30
458.sjeng -17 124 25 -34 6 -12 -57
462.libquantum -9 236 21 1 -7 5 -30
464.h264ref -557 61 131 -826 -140 -103 -181
470.lbm 12 22 5 0 -5 7 -8
473.astar -48 286 19 -89 -28 -2 -19
482.sphinx3 54 601 46 -69 -19 52 -34

Table 3.1.: Accumulated changes in statically computed instruction mix after automatic compiler
instrumentation for the C/C++ SPEC CPU 2006 benchmarks when using GCC 9.1. The
MAQAO tool exited with a segmentation fault for 403.gcc and 447.dealII.

Score-P 6. We compute the inclusive instruction mix for the target application based on
the static CG for both versions — the vanilla and the automatically instrumented version.
Subsequently, we compare the instruction mix for the main function. The additional calls
to the instrumentation functions are excluded, to focus on the changes compared to the
original binary. For both 403.gcc and 447.dealII the MAQAO based tool failed to compute
the instruction mix, and exited with a segmentation fault.

We find that for all binaries a statically determinable difference exists. The degree
of influence varies from almost no influence, e.g., 429.mcf, to heavily influenced, e.g.,
453.povray. The Mem category increases for all targets, while the number of conditional
and unconditional branches decreases for almost all targets. Other metrics show a mixed
picture of influence from the automatic compiler instrumentation. Since these different
influences exist across the benchmark suite, it is ill-advised to assume a certain influence
the automatic compiler instrumentation may have on the target binary.

To investigate how large the impact of the instrumentation on the target’s behavior
is, however, the instrumented binary is executed to generate measurement data that is

26

subsequently analyzed. Hence, it is of significant interest to investigate the influence that
the instrumentation inserted has on the measurement. In the next section, we compare
the influence in observed HWPC values for different measurement techniques.

3.2. Influence of Score-P and HPCToolkit on Hardware
Performance Counter

The different measurement approaches, instrumentation and sampling, have different
strengths and weaknesses, and which one to use depends on the task at hand. Thus, it
is of interest to know the degree of perturbation that these techniques introduce while
generating data. We developed a thin library layer3 on top of PAPI [18] that allows to
measure HWPC through a C++ API. Moreover, it implements constructor and destructors
at the library level, meaning that it can be preloaded to measure the PAPI values over the
target’s full execution time.

In our experiments, we focus on the instrumentation-based measurements using Score-P.
Therefore, we consider the target application (1) without any instrumentation, i.e., the
vanilla version, (2) with instrumentation inserted but without actual Score-P measurement
system, called finstr, (3) with filtered instrumentation inserted and Score-P measurement
system attached — referred to as scorep, and, (4) with instrumentation inserted and
Score-P measurement system attached, referred to as scorep-no-filter, as the different
flavors of the target application. However, for the purpose of comparisons, we also capture
the influence of the sampling-based measurement tool HPCToolkit [127]. These sampling-
based measurements are performed with two different sampling frequencies, i.e., the
number of measurement events per second.

Measurement Setup For the measurements, we use Score-P version 3.0 that was origi-
nally used for the experiments, but also the more recent version 6.0. Score-P introduced
the possibility for compile-time filtering of inlined functions using a GCC plugin, and
Clang offers a post-inline function instrumentation. Hence, our measurements for the
newer versions of Score-P include both filtered and non-filtered measurements. Score-P
version 3.0 is used with the older GCC (version 4.9), while the newer Score-P version is
used with GCC in version 9.1 or Clang 10.0. The particular version of Clang is used, since
the automatic instrumentation framework PIRA, explained in detail in Chapter 5, uses
this version as the backend compiler. Finally, due to the evolving hardware platforms,
we obtain the HWPC values on different processor architectures. The measurements are

3Available at https://github.com/jplehr/papi-wrap in version 0.1.0.

27

https://github.com/jplehr/papi-wrap

Name GCC Clang Instrumentation Record
4.9 9.1 10 Full Filtered

<BM>.gcc4_9_4.vanilla ×
<BM>.gcc4_9_4.finstr × ×
<BM>.gcc4_9_4.scorep × × ×
<BM>.gcc9_1_0.vanilla ×
<BM>.gcc9_1_0.finstr × ×
<BM>.gcc9_1_0.scorep × × ×
<BM>.gcc9_1_0.scorep-no-filter × × ×
<BM>.clang10_0_0.vanilla ×
<BM>.clang10_0_0.finstr × ×
<BM>.clang10_0_0.scorep × × ×
<BM>.clang10_0_0.scorep-no-filter × × ×

Table 3.2.: The different configuration names indicate that they represent (1) automatic compiler
instrumentation w/o filtering and without a measurement library attached, (2) auto-
matic compiler instrumentation w/o filtering and with a measurement library attached,
and, (3) automatic compiler instrumentation w/ filtering. Note that GCC 4.9.4 is used
with Score-P 3.0, whereas GCC 9.1.0 and Clang 10.0 are used with Score-P 6.0. Also
note that for measurements on Intel Sandy Bridge processors the scorep flavor is used
without the inline filter.

obtained on Intel Xeon processors with Sandy-Bridge, and Haswell microarchitecture. In
particular, the measurements with GCC 4.9.4 are performed on the older Sandy-Bridge and
the Haswell processors, while the newer compiler versions are used solely on processors
of the Haswell microarchitecture. Nodes are used exclusively with fixed frequencies, and
HyperThreading disabled.

We follow the naming scheme <BM>.<compiler>.<flavor> to distinguish the
benchmark versions and show the differences in Table 3.2.

Given the large number of HWPC available in current processors, we focus on specific
events that are commonly used in performance analysis. The investigation of the memory
subsystem is important, hence, the influence on HWPC that measure the second and
last-level cache is of interest. On Haswell-based machines, PAPI offers the events L3_TCM,
L2_TCA, L3_TCA, L2_TCM, L2_DCM, and L2_DCA to count the level three total cache misses
and accesses, and level two total misses, data cache misses, and data cache accesses. Two
other important metrics are instructions per cycle‘(IPC), as they indicate how well the

28

40
3.
gc

c

0.0

0.5

1.0

1.5

2.0

2.5

1.0

C
h

an
ge

co
m

p
ar

ed
to

G
C

C
4.

9.
4

va
n

il
la 14

.0

42
9.
m

cf

5.
8

43
3.
m

ilc

3.
2

44
4.
na

m
d

3.
4

44
7.
de

al
II

14
.3

36
6.

1

45
0.
so

pl
ex

3.
2

57
.0

45
3.
po

vr
ay

4.
1

50
.8

45
6.
hm

m
er

45
8.
sje

ng

8.
2

46
2.
lib

qu
an

tu
m

46
4.
h2

64
re

f

12
.7

47
0.
lb

m

47
3.
as

ta
r

24
.7

48
2.
sp

hi
nx

3

2.
6

finstr scorep hpct500 hpct1000

Figure 3.2.: The change of runtime for GCC 4.9.4 for automatic compiler instrumentation with
empty hooks (finstr) and with attached measurement system (scorep) for Score-P 3.0.
For Score-P the inline-filter is disabled. The influence of HPCToolkit is shown for two
sampling frequencies 500, and 1000 samples per second, respectively. Experiments
run on Intel Xeon E5-2670 (Sandy Bridge).

code can leverage the concurrent execution in super-scalar processors, and the number
of branch mispredictions. Branch mispredictions may lead to pipeline flushes, which are
expensive and undesirable. A user can measure these events using the PAPI events BR_CN,
BR_MSP, TOT_INS, and TOT_CYC. In many cases, not only the bare numbers are important,
but rather their relationships. Thus, from our benchmarks, we also compute derived
metrics, such as the cache miss rate, which is typically used to determine if the code shows
efficient memory behavior. As other HWPC events are, however, of interest in specific
situations, the full set of measurements can be found in the appendix, see Chapter A.

Raw PAPI Metrics

We present the raw PAPI event counts first, and derive the aforementioned ratios thereafter.
All values shown in these sections and plots are measured on Intel Xeon E5 2680v3
(Haswell microarchitecture) processors, unless stated specifically otherwise. The data
for GCC 4.9.4 and Score-P 3.0 was also obtained on Intel Xeon E5 2670 (Sandy Bridge
microarchitecture) processors, which gives us the opportunity to look at results for different
hardware generations. Please note that different hardware generations offer different
HWPC. Hence, we do only present some raw PAPI counter metrics in this section, as
the events obtainable differ between the machines. The subsequent sections present the
measurement results for the different software versions.

29

40
3.
gc

c

0.0

0.5

1.0

1.5

2.0

2.5

1.0

C
h

an
ge

co
m

p
ar

ed
to

G
C

C
4.

9.
4

va
n

il
la 3.

3
3.

7

42
9.
m

cf

43
3.
m

ilc

5.
1

44
4.
na

m
d

44
7.
de

al
II

44
.3

32
.7

45
0.
so

pl
ex

4.
2

45
3.
po

vr
ay

14
.6

7.
0

45
6.
hm

m
er

45
8.
sje

ng

46
2.
lib

qu
an

tu
m

46
4.
h2

64
re

f

4.
3

2.
6

47
0.
lb

m

47
3.
as

ta
r

48
2.
sp

hi
nx

3

finstr scorep hpct500 hpct1000

Figure 3.3.: The change of mispredicted branches for GCC 4.9.4 for automatic compiler instrumen-
tation with empty hooks (finstr) and with attached measurement system (scorep) for
Score-P 3.0. For Score-P the inline-filter is disabled. The influence of HPCToolkit is
shown for two sampling frequencies 500, and 1000 samples per second, respectively.
Experiments run on Intel Xeon E5-2670 (Sandy Bridge).

GCC 4.9.4, Score-P 3.0 and HPCToolkit In our initial experiments, we measured the
influence of Score-P 3.0 and HPCToolkit across the SPEC CPU 2006 C/C++ benchmarks
for GCC 4.9.4. These experiments were run on Intel E5-2670 processors based on the
Sandy-Bridge microarchitecture. The goals are (1) preparing a study of state-of-the-art
tools for performance measurement and their influence on runtime and HWPC, and,
(2) investigating to what extent dilations in HWPC measurements correlate to runtime
increases. Furthermore, the study of the tools’ influence on the values obtained for HWPC
serves as a point of reference for all subsequent measurements presented in this chapter.

For all our plots, a range of 15% around the vanilla median (blue line) is indicated
by green lines. We found this range mentioned as acceptable runtime overhead for
performance analysis in literature [99], [114]. In general, less perturbation is preferable,
as it means that the measurement much better reflects the application’s original behavior.

In Figure 3.2, we see the heavy impact of the automatic compiler instrumentation on
the target’s runtime. However, the amount of influence varies greatly across the different
benchmarks. Particularly the C++ codes are heavily influenced, due to the instrumentation
added to small accessor functions, such as operator[](const int idx) of the standard
library’s vector class. As the most prominent example, 447.dealII suffers the largest
slowdown with almost a factor of 500×. The 447.dealII benchmark is implemented in
C++ and relies on various template meta-programming techniques [2]. Such techniques
typically lead to many small functions that individually do not contribute much runtime.

30

40
3.
gc

c

0.0

0.5

1.0

1.5

2.0

2.5

1.0

C
h

an
ge

co
m

p
ar

ed
to

G
C

C
4.

9.
4

va
n

il
la 13

.3
10

.9

42
9.
m

cf

4.
9

4.
5

43
3.
m

ilc

3.
0

2.
9

44
4.
na

m
d

3.
3

44
7.
de

al
II

12
.4

39
2.

4
10

.8
45

0.
so

pl
ex

2.
9

54
.6

2.
6

45
3.
po

vr
ay

3.
3

54
.6

0.
0

45
6.
hm

m
er

45
8.
sje

ng

8.
0

7.
5

46
2.
lib

qu
an

tu
m

46
4.
h2

64
re

f

11
.9

10
.8

47
0.
lb

m

47
3.
as

ta
r

22
.1

8.
0

48
2.
sp

hi
nx

3

2.
5

2.
4

finstr scorep-no-filter scorep

Figure 3.4.: The change of runtime for GCC 4.9.4 for automatic compiler instrumentation with
empty hooks (finstr) and with attached measurement system (scorep-no-filter and
scorep) for Score-P 3.0. In scorep-no-filter the inline-filter is disabled. Experiments
run on Intel Xeon E5-2680v3 (Haswell).

Thus, when automatic compiler instrumentation is enabled, each function is instrumented
and significantly contributes to runtime overhead.

On the other hand, 470.lbm suffers only minor runtime penalty. The benchmark is
implemented in C and consists of only a few functions that implement deeply nested and
computationally demanding loops. Hence, the functions exhibit enough work to cover
the overhead introduced by the — comparably — few instrumentation statements for the
timing measurements introduced by Score-P.

Given that developers often use the runtime overhead observed for a performance
measurement as an indicator for the perturbation introduced to the target’s behavior, it is
of interest to compare the influence of the measurement system onto different metrics.
Figure 3.3 shows the changes for the BR_MSP PAPI event, i.e., the number of mispredicted
branches, compared to vanilla. The important observation is that although in a few
cases the BR_MSP PAPI event increases to an extent that would render it useless, in other
occasions, the counts seem still valid. In particular, the cases 429.mcf and 444.namd
are examples in which the runtime overhead is unacceptably large, but the PAPI value is
almost not perturbed.

We continue the experiments with keeping the compiler and Score-P version fixed, but
move to the more modern Intel Xeon E5-2680v3 processor. This allows us to compare
any potential differences that the change of hardware may have introduced into the
experiments. We have, however, omitted the measurements for HPCToolkit, as we focus
on instrumentation and the development and benefits of the Score-P filtering, before we

31

explain how PIRA Chapter 5 improves the filtering for Score-P. Hence, we enable Score-P’s
inline-filter using the GCC plugin for these experiments to evaluate the benefit of the
filtering on the runtime overhead and the other metrics.

Similar to the measurements on the Sandy-Bridge processor, using automatic compiler
instrumentation can have a significant impact on the runtime of the target application,
such as for 447.dealII, see Figure 3.4, flavor finstr. However, we also find small differences
in the degree of perturbation introduced, e.g., the overhead for 429.mcf on Sandy-Bridge
was 5.8× whereas it is 4.9× on Haswell. On the other hand, for 447.dealII, the slowdown
increased to ≈ 392× on Haswell from ≈ 366× on Sandy-Bridge. Since the actual pertur-
bation observed is very similar between the two hardware architectures, we refer the
interested reader to Appendix A that provides the respective data.

GCC 9.1.0 and Score-P 6.0 Similar to the preceding paragraph, we perform measure-
ments with Score-P with and without inline filter. Score-P’s filtering is implemented as a
GCC plugin and uses a different API to eventually perform the measurement. We do not
consider the different API to result in tremendous performance advantages. It addresses
the technical challenge that Score-P has to identify the function names in the binary, which
was previously performed using either the utility tool nm, or the utility library libbfd,
both from the binutils package.4 Both approaches struggle in certain cases to resolve the
target’s symbols reliably, e.g., when a software is built from many shared libraries.

The runtime increase for instrumentation with Score-P 6.0 and GCC 9.1 is similar to
those of Score-P 3.0 and GCC 4.9. When we compare the slowdown introduced, we find
that the newer Score-P version introduces a slightly higher slowdown. This may be due
to a lower base runtime in the vanilla version of the target application when compiled
with GCC 9.1, which we observed for all targets. In particular, the runtime was reduced
by ≈2% when compiling with GCC 9.1, with a maximum decrease of ≈7%. Also, our
measurements suggest that for some of the HWPC, the values obtained for the vanilla
flavor of the benchmarks are considerably different. However, we consider a thorough
investigation on the root cause of these changes to be beyond the scope of this work. Our
measurements are attached in Appendix A for further reference.

Clang 10.0.0 and Score-P 6.0 Finally, we want to establish an understanding of the
influence of measurement for the Clang compiler, as it is (1) a popular compiler, and,
(2) the base compiler for PIRA, see Chapter 5. While the Score-P plugin for Clang [131] is
not yet publicly available, Clang itself offers the option to perform the automatic compiler
instrumentation after its inline optimization. Hence, in this section, we consider this
4https://www.gnu.org/software/binutils/, accessed July 2021.

32

https://www.gnu.org/software/binutils/

40
3.
gc

c

0.0

0.5

1.0

1.5

2.0

2.5

1.0

C
h

an
ge

co
m

p
ar

ed
to

G
C

C
9.

1.
0

va
n

il
la 13

.7
11

.3

42
9.
m

cf

5.
3

4.
8

43
3.
m

ilc

3.
1

3.
0

44
4.
na

m
d

3.
4

44
7.
de

al
II

12
.4

41
6.

8
12

.0
45

0.
so

pl
ex

3.
2

59
.3

2.
9

45
3.
po

vr
ay

3.
5

60
.0

0.
0

45
6.
hm

m
er

45
8.
sje

ng

8.
2

7.
9

46
2.
lib

qu
an

tu
m

46
4.
h2

64
re

f

12
.5

12
.0

47
0.
lb

m

47
3.
as

ta
r

23
.0

8.
3

48
2.
sp

hi
nx

3

2.
7

2.
5

finstr scorep-no-filter scorep

Figure 3.5.: The change of runtime for GCC 9.1.0 for automatic compiler instrumentation with
empty hooks (finstr) and with attached measurement system (scorep-no-filter) for
Score-P 6.0. For Score-P the inline-filter is disabled. Experiments run on Intel Xeon
E5-2680v3 (Haswell).

option equivalent to the Score-P filtering mechanism, although Clang still relies on the
Cyg Instrumentation API.

From Figure 3.6, we see that the impact of the full Score-P instrumentation without
filtering is very similar to the results with GCC. Minor differences are, due to our under-
standing mostly because of different vanilla runtimes. However, from our measurements
we find that 429.mcf significantly benefits from the instrumentation being applied after
the inline pass. With the Score-P GCC plugin, this target still showed considerable runtime
overhead. For 453.povray, the measurement did not succeed due to an internal Score-P
error. To our understanding this was caused, by regions being recorded in an incorrect
order triggering assertions within the Score-P runtime.5

In Table 3.3, we see the considerable reduction that automatic filtering has on the
number of events generated per second. However, considering that HPCToolkit records
500 samples/seconds, it is of little surprise that the runtime overhead introduced by both
the filtered and the unfiltered instrumentation is higher.

Looking at the HWPC values obtained for the BR_MSP, i.e., the number of mispredicted
branches, we find that the values for this counter are not perturbed to the extent the
runtime overhead would suggest. In particular, the code 433.milc, 450.soplex, 473.astar,
and 482.sphinx3 maintain a BR_MSP value within the±15% range of the vanilla’s execution.
For other target applications, the values are much less perturbed than the runtime overhead
suggests. Hence, from our measurements we conclude that for some HWPC no clear
5We plan to investigate this further to submit a proper bug report to the Score-P developers.

33

40
3.
gc

c

0.0

0.5

1.0

1.5

2.0

2.5

1.0

C
h

an
ge

co
m

p
ar

ed
to

C
la

n
g

10
.0

.0
va

n
il

la 13
.7

12
.1

42
9.
m

cf

5.
1

43
3.
m

ilc

3.
1

3.
1

44
4.
na

m
d

3.
6

44
7.
de

al
II

13
.4

41
9.

6
13

.3
45

0.
so

pl
ex

3.
0

59
.1

3.
0

45
3.
po

vr
ay

3.
4

0.
0

0.
0

45
6.
hm

m
er

45
8.
sje

ng

8.
9

7.
2

46
2.
lib

qu
an

tu
m

46
4.
h2

64
re

f

13
.1

13
.0

47
0.
lb

m

47
3.
as

ta
r

24
.1

5.
1

48
2.
sp

hi
nx

3

2.
9

2.
4

finstr scorep-no-filter scorep

Figure 3.6.: The change of runtime for Clang 10.0.0 for automatic compiler instrumentation without
and with inline filtering, respectively. Experiments run on Intel Xeon E5-2680v3
(Haswell).

correlation between the runtime overhead and the counter value perturbation exists. This
means that a performance analyst needs to perform baseline measurements for each
metric they want to inspect for performance analysis.

Derived PAPI Metrics

While the previous section showed the influence of automatic compiler instrumentation
for single events, commonly, derived ratios are of interest to an analyst. For example, the
total number of cache misses may not be particularly telling, but the ratio between cache
accesses and cache misses is. If only one of the events is perturbed heavily, the ratio is,
however, no longer usable for analysis purposes. Hence, this section considers the derived
metrics instructions per cycle, cache miss rate for the second level data (L2D) cache, and
the branch misprediction rate. We limit the figures shown in this section to the values
obtained for the Clang compiler, and refer the interested reader to Appendix A for the
data obtained for the other compilers.

Instructions per Cycle The metric Instructions per Cycle (IPC) is commonly used to
quantify how well the target application can utilize and saturate the available functional
units in super-scalar processors, which can perform more than one instruction per cycle.
As an example, consider that an Intel Xeon 2670v3 based on the Haswell microarchitecture
can issue up to four instructions per cycle. One important factor that limits the number of
instructions to dispatch are (data) dependencies between different instructions. However,

34

Benchmark Normalized to Profile Normalized to Vanilla
w/ filter w/o filter w/ filter w/o filter

403.gcc 7,986,609 8,266,616 80,294,531 112,479,600
429.mcf 760,770 5,495,703 832,905 34,183,211
433.milc 5,922,057 5,930,878 15,821,067 15,847,823
444.namd 7,363 8,222,170 7,354 32,335,363
447.dealII 8,862,098 7,761,603 127,653,218 3,363,968,006
450.soplex 7,072,296 11,156,501 20,575,488 638,534,291
453.povray – – – –
456.hmmer 2,558,326 3,396,061 3,338,407 4,994,915
458.sjeng 7,910,639 8,222,733 59,058,689 76,793,948
462.libquantum 3,112,402 4,093,760 3,929,778 6,348,063
464.h264ref 10,364,745 10,392,210 140,063,680 145,097,818
470.lbm 29 29 29 29
473.astar 8,750,442 10,452,247 48,218,560 276,855,838
482.sphinx3 6,078,200 6,881,301 14,377,437 19,434,047

Table 3.3.: Number of function visits recorded per second via a Score-P instrumentation for Clang
10 and Score-P 6. The table lists the number of events per second w.r.t. the profiling
runtime (Normalized to Profile) and to a vanilla execution of the target (Normalized to
Vanilla). In the case of 447.dealII, the runtime overhead is large enough to reduce the
number of events recorded per second. Measurements are obtained on Intel Cascade
Lake processors.

due to the architecture – different functional units are accessed via so-called dispatch
ports — the instruction mix also influences whether a target application can saturate
the processor. Hence, a low IPC is an indicator that many dependencies exist, or the
instruction mix is suboptimal for the target processor.

Looking at the data in Figure 3.8, we find that the IPC increased to a value outside the
acceptable range in five out of 14 cases when filtering is applied and in six out of 14 cases
when no filtering is applied, respectively. In many cases, the IPC, however, stayed within
the acceptable limits and none of the measurements resulted in smaller values for the IPC.
Given that the instrumentation adds significantly many function calls this was surprising.
For each function call function arguments are moved into respective registers for function
argument passing, which may even require saving live registers for later restore. Even
with the runtime increase we awaited more perturbed data for the IPC of the application.

35

40
3.
gc

c

0.0

0.5

1.0

1.5

2.0

2.5

1.0

C
h

an
ge

co
m

p
ar

ed
to

C
la

n
g

10
.0

.0
va

n
il

la 4.
3

3.
8

42
9.
m

cf

43
3.
m

ilc

44
4.
na

m
d

44
7.
de

al
II

6.
4

41
.1

2.
4

45
0.
so

pl
ex

45
3.
po

vr
ay

3.
5

0.
0

0.
0

45
6.
hm

m
er

45
8.
sje

ng

46
2.
lib

qu
an

tu
m

46
4.
h2

64
re

f

2.
7

2.
6

47
0.
lb

m

47
3.
as

ta
r

48
2.
sp

hi
nx

3

finstr scorep-no-filter scorep

Figure 3.7.: The change of conditional branches for Clang 10.0.0 for automatic compiler instrumen-
tation with empty hooks (finstr) and with attached measurement system (scorep-no-
filter) for Score-P 6.0. For Score-P the inline-filter is disabled. Experiments run on
Intel Xeon E5-2680v3 (Haswell).

Cache Miss Rate The cache miss rate is used to quantify the target application’s ability
to use the fast on-chip memory instead of requiring to go out to main memory. It is the
ratio between the respective cache accesses compared to the cache misses at the particular
hierarchy level. Given the cache hierarchy of modern processors, analysis typically starts
with the second-level or the last-level cache. Usually a miss in a lower hierarchy level
results in access to the higher level.

Figure 3.9 shows the results for the L2D miss rate for the different target applications.
We see that for most benchmarks the miss rate is perturbed when calculated on the
HWPC values obtain for the instrumented binaries. For some benchmark applications this
perturbation is within the acceptable limits, e.g., 433.milc and 462.libquantum. However,
for other benchmark applications, the value of the derived metric is much lower than the
vanilla measurement, e.g., 403.gcc and 458.sjeng. In the case of 456.hmmer, the compiler
instrumentation resulted in a lower L2D miss rate. We assume that the additional accesses
to record and store the profiling data interact with the memory subsystem and lead to
this situation. Depending on the cache efficiency of the target application, the resulting
artifact is more or less pronounced. For 453.povray, the Score-P runs did not succeed, i.e.,
the data obtained was invalid.

Branch Misprediction Rate Modern x86 processors rely on out-of-order execution and
deep execution pipelines to achieve high performance. A pipeline stall, i.e., the processor
has no instruction to feed into the pipelines, reduces the efficiency, and is a reason for

36

40
3.
gc

c

0.0

0.5

1.0

1.5

2.0

2.5

1.0

C
h

an
ge

co
m

p
ar

ed
to

C
la

n
g

10
.0

.0
va

n
il

la

42
9.
m

cf

3.
7

43
3.
m

ilc

44
4.
na

m
d

44
7.
de

al
II

45
0.
so

pl
ex

45
3.
po

vr
ay

45
6.
hm

m
er

45
8.
sje

ng

46
2.
lib

qu
an

tu
m

46
4.
h2

64
re

f

47
0.
lb

m

47
3.
as

ta
r

2.
4

2.
8

48
2.
sp

hi
nx

3

finstr scorep scorep-no-filter

Figure 3.8.: The change of instructions per cycle for Clang 10.0.0 for automatic compiler instru-
mentation with empty hooks (finstr) and with attached measurement system (scorep-
no-filter) for Score-P 6.0. For Score-P the inline-filter is disabled. Experiments run
on Intel Xeon E5-2680v3 (Haswell).

so-called branch prediction. In branch prediction, the processor makes educated guesses
which path of a branch instruction to take, and speculatively executes the respective
instructions. Should the processor speculate incorrectly, it needs to reverse already per-
formed operations, which is called a rollback and is very expensive. Hence, in performance
analysis, the branch misprediction rate is used to investigate a target execution’s ability to
maintain a working pipeline.

The branch misprediction rate for our measurements is shown in Figure 3.10. We see
that in many cases of the instrumented application with measurement system attached,
the misprediction rate is much lower than in the vanilla execution. In 10 out of 14 cases
(scorep) the metric is significantly lower than in the original execution, and stays within
the accepted ±15% for the remaining four target applications. For many cases there is
little difference between the filtered and the unfiltered Score-P measurement. However,
in the case of 429.mcf and 444.namd the difference is significant. Score-P internally
performs a check whether the region identifier — in the case of Clang the function’s
address — is a valid region identifier, i.e., whether Score-P detected a function at that
address using nm. Given the many measurement events recorded, our assumption is that
this check skews the branch predictor significantly.

37

40
3.
gc

c

0.0

0.5

1.0

1.5

2.0

2.5

1.0

C
h

an
ge

co
m

p
ar

ed
to

C
la

n
g

10
.0

.0
va

n
il

la

42
9.
m

cf

43
3.
m

ilc

44
4.
na

m
d

44
7.
de

al
II

0.
1

45
0.
so

pl
ex

45
3.
po

vr
ay

26
.1

22
.8

45
6.
hm

m
er

45
8.
sje

ng

46
2.
lib

qu
an

tu
m

46
4.
h2

64
re

f

47
0.
lb

m

47
3.
as

ta
r

48
2.
sp

hi
nx

3

finstr scorep scorep-no-filter

Figure 3.9.: The change of level 2 data-cache miss-rate for Clang 10.0.0 for automatic compiler
instrumentation with empty hooks (finstr) and with attached measurement system
(scorep-no-filter) for Score-P 6.0. For Score-P the inline-filter is disabled. Experi-
ments run on Intel Xeon E5-2680v3 (Haswell).

