
XML-based Genetic Rules for Scene Boundary Detection in a parallel 
processing environment 

Minaz J. Parmar  Prof. Marios C. Angelides  
Brunel University, Uxbridge - London, UK 

{minaz.parmar, marios.angelides}@brunel.ac.uk 

Abstract 
Genetic programming is based on Darwinian evolutionary theory that suggests 

that the best solution for a problem can be evolved by methods of natural selection of 
the fittest organisms in a population. These principles are translated into genetic 
programming by populating the solution space with an initial number of computer 
programs that can possibly solve the problem and then evolving the programs by 
means of mutation, reproduction and crossover until a candidate solution can be found 
that is close to or is the optimal solution for the problem. The computer programs are 
not fully formed source code but rather a derivative that is represented as a parse tree. 
The initial solutions are randomly generated and set to a certain population size that 
the system can compute efficiently.  

 
Research has shown that better solutions can be obtained if 1) the population 

size is increased and 2) if multiple runs are performed of each experiment. If multiple 
runs are initiated on many machines the probability of finding an optimal solution are 
increased exponentially and computed more efficiently. With the proliferation of the 
web and high speed bandwidth connections genetic programming can take advantage 
of grid computing to both increase population size and increasing the number of runs 
by utilising machines connected to the web. Using XML-Schema as a global 
referencing mechanism for defining the parameters and syntax of the evolvable 
computer programs all machines can synchronise ad-hoc to the ever changing 
environment of the solution space.  

 
Another advantage of using XML is that rules are constructed that can be 

transformed by XSLT or DOM tree viewers so they can be understood by the GP 
programmer. This allows the programmer to experiment by manipulating rules to 
increase the fitness of a rule and evaluate the selection of parameters used to define a 
solution. 

Introduction 
Evolutionary computing has spawned numerous types of methods for 

automatically generating solutions to problems that are to complex and intricate to 
solve by conventional methods. It is based on processes of natural evolution proposed 
by Darwin where he states that natural biological organisms must evolve in order to 
gain an advantage in an environment where other organisms exist to be able to survive 
and propagate [1]. This genetic “arms race” leads to an ethos of survival of the fittest. 
Genetic programming (GP) is an automatic programming method that finds the best 
fit solutions (or programs) by processes that are analogous to those proposed by 
Darwin for evolution [2].  

 
Genetic programming has been used to solve many complex problems where 

the amount of solutions possible is almost infinite and to compute all possible 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/333340?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


solutions is impractical or impossible. The main difference between GP and other 
types of evolutionary computing is the use of parse trees. GP is implemented by 
defining sets of functions and terminals that are structured using a formal syntax that 
will represent the programs to be evolved. These functions and terminals can be 
represented in a tree like structure that consists of nodes and leafs. The nodes are the 
functions and the leaves the terminals. This method strips away the rather unnecessary 
grammar of raw source code and leaves only the essential operating data. The reason 
for this is if raw source code was used to represent a computer program to be evolved 
the interactions required for mutation, reproduction and crossover would be complex 
and extremely error prone. This representational flexibility allows genetic 
programming to solve a wide range of problems. 
 

In this particular case GP was used to automatically detect scene boundaries 
from AV source [3]. Detecting scene boundaries is difficult as it is a matter of human 
perception where a scene ends and finishes. This requires a certain degree of semantic 
awareness of the content rather then just deciphering low-level syntactical features to 
provide audio and visual cues such as in shot boundary detection [4, 5]. Most scene 
boundary techniques are genre based as they use combinations of visual and audio 
cues that are uniform and homologous to the genre. Unfortunately rules devised in 
such a manner only hold true for that genre and cannot be easily applied to other 
genres with the same degree of accuracy. The GP scene boundary detection algorithm 
was generic in its approach to scene boundary detection because it would devise a rule 
that was tailor made for a particular clip of AV content that would give a high degree 
of precision and recall of the scene boundaries. Using this approach to scene boundary 
detection allows the process to be applied generically to any content without concern 
for the genre of the material. 
 

