
Applied Soft Computing 147 (2023) 110767

v
c
p
p
t
t
o

t
t
t
P
n
i
p
s

s
s
t
t

i

h
1
n

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Neuroevolutionwith boxmutation: An adaptive andmodular
framework for evolving deep neural networks
Frederico J.J.B. Santos a, Ivo Gonçalves b, Mauro Castelli a,∗
a NOVA Information Management School (NOVA IMS) Universidade Nova de Lisboa, Campus de Campolide, 1070-312, Lisboa, Portugal
b University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Portugal

a r t i c l e i n f o

Article history:
Received 26 April 2023
Received in revised form 20 July 2023
Accepted 14 August 2023
Available online 24 August 2023

Keywords:
Neuroevolution
Evolutionary deep learning
Neural architecture search
Supervised learning

a b s t r a c t

The pursuit of self-evolving neural networks has driven the emerging field of Evolutionary Deep
Learning, which combines the strengths of Deep Learning and Evolutionary Computation. This work
presents a novel method for evolving deep neural networks by adapting the principles of Geometric
Semantic Genetic Programming, a subfield of Genetic Programming, and Semantic Learning Machine.
Our approach integrates evolution seamlessly through natural selection with the optimization power
of backpropagation in deep learning, enabling the incremental growth of neural networks’ neurons
across generations. By evolving neural networks that achieve nearly 89% accuracy on the CIFAR-10
dataset with relatively few parameters, our method demonstrates remarkable efficiency, evolving in
GPU minutes compared to the field standard of GPU days.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Evolutionary Deep Learning (EDL) is a growing field in which
arious evolutionary computation algorithms demonstrate suc-
ess when applied to neuroevolution. Neuroevolution encom-
asses the development of neural networks through evolutionary
rocesses. It primarily focuses on two aspects: Neural Architec-
ure Search (NAS), which seeks the optimal topology for a specific
ask, and parameter optimization, where evolutionary algorithms
ptimize parameters of a fixed topology.
NAS has been employed to mutate neural network architec-

ures by initially designing and training them using backpropaga-
ion algorithms. However, the performance of NAS algorithms of-
en lags behind traditionally-built neural networks [1,2]. Genetic
rogramming (GP) [3], an evolutionary technique that mimics
atural selection for optimization tasks, has been effectively used
n NAS. GP evolves populations of computer programs to solve
roblems objectively, introducing random variations in offspring
tructure through genetic operators.
Geometric Semantic Genetic Programming (GSGP) [4] is a

pecific adaptation of GP. GSGP evolves individuals based on their
emantic space (output space) rather than syntactic representa-
ion, enabling small syntax structure variations while considering
heir impact on the results. This paper aims to combine Deep

∗ Corresponding author.
E-mail addresses: m20200604@novaims.unl.pt (F.J.J.B. Santos),

cpg@dei.uc.pt (I. Gonçalves), mcastelli@novaims.unl.pt (M. Castelli).
ttps://doi.org/10.1016/j.asoc.2023.110767
568-4946/© 2023 The Authors. Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
Learning (DL) and GSGP to contribute to bridging the gap be-
tween genetically mutated and human-designed neural network
architectures. We develop a neuroevolution framework, written
in Python and built upon PyTorch, that mutates neural networks
whilst using traditional backpropagation techniques for param-
eter optimization. This technique contrasts with the traditional
NAS methodology of randomly evolving numerous topologies and
training them over hundreds of iterations. Our method is not
only less computationally demanding but also significantly faster.
We test the proposed framework considering the ResNet [2]
and DenseNet [5] architectures to compare the performance be-
tween training complete architectures traditionally and evolving
them by progressively adding new layers of neurons until the
given architecture is completed. Additionally, we conduct multi-
ple neuroevolution experiments with different hyperparameters
to evaluate the framework and its outputs, concentrating on the
generalization capability of the generated neural networks. We
demonstrate that our approach can evolve and train a neural
network on the CIFAR-10 dataset, achieving nearly 89% accuracy
in under 30 GPU-minutes, compared to AmoebaNet [6], which
attains 96.6% accuracy but requires 3150 GPU-days. The paper is
organized as follows: Section 2 recalls relevant concepts exploited
in the definition of the proposed neuroevolution method and
outlines recent contributions in this area; Section 3 details the
neuroevolution method and details the evolutionary model; Sec-
tion; Section 4 presents the experimental settings, while Section 5
describes the results achieved. Finally, Section 6 concludes the

paper and suggests possible future research avenues.

rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.asoc.2023.110767
https://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2023.110767&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:m20200604@novaims.unl.pt
mailto:icpg@dei.uc.pt
mailto:mcastelli@novaims.unl.pt
https://doi.org/10.1016/j.asoc.2023.110767
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


F.J.J.B. Santos, I. Gonçalves and M. Castelli Applied Soft Computing 147 (2023) 110767

2

2

s
(
A
n
a
n
h
i
i
r

w
(
R
t
r
p
i
w

c
e
p
d
t
e
c

o
m
p
r
w
a
a

d
c
l
i
T
c
a
a
t
f
i

2

c
t
o
g
t
t

f
f

. Related work

.1. Deep learning

Deep Learning (DL) is a subfield of machine learning that
pecializes in developing and applying artificial neural networks
ANNs) to address complex problems across various domains.
NNs are computational models inspired by the human brain’s
eural structure, consisting of multiple interconnected layers of
rtificial neurons or nodes. These networks have garnered sig-
ificant attention due to their capacity to automatically learn
ierarchical feature representations from raw data, which results
n exceptional performance in a wide range of tasks, includ-
ng image recognition, natural language processing, and speech
ecognition.

The foundations of deep learning can be traced back to early
orks such as LeCun et al.’s Convolutional Neural Networks
CNNs) [7]. Key breakthroughs, such as the development of the
ectified Linear Unit (ReLU) activation function [8] and the in-
roduction of dropout regularization [9], have played a crucial
ole in deep learning’s success across various applications. These
ioneering contributions paved the way for rapid advancements
n neural network architectures and optimization techniques,
hich have shaped the current landscape of deep learning.
Recent advancements in neural network architectures, in-

luding Residual Networks [2] (ResNets) and Transformer mod-
ls [10], have further broadened the capabilities and potential ap-
lications of deep learning. Given the close relationship between
eep learning and neuroevolution, understanding the fundamen-
al concepts and advancements in deep learning is essential for
xploring the potential of neuroevolutionary techniques in the
ontext of neural networks and their optimization.
Feedforward neural networks, consist of an input layer, one

r more hidden layers, and an output layer. Each layer contains
ultiple neurons that are fully connected to the neurons in the
revious and following layers. The neurons in the input layer
eceive the raw input data, which is then passed through the net-
ork to produce an output. The hidden layers contain non-linear
ctivation functions, such as the sigmoid or ReLU function, that
llow the network to model complex relationships in the data.
CNNs are a type of deep learning architecture specifically

esigned for image and video recognition tasks. The architecture
onsists of multiple convolutional, pooling, and fully connected
ayers. The convolutional layers apply a set of filters to the input
mage, extracting features such as edges, corners, and textures.
he pooling layers downsample the feature maps produced by the
onvolutional layers, reducing the dimensionality of the data and
llowing the network to learn features. The fully connected layers
t the end of the network use the extracted features to classify
he input image. CNNs have been shown to be highly effective
or a wide range of image and video recognition tasks, including
mage classification, object detection, and segmentation.

.2. Genetic programming

Genetic Programming is a set of techniques used to evolve
omputer programs, first introduced by Koza in 1992. It belongs
o the field of Evolutionary Computation (EC), which includes
ther methods such as Genetic Algorithms [11], Evolutionary Pro-
ramming [12], and Evolution Strategies [13]. There are different
ypes of representations in GP, but this work only focuses on the
ree-based GP, as originally defined by Koza.

Programs are represented as trees, where nodes represent
unctions and leaves represent constants. The nodes form the
unction set, which are the operations that may exist in each
2

Fig. 1. Execution of multiple GSM steps considering a simple example with only
two training samples. We may notice the structure changing in the genotypic
space whilst the semantics are bound inside gray boxes, exemplifying the
semantic awareness of the GSM operator.

program. The leaves form the terminal set, which are the pos-
sible values that may appear in the program. These two sets are
problem-specific and must be handcrafted for each problem.

The GP process starts by generating a random initial popula-
tion of individuals, where one individual represents a program.
The process then continues until a given stopping criterion is
reached, such as a certain number of generations or a specific
amount of time. Each individual’s fitness is measured by run-
ning the program and evaluating its performance on some prob-
lem tasks. A new population is then created by applying one
of the following operations to each individual: parent selection,
reproduction, crossover, or mutation.

In parent selection, a set of individuals is selected based on
their fitness to be reproduced with certain probabilities. Repro-
duction simply copies some of the selected individuals into the
new population without modification. Crossover generates new
individuals by combining random parts of two individuals. Mu-
tation generates new individuals by replacing a random part of
an individual with a new randomly generated one. The individual
with the best fitness is selected as the solution to the problem set.

2.2.1. Geometric semantic Genetic Programming
In Genetic Programming (GP), the semantics of an individual

can be represented as a vector of output values on input data in a
semantic space S. The target vector can also be represented in the
same semantic space S. The distance between an individual and
the target vector can be measured to determine the error between
the individual’s semantics and the ground truth. However, genetic
operators in GP only operate on the genotypic (or syntactic)
space, searching for a structure that minimizes the error between
an individual’s semantics and the target vector. This aspect means
that the offspring of an individual can be significantly different
from its parent in terms of semantics.