3.3. Summary

We find that current automatic compiler instrumentation via Score-P introduces significant
slowdown in 10 out of 14 applications without filtering and in 8 out of 14 cases with filtering.
This is particularly prominent in C++ applications that use many small functions, e.g., to
access data. These small functions generate the largest share of runtime slowdown, and,
in addition, lead to a profile that is considerably hard to navigate for an analyst.

We also found that some HWPC event counts obtained were almost not perturbed.
As a result, the derived metrics that involved such events were also close to the vanilla
measurements. This means that despite the large application runtime slowdown, insight
obtained from the particular experiments could be used for performance analysis.

Our data shows that the filtering available in Score-P reduced the runtime overhead
significantly in 5 out of 14 cases within the SPEC CPU benchmark suite. As a result, two
additional measurements can be considered valid. In addition to the runtime overhead
reduction, the resulting profile typically contains fewer regions. However, the filtering
impact is not as beneficial as desired w.r.t. the measurement runtime overhead reduction.

In summary, our experiments show that (1) analysts should perform baseline measure-
ments for every metric obtained, (2) runtime slowdown of current automatic compiler-
instrumentation can render experiments impractical due to long runtimes, and, (3) the
profiling data generated may be hard to navigate given the large number of regions
contained in the profile.

38

40
3.
gc

c

0.0

0.5

1.0

1.5

2.0

2.5

1.0

C
h

an
ge

co
m

p
ar

ed
to

C
la

n
g

10
.0

.0
va

n
il

la

42
9.
m

cf

0.
1

43
3.
m

ilc

0.
0

0.
0

44
4.
na

m
d

0.
1

44
7.
de

al
II

4.
5

0.
1

0.
1

45
0.
so

pl
ex

0.
0

45
3.
po

vr
ay

3.
3

45
6.
hm

m
er

45
8.
sje

ng

46
2.
lib

qu
an

tu
m

46
4.
h2

64
re

f

0.
1

0.
1

47
0.
lb

m

47
3.
as

ta
r

0.
1

0.
0

48
2.
sp

hi
nx

3

finstr scorep scorep-no-filter

Figure 3.10.: The change of branch-misprediction rate for Clang 10.0.0 for automatic compiler
instrumentation with empty hooks (finstr) and with attached measurement system
(scorep-no-filter) for Score-P 6.0. For Score-P the inline-filter is disabled. Experi-
ments run on Intel Xeon E5-2680v3 (Haswell).

39

4. MetaCG – Annotated Whole-Program
Call-Graphs

The chapter is based on the following publication and contains verbatim excerpts of parts
which were contributed by the thesis author. It uses MetaCG 0.2.11 for experiments unless
stated explicitly otherwise.

Lehr, Jan-Patrick and Hück, Alexander and Fischler, Yannic and Bischof, Christian.
2020. MetaCG: Annotated Call-Graphs to Facilitate Whole-Program Analysis [76]

Whole-program analysis is important in many aspects. While we created PIRA, we realized
that we need a lightweight program representation that allows to implement analyses at the
whole-program level, independent of a specific compiler distribution or version. Moreover,
we wanted the representation to be freely annotatable with user-defined information we
obtain from analyzing the program’s AST. To serve this purpose, we created MetaCG — a
lightweight and annotatable CG library, see Figure 4.1.

It consists of the graph library as its main component, together with the tools to construct
the CG and to validate a constructed CG w.r.t. its edges. A MetaCG graph can be serialized
into a JSON file, and, hence, is accessible even for tools that do not explicitly rely on the
MetaCG software. As part of MetaCG, the tool CGCollector is used to construct CGs using
a Clang-tooling approach, i.e., processing Clang’s AST. The construction is performed in a
two-step process. In a first step, translation-unit local CGs are constructed. The second
step links all partial CGs together to arrive at the final whole-program CG. To validate the
constructed CGs we created the tool CGValidate that takes as its inputs a MetaCG file and
a Cubex profile of the target application. It then checks if it can find all edges from the
profile in the MetaCG graph.

1Available at https://github.com/tudasc/metacg.

40

https://github.com/tudasc/metacg

MetaCG Call-Graph Library Common serializable graph representation.

CGCollector

CGBuilder MetaCollector

Construct call graph for one translation unit.
Attach desired meta information per node.

CGMerge

Merge translation unit
call-graphs to whole-
program call-graph.

CGValidate

Validate whole-program
call-graph with
runtime call-graph.

Figure 4.1.: Overview of the MetaCG software components. The Call-Graph library is the common
graph implementation used for data exchange. CGCollector is used to construct the
MetaCG for a single translation unit, CGMerge merges the partial CGs to a whole-
program CG, and CGValidate is used to test for missing edges given particular executions
of the target program recorded in Cubex files.

4.1. Call-Graph Library

The graph library of MetaCG provides a common interface to parse, annotate, and serialize
MetaCG files. This helps tool developers as they do not need to take care of the burden
of writing custom parsers and similar boilerplate. In addition, it allows for, generally
speaking, more robust testing and facilitates the adoption of such technologies.

In Listing 4.2 we show an example of a simple input program in C++ and its corre-
sponding MetaCG serialization. Each node is represented as an entry in the file, with the
mangled function name as its key. The mangled name is required for C++ and uniquely
identifies a function in the program. In the mangled name both the function name and
the type signature of the function is encoded, which generally allows overloading based
on the type signature of a function’s parameter list. Each node has entries for various
information that are relevant for the CG construction. The examples show MetaCG version
1.0 file format. MetaCG’s version 2.0 file format adds information about the tool that
constructed the MetaCG file and which file version it is. The representation of the CG is,
however, unchanged and contains the following fields.

Callees: A list of keys, i.e., mangled function names, that are potentially called from this
function. This constitutes the list of child nodes in the actual CG.

Callers: A list of keys, i.e., mangled function names, that potentially call this function.
This constitutes the list of parent nodes in the actual CG.

41

1 struct Base {
2
3 virtual int bar() {
4 return 1;
5 } // some value
6
7 };
8
9

10 struct Derive : public Base {
11
12 virtual int bar() {
13 return 2;
14 } // some value
15
16 };
17
18
19 int add(Base *obj, int v) {
20
21 auto value = obj->bar() + v;
22
23 return value;
24 }

Code C++ example input code with an inheritance hier-
archy and virtual method calls.

"Base::bar": {
"callees": [],
"parents": ["add"],
"overrides": [],
"overriddenBy": ["Derive::bar"],
"meta": {
"pira": {"numStatements": 1}

}},
"Derive::bar": {
"callees": [],
"parents": [],
"overrides": ["Base::bar"],
"overriddenBy": [],
"meta": {
"pira": {"numStatements": 1}

}},
"add": {
"callees": ["Base::bar"],
"parents": [],
"overrides": [],
"overriddenBy": [],
"meta": {
"pira": {"numStatements": 2}

}}

MetaCG Example using demangled names instead of
mangled names.

Figure 4.2.: MetaCG has one entry per function: (1) calling functions (parents), (2) called
functions (callees), (3) meta information (meta), (4) overriding func-
tions (overriddenBy), and, (5) overridden functions (overrides).

OverriddenBy: List of functions that override this function, i.e., functions further down
the inheritance hierarchy reimplementing this one.

Overrides: Similar, this is the list of functions that this particular function itself overrides,
i.e., reimplements.

Meta: The meta field allows for annotation with user-defined information. It holds a
key-value map that allows to attach meta information for a particular tool, e.g.,
PIRA. Hence, multiple tools can export required information into a common file
format that can be passed between tools and infrastructures.

In its current version, MetaCG does not model edges explicitly. This results in two sim-

42

CGMergeInput Source

.c

.cpp

.cc

.cxx

CGCollector

.mcg

.mcg

.mcg

.mcg

MetaCG
Whole-Program

Call-Graph

CGValidate

Score-P Profile

?

Figure 4.3.: MetaCG: Individual source files are compiled to their respective partial MetaCG file.
Subsequently, CGMerge combines the partial CGs and constructs the final MetaCG.
Optionally, CGValidate is used to check for, and add missing nodes and edges.

plifications that, however, result in less precision. In particular, the CG cannot distinguish
different potential call-sites, and it can not differentiate between types of calls, e.g., direct
calls and virtual calls. In C, this does not impact the precision to a large extent. In C++,
however, calls can be direct or virtual. This means that the compiler can bind the target
address already to the call instruction (direct call), or it needs to emit instructions to
perform an indirect call through the virtual function table of the respective object (virtual
call). This distinction can, obviously, reduce the set of potential call targets for a given
call-site, should the call-site be direct. However, in our current use case, this distinction
is less relevant, as we mainly use the general program structure and which components
are glued together. As a result of the current lack of edges, tools that use MetaCG, at the
moment, cannot determine whether a specific call is a virtual call or a direct call.

4.2. Call-Graph Construction

The CG construction is performed by the tool CGCollector and a subsequent CGMerge.
Thereafter, the use may choose to perform a validation step, in which an application’s
profile can be used to validate that each recorded call edge is present in the statically
constructed MetaCG. In the subsequent sections, we present the CGCollector/CGMerge
approach in more detail. An overview of the MetaCG workflow is shown in Figure 4.3.

4.2.1. CGCollector

The construction of a translation-unit-local CG is performed by CGCollector. It uses the
Clang-tooling API to process individual ASTs and write partial MetaCG files to be subse-
quently merged by CGMerge. The processing at the AST level presents some interesting

43

1 typedef int (*Func)(int) ;
2
3 /* Defined in a separate translation unit */
4 Func func_one(int x);
5 Func func_two(int x);
6
7 /* Return value determined in separate translation unit */
8 Func get_func(int a) {
9 if (a == 1) return func_one(a);

10 if (a == 2) return func_two(a);
11 }
12
13 int main() {
14 /* Opaque which value returned here */
15 auto f = get_func(1);
16 f(42);
17 return 0;
18 }

Listing 4.1: An example usage of function pointers across TUs. The call to get_func returns a
value that depends on two functions defined outside the current TU. Hence, their
return values cannot be determined.

challenges w.r.t. the multitude of syntax constructs that programmers can use – particularly
in C++. In addition to these syntactic challenges, consider the example in Listing 4.1.
In main, a function pointer is obtained via a call to get_func, and subsequently invoked.
However, the result of get_func depends on functions for which the definition is not
present in the current translation unit (TU), and, hence, cannot be analyzed.

In C/C++, a CG construction tool needs to handle (1) direct calls to a function, (2) calls
via function pointers, and, (3) virtual function calls (C++ only). The different cases can
occur between functions defined within the same TU or across the boundaries of a TU.
While some of these cases present no particular challenge, e.g., handling of direct calls to
functions within the same TU, others, such as calls through function pointers across TUs,
are particularly challenging. Consider a call to a function foo that receives a pointer to a
function pointer as argument, writes through this pointer and passes the modified value to
another function bar that calls the function pointer. CGCollector addresses the respective
challenges to varying extent by applying different resolution strategies for direct calls,
virtual calls and function pointers.

44

Direct Calls CGCollector considers calls as direct whenever the function symbol can
directly be resolved to a declaration. This includes virtual calls of the form obj.method(
parameters), as method can be resolved to the method declaration present in the type of
obj or one of its superclasses. Since the target symbol can be resolved, CGCollector adds
the corresponding edge to the graph.

Consider a function f that invokes method m on an object obj. CGCollector adds
respective nodes for f and m to the graph, and attaches the corresponding data, e.g.,
whether it is defined in the current TU, or if it is declared virtual. Thereafter, CGCollector
adds the edge f -> obj::m to the graph independent of m being virtual.

Virtual Calls In addition to the steps mentioned in the preceding paragraph, CGCollector
adds inheritance information for virtual methods. For all functions marked virtual
in a target program, CGCollector performs class hierarchy analysis (CHA). Therefore,
it computes the inheritance hierarchy for the particular class and whether the current
function overrides any methods within the hierarchy. Any overwritten methods are
added to the function’s overrides set. It also stores if the method currently processed is
overwritten by any other function, and adds it to the respective set.

Function Pointers For function pointers, CGCollector resolves the function symbol to
the function’s definition. Moreover, it inspects symbols passed as arguments and builds
alias sets [125] to resolve calls via function pointers across function boundaries. While
this allows to track function pointers in certain circumstances, it is not as capable as a
data-flow analysis and leads to over approximation w.r.t. the different call sites in the
program. In the case of CGCollector, this is reasonable as the resulting graph is inherently
context independent and does not allow distinguishing different call sites.

4.2.2. Meta Collectors

MetaCG allows to add meta information per function node into the CG. The informa-
tion is captured at the AST level by so-called MetaCollectors, i.e., implementations of
Clang analyses that compute certain information and store it for the target function as
MetaInformation. This MetaInformation object itself knows how to unparse its data into
the respective JSON file, and how to read the unparsed data again into the MetaCG graph
library. Consequently, the addition of new information into an existing tool requires the
implementation of two classes. This enables tool-specific information to be added to the
MetaCG in a convenient and lightweight way.

45

1 struct A { // not a statement
2 /* Sum of number of statements in body is count for foo: 3 */
3 void foo(int *b) {
4 int a = 5; // one statement
5 for (int i = 0; i < a; ++i) { // one statement
6 *b += a; // one statement
7 }
8 }
9 };

Listing 4.2: Example for the number of statements within a function body as captured by the
Number of Statements meta collector and used in PIRA.

The different MetaCollectors are registered in the CGCollector and are invoked indi-
vidually on each function in the Clang AST. The order of the functions follows the order
in which they are defined in the TU. Subsequently, we present simple MetaCollectors
that we use in the subsequent chapters of this thesis.

Number of Statements This MetaInformation computes the number of statements
within a function definition. The information builds the basis for the static heuristics in
PIRA to estimate the amount of work within a function, cf. Chapter 5, and which have
previously been explored in [56]. Its notion of a statement resembles a C++ statement
that results in observable behavior, see Listing 4.2 for an example.

Unique Types This MetaInformation counts the number of unique types used within
each function. In addition, it captures the total number of unique types within the program.
When counting, the MetaCollector does not consider pointer-to or reference types as
different types. Instead, it strips pointers and references until a type is found. Note that
typedefs are considered types, as they add to the complexity that a programmer has to
handle by memorizing.

Unique Variables This MetaInformation captures the number of unique variables de-
clared within a function. We use the metric, alongside others, in Chapter 6 to evaluate
the complexity of a target application and the complexity reduction achieved with the
mini-app extraction proposed.

File Properties Being able to determine if a function stems from a system include or user
code can be important. Thus, we implemented the FilePropertyMetaInformation. While

46

Translation Unit A Translation Unit B

AB

A

B

Merged MetaCG

AABB

Figure 4.4.: In the example, function A is only declared in TU A and function B is only declared in
TU B, indicated by the light gray circles. CGMerge uses the key to fuse the respective
function nodes and to combine the available information. In the merged MetaCG, the
connectivity information for both function A and B are available.

the information is accessible from within the compiler, a tool that is implemented as a
stand-alone solution may not have access to the information. Currently, the file properties
include whether the function comes from a system directory, together with the full path
of the file. This allows to implement, e.g., directory-specific filters.

4.2.3. Merging of Translation Units

Once the TU-local CGs are built, they need to be merged to form the final whole-program
CG. This is implemented in the tool CGMerge. The merging is performed in a straightfor-
ward way, in which the different node identifiers, i.e., mangled names, are matched and
edges are inserted. During the merge, the tool also constructs the inheritance hierarchy
specific calls. This means that it, based on the overrides and overriddenBy fields stored
for each method, constructs the virtual hierarchy. The hierarchy is then used to insert all
potentially called methods for a given call site. An example thereof is given in Figure 4.4.

In addition to the merging of the structural CG data, the tool also needs to merge the
metadata. The current implementation requires a user to provide a merge strategy, i.e.,
how potentially different information for the same function, should be treated during the
merge. As an example, consider the case of the Number of Statements MetaInformation.
If a function has only been declared in a TU A, the Number of Statement count will be
zero as there is no function definition to analyze. For TU B, which defines the function,
the Number of Statement count will (most likely) be greater than zero. Hence, the merge
strategy needs to decide and implement that the Number of Statement count for the
function’s definition is used and not the one determined for the declaration.

47

4.2.4. Validation

To rate the quality of the CG construction, the MetaCG package supplies the CGValidate
tool. It uses a runtime profile of the target application in Cubex2 format and checks
whether the edges present in the profile are also contained in the MetaCG. If it cannot find
an edge, it emits a warning, and allows to patch both missing nodes and missing edges into
the CG. The mechanism is sensitive to the input data provided to the target-application’s
execution, and a more complete picture can only be obtained when using multiple, distinct
input data sets for different runs of the target application. Hence, depending on the
number of data sets used, it prevents a statement about the general quality of the CG, but
allows inspecting whether the CG contains all required edges for a particular execution.

CGValidate uses a call-path profile to validate the CG. This means that it may identify
the same missing edge multiple times, e.g., the missing call edge foo -> bar can be found
within the calling context of functions A and B, and CGValidate will report both misses. In
addition, it will report both directions of the missed edges. This means that it checks for
the parent and the child relation in the CG. This is a deliberate choice, and, while we did
not encounter a case in which only one of the relations was present in the MetaCG, we
believe that distinguishing both is valuable.

4.3. Evaluation

MetaCG is used across our projects PIRA (see Chapter 5), Mini-AppEx (see Chapter 6),
and TypeART [48]. While we leave the tool-specific evaluation for PIRA and Mini-AppEx
to their chapters, we present the results for our extension to TypeART in this section.

We pay special attention to CGCollector’s ability to construct the CG, i.e., the number
of missing edges, as well as quantify the impact of these missing edges. The number
of missing edges is determined using CGValidate for particular executions of the target
application. To quantify the impact of missed edges, we, first, insert missing functions
and edges using CGValidate, and, second, execute PIRA’s analyzer, called Profile Guided
Instrumentation Selection (PGIS), that we present in more detail in Chapter 5.3. PGIS
computes and outputs different metrics about the CG, such as the number of reachable
functions. Hence, we can estimate the impact of missing edges.

We apply MetaCG to construct the CG for the applications eos-mbpt [31], the Ice-sheet
and Sea-level Model (ISSM) [68], and two versions of the LULESH [60] mini-app. For
the applications we evaluate the aforementioned completeness and impact of missed
edges. In addition, we apply TypeART to the LULESH mini-app, and AD LULESH a version

2The profile file format for the Score-P[64] profiler.

48

of the mini-app that was enhanced with algorithmic differentiation (AD, Griewank and
Walter [40]). For a thorough discussion of the particular use-case on AD LULESH see
Hück et al. [49] and for a broader discussion on tool-support for AD see Hück [46].

Furthermore, we present a brief evaluation of the benefits that whole-program reacha-
bility analysis can provide to the allocation and type tracking and sanitizer tool TypeART.
A brief description of TypeART is provided in the next paragraph. TypeART implements
a TU-local allocation filtering as its default filter. This limits the analysis capabilities,
potentially leading to many more allocations being tracked unnecessarily. Hence, we
extend the filtering capabilities with a whole-program reachability analysis using MetaCG,
and evaluate the filter’s ability to reduce the number of tracked allocations.

We briefly introduce the TypeART framework and how the CG-based filter connects
with the other components. Thereafter, we outline the target applications.

TypeART:TypeAllocation and RuntimeTracking TypeART implements runtime tracking
of type information for relevant memory regions using instrumentation. A high-level
overview of the approach is shown in Figure 4.5. It is implemented as an LLVM compiler
analysis which identifies relevantmemory allocations, their types, and inserts the respective
instrumentation. Moreover, it implements allocation filtering, i.e., it filters irrelevant
memory allocations from tracking to reduce the overall runtime overhead introduced. It
considers allocations as irrelevant if they do not reach an API function of interest, e.g.,
if they are not used as buffer in an MPI call. At runtime, an analysis tool can query the
TypeART runtime library for type information of arbitrary pointer addresses. Hence, type
mismatches or unallocated memory can be detected.

Allocation Filtering TypeART implements a forward data-flow analysis that determines
if an allocation reaches a relevant API function. Therefore, the filter follows the
definition-use chain within the current TU. Whenever it can prove that the allocation
never reaches a relevant API function, it is filtered from measurement. If it cannot
prove that an allocation never reaches a relevant API function, meaning that it
reaches an API function or that the analysis is unable to find all uses, TypeART must
emit instrumentation. Since large software is typically implemented modularly, it
would be beneficial to extend the filtering capability to a whole-program approach.

Call-Graph Filter MetaCG is used to enhance the allocation filtering in TypeART. The
whole-program CG information allows TypeART’s allocation filter to perform reach-
ability analysis across TU boundaries. To that end, the filter performs the normal
forward data-flow analysis of the allocation filter. Should the analysis encounter a
call to a function that is defined in a different translation unit, it queries MetaCG

49

TypeART Framework

Type
Info

LLVM Plugin

Allocation Finder
Allocation Filter
Instrumentation Inserter

Runtime Library

Allocation Tracker
Query Interface

Clang/LLVM Compiler

Clang LLVM
Input

Source
BinaryLinker

Analysis
Client

Figure 4.5.: The TypeART workflow: A target application is compiled to LLVM IR, adapted from
the original paper [48]. TypeART analyzes the IR for relevant memory allocations,
exports type information to a serialized type database, and inserts the required tracking
instrumentation. At runtime, the analysis tool queries the TypeART runtime library
for the desired type information.

to identify whether a path exists from the called function to any relevant function,
e.g., MPI functions. If no such path exists, TypeART can filter the allocation from
tracking, as it never reaches any MPI call. Should a path exist, TypeART treats this
conservatively and does not filter the allocation.

eos-mbpt eos-mbpt computes the equation of state for nuclear matter by calculating
energy diagrams in a perturbative expansion. A large portion of the computation is the
calculation of high-order integrals. The software uses a Monte-Carlo scheme for the
integration that is implemented in libcuba [41]. For additional spline interpolation it
relies on the GNU scientific library [38], which internally uses BLAS routines for which
we provide OpenBLAS [133]. The simulation is implemented mostly in C and consists of
≈ 8.5 million lines of code. However, as it uses C++ for allocating memory and some of its
console output, it needs to be compiled as C++ program.

Ice-sheet and Sea-level System Model The Ice-sheet and Sea-level System Model
(ISSM) simulates the evolution of ice shields considering the relevant physical phenom-
ena, such as changes of temperature or falling snow. It computes each phenomenon in
a dedicated kernel, and predefines sequences of such kernels for specific simulations,

50

Benchmark LoC F FR Em Ec

LULESH 5,432 3,596 343 36 593

AD LULESH 36,109 12,073 4,202 460 4,641

eos-mbpt 8,571,813 31,162 470 38 241

ISSM 145,667 11,908 4,469 238 3,705

Table 4.1.: Lines of code (LoC), total number of functions (F), number of functions reachable
from main (FR), number of missing edges as detected by CGValidate (Em), number of
unique edges checked by CGValidate (Ec)

e.g., computing the transient solution. Since ISSM supports different mesh shapes and,
therefore, different solvers, these solvers are selected for the particular use case and the
flexibility is implemented via function pointers.

LULESH / AD LULESH The Livermore Unstructured Lagrangian Explicit Shock Hydro-
dynamics (LULESH) is a proxy application that “is representative for a simplified 3D
Lagrangian hydrodynamics on an unstructured mesh” [60]. In our experiments, we use
version 2.0 of the mini-app, which is implemented in C++ and uses MPI for parallelization.
One of the interesting changes in this version is the possibility to introduce artificial load
imbalance that would occur if multiple materials are being simulated. In AD LULESH, the
built-in type double is replaced with the data type provided by the AD tool CoDiPack [110],
and the MPI communication is implemented using the adjoint MPI library Medipack [111].
These changes enable the computation of derivatives using operator overloading.

Missing Edges

We use PIRA’s analyzer PGIS to output statistics about the targets’ call graphs to show the
impact of missing edges. In particular, we present as key indicators (1) the total number
of functions reachable from main, (2) the total number of edges, and, (3) the number of
edges missed according to CGValidate. Additionally, we present the median of the number
of statements per function. This value is used in PIRA, cf. Chapter 5, as the selection
threshold for static instrumentation selection. Hence, large changes to this metric after
patching the MetaCG may significantly affect PIRA’s static selection heuristics.

Table 4.1 lists the project’s complexity by the lines of code, as obtained with cloc [28],
together with the number of functions and reachable functions found in the MetaCG. It
also shows the number of edges identified as missing for a particular execution of the
target application, and how many individual edges are checked. Note that the number

51

Benchmark F F̂ Change FR F̂R Change
LULESH 3,596 3,628 32 343 353 10

AD LULESH 12,073 12,082 9 4,202 4,395 193

eos-mbpt 31,162 31,163 1 470 501 31

ISSM 11,908 12,105 197 4,469 4,920 551

Table 4.2.: The number of functions (F) and functions reachable (FR) when the previously detected
missing edges are inserted into the MetaCG, denoted as F̂ and FR̂, respectively.

we present as the number of edges checked denotes the number of unique checks.3 For
LULESH, CGCollector misses 36 of 593 edges, and for AD LULESH, it misses 460 of 4,641
edges, respectively. In case of eos-mbpt, it misses 38 of 241 edges and for ISSM it misses
238 of 3,705 edges, for the respective target applications’ executions.

Impact of Missing Edges

From Table 4.2 we see that CGValidate adds both functions and edges to the MetaCG. For
the particular execution of LULESH it adds 32 functions and the 36 edges inserted lead to
additional 10 functions being reachable. For AD LULESH another 9 functions are added
and the additional 460 edges increase the number of reachable functions by 193. In the
case of eos-mbt only a single additional function is added, and additional 31 functions
are reachable. For ISSM we find that additional 197 functions are added to the MetaCG
which leads to 551 more functions being reachable.

Similarly, Table 4.3 shows the total number of statements reachable, i.e., accumulated
number of statements for all reachable functions, before and after the missing edges are
patched into the MetaCG. We see that for LULESH both the number of statements and
the median number of statements is unaffected by the additional edges. For AD LULESH,
the number of statements increases by 300 additional statements, while the median of the
number of statements does not change. In the case of eos-mbpt we find that, while the
number of statements is increased only slightly (48), the median is affected and decreases
from 19 to 17. The largest impact is observed for ISSM in which an additional 28,885
statements are accumulated across the reachable functions in the MetaCG. However, the
median of the statement distribution is affected only slightly and decreases from 171 to
169. As a result, we would not expect PIRA’s selection heuristics to be affected significantly
by this change in the median number of statements.

3We use the built-in Linux tools sort, uniq, and wc to arrive at the number of unique missing edges.

52

Benchmark St Ŝt Change Sm Ŝm Change
LULESH 3,267 3,267 0 27 27 0

AD LULESH 9,959 10,259 300 28 28 0

eos-mbpt 29,904 29,952 48 19 17 −2

ISSM 2,661,552 2,690,438 28,886 171 169 −2

Table 4.3.: The number of statements reachable from main (St) and the median number of state-
ments (Sm) across all reachable functions in the MetaCG before and after missing edges
are inserted.

Benchmark Filter Stack Global Runtime Stack TR

LULESH
cg 19 [64.8] 0 [100] 1,816 1.01

std 32 [40.7] 0 [100] 2,624 1.01

AD LULESH
cg 72 [96.4] 2 [99.8] 13,816 1.01

std 615 [68.9] 5 [99.0] 32,429,228 1.07

Table 4.4.: TypeART filter and instrumentation statistics. Note: Stack and Global are the filtered
count. Filter percentage (of the total) in brackets [%]. Runtime Stack are the total
stack variables tracked at runtime (globals are tracked once per instrumentation). TR

is the relative runtime impact w.r.t. vanilla (no instrumentation) — less is better.

Call-Graph Filter

Table 4.4 shows the impact of the CG-based filter (cg) compared to the original filter
(std) for the LULESH and the AD LULESH target. Note that in our evaluation, we also
marked functions coming from system includes as non-MPI reaching functions, which
allowed for additional filtering.

Modern AD tools extensively facilitate template metaprogramming and inlining for
efficiency. However, this causes TypeART to instrument significantly more allocations
needed to compute the derivatives. In total, for the std filter, we track 32 million stack
variables at runtime, compared to the non-AD version with about 3,000 for the same
benchmark configuration. With the new cg filter, we reduce the number of tracked
variables by a factor of about 1.45× and 2,350× for the original and AD version, respectively.