The probability of finding an optimal solution from a population increases 
with an increase in size of the population and the amount of runs performed to evolve 
an optimal solution. The drawbacks to increasing the population are computational 
efficiency of the algorithm, i.e. the larger the population size the longer it will take to 
evaluate the solutions to find the optimal solution.  
 

In this paper we discuss the creation of genetic programming rules for scene 
boundary detection that can be processed in parallel by any number of systems that 
use grid computing to increase the computational effectiveness and efficiency genetic 
programming. Using the XML-Schema specification [6] we define the functions, 
terminals and syntax used for the rules and then bind the functions and terminals to 
java data types using JAXB. They are then evolved to produce scene boundary 
detection rules. The rules are also human readable so they can be analysed and 
modified manually to see what effects it has on the fitness of a rule. 

Parallel processing 
A solution to the population vs. computational efficiency problem is to employ 

a parallel processing model (sometimes called the farmer or master-slave model) that 
can be used so that multiple populations can be initiated and then evolved in 
synchronisation. The drawback is the overhead in communication grows with the 
amount of populations produced [7]. By dividing the population into more 
independent subpopulations, two alternative parallel models can be identified [8]. 



Based on the size and number of subpopulations, they are referred to as coarse-
grained or fine-grained distributed population models. When dealing with very large 
populations, which are common in hard, human-competitive problems, these models 
are better suited since their overall communication capacity scale better with growing 
population size. 
 

One popular method is the Island model (see figure 1). The coarse-grained, 
distributed population model consists of a number of subpopulations or “demes” that 
evolve rather independently of each other. With some migration frequency they 
exchange individuals between each other over a communication topology.  

 
The island model is a very popular parallel model, mainly because it is very 

easy to implement on a local network with standard workstations (cluster) [9] but can 
be adapted to work on a larger networks such as the web. The communication 
between demes is infrequent and therefore a global control must be found to regulate 
changes and communication between demes. 
 

Figure 1. Island Model 

Demes 

Communication Links 

 
Using XML-schema to define the parameters of the GP algorithm allows all 

demes to be controlled by addressing a global referencing mechanism which allows 
them to modify their local parameters according to the global schema.  This ensures 
uniformity of in the construction of the initial populations, regulates evolving 
populations and makes them robust to parameter changes affecting the algorithm.  
 

Using a parallel architecture also ensure that there is less chance of a 
premature convergence of the population which leads to a better quality solution for 
the problem being produced. 

Human readable solutions 
 The original scene boundary algorithm used rules that were written in RPN 

(reverse polish notation). These rules can be very complex and hard to read. In natural 
genetics there are a lot of redundant genes that play no active part in cell growth. The 
same can be said of GP where redundant data in a rule can be omitted making the rule 



more efficient at solving the problem without reducing the accuracy. GP’s main 
drawback is the computational efficiencies of the programs evolved. The principle of 
parsimony supports this approach and is also at the root of a GP programmer’s efforts. 
Also a rule can be improved if its structure is modified (i.e. a function(s) or 
terminal(s) is added or removed) to give it a better fitness value. With rules written in 
RPN editing a rule was very difficult. 
 

One of the advantages of genetic programming is that you can analyse any 
solution in any given generation as it is a compact form of the functions and terminals 
of a program. Usually though these cannot be read by a humans as the rules become 
long and complex. Most rules are written in the manner of RPN. Identifying sub-
computations within it are impossible without first interpreting the whole solution 
first.  

 
The ability to understand the solutions presented is helpful in engineering new 

parameters that might be required to solve the problem more effectively. The 
evolution of programs might be automatic but the choice of parameters is not. This is 
effectively what a GP programmer main duty is, to ameliorate the set of parameters to 
be encoded in order to solve the problem more effectively and efficiently.  
 

Representing rules in XML makes them readable by parsing the structure into 
a DOM tree. This makes human interpretation of the rule easier. Nodes can be 
collapsed and expanded to show the sub computations and the relationship between 
them and the complete structure. Values can be altered more easily as their relevance 
is more clearly understood. Human readable solutions will also lead to a better 
understanding of the parameters they have chosen to represent the computer program 
they wish to evolve. This multi-view abstraction of the solutions allows programmers 
to decide on what parameters are required to best solve the problem. 