To address this limitation, GSGP was introduced by Moraglio
[4], which uses Geometric Semantic Operators such as Geometric
Semantic Mutation (GSM) and Geometric Semantic Crossover
(GSC) that operate on both the genotypic and semantic spaces.
This work only considers GSM since the focus is solely on muta-
tion operations. GSM enforces a ‘‘box mutation’’, i.e., it restricts
the mutation to a small perturbation of the parent individual,
delimited by a mutation step (ms). In other words, the mutation
does not introduce drastic changes to the individual’s structure,
but only slightly modifies it, ensuring the search space is confined
around the parent’s structure (see Fig. 1). It is worth noting that
GSM has only been applied to supervised regression tasks, with
recent extensions to binary classification tasks [14,15].



F.J.J.B. Santos, I. Gonçalves and M. Castelli Applied Soft Computing 147 (2023) 110767

2

h
a
m
o
a
g
l
a
b
M
a
a
t
t
i
r
t
t
l
a
i

s
a
s
n
t
s
s
u
n
p
t
a
(
s

i
i
C
c
r
p
p
o
l
a
s
l
i
i
t
w
t
d
c
i
c
b
s
e
O
f

.3. Review of neuroevolution methods

Despite the competitive results achieved with DL, recent years
ave witnessed a greater interest in the definition of methods to
utomatically design neural networks’ topologies. This interest is
otivated by the fact that the success of deep neural networks
n a given task depends significantly on the design of their
rchitectures. Recent works can be categorized into two main
roups: evolution-based methods [16] also known as neuroevo-
ution [17], and reinforcement learning (RL) methods [18]. In
ddition to these categories, other alternative approaches have
een proposed, hill-climbing [19], Bayesian optimization [20],
onte Carlo-based simulations [21], and a combination of these
pproaches [22]. Considering that neuroevolution-based methods
re the most investigated ones [23] and taking into account that
he method proposed in this study belongs to this area, this sec-
ion reviews the most recent neuroevolution techniques proposed
n the literature, aiming at highlighting relevant differences with
espect to the method proposed in this paper. For a review of
he different approaches to perform neural architecture search,
he interested reader is referred to [24] where swarm and evo-
utionary computing approaches for deep learning are discussed,
nd the work of Wistube [25], in which different approaches,
ncluding Bayesian methods, are analyzed.

Neuroevolution is a subfield of evolutionary computation that
pecifically focuses on optimizing ANNs through evolutionary
lgorithms. This approach is rooted in the principles of natural
election and genetic variation, with the aim of optimizing neural
etwork architectures and their parameters to solve complex
asks. The general approach of neuroevolution methods can be
ummarized by considering the following steps: (1) the initial
tep consists of defining the search space and initializing a pop-
lation of admissible solutions. Each solution encodes a neural
etwork architecture; (2) once the fitness evaluation of the initial
opulation is complete, the entire population initiates the evolu-
ionary process. Throughout the evolutionary process, selection
nd evolutionary operators are used to create new solutions;
3) once the termination condition is met, the best-performing
olution (i.e., neural network) is returned.
Thus, to analyze existing evolutionary approaches for NAS, it

s fundamental to analyze three main ingredients: the encod-
ng strategy, the initialization strategy, and the encoding space.
oncerning the encoding strategy, the evolutionary process may
onsider fixed-length encoding strategies (like in genetic algo-
ithms) and variable-length encoding strategies (like in genetic
rogramming). In the first case, the main advantage relies on the
ossibility of evolving the network topology by using the genetic
perators originally designed for individuals presenting the same
ength, as proposed in the work of Xie and Yuille [26] and Loni
nd coauthors [27]. However, the main limitation of fixed-length
trategies is the experience necessary to properly choose the
ength of the candidate solutions, a parameter that has a strong
mpact on the performance of the resulting neural network. This
ssue can be addressed by relying on variable-length encoding,
hanks to the possibility of freely evolving the network’s topology
ithout imposing any limit on the length of the encoding. On
he other hand, with this encoding, it is often necessary to re-
efine the genetic operators, as proposed in the work of Sun and
oauthors [28]. From the analysis of the existing contributions,
t emerges that genetic algorithms represent the most common
hoice, especially when considering early neuroevolution contri-
utions [29,30]. Genetic programming [31,32] and evolutionary
trategies [33,34] are used in a limited number of contributions,
specially due to the computational time they usually required.
n the other hand, the possibility of relying on a non-fixed length
or the encoding of the solutions provides significant advantages
3

in most of the problems and especially when no information
is available to decide the length of the encoded solutions (and,
as a consequence, the number of layers and neurons of the
topology). A small number of neuroevolution methods rely on
swarm intelligence. For instance, Byla and Pang [35] proposed
DeepSwarm, a NAS method based on Ant Colony Optimization to
generate an ant population that uses the pheromone information
to collectively search for the best neural architecture. Junior and
Yen [36] defined a NAS method based on swarm optimization to
design a topology for an image classification task. Finally, some
contributions proposed the use of memetic algorithms for the
NAS problem [37,38] but the good-quality results are achieved
at a cost of an increased computational time, thus making these
methods suitable only for simple problems.

Moving to the initialization strategies, and similarly to other
applications of evolutionary computation methods, it is possible
to identify three main procedures: a simple strategy, a random
strategy, and a strategy that considers some existing knowledge.
The simple strategy consists of an initialization that only consid-
ers a few primitive layers. For instance, Real and coauthors [39]
relied on this method for building initial individuals representing
a single-layer architecture. Despite its simplicity, Xie and coau-
thors [26] showed that this simple initialization can result in
an evolutionary process in which well-performing architectures
are obtained. Concerning the random initialization, the initial
individuals are randomly generated using different primitive lay-
ers, thus resulting in a population representing different types
of architectures and with different shapes [28]. Finally, the last
initialization method takes advantage of the existing knowledge
concerning state-of-the-art architectures and includes them in
the original population. While this initialization method can make
it extremely difficult to evolve novel competitive architectures
with respect to the ones in the initial population, it is commonly
used in all the works aiming at refining the performance of
state-of-the-art architectures [40].

To conclude the discussion concerning the fundamental dif-
ferences in existing neuroevolution methods, the remaining part
of this section describes the different encoding space strategies
commonly used in the literature.

The population’s encoding space encompasses all the legit-
imate individuals that have been encoded and can be catego-
rized into three distinct types based on the units they utilize:
layer-based, block-based, and cell-based encoding spaces [23].
Additionally, certain evolutionary NAS methods prioritize the
connections between units rather than the configuration of the
basic unit itself. This specific encoding space is referred to as the
topology-based encoding space [41].

The layer-based encoding refers to the use of primitive layers,
such as convolution layers and fully-connected layers, as the
fundamental building blocks. While this approach results in an
extensive search space, it requires a significant computational
time to search for a promising individual since there are nu-
merous possibilities for constructing a well-performing neural
network using these primitive layers. Moreover, relying solely
on primitive layers may not yield the desired performance since
primitive layers alone cannot adequately represent skip connec-
tions, a fundamental component for achieving satisfactory perfor-
mance with some neural network topologies (i.e., like ResNet [2]).
Examples of methods relying on layer-based encoding have been
proposed by Tanaka [42] and Zhu [43]. In the former work, the
authors automated the design of a recurrent neural network by
relying on the covariance matrix adaptation-evolution strategy
(CMA-ES) [44] and found a topology that gives improved recogni-
tion performance on a speech recognition problem. In the latter
work, the authors proposed an evolutionary-based method that
by relying on specifically-designed genetic operators achieved
competitive results on a computer vision task.



F.J.J.B. Santos, I. Gonçalves and M. Castelli Applied Soft Computing 147 (2023) 110767
To limit the issues associated with the layer-based encod-
ing approach, block-based encoding allows combining different
types of blocks (i.e., like ResBlock [2], DenseBlock [5], Inception-
Block [45], etc.) that serve as the basic unit of the encoding
space. More specifically, the blocks within the architecture ex-
hibit distinctive topological relationships, such as the residual
connection in ResBlock. These blocks demonstrate promising per-
formance and often require fewer parameters for constructing
the architecture. Consequently, it is generally simpler to discover
a suitable architecture within the block-based encoding space
compared to the layer-based encoding space. Several works re-
lying on the block-based encoding space have been proposed: for
instance, Baldeon-Calisto and coauthors [46] proposed the use of
multi-objective evolutionary algorithms to design a convolutional
neural network (AdaResU-Net) that combines the structure of the
state-of-the-art U-Net [47] with a residual learning framework
to improve information propagation and promote an efficient
training. Experimental results showed that the resulting topology
achieves excellent segmentation performance while presenting
a significative reduction in terms of the number of trainable
parameters. Suganuma and coauthors [48] also relied on the
block-based encoding space to evolve the topology of a CNN.
In particular, highly functional modules such as a convolutional
block and tensor concatenation are encoded as the node functions
in cartesian genetic programming. The resulting CNN achieved
results comparable with the state-of-the-art on the CIFAR 10 and
CIFAR 100 datasets. Hassanzadeh and coauthors [49] proposed a
genetic algorithms-based method to evolve a small neural net-
work for a medical image segmentation problem. The block-based
encoding space was considered to evolve a U-Net-based deep
network topology. The resulting network showed excellent seg-
mentation performance by also using less trainable parameters
with respect to existing human-designed networks.

The cell-based encoding space is a particular case of block-
based encoding. The cell-based encoding allows combining the
layers in the cell more freely while the connections between
different cells are determined by the human expertise [50]. Chen
and coauthors [51] used cell-based encoding to design the topol-
ogy of a CNN for a computer vision classification task. Despite the
reduction in terms of computational time when compared to ex-
isting architectures, the authors needed 12 GPU hours for evolv-
ing a topology to classify CIFAR-10 images. The cell-based encod-
ing space is considered also in the work of Fan and coauthors [33],
which optimized an encoder–decoder architecture for retinal ves-
sel segmentation. The evolved topology achieves top performance
among all compared methods on the three datasets by also using
fewer trainable parameters compared to existing competitors.
Despite its popularity, Frachon and coauthors [52] pointed out
the lack of theoretical basis to guarantee that methods relying
on the cell-based encoding space can achieve a good-performing
topology.