53

1 /* Translation Unit A */
2 int foo() {
3 double (*f)(Args); // Declare function pointer
4 getSolver(&f, config); // Obtain function pointer
5 f(); // Use function pointer
6 }
7
8 /* Translation Unit B */
9 int getSolver(double (**f)(Args), Cfg c) {

10 if (c) { getSolverWCfg(f, c); } // Forward pointer
11 }
12
13 /* Translation Unit C */
14 int getSolverWCfg(double (**f)(Args), Cfg c) {
15 if (c.ONE) { *f = solverOne; } // Set function pointer
16 if (c.TWO) { *f = solverTwo; } // Set function pointer
17 }

Listing 4.3: Missed function pointer in ISSM, see line 5.

4.4. Discussion

In our experiments, we found that CGCollector can handle many parts of the C/C++
applications tested. The three most challenging constructs for CGCollector are construc-
tors/destructors, heavily templated libraries and function pointers, which account for
approximately 57%, 26%, and 7% of the missed edges, respectively. Most of the challeng-
ing constructors and destructors in our experiments originate from standard library data
structures, i.e., heavily templated code. Moreover, according to the Itanium application
binary interface4, constructors and destructors can have multiple different mangled names,
e.g., depending on whether they construct the full object or only a base class. Interestingly,
processing the Clang AST, some constructors and destructors in question do not appear
explicitly in the tree. This is particularly true for specific instances of templated classes.

In eos-mbpt, the large number of total functions and the relatively small number of
reachable functions are due to large arrays of function pointers in the code base. While
these arrays are included in the main file, they are not used in our configuration and no
paths exist due to various preprocessor macros.

In AD LULESH some missed function pointers are due to the nature of AD reverse-mode
computations. For these computations, the AD-library stores function pointers to a so-

4available at https://itanium-cxx-abi.github.io/cxx-abi/abi.html, accessed July 2021

54

https://itanium-cxx-abi.github.io/cxx-abi/abi.html

ISSM::funcA
|--PetSc::funcP
| |--MPI_Send
|--ISSM::funcB

ISSM::funcA
|--MPI_Send
|--ISSM::funcB

Figure 4.6.: Left: actual call hierarchy present in the code. Right: call hierarchy recorded by
Score-P.

called tape during the regular — or primal — execution of the target program. During
the reverse computation, the function pointers are then used to execute the respective
calculations at the correct, reversed, point in time. The other major contributor in the AD
LULESH case are, again, constructors and destructors.

The most significant missed edge in ISSM comes from a missed function pointer that is
used to select the specific solver. The problematic code construct is given in Listing 4.3,
i.e., a function pointer is passed as OUT parameter through multiple calls in different TUs.
Currently, CGCollector does not consider function OUT parameters. However, it will be
addressed in future releases by computing the respective OUT parameters’ target sets and
using the metadata facility to annotate this information accordingly. The information will
be subsequently used in CGMerge to add the corresponding edges to the graph.

The others are standard template library constructors/destructors and the library
PETSc [10] functions calling into MPI. In our scenario, PETSc is neither analyzed at
compile time by CGCollector, nor is it instrumented by Score-P. Since it is not instrumented,
its internals are also not recorded at runtime by Score-P, hence, CGValidate reports a few
false positives. In these cases, it seems as if an edge from an ISSM function to an MPI
function is missing albeit actually the call is from PETSc to MPI, cf. Figure 4.6.

55

5. PIRA: Performance Instrumentation
Refinement Automation

The chapter is based on the following publications and contains verbatim excerpts of parts
which were contributed by the thesis author. It uses PIRA 0.3.41 for all experiments, unless
stated explicitly otherwise.

Arzt, Peter and Fischler, Yannic and Lehr, Jan-Patrick and Bischof, Christian. 2021.
Automatic low-overhead load-imbalance detection in MPI applications [9]

Lehr, Jan-Patrick and Calotoiu, Alexandru and Bischof, Christian and Wolf, Felix.
2019. Automatic Instrumentation Refinement for Empirical Performance Model-
ing [73]

Lehr, Jan-Patrick and Hück, Alexander and Bischof, Christian. 2018. PIRA: Perfor-
mance Instrumentation Refinement Automation [74]

An important part of the performance engineering workflow is the iterative process of
measuring a target application’s performance, the analysis of the data and the subsequent
refinement of the measurement [55]. Depending on the analysis question at hand, the
metrics used to identify relevant regions differ. For an initial hot-spot analysis, the general
runtime distribution is valuable. For a scaling analysis, it is of more importance how
the different functions in the target program behave with increasing input data. When
investigating the load balancing behavior, it is of interest to identify the functions that
require considerably different amounts of time to execute across the MPI ranks. To that
end, most performance measurement and performance analysis tools, however, take care
of only a single measurement within this process. Hence, the user is left with manual

1Available at https://github.com/tudasc/pira.

56

https://github.com/tudasc/pira

work in between to interpret the data and adjust the measurement. This is particularly
undesirable for repetitive tasks that are mechanical in nature, such as the creation of
instrumentation filter lists for Score-P.

In this chapter, we present PIRA — the Performance Instrumentation Refinement
Automation — to address this impediment. PIRA performs whole-program analysis
using MetaCG to construct a low-overhead instrumentation and refines this starting-point
instrumentation iteratively using profile information obtained from the previous run. First,
we give an overview of its conceptual and software components in Section 5.2, before
we present its workflow and the components in more detail. We specifically explain the
different heuristics used by PIRA to construct low-overhead instrumentation in Section 5.3.
The description is followed by an evaluation of the different heuristics on both sequential
and MPI-parallel applications in Section 5.4. Thereafter, we discuss the results obtained.

5.1. Approach

As introduced in Section 2.2, an analyst commonly starts with an overview measurement,
and subsequently refines the measurements. For many instrumentation tools, e.g., Score-
P, these refinements are performed by creating filter lists, a so-called instrumentation
configuration (IC). The filter is either applied at runtime (dynamic filtering) or at compile
time (static filtering), with the latter typically resulting in less overhead, but the need to
recompile after every change to the IC. Currently, this step is (mostly) performed manually.
For example, the analyst performs an initial measurement and, based on a function’s
call-count, adds the function to the IC, reruns the measurement and inspects both the
runtime overhead introduced and whether the picture obtained from the target application
is sufficiently accurate. This is time-consuming and tedious given the complexity and
diversity of state-of-the-art solver packages.

To advance the current state and assist the analyst in finding a suitable instrumentation,
PIRA automates initial refinement of the IC by performing the steps

1. Build a vanilla, i.e., an uninstrumented, version of the target application.

2. Perform baseline measurements to subsequently compute runtime overhead.

3. Create an initial IC using static, i.e., source-code, selection heuristics.

4. Perform a performance measurement to generate profile information.

5. Create a subsequent IC by analyzing the dynamic, i.e., profiling data to filter-out
irrelevant functions, and the static source-code heuristics to expand the IC towards
interesting regions.

57

PI
R
A

MetaCG
Target

Application PIRA Configuration

Build AnalyzeRun

Instrumentation Configuration

In
pu

t
PI
R
A

MetaCG
Target

Application PIRA Configuration

Build AnalyzeRun

Instrumentation Configuration

In
pu

t

Instrumented
Binary

Score-P
Profile(s)

Figure 5.1.: PIRA constructs and analyzes a whole-program call-graph (CG) to create instrumen-
tation filters. Its approach follows a build–run–analyze cycle: The initial analysis
uses source-code features only, whereas subsequent analyses use dynamic, i.e., profile
information, in addition.

The last two steps are iterated for a user-defined number of iterations. PIRA implements
this iterative refinement of the IC in its Build–Run–Analyze cycle, cf. Figure 5.1.

Build — Run — Analyze Cycle The Build–Run–Analyze cycle is the iterative process to
determine a suitable instrumentation for a specific performance analysis question. The
process starts with an initial IC to instrument the target for an overview measurement.
Thereafter, the instrumented target is executed to generate the runtime profile. This profile
is subsequently analyzed and relevant functions are maintained in the IC, while irrelevant
functions are removed from the IC. The profile analysis applies different heuristics which
inspect the runtime information gathered for metrics relevant to them.

The initial IC is constructed statically, and referred to as 0-th PIRA iteration. Its subse-
quent iterations use both static and dynamic information to construct the next IC. Within
each iteration multiple repetitions may be performed, i.e., multiple executions of the same
target binary, to increase the profile information fidelity. This is increasingly important
for the Performance Model Heuristics explained in greater detail in Section 5.3.3.

58

PIRA

Builder AnalyzerRunner

Functor

Functor

Functor

Functor Functor

Cube LibraryScore-P Measurement System

M
ea

su
re

m
en

t
La

ye
r

Extra-P

PIRA: Profile Guided
Instrumentation Selection

A
nalysis

C
om

ponent

In
st

ru
m

en
ta

tio
n

C
om

po
en

t PIRA LLVM Plugin
Inserts function
instrumentation before
optimization stage.

O
rc

he
st

ra
tio

n
La

ye
r PIRA

Builder Runner Analyzer

Controls invocation of and data movement between components

Figure 5.2.: PIRA is split into the components for orchestration, instrumentation, analysis, and
measurement. The measurement layer relies on the Score-P libraries with the Cube
backend to capture and record the application’s profile. The instrumentation layer
provides an LLVM plugin that inserts a function instrumentation before the optimization
stage. In the analysis component, PIRA provides the PGIS tool. PGIS uses Extra-P for
its performance-model heuristics. At the high level, PIRA orchestrates the different
components and ensures that the relevant data is moved between components.

5.2. Software Architecture

PIRA’s high-level software architecture closely resembles the Build–Run–Analyze cycle and
encompasses the most important parts in the respective abstractions Builder, Runner, and
Analyzer. The components encapsulate functionality needed within the respective step of
the Build–Run–Analyze cycle. Since different target applications can demand very different
handling, e.g., how it is built, the different components invoke user-provided functions
that implement the specific details. These functions are referred to as functors. The main
PIRA component orchestrates the previously mentioned components. An overview of the
architecture is shown in Figure 5.2.

59

Analyzer The orchestration-layer Analyzer component provides the interface that PIRA
invokes to construct the next IC. However, this layer does not include any particular analysis,
but generates the required invocations to the Analysis Engine. As part of PIRA, we develop
the Profile Guided Instrumentation Selection (PGIS) tool and include it as the default
analysis engine. PGIS and its different heuristics are explained in more detail in Section 5.3.
The separation between orchestration code and actual analysis implementation enables a
subsequent exchange of the engine, for example, should we (or someone else) want to
implement and use an analysis engine based on Hatchet [13]. This loose coupling was
deliberately chosen to construct PIRA around a “has a” component-based architecture, as
compared to a strongly-connected and integrated software system.

Runner The target application gets executed by the orchestration-layer Runner compo-
nent. It processes the argument configuration to create the respective invocation of the
target application and manages that the resulting profiles are moved to the specified loca-
tions. These steps are particularly relevant when using the Performance Model Heuristic
that is explained in Section 5.3.3. The Runner also performs time measurements of the
target’s execution, which are used to compute runtime overheads and allow the analyst
an initial assessment of the measurement impact.

Builder The orchestration-layer Builder distinguishes between instrumented builds and
uninstrumented builds to invoke the corresponding user-provided build functor. Moreover,
for instrumented builds, it uses the IC generated and automatically creates the MPI filter.
Therefore, it relies on the wrap tool [34] that automatically generates C code for the
underlying MPI library. This means that, the Builder uses the IC to generate wrappers
for all MPI functions that should not be measured. These wrappers intercept the MPI
call and, instead of going through the Score-P measurement system, immediately call
into the MPI implementation. This is particularly relevant for target codes that use
asynchronous communication and many calls to, e.g., MPI_Iprobe, as this would result
in large runtime overheads. Moreover, these overheads can prohibitively influence the
recorded characteristics of the target application, i.e., obscuring existing load imbalances.
Certain functions, however, are never filtered, e.g., MPI_Init or MPI_Finalize, as otherwise
the Score-P measurement fails.

To finally build the target application, the Builder uses the generated IC and passes it
to the build-functor. The user-provided functor can then use the arguments to incorporate
them into the required build commands. PIRA leaves the final invocation to the user as
build systems and their configuration can significantly differ between projects.

60

5.3. Profile-Guided Instrumentation Selection

PGIS is the default Analysis Engine for PIRA and implements the function selection to
construct ICs. Therefore, it implements strategies for initial, i.e., statically determined,
ICs and strategies to refine existing ICs using both static and dynamic information. The
different selection heuristics are implemented as so-called EstimatorPhases. These phases
are processing the target application’s MetaCG (see Chapter 4), and, potentially, profile
information already generated. For most heuristics, taking into account whole-program
information via MetaCG is essential. Moreover, the MetaCG’s annotation capability allows
passing information between different phases, across PIRA iterations, or persisting the
information. An IC is output in the Score-P filter format and allows an analyst familiar
with Score-P to use it as a starting point for further manual changes and filtering. This
enables a more seamless transition from initial assessment to focus measurement.

The initial selection strategy starts from an empty selection and evaluates the heuristic’s
criterion for every function node in the MetaCG. When performing the refinement, PGIS
follows a filter-and-expand strategy. This means that it, first, checks and evaluates profile
data for a node to determine if the node should be kept with the IC or if it is deemed
irrelevant and should be filtered. In a second step, previously uninstrumented child nodes
are evaluated whether they should be included in the IC. To decide if nodes should be
filtered or included different selection heuristics exist. The subsequent sections present
the different selection heuristics in detail, before we evaluate PIRA using the different
heuristics in Section 5.4.

5.3.1. Statistical Statement Aggregation Heuristic

The Statistical Statement Aggregation is the initial heuristic applied in most PIRA configu-
rations. It is used to determine the initial IC, when profile information is not yet available
and is based on the statement aggregation scheme proposed by Iwainsky and Bischof
in [56]. The scheme uses the whole-program CG and computes an aggregated number
of statements per function. It is implemented as a depth-first traversal that maintains a
visited set to detect cycles. When it detects a cycle, it considers this path as complete and
commits the inclusive number of statements to the MetaCG node as meta information.

In addition to the originally proposed technique that used a fixed threshold for fil-
tering, PGIS computes statistical measures of the statement aggregation scheme on the
MetaCG. More specifically, it computes the maximum, minimum, and median value of the
aggregated number of statements. Table 5.1 shows the different values for the number of
statements that PIRA determined from the SPEC CPU codes. The varying complexity of
the target codes clearly shows that a single threshold value, as used in the original work,

61

Benchmark #Functions #Reachable Aggregated Statements
Max Median Min

403.gcc — n/a —
429.mcf 87 37 760 38 0

433.milc 301 219 7,246 86 0

444.namd 1,046 269 6,968 43 0

447.dealII 36,412 11,322 553,919 656 −19

450.soplex 3,265 1,415 38,131 231 −1

453.povray — n/a —
456.hmmer 649 291 9,703 104 −1

458.sjeng 208 161 13,188 127 −1

462.libquantum 173 99 4,843 161 −3

464.h264ref 732 612 94,452 993 −2

470.lbm 74 35 350 27 0

473.astar 532 202 2,351 57 0

482.sphinx3 517 351 8,746 96 −3

Table 5.1.: The number of functions and the number of reachable functions together with statistical
measures for the aggregated statements for the C/C++ subset of SPEC CPU 2006. For
403.gcc and 453.povray the CGCollector did not terminate within reasonable time, due
to its limitation in resolving function pointers.

is insufficient to perform well across a large set of applications. Note that the negative
number of aggregated statements is a result of an implementation detail within PGIS.

For the static instrumentation selection, PGIS, by default, uses the median value as
the instrumentation threshold, i.e., functions that exceed this value are added to the
IC. Figure 5.3 shows an example for the Statistical Statement Aggregation Heuristic on
a simple graph. The original CG in (a) is used to compute the aggregated number of
statements per function, shown in (b). Thereafter, the threshold value is computed using
the median across all aggregated number of statements (47), and functions exceeding
the threshold are added to the IC, while the remaining functions are pruned, as shown in
(c). Using the aggregated number of statements is to some extent similar to a compiler’s
heuristics which functions to inline. An important difference is that PGIS computes the
metric across the whole-program CG instead of the TU-local functions.

62

Individual
Statement Count

3 4

12

16

274

99 22

143

22

2274

Aggregated
Statement Count

99 22

143

22

2274

Statistical
Statement Aggregation

Median: 47

Pruned

(a) (b) (c)

Figure 5.3.: The example shows a CG with circles denoting functions and arrows edges. The node
labels in (a) are the exclusive number of statements for the respective function. In (b)
the labels show the aggregated number of statements for the respective function node.
Finally, (c) shows the median value for the example and the nodes not included in the
IC as Pruned nodes.

5.3.2. Runtime Heuristic

The Runtime Heuristics, or hot-spot heuristics, is the approach that allows PIRA to au-
tomatically refine the instrumentation towards functions in the target application that
require the largest share of runtime. It follows the filter-and-expand strategy and can be
applied as soon as profile information, such as runtime, is available, i.e., starting from
iteration one. The runtime considered in the heuristic is the inclusive runtime, which
means that it considers the sum of a function and its children.

When evaluating the heuristic, PGIS, first, computes a runtime threshold based on
the total runtime of the target application. This threshold is used to filter short-running
functions that do not contribute significantly to the overall runtime. Figure 5.4 shows an
example application of the approach. Hence, for each node in the MetaCG that has profile
information attached, PGIS evaluates whether the node crosses the runtime threshold.
Should the node not exceed the runtime threshold, it is considered insignificant and not
added to the IC. Second, for each node that crosses the threshold, PGIS evaluates whether
is has descendant nodes that have already been profiled. Should profile information be
available for one or more nodes, PGIS determines the node with the largest runtime
and continues its evaluation. Third, arriving at a node that does not have descendants
with profile information attached, it applies the Statistical Statement Aggregation with a
locally-determined threshold to expand the instrumentation.

63

Decorated MetaCG

A B

tA tB

A

tA tB>

(a) (b) Runtime-based
Selection

A

97 22 1

Tn = 3

(c)
Static Instrumentation

Expansion

A

97 22 1

(d)
Final Instrumentation

Configuration

Figure 5.4.: The MetaCG nodes decorated with a white inner circle in (a) have runtime information
tA and tB attached. PIRA determines the principal node A based on the largest
runtime, cf. (b). Thereafter, in (c), PIRA applies static instrumentation expansion
using a locally determined threshold Tn for the number of aggregated statements. The
final IC contains all nodes marked with an additional black circle and shown in (d).

64

5.3.3. Performance Model Heuristic

While the Runtime Heuristic is useful when analyzing a target software for its current
hot-spots, evaluating a software w.r.t. its scaling behavior requires a different approach.
To that end, we integrate the possibility to use Extra-P [23] to automatically construct
empirical performance models for the functions profiled. These performance models are
mathematical functions describing the behavior of a target program’s implementation
in user-given parameters, e.g., number of MPI processes. This allows PIRA to evaluate
the performance model at extrapolated points to compute presumable runtimes of the
implementation for these points. Subsequently, PIRA uses this presumable runtime to
perform threshold filtering and refine the instrumentation towards significant functions.
For a better understanding, we first, briefly, introduce Extra-P and its performance models,
before explaining the Performance Model Heuristics in detail.

Extra-P

Extra-P [23] is a state-of-the-art tool that can leverage fine-grained measurements, e.g.,
provided by Score-P, to generate performance models for multiple parameters [22]. It has
been successfully used to detect scalability bottlenecks and evaluate the performance of
many libraries and scientific applications [23], [58], [121].

The core concept relies on the fact that the complexity of algorithms implemented
in both sequential and parallel applications with respect to most relevant configuration
parameters is most commonly polynomial, logarithmic, or some combination thereof.
This has led to the introduction of the performance model normal form (PMNF), which
expresses the effect of a number of parameters xi on a metric as a sum of terms consisting of
products of polynomial and logarithmic expressions in the parameters xi. The expression
is formalized in Equation 5.1.

f(x1, . . . ,xm) =

n∑︂
k=1

ck ·
m∏︂
l=1

x
ikl
l · logjkl

2 (xl) (5.1)

Given a set of measurements, the performance models are identified in an iterative
process. Extra-P first models the effects of each parameter separately, and then tests all
possible combinations of the selected single-parameter models to determine the multi-
parameter model that fits the measurements best.

An important assumption of the modeling approach is that there is one behavior to
the modeled application across the entire parameter range. Should this not be true, for
example due to the MPI collective communication algorithm changing with increasing
number of processes, then the resulting model may be misleading. A method has been

65

developed that can automatically detect such an occurrence and if necessary suggest
additional measurements [50].

Heuristic Implementation

The general approach of the Performance Model Heuristic is similar to the Runtime
Heuristic. First, it filters the current set of functions profiled based on the performance
models using their extrapolated values and a comparison against a certain threshold,
the filter step. Second, it evaluates child nodes of the functions kept for measurements
whether they exceed the Statement Aggregation threshold to expand the instrumentation,
the expand step. Lastly, it optionally traverses the graph from each selected node upwards
until it reaches main. While the latter step is optional it can be relevant for an analyst to
know the context of individual functions and their behavior within different contexts. It
may, however, introduce additional runtime overhead. An example of the Performance
Model Heuristic is given in Figure 5.5.

To apply empirical performance modeling, the user needs to provide multiple input data
sets that vary the values for the input parameter(s) that should be modeled. Currently,
PIRA’s implementation supports up to three modeling parameters. It generates the target
invocations with the different input parameters, executes the target application, and,
stores the generated profiles following the particular Extra-P naming scheme. Since the
currently employed Extra-P modeling technique requires all combinations of parameters,
together with at least five repetitions, modeling a three parameter model requires at least
125 executions of the target application.

For PIRA’s filtering, PGIS computes an extrapolated value for the different model param-
eters based on the user-provided input values. Therefore, it computes the extrapolated
values by (1) averaging the distance between the user-provided input values for the
modeling, and, (2) adding this distance to the largest user-provided value. This means
that PGIS does not perform extreme extrapolation, for which the error may be significant.
However, it also means that it may not identify functions that could become problematic
when using much larger data sets then provided to PIRA.

5.3.4. Load Imbalance Heuristic

Load imbalance, i.e., the uneven distribution of work across compute units, is a widespread
source for inefficiencies in parallel applications and different approaches have been pro-
posed to identify such regions [17], [29], [126]. In particular, the work in the Scalasca
framework [17] is based on replaying the target program’s execution traces. This facilitates
a detailed analysis of its communication patterns and allows for precise classification of

66

Figure 5.5.: Filter and expand: First, the filter step is applied, marking nodes A, B, and F. Thereafter,
starting from those nodes, a static source-code criterion is evaluated on all its child
nodes. For node D, the number of statements contained in the function satisfies the
selection criterion, hence, D is added to the instrumentation. Node C is added to the
instrumentation as it is on a call path from F to the root node.

67

(a) Example call graph. The main function
calls a function fa which invokes an imbal-
anced function f∼ and a synchronization rou-
tine fSync, e.g., MPI_Barrier.

(b) Example trace of fa and its children. p1
reaches fSync (gray area) first and is forced
to wait for p2. The induced idle time is rep-
resented by the hatched area. After fSync the
execution continues in a balanced fashion.

Figure 5.6.: Minimal example for load imbalance with two parallel MPI-processes p1, p2. Note that,
due to the synchronization in fSync, fa is itself balanced although a load imbalance is
present in f∼.

wait states or the exact quantification of negative effects. Since Scalasca relies on Score-P
traces, which can be costly to generate, it is of interest to obtain Score-P measurements
that already contain relevant candidate regions.

PIRA implements a filter-and-expand strategy to automatically detect such inefficiencies
in MPI-parallel applications, called PIRA-LIDe. Therefore, the MetaCG profile information
is extended to include the notion of a location, e.g., an MPI rank. This information can be
conveniently read from the Score-P profiles generated.

Typically, load imbalances are investigated using trace data, due to the precise timing
information available. Our approach is different in the way that it relies on an application’s
profile and considers differences in execution times per function across all locations, e.g.,
MPI processes. An example for a load imbalance — and the different execution times
across functions and MPI locations — is given in Figure 5.6. In the heuristic PGIS uses both
types of runtime of a function, i.e., inclusive and exclusive runtime. Inclusive runtime is
the runtime of a function including all its callees, while exclusive runtime is the runtime of
only the particular function excluding all its callees. The heuristic uses different thresholds
and parameters to determine heuristic cut-offs during the refinement. It uses a runtime
relevance threshold to decide which functions to keep, and an imbalance threshold to
evaluate if a function is imbalanced. For the latter, we use the Imbalance Percentage (I),
cf. [29] and defined in Equation 5.2, as the default.

I =
Tmax − Tavg

Tmax
× n

n− 1
(5.2)

In addition, the static selection is determined by the two parameters child constant
threshold and child fraction. These parameters determine lower bounds on the size of a

68

function either statically, or relative to the actual application size. In our evaluation, we
list the particular values that PIRA uses as the default setting. However, these parameters
can be adjusted by the user externally.

The load imbalance detection works as follows, and an example application is presented
in Figure 5.7. Initially, only the main function is instrumented to have a reproducible
starting point. The next steps are then iterated for a user-provided number of iterations.
The generated IC is applied, and the resulting target is executed to generate the profile
information. The profile information is attached to the MetaCG nodes, and the heuristic
is evaluated. For every node with attached profiling information, PGIS, first, applies
an inclusive-runtime threshold filtering that removes short running functions from the
IC. If this threshold is not exceeded, the function is marked as irrelevant and excluded
from measurement in all subsequent iterations. Since the inclusive runtime includes the
runtime of all callees, no important regions are missed as a result of this filtering. Second,
it evaluates the imbalance metric, e.g., the Imbalance Percentage, for nodes that have
not been filtered in the previous step. The imbalance metric quantifies the degree of
imbalance that occurred within the specific subtree rooted at node. Should the node not
show a sufficient degree of imbalance the node itself is removed from the IC. To expand
the instrumentation, all children of node are then assessed for the Statement Aggregation
heuristic, to descend deeper into the CG. As soon as a node shows a sufficiently large
value for the imbalance metric, it is reported as imbalanced.

Once an imbalanced region is identified, a differentiation along different calling contexts
is of interest to an analyst. Hence, PGIS automatically determines all paths from main to
the identified load imbalance and adds the functions to the IC. This allows a subsequent
application of tools, such as Scalasca [36], for an automated analysis of wait states and
similar potential root-causes.

5.4. Evaluation

In this section, we evaluate the different heuristics w.r.t. their capability in the respective
use case (hot-spot detection, scalability-behavior determination, and load-imbalance
detection) and the respective runtime overhead. We run the experiments on exclusively-
used compute nodes of the Lichtenberg II HPC system at TU Darmstadt. Each node is
equipped with two Intel Xeon Cascade Lake Platinum 9242 Processor with 48 cores and
96 threads each, and 384GB of main memory. The exact number of experiment repetitions
is left to the specific subsequent sections, as between experiments the setup is slightly
different. Also, the different heuristics are evaluated on different benchmarks due to the
availability of input data sets for the various applications.

69

MetaCG /w Aggregated
Statement Count

Initial Selection
of only main

1

27 19

63

104

17

Initial Instrumentation
From Root Node

27 19

63

104 1

17

Runtime Threshold
Filtering

27 19

63

104 1

17

Iterative Descend
Refinement

27 19

63

104 1

17

Context Handling
Paths To Main

27 19

63

104 1

17

Imbalance Percentage
Evaluation

27 19

63

104 1

17

(a) (b) (c)

(d) (e) (f)

A

B C D

E F G

Figure 5.7.: Example application of PIRA’s Load Imbalance Detection Heuristics. Instrumented
nodes are marked with an extra circle, and nodes filtered from instrumentation are
shown discolored. The initial MetaCG is shown in (a). First, A (typically main) and
its children that exceed the static statement threshold are instrumented as shown in
(b). In (c), the node D is filtered due to not reaching the runtime threshold. The CG
node B in (d) is balanced, thus filtered, and its child node does not reach the static
statement threshold, excluding it from measurement. In (e), node C is itself balanced,
but the tree rooted at this node is imbalanced and the instrumentation is refined to
its children. Finally, in (f), the imbalanced node F (indicated by the dotted circle) is
identified and reported. Optionally, its context is instrumented for subsequent manual
inspection of the profile.

70

In general, we are interested in the runtime overhead imposed by PIRA per iteration,
as well as the total runtime. The latter is the time PIRA requires for all its iterations and
potentially repetitions, hence, it is the time an analyst would need to wait to obtain a
result. PIRA reports the wall-clock runtime of its vanilla baseline measurements as well as
each measurement run to the user, and we compute the runtime overhead as tvanilla

tmeasurement
.

Additionally, it is of interest whether PIRA can identify the application’s functions relevant
for the specific metric, i.e., hot spots, scalability, and load imbalance. Finally, we investigate
the number of functions selected compared to the number of functions actually measured
at runtime, and, how many regions are contained in the resulting Score-P profiles. A
region in Score-P is a function within its calling context, i.e., foo called within bar is a
different region as foo called within main.