Implementation 
We believe that defining the parameters of the rules using XML-schema is an 

implicit and robust method suited to encoding solutions for GP algorithms. Below we 
discuss how it was implemented for using in the generation of scene boundary rules as 
the example scenario.  This method of encoding rules is easily transportable to all 
uses of genetic programming when encoding parameters for GP parse trees.  

XML-Schema and GP 
The difference between GP and other forms of evolutionary computing is 

program representation. GP represents its computer programs as population of trees. 
The nodes of the trees represent functions whilst the leaves represent the terminals 
that hold the data to be computed.  Trees have arbitrary sizes and structures [10]. 
There are three popular types of tree structure; 1) full 2) grow and 3) ramped half-
and-half methods. The full generative method creates a population with full trees. The 
grow generative method on the other hand, generates the initial population with trees 
that are variably shaped. The ramped half-and-half method is a hybrid of both the full 
and grow methods. 
 

The standard single-typed genetic programming system operates using an 
abstraction of computer programs (an already parsed expression), typically 



represented in a parse tree. The use of a parse tree representation in a genetic 
algorithm was pioneered by Cramer [11]. Parse trees serve no other function other 
than that it circumvents issues of a purely syntactical nature and suggest a few natural 
variation operators. The number of arguments for each function can be deduced from 
the number of children of a node and also issues of operator precedence are resolved. 
The parse tree thus represents an unambiguous way of computing a solution. It is this 
property that is also employed by compilers. These generally use parse trees as an 
intermediate representation before generating machine code. The parse tree also 
provides inspiration to the issue of variation. As a parse tree decomposes a 
computation into a hierarchy of sub-computations, varying these sub-computations at 
the various levels in the tree is a natural way of obtaining new programs. 
  

XML [12] is perfect at representing parse trees because both their syntactical 
structures are analogous. Elements in XML can be the nodes and leafs; therefore they 
can represent the functions and terminals represented in a parse tree. An XML 
element can nest another element or elements inside of it, supporting a parse trees 
function of supporting hierarchies of sub-computation. The sub-computation 
represented by XML can be varied by simply exchanging or altering an element. 
XML tree can have any arbitrary structure and can therefore support all methods of 
tree structure generation; full, grow or ramped half-and-half.  
 

The only issue arises to how the structure of an XML document can simulate 
the syntax of a parse tree. A rule (solution to the problem of scene boundary 
detection) is represented by a syntactically legal symbol sequence with every symbol 
being an element of either a function set (F) or a terminal set (T) that both underlie a 
genetic-programming approach. If, for instance, the syntax of arithmetic expressions 
is given, then a + b and a are legal symbol sequences constructed from the sets F = 
{+} and T = {a, b}. Thus, the solution space is the set of all legal symbol sequences.  
 

XML was created as a “does anything” language where its elements can 
represent any arbitrary value. This particular point gains more emphasis when using 
parallel processing of GP as the parameters are subject to change and the changes 
should be compatible with the other demes. In order that all computations are 
structured in formal legal symbol syntax a grammar for the rules must be defined. 
Firstly the function set must be defined and then the terminal set. These are all defined 
as elements within the document. The relationship between the elements is defined to 
provide the syntax of the solutions. In XML schema the type definitions of the 
elements can be specified when the element is declared. 

Specification of parameters 
Defining the parameters to a solution is an important task in the success of an 

GP algorithm. The most important lesson is that one must understand the problem in 
order to be able to properly use the GA algorithm [13]. To this end we have selected 
the following functions and terminals to find a solution to the scene boundary 
detection problem. The feature set to be used to be used as the main parameters of the 
GP algorithm are: 
 

• Shot Duration – the length of a shot in seconds till the start of the next shot 
 



• Histogram difference – The change in the mean histogram values of the RGB 
values of the first frame of a shot to a specified preceding/subsequent shot  

 
• Transition Effect – What transition effect there is between the shot (gradual or 

cut transitions?)  
 

• Audio break – is there an audio break between the shots? If there is what type 
of audio was preceding it (music or speech?) 