2.3.1. Open issues identified
From the analysis of recent contributions in the field of neu-

roevolution, it is possible to draw the following observations:

• Despite the plethora of existing studies, concerns have been
raised regarding the sluggish learning capabilities and com-
putational costs associated with evaluating evolutionary al-
gorithms when utilized for designing deep neural network
architectures [53].
• Due to the vast search space, achieving outstanding perfor-

mance through network structure evolution becomes dif-
ficult when relying on evolutionary principles that have
been defined decades ago and that were not specifically
designed for designing deep neural networks. Moreover, the
vast majority of the existing works on neuroevolution do not
consider the fitness landscape properties when defining a
NAS algorithm [30].
4

• Existing methods, while based on gradient-free optimiza-
tion, need to evaluate the quality of the evolved network at
each iteration through a fitness function. Calculating the fit-
ness function requires the execution of the backpropagation
algorithm, thus turning the evolution unbearably slow. In
this sense, methods allowing for an incremental evaluation
of the evolved topologies are fundamental [54].
• The choice of the encoding may hinder the potential of

the evolutionary process. In this sense, it is important to
design a mechanism that allows for an efficient and effective
exploration of the search space.

To tackle these challenges, we propose a neuroevolution
method that:

• allows for the quick evolution of a neural network topology;
• it is based on recently defined genetic operators for genetic

programming that allow inducing a unimodal search space
and that have been adapted to efficiently explore the search
space of the neural networks’ topologies;
• allows performing an incremental evaluation of the evolved

topology, thus reducing the computational time and making
it possible to execute it on a consumer laptop.
• is based on a simple encoding that, by exploiting theoretical

properties of the search space, makes it possible to navi-
gate a search space characterized by the absence of local
(non-global) optimal solutions.

Before concluding the review of existing works on neuroevo-
lution algorithms, it is important to highlight that Section 2.3
aimed at presenting the most common approaches to deal with
the automatic evolution of neural networks’ topologies. However,
the field of neuroevolution is witnessing an increasing number of
contributions in recent years, and it is out of the scope of this
section to analyze all the existing works. Thus, the interested
reader can refer to recent works presenting surveys on NAS from
different perspectives. White and coauthors [55] highlighted that
from 2020 to the end of 2022, over 1000 papers on neuroevolu-
tion have been published. Thus, their work proposed a taxonomy
of the existing methods by considering the search spaces, al-
gorithms, best practices, and open issues in this area. Li and
coauthors [54] reviewed evolutionary deep learning approaches
from the perspective of automated machine learning (AutoML). In
particular, following a new taxonomy, they considered methods
from data preparation and model generation to model deploy-
ment. Finally, they discussed applications and open issues in
the area of neuroevolution. Zhan and coauthors [56] analyzed
the existing work of neuroevolution by proposing a two-level
taxonomy. The higher level includes four categories based on
when evolutionary computation can be adopted in optimizing
deep neural networks (i.e., data processing, model search, model
training, and model evaluation and utilization). At the lower level,
authors reviewed existing works in each category by analyzing
how specific evolutionary computation methods have been used.
Finally, Li and coauthors [57] reviewed more than 500 contri-
butions in evolutionary machine learning by also focusing on
neuroevolution. The authors analyzed the current limitations and
discussed future research directions.

2.4. Semantic learning machine

The Semantic Learning Machine (SLM) [58,59] is a neuroevo-
lution algorithm that does not use backpropagation to optimize
parameters. It employs GSM, is based on GSGP principles, and
suits regression problems. The SLM mutation adds a new random
neural network to the parent network with randomly initialized
parameters. However, there are constraints in the mutation pro-
cess. The random network can only receive connections from the



F.J.J.B. Santos, I. Gonçalves and M. Castelli Applied Soft Computing 147 (2023) 110767
Fig. 2. Diagram of a random mutation. The random network receives the initial
input for the first layer and both random and parent networks’ first layers’
output for the second layer. New connections are dashed green lines, while
dashed purple connections show connections affected by the mutation step ms.

parent network and not feed back into it to avoid altering the par-
ent network semantics. The parent network’s output layer takes
the random network’s last hidden layer as input. The weights
connecting the random network to the output layer are restricted
by the mutation step ms, enforcing a ‘‘box mutation’’ similar to
the GSM (see Fig. 2).

3. Methodology

In this section, we detail the neuroevolution method in Sec-
tion 3.1, then go into detail about the structure of the evolution-
ary model in Section 3.2.

3.1. Neuroevolution

Our approach to neuroevolution is inspired by GSGP and fo-
cuses on the mutation genetic operator. In this mutation process,
the framework progressively adds new parameters (artificial neu-
rons) to the neural network and trains them on the problem
dataset. Subsequently, it compares the performance of the mu-
tated individual to that of the parent individual (the non-mutated
neural network) in the validation dataset.

Our work adapts the Semantic Learning Machine (SLM) con-
cept to Deep Learning but with key differences. GSGP and SLM
were originally designed for regression problems, whereas our
method focuses on classification tasks. We experimentally adapt
the concept of GSGP for classification tasks, recognizing that
the randomly added network cannot optimize the residual error
between the parent network and the target vector, as there are
no real distances to be measured.

Our method evolves the topology of models and optimizes the
parameters directly with the backpropagation algorithm, i.e., it
only considers the topology when representing the model in the
genotypic space. We contrast this representation to SLM, which
takes both topology and parameters into its genotypic space. We
benefit from the best of both worlds, as the backpropagation
algorithm constantly optimizes the model’s parameters towards
our target, while the evolution randomly (but in a controlled
fashion) mutates the topology of the model to lead its semantics
towards the target vector (Fig. 3).

Backpropagation Optimization. With regard to backpropaga-
tion optimization, our focus is on fast convergence to minimize
the number of epochs needed per mutation. Our approach is
guided by Smith’s recommendations [60] on optimizers, learn-
ing rate, batch size, momentum, and weight decay. Preference
is given to Rectified Adam [61] as it is ideal for fast conver-
gence [62] and has fewer hyperparameters to be tuned, making it
5

Fig. 3. Representation of model evolution using our method, illustrated in both
genotypic and semantic spaces. Green arrows and points signify syntactic muta-
tions and pre-optimization semantics, respectively, while blue arrows and points
denote the application of the backpropagation algorithm and post-optimization
semantics. Within the semantic space, a box is observed constraining the
mutation options, effectively demonstrating the controlled evolution of our
approach.

a more suitable choice than Adam [63] for an environment where
fine-tuning is not achievable.

As the model’s architecture changes with each mutation and
considering that the learning rate (η) is an important hyperpa-
rameter to achieve a constant and stable learning process, we
decided to implement a Learning Rate Finder [64] (LRF) that tests
multiple values within the range [ηmin, ηmax] and selects η∗, which
corresponds to the steepest negative gradient.

Evolution Strategy. The trainer is the system responsible for
mutating, fitting, and evaluating the individuals (models). In each
generation, the trainer decides which mutation to apply and fits
the individual to the training data for a fixed number of epochs.
The individual is then evaluated and if it performs better than the
elite individual (the best individual found so far), the elite indi-
vidual is replaced. Then, the parent is reloaded, and the process is
repeated for p individuals and g generations. The fitness function
is either the loss function or accuracy for the validation data
multiplied by a threshold. This threshold is a hyperparameter
and was introduced to prevent very small improvements from
leading to large models with little improvement in performance
(see Fig. 4).

The trainer has three main options for mutations: adding
a new block, a new layer, or new connections. However, to
streamline model evolution and simplify the mutation process,
our experiments always mutate by adding a new block. Instead
of adding new layers as separate mutations, a random number of
layers are added when introducing a new block. This decision was
made to take ‘‘larger’’ steps when searching for the optimal neural
architecture. The pseudocode in Algorithm 1 summarizes the
steps of the entire process. The subsequent section provides de-
tails on each component used to construct a topology (i.e., blocks
and layers)

3.2. Evolutionary model

The model’s structure comprises interconnected blocks (de-
tailed in Section 3.2.1) and a Merge Block. A block is defined as
a module containing a number of sequentially connected layers
whereas the Merge Block is the module that combines the outputs
of all the blocks. Each new mutation adds a new block to the
model, increasing its complexity. Following the concept of GSGP
and GSM, the parent network semantics must remain unchanged
when a new mutation adds a new block, such that each new
block never feeds back into the parent network (Fig. 5). We set a



F.J.J.B. Santos, I. Gonçalves and M. Castelli Applied Soft Computing 147 (2023) 110767
Fig. 4. Neuroevolution flowchart. The red process represents the fitting loop of n epochs. The blue process represents the mutation loop that runs for p times. The
green process represents the generation loop, which repeats g times.
Algorithm 1: The proposed neuroevolutionary process.
Concerning the time complexity of the algorithm, when
we evolve the network’s topology without freezing the
existing blocks, the complexity, at each epoch, corresponds
to the complexity resulting from the execution of the
backpropagation algorithm. On the other hand, when we
freeze the existing blocks, while the upper bound for the
time complexity still corresponds to the execution of the
backpropagation algorithm, the time needed to evolve the
topology will be smaller due to the fact that we must
execute backpropagation only on the added block and not
on the entire network.