We manually validate PIRA’s results w.r.t. the identified regions. Therefore, we compare
the results to those identified with other profilers, e.g., Intel vtune, or manually perform
an initial performance analysis steps. When not mentioned otherwise, PIRA was able to
determine the relevant functions.

Runtime Heuristic

For the Runtime Heuristic, we apply PIRA to the computational fluid dynamics solver
SU2 [32] and the SPEC CPU C/C++ subset that we used before. To reduce the scattering
of timing results, we instruct the Slurm workload manager to disable dynamic frequency
scaling of the processor. PIRA executes four iterations, which means that it conducts
the vanilla runs first, and then performs an initial, static, instrumentation with three
subsequent, dynamic, refinement steps. The runtime filter threshold is set to 0.5× tmain,
and 0.25× tmain, where tmain is the runtime of the main function, respectively. We refer to
these settings as PIRAH and PIRAQ, respectively. In the first case PIRA aggressively filters
functions from the measurement, whereas in the latter case, it filters fewer functions. We
set PIRA to conduct five repetitions and report the runtime median together with the
standard deviation of the five repetitions. Our benchmarks use the reference data set for
the respective SPEC CPU target codes.

We construct the MetaCG for each code with CGCollector, and patch potentially missing
edges for the data set using CGValidate. CGCollector fails to obtain the MetaCG for
403.gcc within the set time limit of 24h, hence, we cannot determine PIRA’s ability to
construct meaningful ICs. For 453.povray, CGCollector requires substantially long to
construct the MetaCG, however, Score-P is unable to record a valid profile when using
Clang 10. This is likely due to an issue with exceptional control flow that triggers an
internal assertion in the Cube library w.r.t. call-path consistency.

71

1 5 10 20

1

2

3

4

SU2 Solver Iterations (×100)

Re
l.
Ru

nt
im

e
[×

]
PIRA Output

PIRA Iteration 0 1 2 3

1 5 10 20

1

2

3

4

SU2 Solver Iterations (×100)

CUBE Runtime

Figure 5.8.: The runtime overhead introduced by PIRAH over four PIRA iterations and different
numbers of solver iterations within SU2: (a) as determined by PIRA, (b) using the
runtime of the target as recorded within the Cube profile. The x-axis denotes the
number of iterations for the SU2 solver. The y-axis denotes application runtime relative
to vanilla runtime with 1 indicating runtime equal to vanilla. The vanilla runtimes for
the different number of iterations in SU2 are ≈6 s, ≈29 s, ≈58 s, and ≈90 s.

SU2 For SU2, we see that, according to its output, PIRA introduces a slowdown of
≈ 4.38× across the different iterations for the smallest number of iterations, cf. the left
bar plot in Figure 5.8. The relative runtime overhead decreases with increasing number
of iterations. When inspecting the runtime recorded for the application within the Cube
profile, we find that it is actually much lower, cf. the right bar plot in Figure 5.8. We
see that even for the smallest number of iterations the runtime overhead introduced is
barely noticeable (between ≈ 0.99× and ≈ 1.02×). For comparison, an unfiltered Score-P
instrumentation results in ≈ 157.5×, ≈ 97.7×, ≈ 86.5×, and 79.1× runtime overhead,
and an inline-filtered Score-P instrumentation ≈ 9.5×, ≈ 5.7×, ≈ 5.2×, and ≈ 5.0×,
across the different numbers of iterations. Across the different number of iterations in SU2,
PIRA’s final profile records only 10 different functions, which account for a total of 99%
of the target’s runtime. This suggests that the large relative overhead that PIRA reports
can be attributed to either start-up or tear-down time spent by Score-P. Score-P inspects
the target binary at start-up time for all function identifiers present in the binary, using
libbfd for inspection. When we exclude externally defined functions, the SU2 binary
contains 42,378 different functions2 that Score-P has to insert into its region-identifier
table. This results in the considerable start-up time.

2According to nm.

72

gcc mc
f

mi
lc

na
md

de
alI
I
sop

lex
po
vra

y

hm
me

r
sje
ng

lib
qu
an
tum

h2
64
ref lbm ast

ar

sph
inx

3

1

2

3

Re
l.
Ru

nt
im

e
[×

]
SPEC CPU 2006

PIRA Iteration 0 1 2 3

Figure 5.9.: The runtime overhead introduced across PIRAH iterations for the SPEC CPU 2006
benchmarks (x-axis). The y-axis denotes application runtime relative to vanilla runtime
with 1 indicating runtime equal to vanilla.

SPEC CPU 2006 In Figure 5.9 we see the development of the runtime overhead for the
SPEC CPU 2006 benchmarks over the course of four PIRA iterations. While the black
bar reflects the runtime overhead introduced by the initial static selection heuristic, the
remaining three show the development with PIRA’s runtime filtering. In most cases, the
static instrumentation selection already results in a low-overhead instrumentation. The
relative overhead for these cases is between 0% and 15%. 482.sphinx3 shows a slightly
higher relative overhead between 16% in the final iteration and 25% in the initial static
instrumentation. However, in the cases 458.sjeng, 464.h264ref, and 473.astar PIRA is
unable to statically determine a low-overhead instrumentation. In the case of 464.h264ref,
PIRA can reduce the influence of the measurement perturbation with its first Runtime
Heuristics filtering. PIRA is unable to satisfactorily reduce the overhead for the cases
458.sjeng and 473.astar, with both showing runtime overheads of ≈ 3×. We also see that
in none of the cases PIRA adds significant instrumentation in subsequent iterations.

Figure 5.10 shows the runtime overhead for the SPEC CPU 2006 benchmarks for PIRAQ.
While we see an uptick of runtime overhead in some benchmarks w.r.t. the overhead for
PIRAH , the measurement influence on the execution time still is acceptable in most cases.
Both benchmarks that show significant runtime increase for PIRAH — 458.sjeng and
473.astar — also show a significant increase with PIRAQ.

73

gcc mc
f

mi
lc

na
md

de
alI
I
sop

lex
po
vra

y

hm
me

r
sje
ng

lib
qu
an
tum

h2
64
ref lbm ast

ar

sph
inx

3

1

2

3

SPEC CPU 2006 Benchmark

Re
l.
Ru

nt
im

e
[×

]

SPEC CPU 2006

PIRA Iteration 0 1 2 3

Figure 5.10.: The runtime overhead introduced across PIRAQ iterations for the SPEC CPU 2006
benchmarks (x-axis). The y-axis denotes application runtime relative to vanilla
runtime with 1 indicating runtime equal to vanilla. The overhead of 473.astar is
truncated, see Table 5.2.

74

Benchmark Score-P PIRAH PIRAQ

w/ Filter w/o Filter Static Dynamic Static Dynamic
403.gcc 13.26 14.42 — n/a —
429.mcf 1.09 6.61 1.02 1.02 1.04 1.21

433.milc 2.68 2.70 1.00 0.98 1.01 1.40

444.namd 1.00 3.87 1.01 1.01 1.01 1.00

447.dealII 14.55 473.96 1.13 1.08 1.15 1.11

450.soplex 2.93 56.81 1.04 1.00 1.04 1.01

453.povray — n/a —
456.hmmer 1.31 1.46 1.02 1.02 1.02 1.02

458.sjeng 7.36 9.22 3.27 2.77 3.25 2.77

462.libquantum 1.35 1.57 1.00 0.90 0.96 1.07

464.h264ref 13.68 14.35 1.36 1.01 1.38 1.09

470.lbm 1.00 1.01 1.01 1.01 1.00 1.00

473.astar 5.40 25.62 2.90 2.79 2.94 7.12

482.sphinx3 2.43 2.87 1.20 1.20 1.22 1.41

Table 5.2.: The runtime overhead introduced by Score-P with and without inline filter for the SPEC
CPU 2006 targets. We list the runtime overhead for the initial iteration (Static), and
the final PIRA iteration (Dynamic).

With the lower runtime threshold, we see that PIRA maintains more functions in
the IC initially and expands on these functions. For 429.mcf, 433.milc, 473.astar and
482.sphinx3, PIRA expands the instrumentation after the static IC, which explains the
increase in runtime for the first dynamic iteration. In the case of 482.sphinx3, we also
see a subsequent filtering, and a corresponding decrease of runtime overhead, while for
473.astar the runtime overhead is significantly increased for the final PIRA iteration.

For a comparison with an out-of-the-box Score-P system, we list the runtime overhead
for measurements of Score-P profiles with and without inline filter in Table 5.2. The table
also lists the runtime overhead for PIRA with both runtime thresholds. We see that PIRA
can reduce the runtime overhead significantly with both runtime thresholds compared to
standard Score-P measurements in almost all cases. For 429.mcf and 470.lbm, Score-P
generates a similar runtime overhead as PIRA. In all other cases, the PIRA filtering reduces
the runtime filtering significantly. Especially in the case of 447.dealII (≈ 13.5×), 458.sjeng
(≈ 2.7×), and 464.h264ref (≈ 13.5×) PIRA reduces the runtime overhead dramatically.

75

Benchmark Runtime (s)
Vanilla PIRA 0 PIRA 1 PIRA 2 PIRA 3

403.gcc — n/a —
429.mcf 202± 2 206± 3 208± 2 207± 2 207± 3

433.milc 419± 0 420± 1 420± 0 420± 0 411± 5

444.namd 254± 0 256± 0 255± 0 255± 0 255± 0

447.dealII 17± 0 20± 0 19± 0 19± 0 19± 0

450.soplex 77± 1 79± 1 75± 1 76± 1 77± 1

453.povray — n/a —
456.hmmer 167± 1 170± 1 170± 1 171± 0 170± 0

458.sjeng 337± 0 1,100± 9 931± 2 931± 5 931± 4

462.libquantum 224± 19 225± 8 228± 14 208± 17 203± 16

464.h264ref 41± 0 56± 0 42± 0 42± 0 42± 0

470.lbm 202± 3 203± 0 202± 1 202± 1 204± 0

473.astar 95± 1 275± 4 271± 0 265± 0 265± 9

482.sphinx3 351± 3 420± 5 420± 8 415± 6 423± 5

Table 5.3.: Runtime in seconds for vanilla execution and four subsequent iterations with PIRAH .
The values denote the median and the standard deviation over five repetitions.

For 473.astar, PIRA reduces the runtime overhead compared to an unfiltered Score-P
measurement. When inline filtering is enabled in Score-P, PIRAH reduces the runtime
overhead compared to Score-P, while PIRAQ leads to a measurement with larger overhead.

Table 5.3 shows the obtained absolute timings for the SPEC CPU suite. In most cases, the
runtime does not significantly change between PIRA iterations. For 464.h264ref, we see
that the initial IC introduces significant slowdown, which is reduced in the subsequent PIRA
iteration. In the case of 458.sjeng, 473.astar and 482.sphinx3 we also see a significant
increase in runtime with the initial IC. While the influence is slightly reduced in the case for
458.sjeng, it still introduces a significant slowdown of the application. For both 473.astar
and 482.sphinx3 PIRA is unable to significantly reduce the runtime overhead.

In addition to runtime and overhead, the number of functions selected for instrumenta-
tion and functions recorded as well as regions in the Cube profile are of interest. As Score-P
stores call-path profiles, one function can occur multiple times within an application’s
profile as a different region. Hence, we list the number of distinct regions in the profile
for the final PIRA iteration and Score-P executions with and without inline-filtering.

76

Benchmark Functions Score-P Regions
Selected Profiled Score-P PIRA w/ Filter w/o Filter

403.gcc — n/a —
429.mcf 12/10 11/9 44 10 45 48

433.milc 56/7 30/7 246 9 294 305

444.namd 32/10 29/10 51 11 52 160

447.dealII 492/10 311/10 2,883 17 4,077 115,174

450.soplex 162/4 95/4 392 10 456 2,767

453.povray — n/a —
456.hmmer 69/6 13/5 74 10 81 93

458.sjeng 44/17 23/17 6,362 275 6,516 9,109

462.libquantum 30/6 24/6 267 14 290 337

464.h264ref 159/10 107/10 461 16 473 816

470.lbm 8/2 5/2 11 3 12 15

473.astar 34/5 34/5 99 6 102 513

482.sphinx3 78/8 52/7 156 13 471 704

Table 5.4.: The number of functions selected for instrumentation in the initial / final PIRA iteration
and the number of functions actually profiled at runtime thereof for PIRAH . The
number of functions in a filtered Score-P profile for comparison. Score-P regions denote
different locations within the call-path profile obtained in the last PIRA iteration, or
with Score-P with and without filtering, respectively.

77

Table 5.4 shows the number of functions selected for instrumentation and the number
of functions actually recorded during execution. We see that PIRA reduces the number of
distinct functions significantly through its filtering mechanism. This is important, as an
analyst can focus on the relevant functions present in the profile, and is not distracted
by hundreds of small initialization or accessor methods. The reduction is particularly
significant in the case of C++ benchmarks, such as 447.dealII. Note that the difference
in the number of functions marked for instrumentation and actually profiled is a result
of the static selection heuristics that PIRA applies. Moreover, PIRA reduces the number
of regions significantly compared to both Score-P with and without filtering. Again,
the reduction is particularly significant for C++ codes. Even with this large reduction
of functions instrumented and regions recorded, some benchmarks exhibit significant
overheads, e.g., 473.astar or 458.sjeng. In case of 473.astar, PIRA instruments a small
function with a very high call count, and in case of 458.sjeng, PIRA instruments one of
the recursively called analysis functions.

Hot Spot Detection We manually checked if PIRA refined the instrumentation towards
the hot-spot regions in the target application. Therefore, we performed a few iterations
of manual instrumentation refinement using profile analysis and applied the tool Intel
vTune in its hot-spot detection configuration.

PIRA is able to refine the instrumentation automatically to the runtime hot-spot of the
SU2 solver. Using its predefined thresholds and selection strategies, it arrives at the final
instrumentation after the first dynamic filtering iteration, i.e., PIRA 1, and instruments
only the kernel and the relevant call path to it. The SU2 solver seems to have a well-suited
structure for PIRA’s refinement, given its very dominating single kernel and call path.

For the SPEC CPU 2006 benchmark suite, both approaches are able to provide good
overview measurements in 8 of 14 cases for PIRAH and 9 of 14 for PIRAQ. The differences
between PIRAH and PIRAQ are surprisingly small in most cases. Moreover, a reasonable
overviewmeasurement is in many cases already available after the first dynamic refinement
step. We subsequently present the results for individual SPEC CPU 2006 benchmarks, and
the final PIRA iteration.

For 429.mcf, PIRAH provides an overview of two main contributors to runtime, while
PIRAQ instruments one function deeper in the CG. This function is a recursive sorting
algorithm, which adds significant runtime overhead due to the high call-count. In 433.milc,
both PIRAH and PIRAQ provide a good overview of where runtime is spent, with PIRAQ

providing a little more detail at the cost of ≈ 40% more runtime overhead. In the
case of 444.namd, both settings result in the same final IC and show a good overview
of the runtime distribution in the target. Similarly, for 447.deal, PIRAQ instruments

78

two levels deeper in the CG, thus, provides marginally more insight on where runtime
is spent. In the case of 450.soplex, PIRAH and PIRAQ refine the IC towards different
regions in the target, with their combination providing a good overview on where runtime
is spent. However, each profile individually leaves a considerable amount of runtime
attributed to high-level functions. PIRAH and PIRAQ correctly identify the single hot
spot in 456.hmmer. For the target 458.sjeng, both approaches refine the IC identically,
which results in large amounts of overhead due to the recursive nature of the search/solve
step. In 462.libquantum, PIRAQ results in a significantly better picture of the target’s
behavior, compared to PIRAH , without introducing significantly more overhead. For
464.h264ref, both profiles are comparably informative w.r.t. runtime hot-spots of the
target. Unsurprisingly, both approaches result in the same IC for 470.lbm and identify the
target’s hot spot. For 473.astar both approaches draw a similar picture of the application,
but leave significant amounts of runtime unattributed, hence, we believe they did not
meaningfully detect the application hot-spots. Finally, for 482.sphinx3, PIRAH gives a
good overview of the application’s runtime, while PIRAQ includes one more function that,
given the high call count, adds significantly to the overall runtime overhead.

Model Heuristics

We apply PIRA with Model Heuristic to the applications 473.astar and SU2. Extra-P
requires five different input data sets for a target, hence, for 473.astar, we vary the number
of waypoints in the map to find, and the number of iterations for the SU2 solver. PIRA
performs four iterations. Within each iteration, all five data sets are used, and the target is
executed five times per data set. PGIS performs the optional call-path instrumentation, i.e.,
it instruments all paths to the main function from a function identified to be kept. We use
both vanilla executions of the target and Score-P filtered measurements for comparison.

In previous work, cf. [73], we used PIRA with its Model Heuristics and applied it to
the MILC solver su3_rmp, which is the MPI-parallel application, and, thus, different from
433.milc from the SPEC CPU 2006 version. Note that this version of PIRA did not include
the automatic MPI filtering and experiments were performed on Intel Haswell-based Xeon
E5-2680v3 with 64GB main memory. We present the results in the MILC paragraph.

In addition to the evaluation presented in this section, we use the Model Heuristic in
Chapter 6 to automatically determine the target’s kernels.

SU2 Table 5.5 lists the vanilla runtime required for all data sets and repetitions required
for Extra-P modeling. The total PIRA time is about 12 times as large, and due to the
multiple executions required for PIRA’s dynamic filtering. This includes the time for PIRA
to analyze the MetaCG and compile the target for every instrumentation adjustment. In

79

Benchmark Vanilla Score-P w/ Filter Total PIRA PIRA
SU2 1,378 7,152 19,005 1,865

473.astar 688 4,927 3,439 857

Table 5.5.: Accumulated runtime (seconds) to execute all measurements required for the Extra-P
modeling. Vanilla is for reference only. Score-P w/ filter is Score-P with inline filter,
Total PIRA is accumulated over all PIRA iterations, PIRA is the time of the final PIRA IC.

Function Extra-P Model
CILUPreconditioner::operator()(...) −50.2 + 7.70 ∗ log2(x)
CSysSolve::Solve(...) −24.0 + 3.69 ∗ log2(x)
CEulerSolver::Centered_Residual(...) −9.5 + 1.46 ∗ log2(x)
CSysMatrixVectorProduct::operator()(...) −9.4 + 1.44 ∗ log2(x)
CSysSolve::FGMRES_LinSolver(...) −5.7 + 0.88 ∗ log2(x)
CMultiGridIntegration::MultiGrid_Cycle(...) −1.5 + 0.22 ∗ log2(x)

Table 5.6.: Performance models generated by Extra-P for the most relevant functions in SU2 accord-
ing to PIRA’s extrapolation scheme. Model constants are shown with one significant
digit and function signatures omitted for brevity.

comparison, the final PIRA runtime overhead is ≈35% compared to the vanilla execution,
and about ≈ 3.5× less than the Score-P overhead. When we consider the time measured
within the Cube profile to factor-out Score-P’s start-up overhead, the final PIRA iteration
introduces almost no overhead.

Table 5.6 shows the functions in SU2 with the most important runtime models, i.e.,
the models that evaluate to the largest values in the extrapolation. Compared to the
results we achieved with PIRA’s Runtime Heuristic, we find that the former hot spot
(FGMRES_LinSolve) is no longer the most important function. Instead, the application of
the preconditioner evaluates to a more important component.

473.astar For 473.astar, we vary the number of waypoints on the map to generate the
differently sized input data, and use the values 5k, 10k, 25k, 50k, and 75k. Note that this
is a different data set compared to the one used in the evaluation of the Runtime Heuristic
and overhead numbers cannot be compared reasonably.

Initially, PIRA selects the same 34 functions as with the Runtime Heuristics, since both
heuristics use the same initial static selection. Thereof are 29 functions actually executed

80

Function Extra-P Model
wayobj::makebound2(int*, int, int*) −2.3 + 0.0003 ∗ x

1
2 ∗ log2(x)

regwayobj::fill(regobj*, regobj*) 10.8 + (−0.04) ∗ log2(x)
way2obj::releasepoint(int, int) 4.11

way2obj::releasebound() 3.36

Table 5.7.: Performance models generated by Extra-P for the most relevant functions in 473.astar
according to PIRA’s extrapolation scheme. Model constants are shown with one signifi-
cant digit for brevity.

at runtime. For most of the functions, Extra-P finds a constant model which is well below
the threshold. Hence, subsequently PIRA instruments 13 functions, which results in an
overhead of 1.25× over the vanilla execution for all input data sets.

The total runtime for PIRA with its Model Heuristic is given in Table 5.5, together with
time required for all measurements using a vanilla build of the target and a Score-P with
enabled inline filtering. Compared to the Score-P version, PIRA’s final IC is ≈ 4.7 faster,
and limits the instrumentation to relevant regions. This keeps the runtime overhead
between ≈ 1.40× and ≈ 1.15×, depending on the particular input size used.

Table 5.7 shows the models for the most important functions in the 473.astar benchmark
as identified by PIRA’s Model Heuristic. We see that three of the four functions identified
are of constant runtime w.r.t. the varied input parameter x, i.e., the number of waypoints.

MILC This experiment is a multi-parameter study in which the combination of varied
input parameters together with a varied number of MPI processes is investigated. We
use fairly small data sets in these experiments to account for the memory footprint with
smaller numbers of MPI processes, i.e., the largest grid size and eight MPI processes
consumes ≈ 4.5GB per process. In the multi parameter case, all combinations of the
input parameters need to be run in order to allow Extra-P to generate the performance
models (cf. Section 5.3.3). Table 5.8 lists the values used to generate the required 25
different combinations. Each is repeated five times for statistical fidelity as recommended
by Extra-P, resulting in 125 individual measurements.

The runtimes obtained are listed in the last row of Table 5.9 and show that the average
impact of the final PIRA instrumentation is considerably large with an increase of 3.12×.
Score-P’s inline filtering results in a slowdown of ≈ 4.05× compared to a vanilla execution
of all required combinations. Compared to the influence of an unfiltered Score-P mea-
surement overhead — which is approximately a 38.56× slowdown — both approaches

81

Number of MPI Processes Grid Size
8 16 x 16 x 64 x 16
16 32 x 32 x 64 x 16
32 64 x 64 x 64 x 16
64 128 x 128 x 64 x 16
128 256 x 256 x 64 x 16

Table 5.8.: The values used as input for MILC in the multi-parameter study. All combinations of
the parameters are required.

Benchmark Vanilla Score-P
w/ Filter

Ovh.
Score-P

PIRA II
Total

Ovh.
PIRA II

PIRA II
Final

Ovh.
PIRA II

MILC 66 333 405% 3,180 4,718% 272 312%

Table 5.9.: Accumulated time (seconds) to execute measurements for Extra-P: no instrumentation
(Vanilla), Score-P with inline filtering (Score-P w/ Filter), PIRA II with all iterations
(PIRA II Total), and the final PIRA II configuration (PIRA II Final).

achieve 10x smaller slowdowns. Note that a considerable amount of the overhead stems
from the MPI measurements in this scenario.

In the multi parameter setting, the total time PIRA takes to construct the final con-
figuration is larger than the time necessary to conduct all measurements with Score-P.
However, the influence of the measurement system in the selectively instrumented binary
generated by PIRA should be lower than for the fully instrumented one, decreasing its
overall influence on the modeling process. Also, the number of functions presented to
the user is reduced by PIRA, although the number of functions in the full profile is not
overwhelmingly large.

Load Imbalance Heuristics

In our evaluation, we apply PIRA-LIDe to the LULESHmini-app and the ISSM. The LULESH
mini-app allows introducing artificial load imbalance by changing the computational cost of
material properties in the evaluation of the equation of state. A load-imbalance parameter
b determines the amount of imbalance introduced into the application, with larger values
meaning more load imbalance. For ISSM, we use the Greenland model that was used
in a recent scalability study in [33]. The model is available in two different resolutions
that are denoted by the elements’ minimal edge-length. This means that smaller number

82

Benchmark Sections Metric [%] Total Time [sec.]

LULESH
-b 0 4± 1 45 3,532± 29

-b 1 3± 0 56 3,599± 52

-b 2 4± 1 61 3,658± 12

ISSM
G4000/1 4± 0 23 15,413± 349

G4000/10 4± 0 21 18,623± 362

G500/1 4± 0 13 22,181± 106

Table 5.10.: PIRA-LIDe’s execution result on LULESH and the ISSM for different inputs using 64
MPI processes. Sections is the number of sections reported as load imbalanced. Metric
is the largest imbalance-percentage value in the last PIRA iteration. Total Time denotes
the total PIRA runtime (including initial build, CG extraction, analysis, profiling, etc.)
in seconds. Notation: µ (mean)± σ (std. deviation)

mean higher resolution and the coarser model is not viable for the study of physical
phenomena. We run LULESH without OpenMP using 8, 27, and 64 MPI processes and the
load-imbalance parameter b set to the values 0, 1, and 2. The remaining parameters are
left with their default values. For the ISSM, we use 27, 64, and 96 MPI processes to keep
the runtime within reasonable limits, and use two different mesh resolutions. We run 1
and 10 timesteps of the coarser mesh (G4000/1, G4000/10), while for the finer mesh
we run only 1 timestep (G500/1). PIRA-LIDe uses its default configuration: Imbalance
threshold: 5%, relevance threshold: 2%, child constant threshold: 150, child fraction:
3 · 10−5, PIRA iterations: 20, context handling strategy: MajorPathsToMain. However, for
trace generation, PIRA-LIDe’s FindSynchronizationPoints context handling is used.

Table 5.10 shows that PIRA-LIDe identifies four imbalanced sections in the ISSM. For
LULESH the number of reported sections varies by one across repetitions. Analyzing PIRA-
LIDe’s output shows that this is due to a LULESH function with a computed Imbalance
Percentage around the threshold used. Hence, depending on measurement variation, the
function is included or excluded. Note that the table shows the accumulated runtime for
all 20 PIRA iterations and not the time of a single target execution, i.e., the time it takes
to conduct the load imbalance detection.

As expected, the imbalance metric increases with LULESH’s parameter b for artificial load
imbalance. However, even without artificial load imbalance, PIRA-LIDe reports sections as
imbalanced. Manual analysis shows that this is correct, as b = 0 does not perfectly balance
a LULESH execution. Interestingly, we consistently observe negative runtime overhead for
LULESH, i.e., the PIRA-LIDe version runs faster than a vanilla version.

83

Benchmark Vanilla PIRA LIDe Score-P filtered
Time
[sec.]

Time
[sec.]

Ovh.
[%]

Time
[sec.]

Ovh.
[%]

LULESH
-b 0 165± 0 163± 1 −1.1± 0.2 297± 3 55± 1

-b 1 171± 1 167± 1 −1.9± 0.4 300± 1 56± 1

-b 2 173± 1 169± 1 −1.9± 0.3 307± 1 55± 1

ISSM
G4000/1 25± 1 29± 0 14.9± 4.9 272± 3 900± 12

G4000/10 142± 1 152± 1 6.4± 0.4 1,948± 22 1,154± 7

G500/1 349± 9 362± 5 3.9± 1.8 2,727± 31 644± 11

Table 5.11.: Profiling overhead measured during PIRA-LIDe’s execution on different LULESH and
ISSM inputs compared to runs with no instrumentation (Vanilla) and Score-P-filtered
instrumentation respectively. Time is the runtime of a single execution in seconds and
Ovh. the corresponding relative overhead. For PIRA-LIDe, the maximum overhead
across PIRA iterations in noted. Notation: µ (mean)± σ (std. deviation)

For the ISSM, the maximum value for the imbalance percentage is moderate compared to
the one observed for LULESH. Nevertheless, PIRA-LIDe identifies multiple load-imbalanced
sections in the ISSM, independent of the model configuration used.

We compare PIRA-LIDe’s overhead to Score-P’s automatic instrumentation options.
Score-P full is a full instrumentation of the target application, i.e., every function is
instrumented. Score-P filtered applies an inline-filter, i.e., only functions that are not
inlined by the compiler are instrumented. Table 5.11 shows the respective runtimes along
with vanilla measurements, i.e., a single execution of the target application. For PIRA, we
list the largest runtime overhead that occurred across all PIRA iterations. Figure 5.11 and
Figure 5.12 depict the relative overhead compared to both of these instrumentation modes
for the ISSM and LULESH, respectively. It is visible in Figure 5.13 that the overhead does
only increase marginally across the different iteration of iterative descent.