Defining the functions and terminals 
 
The function set of the algorithm can be defined as F = {SD, HD, TE, AB, 

AND, OR}, Where SD, HD, TE, AB are the four features; Shot duration, Histogram 
difference, Transition effect, Audio Break respectively and AND, OR are Boolean 
operators. The terminal sets comprise of T = {sp, bv, pi, op1, op2}, where sp = {A, B, 
C, D, E} is the position of the shot to be compared against the current shot (C), bv = 
{true, false}, pi is a positive integer in the range of 1 – 126789, ops1 = {=,≠ } for 
Boolean operations and ops2 = {<, } for arithmetic operations. The formal symbol 
syntax is shown in table 1. 

≥

 
Table 1: Formal symbol syntax 

The tree root must be either AND or OR 
The left child of a TE, HD, SD or AB must be a sp 
The middle child of a TE or AB must be an ops1 
The middle child of a HD or SD must be an ops2 
The right child of a TE or AB must be a bv 
The right child of a HD or SD must be a pi 

 

Encoding the parameters into XML-Schema 
XML-schema is ideal for encoding the parameters and their syntax because: 
 

• defines elements that can appear in a document  
• defines attributes that can appear in a document  
• defines which elements are child elements  
• defines the order of child elements  
• defines the number of child elements  
• defines data types for elements and attributes  
• defines default and fixed values for elements and attributes 

 
Each generation of a population (initial and evolved) is created into an XML 

document. The advantage of this is that each individual generation can be stored and 
then accessed by other processing stations. Each generation is marked with the ID of 
the station that generated it along with the generation of the population. The last 
attribute is the size of the population of that generation. Embedded in the generation 
node is the rule element, which will represent one completely formed rule. The 
maximum occurrence of the rule element is not specified as this will be governed by 
the population attribute.  

 



Figure 2. The XML Schema definition of the  
scene boundary detection rules  

 

 

    <xsd:annotation> 
    <xsd:documentation xml:lang="en"> 
    Scene boundary detection parsing rules schema for genetic programming Algorithm. 
    Copyright 2004 Minaz Parmar. All rights reserved. 
    </xsd:documentation> 
    </xsd:annotation> 
 
    <xsd:element name="Generation" type="GenerationType"/> 
     
    <xsd:complexType name="GenerationType"> 
        <xsd:sequence> 
            <xsd:element name="Rule" type="RuleType" minOccurs="1" 
maxOccurs="unbounded"/> 
        </xsd:sequence> 
        <xsd:attribute name="ID" type="xsd:positiveInteger"/> 
    </xsd:complexType> 
     
    <xsd:complexType name="RuleType"> 
        <xsd:choice minOccurs="1" maxOccurs="1"> 
            <xsd:element name="AND" type="BooleanOperator" minOccurs="1" maxOccurs="1"/> 
            <xsd:element name="OR" type="BooleanOperator" minOccurs="1" maxOccurs="1"/> 
            <xsd:element name="IF" type="BooleanOperator" minOccurs="1" maxOccurs="1"/> 
            <xsd:element name="NOT" type="BooleanOperator" minOccurs="1" maxOccurs="1"/> 
        </xsd:choice> 
    <xsd:attribute name="ID" type="xsd:positiveInteger"/> 
    </xsd:complexType> 
     
    <xsd:complexType name="BooleanOperator"> 
        <xsd:all minOccurs="0" maxOccurs="1"> 
            <xsd:element name="AND" type="BooleanOperator" minOccurs="0" maxOccurs="1"/> 
            <xsd:element name="OR" type="BooleanOperator" minOccurs="0" maxOccurs="1"/> 
            <xsd:element name="IF" type="BooleanOperator" minOccurs="0" maxOccurs="1"/> 
            <xsd:element name="NOT" type="BooleanOperator" minOccurs="0" maxOccurs="1"/> 
            <xsd:element name="TransitionEffect" type="TransitionFeatureType" 
minOccurs="0" maxOccurs="1"/> 
            <xsd:element name="AudioBreak" type="AudioBreakFeatureType" minOccurs="0" 
maxOccurs="1"/> 
            <xsd:element name="HistogramDifference" 
type="HistogramDifferenceFeatureType" minOccurs="0" maxOccurs="1"/> 
            <xsd:element name="ShotDuration" type="ShotDurationFeatureType" 
minOccurs="0" maxOccurs="1"/> 
        </xsd:all> 
    </xsd:complexType> 
     