Require: Number of generations (g), population size (p),
connection weights (CW ), performance threshold (t),
number of training epochs (n), Learning Rate (η), Use
Learn Rate Finder (LRF , bool)

Parent← Initialize empty model
Elite← Parent
for i in 1 to g do
for j in 1 to p do
Individual← Parent
Randomly choose block type (linear or convolutional)
Randomly choose block connection based on CW
Randomly choose block configuration and number of
layers for new block
Randomly select parameters for each layer
Mutate Individual – Add new block with chosen
options
if LRF = True then

η← LearningRateFinder(Individual)
end if
Train – Fit Individual with backpropagation for n
epochs
Compute the top-1 accuracy of Individual on the
validation dataset
if IndividualAcc > EliteAcc ∗ t then

Elite← Individual
end if

end for
Parent← Elite

end for
return Elite
6

hyperparameter (Freeze Evolved Blocks, FEB) to enable or disable
the optimization of the parent network when optimizing the
parameters of a mutated model, i.e., the model either trains all its
parameters or only the parameters of the newly added block. We
experimentally find that the decision to freeze (not optimize) or
not freeze (optimize) the parameters of the parent network plays
a significant role in how well the models evolve.

3.2.1. Blocks
A block is defined as a module containing a number of sequen-

tially connected layers. The last layer of the block is a specific kind
of layer which we define as the Output Layer, and its output is
always a vector with the same shape as the model’s output. We
go into detail about Layers and the Output Layer in Section 3.2.2.

The first layer of a block receives a single input, which can
originate either directly from the problem dataset or any other
layer (except for an Output Layer) within previously added blocks.
This input may be user-defined (in cases where the user manu-
ally mutates the model) or randomly chosen based on specified
probabilities (detailed below). The input is then fed forward se-
quentially through the layers and into the Output Layer, which
connects to the Merge Block. The output of each layer is stored in
the Block Inputs to be used as potential input for future blocks. We
implement two block types: Linear and Convolutional (see Fig. 6).

Linear Block. This block can receive either singular or multi-
dimensional inputs. If the input is multi-dimensional, it is trans-
formed into one dimension (by flattening the tensor). A layer in
this block consists of a sparsely connected feedforward module
with a user-defined number of nodes, a regularization mod-
ule, and an activation function. The Output Layer is a simple
feedforward module that connects the block to the Merge Block.

Convolutional Block. This type of block receives multi-
dimensional inputs by default. A layer in this block includes
a two-dimensional convolutional module, followed by a regu-
larization module and an activation function. The Output Layer
has a pooling module followed by a flattening module, that
converts the input into a one-dimensional vector, followed by a
feedforward module that, as with the Linear Block, connects the
block to the Merge Block.

The convolutional block can have a residual (skip) connec-
tion [2], where a downsample layer transforms the input shape to
match the output shape of the block’s last layer. This downsample
layer consists of a convolutional module with a kernel size of
(1,1), no padding, a regularization module, and no activation
function. The output of the downsample layer is then added to the

output of the last layer before applying the activation function.



F.J.J.B. Santos, I. Gonçalves and M. Castelli Applied Soft Computing 147 (2023) 110767

w
t

n

Fig. 5. The inner structure of an evolutionary model composed of blocks and the Merge Block (yellow). Red-colored blocks and arrows represent frozen parameters,
hile green ones represent unfrozen parameters. The model goes through a mutation that adds Block 3, freezing the parameters of Block 2 in the process. When
he model is optimized, only the parameters of Block 3 are trainable.
w
s
c
o
r

g
h
d
f
n
m
a

m
w
T
w
b
I
s
b
w
i

t
b
e

P

a

P

Fig. 6. An example of the inner structure of a block with two layers is illustrated
here, showing the flow of storing the output of each layer in the Block Inputs.
For the sake of simplicity, we omit this storage system in our figures going
forward.

Furthermore, an alternative approach inspired by DenseNet [5]
can be employed, which involves the concatenation of the input
with the output of the last layer before feeding it into the Output
Layer. This concatenation mechanism enables the network to
retain detailed information from previous layers, promoting the
integration of both low-level and high-level representations. It is
important to note that to ensure compatibility for concatenation,
the input and output feature maps must have the same width
and height. During the evolutionary process, if a convolutional
block does not maintain the same feature dimensionality, the
concatenation operation is not applied.

The following hyperparameters are defined when a block is
created; every layer created inside the block will share these
hyperparameters by default. Bias is enabled for all layers if it is
enabled for the block. Weight initialization may be uniformly or
normally distributed, either using the Xavier Initialization [65]
or Kaiming Initialization [2]; by default, they are initialized with
the Kaiming Normal initialization (default PyTorch values). Bias
initialization can be performed with zeros [2,65] or with default
(PyTorch) values, and by default, biases are initialized with a
uniform distribution of [−1/

√
fanin, 1/

√
fanin] where fanin is the

umber of input features. Regularization and activation function
7

modules, detailed further in Section 3.2.2, are defined at the block
level so we can measure the impact of each type when evaluating
evolved models.

Connecting Blocks. To decide which input the block receives,
e consider factors such as the type of block and where it
hould connect in the model. We use a hyperparameter called
onnection weights (CW ) to assign weights to each block based
n its maturity; more recent blocks may be more or less likely to
eceive a connection, depending on the hyperparameter value.

For instance, a recently added block might be assigned a
reater weight than an older block, implying a higher likeli-
ood of forming a new connection. This allocation can also vary
epending on the type of block, as we often observe that feed-
orward layers usually appear at the end of convolutional neural
etwork architectures. Therefore, in the case of linear blocks, we
ight want to adhere to traditional neural network architectures
nd restrict their connection possibilities.
In a simplified scenario, where connection weights are com-

on to all block types, we denote CW = [w1, w2, . . . , wm],
ith m being the maximum block ‘age’ we want to consider.
hese weights are assigned in a chronologically inverse order,
ith w1 as the weight of the most recently added or ‘youngest’
lock, w2 as the weight of the subsequent block, and so forth.
n scenarios where the network continues to grow beyond the
ize of the given CW array, the weight wm is assigned to all
locks ‘older’ than the mth block. This system ensures that the
eight allocation remains scalable as the network grows and

ncorporates new blocks.
These weights are then transformed into weighted probabili-

ies (Fig. 7). Given the connection weights [w1, w2] and k existing
locks, the probability of a new block connecting to the youngest
xisting block is computed as:

youngest =
w1

w1 + k ∗ w2

Meanwhile, the probability of said new block connecting to
ny other block or the model’s input is computed as:

other =
w2

w1 + k ∗ w2

The probability of choosing a layer inside a block is equally
divided between all layers of the block. For example, if a block
has 5 layers, the probability of connecting to layer 3 is the same
as that of connecting to layer 1 or layer 5. Each block is then given
a connection index, two values representing the block and layer
that it is connected to.



F.J.J.B. Santos, I. Gonçalves and M. Castelli Applied Soft Computing 147 (2023) 110767

c
c

t
b
B
s
i
t
(

m
d

Fig. 7. Probabilities for connecting Block 4 to the rest of the model assuming the connection weights (CW) are initially [2, 1]. When considering Block 4, the
onnection weights are adjusted to become CWBlock4 = [2, 0, 1, 1]. The weight of Block 2 has been set to 0 because, in our model, convolutional blocks cannot receive
onnections from linear blocks. Our framework reflects this constraint by zeroing out the corresponding weight.
c
w

t

Fig. 8. Model with BB enabled. The most recently added Block 5 connects to
Block 4, forming a branch together. Since Block 2 has more than one outgoing
connection, it is not part of the branch. Both Block 2 and Block 4 do not connect
to the Merge Block, as they both are part of block branches. Green and red
represent unfrozen and frozen parameters, respectively.

To allow for more complex structure evolutions, we introduce
he concept of Block Branches (BB): a group of interconnected
locks where only the last block connects to the model’s output.
B enables the creation of a larger block structure that can be con-
idered a single unit. A block is eligible to be part of a branch only
f it connects to the most recently added block. The block branch
erminates when a block has more than one output connection
Fig. 8).

When BB is enabled, the first outgoing connection of a block
ay only be established to its last layer because the block is
isconnected from the Merge Block. Subsequent outgoing con-

nections of said block can connect to any layer. The connection
limitation is in place to preserve the concept of box mutation.
The restriction ensures that the block that is disconnected from
the Merge Block still contributes its entire structure to the model’s
output.

3.2.2. Layers
In this work, we define a layer as a composition of modules

that preprocess the input, the neural network layer itself, and
post-processing modules. A module can be a traditional fully
connected linear neural network layer, activation function, or
regularization layer. We use different types of modules, such
as pooling, reshaping, main, regularization, and activation func-
tion modules. Pooling modules are used for feature extraction
and keeping the block’s parameters in check, while reshaping
8

modules flatten or reshape input tensors as needed. The main
module is a feedforward module with possible sparse connections
in linear blocks or a two-dimensional convolutional module in
convolutional blocks. Regularization modules like Batch Normal-
ization, Instance Normalization, Layer Normalization, Dropout,
or no regularization module are determined at the block level,
affecting the model’s generalization ability. Activation functions
such as Rectified Linear Unit (ReLU) [8], Gaussian Error Linear
Unit (GELU) [66], and Leaky ReLU [67] are chosen at the block
level.

Output Layer. In a classification model, the last layer typically
onsists of a fully connected feedforward layer outputting scalars,
hich are then passed through a softmax function to obtain class

probabilities. If our framework had a traditional last layer, it
would receive inputs from all blocks, and its weights would either
be all trainable or non-trainable. However, to preserve box muta-
tion, all the weights of evolved blocks should remain unaltered,
including the weights that connect to the output, while con-
nections to the mutation block should undergo backpropagation
optimization.