PIRA-LIDe reduces the ISSM runtime overhead by a factor of at least 14 (26) compared
to Score-P filtered (Score-P full). Also, it exceeds 20% of runtime overhead in only one
case for the ISSM, cf. Figure 5.12, G4000/1. Interestingly, this overhead is not noticed
for larger models. We found that this is partially caused by constant setup overhead of
the measurement system. Such overhead imposes a larger impact for shorter running
targets, e.g., smaller models. A typical overhead of less than ≈ 10% is maintained for
every other benchmark variant. While Score-P filtered can reduce the excessive overhead
of Score-P full drastically in both cases, it never achieves an acceptable runtime overhead

84

Benchmark Tracing time [sec.] Trace size [GB]
PIRA
LIDe

Score-P
filt. Impr. PIRA

LIDe
Score-P
filt. Impr.

LULESH
-b 0 161 440 2.7× 1.1 927 843×
-b 1 166 433 2.6× 1.1 927 843×
-b 2 167 478 2.9× 1.1 927 843×

ISSM
G4000/1 28 461 16.5× 1.3 1,879 1,445×

G4000/10 150 N/A N/A 11 (14,000) (1,273×)

G500/1 353 N/A N/A 12 (20,000) (1,667×)

Table 5.12.: Results of tracing experiments with different ISSM and LULESH inputs using instru-
mentation generated by PIRA-LIDe and Score-P filtered, respectively. Tracing time
denotes the runtime of a single tracing run and Trace size the size of the resulting trace
file. Impr. is the relative improvement of PIRA-LIDe instrumentation when compared
to Score-P filtered. Values in brackets are estimated by Score-P.

without further manual filtering. Finally, the measurements show that the overhead barely
increases with the number of MPI processes.

PIRA-LIDe’s overhead reduction is accompanied by a substantial increase in total run-
time, cf. Table 5.10. In the case of the ISSM (G500/1-model), the total PIRA runtime
accumulates to ≈6h (initial build ≈2min, CG collection ≈10min, Build ≈25min, Run
≈2h, Analyze ≈3.5h), which is significantly longer than one run using Score-P’s filtered
instrumentation. Two major runtime contributors in the analysis step are (1) the graph
construction, and, (2) the graph annotation with profile information.

Scalasca Trace Analysis Table 5.12 lists the trace size for LULESH and the ISSM running
with 64 MPI processes. Scalasca’s analysis requires the trace information to reside in main
memory for its analyses. Hence, traces obtained by Score-P full and ISSM traces obtained
by Score-P filtered cannot be analyzed with Scalasca as they exceed the 384GB of main
memory available in nodes of the Lichtenberg cluster. PIRA-LIDe reduces the trace sizes
for LULESH and the ISSM by multiple orders of magnitude, cf. Table 5.12, significantly
speeding-up or enabling a Scalasca analysis.

The most significant values for Scalasca’s critical-path and critical-path imbalance impact
metrics are shown in Table 5.13 for a LULESH execution with 64 MPI processes and
PIRA-LIDe’s final instrumentation. Higher values reflect more significance, and the func-
tions are listed top to bottom according to the call context, i.e., LagrangeLeapFrog calls

85

8 27 64
−4

−2

0

Re
l.
O
ve
rh
ea

d
[%

]

PIRA LIDe

8 27 64
0

0.5
1

1.5 ·104

MPI processes

Score-P full

8 27 64
0
20
40
60
80
100

Score-P filtered

Figure 5.11.: Relative runtime overhead for PIRA-LIDe (one repetition) and Score-P on LULESH.

27 64 96
0

10
20
30
40

Re
l.
O
ve
rh
ea

d
[%

]

PIRA LIDe

27 64 96
0

1,000

2,000

MPI processes

Score-P full

27 64 96
0

500
1,000
1,500

Score-P filtered

Figure 5.12.: Relative runtime overhead for PIRA-LIDe (one repetition) and Score-P on the ISSM.

LagrangeElements, etc. While the critical-path metric changes only slightly between the re-
sults for b = 0 and b = 1, i.e., artificially introduced load imbalance, the imbalance-impact
metric changes significantly for two functions. The value for the LagrangeLeapFrog in-
creases from 18.8 to 52.5 and the value for ApplyMaterialPropertiesForElems from 459.6
to 872, i.e., their imbalance is much more pronounced for b = 1.

Table 5.14 lists the respective Scalasca metric values for the sections in the ISSM
identified by PIRA-LIDe. The metric values suggest that imbalances with comparable
impact exist in code sections of LULESH and the ISSM. More importantly, the load
imbalance becomes apparent for the physically relevant model G500/1 in case of the
original imbalanced version of the ISSM for all sections identified. As part of our work,
these load imbalances have been addressed, cf. Table 5.14 the two most-right columns,
and are discussed in more detail in [9].

86

0 2 4 6 8 10 12 14 16 18

0

10

20

PIRA iterationRe
l.
O
ve
rh
ea

d
[%

]

ISSM G4000/1
ISSM G500/1
LULESH (-b 1)

Figure 5.13.: Relative runtime overhead per iteration with 64 MPI processes for a single PIRA-LIDe
execution.

LULESH b=0 b=1

Region Critical
Path

Imbalance
Impact

Critical
Path

Imbalance
Impact

LagrangeLeapFrog 116.5 18.8 118.3 52.5

LagrangeElements 13.9 6.5 13.7 2.2

CalcQForElems 12.7 55.3 11.1 5.4

ApplyMaterialProp... 19.7 459.6 24.7 872.0

Table 5.13.: Scalasca analysis for PIRA-LIDe traces of LULESH for b = {0, 1} and 64 MPI processes.
Imbalance Impact is Scalasca’s Critical-path Imbalance Impact.

5.5. Discussion

In almost all benchmarks, PIRA significantly reduced the runtime overhead for the target
application. The reduction is achieved by excluding functions that do not contribute
significant amounts of total runtime. As a result, an analyst is presented with a less-
cluttered profile to inspect, thus, focusing on the most-important functions in the target
application. PIRA, however, struggled to reduce the runtime overhead below 15% in
some cases. In particular, some C++ targets from the SPEC CPU benchmark suite proved
to be challenging for the Runtime Heuristic. In addition, recursive algorithms naturally
pose a challenge to function-level instrumentation measurements. Nevertheless, the large
reduction of runtime overhead leads to a good starting point for a manual focus analysis.

The PIRA heuristics use threshold filtering to determine which functions to exclude
from measurement. For both the Runtime Heuristic and the Load-Imbalance Detection,
the thresholds are computed relative to the application runtime. However, in the case of
the Performance-Model Heuristic, the threshold currently is a fixed value. This leads to

87

ISSM Imbalanced
G4000/1

Imbalanced
G500/1

Improved
G500/1

Region Critical
Path

Imbal.
Impact

Critical
Path

Imbal.
Impact

Critical
Path

Imbal.
Impact

SbA::CreateKMatrixHO 8.5 108.0 84.1 601.0 77.6 279.9

SbA::CreatePVector 1.0 11.2 10.1 72.7 9.9 60.9

EA::CreatePVector 1.3 16.2 12.7 89.7 11.8 40.9

Table 5.14.: Scalasca analysis for PIRA-LIDe traces of the ISSM and 64 MPI processes. Imbalance
Impact is Scalasca’s Critical-path Imbalance Impact.

insufficient adaption for some target codes. Also, the thresholds are computed based on
the main function. This can prune too many functions from the measurement early on.

The Performance-Model Heuristic is able to filter more functions from the IC compared
to the Runtime Heuristic. Since it determines which function’s runtime scales with the
input parameter, it can exclude large, yet constant functions. Hence, it allows an analyst
to obtain a picture of the application’s functions that may become hot-spots for larger input
data, or when scaling to larger machines and more parallelism. This is particularly helpful
before a code is used on different machines or larger problem sizes. However, the analysis
depends on the parameters set by the user. This means that, for example, should the code
be limited in MPI-scalability, but the user chose not to model the code’s MPI behavior,
PIRA is unable to detect the limitation. It will, thus, focus the instrumentation to other
regions, or even filter all instrumentation, since no function crosses the thresholds set.

Finally, the Load-Imbalance Detection was able to identify the load imbalances present
in the target applications. In ISSM, the load imbalances were manually validated in a
recent performance and scaling analysis, and subsequently addressed. Moreover, PIRA
pinpointed the load imbalance in the LULESH mini-app to the particular function that
introduces the imbalance. Score-P, on the other hand, filtered this function due to its
inline annotation, hence, an analyst may have been misled by the profile.

Once identified, the important regions can be the target of performance analysis and
tuning or performance exploration. Given the vastness of state-of-the-art scientific applica-
tions, the analysis and tuning can be significantly challenging. Therefore, the extraction
of relevant regions and the construction of representative mini-apps is intriguing, as they
allow easier analysis, refactoring, or even re-implementation in a different programming
language. In the next chapter, we present an approach that, using PIRA, identifies the
most relevant parts of the application, and, subsequently, extracts them into a mini-app.

88

6. Mini-AppEx: Tool-Supported Kernel and
Mini-app Extraction

The chapter is based on the following publications and contains verbatim excerpts of parts
which were contributed by the thesis author.

Lehr, Jan-Patrick and Bischof, Christian and Dewald, Florian and Mantel, Heiko
and Norouzi, Mohammad andWolf, Felix. 2021. Tool-Supported Mini-app Extraction
to Facilitate Program Analysis and Parallelization [72]

Lehr, Jan-Patrick and Hück, Alexander and Fischer, Moritz and Bischof, Christian.
2020. Compiler-Assisted Type-Safe Checkpointing [75]

In this chapter, we use the aforementioned tool PIRA to obtain reasonable measurements
for kernel identification as a starting point for tool-supported mini-app extraction. We used
a similar version of the kernel identification to identify application kernels and subsequently
recombine them using the multitier-reactive programming language ScalaLoci [137] to
enable hybrid on-premise/cloud execution [124]. However, this work is not discussed
in this chapter. The contributions of this chapter are, in particular, the general approach
to the tool-supported mini-app extraction, and the novel Clang-based source-to-source
translator Mini-AppEx. As part of the extraction process, application data needs to be
captured, for which we develop a type-safe CPR abstraction based on TypeART [48].

In the remainder of this chapter, we outline the general approach in more detail.
Thereafter, we briefly touch on the extensions to PIRA that were introduced for this
use case. We present both the source-to-source tool Mini-AppEx and the type-safe CPR
abstraction in more detail. Finally, we apply the approach to the 8.5 million lines of
code (astro)physics simulation eos-mbpt [31] to extract a representative mini-app. The
mini-app is subsequently used in an evaluation for automatically detecting parallelization
opportunities with the DiscoPoP [80] tool.

89

Parent App Mini App

Source Transformation
Original
Source

Mini
Source

Input Output

Kernel
Identification

Stage 1
Code

Extraction

Stage 2
Data

Capturing

Stage 3

Validation

Stage 4
Dependence
Identification

Figure 6.1.: An overview of the mini-app extraction process: (1) Kernels, e.g., functions with
considerable and problem-size-dependent runtime, are identified. (2) Kernels are
extracted and driver code is generated. (3) Data required in the kernels is identified
and captured. (4) Mini-app is validated for correctness of results and execution
representativeness.

6.1. Approach

Our approach is composed of four stages, which are shown in Figure 6.1. The stages serve
as a general blueprint for the extraction of mini-apps. While we provide tools for each
individual stage to address the particular challenge, the general high-level workflow can
also be followed with other tools. The subsequent sections present an outline together
with technical details on the respective stages in the workflow.

6.1.1. Kernel Identification

The first stage is the identification of the target’s kernels, i.e., the most significant parts
to be extracted into the mini-app. Determining which kernels are of interest is use-case
dependent. Here, the kernels are intended as target of tool-supported parallelization,
hence, functions that show increasing runtime for larger input data are of interest.

To identify such kernels, our approach relies on automatic instrumentation refinement
provided by PIRA, see Chapter 5. It heuristically creates low-overhead instrumentation
configurations that are iteratively adapted by analyzing the runtime profile obtained.
To identify kernels, we extend PIRA to sort and output the functions according to their
relevance of the extrapolated performance model values. While the performance modeling
itself is metric-independent, we use wall-clock time, as a developer can easily relate to it,
and the goal of the subsequent parallelization is to reduce execution time.

6.1.2. Source Transformation

Given the list of kernels identified, the next step is to extract the kernels and their respective
dependencies to form the mini-app. We consider the mini-app to be a single file that

90

contains the necessary functions, their dependencies and the respective driver code to
execute it. Hence, starting from the kernels, all required variables and their types need
to be identified. We implemented a novel Clang-based source-to-source translator that
(1) computes required dependencies using the compiler’s AST, (2) extracts the identified
dependencies into a new file, and, (3) implements the generation of CPR code. The next
sections present more detail on the implementation of the translator.

Dependency Identification To identify the dependencies, our tool needs to consider
functions, variables, and types. It implements a mark-and-sweep approach, meaning that,
first, it identifies the required functions starting from the kernel call-site. Processing the
functions marked, it, second, identifies and marks the required variables and their types.

Functions: The mark-and-sweep implementation reuses the application’s CG constructed
from MetaCG, cf. Chapter 4, to determine call targets for each function. Our
tool reads the serialized MetaCG, and attaches pointers to Clang-AST function
definitions present in the program’s current TU. Hence, the tool can check whether
a specific function definition is present in the current TU and retrieve it, but, more
importantly, it can perform whole-program call-dependence analysis while working
on a single TU. The kernel call-site, i.e., starting point, is given as source position
(filename:line:column) that is mapped to the respective Clang-∗ node by
matching the source position. Using the ∗ node and the kernel’s function name, the
CG analysis, (1) traverses the MetaCG to determine the required callees starting
from the kernel, (2) checks for each callee if its function definition is present in
the current TU, (3) marks each required function definition for extraction and
variable-dependence analysis.

Variables: For each function defined in the current TU, the tool identifies the accessed
(global) variables. Locally declared variables are not handled explicitly, as they are
extracted as part of individual functions. In addition, the tool identifies all allocation
statements for global variables, e.g., calls to new or malloc. Therefore, the tool
traverses the AST and inspects assignments to the global variables marked previously.
Should the assignment to the variable be the result of a call to an allocation function,
the respective allocation statement is marked as an allocation dependency of that
variable. Allocation statements are then, recursively, inspected for variables they
depend on.

Types: Marking and subsequently extracting types is required for user-defined types, such
as struct or typedef definitions. For each marked variable, the type is inspected via

91

1 double some_const;// required global variable
2 float compute_X();// non-system function
3 void kernel(int i, double *pd, double *r) {
4 // performs heavy computation with pd
5 r = some_const * compute_X() * ...;
6 }
7 double* compute(int arg_i, double* arg_d) {
8 double *res = malloc(sizeof(double));
9 kernel(arg_i, arg_d, res);// kernel call-site

10 return res;
11 }

Listing 6.1: Dependencies for the function kernel: the IN variable arg_i; the OUT variables arg_d
and res; the global variable some_const; and the function compute_X and its depen-
dencies.

the Clang-AST. Whenever a user-defined type is encountered, the type’s definition
is retrieved and marked for extraction. The type’s definition is also recursively
inspected for potentially other required user-defined types to be marked.

The code generation for allocation dependencies is handled when generating the mini-
app’s main function. Listing 6.1 shows an example, in which the function kernel is
identified as the function to extract. Note that the tool also considers the variables passed
into the kernel at the respective call-site, such as the variable res in the example.

Code Extraction The entry point for the code extraction is a designated call-site to the
kernel function in the original application, cf. line 9 in Listing 6.1. From the call-site,
the tool uses the dependencies identified in the dependency identification step to copy the
required source code into a new file. The copy mechanism uses Clang’s built-in mechanism
to pretty-print all marked C/C++ constructs — functions, variables, and types. External
and system library dependencies are maintained, i.e., the respective include statements
are added in the mini-app for external or standard library functions. If the translator
is unable to determine the correct include statement, it outputs a hint to the developer
listing the function in question along the original full include-file path.

Along the extracted source code, the translator generates (1) a main function to execute
the final mini-app, and, (2) a kernel-wrapper to capture application data. The previously
captured allocation statements for global variables are output as part of the main function.
This is important, as otherwise the CPR mechanism cannot restore memory content into
such allocations. For multi-dimensional arrays, the respective loops are generated, of

92

which the loop bounds may depend on values provided by the CPR mechanism. Hence,
dependencies are sorted and output into the mini-app that for a given statement stmt(a)
the variable it depends on (a) is read from the checkpoint before the dependent statement.
To subsequently fill such allocations with the application data, calls to our CPR library are
generated to read the data from a checkpoint file. The kernel wrapper is generated as
drop-in replacement for the original kernel call-site, i.e., it has the same type signature
as the original function. It can be placed at the location of the original call-site and
registers and stores the required application data into a checkpoint file. Note that the
CPR mechanism used applies a two-step approach, by first marking memory regions that
should be handled, and, second, calling either checkpoint or restore. Hence, most of the
CPR code is shared between the kernel wrapper and the main function differing only in
whether it should record or restore.

Data Capturing To enable the execution of the mini-app, the application data is captured
from the original application and subsequently read by the mini-app. As mentioned in
the previous section, the source-to-source translator generates a kernel-wrapper to be
placed into the original application and automatically capture the variables’ contents. Our
approach relies on our type-safe CPR interface TyCart [75] and enables both a lightweight
sequential, and an MPI-parallel data capture using the VeloC [103] or the Fault Tolerance
Interface [11] checkpoint library. TyCart uses the type tracking and sanitizer tool TypeART
to provide its type-checking, cf. Figure 6.2.

We extended the available approach to automatically capture memory allocations with-
out the need to specify their size explicitly. This simplifies the generation of the checkpoint
statements, as it defers the computation of non-static allocation bounds to the runtime.
Moreover, we added lightweight introspection mechanisms to retrieve the size of an allo-
cation through an API. This simplifies the recording of data for multidimensional arrays
in a similar fashion as it simplifies the generation of allocation statements explained in
the previous section.

6.1.3. Validation

We capture different runtime metrics of the target application to compare it to the original
application as proposed by Aaziz et al. [1]. Specifically, we capture hardware performance
counter measurements — using Caliper [16] for JSON output on top of PAPI [18] — for
the kernel regions, as well as the dynamic instruction mix (using PIN [85]) of the target’s
execution. The hardware performance counter measurements are fed into a bottom-up
hierarchical clustering algorithm (HCA), i.e., each feature vector starts as its own cluster

93

Application

Alloc Free Type-safe Checkpoint

TyCart
Runtime Library

TypeART
Runtime Library

CPR Backend
[FTI | VeloC]

Address

Type Info

Figure 6.2.: Instead of direct calls to a CPR library, the equivalent type-safe API of TyCart is used.
For each invocation, the type information of the memory pointer, provided by TypeART,
is compared to the user-specified one of the type assert. A successful check passes the
call to the respective CPR backend.

and the clusters are successively merged. To increase the number of feature vectors
available to the HCA, we also capture hardware performance measurements for each
function individually. The final hierarchy, hence, reflects the similarity between the re-
spective feature vectors. Given that the runtime measurements, particularly the hardware
performance counter measurements, can be noisy we use Ward’s linkage criterion [134].
This linkage criterion constructs clusters of pairs of two, which makes it easier for a human
analyst to perceive the cluster members.

6.2. Evaluation

We apply the extraction approach to the eos-mbpt astrophysics application [31]. To rate
the quality of the mini-app, we consider both the reduction in code complexity by creating
the mini-app, as well as its representativeness. eos-mbpt computes the equation of state for
nuclear matter by calculating energy diagrams in a perturbative expansion. In this work,
one of those diagrams, the so-called Hartree-Fock (HF) energy, is considered. The eos-mbpt
code base consists of ≈ 8.5 million lines of code and the main contributor to runtime is the
computation of (high-dimensional) integrals using a Monte-Carlo integration. To drive the
integration, eos-mbpt uses the Cuba library [41]. For the required spline interpolations,
it relies on the GNU scientific library (GSL) [38] that we use with the OpenBLAS [133]
package. While the Cuba library offers parallelization using fork() at the Monte Carlo
point level, we execute the application sequentially, to fulfill DiscoPoP’s requirement of a
sequential input application. Finally, we apply and evaluate DiscoPoP’s ability to identify
parallelization opportunities and their speed-up.

94

Vanilla PIRA 1 PIRA 2 PIRA 3 PIRA 4
0

100

200

300

400

500

600

PIRA Iteration

Ru
nt
im

e
in

se
co
nd

s

Monte Carlo Points
0.5M Points
1.0M Points
1.5M Points
2.0M Points
2.5M Points

Figure 6.3.: Runtime of eos-mbpt with different numbers of Monte-Carlo points (in million)
for vanilla (w/o instrumentation) and four PIRA iterations (w/ instrumentation).
Runtime for standard Score-P measurements for 0.5, 1.0, 1.5, 2.0, and 2.5M points:
695 s, 1,981 s, 3,461 s, 3,169 s, 5,126 s.

6.2.1. Extraction Approach

We apply PIRA for the automatic kernel identification using performance models. The
number of Monte-Carlo points serves as the modeling parameter. PIRA is applied running
the default four iterations, i.e., one initial and three refinement iterations, with a final
runtime overhead of ≈75%. From Figure 6.3, we can see the runtime impact of the
iterative refinement. It reduces the profile to a total of 16 regions, compared to 584 in a
default Score-P [64] profile. Table 6.1 lists the constructed performance models for the
eos-mbpt kernels after the fourth PIRA iteration, while Table 6.2 presents an excerpt of
the final iteration’s profile and a breakdown of the runtime share of the different functions.
We see that the identified kernels consume the largest share of the runtime, with f_NN_HF
being the most important one. Int_NN_HF is an important wrapper function on the call
path from main to f_NN_HF, which is why it is listed despite its very short runtime.

Given the identified kernels and the final runtime profile, we determine a single kernel
call-site as the starting point of the extraction process. Starting from this call-site, the

95

Function Performance Model
f_NN_HF −4.5 + 4.2−5 ×N

get_qNN −2.3 + 2.3−5 ×N

SphericalY −4.8 + 8.5−5 × (N
3
4)× log2(N)

Table 6.1.: The identified kernels and their constructed performance models as a function of the
number of Monte-Carlo points N . Ci denote constants.

Function Runtime (s) % Total
Inclusive Exclusive

main 490.0 1.2 0.3%
Int_NN_HF 488.9 1.2 0.3%
f_NN_HF 488.1 359.9 73.5%
get_qNN 128.2 26.3 5.4%
SphericalY 101.9 101.9 20.8%

Table 6.2.: Excerpt of a flat profile and breakdown of runtime share for iteration PIRA 4 and 1.0M
Monte-Carlo points. Sum of percentages may exceed 100% due to rounding.

translator identifies andmarks 15 functions, 21 (global) variables, and 18 types— including
built-ins — to extract. Three of the functions come from two third-party libraries, for
which #include statements are required. The translator is able to generate the correct
include statement for the system includes required, while for third party libraries it outputs
hints to the developer which files are needed. In addition to the global variables, 17 local
variables are required for the kernel call-site. For all variables the respective CPR calls
are generated, and for four of the variables determining the allocation size is deferred to
application runtime.

Table 6.3 shows the significant reduction that the tool-supported extraction approach
achieves compared to the original application. Mini-app is a fully automatically extracted
mini-app that maintains all calls to third-party libraries. MCS Mini-app is a manually aug-
mented version of Mini-app that includes all code required for the Monte-Carlo integration.
We see that our approach is able to reduce the number of lines of code (LOC) drastically
(≈ 7,500×) compared to the original application. Also, the number of functions, reachable
functions, variables and types is significantly reduced in the mini-app as well. We count
types, e.g., int, and pointers to such types as the same type, but count typedef types as
their own type, i.e., int * is not a new type whereas typedef int* IntP is. In the original

96

Metric Original Mini-app MCS Mini-app
Lines of Code 8,571,815 422 1,117

Functions 31,196 46 82

– Reachable 445 33 52

Variables 1,206 183 356

Types 462 18 94

Table 6.3.: Reduction in size and complexity achieved with our tool-supported extraction approach
(Mini-app) and manual addition of third-party library functions (MCS Mini-app).

application, matrices of function pointers are stored, thus the relatively high number of
functions (31,196). However, our configuration does not enable paths to these matrices,
thus, the much smaller number of reachable functions (445). In particular, the automated
extraction results in 46 functions of which 33 are reachable, and only 183 variables within
the program. Manually adding the Monte-Carlo integration source code increases this
complexity again to 82 functions of which 52 are reachable and a total of 356 variables.
This increase is due to additional functions, previously hidden in the Cuba library im-
plementation, and now accessible in the mini-app. The integration of the Monte-Carlo
integration source code removes the previously maintained dependency to the third party
Cuba library and leaves the GSL and OpenBLAS libraries as only dependencies. We use this
final version of the mini-app for our subsequent performance improvement experiments.

6.2.2. Mini-app Quality

The mini-app should reduce the size of the original application, while maintaining key
performance characteristics of its execution. Hence, we evaluate the quality of the mini-
app extracted by comparing its complexity and execution characteristics after compilation
with GCC and optimization level -O3.

Hierarchical Clustering The final stage of our approach considers the analysis of repre-
sentativeness. Figure 6.4 shows the resulting dendrogram from our hierarchical clustering
analysis for the kernel region as well as the individual functions using hardware perfor-
mance counter measurements. The x-axis shows the Ward distance, i.e., the similarity
measure, of which lower numbers mean higher similarity and are better. The y-axis shows
the specific function measured, prefixed with eos for the original application or miniEOS
for the mini-app, while the number in parentheses denotes multiples of the same regions.

97

0246810
Distance (Ward)

miniEOS: kernel (1)
miniEOS: kernel (2)
eos: kernel (1)
eos/miniEOS: kernel (8)
miniEOS: interpolate_NN_MEs (2)
miniEOS: interpolate_NN_MEs (4)
eos: interpolate_NN_MEs (2)
eos: interpolate_NN_MEs (4)
miniEOS: get_qNN (1)
miniEOS: get_qNN (5)
eos: get_qNN (4)
eos: get_qNN (2)
Function Set C (8)
Function Set B (16)
Function Set A (24)
eos/miniEOS: get_NN_Pot (12)

P
ro

gr
am

 a
nd

 F
un

ct
io

n

Figure 6.4.: Dendrogram resulting from representativeness validation using hardware performance
counter measurements on the eos-mbpt original and mini-app.

This multiplicity arises from multiple executions of the hardware performance counter
measurements and very low Ward distances. Function Set A, B, C are introduced for
brevity and refer to the functions listed in Table 6.4.

From Figure 6.4 we can see that (1) the kernel region, i.e., the kernel and its depen-
dencies, of the original and the mini-app are similar to each other and form one cluster
(bottom four), (2) the same function from one application is usually its own cluster,
and, (3) the same function from the original and the mini-app are typically clustered
next. This means that we consider the observable behavior of the kernel region similar,
hence, representative. However, the Ward distance is a relative measure of similarity, thus,
the clusters may be misleading Consequently, the following paragraphs present a more
detailed evaluation of the representativeness and go beyond the hierarchical clustering,
while using the same measurement data.

98

Function Set A Function Set B Function Set C
eos:Int_NN_HF miniEOS:Int_NN_HF miniEOS:Int_NN_HF
eos:getCartCoords miniEOS:getCartCoords miniEOS:getCartCoords
eos:getSpherCoords miniEOS:getSpherCoords miniEOS:getSpherCoords
eos:f_NN_HF miniEOS:f_NN_HF miniEOS:f_NN_HF

Table 6.4.: Function names for Function Set A, B, and C used in the dendrogram in Figure 6.4.

Dynamic Instruction Mix Since the mini-app is much smaller, the compiler may take
different decisions when creating the binary. We capture the dynamic instruction mix
using a PIN [85] tool to compare how similar the actually executed machine instructions
are. Please note that we capture the instruction mix for the full execution of both original
and mini-app, thus, we expect some differences. Figure 6.5 depicts the occurrences of
instructions of different categories at execution of both original and mini-app. From left to
right, the plot shows the different categories and the y-axis shows the occurrence within
the different apps, and their difference. The values are normalized by the respective
event’s order of magnitude to eliminate the large discrepancies in total numbers, e.g.,
an instruction of the AVX category is executed 1,340,130,423,838 times, whereas a NOP is
executed only 604,217,093 times. The difference values are normalized by the order of
magnitude obtained from the mini-app measurement. We see that for a few categories, i.e.,
NOP, PREFETCH, STRINGOP, SYSCALL, SYSTEM, and XSAVE, the difference is significant.
For example, the original app performs more file-IO, which explains the difference in the
SYSCALL and SYSTEM categories. However, most categories behave very similar, meaning
that the compiler indeed produces similar — if not identical — code for the mini-app.