    <xsd:complexType name="TransitionFeatureType"> 
        <xsd:sequence> 
            <xsd:element name="ShotPosition" type="ShotPositionType" minOccurs="1" 
maxOccurs="1"/> 
            <xsd:element name="Operator" type="BooleanOpType" minOccurs="1" 
maxOccurs="1"/> 
            <xsd:element name="Value" type="xsd:boolean" minOccurs="1" maxOccurs="1"/> 
        </xsd:sequence> 
        <xsd:attribute name="type" type="TransitionType"/> 
    </xsd:complexType> 
     
    <xsd:complexType name="AudioBreakFeatureType"> 
        <xsd:sequence> 
            <xsd:element name="ShotPosition" type="ShotPositionType" minOccurs="1" 
maxOccurs="1"/> 
            <xsd:element name="Operator" type="BooleanOpType" minOccurs="1" 
maxOccurs="1"/> 
            <xsd:element name="Value" type="xsd:boolean" minOccurs="1" maxOccurs="1"/> 
        </xsd:sequence> 
        <xsd:attribute name="type" type="AudioBreakType"/> 
    </xsd:complexType> 
     
    <xsd:complexType name="HistogramDifferenceFeatureType"> 
        <xsd:sequence> 
            <xsd:element name="ShotPosition" type="ShotPositionType" minOccurs="1" 
maxOccurs="1"/> 
            <xsd:element name="Operator" type="IntegerOpType" minOccurs="1" 
maxOccurs="1"/> 
            <xsd:element name="Difference" type="xsd:positiveInteger" minOccurs="1" 
maxOccurs="1"/> 
        </xsd:sequence> 

</ d l T >



 
 

     
    </xsd:complexType> 
    <xsd:simpleType name="BooleanOpType"> 
                <xsd:restriction base="xsd:string"> 
                    <xsd:enumeration value="!="/> 
                    <xsd:enumeration value="="/> 
                </xsd:restriction> 
    </xsd:simpleType> 
 
    <xsd:simpleType name="IntegerOpType"> 
                <xsd:restriction base="xsd:string"> 
                    <xsd:enumeration value="&gt;"/> 
                    <xsd:enumeration value="&lt;"/> 
                    <xsd:enumeration value="=&gt;"/> 
                    <xsd:enumeration value="&lt;="/> 
                    <xsd:enumeration value="=="/> 
                </xsd:restriction> 
    </xsd:simpleType> 
</xsd:schema> 

The AND /OR elements are the root elements for a rule and are restricted to 
appear once exclusively at the top of the rule as stated in the syntax specification. The 
AND/OR elements are of type “Boolean Operator”. In this defined type we have the 
AND, OR, TE, AB, HD and SD elements as possible child nodes that can appear only 
once or not at all. This structuring of the AND/OR elements supports recursion that is 
required for making trees of different depths. The definition of the AND/OR element 
ensures that rules can be of any arbitrary size and structure supporting all generative 
methods. The TE, AB, HD and SD are terminating nodes that contain leaf elements. 
Each feature falls into one of two categories that define what operations can be 
performed on them; Boolean or arithmetic. The TE and AB have child elements that 
correlate to the terminal sets sp, ops1 and bv. The HD and SD have child elements 
that correlate to the terminal sets sp, ops2 and pi.  
 

Figure 2 presents an extract from the schema showing the more important 
element definitions. It should be noted that the definition of the function nodes are 
user defined types that contain complex type definitions whilst the terminal set 
represented by the leaves are primitive types (Boolean, positive integer and string). 
This correlates to parse tree structure where the function nodes serve the purpose of 
relationships and operations to be performed on the terminal set.   