To achieve this partial last layer optimization, we break down
he last linear layer into Output Layers and a Merge Block (Fig. 9).
Each block has an Output Layer as its last layer, acting as the
block’s classifier and contributing to the model’s output. All
Output Layers are summed together at the Merge Block. The
model hyperparameter, Freeze Evolved Output Layers (FEOL),
allows evolved blocks’ output layers to remain trainable (un-
frozen) when new blocks are added, effectively functioning like
Double Adaptive Mutation [68] and altering how existing blocks
contribute to the model’s output. This hyperparameter is not
applicable if FEB is disabled, as FEB unfreezes all parameters in
the model.

4. Experimental settings

In this section, we present the experimental settings and pro-
cedures that were employed to evaluate our proposed framework
for evolving deep neural networks. The experiments conducted in
this study are designed to assess the effectiveness of our method
in various scenarios, specifically focusing on two main experi-
ments: (1) evolving models to recreate the ResNet-18, Resnet-34
and DenseNet-121 architectures and measure their performance
against the traditional method of training these architectures,
and (2) freely letting the models evolve without architectural
constraints.

In every experiment, we conducted 30 runs for each sub-
experiment with a batch size of 256, calculating the mean, stan-
dard deviation, and best run. Experiments were run on GPUs,
either using an RTX 3080 Ti or a GTX 1070. Due to differences in
computational power between the cards used, we do not report
on run time unless explicitly stated. For all figures in this section,
the mean is represented by a line, and the standard deviation



F.J.J.B. Santos, I. Gonçalves and M. Castelli Applied Soft Computing 147 (2023) 110767

l
e

t
w
t
t

R
a
t
t
w

4

a
t
f
R
r
w
v
t

5

5
t

s

Fig. 9. Green represents unfrozen parameters; red represents frozen parameters. Left. Neural network with a traditional last layer to output the result. The purple
ines represent the output weights, and they can either be all frozen or unfrozen. Right. By breaking down the output into Output Layers and Merge Block, we are
ffectively able to optimize only the weights of the Output Layer of Block 1, as represented by the green lines going to the Merge Block.
Table 1
Hyperparameters used to recreate the three architectures using the framework to establish the baselines, as well as the options for the evolution experiments. We
only produce LRF comparisons for the ResNet-18 architecture due to computational constraints.
Model hyperparameters Baselines Evolution (ResNet-18) Evolution (ResNet-34) Evolution (DenseNet-121)

Block Branches (BB) True {True, False} {True, False} {True, False}
Epochs (total) 20 34 170 60
Epochs (per mutation) – 2 10 10
Use Learning Rate Finder (LRF) False {True, False} False False
Learning Rate (η) 0.05 {True, False (0.05)} 0.05 0.05
Freeze Evolved Blocks (FEB) False {True, False} {True, False} {True, False}
Freeze Evolved Output Layers (FEOL) False {True, False} {True, False} {True, False}
is represented by the shaded area, averaged over thirty runs.
Vertical semi-transparent dashed lines indicate when a model is
mutated.

4.1. Exploring the performance of evolved architectures

We regarded the ResNet and DenseNet designs as an ideal
estbed for the theory behind our method for evolving neural net-
orks. If we were to evolve models to have the same topology as
hese architectural designs, how would they perform compared to
he traditional training of the ResNet and DenseNet networks?

As a baseline for this experiment, we recreated the ResNet-18,
esNet-34, and DenseNet-121 architectures using the framework
nd trained them using standard backpropagation. We compared
he baselines against forced mutations that evolve the model into
hese architectures. For these forced evolution sub-experiments,
e tested various combinations of values (Table 1).

.2. Unrestricted neuroevolution

In this experiment, we evolved models from scratch without
ny restrictions. After considering the results regarding LRF (Sec-
ion 5.1.1), we opted not to use the LRF and instead employed a
ixed learning rate (η = 0.05). Furthermore, we introduced the
eset N Fit hyperparameter, which reinitializes the model’s pa-
ameters and retrains them from a blank state. We experimented
ith different hyperparameter values, as detailed in Table 2. The
arious hyperparameter setups are designed to yield similar run
imes across all sub-experiments.

. Results

.1. Experiment 1: Exploring the performance of evolved architec-
ures

In this section, we reported the results achieved from the first
et of experiments, in which we aim at recreate the ResNet-18,
9

Table 2
Hyperparameters for unrestricted neuroevolution.
Hyperparameter Value

Epochs (per mutation) {5, 10}
Population {5, 10}
Generations {10, 20}
Reset and Fit Parameters at end of training {True, False}
Use Learning Rate Finder (LRF) False
Learning Rate (η) 0.05
Block Branches (BB) True
Freeze Evolved Blocks (FEB) False
Freeze Evolved Output Layers (FEOL) False

ResNet-34, and DenseNet-121 architectures using the proposed
framework and training them using standard backpropagation.

5.1.1. ResNet-18
Fig. 10 displays the learning curves achieved when evolving

the ResNet-18 architecture. In particular, on the left, the fig-
ure shows the value of the loss function on the training set at
each epoch while, on the right, it displays the validation ac-
curacy. Fig. 11 shows the validation accuracy achieved by the
evolved ResNet-18 architecture with different hyperparameters’
values. Based on the observed results, it appears that the choice
of hyperparameters’ values may affect the performance of the
resulting network. Before entering into a more detailed anal-
ysis, Table 3 summarizes the results achieved considering the
ResNet-18 architecture.

Referring to Table 3, we note that no sub-experiment is able
to achieve the same level of accuracy as the baseline ResNet-18
(91.6%).

Impact of Block Branches (BB). It is important to note that
BB inherently disables FEB within the block branch. Considering
the topology of ResNet-18, since the block branch constitutes the

entire model, FEB is effectively disabled for the entire model. The



F.J.J.B. Santos, I. Gonçalves and M. Castelli Applied Soft Computing 147 (2023) 110767

a

k
m
e
s
M
e

t
t

Fig. 10. Training progression for the baseline sub-experiment A.1 consisting of the ResNet-18 architecture. Left. Train loss. Right. Validation accuracy with final
ccuracy of 91%.
Fig. 11. Progression of validation accuracy for sub-experiments with varying hyperparameters.
t

ey difference between sub-experiments B and E is that the entire
odel trains throughout the evolution in sub-experiment B, with
very block connecting directly to the Merge Block. In contrast, in
ub-experiment E, only the last block added is connected to the
erge Block while the entire model still trains during the whole
volution.
Though the ResNet Experiment may not be the ideal setting

o examine the BB hyperparameter, as a block branch represents
he entire model throughout the evolution steps, we still observe
 c

10
that sub-experiment E, with BB enabled, attains the best overall
performance. Sub-experiment E.3 achieves a score of 79.41%,
outperforming the best sub-experiment B.1, where BB is disabled,
with a score of 76.33%. Additionally, it is worth mentioning that
E.3 (±0.82%) demonstrates more consistent results compared to
B.1 (±2.75%).

Impact of Freeze Evolved Blocks (FEB). We empirically prove
hat, with regards to neural networks, preserving the parent’s
ontribution, as in GSGP, leads to significantly worse performance



F.J.J.B. Santos, I. Gonçalves and M. Castelli Applied Soft Computing 147 (2023) 110767
Table 3
Comparison of sub-experiments using the ResNet-18 architecture on the CIFAR-10 test dataset, showcasing the impact of various hyperparameter settings on the
model’s performance.
Sub-experiment BB FEB FEOL LRF ηmax Epochs Test accuracy [%] Test accuracy (Best) [%]

Baseline (A.1) – – – – 0.05 20 91.6 ± 0.17 92.06
(B.1) – 0.05 34 76.33 ± 2.75 78.9
(B.2) – ✓ [0.01, 0.5] 34 75.43 ± 3.75 78.44
(B.3) – ✓ [0.05, 0.5] 34 72.39 ± 6.01 77.81
(C.1) ✓ 0.05 34 56.79 ± 1.17 59.38
(C.2) ✓ ✓ [0.01, 0.5] 34 55.85 ± 1.19 58.26
(C.3) ✓ ✓ [0.05, 0.5] 34 54.03 ± 1.31 56.08
(C.4) ✓ ✓ [0.1, 0.5] 34 53.08 ± 1.0 54.99
(D.1) ✓ ✓ 0.05 34 56.44 ± 0.94 59.13
(D.2) ✓ ✓ ✓ [0.05, 0.5] 34 53.65 ± 1.45 56.69
(D.3) ✓ ✓ ✓ [0.1, 0.5] 34 52.26 ± 1.05 54.43
(E.1) ✓ – – 0.05 34 79.3 ± 0.48 80.19
(E.2) ✓ – – ✓ [0.01, 0.5] 34 77.51 ± 1.1 78.88
(E.3) ✓ – – ✓ [0.05, 0.5] 34 79.41 ± 0.82 80.66
Fig. 12. Loss of Block 0 with Freeze Evolved Blocks (FEB) disabled (left, sub-experiment B) and enabled (right, sub-experiment D). The loss for models with FEB
disabled (left) decreases for a few epochs and then increases as the model grows in size. This pattern suggests that Block 0 focuses on learning complex features
while it serves as the last block of the model (until epoch = 4). However, as more blocks are added, Block 0 shifts towards learning basic features, leading to a
decline in classification performance (i.e., increased loss). This contrasts with the models that have FEB and FOEL enabled (right), where Block 0 maintains a steady
loss and, intuitively, does not make the ‘‘switch’’ from complex to more basic feature extraction.
than when we allow the parent structure to be changed by either
disabling FEB or enabling BB. We observe that enabling FEB leads
to overall worse performance. Sub-experiments C and D (FEB,
maximum accuracy achieved of 56.79% for sub-experiment C.1)
perform substantially worse than sub-experiments B (no FEB,
maximum accuracy achieved of 76.33% for sub-experiment B.1).