Execution Performance From Table 6.5 we see that the mini-app can be compiled
much faster, while the runtime for the kernel region is almost identical to the original
application. Although the compile time of the original application is not dramatically
larger, the reduction is significant. The compile-time speedup is due to the mini-app
including significantly fewer C/C++ header files compared to the original application.

The runtime in both original and mini-app is almost identical. This is expected, as the
kernel code-path is the same for original and mini-app. We determine the maximum
resident set size using the rusage utility, i.e., the largest amount of memory occupied at
any point of the execution. Table 6.5 shows that the application’s memory footprint is in
general relatively small. The CPR mechanism in the mini-app increases this demand, due
to its internal data buffering.

99

AV
X

BIN
AR
Y

BIT
BY
TE

BM
I1

CA
LL

CM
OV

CO
ND

_B
R

CO
NV

ER
T

DA
TA
XF
ER

LO
GIC

AL

LO
GIC

AL
_FP MI

SC NO
P

PO
P

PR
EF
ET
CH

0

2

4

6

8

10

N
or
m
al
iz
ed

Va
lu
es

Instruction Mix
Original Application
MCS Mini-App
Difference

PU
SH RE

T

RO
TAT

E

SE
MA

PH
OR

E
SE
TC
C

SH
IFT SS

E

ST
RIN

GO
P

SY
SC
AL
L

SY
ST
EM

UN
CO

ND
_B
R

WI
DE
NO

P

X8
7_
AL
U

XS
AV
E

0

2

4

6

8

10

N
or
m
al
iz
ed

Va
lu
es

Instruction Mix
Original Application
MCS Mini-App
Difference

Figure 6.5.: Visualization of the categorized dynamic instruction mix for the original application
(light gray), the mini-app (gray), and the difference of both (dark gray). The categories
are normalized to the respective order of magnitude to help plotting. The bars for
Original Application and MCS Mini-App should be equal; for Difference lower is better.

100

Metric Original MCS Mini-app
Compile Time (s) 152± 2 1± 0

Runtime (s) 1,458± 11.1 1,438± 10.0

Memory (KB) 49,636 112,808

Instructions Executed 9,205,467 9,153,898

Conditional Branches 635,980 635,790

Branches Mispredicted 10,684 10,724

L2D Accesses 45,550 45,467

L2D Misses 18,453 18,624

L2D Reads 39,744 39,462

L2D Writes 1,074 1,069

Stores 599,855 598,899

Loads 2,419,059 2,369,460

Misprediction Rate 1.68 1.69

L2D Miss Rate 40.51 40.96

Table 6.5.: Different metrics relevant in (performance) experimentation for original and mini-app.
All hardware performance counter values are in millions of events and give the median
over ten repetitions (standard deviation: < 8%). L2D refers to the level two data
cache.

101

Also, the hardware performance counter values obtained for the kernel region in both
original and mini-app are almost identical. Since the extracted code for the kernel code
path is identical between the original and the mini-app, this is not surprising. More
importantly, however, is that it indicates that our approach did not simplify the mini-app
to a degree that allows the compiler to optimize much more aggressively. We measured
level 2 data cache (L2D) accesses and misses, together with data cache reads and writes,
as these are often used to investigate memory-subsystem utilization. In addition, we
measured load and store instructions, as well as conditional branches executed and
branches mispredicted. From Table 6.5, we can see that the measured events are very
similar between original and mini-app. As a result, also commonly used derived metrics,
such as L2D miss rate (40.51 compared to 40.96) and the branch misprediction rate (1.68
compared to 1.69), are very similar. Hence, important insights that are gained by analyzing
the mini-app can be transferred back to the original application.

6.2.3. Tool-supported Parallelization

DiscoPoP [80] is a parallelism discovery tool. It first decomposes a sequential application
into so-called Computational Units (CU). The CUs are the basic blocks for the paralleliza-
tion, i.e., a CU is not well-suited for thread-level parallelization. Then, DiscoPoP extracts
data dependencies in the application using a its data-dependence profiler [94], [104].
The profiler instruments memory-access instructions in the code with functions that are
invoked during runtime to compute and record data dependencies. To obtain dependen-
cies in different execution paths of a program, users need to employ a representative set
of inputs [105]. Using the data dependencies recorded, DiscoPoP identifies parallelization
opportunities following parallel design patterns, e.g., DoAll or Pipeline. Once the patterns
are found, DiscoPoP points the developer to source-code lines which exhibit the patterns
and makes suggestions for the implementation of the patterns in the form of OpenMP
constructs [105]. Moreover, it suggests how to classify the data sharing of variables inside
the specific regions.

Identification of Patterns We apply DiscoPoP to the final mini-app and identify thread-
level parallelization opportunities. To reduce the execution time of the dependence
profiling, we reduce the number of Monte-Carlo points to 500,000, whereas the original
application performs up to 16,250,000. The vanilla runtime of the mini-app using the
reduced number of Monte-Carlo points is 45.2 seconds with a standard deviation of less
than one percent. The DiscoPoP profiler introduces a slowdown of 289.7×, and identifies
42 unique patterns. For the evaluation of the suggested patterns, we focus on suggested
DoAll patterns, see Table 6.6.

102

Pattern Containing Function Kernel
350 get_NN_Pot N

442 get_qNN Y

474 f_NN_HF Y

482 f_NN_HF Y

490 f_NN_HF Y

Table 6.6.: Evaluated DoAll pattern suggestions with the containing function and if the function
was identified as kernel during the mini-app extraction.

Evaluation of Parallelization Suggestions We implement the different patterns sepa-
rately and evaluate the speed-up using the original data set size, i.e., 16,250,000 Monte-
Carlo points. The experiments are run on 2.5GHz Intel Xeon E5-2670v3 processors with
frequency scaling and HyperThreading disabled. The runtime results denote the median
of 10 consecutive runs on the same processor, and a standard deviation of ≈3%. We
varied the number of threads used in the parallel region and varied the thread binding.
Figure 6.6 shows the speed-ups achieved with the different patterns. The x-axis shows
the different pattern IDs, and the y-axis the speed-up achieved over vanilla execution. We
find that the largest speed-up is achieved from using pattern 442 and four threads spread
across the four NUMA domains of the processor. This results in a speed-up over the serial
execution of ≈32%. Generally, pattern 442 leads to the largest speed-ups when run with
four threads. Additionally, pattern 482 achieves a speed-up of up to ≈20%, when run
with two threads and compact NUMA distribution.

Transfer to Original Application Given that the relevant regions, i.e., the kernel and its
dependencies, are copied from the original application, the transfer of the parallelization
opportunities to the original application is straight forward. The user can search for the
function in the original application and copy the added OpenMP pragmas to the respective
loops. Running the original application with the transferred pattern 442 results in a
speed-up of 28% for four threads and spread NUMA binding.

6.3. Discussion

Our approach allowed us to extract a representative mini-app from a large-scale simulation
code. Increasing the interoperability between PIRA and the source extractor, however,
would further reduce the amount of manual work required. Currently, an analyst needs to

103

482350 442 490474

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

DiscoPoP DoAll pattern suggestion

Re
la
tiv

e
Ru

nt
im

e
Sp

ee
du

p
Co

m
pa

re
d
to

Va
ni
lla 1-NUMA 2C

2-NUMA 2C
Spread 2C

1-NUMA 4C
4-NUMA 4C
Spread 4C

Figure 6.6.: Speed-up achieved with different DiscoPoP-suggested parallelization patterns using 2
and 4 threads and different thread binding: n-NUMA refers to manual pinning of the
threads to n NUMA domain(s), whereas Spread refers to OMP_PROC_BIND=SPREAD.

104

inspect the generated profiles and match the identified kernels to their respective call sites,
which are subsequently provided to the extractor. Furthermore, our evaluation showed
that, while PIRA correctly identified the application’s kernel, it also generated a significant
amount of runtime overhead. Nevertheless, the linear performance model constructed
follows our expectations, due to the Monte-Carlo algorithm used.

The source-to-source translator, currently, identifies dependencies in a context- and
path-insensitive manner. This becomes apparent in one of the identified dependencies,
as the function contains large parts of dead code. However, the extractor, considering
the full function body, identified additional dependencies that were not required. We
addressed this with preprocessor macros, as the dead code was part of another version of
the algorithm. Hence, a user now selects at compile time which algorithm to use.

The approach presented is focused on sequential applications. However, within the
workflow, all tools except the source extractor are capable of handling MPI-parallel appli-
cations. As the source extractor operates at the function level, we expect that it can handle
such codes partially. In its current version, however, the extractor is unaware whether it
needs to generate additional MPI-related setup code, e.g., a call to MPI_Init, or, potentially
more elaborate preparation steps, such as the (re)creation of custom MPI communicators.
While we believe that it would extract valid subregions from an MPI application, careful
validation of both runtime behavior and computational result is required.

105

7. Summary

We presented a study on the influence of two state-of-the-art performance measure-
ment tools, with a focus on instrumentation-based measurement. It shows that current
instrumentation-based tools provide insufficient automatic filtering, leading to impracti-
cally large runtime overhead and measurement perturbation. Our tool PIRA uses whole-
program call graph (CG) analysis and automatically refines instrumentation-based mea-
surements towards regions of interest, reducing the runtime overhead and presenting
only relevant data to an analyst. We developed MetaCG to provide a flexible whole-
program CG infrastructure for compiler-based tools, such as PIRA. Finally, we presented a
tool-supported approach to semi-automatically extract mini-apps from existing code-bases.

Measurement Perturbation Study Our introduction pointed out the lack of a study
on the influence of state-of-the-art performance measurement tool. To fill the gap, we
investigated the influence of instrumentation-based performance measurements with
the state-of-the-art tool Score-P. In addition, we obtained data for such measurements
using the sampling-based tool HPCToolkit. Particularly for C++ applications, the runtime
overhead of instrumentation-based measurements can be substantial. While this is not
surprising, we also found that, despite the large slowdown, even some finicky-to-obtain
hardware performance counter (HWPC) values can be obtained without being perturbed
heavily. Even derived metrics, i.e., metrics that take into account multiple low-level HWPC
measurements, can be obtained almost non-perturbed. Nevertheless, the large slowdowns
in some cases can lead to prohibitively long instrumentation-based measurements.

PIRA Our tool PIRA addresses the currently required manual filter creation for Score-P
automatically (1) identifying an initial low-overhead instrumentation, and, (2) refining
the instrumentation towards application hot-spots. This frees a performance analyst from
tedious manual filter creation and repetitive refinement cycles. PIRA itself is constructed
from exchangeable components to allow for flexible extension and uses the widespread
Score-P measurement system as profiling backend. Hence, resulting profiles and traces can
be viewed and analyzed with the Score-P ecosystem’s tools, such as Vampir or Scalasca.

106

PIRA’s analyzer implements different heuristics for instrumentation-filter generation
and refinement. For instance, PIRA provides filtering based on empirically-constructed
performance models, or the automatic identification of load imbalances in MPI-parallel
applications. In our evaluation, PIRA is able to generate instrumentation-based mea-
surements with overheads typically below 5% for hot-spot detection, or, 15% for load
imbalance detection. Since it outputs regular Score-P filter files, an analyst can continue to
work from the PIRA-generated filter list for further investigation of the target application.

MetaCG As part of the PIRA development, we implement MetaCG — a lightweight
whole-program CG library focusing on C++. MetaCG allows to freely annotate function
nodes with user-defined metadata, and the subsequent serialization of the CG to exchange
data between tools. For the CG construction, we implemented a Clang-based tool that
constructs translation unit-local CG and subsequently merges them into the whole-program
CG. PIRA facilitates the metadata mechanism for its static instrumentation heuristics that
are based on source-code features, but are, conceptually, not tied to a particular compiler.

Mini-AppEx We developed an approach to use the kernels identified with PIRA to extract
mini-apps from existing applications. To that end, we implemented a novel Clang-based
source-to-source translator, and a type-safe checkpoint/restart abstraction.

The source-to-source translator identifies, starting from a kernel call-site, in a mark-and-
sweep fashion all required dependencies, i.e., functions, variables, and types. It reuses the
application’s MetaCG for whole-program reachability analysis while processing the current
translation unit. Its dependency analysis operates at function granularity, making it less
expensive than traditional slicing at the statement level. The almost identical source code
of the mini-app leads to almost identical execution behavior as the original application.

We applied our approach to extract a mini-app with ≈ 1,100 lines of code from a
simulation of ≈ 8.5 million lines of code. Thereafter, we used the extracted mini-app
to perform a brief performance analysis and subsequently applied the tool DiscoPoP to
identify potential parallelism. We implemented a promising subset of the shared-memory
parallelization opportunities proposed by DiscoPoP and arrived at a speed-up of ≈35%
for the mini-app. We successfully transferred the parallelization back to the original
application and achieved ≈30% speedup. The transfer was straight-forward as the kernel
source-code was the same between the mini-app and the original application.

Altogether, our work leads to a toolchain that automates important relevant parts
of performance analysis and exploration, thereby enabling broader applicability of this
efficiency-enhancing work with the limited human resources at hand.

107

8. Future Work

Around the different aspects of this thesis several avenues for future research opened up.
Some are of fundamental nature, others more technical.

MetaCG While we worked on MetaCG, we realized that the systematic evaluation of
different CG construction tools is almost non-existent. This is particularly true for the
languages C and C++, despite their broad usage. Hence, it is of interest to investigate high-
level and language-agnostic description possibilities for CGs and implement an integrated
evaluation and benchmark suite for CG construction. The evaluation should include
criteria for completeness, e.g., missed edges, and precision, e.g., over approximation, but
could extend to practical aspects, such as multi-TU support. From high-level descriptions
the actual test cases can be generated for different languages, significantly broadening
the targeted community. Together with a well-defined evaluation methodology, similar
to [78], [83], this allows for an insightful comparison of different CG construction tools
and approaches. Of course, language-specific challenges, such as reflection in Java, need
to be included and reasonable abstractions and mechanisms need to be found.

For MetaCG itself, including the explicit modeling of edges to distinguish between virtual
call edges and direct call edges is of high interest. Including this distinction eliminates
certain cases of over approximation w.r.t. the potential call targets and improves the
precision. Similarly, the alias computation and, thus, the function pointer handling, in
particular across TU boundaries, could be improved.

PIRA Currently, PIRA uses simple static heuristics to determine which functions to
instrument. Hence, it is of interest to develop and evaluate more elaborate static selection
heuristics, such as a global loop depth. Such additional heuristics could potentially
improve the number of functions mistakenly selected, or reduce the number of functions
that would be subsequently filtered. Improvements, such as recursion detection, and the
subsequent use of call-site instead of function-level instrumentation may significantly
improve measurement overheads for the respective situations. Similarly, hybrid analysis
and instrumentation mechanisms, i.e., recompilation of the target application only every

108

i-th PIRA iteration, can reduce the total PIRA time required. This is of particular interest
when the compilation of the target application takes considerably longer than the execution,
as it was the case in the ISSM load-imbalance detection experiment.

The combination of the already existing (and newly developed heuristics), into a
combined cost-model also looks promising. Such a cost assessment would allow an analyst
to run a single PIRA experiment and receive multiple insights about the target application’s
behavior. Consequently, the analyst is not required to run multiple independent PIRA
experiments, meaning that less waiting time and fewer compute resources are needed. It
is also worth exploring whether data-analytics and machine-learning approaches can be
used to improve the heuristics, whenever past performance data is already available.

Paradigm- and library-specific heuristics are further interesting areas of research. For
example, OpenMP constructs can be used to guide hot-spot and scalability heuristics,
given that parallelization typically is used in areas where considerable work is performed
or expected. However, also awareness of calls to scientific libraries, such as PETSc [10],
may help the analyzer to determine where to place instrumentation.

Mini-AppEx In this thesis, we applied our mini-app extraction approach to only one
use case. While this showed the potential of the approach, it is of great interest to use it
with more target applications. Of particular interest are applications that already include
parallelism, for example using MPI or OpenMP, as in these cases, the extraction approach
needs to maintain the communication behavior of the original application. Otherwise,
performance analysis insight may not be transferrable from the mini-app to the original
application. In addition, the validation of the application’s results is of significant interest.

Similarly, a fully-automatic approach to the validation of the mini-app’s representative-
ness is worth pursuing. While the validation step presented in this thesis used data-analytic
techniques for data clustering and visualization, the final interpretation was left to the hu-
man analyst. Determining reasonable and relevant measures to application and execution
similarity as well as their automatic interpretation and rating need to be developed.

Improvements to the source-to-source translator might include a better handling of
multi-translation-unit programs for extraction, as well as significant support for C++ and
its modern standards. As part thereof, additional meta information in MetaCG seem
appropriate, e.g., export of the call sites to a particular function as metadata to improve
subsequent analysis precision.

109

A. The Influence of Measurement

The tables present the data captured for the different hardware performance counter
measurements. We list only HWPC events mentioned in the main matter for brevity. All
raw data can be provided upon request, and will be made publicly available once the final
version of the thesis is published.

110

Benchmark Flavor Runtime BR_MSP BR_CN

403.gcc

finstr 1.57 3.34 1.00
scorep 14.04 3.75 13.08

hpct500 1.02 1.02 1.01
hpct1000 1.02 1.01 1.00

429.mcf

finstr 1.26 1.01 1.03
scorep 5.83 0.99 10.04

hpct500 1.01 1.00 1.00
hpct1000 1.01 1.00 1.00

433.milc

finstr 1.05 3.17 1.00
scorep 3.25 1.56 11.89

hpct500 1.02 1.37 1.01
hpct1000 1.01 1.19 1.01

444.namd

finstr 1.05 0.99 1.00
scorep 3.43 1.00 7.61

hpct500 1.01 1.00 1.01
hpct1000 1.00 1.00 1.00

447.dealII

finstr 14.24 41.06 1.12
scorep 367.28 33.97 468.25

hpct500 1.02 1.02 1.00
hpct1000 1.01 1.01 1.00

450.soplex

finstr 3.11 3.77 1.00
scorep 57.34 1.69 80.39

hpct500 1.00 1.00 1.00
hpct1000 1.00 1.00 1.00

453.povray

finstr 4.09 14.52 1.02
scorep 50.80 6.98 68.91

hpct500 1.02 1.01 1.01
hpct1000 1.01 1.01 1.00

Table A.1.: (1/2) Perturbation on runtime and branching-behavior related HWPC for the different
measurement techniques on Sandy Bridge processors using GCC 4.9.4 and Score-P 3.0,
as well as HPCToolkit with 500 and 1000 samples per second, respectively.

111

Benchmark Flavor Runtime BR_MSP BR_CN

456.hmmer

finstr 1.01 1.00 1.00
scorep 1.20 1.00 1.77

hpct500 1.01 1.01 1.00
hpct1000 1.00 1.00 1.00

458.sjeng

finstr 1.56 2.05 1.00
scorep 8.25 1.70 7.03

hpct500 1.01 1.01 1.01
hpct1000 1.01 1.00 1.00

462.libquantum

finstr 1.01 1.17 1.00
scorep 1.47 1.02 1.30

hpct500 1.01 1.01 1.00
hpct1000 1.01 1.00 1.00

464.h264ref

finstr 1.51 4.41 1.00
scorep 12.76 2.59 16.44

hpct500 1.02 1.02 1.01
hpct1000 1.01 1.01 1.00

470.lbm

finstr 1.00 1.02 1.00
scorep 1.00 1.15 1.00

hpct500 1.01 1.16 1.03
hpct1000 1.00 1.09 1.01

473.astar

finstr 1.91 1.21 0.94
scorep 24.68 1.45 44.18

hpct500 1.01 1.00 1.00
hpct1000 1.01 1.00 1.00

482.sphinx3

finstr 1.05 1.11 1.00
scorep 2.57 1.05 2.91

hpct500 1.01 1.01 1.00
hpct1000 1.01 1.00 1.00

Table A.2.: (2/2) Perturbation on runtime and branching-behavior related HWPC for the different
measurement techniques on Sandy Bridge processors using GCC 4.9.4 and Score-P 3.0,
as well as HPCToolkit with 500 and 1000 samples per second, respectively.

112

Benchmark Flavor Runtime TOT_INS TOT_CYC BR_MSP BR_CN

403.gcc finstr 1.41 1.32 1.42 1.10 1.00
scorep-no-filter 13.25 19.96 12.62 4.29 12.82

429.mcf finstr 1.17 1.69 1.17 0.97 1.03
scorep-no-filter 4.94 20.18 4.96 1.01 10.04

433.milc finstr 1.04 1.11 1.04 1.05 1.00
scorep-no-filter 3.02 5.77 3.03 1.92 11.79

444.namd finstr 1.06 1.11 1.06 0.99 1.00
scorep-no-filter 3.35 4.04 3.36 1.01 7.60

447.dealII finstr 12.41 5.95 12.53 4.93 1.12
scorep-no-filter 396.61 342.41 400.07 36.54 466.61

450.soplex finstr 2.92 2.71 2.93 1.22 1.00
scorep-no-filter 54.69 106.87 55.02 1.81 80.59

453.povray finstr 3.32 1.92 3.41 2.62 1.02
scorep-no-filter 54.53 60.73 56.43 15.05 70.19

456.hmmer finstr 1.02 1.01 1.02 1.00 1.00
scorep-no-filter 1.16 1.38 1.16 0.99 1.78

458.sjeng finstr 1.30 1.18 1.30 0.95 1.00
scorep-no-filter 7.98 11.45 7.96 1.82 7.03

462.libquantum finstr 1.01 1.01 1.01 1.01 1.00
scorep-no-filter 1.41 1.51 1.42 0.96 1.30

464.h264ref finstr 1.35 1.26 1.35 1.20 1.00
scorep-no-filter 11.82 11.16 11.84 2.34 16.87

470.lbm finstr 1.00 1.00 1.00 1.00 1.00
scorep-no-filter 1.00 1.00 1.00 1.00 1.00

473.astar finstr 1.91 2.06 1.94 1.05 0.94
scorep-no-filter 22.10 60.50 22.19 1.61 44.33

482.sphinx3 finstr 1.05 1.04 1.05 0.96 1.00
scorep-no-filter 2.53 2.79 2.53 0.96 2.88

Table A.3.: The influence of GCC 4.9.4 and Score-P 3.0 w/o inline filtering on runtime, total
instructions (TOT_INS), total cycles (TOT_CYC), mispredicted branches (BR_MSP), and
conditional branches (BR_CN).

113

Benchmark Flavor Runtime TOT_INS TOT_CYC BR_MSP BR_CN

403.gcc scorep-no-filter 13.72 20.73 13.20 4.41 12.48
scorep 11.26 17.94 10.87 4.01 9.93

429.mcf scorep-no-filter 5.36 21.52 5.33 1.77 10.21
scorep 4.84 20.24 4.81 1.67 9.62

433.milc scorep-no-filter 3.07 6.10 3.07 1.46 11.86
scorep 3.02 5.77 3.02 1.56 11.05

444.namd scorep-no-filter 3.43 4.10 3.42 1.04 7.19
scorep 1.00 1.00 1.00 1.00 1.00

447.dealII scorep-no-filter 424.01 354.30 436.00 38.20 483.47
scorep 12.01 12.10 12.16 3.93 11.93

450.soplex scorep-no-filter 59.06 115.74 59.22 1.69 76.14
scorep 2.88 4.50 2.87 1.21 3.19

453.povray scorep-no-filter 59.91 65.84 62.16 17.92 68.21
scorep 0.00 0.00 0.00 0.00 0.00

456.hmmer scorep-no-filter 1.11 1.37 1.12 0.99 1.67
scorep 1.29 1.35 1.29 0.99 1.63

458.sjeng scorep-no-filter 8.21 11.44 8.19 1.82 6.76
scorep 7.86 10.81 7.89 1.78 6.42

462.libquantum scorep-no-filter 1.43 1.52 1.44 1.45 1.28
scorep 1.25 1.30 1.25 1.73 1.16

464.h264ref scorep-no-filter 12.49 11.25 12.55 2.94 15.99
scorep 11.94 10.61 12.01 3.06 15.00

470.lbm scorep-no-filter 1.00 1.00 1.00 1.00 1.00
scorep 1.00 1.00 1.00 1.00 1.00

473.astar scorep-no-filter 23.01 62.35 22.99 1.58 42.32
scorep 8.23 20.02 8.23 1.57 13.45

482.sphinx3 scorep-no-filter 2.65 2.78 2.66 1.03 2.84
scorep 2.53 2.65 2.53 1.05 2.66

Table A.4.: The influence of GCC 9.1.0 and Score-P 6.0 w/ and w/o inline filter on runtime, total
instructions (TOT_INS), total cycles (TOT_CYC), mispredicted branches (BR_MSP), and
conditional branches (BR_CN).

114

Benchmark Flavor Runtime TOT_INS TOT_CYC BR_MSP BR_CN

403.gcc scorep-no-filter 13.69 20.78 13.38 4.27 13.15
scorep 12.09 15.06 9.54 3.80 9.41

429.mcf scorep-no-filter 5.14 19.12 5.16 1.07 9.39
scorep 1.19 1.43 1.19 1.01 1.20

433.milc scorep-no-filter 3.10 7.12 3.12 1.19 32.78
scorep 3.13 7.09 3.15 1.18 32.54

444.namd scorep-no-filter 3.65 4.28 3.65 1.02 7.32
scorep 1.00 1.00 1.00 1.00 1.00

447.dealII scorep-no-filter 424.63 445.75 419.32 41.09 685.26
scorep 13.33 15.79 13.41 2.44 18.88

450.soplex scorep-no-filter 58.98 124.28 59.34 2.18 91.52
scorep 2.96 5.14 2.96 1.00 4.03

453.povray scorep-no-filter 0.00 0.00 0.00 0.00 0.00
scorep 0.00 0.00 0.00 0.00 0.00

456.hmmer scorep-no-filter 1.26 1.42 1.25 0.97 1.46
scorep 1.12 1.27 1.11 0.98 1.29

458.sjeng scorep-no-filter 8.92 12.81 8.96 1.87 7.59
scorep 7.19 10.09 7.15 1.81 6.06

462.libquantum scorep-no-filter 1.41 1.51 1.41 0.68 1.29
scorep 1.26 1.32 1.27 1.09 1.18

464.h264ref scorep-no-filter 13.11 13.06 13.11 2.72 20.82
scorep 12.86 12.73 13.18 2.63 20.69

470.lbm scorep-no-filter 1.00 1.00 1.00 1.00 1.00
scorep 1.00 1.00 1.00 0.99 1.00

473.astar scorep-no-filter 23.97 67.55 23.99 1.45 46.39
scorep 5.08 12.34 5.08 1.14 8.55

482.sphinx3 scorep-no-filter 2.91 3.00 2.92 1.04 3.05
scorep 2.45 2.48 2.46 1.05 2.52

Table A.5.: The influence for Clang 10.0 with Score-P 6.0 w/ and w/o inline-filter on runtime,
total instructions (TOT_INS), total cycles (TOT_CYC), mispredicted branches (BR_MSP),
and conditional branches (BR_CN).

115

Benchmark Flavor Runtime TOT_CYC TOT_INS

403.gcc scorep 12.09 9.54 15.06
scorep-no-filter 13.69 13.38 20.78

429.mcf scorep 1.19 1.19 1.43
scorep-no-filter 5.14 5.16 19.12

433.milc scorep 3.13 3.15 7.09
scorep-no-filter 3.10 3.12 7.12

444.namd scorep 1.00 1.00 1.00
scorep-no-filter 3.65 3.65 4.28

447.dealII scorep 13.33 13.41 15.79
scorep-no-filter 424.63 419.32 445.75

450.soplex scorep 2.96 2.96 5.14
scorep-no-filter 58.98 59.34 124.28

453.povray scorep 0.00 0.00 0.00
scorep-no-filter 0.00 0.00 0.00

456.hmmer scorep 1.12 1.11 1.27
scorep-no-filter 1.26 1.25 1.42

458.sjeng scorep 7.19 7.15 10.09
scorep-no-filter 8.92 8.96 12.81

462.libquantum scorep 1.26 1.27 1.32
scorep-no-filter 1.41 1.41 1.51

464.h264ref scorep 12.86 13.18 12.73
scorep-no-filter 13.11 13.11 13.06

470.lbm scorep 1.00 1.00 1.00
scorep-no-filter 1.00 1.00 1.00

473.astar scorep 5.08 5.08 12.34
scorep-no-filter 23.97 23.99 67.55

482.sphinx3 scorep 2.45 2.46 2.48
scorep-no-filter 2.91 2.92 3.00

Table A.6.: The influence for Clang 10.0 with Score-P 6.0 w/ and w/o inline-filter on runtime, and
basic events for derived metric Instructions per Cycle.