 
The feature types are defined so that the elements will appear in a strict 

sequence that cannot be deviated from. This ensures that the data will be readable to 
the human eye as the grammar will always be uniform. Attributes are used mainly for 
as unique identifiers but are sometimes used to give an element a property that child 
elements will refer to e.g. the TE element has attribute “type” that relates to either 
gradual or cut transitions. These attributes are enumerated so they cannot be deviated 
from to guarantee consistency of the syntax throughout the demes. 

 
The child elements of all the feature types are simple type definitions, that is 

they contain no child elements and are derived from simple data types; string, positive 
integer and Boolean. These can be mapped directly to java data types in the binding 
process. 

 



Binding the XML-Schema based rules using JAXB 
The JAXB API (Java Architecture for XML Binding) [14] provides a 

convenient way to bind an XML schema to a representation in Java code. This makes 
it easy for you to incorporate XML data and processing functions in applications 
based on Java technology without having to know much about XML itself. The JAXB 
binding compiler takes XML schemas as input, and then generates a package of Java 
classes and interfaces that reflect the rules defined in the source schema. These 
generated classes and interfaces are in turn compiled and combined with a set of 
common JAXB utility packages to provide a JAXB binding framework. This is 
commonly referred to as the Java content tree. 

 
In our scenarios the complex types such as the Rule and Feature types that 

represented the functions become classes that hold variables of primitive type that 
represent the terminals. The terminal data types are matched from XML-Schema 
defined types to java data type representations e.g. the positive integer type of XML-
Schema is translated into the Big integer class which is a standard class for holding 
large positive numbers. 
 

Figure 3. Binding the schema [15]  

 
 
We use this framework by generating a Java content tree that represents a 

generation of a population of rules. The Java content tree is then marshalled into a 
XML document that can then be unmarshalled by another application using the same 
Java content tree. Any modifications to the XML schema can be ratified without 
having to marshal the tree into XML, which supports validation on demand. 

 
Figure 4. Marshalling the content tree [15]  

 

Advantages of XML based rules  
The main advantage to the rules was the human readable aspect of the XML 

derived rules. Shown in Figure 3 is a rule represented in RPN and XML. The example 
is simple but shows the problems with RPN, It is hard to visualise the relationship 
between the function and the terminals with the way it is written. When this 
experiment was originally carried out the authors found that the best fit rule would 



miss a scene boundary by a shot. What they wanted to do was tweak the rule to see if 
they could achieve a greater precision. By this type of experimentation they could 
identify requirements for modification or addition of parameters for functions and 
terminals. With XML based rules a DOM tree viewer can be used to analyse clearly 
the relationship and structure of a rule. Alterations can be made with clear insight into 
what affect they will have on the solution.  

 
Figure 3. A rule in RPN and XML  

 
 

(C(TEc=)true=)(BSD100≥ )& 

 
<Rule> 
 <AND> 

<TransitionEffect type = “cut”> 
 <ShotPosition>C</ShotPosition> 
 <Operator>=</Operator> 
 <Value>true</Value> 
</TransitionEffect> 
<ShotDuration> 
 <ShotPosition>B</ShotPosition> 
 <Operator>≥</Operator> 
 <Value>100</Value> 
</ShotDuration> 

 </AND> 
</Rule> 

Rule in XML 

Rule in RPN 

When using parallel processing functions and terminals can be added by 
changing the definitions in the XML-schema. All machines running the experiment 
can follow changes to the GP parameters by using the schema as a global reference to 
identify what functions and terminals are being used and what the syntax is to 
construct a well formed solution. This is suitable for the island model where 
communication is infrequent between demes.  If a parameter change is required the 
schema definition can be updated therefore all demes will be notified of the 
alterations. 

 
Using XML-schema to represent parse trees is an intuitive implementation 

strategy for GP as the syntax of the rules is implicitly stated in the definition of the 
elements that represent the functions and nodes. Using JAXB to parse and validate the 
schema into java data types ensures that all rules generated will be well formed 
without any need to explicitly check for correct syntax. 

Conclusion 
We have examined the advantages of using XML-schema to derive XML 

based parse trees that support the use of parallel-processing GP models. They can be 
and aide to programmers in the discovery and manipulation of parameters, 
illuminating new strategies by helping the programmer visualise the relationships 
between structure and function of possible solutions. Although this has been shown in 



the context of generating scene boundary detection algorithms it can be applied to all 
examples of GP applications.  
 