A possible explanation for this drop in performance may be
that convolutional layers are feature extractors, and as the model
grows, they need to adapt to new blocks that are introduced.
In such cases, the initial layers need to focus on learning basic,
lower-level features, while the deeper layers should capture more
complex, higher-level features. If the earlier layers are not al-
lowed to adapt due to FEB, they may struggle to effectively extract
the necessary basic features, thus hindering the model’s overall
performance.

As our framework is modular, we are able to measure the loss
related to each block. Our observations align with the intuition
that in evolutions with FEB, the new block consistently attempts
to learn more complex and unique features of each class rather
than basic feature maps (Fig. 12).

Impact of Freeze Evolved Output Layers (FEOL). We may
only compare sub-experiments C and D when considering FEOL.
Regarding the test accuracy, there is no significant difference
between enabling (D.1; 56.44% ± 0.94%) or disabling (C.1; 56.79%
± 1.17%) FEOL.
11
Impact of Learning Rate Finder (LRF). We find that for sub-
experiments B, C, and D, enabling LRF leads to overall worse
performance (w.r.t. the accuracy). However, results were mixed
for sub-experiment E. Using LRF proved marginally better for E.3
(79.96%; ηmax[0.05, 0.5]) vs. 79.32% (E.1; ηmax = 0.05) for no LRF.
We conclude that using LRF is not ideal, as it increases evolution
runtime without necessarily increasing model performance. We
suggest a different approach for choosing the learning rate in
Section 6 for future experiments.

Training an Evolved Model from Scratch. We can reverse-
engineer the idea of this experiment: if evolving the ResNet-18
model leads to worse performance when compared to training
it when it is already constructed, we can then apply the same
concept to unrestrained (i.e., randomly) evolved models. We in-
troduce Reset N Fit, a hyperparameter that resets and unfreezes
the model’s parameters, allowing it to be fully trainable, and
retrains the model.

5.1.2. ResNet-34
Concerning the results achieved when considering the ResNet-

34 architecture, Fig. 13 displays, on the left, the value of the loss
function on the training set at each epoch while, on the right, it
displays the validation accuracy. Table 4 summarizes the results
achieved considering the ResNet-18 architecture.



F.J.J.B. Santos, I. Gonçalves and M. Castelli Applied Soft Computing 147 (2023) 110767

t
a

a
p
t
s
8

v
m
w
i
s
t

t
S
v

5

D
o
t
t

1
e

Fig. 13. Training progression for ResNet-34 on the CIFAR-10 dataset. Left. Train loss. Right. Validation accuracy.
Table 4
Comparison of sub-experiments using the ResNet-34 architecture on the CIFAR-10 test dataset.
Sub-experiment BB FEB FEOL ηmax Epochs Test accuracy [%] Test accuracy (Best) [%]

Baseline (A.1) – – – 0.05 20 92.16 ± 0.29 92.43
(B.1) – 0.05 170 81.54 ± 7.29 85.29
(B.2) ✓ 0.05 170 72.5 ± 0.29 72.81
(B.3) ✓ ✓ 0.05 170 72.27 ± 0.45 72.88
(C.1) ✓ – – 0.05 170 85.66 ± 0.24 86.01
Table 5
Comparison of sub-experiments using the DenseNet-121 architecture on the CIFAR-10 test dataset.
Sub-experiment BB FEB FEOL ηmax Epochs Test accuracy [%] Test accuracy (Best) [%]

Baseline (A.1) – – – 0.05 20 92.97 ± 0.15 93.19
(B.1) – 0.05 60 88.24 ± 0.22 88.49
(B.2) ✓ 0.05 60 87.68 ± 1.83 88.96
(B.3) ✓ ✓ 0.05 60 88.38 ± 0.38 88.76
(C.1) ✓ – – 0.05 60 88.54 ± 0.8 89.33
Similar to the results of the ResNet-18 experiment (see Sec-
ion 5.1.1), no sub-experiment is able to achieve the same level of
ccuracy as the baseline ResNet-34 (92.16%) as shown in Table 4.
Impact of Block Branches (BB). Considering the ResNet-34

rchitecture, enabling BB results in an improvement in model
erformance. Sub-experiment C.1, with BB enabled, achieves a
est accuracy of 85.66%, a significant improvement over the best
ub-experiment without BB (B.1), which produces an accuracy of
1.54
Impact of Freeze Evolved Blocks (FEB). Similar to the obser-

ations in the ResNet-18 experiment, enabling FEB reduces the
odel’s performance. As evident in sub-experiments B.2 and B.3,
here FEB is enabled, the test accuracy is significantly lower than

n sub-experiment B.1, where FEB is disabled. This pattern further
upports the hypothesis that convolutional layers need the ability
o adapt as the model evolves and new blocks are introduced.

Impact of Freeze Evolved Output Layers (FEOL). Just as in
he ResNet-18 experiment, the effect of FEOL is not significant.
ub-experiment B.3, with FEOL enabled, achieves a test accuracy
ery similar to sub-experiment B.2, which has FEOL disabled.

.1.3. DenseNet-121
Focusing on the results achieved when considering the

enseNet-121 architecture, Fig. 14 displays, on the left, the value
f the loss function on the training set at each epoch while, on
he right, it displays the validation accuracy. Table 5 summarizes
he results achieved considering the DenseNet-121 architecture.

In line with the previous experiments, none of the DenseNet-
21 sub-experiments, even the best-performing one (Sub-
xperiment C.1 with an accuracy of 88.54%), could match the
12
accuracy of the baseline DenseNet-121, which achieved a test
accuracy of 92.97% (Table 5).

The DenseNet architecture has a unique design, where each
block concatenates features from preceding blocks. This design
feature likely influenced the closely ranged performance of all
sub-experiments, which presented test accuracies varying from
87.68% to 88.54%, very different results from previous experi-
ments on the ResNet architecture. Regardless of the variations
in the hyperparameters (BB, FEB, and FEOL), since a new block
always has access to the feature maps obtained from previous
blocks and can modify these feature maps, it effectively nullifies
the concept of FEB and FEOL, bringing the performance of sub-
experiments B to par with the performance of sub-experiment
C.1. These results are promising, as we mention in Section 6 for
future work, since sub-experiments with FEB enabled perform
just as well as one with FEB disabled and, as previously explained,
FEB allows for much faster training times.

5.2. Experiment 2: Unrestricted neuroevolution

In this section, we reported the results achieved by evolv-
ing models from scratch without any restrictions. These exper-
iments are fundamental to assessing the suitability of the pro-
posed framework to build neural networks that show satisfactory
performance (see Table 6).

Based on the experimental evidence, we can state that our
framework successfully evolves complex models. Although sub-
experiment A.3 performs the best on average (84.97% ± 2.44%),
the best model of A.2 achieves nearly 89% accuracy, and we

believe the most relevant result is sub-experiment A.1. The best



F.J.J.B. Santos, I. Gonçalves and M. Castelli Applied Soft Computing 147 (2023) 110767
Fig. 14. Training progression for DenseNet-121 on the CIFAR-10 dataset. Left. Train loss. Right. Validation accuracy.
Fig. 15. Results for the evolution of models. Left. Train loss. Right. Validation accuracy.
Table 6
Comparison between experiments in the evolution experiment on the test dataset (CIFAR-10). We report the mean and standard deviation of the accuracies, averaged
over thirty runs, and the best run of each experiment.
Experiment Pop. Gen. Reset & Fit Epochs (per

mutation)
Epochs (total) Accuracy [%] Accuracy (Best)

[%]
Parameters
(Best) [Millions]

(A.1) 1 20 ✓ 5 100 84.46 ± 3.16 88.69 3.2
(A.2) 2 10 ✓ 10 200 84.58 ± 3.04 88.93 15.76
(A.3) 4 10 5 200 84.97 ± 2.44 88.4 11.23
model of sub-experiment A.1 attains 88.69% accuracy on the
test set while having only 3.2M parameters. For comparison, the
ResNet-18 model architecture from Section 5.1.1 achieves 91.6%
(±0.17%) accuracy and has 11M parameters.

It appears that resetting the model’s parameters and retraining
it does not affect its validation accuracy meaningfully, as seen
in Fig. 15. Sub-experiment A.1 is visibly better on the validation
set before resetting its parameters, and A.2 maintains similar
accuracy before and after resetting and retraining. This disproves
our hypothesis from Section 5.1.1, where we suggested retrain-
ing the model from scratch after evolving it. Although more
research should be conducted, our initial findings indicate that
using our method to evolve models leads to different topologies
more attuned to incremental evolutions.

In terms of discovery, we observe that these models took
16 min, on average, to evolve on a single GPU (Fig. 16). As
previously mentioned, models found through NAS usually take
multiple days on multiple GPUs.

Considering that the results of all sub-experiments A were
very close, our intuition is that having a big population for each
generation might not be compelling as we had to trade off the
13
number of epochs per mutation to bring down the running time:
A.2 with a population of 2 had 10 epochs per mutation vs.
A.3 with a population of 4 had to be decreased to 5 epochs.
Interestingly, the number of parameters is overall higher when
the population is 1, but the best model of sub-experiment A.1
had a relatively low amount of parameters (3.2M). Overall, these
are excellent results for such a new framework and method of
evolving neural networks.

6. Conclusions

Despite being limited by computational resources, we success-
fully evolved models with high accuracy on our problem dataset
by experimentally exploring numerous theoretical possibilities
for the neuroevolution process. One of our best-evolved models
achieved nearly 89% accuracy on the test set of the CIFAR-10
dataset problem with only 3.2M parameters.