116

Benchmark Flavor Runtime L2_TCM L2_TCA L2_DCM LST_INS

403.gcc scorep 12.09 1.42 3.22 1.30 20.32
scorep-no-filter 13.69 1.59 4.12 1.43 28.27

429.mcf scorep 1.19 1.04 1.13 1.03 1.57
scorep-no-filter 5.14 1.15 1.14 1.14 24.90

433.milc scorep 3.13 0.92 1.06 0.92 9.11
scorep-no-filter 3.10 0.95 1.06 0.95 9.12

444.namd scorep 1.00 1.01 0.99 0.95 1.00
scorep-no-filter 3.65 1.25 1.34 1.16 8.92

447.dealII scorep 13.33 1.44 1.62 1.28 17.51
scorep-no-filter 424.63 28.22 266.21 24.86 477.07

450.soplex scorep 2.96 0.96 1.11 0.96 5.92
scorep-no-filter 58.98 0.70 2.38 0.68 148.83

453.povray scorep 0.00 0.00 0.00 0.00 0.00
scorep-no-filter 0.00 0.00 0.00 0.00 0.00

456.hmmer scorep 1.12 1.36 0.91 1.39 1.24
scorep-no-filter 1.26 1.42 0.87 1.36 1.37

458.sjeng scorep 7.19 2.85 14.48 2.68 14.95
scorep-no-filter 8.92 3.91 18.13 3.47 19.13

462.libquantum scorep 1.26 1.00 1.02 1.00 1.68
scorep-no-filter 1.41 1.01 0.95 1.00 2.10

464.h264ref scorep 12.86 1.10 1.77 0.97 13.28
scorep-no-filter 13.11 1.12 2.00 1.01 13.65

470.lbm scorep 1.00 1.01 1.00 1.01 1.00
scorep-no-filter 1.00 1.00 1.00 1.00 1.00

473.astar scorep 5.08 0.91 1.05 0.90 14.82
scorep-no-filter 23.97 0.83 1.09 0.83 81.14

482.sphinx3 scorep 2.45 1.08 1.10 1.04 3.58
scorep-no-filter 2.91 1.10 1.16 1.06 4.49

Table A.7.: The influence for Clang 10.0 with Score-P 6.0 w/ and w/o inline-filter on runtime,
level two total cache misses (L2_TCM), level two total cache accesses (L2_TCA), level
two data cache misses (L2_DCM), and lost/store instruction (LST_INS).

117

Benchmark Flavor Runtime L3_TCM L3_TCA L2_DCA

403.gcc scorep 12.09 1.02 1.42 3.31
scorep-no-filter 13.69 1.01 1.58 4.35

429.mcf scorep 1.19 1.02 1.03 1.13
scorep-no-filter 5.14 1.09 1.14 1.13

433.milc scorep 3.13 0.99 0.92 1.06
scorep-no-filter 3.10 1.03 0.95 1.06

444.namd scorep 1.00 1.01 0.99 0.99
scorep-no-filter 3.65 1.05 1.23 1.33

447.dealII scorep 13.33 1.13 1.39 1.55
scorep-no-filter 424.63 1.42 26.70 269.09

450.soplex scorep 2.96 1.03 0.96 1.10
scorep-no-filter 58.98 1.05 0.70 2.33

453.povray scorep 0.00 1.35 0.00 0.00
scorep-no-filter 0.00 1.46 0.00 0.00

456.hmmer scorep 1.12 38.06 1.39 0.90
scorep-no-filter 1.26 37.37 1.39 0.86

458.sjeng scorep 7.19 1.01 2.91 13.71
scorep-no-filter 8.92 1.00 3.82 17.42

462.libquantum scorep 1.26 0.99 1.00 1.02
scorep-no-filter 1.41 1.01 1.00 0.94

464.h264ref scorep 12.86 4.17 1.07 1.63
scorep-no-filter 13.11 3.74 1.11 1.88

470.lbm scorep 1.00 1.00 1.01 1.00
scorep-no-filter 1.00 1.00 1.00 1.00

473.astar scorep 5.08 0.62 0.91 1.05
scorep-no-filter 23.97 0.53 0.83 1.08

482.sphinx3 scorep 2.45 1.12 1.05 1.09
scorep-no-filter 2.91 1.27 1.07 1.15

Table A.8.: The influence for Clang 10.0 with Score-P 6.0 w/ and w/o inline-filter on runtime,
level three total cache misses (L3_TCM), level three total cache accesses (L3_TCA), and
level two data cache accesses (L2_DCA).

118

List of Figures

1.1. Performance engineering cycles . 2

2.2. Example CG and CFG . 10
2.3. Schematic of a flat profile . 12
2.4. Schematic of a call-path profile . 12
2.5. Schematic of a trace . 13
2.6. Different levels of instrumentation . 14
2.7. Example for statistical sampling profile . 19

3.2. Change of runtime for SPEC CPU w/ GCC 4.9.4 (Intel Sandy Bridge) . . . 29
3.3. Change of branches mispredicted for SPEC CPU w/ GCC 4.9.4 (Intel Sandy

Bridge) . 30
3.4. Change of runtime for SPEC CPU w/ GCC 4.9.4 (Intel Haswell) 31
3.5. Change of runtime for SPEC CPU w/ GCC 9.1.0 (Intel Haswell) 33
3.6. Change of runtime for SPEC CPU w/ Clang 10.0.0 (Intel Haswell) 34
3.7. Change of conditional branches for SPEC CPU w/ Clang 10 (Intel Haswell) 36
3.8. Change of instructions per cycle for SPEC CPU w/ Clang 10 (Intel Haswell) 37
3.9. Change of L2D cache miss rate for SPEC CPU w/ Clang 10 (Intel Haswell) 38
3.10.Change of branch misprediction rate for SPEC CPU w/ Clang 10 (Intel

Haswell) . 39

4.1. MetaCG Overview . 41
4.2. MetaCG serialization example . 42
4.3. MetaCG Workflow . 43
4.4. CGMerge example with two translation units 47
4.5. TypeART Workflow . 50
4.6. Left: actual call hierarchy present in the code. Right: call hierarchy

recorded by Score-P. 55

5.1. PIRA Overview . 58
5.2. PIRA software component architecture . 59

119

5.3. Example for Statistical Statement Aggregation Heuristics 63
5.4. Example for PIRA Runtime Heuristics . 64
5.5. Example for PIRA’s Performance Model Heuristics 67
5.6. Load imbalance example . 68
5.7. Example of PIRA’s Load Imbalance Detection Heuristics 70
5.8. Overhead for PIRAH Runtime Heuristics (SU2) 72
5.9. Overhead for PIRAH Runtime Heuristics overhead (SPEC CPU 2006) . . . 73
5.10.Overhead for PIRAQ Runtime Heuristics overhead (SPEC CPU 2006) . . . 74
5.11.Relative runtime overhead for PIRA-LIDe 86
5.12.Relative runtime overhead for PIRA-LIDe 86
5.13.Relative runtime overhead for PIRA-LIDe 87

6.1. Abstract mini-app extraction . 90
6.2. TyCart application interaction schematic 94
6.3. PIRA Model Heuristic runtimes on eos-mbpt 95
6.4. Representativeness analysis dendrogram 98
6.5. Categorized dynamic instruction mit for eos-mbpt 100
6.6. Benchmark Results . 104

120

List of Tables

3.1. Changes in static instruction mix after automatic compiler instrumentation 26
3.2. Different benchmark flavors used for measurement 28
3.3. Function visit counts for compiler instrumentation 35

4.1. MetaCG: Number of functions, reachable functions, edges missed, and
edges checked . 51

4.2. MetaCG: Change in functions and reachable functions 52
4.3. MetaCG: Change in statement coverage and distribution 53
4.4. Improvements of TypeART allocation filtering with MetaCG 53

5.1. Statistical measures for number of statements in SPEC CPU 2006 62
5.2. Runtime overhead comparison Score-P and PIRA 75
5.3. Runtime for PIRA on SPEC CPU 2006 . 76
5.4. Regions for PIRA on SPEC CPU 2006 . 77
5.5. Runtime for PIRA Model Heuristics . 80
5.6. SU2 Extra-P models . 80
5.7. 473.astar Extra-P models . 81
5.8. Input parameters for MILC . 82
5.9. Evaluation of Model Heuristic on MILC . 82
5.10.PIRA-LIDe evaluation on 64 MPI processes 83
5.11.PIRA-LIDe’s profiling overhead . 84
5.12.PIRA-LIDe’s tracing overhead . 85
5.13.Scalasca analysis for PIRA-LIDe on LULESH 87
5.14.Scalasca analysis for PIRA-LIDe on ISSM 88

6.1. Extra-P performance models for eos-mbpt kernels 96
6.2. Flat profile excerpt for eos-mbpt . 96
6.3. Complexity reduction of eos-mbpt mini-app 97
6.4. Function names for Figure 6.4 . 99
6.5. HWPC measurements for eos-mbpt original and mini-app 101
6.6. Top five DiscoPoP DoAll-pattern suggestions 103

121

A.1. Overhead Table for HWPC on Sandy Bridge: 1/2 111
A.2. Overhead Table for HWPC on Sandy Bridge: 2/2 112
A.3. Change in HWPC for SPEC CPU w/ GCC 4.9.4 113
A.4. Influence of GCC 9.1 and Score-P 6.0 (Haswell) 114
A.5. Influence of Clang 10.0 and Score-P 6.0 (Haswell) 115
A.6. Influence of Clang 10.0 and Score-P 6.0 (Haswell) 116
A.7. Influence of Clang 10.0 and Score-P 6.0 (Haswell) 117
A.8. Influence of Clang 10.0 and Score-P 6.0 (Haswell) 118

122

Listings

2.1. Example Program and its AST . 8
2.2. Example Score-P filter file . 11
2.3. Example instrumentation with pseudo interface 14

3.1. GCC Instrumentation Interface . 24
3.2. Instrumentation Influence Example . 25

4.1. Example of function pointers across translation units 44
4.2. Number of statements example . 46
4.3. Missed function pointer in ISSM, see line 5. 54

6.1. Example for kernel dependencies . 92

123

Acronyms

API application programming interface. 7, 11, 13, 15–17, 22, 24, 27, 32, 33, 43, 49, 93

AST abstract syntax tree. 5, 7, 8, 14, 40, 43, 45, 46, 91, 92, 123

CFG control-flow graph. 7, 10, 11, 119

CG call graph. 5, 7, 9, 10, 16, 19, 26, 40, 41, 43–45, 47–49, 61–63, 69, 70, 78, 79, 91,
106–108, 119

CPR checkpoint/restart. 22, 89, 91–94, 96, 99, 107

HPC high-performance computing. 1–5, 11, 19, 20, 69

HWPC hardware performance counter. 2, 3, 11, 15, 18–20, 24, 27–30, 32, 33, 36, 38,
106, 110–112, 121, 122

IC instrumentation configuration. 57, 58, 60–64, 69, 71, 75, 76, 78, 79, 81, 88

IPC Instructions per Cycle. 34, 35, 116

IR intermediate representation. 4, 7, 14, 17, 18

ISSM Ice-sheet and Sea-level System Model. 50, 51, 55, 88, 109

JIT Just in Time. 17, 18

MPI Message Passing Interface. 22, 49–51, 53, 55–57, 60, 65, 68, 79, 81–83, 85, 87, 88,
93, 105, 107, 109, 121

PGIS Profile Guided Instrumentation Selection. 6, 48, 51, 59–63, 66, 68, 69, 79

TU translation unit. 41, 44–47, 49, 55, 62, 91, 107, 108

124

Bibliography

[1] O. Aaziz, J. Cook, J. Cook, et al., “A methodology for characterizing the correspon-
dence between real and proxy applications”, in 2018 IEEE International Conference
on Cluster Computing (CLUSTER), IEEE, 2018, pp. 190–200.

[2] D. Abrahams and A. Gurtovoy, C++ template metaprogramming: concepts, tools,
and techniques from Boost and beyond. Pearson Education, 2004.

[3] M. Acharya and B. Robinson, “Practical change impact analysis based on static
program slicing for industrial software systems”, in 2011 33rd Intl. Conference on
Software Engineering (ICSE), ACM, 2011, pp. 746–755. doi: 10.1145/1985793.
1985898.

[4] J. Adam and S. Kell, “Type Checking beyond Type Checkers, via Slice & Run”, in
Proceedings of the 11th ACM SIGPLAN International Workshop on Tools for Automatic
Program Analysis, ser. TAPAS 2020, Virtual, USA: Association for Computing
Machinery, 2020, pp. 23–29, isbn: 9781450381895. doi: 10.1145/3427764.
3428324.

[5] L. Adhianto, S. Banerjee, M. Fagan, et al., “Hpctoolkit: Tools for performance
analysis of optimized parallel programs”, Concurrency and Computation: Practice
and Experience., vol. 22, no. 6, pp. 685–701, 2010.

[6] F. E. Allen, “Control flow analysis”, SIGPLAN Not., vol. 5, no. 7, pp. 1–19, Jul.
1970, issn: 0362-1340. doi: 10.1145/390013.808479.

[7] B. Alpern, M. N. Wegman, and F. K. Zadeck, “Detecting equality of variables
in programs”, in Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’88, San Diego, California, USA:
Association for Computing Machinery, 1988, pp. 1–11, isbn: 0897912527. doi:
10.1145/73560.73561.

[8] G. Antoniol, F. Calzolari, and P. Tonella, “Impact of function pointers on the call
graph”, in Third European Conference on Software Maintenance and Reengineering,
1999, pp. 51–59. doi: 10.1109/CSMR.1999.756682.

125

https://doi.org/10.1145/1985793.1985898
https://doi.org/10.1145/1985793.1985898
https://doi.org/10.1145/3427764.3428324
https://doi.org/10.1145/3427764.3428324
https://doi.org/10.1145/390013.808479
https://doi.org/10.1145/73560.73561
https://doi.org/10.1109/CSMR.1999.756682

[9] P. Arzt, Y. Fischler, J.-P. Lehr, and C. Bischof, “Automatic Low-Overhead Load-
Imbalance Detection in MPI Applications”, in Euro-Par 2021: Parallel Processing,
L. Sousa, N. Roma, and P. Tomás, Eds., Cham: Springer International Publishing,
2021, pp. 19–34, isbn: 978-3-030-85665-6.

[10] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient management of
parallelism in object oriented numerical software libraries”, in Modern Software
Tools in Scientific Computing, Birkhäuser Press, 1997, pp. 163–202. doi: 10.
1007/978-1-4612-1986-6_8.

[11] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, et al., “FTI: High performance fault
tolerance interface for hybrid systems”, in Proceedings of 2011 International Con-
ference for High Performance Computing, Networking, Storage and Analysis, ser. SC
’11, Seattle, Washington: ACM, 2011, isbn: 9781450307710. doi: 10.1145/
2063384.2063427.

[12] D. M. Berris, A. Veitch, N. Heintze, E. Anderson, and N. Wang, “Xray: A function
call tracing system”, 2016.

[13] A. Bhatele, S. Brink, and T. Gamblin, “Hatchet: Pruning the overgrowth in paral-
lel profiles”, in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19, Denver, Colorado: Asso-
ciation for Computing Machinery, 2019, isbn: 9781450362290. doi: 10.1145/
3295500.3356219.

[14] A. Bhattacharyya and T. Hoefler, “Pemogen: Automatic adaptive performance mod-
eling during program runtime”, in Proceedings of the 23rd International Conference
on Parallel Architectures and Compilation, ser. PACT ’14, Edmonton, AB, Canada:
Association for Computing Machinery, 2014, pp. 393–404, isbn: 9781450328098.
doi: 10.1145/2628071.2628100.

[15] C. Bischof, D. an Mey, and C. Iwainsky, “Brainware for green hpc”, Computer
Science - Research and Development, vol. 27, no. 4, pp. 227–233, Nov. 2012, issn:
1865-2042. doi: 10.1007/s00450-011-0198-5.

[16] D. Boehme, T. Gamblin, D. Beckingsale, et al., “Caliper: Performance introspection
for HPC software stacks”, in SC16: International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE, Nov. 2016. doi: 10.1109/
sc.2016.46.

126

https://doi.org/10.1007/978-1-4612-1986-6_8
https://doi.org/10.1007/978-1-4612-1986-6_8
https://doi.org/10.1145/2063384.2063427
https://doi.org/10.1145/2063384.2063427
https://doi.org/10.1145/3295500.3356219
https://doi.org/10.1145/3295500.3356219
https://doi.org/10.1145/2628071.2628100
https://doi.org/10.1007/s00450-011-0198-5
https://doi.org/10.1109/sc.2016.46
https://doi.org/10.1109/sc.2016.46

[17] D. Böhme, M. Geimer, L. Arnold, F. Voigtlaender, and F. Wolf, “Identifying the
Root Causes of Wait States in Large-Scale Parallel Applications”, ACM Transactions
on Parallel Computing, vol. 3, no. 2, 11:1–11:24, 2016, issn: 2329-4949. doi:
10.1145/2934661.

[18] S. Browne, “A portable programming interface for performance evaluation on
modern processors”, Intl. Journal of High Performance Computing Applications.,
vol. 14, no. 3, pp. 189–204, 2000. doi: 10.1177/109434200001400303.

[19] D. Bruening and S. Amarasinghe, “Efficient, transparent, and comprehensive run-
time code manipulation”, Ph.D. dissertation, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, 2004.

[20] B. R. Buck, “An API for runtime code patching”, International Journal of High
Performance Computing Applications, vol. 14, no. 4, pp. 317–329, 2000. doi:
10.1177/109434200001400404.

[21] M. Burger, G. N. Nguyen, and C. Bischof, “Developing models for the runtime of
programs with exponential runtime behavior”, in 2020 IEEE/ACM Performance
Modeling, Benchmarking and Simulation of High Performance Computer Systems
(PMBS), S. A. Wright, S. A. Jarvis, and S. D. Hammond, Eds., 2020, pp. 109–125.
doi: 10.1109/PMBS51919.2020.00015.

[22] A. Calotoiu, D. Beckinsale, C. W. Earl, et al., “Fast multi-parameter performance
modeling”, in 2016 IEEE International Conference on Cluster Computing (CLUSTER),
Sep. 2016, pp. 172–181.

[23] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf, “Using automated performance mod-
eling to find scalability bugs in complex codes”, in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis,
ser. SC ’13, Denver, Colorado: ACM, 2013, 45:1–45:12, isbn: 978-1-4503-2378-9.
doi: 10.1145/2503210.2503277.

[24] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic instrumentation of
production systems”, in Proceedings of the Annual Conference on USENIX Annual
Technical Conference, ser. ATEC ’04, Boston, MA: USENIX Association, 2004, p. 2.

[25] P. D. O. Castro, C. Akel, E. Petit, M. Popov, and W. Jalby, “CERE: LLVM-Based
Codelet Extractor and REplayer for Piecewise Benchmarking and Optimization”,
ACM Trans. Archit. Code Optim., vol. 12, no. 1, 6:1–6:24, Apr. 2015, issn: 1544-
3566. doi: 10.1145/2724717.

127

https://doi.org/10.1145/2934661
https://doi.org/10.1177/109434200001400303
https://doi.org/10.1177/109434200001400404
https://doi.org/10.1109/PMBS51919.2020.00015
https://doi.org/10.1145/2503210.2503277
https://doi.org/10.1145/2724717

[26] C. Cifuentes and D. Simon, “Procedure abstraction recovery from binary code”, in
Proc. of the 4th Europ. Software Maintenance and Reengineering., 2000, pp. 55–64.
doi: 10.1109/CSMR.2000.827306.

[27] M. Copik, A. Calotoiu, T. Grosser, et al., “Extracting clean performance models
from tainted programs”, in Proceedings of the 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, ser. PPoPP ’21, Virtual Event,
Republic of Korea: Association for Computing Machinery, 2021, pp. 403–417,
isbn: 9781450382946. doi: 10.1145/3437801.3441613.

[28] A. Daniel, Cloc github repository, 2006–2020. [Online]. Available: https://
github.com/AlDanial/cloc.

[29] L. DeRose, B. Homer, and D. Johnson, “Detecting Application Load Imbalance on
High End Massively Parallel Systems”, in Euro-Par 2007 Parallel Processing, A.-M.
Kermarrec, L. Bougé, and T. Priol, Eds., ser. Lecture Notes in Computer Science,
Berlin, Heidelberg: Springer, 2007, pp. 150–159, isbn: 978-3-540-74466-5. doi:
10.1007/978-3-540-74466-5_17.

[30] L. Djoudi, D. Barthou, P. Carribault, et al., “Maqao: Modular assembler quality
analyzer and optimizer for itanium 2”, in The 4th Workshop on EPIC architectures
and compiler technology., vol. 200, 2005.

[31] C. Drischler, K. Hebeler, and A. Schwenk, “Chiral interactions up to next-to-next-
to-next-to-leading order and nuclear saturation”, Physical Review Letters, vol. 122,
p. 042 501, 4 Jan. 2019. doi: 10.1103/PhysRevLett.122.042501.

[32] T. D. Economon, F. Palacios, S. R. Copeland, T. W. Lukaczyk, and J. J. Alonso,
“Su2: An open-source suite for multiphysics simulation and design”, Aiaa Journal,
vol. 54, no. 3, pp. 828–846, 2015.

[33] Y. Fischler, M. Rückamp, C. Bischof, et al., “A scalability study of the ice-sheet
and sea-level system model (issm, version 4.18)”, Geoscientific Model Development
Discussions, vol. 2021, pp. 1–33, 2021. doi: 10.5194/gmd-2021-265. [Online].
Available: https://gmd.copernicus.org/preprints/gmd-2021-265/.

[34] T. Gamblin, wrap.py – A PMPI Wrapper. [Online]. Available: https://github.
com/LLNL/wrap.

[35] M. Geimer, B. Kuhlmann, F. Pulatova, F. Wolf, and B. J. N. Wylie, “Scalable collation
and presentation of call-path profile data with CUBE”, in Proc. of the Conference on
Parallel Computing (ParCo), Aachen/Jülich, Germany, Minisymposium Scalability
and Usability of HPC Programming Tools, 2007, pp. 645–652.

128

https://doi.org/10.1109/CSMR.2000.827306
https://doi.org/10.1145/3437801.3441613
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://doi.org/10.1007/978-3-540-74466-5_17
https://doi.org/10.1103/PhysRevLett.122.042501
https://doi.org/10.5194/gmd-2021-265
https://gmd.copernicus.org/preprints/gmd-2021-265/
https://github.com/LLNL/wrap
https://github.com/LLNL/wrap

[36] M. Geimer, F. Wolf, B. J. N. Wylie, et al., “The Scalasca performance toolset
architecture”, Concurrency and Computation: Practice and Experience, vol. 22,
no. 6, pp. 702–719, 2010. doi: 10.1002/cpe.1556.

[37] Z. Gong, Z. Chen, J. Szaday, et al., “An empirical study of the effect of source-level
loop transformations on compiler stability”, Proc. ACM Program. Lang., vol. 2,
no. OOPSLA, Oct. 2018. doi: 10.1145/3276496.

[38] B. Gough, GNU Scientific Library Reference Manual - Third Edition, 3rd. Network
Theory Ltd., 2009, isbn: 0954612078.

[39] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph execution
profiler”, SIGPLAN Not., vol. 17, no. 6, pp. 120–126, 1982, issn: 0362-1340. doi:
10.1145/872726.806987.

[40] A. Griewank and A. Walther, Evaluating Derivatives, Second. SIAM, 2008. doi:
10.1137/1.9780898717761.

[41] T. Hahn, “Cuba – a library for multidimensional numerical integration”, Computer
Physics Communications, vol. 168, no. 2, pp. 78–95, 2005, issn: 0010-4655.

[42] J. L. Henning, “SPEC CPU2006 benchmark descriptions”, ACM SIGARCH Computer
Architecture News., vol. 34, no. 4, pp. 1–17, 2006. doi: 10.1145/1186736.
1186737.

[43] T. Hoefler and R. Belli, “Scientific benchmarking of parallel computing systems:
Twelve ways to tell the masses when reporting performance results”, in Proceedings
of the International Conference for High Performance Computing, Networking, Stor-
age and Analysis, ser. SC ’15, Austin, Texas: Association for Computing Machinery,
2015, isbn: 9781450337236. doi: 10.1145/2807591.2807644.

[44] J. K. Hollingsworth and B. P. Miller, “Dynamic control of performance monitoring
on large scale parallel systems”, in Proceedings of the 7th international conference
on Supercomputing, ACM, 1993, pp. 185–194.

[45] J. Hubicka, The gcc call graph module: A framework for inter-procedural optimization,
2004.

[46] A. Hück, “Compiler support for operator overloading and algorithmic differentia-
tion in c++”, Ph.D. dissertation, Technische Universität, Darmstadt, 2020.

[47] A. Hück, C. Bischof, and J. Utke, “Checking C++ Codes for Compatibility with
Operator Overloading”, in 15th IEEE International Working Conference on Source
Code Analysis and Manipulation, vol. 15, IEEE, 2015, pp. 91–100. doi: 10.1109/
SCAM.2015.7335405.

129

https://doi.org/10.1002/cpe.1556
https://doi.org/10.1145/3276496
https://doi.org/10.1145/872726.806987
https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/2807591.2807644
https://doi.org/10.1109/SCAM.2015.7335405
https://doi.org/10.1109/SCAM.2015.7335405

[48] A. Hück, J.-P. Lehr, S. Kreutzer, et al., “Compiler-aided Type Tracking for Cor-
rectness Checking of MPI Applications”, in 2018 IEEE/ACM 2nd International
Workshop on Software Correctness for HPC Applications (Correctness), Nov. 2018,
pp. 51–58. doi: 10.1109/Correctness.2018.00011.

[49] A. Hück, J. Protze, J.-P. Lehr, et al., “Compiler-aided type tracking for correctness
checking of adjoint MPI applications”, in 2020 IEEE/ACM 4th Intl. Workshop on
Software Correctness for HPC Applications (Correctness), IEEE, Nov. 2020, isbn:
978-0-7381-1045-5. doi: 10.1109/Correctness51934.2020.00010.

[50] K. Ilyas, A. Calotoiu, and F. Wolf, “Off-road performance modeling – how to
deal with segmented data”, in Proc. of the 23rd Euro-Par Conference, Santiago de
Compostela, Spain, ser. Lecture Notes in Computer Science, Springer, Aug. 2017,
pp. 1–12.

[51] Intel, Intel 64 and ia-32 architectures optimization reference manual, Jun. 2021.
[Online]. Available: https://software.intel.com/content/www/
us/en/develop/download/intel-64-and-ia-32-architectures-
optimization-reference-manual.html.

[52] Intel, Intel vTune website, 2021. [Online]. Available: http://software.intel.
com/content/www/us/en/develop/tools/oneapi/components/
vtune-profiler.html.

[53] C. Iwainsky, InstRO – a framework for building tailored compiler instrumentation,
2015. [Online]. Available: https://github.com/InstRO/InstRO.

[54] C. Iwainsky, “InstRO: A component-based toolbox for performance instrumen-
tation”, Technische Universität Darmstadt, 2015, Ph.D. dissertation, Technical
University of Darmstadt, Aachen, 2016, isbn: 978-3-8440-4562-8.

[55] C. Iwainsky, R. Altenfeld, D. an Mey, and C. Bischof, “Enhancing brainware pro-
ductivity through a performance tuning workflow”, in Euro-Par 2011: Parallel
Processing Workshops., Springer, 2011, pp. 198–207.

[56] C. Iwainsky and C. Bischof, “Call tree controlled instrumentation for low-overhead
survey measurements”, in 2016 IEEE Intl. Parallel and Distributed Processing
Symposium Workshops (IPDPSW 2016), 2016.

[57] C. Iwainsky, J.-P. Lehr, and C. Bischof, “Compiler Supported Sampling through
Minimalistic Instrumentation”, in 2014 43rd Intl. Conf. on Parallel Processing
Workshops, Institute of Electrical & Electronics Engineers (IEEE), 2014. doi: 10.
1109/icppw.2014.33.

130

https://doi.org/10.1109/Correctness.2018.00011
https://doi.org/10.1109/Correctness51934.2020.00010
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html
http://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html
http://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html
http://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html
https://github.com/InstRO/InstRO
https://doi.org/10.1109/icppw.2014.33
https://doi.org/10.1109/icppw.2014.33

[58] C. Iwainsky, S. Shudler, A. Calotoiu, et al., “How many threads will be too many?
on the scalability of openmp implementations”, in European Conference on Parallel
Processing, Springer, 2015, pp. 451–463.

