7,365 research outputs found

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Learning to solve planning problems efficiently by means of genetic programming

    Get PDF
    Declarative problem solving, such as planning, poses interesting challenges for Genetic Programming (GP). There have been recent attempts to apply GP to planning that fit two approaches: (a) using GP to search in plan space or (b) to evolve a planner. In this article, we propose to evolve only the heuristics to make a particular planner more efficient. This approach is more feasible than (b) because it does not have to build a planner from scratch but can take advantage of already existing planning systems. It is also more efficient than (a) because once the heuristics have been evolved, they can be used to solve a whole class of different planning problems in a planning domain, instead of running GP for every new planning problem. Empirical results show that our approach (EVOCK) is able to evolve heuristics in two planning domains (the blocks world and the logistics domain) that improve PRODIGY4.0 performance. Additionally, we experiment with a new genetic operator - Instance-Based Crossover - that is able to use traces of the base planner as raw genetic material to be injected into the evolving population.Publicad

    Field Guide to Genetic Programming

    Get PDF

    Genetic Programming in Control Theory: On Evolving Programs and Solutions to Control Problems

    Get PDF
    More often than not one would encounter a problem, know that the solution has to meet some requirements, but do not how to start or how to progress towards solving it. Motivation for a computer that can solve the problem automatically without explicitly programming it is apparent, i.e. a computer that \programs itself", is greatly desired. The method of genetic programming has demonstrated its potential by evolving programs for a wide range of applications. Examples are target identi_cation [Tackett, 1993], performing optical character recognition [Andre, 1994], electronic circuit design [Koza, 1996] among many. In certain areas, GP generated designs or solutions were shown to be on par or even better than those created by human; although this is of course, not always the case. However, the power of GP is inherent that it is possible to use all tools and functions of computer programming that have ever been devised since it is evolving programs from programs themselves. This thesis applies this method to the area of control engineering. Applying genetic algorithm to this field is not new, however, but using genetic programming is relatively recent. The intention is therefore clear, to introduce another set of tools, perhaps quite unconventional but hopefully useful, to the control engineer. All the solutions presented in this thesis have been implemented using the program Matlab. Although the mathematical functions that have been used are limited and often no more than simple additions or multiplication, it should be clear that a whole arsenal of Matlab functions could be used as part of GP, depending on how the programmer formulate his/her problem. Hence besides having the basic program code to be re-usable for di_erent problems, care has been taken to allow user to be able to add additional functions easily. Designing a GP run would then consist of simply selecting or writing functions, and setting up a suitable evaluation and termination criteria. Problem solving should be automatic. Perhaps one might think that the solutions presented here are trivial, and the program might not work for other more diÆcult problems, or it may end up in a combinational explosion. This should however not to be seen as a poor re ection on the method, but rather may simply be due to bad programming practice. Therefore having said that, it should also be mentioned that there is more than enough room for improvements to the basic progra

    An adaptive and modular framework for evolving deep neural networks

    Get PDF
    Santos, F. J. J. B., Gonçalves, I., & Castelli, M. (2023). Neuroevolution with box mutation: An adaptive and modular framework for evolving deep neural networks. Applied Soft Computing, 147(November), 1-15. [110767]. https://doi.org/10.1016/j.asoc.2023.110767 --- Funding: This work is funded by national funds through the FCT - Foundation for Science and Technology, I.P., within the scope of the projects CISUC - UID/CEC/00326/2020, UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS, and by European Social Fund, through the Regional Operational Program Centro 2020 .The pursuit of self-evolving neural networks has driven the emerging field of Evolutionary Deep Learning, which combines the strengths of Deep Learning and Evolutionary Computation. This work presents a novel method for evolving deep neural networks by adapting the principles of Geometric Semantic Genetic Programming, a subfield of Genetic Programming, and Semantic Learning Machine. Our approach integrates evolution seamlessly through natural selection with the optimization power of backpropagation in deep learning, enabling the incremental growth of neural networks’ neurons across generations. By evolving neural networks that achieve nearly 89% accuracy on the CIFAR-10 dataset with relatively few parameters, our method demonstrates remarkable efficiency, evolving in GPU minutes compared to the field standard of GPU days.publishersversionpublishe

    Genetic programming

    Get PDF

    Search based software engineering: Trends, techniques and applications

    Get PDF
    © ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version is available from the link below.In the past five years there has been a dramatic increase in work on Search-Based Software Engineering (SBSE), an approach to Software Engineering (SE) in which Search-Based Optimization (SBO) algorithms are used to address problems in SE. SBSE has been applied to problems throughout the SE lifecycle, from requirements and project planning to maintenance and reengineering. The approach is attractive because it offers a suite of adaptive automated and semiautomated solutions in situations typified by large complex problem spaces with multiple competing and conflicting objectives. This article provides a review and classification of literature on SBSE. The work identifies research trends and relationships between the techniques applied and the applications to which they have been applied and highlights gaps in the literature and avenues for further research.EPSRC and E

    A contingency base camp framework using model based systems engineering and adaptive agents

    Get PDF
    This research investigates the use of adaptive agents and hybridization of those agents to improve resource allocation in dynamic systems and environments. These agents are applied to contingency bases in an object oriented approach utilizing Model-based Systems Engineering (MBSE) processes and tools to accomplish these goals. Contingency bases provide the tools and resources for the military to perform missions effectively. There has been increasing interest in improving the sustainability and resilience of the camps, as inefficiencies in resource usage increases. The increase in resource usage leads to additional operational costs and added danger to military personnel guarding supply caravans. The MBSE approach alleviates some of the complexity of constructing a model of a contingency base, and allows for the introduction of 3rd party analysis tools through the XML metadata interchange standard. This approach is used to create a virtual environment for the agents to learn the system patterns and behaviors within the system. An agent based approach is used to address the dynamic nature of base camp operations and resource utilization. , helping with extensibility and scalability issues since larger camps have a very high computation load. To train the agents to adjust to base camp operations, an evolutionary algorithm was created to develop the control mechanism. This allows for a faster time to convergence for the control mechanisms when a change is observed. Results have shown a decrease in resource consumption of up to 20% with respect to fuel usage, which will further help reduce base costs and risk --Abstract, page iii
    corecore