In addition to the evolved model surpassing the manual evolu-
tion of the model mimicking the ResNet-18 architecture (84.97%
± 2.44% for our model versus 79.41% ± 0.82% for ResNet-18),
the evolved models also demonstrated competitive performance



F.J.J.B. Santos, I. Gonçalves and M. Castelli Applied Soft Computing 147 (2023) 110767
Fig. 16. Left. Run time of evolution in seconds. All evolutions ran on a 3080 Ti. Right. Number of parameters throughout mutations.
when compared to the other architectures tested. For instance,
the best performing evolved models achieved accuracies of 86.01%
(Table 4) and 89.33% (Table 5), versus ours’ accuracy of 88.93%.

For future work, there are several ways to improve the frame-
work:

• Implement convolutional blocks with groups and dilation to
enhance the convolutional kernel’s ability to analyze larger
image areas without increasing the number of parameters.
• As corroborated by our findings presented in Section 5.1.3,

enabling each block to receive multiple inputs and then
concatenate them via pooling or other inexpensive methods
can lead to significant acceleration in the evolution process.
• Enable mutations similar to the Bottleneck design in ResNet

architectures by allowing layers (except the last one) to
change their dimensions when the convolutional block is set
to keep input dimensions.
• Explore optimizing the last block before unfreezing the en-

tire branch for block branches. Similarly, when a new layer
is added to a block, optimize the parameters of the layer and
output layer for 1 or 2 epochs without altering the previous
layers in the block.
• Increase block diversity by adding custom blocks, such as

Residual Block and Bottleneck from ResNet or Transformer
Blocks.
• Develop the framework to work with multiple GPUs, as

this method of evolving neural networks is an excellent
candidate for utilizing multiple training devices, with each
device representing an individual in the population at every
generation.

By addressing these areas for improvement, we believe the
framework can be further refined to produce even better neural
network architectures.

Declaration of competing interest

The authors declare no competing interests.

Data availability

No data was used for the research described in the article

Acknowledgments

This work is funded by national funds through the FCT - Foun-
dation for Science and Technology, I.P., within the scope of the
projects CISUC - UID/CEC/00326/2020, UIDB/04152/2020 - Centro
14
de Investigação em Gestão de Informação (MagIC)/NOVA IMS,
and by European Social Fund, through the Regional Operational
Program Centro 2020.

References

[1] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., An image
is worth 16x16 words: Transformers for image recognition at scale, 2020,
arXiv preprint arXiv:2010.11929.

[2] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[3] J.R. Koza, Genetic programming as a means for programming computers
by natural selection, Stat. Comput. 4 (1994) 87–112.

[4] A. Moraglio, K. Krawiec, C.G. Johnson, Geometric semantic genetic pro-
gramming, in: International Conference on Parallel Problem Solving from
Nature, Springer, 2012, pp. 283–293.

[5] G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely con-
nected convolutional networks, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.

[6] E. Real, A. Aggarwal, Y. Huang, Q.V. Le, Regularized evolution for image
classifier architecture search, in: Proceedings of the Aaai Conference on
Artificial Intelligence, vol. 33, 2019, pp. 4780–4789.

[7] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied
to document recognition, Proc. IEEE (1998).

[8] V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann
machines, in: Proceedings of the 27th International Conference on Machine
Learning (ICML-10), 2010, pp. 807–814.

[9] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: a simple way to prevent neural networks from overfitting, J.
Mach. Learn. Res. 15 (2014) 1929–1958.

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł.
Kaiser, I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process.
Syst. 30 (2017).

[11] J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications To Biology, Control, and Artificial Intelligence,
MIT Press, 1992.

[12] L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial Intelligence Through Simulated
Evolution, John Wiley & Sons, 1966.

[13] H.-G. Beyer, H.-P. Schwefel, Evolution strategies–a comprehensive
introduction, Nat. Comput. 1 (2002) 3–52.

[14] I. Bakurov, M. Castelli, F. Fontanella, L. Vanneschi, A regression-like
classification system for geometric semantic genetic programming, in:
Proceedings of the 11th International Joint Conference on Computa-
tional Intelligence (IJCCI 2019), vol. 1, SciTePress-Science and Technology
Publications, 2019, pp. 40–48.

[15] I. Bakurov, M. Castelli, F. Fontanella, A.S. di Freca, L. Vanneschi, A
novel binary classification approach based on geometric semantic genetic
programming, Swarm Evol. Comput. 69 (2022) 101028.

[16] T. Bäck, D.B. Fogel, Z. Michalewicz, Handbook of evolutionary computation,
Release 97 (1) (1997) B1.

[17] K.O. Stanley, J. Clune, J. Lehman, R. Miikkulainen, Designing neural
networks through neuroevolution, Nat. Mach. Intell. 1 (1) (2019) 24–35.

[18] B. Baker, O. Gupta, N. Naik, R. Raskar, Designing neural network archi-
tectures using reinforcement learning, 2016, arXiv preprint arXiv:1611.
02167.

http://arxiv.org/abs/2010.11929
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb2
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb2
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb2
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb2
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb2
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb3
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb3
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb3
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb4
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb4
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb4
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb4
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb4
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb5
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb5
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb5
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb5
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb5
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb6
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb6
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb6
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb6
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb6
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb7
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb7
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb7
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb8
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb8
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb8
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb8
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb8
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb9
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb9
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb9
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb9
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb9
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb10
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb10
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb10
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb10
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb10
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb11
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb11
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb11
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb11
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb11
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb12
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb12
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb12
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb13
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb13
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb13
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb14
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb14
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb14
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb14
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb14
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb14
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb14
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb14
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb14
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb15
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb15
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb15
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb15
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb15
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb16
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb16
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb16
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb17
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb17
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb17
http://arxiv.org/abs/1611.02167
http://arxiv.org/abs/1611.02167
http://arxiv.org/abs/1611.02167


F.J.J.B. Santos, I. Gonçalves and M. Castelli Applied Soft Computing 147 (2023) 110767
[19] T. Elsken, J.-H. Metzen, F. Hutter, Simple and efficient architecture search
for convolutional neural networks, 2017, arXiv preprint arXiv:1711.04528.

[20] R. Chandra, A. Tiwari, Distributed Bayesian optimisation framework for
deep neuroevolution, Neurocomputing 470 (2022) 51–65.

[21] T. Deng, J. Wu, Efficient graph neural architecture search using Monte Carlo
tree search and prediction network, Expert Syst. Appl. 213 (2023) 118916.

[22] A. Kapoor, E. Nukala, R. Chandra, Bayesian neuroevolution using distributed
swarm optimization and tempered MCMC, Appl. Soft Comput. 129 (2022)
109528.

[23] Y. Liu, Y. Sun, B. Xue, M. Zhang, G.G. Yen, K.C. Tan, A survey on evolutionary
neural architecture search, IEEE Trans. Neural Netw. Learn. Syst. (2021).

[24] A. Darwish, A.E. Hassanien, S. Das, A survey of swarm and evolutionary
computing approaches for deep learning, Artif. Intell. Rev. 53 (2020)
1767–1812.

[25] M. Wistuba, A. Rawat, T. Pedapati, A survey on neural architecture search,
2019, arXiv preprint arXiv:1905.01392.

[26] L. Xie, A. Yuille, Genetic cnn, in: Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 1379–1388.

[27] M. Loni, S. Sinaei, A. Zoljodi, M. Daneshtalab, M. Sjödin, DeepMaker:
A multi-objective optimization framework for deep neural networks in
embedded systems, Microprocess. Microsyst. 73 (2020) 102989.

[28] Y. Sun, B. Xue, M. Zhang, G.G. Yen, Evolving deep convolutional neural
networks for image classification, IEEE Trans. Evol. Comput. 24 (2) (2019)
394–407.

[29] K.O. Stanley, R. Miikkulainen, Evolving neural networks through
augmenting topologies, Evol. Comput. 10 (2) (2002) 99–127.

[30] E. Papavasileiou, J. Cornelis, B. Jansen, A systematic literature review of the
successors of ‘‘neuroevolution of augmenting topologies’’, Evol. Comput. 29
(1) (2021) 1–73.

[31] M. Suganuma, S. Shirakawa, T. Nagao, A genetic programming approach to
designing convolutional neural network architectures, in: Proceedings of
the Genetic and Evolutionary Computation Conference, 2017, pp. 497–504.

[32] S. Bianco, M. Buzzelli, G. Ciocca, R. Schettini, Neural architecture search
for image saliency fusion, Inf. Fusion 57 (2020) 89–101.

[33] Z. Fan, J. Wei, G. Zhu, J. Mo, W. Li, Evolutionary neural architecture search
for retinal vessel segmentation, 2020, arXiv preprint arXiv:2001.06678.

[34] M. Neshat, M.M. Nezhad, E. Abbasnejad, L.B. Tjernberg, D.A. Garcia, B.
Alexander, M. Wagner, An evolutionary deep learning method for short-
term wind speed prediction: A case study of the lillgrund offshore wind
farm, 2020, arXiv preprint arXiv:2002.09106.

[35] E. Byla, W. Pang, Deepswarm: Optimising convolutional neural networks
using swarm intelligence, in: Advances in Computational Intelligence Sys-
tems: Contributions Presented At the 19th UK Workshop on Computational
Intelligence, September 4-6, 2019, Portsmouth, UK 19, Springer, 2020, pp.
119–130.

[36] F.E.F. Junior, G.G. Yen, Particle swarm optimization of deep neural networks
architectures for image classification, Swarm Evol. Comput. 49 (2019)
62–74.

[37] P.R. Lorenzo, J. Nalepa, Memetic evolution of deep neural networks, in:
Proceedings of the Genetic and Evolutionary Computation Conference,
2018, pp. 505–512.

[38] B.P. Evans, H. Al-Sahaf, B. Xue, M. Zhang, Genetic programming and
gradient descent: A memetic approach to binary image classification, 2019,
arXiv preprint arXiv:1909.13030.