Using XML-schema to define the rules could allow for global collaboration of 
GP experiments as XML-schema allows not only global access but translation from 
one language to another and the use of multiple schemas to allow experiments to have 
different variations on parameters. 
 

In our research there is a small increase in the time taken to initial parse the 
rules from XML into java data types then was taken by RPN, but once that is done the 
computational time is almost identical compared to RPN. This small initial overhead 
is well worth the trade off for the benefits XML based rules provide.  
 

Further work must be carried out on using XML schema to communicate 
changes in the basic genetic algorithm when it introduces new parameters, for 
instance the migration policy and the network topology. Today, there exists little or 
no theory on how to adjust those parameters. 

References 
[1] C. Darwin, “On the Origin of the Species by Means of Natural Selection, or the 
Preservation of Favoured Races in the Struggle for Life”. 1859. 
 
[2] J. R. Koza, “Genetic Programming: On the Programming of Computers by Natural 
Selection”, Cambridge, MA, USA, MIT Press, 1992. 
 
[3] T.S.K. Lo and M.C. Angelides, “A video content independent mining algorithm 
for evolved rule-based detection of scene boundaries”, Ingenierie des Systemes 
d'Information Journal, forthcoming, 2004. 
 
[4] Z. Rasheed, M.  Shah,”Scene Detection In Hollywood Movies and TV Shows”, In 
Proceedings of 2003 Conference on Computer Vision and Pattern Recognition (CVPR 
'03), Volume II,  pp. 343, June 2003.  
 
[5] D. Zhong, S. Chang, “Structure Analysis of Sports Video Using Domain Models”, 
In Proceedings of 2001 IEEE International Conference on Multimedia and Expo, pp. 
182, August 2001  
 
[6] XML-Schema Part 0: Primer, 
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/, 
Last accessed 18/10/2004. 
 
[7] Bethke, A. D, “Comparison of Genetic Algorithms and Gradient-Based 
Optimizers on Parallel Processors : Efficiency of Use of Processing Capacity”, Tech. 
Rep. No. 197, University of Michigan, Logic of Computers Group, Ann Arbor, MI, 
1976. 
 
[8] S. E. Eklund,  Time Series Forecasting Using Massively Parallel Genetic 
Programming, In Proceedings of  International Parallel and Distributed Processing 
Symposium (IPDPS'03), pp. 143a, April 2003  



 
[9] E. Cantú-Paz, “A Survey of Parallel Genetic Algorithms”, Department of 
Computer Science, Illinois Genetic Algorithms Laboratory, University of Illinois at 
Urbana-Champaign, 1998. 
 
[10] S. Luke, L. Panait, A survey and comparison of tree generation algorithms, In 
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2001), pages 81-88, San Francisco, California, USA. Morgan Kaufmann, 2001. 
 
[11] N. L. Cramer, “A representation for the adaptive generation of simple sequential 
programs”. In Proceedings of an International Conference on Genetic Algorithms and 
the Applications, pages 183-187, Carnegie-Mellon University, Pittsburgh, PA, USA, 
1985. 
 
[12] Extensible Markup Language (XML) 1.0 (Third Edition), 
http://www.w3.org/TR/2004/REC-xml-20040204/, 
Last accessed 18/10/2004. 
 
[13] N. Melvin, R. Soricone, J. Waslo, “On the Automaticity of Genetic 
Programming”, In Proceedings of the 14th International Conference on Electronics, 
Communications, and Computers (CONIELECOMP 2004), pages 236-242, IEEE 
Computer Society, ISBN: 0-7695-2074-X, Veracruz, Veracruz, México. February, 
2004. 
 
[14] JAXB homepage, http://java.sun.com/xml/jaxb/, Last accessed 26/10/04. 
 
[15] Article on Java Architecture for XML Binding (JAXB), 
http://java.sun.com/developer/technicalArticles/WebServices/jaxb/index.html, 
Last accessed 26/10/04.