[59] T. Jammer, C. Iwainsky, and C. Bischof, “Automatic detection of mpi assertions”,
in High Performance Computing, H. Jagode, H. Anzt, G. Juckeland, and H. Ltaief,
Eds., Cham: Springer International Publishing, 2020, pp. 34–42, isbn: 978-3-030-
59851-8.

[60] I. Karlin, J. Keasler, and R. Neely, “Lulesh 2.0 updates and changes”, Lawrence
Livermore National Lab, Livermore, CA, Tech. Rep. LLNL-TR-641973, Aug. 2013,
pp. 1–9. [Online]. Available: https://asc.llnl.gov/sites/asc/files/
2021-01/lulesh2.0_changes1.pdf.

[61] G. Kiczales, J. Lamping, A. Mendhekar, et al., “Aspect-oriented programming”,
in ECOOP’97 — Object-Oriented Programming, M. Akşit and S. Matsuoka, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 220–242, isbn: 978-3-
540-69127-3.

[62] Y. Kim, J. Dennis, C. Kerr, et al., “Kgen: A python tool for automated fortran
kernel generation and verification”, Procedia Computer Science, vol. 80, pp. 1450–
1460, 2016, International Conference on Computational Science 2016, ICCS
2016, 6-8 June 2016, San Diego, California, USA, issn: 1877-0509. doi: https:
//doi.org/10.1016/j.procs.2016.05.466.

[63] J. Kinder and H. Veith, “Precise static analysis of untrusted driver binaries”, in
Formal Methods in Computer-Aided Design (FMCAD), 2010, 2010, pp. 43–50.

[64] A. Knüpfer, C. Rössel, D. a. Mey, et al., “Score-p: A joint performance measurement
run-time infrastructure for periscope, scalasca, tau, and vampir”, in Tools for
High Performance Computing 2011, H. Brunst, M. S. Müller, W. E. Nagel, and
M. M. Resch, Eds., Berlin, Heidelberg: Springer, 2012, pp. 79–91, isbn: 978-3-
642-31476-6. doi: 10.1007/978-3-642-31476-6_7.

[65] P. Kogge and J. Shalf, “Exascale computing trends: Adjusting to the ”new normal”’
for computer architecture”, Computing in Science Engineering, vol. 15, no. 6,
pp. 16–26, 2013. doi: 10.1109/MCSE.2013.95.

[66] W. Korn, P. J. Teller, and G. Castillo, “Just how accurate are performance counters?”,
in IEEE Intl. Conf. on Performance, Computing, and Communications, 2001., 2001,
pp. 303–310. doi: 10.1109/IPCCC.2001.918667.

131

https://asc.llnl.gov/sites/asc/files/2021-01/lulesh2.0_changes1.pdf
https://asc.llnl.gov/sites/asc/files/2021-01/lulesh2.0_changes1.pdf
https://doi.org/https://doi.org/10.1016/j.procs.2016.05.466
https://doi.org/https://doi.org/10.1016/j.procs.2016.05.466
https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1109/MCSE.2013.95
https://doi.org/10.1109/IPCCC.2001.918667

[67] V. Kutscher, S. Ruland, P. Müller, et al., “Towards a circular economy of industrial
software”, Procedia CIRP, vol. 90, pp. 37–42, 2020, issn: 2212-8271. doi: 10.
1016/j.procir.2020.01.133.

[68] E. Larour, H. Seroussi, M. Morlighem, and E. Rignot, “Continental scale, high
order, high spatial resolution, ice sheet modeling using the Ice Sheet SystemModel
(ISSM)”, Journal of Geophysical Research: Earth Surface, vol. 117, no. F1, 2012.
doi: 10.1029/2011JF002140.

[69] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation”, in Proceedings of the 2004 International Symposium
on Code Generation and Optimization (CGO’04), Palo Alto, California, 2004.

[70] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely, “Pebil: Efficient
static binary instrumentation for linux”, in 2010 IEEE International Symposium
on Performance Analysis of Systems Software (ISPASS), 2010, pp. 175–183. doi:
10.1109/ISPASS.2010.5452024.

[71] J.-P. Lehr, “Counting Performance: Hardware Performance Counter and Compiler
Instrumentation”, in INFORMATIK 2016. Lecture Notes in Informatics (LNI), Er-
scheinungstermin: 26.09.2016, Gesellschaft für Informatik (GI), vol. P-259, Bonn:
Heinrich C. Mayr, Martin Pinzger, 2016.

[72] J.-P. Lehr, C. Bischof, F. Dewald, et al., “Tool-Supported Mini-App Extraction to
Facilitate Program Analysis and Parallelization”, in 50th International Conference
on Parallel Processing. New York, NY, USA: Association for Computing Machinery,
2021, isbn: 9781450390682. doi: 10.1145/3472456.3472521.

[73] J.-P. Lehr, A. Calotoiu, C. Bischof, and F. Wolf, “Automatic Instrumentation Re-
finement for Empirical Performance Modeling”, in 2019 IEEE/ACM International
Workshop on Programming and Performance Visualization Tools (ProTools), IEEE,
2019, pp. 40–47. doi: 10.1109/ProTools49597.2019.00011.

[74] J.-P. Lehr, A. Hück, and C. Bischof, “PIRA: Performance Instrumentation Refine-
ment Automation”, in Proceedings of the 5th ACM SIGPLAN International Workshop
on Artificial Intelligence and Empirical Methods for Software Engineering and Parallel
Computing Systems, ser. AI-SEPS 2018, Boston, MA, USA: ACM, 2018, pp. 1–10,
isbn: 978-1-4503-6067-8. doi: 10.1145/3281070.3281071.

[75] J.-P. Lehr, A. Hück, M. Fischer, and C. Bischof, “Compiler-assisted type-safe check-
pointing”, in ISC High Performance 2020Workshops, Springer International Publish-
ing, 2020, isbn: 978-3-030-59851-8. doi: 10.1007/978-3-030-59851-8_1.

132

https://doi.org/10.1016/j.procir.2020.01.133
https://doi.org/10.1016/j.procir.2020.01.133
https://doi.org/10.1029/2011JF002140
https://doi.org/10.1109/ISPASS.2010.5452024
https://doi.org/10.1145/3472456.3472521
https://doi.org/10.1109/ProTools49597.2019.00011
https://doi.org/10.1145/3281070.3281071
https://doi.org/10.1007/978-3-030-59851-8_1

[76] J.-P. Lehr, A. Hück, Y. Fischler, and C. Bischof, “MetaCG: Annotated Call-Graphs
to Facilitate Whole-Program Analysis”, in Proceedings of the 11th ACM SIGPLAN
International Workshop on Tools for Automatic Program Analysis. New York, NY,
USA: ACM, 2020, pp. 3–9, isbn: 9781450381895.

[77] J.-P. Lehr, C. Iwainsky, and C. Bischof, “The Influence of HPCToolkit and Score-p
on Hardware Performance Counters”, in Proceedings of the 4th ACM SIGPLAN
International Workshop on Software Engineering for Parallel Systems, ser. SEPS
2017, Vancouver, BC, Canada: ACM, 2017, pp. 21–30, isbn: 978-1-4503-5517-9.
doi: 10.1145/3141865.3141869.

[78] J.-P. Lehr, T. Jammer, and C. Bischof, “MPI-CorrBench: Towards an MPI Cor-
rectness Benchmark Suite”, in Proceedings of the 30th International Symposium
on High-Performance Parallel and Distributed Computing, ser. HPDC ’21, Virtual
Event, Sweden: ACM, 2021, pp. 69–80, isbn: 9781450382175. doi: 10.1145/
3431379.3460652.

[79] O. Lhoták, “Comparing call graphs”, in 7th ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, ser. PASTE ’07, ACM, 2007,
pp. 37–42, isbn: 9781595935953. doi: 10.1145/1251535.1251542.

[80] Z. Li, R. Atre, Z. U. Huda, A. Jannesari, and F. Wolf, “Unveiling parallelization
opportunities in sequential programs”, Journal of Systems and Software, vol. 117,
pp. 282–295, Jul. 2016. doi: 10.1016/j.jss.2016.03.045.

[81] C. Liao, D. J. Quinlan, R. Vuduc, and T. Panas, “Effective source-to-source outlining
to support whole program empirical optimization”, in Languages and Compilers
for Parallel Computing, G. R. Gao, L. L. Pollock, J. Cavazos, and X. Li, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 308–322, isbn: 978-3-642-
13374-9.

[82] P. T. Lin, M. A. Heroux, R. F. Barrett, and A. B. Williams, “Assessing a mini-
application as a performance proxy for a finite element method engineering
application”, Concurrency and Computation: Practice and Experience, vol. 27, no. 17,
pp. 5374–5389, 2015. doi: 10.1002/cpe.3587.

[83] P.-H. Lin, C. Liao, M. Schordan, and I. Karlin, “Exploring Regression of Data
Race Detection Tools Using DataRaceBench”, in IEEE/ACM 3rd Intl. Workshop
on Software Correctness for HPC Applications (Correctness), 2019, pp. 11–18. doi:
10.1109/Correctness49594.2019.00007.

133

https://doi.org/10.1145/3141865.3141869
https://doi.org/10.1145/3431379.3460652
https://doi.org/10.1145/3431379.3460652
https://doi.org/10.1145/1251535.1251542
https://doi.org/10.1016/j.jss.2016.03.045
https://doi.org/10.1002/cpe.3587
https://doi.org/10.1109/Correctness49594.2019.00007

[84] K. A. Lindlan, J. Cuny, A. D. Malony, et al., “A tool framework for static and
dynamic analysis of object-oriented software with templates”, in Proc. ACM/IEEE
2000 Conf. Supercomputing, Nov. 2000, p. 49. doi: 10.1109/SC.2000.10052.

[85] C.-K. Luk, R. Cohn, R. Muth, et al., “Pin: Building customized program analysis
tools with dynamic instrumentation”, SIGPLAN Not., vol. 40, no. 6, pp. 190–200,
2005, issn: 0362-1340. doi: 10.1145/1064978.1065034.

[86] J. R. Madsen, M. G. Awan, H. Brunie, et al., “Timemory: Modular performance
analysis for hpc”, in High Performance Computing, P. Sadayappan, B. L. Chamber-
lain, G. Juckeland, and H. Ltaief, Eds., Cham: Springer International Publishing,
2020, pp. 434–452, isbn: 978-3-030-50743-5.

[87] A. D. Malony, “Event-based performance perturbation: A case study”, in Proc. of
the 3rd ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming.,
ser. PPOPP ’91, Williamsburg, Virginia, USA: ACM, 1991, pp. 201–212, isbn:
0-89791-390-6. doi: 10.1145/109625.109646.

[88] A. D. Malony, D. A. Reed, and H. A. G. Wijshoff, “Performance measurement
intrusion and perturbation analysis”, IEEE Transactions on Parallel and Distributed
Systems., vol. 3, no. 4, pp. 433–450, 1992, issn: 1045-9219. doi: 10.1109/71.
149962.

[89] S. McIntosh-Smith, M. Boulton, D. Curran, and J. Price, “On the performance
portability of structured grid codes on many-core computer architectures”, in
Supercomputing, J. M. Kunkel, T. Ludwig, and H. W. Meuer, Eds., Cham: Springer
International Publishing, 2014, pp. 53–75, isbn: 978-3-319-07518-1.

[90] S. McIntosh-Smith, M. Martineau, T. Deakin, et al., “Tealeaf: A mini-application to
enable design-space explorations for iterative sparse linear solvers”, in 2017 IEEE
International Conference on Cluster Computing (CLUSTER), 2017, pp. 842–849.

[91] S. McIntosh-Smith, J. Price, T. Deakin, and A. Poenaru, “A performance analysis
of the first generation of hpc-optimized arm processors”, Concurrency and Com-
putation: Practice and Experience, vol. 31, no. 16, e5110, 2019, e5110 cpe.5110.
doi: 10.1002/cpe.5110.

[92] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard,
Version 3.1, 2015. [Online]. Available: www.mpi-forum.org/docs/mpi-
3.1/mpi31-report.pdf.

[93] B. P. Miller, M. D. Callaghan, J. M. Cargille, et al., “The paradyn parallel perfor-
mance measurement tool”, Computer, vol. 28, no. 11, pp. 37–46, Nov. 1995, issn:
0018-9162. doi: 10.1109/2.471178.

134

https://doi.org/10.1109/SC.2000.10052
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/109625.109646
https://doi.org/10.1109/71.149962
https://doi.org/10.1109/71.149962
https://doi.org/10.1002/cpe.5110
www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://doi.org/10.1109/2.471178

[94] N. Morew, M. Norouzi, A. Jannesari, and F. Wolf, “Skipping non-essential in-
structions makes data-dependence profiling faster”, in Euro-Par 2020: Parallel
Processing, ser. Lecture Notes in Computer Science, vol. 12247, Springer, 2020,
isbn: 978-3-030-57674-5. doi: 10.1007/978-3-030-57675-2_1.

[95] A. Morris, A. D. Malony, S. Shende, and K. Huck, “Design and implementation
of a hybrid parallel performance measurement system”, in 39th Intl. Conf. on
Parallel Processing., Institute of Electrical & Electronics Engineers (IEEE), 2010.
doi: 10.1109/icpp.2010.57.

[96] D. Mosberger et al., The libunwind project, 2011.
[97] T. Moseley, D. Grunwald, and R. Peri, “Chainsaw: Using binary matching for

relative instruction mix comparison”, in 18th Intl. Conf. on Parallel Architectures
and Compilation Techniques, PACT., 2009, pp. 125–135. doi: 10.1109/PACT.
2009.12.

[98] G. C. Murphy, D. Notkin, W. G. Griswold, and E. S. Lan, “An empirical study of static
call graph extractors”, ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 7, no. 2, pp. 158–191, 1998. doi: 10.1145/279310.279314.

[99] J. Mußler, D. Lorenz, and F. Wolf, “Reducing the overhead of direct application
instrumentation using prior static analysis”, in Euro-Par 2011 Parallel Processing,
Springer, Jan. 1, 2011, isbn: 978-3-642-23399-9. doi: 10.1007/978-3-642-
23400-2_7.

[100] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney, “Producing wrong data
without doing anything obviously wrong!”, in Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS XIV, Washington, DC, USA: ACM, 2009, pp. 265–276, isbn:
978-1-60558-406-5. doi: 10.1145/1508244.1508275.

[101] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach, “Vampir:
Visualization and analysis of mpi resources”, Supercomputer, vol. 12, no. 63,
pp. 69–80, Jan. 1996.

[102] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight dynamic
binary instrumentation”, in Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’07, San Diego,
California, USA: Association for Computing Machinery, 2007, pp. 89–100, isbn:
9781595936332. doi: 10.1145/1250734.1250746.

135

https://doi.org/10.1007/978-3-030-57675-2_1
https://doi.org/10.1109/icpp.2010.57
https://doi.org/10.1109/PACT.2009.12
https://doi.org/10.1109/PACT.2009.12
https://doi.org/10.1145/279310.279314
https://doi.org/10.1007/978-3-642-23400-2_7
https://doi.org/10.1007/978-3-642-23400-2_7
https://doi.org/10.1145/1508244.1508275
https://doi.org/10.1145/1250734.1250746

[103] B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror, and F. Cappello, “VeloC: Towards
high performance adaptive asynchronous checkpointing at large scale”, in 2019
IEEE International Parallel and Distributed Processing Symposium (IPDPS), May
2019, pp. 911–920. doi: 10.1109/IPDPS.2019.00099.

[104] M. Norouzi, Q. Ilias, A. Jannesari, and F. Wolf, “Accelerating data-dependence
profiling with static hints”, in Euro-Par 2019: Parallel Processing, ser. Lecture Notes
in Computer Science, vol. 11725, Springer, 2019, pp. 17–28, isbn: 978-3-030-
29399-4. doi: 10.1007/978-3-030-29400-7_2.

[105] M. Norouzi, F. Wolf, and A. Jannesari, “Automatic construct selection and variable
classification in OpenMP”, in Proc. of the Intl. Conference on Supercomputing
(ICS), Phoenix, AZ, USA, ACM, 2019, pp. 330–341, isbn: 978-1-4503-6079-1. doi:
10.1145/3330345.3330375.

[106] R. T. Prosser, “Applications of boolean matrices to the analysis of flow diagrams”, in
Papers Presented at the December 1-3, 1959, Eastern Joint IRE-AIEE-ACM Computer
Conference, ser. IRE-AIEE-ACM ’59 (Eastern), Boston, Massachusetts: Association
for Computing Machinery, 1959, pp. 133–138, isbn: 9781450378680. doi: 10.
1145/1460299.1460314.

[107] D. Quinlan, “ROSE: Compiler Support for Object-oriented Frameworks”, Parallel
Processing Letters, vol. 10, no. 02n03, pp. 215–226, 2000, issn: 1793-642X. doi:
10.1142/S0129626400000214.

[108] M. Reif, F. Kübler, M. Eichberg, and M. Mezini, “Systematic Evaluation of the
Unsoundness of Call Graph Construction Algorithms for Java”, in Companion
Proceedings for the ISSTA/ECOOP 2018 Workshops, ser. ISSTA’18, Amsterdam,
Netherlands: Association for Computing Machinery, 2018, pp. 107–112, isbn:
9781450359399. doi: 10.1145/3236454.3236503.

[109] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su, “Detecting code clones
in binary executables”, in Proceedings of the Eighteenth International Symposium
on Software Testing and Analysis, ser. ISSTA ’09, Chicago, IL, USA: Association
for Computing Machinery, 2009, pp. 117–128, isbn: 9781605583389. doi: 10.
1145/1572272.1572287.

[110] M. Sagebaum, T. Albring, and N. R. Gauger, “High-performance derivative com-
putations using CoDiPack”, ACM Trans. Math. Softw., vol. 45, no. 4, 2019. doi:
10.1145/3356900.

[111] M. Sagebaum and N. R. Gauger, MeDiPack – message differentiation package, 2020.
[Online]. Available: www.github.com/scicompkl/medipack.

136

https://doi.org/10.1109/IPDPS.2019.00099
https://doi.org/10.1007/978-3-030-29400-7_2
https://doi.org/10.1145/3330345.3330375
https://doi.org/10.1145/1460299.1460314
https://doi.org/10.1145/1460299.1460314
https://doi.org/10.1142/S0129626400000214
https://doi.org/10.1145/3236454.3236503
https://doi.org/10.1145/1572272.1572287
https://doi.org/10.1145/1572272.1572287
https://doi.org/10.1145/3356900
www.github.com/scicompkl/medipack

[112] E. Saillard, P. Carribault, and D. Barthou, “PARCOACH: Combining static and
dynamic validation of MPI collective communications”, The International Journal
of High Performance Computing Applications, vol. 28, no. 4, pp. 425–434, 2014.

[113] D. Schmidl, C. Iwainsky, C. Terboven, C. Bischof, and M. S. Müller, “Towards
a performance engineering workflow for openmp 4.0”, in Parallel Computing:
Accelerating Computational Science and Engineering (CSE) (Advances in Parallel
Computing), Advances in Parallel Computing. 2014, vol. 25. doi: 10.3233/978-
1-61499-381-0-823.

[114] D. Schmidl, P. Philippen, D. Lorenz, et al., “Performance analysis techniques for
task-based OpenMP applications”, in OpenMP in a Heterogeneous World, Springer
Science + Business Media, 2012, pp. 196–209. doi: 10.1007/978-3-642-
30961-8_15.

[115] P. D. Schubert, B. Hermann, and E. Bodden, “Phasar: An inter-procedural static
analysis framework for c/c++”, in Tools and Algorithms for the Construction and
Analysis of Systems, Springer, 2019, pp. 393–410, isbn: 978-3-030-17465-1. doi:
10.1007/978-3-030-17465-1_22.

[116] K. Serebryany and D. Vyukov, Threadsanitizer, a data race detector for c/c++ and
go.

[117] J. Seward and N. Nethercote, “Using valgrind to detect undefined value errors
with bit-precision.”, in USENIX Annual Technical Conference, General Track, 2005,
pp. 17–30.

[118] J. Seyster, K. Dixit, X. Huang, et al., “Aspect-oriented instrumentation with gcc”,
in Runtime Verification, H. Barringer, Y. Falcone, B. Finkbeiner, et al., Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 405–420, isbn: 978-3-642-
16612-9.

[119] J. Shalf, D. Quinlan, and C. Janssen, “Rethinking hardware-software codesign for
exascale systems”, Computer, vol. 44, no. 11, pp. 22–30, 2011.

[120] S. S. Shende, “The tau parallel performance system”, International Journal of
High Performance Computing Applications, vol. 20, no. 2, pp. 287–311, 2006. doi:
10.1177/1094342006064482.

[121] S. Shudler, A. Calotoiu, T. Hoefler, A. Strube, and F. Wolf, “Exascaling your library:
Will your implementation meet your expectations?”, in Proc. of the International
Conference on Supercomputing (ICS), Newport Beach, CA, USA, ACM, Jun. 2015,
pp. 165–175.

137

https://doi.org/10.3233/978-1-61499-381-0-823
https://doi.org/10.3233/978-1-61499-381-0-823
https://doi.org/10.1007/978-3-642-30961-8_15
https://doi.org/10.1007/978-3-642-30961-8_15
https://doi.org/10.1007/978-3-030-17465-1_22
https://doi.org/10.1177/1094342006064482

[122] J. Slabý, J. Strejček, andM. Trtík, “Checking properties described by state machines:
On synergy of instrumentation, slicing, and symbolic execution”, in Formal Methods
for Industrial Critical Systems, Springer, 2012, pp. 207–221, isbn: 978-3-642-
32469-7. doi: 10.1007/978-3-642-32469-7_14.

[123] J. Slabý, J. Strejček, and M. Trtík, “Checking Properties Described by State Ma-
chines: On Synergy of Instrumentation, Slicing, and Symbolic Execution”, in
Formal Methods for Industrial Critical Systems, M. Stoelinga and R. Pinger, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 207–221, isbn: 978-3-
642-32469-7.

[124] D. Sokolowski, J.-P. Lehr, C. Bischof, and G. Salvaneschi, “Leveraging Hybrid
Cloud HPC with Multitier Reactive Programming”, in 2020 IEEE/ACM Interna-
tional Workshop on Interoperability of Supercomputing and Cloud Technologies
(SuperCompCloud), IEEE, Nov. 2020, pp. 27–32, isbn: 978-0-7381-1055-4. doi:
10.1109/SuperCompCloud51944.2020.00010.

[125] B. Steensgaard, “Points-to analysis in almost linear time”, in Proceedings of the
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
ser. POPL ’96, St. Petersburg Beach, Florida, USA: Association for Computing Ma-
chinery, 1996, pp. 32–41, isbn: 0897917693. doi: 10.1145/237721.237727.

[126] N. R. Tallent, L. Adhianto, and J. M. Mellor-Crummey, “Scalable Identification
of Load Imbalance in Parallel Executions Using Call Path Profiles”, in SC ’10:
Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, ISSN: 2167-4337, 2010, pp. 1–11.
doi: 10.1109/SC.2010.47.

[127] N. R. Tallent, J. M. Mellor-Crummey, and M. W. Fagan, “Binary analysis for mea-
surement and attribution of program performance”, in Proceedings of the 30th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
ser. PLDI ’09, Dublin, Ireland: ACM, 2009, pp. 441–452, isbn: 978-1-60558-392-1.
doi: 10.1145/1542476.1542526.

[128] The gnu compiler collection. [Online]. Available: https://gcc.gnu.org.
[129] F. Tip and J. Palsberg, “Scalable propagation-based call graph construction algo-

rithms”, SIGPLAN Not., vol. 35, no. 10, pp. 281–293, Oct. 2000, issn: 0362-1340.
doi: 10.1145/354222.353190.

[130] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight performance-oriented
tool suite for x86 multicore environments”, in 39th Intl. Conf on Parallel Processing
Workshops., 2010, pp. 207–216. doi: 10.1109/ICPPW.2010.38.

138

https://doi.org/10.1007/978-3-642-32469-7_14
https://doi.org/10.1109/SuperCompCloud51944.2020.00010
https://doi.org/10.1145/237721.237727
https://doi.org/10.1109/SC.2010.47
https://doi.org/10.1145/1542476.1542526
https://gcc.gnu.org
https://doi.org/10.1145/354222.353190
https://doi.org/10.1109/ICPPW.2010.38

[131] R. Tschüter, J. Ziegenbalg, B. Wesarg, et al., “An llvm instrumentation plug-in for
score-p”, in Proceedings of the Fourth Workshop on the LLVM Compiler Infrastructure
in HPC, ser. LLVM-HPC’17, Denver, CO, USA: Association for Computing Machinery,
2017, isbn: 9781450355650. doi: 10.1145/3148173.3148187.

[132] J. S. Vetter, S. Lee, D. Li, et al., “Quantifying architectural requirements of con-
temporary extreme-scale scientific applications”, in High Performance Computing
Systems. Performance Modeling, Benchmarking and Simulation, S. A. Jarvis, S. A.
Wright, and S. D. Hammond, Eds., Cham: Springer International Publishing, 2014,
pp. 3–24, isbn: 978-3-319-10214-6. doi: 10.1007/978-3-319-10214-6_1.

[133] Q. Wang, X. Zhang, Y. Zhang, and Q. Yi, “Augem: Automatically generate high
performance dense linear algebra kernels on x86 cpus”, in Proc. of the Intl. Confer-
ence on High Performance Computing, Networking, Storage and Analysis (SC’13),
2013, pp. 1–12.

[134] J. H. Ward Jr., “Hierarchical Grouping to Optimize an Objective Function”, Journal
of the American Statistical Association, vol. 58, no. 301, pp. 236–244, 1963. doi:
10.1080/01621459.1963.10500845.

[135] V. M. Weaver and S. A. McKee, “Can hardware performance counters be trusted?”,
in IEEE Intl. Symp. on Workload Characterization, 2008. IISWC 2008., 2008,
pp. 141–150. doi: 10.1109/IISWC.2008.4636099.

[136] J. Weidendorfer, M. Kowarschik, and C. Trinitis, “A tool suite for simulation based
analysis of memory access behavior”, in Computational Science - ICCS 2004, M.
Bubak, G. D. van Albada, P. M. A. Sloot, and J. Dongarra, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 440–447, isbn: 978-3-540-24688-6.

[137] P. Weisenburger, M. Köhler, and G. Salvaneschi, “Distributed system development
with scalaloci”, Proc. ACM Program. Lang., vol. 2, no. OOPSLA, Oct. 2018. doi:
10.1145/3276499. [Online]. Available: https://doi.org/10.1145/
3276499.

[138] M.Weiser, “Program slicing”, IEEE Transactions on Software Engineering, vol. SE-10,
no. 4, pp. 352–357, 1984. doi: 10.1109/TSE.1984.5010248.

[139] J. J. Wilke, J. P. Kenny, S. Knight, and S. Rumley, “Compiler-assisted source-
to-source skeletonization of application models for system simulation”, in High
Performance Computing, R. Yokota, M. Weiland, D. Keyes, and C. Trinitis, Eds.,
Cham: Springer International Publishing, 2018, pp. 123–143, isbn: 978-3-319-
92040-5.

139

https://doi.org/10.1145/3148173.3148187
https://doi.org/10.1007/978-3-319-10214-6_1
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1109/IISWC.2008.4636099
https://doi.org/10.1145/3276499
https://doi.org/10.1145/3276499
https://doi.org/10.1145/3276499
https://doi.org/10.1109/TSE.1984.5010248

	Preface
	Introduction
	Performance and Program Analysis
	Program Representations
	Performance Analysis
	Instrumentation
	Statistical Sampling
	Influence of Measurement

	Kernel and Mini-App Extraction

	The Influence of Measurement
	Influence of Automatic Compiler Instrumentation
	Influence of Score-P and HPCToolkit on Hardware Performance Counter
	Summary

	MetaCG – Annotated Whole-Program Call-Graphs
	Call-Graph Library
	Call-Graph Construction
	CGCollector
	Meta Collectors
	Merging of Translation Units
	Validation

	Evaluation
	Discussion

	PIRA: Performance Instrumentation Refinement Automation
	Approach
	Software Architecture
	Profile-Guided Instrumentation Selection
	Statistical Statement Aggregation Heuristic
	Runtime Heuristic
	Performance Model Heuristic
	Load Imbalance Heuristic

	Evaluation
	Discussion

	Mini-AppEx: Tool-Supported Kernel and Mini-app Extraction
	Approach
	Kernel Identification
	Source Transformation
	Validation

	Evaluation
	Extraction Approach
	Mini-app Quality
	Tool-supported Parallelization

	Discussion

	Summary
	Future Work
	Appendices
	The Influence of Measurement
	List of Figures
	List of Tables
	List of Listings
	Glossary
	Bibliography