[39] E. Real, S. Moore, A. Selle, S. Saxena, Y.L. Suematsu, J. Tan, Q.V. Le,
A. Kurakin, Large-scale evolution of image classifiers, in: International
Conference on Machine Learning, PMLR, 2017, pp. 2902–2911.

[40] Y. Hu, S. Sun, J. Li, X. Wang, Q. Gu, A novel channel pruning method for
deep neural network compression, 2018, arXiv preprint arXiv:1805.11394.

[41] T. Wu, J. Shi, D. Zhou, Y. Lei, M. Gong, A multi-objective particle swarm
optimization for neural networks pruning, in: 2019 IEEE Congress on
Evolutionary Computation, CEC, IEEE, 2019, pp. 570–577.

[42] T. Tanaka, T. Moriya, T. Shinozaki, S. Watanabe, T. Hori, K. Duh, Automated
structure discovery and parameter tuning of neural network language
model based on evolution strategy, in: 2016 Ieee Spoken Language
Technology Workshop (Slt), IEEE, 2016, pp. 665–671.

[43] H. Zhu, Z. An, C. Yang, K. Xu, E. Zhao, Y. Xu, EENA: efficient evolu-
tion of neural architecture, in: Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops, 2019.

[44] S. Kern, S.D. Müller, N. Hansen, D. Büche, J. Ocenasek, P. Koumoutsakos,
Learning probability distributions in continuous evolutionary algorithms–a
comparative review, Nat. Comput. 3 (2004) 77–112.

[45] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 1–9.
15
[46] M. Baldeon-Calisto, S.K. Lai-Yuen, AdaResU-net: Multiobjective adap-
tive convolutional neural network for medical image segmentation,
Neurocomputing 392 (2020) 325–340.

[47] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks
for biomedical image segmentation, in: Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th International Con-
ference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18,
Springer, 2015, pp. 234–241.

[48] M. Suganuma, M. Kobayashi, S. Shirakawa, T. Nagao, Evolution of deep
convolutional neural networks using cartesian genetic programming, Evol.
Comput. 28 (1) (2020) 141–163.

[49] T. Hassanzadeh, D. Essam, R. Sarker, Evou-net: an evolutionary deep
fully convolutional neural network for medical image segmentation, in:
Proceedings of the 35th Annual ACM Symposium on Applied Computing,
2020, pp. 181–189.

[50] X. Dong, Y. Yang, Nas-bench-201: Extending the scope of reproducible
neural architecture search, 2020, arXiv preprint arXiv:2001.00326.

[51] Y. Chen, T. Pan, C. He, R. Cheng, Efficient evolutionary deep neural archi-
tecture search (nas) by noisy network morphism mutation, in: Bio-Inspired
Computing: Theories and Applications: 14th International Conference, BIC-
TA 2019, Zhengzhou, China, November 22–25, 2019, Revised Selected
Papers, Part II 14, Springer, 2020, pp. 497–508.

[52] L. Frachon, W. Pang, G.M. Coghill, Immunecs: Neural committee search by
an artificial immune system, 2019, arXiv preprint arXiv:1911.07729.

[53] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, X. Wang, A com-
prehensive survey of neural architecture search: Challenges and solutions,
ACM Comput. Surv. 54 (4) (2021) 1–34.

[54] N. Li, L. Ma, G. Yu, B. Xue, M. Zhang, Y. Jin, Survey on evolutionary
deep learning: Principles, algorithms, applications and open issues, ACM
Comput. Surv. (2022).

[55] C. White, M. Safari, R. Sukthanker, B. Ru, T. Elsken, A. Zela, D. Dey, F.
Hutter, Neural architecture search: Insights from 1000 papers, 2023, arXiv
preprint arXiv:2301.08727.

[56] Z.-H. Zhan, J.-Y. Li, J. Zhang, Evolutionary deep learning: A survey,
Neurocomputing 483 (2022) 42–58.

[57] N. Li, L. Ma, T. Xing, G. Yu, C. Wang, Y. Wen, S. Cheng, S. Gao, Automatic
design of machine learning via evolutionary computation: A survey, Appl.
Soft Comput. (2023) 110412.

[58] I. Gonçalves, S. Silva, C.M. Fonseca, Semantic learning machine: A feed-
forward neural network construction algorithm inspired by geometric
semantic genetic programming, in: Progress in Artificial Intelligence:
17th Portuguese Conference on Artificial Intelligence, EPIA 2015, Coim-
bra, Portugal, September 8-11, 2015. Proceedings 17, Springer, 2015, pp.
280–285.

[59] I. Gonçalves, An Exploration of Generalization and Overfitting in Genetic
Programming: Standard and Geometric Semantic Approaches (Ph.D. thesis),
Department of Informatics Engineering, University of Coimbra, Portugal,
2017.

[60] L.N. Smith, A disciplined approach to neural network hyper-parameters:
Part 1–learning rate, batch size, momentum, and weight decay, 2018, arXiv
preprint arXiv:1803.09820.

[61] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, J. Han, On the variance of the
adaptive learning rate and beyond, 2019, arXiv preprint arXiv:1908.03265.

[62] L.N. Smith, N. Topin, Super-convergence: Very fast training of neural
networks using large learning rates, in: Artificial Intelligence and Machine
Learning for Multi-Domain Operations Applications, vol. 11006, SPIE, 2019,
pp. 369–386.

[63] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv
preprint arXiv:1412.6980.

[64] L.N. Smith, Cyclical learning rates for training neural networks, in: 2017
IEEE Winter Conference on Applications of Computer Vision, WACV, IEEE,
2017, pp. 464–472.

[65] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feed-
forward neural networks, in: Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, JMLR Workshop and
Conference Proceedings, 2010, pp. 249–256.

[66] D. Hendrycks, K. Gimpel, Gaussian error linear units (gelus), 2016, arXiv
preprint arXiv:1606.08415.

[67] A.L. Maas, A.Y. Hannun, A.Y. Ng, et al., Rectifier nonlinearities improve
neural network acoustic models, in: Proc. Icml, vol. 30, Atlanta, Georgia,
USA, 2013, p. 3.

[68] I. Gonçalves, S. Silva, C.M. Fonseca, On the generalization ability of
geometric semantic genetic programming, in: Genetic Programming: 18th
European Conference, EuroGP 2015, Copenhagen, Denmark, April 8-10,
2015, Proceedings 18, Springer, 2015, pp. 41–52.

http://arxiv.org/abs/1711.04528
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb20
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb20
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb20
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb21
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb21
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb21
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb22
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb22
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb22
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb22
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb22
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb23
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb23
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb23
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb24
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb24
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb24
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb24
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb24
http://arxiv.org/abs/1905.01392
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb26
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb26
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb26
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb27
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb27
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb27
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb27
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb27
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb28
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb28
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb28
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb28
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb28
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb29
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb29
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb29
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb30
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb30
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb30
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb30
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb30
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb31
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb31
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb31
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb31
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb31
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb32
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb32
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb32
http://arxiv.org/abs/2001.06678
http://arxiv.org/abs/2002.09106
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb35
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb35
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb35
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb35
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb35
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb35
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb35
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb35
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb35
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb36
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb36
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb36
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb36
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb36
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb37
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb37
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb37
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb37
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb37
http://arxiv.org/abs/1909.13030
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb39
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb39
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb39
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb39
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb39
http://arxiv.org/abs/1805.11394
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb41
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb41
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb41
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb41
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb41
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb42
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb42
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb42
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb42
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb42
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb42
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb42
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb43
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb43
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb43
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb43
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb43
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb44
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb44
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb44
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb44
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb44
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb45
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb45
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb45
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb45
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb45
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb45
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb45
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb46
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb46
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb46
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb46
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb46
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb47
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb47
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb47
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb47
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb47
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb47
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb47
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb47
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb47
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb48
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb48
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb48
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb48
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb48
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb49
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb49
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb49
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb49
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb49
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb49
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb49
http://arxiv.org/abs/2001.00326
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb51
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb51
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb51
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb51
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb51
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb51
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb51
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb51
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb51
http://arxiv.org/abs/1911.07729
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb53
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb53
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb53
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb53
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb53
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb54
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb54
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb54
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb54
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb54
http://arxiv.org/abs/2301.08727
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb56
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb56
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb56
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb57
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb57
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb57
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb57
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb57
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb58
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb58
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb58
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb58
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb58
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb58
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb58
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb58
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb58
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb58
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb58
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb59
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb59
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb59
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb59
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb59
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb59
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb59
http://arxiv.org/abs/1803.09820
http://arxiv.org/abs/1908.03265
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb62
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb62
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb62
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb62
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb62
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb62
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb62
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb64
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb64
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb64
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb64
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb64
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb65
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb65
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb65
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb65
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb65
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb65
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb65
http://arxiv.org/abs/1606.08415
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb67
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb67
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb67
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb67
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb67
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb68
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb68
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb68
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb68
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb68
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb68
http://refhub.elsevier.com/S1568-4946(23)00785-8/sb68

	Neuroevolution with box mutation: An adaptive and modular framework for evolving deep neural networks
	Introduction
	Related Work
	Deep Learning
	Genetic Programming
	Geometric Semantic Genetic Programming

	 Review of Neuroevolution Methods
	 Open Issues Identified

	Semantic Learning Machine

	Methodology
	Neuroevolution
	Evolutionary Model
	Blocks
	Layers


	Experimental Settings
	 Exploring the Performance of Evolved Architectures
	Unrestricted Neuroevolution

	Results
	Experiment 1: Exploring the Performance of Evolved Architectures
	ResNet-18
	ResNet-34
	DenseNet-121

	Experiment 2: Unrestricted Neuroevolution

	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


