800 research outputs found

    A scalable genome representation for neural-symbolic networks

    Get PDF
    Neural networks that are capable of representing symbolic information such as logic programs are said to be neural-symbolic. Because the human mind is composed of interconnected neurons and is capable of storing and processing symbolic information, neural-symbolic networks contribute towards a model of human cognition. Given that natural evolution and development are capable of producing biological networks that are able to process logic, it may be possible to produce their artificial counterparts through evolutionary algorithms that have developmental properties. The first step towards this goal is to design a genome representation of a neural-symbolic network. This paper presents a genome that directs the growth of neural-symbolic networks constructed according to a model known as SHRUTI. The genome is successful in producing SHRUTI networks that learn to represent relations between logical predicates based on observations of sequences of predicate instances. A practical advantage of the genome is that its length is independent of the size of the network it encodes, because rather than explicitly encoding a network topology, it encodes a set of developmental rules. This approach to encoding structure in a genome also has biological grounding

    Evolvability signatures of generative encodings: beyond standard performance benchmarks

    Full text link
    Evolutionary robotics is a promising approach to autonomously synthesize machines with abilities that resemble those of animals, but the field suffers from a lack of strong foundations. In particular, evolutionary systems are currently assessed solely by the fitness score their evolved artifacts can achieve for a specific task, whereas such fitness-based comparisons provide limited insights about how the same system would evaluate on different tasks, and its adaptive capabilities to respond to changes in fitness (e.g., from damages to the machine, or in new situations). To counter these limitations, we introduce the concept of "evolvability signatures", which picture the post-mutation statistical distribution of both behavior diversity (how different are the robot behaviors after a mutation?) and fitness values (how different is the fitness after a mutation?). We tested the relevance of this concept by evolving controllers for hexapod robot locomotion using five different genotype-to-phenotype mappings (direct encoding, generative encoding of open-loop and closed-loop central pattern generators, generative encoding of neural networks, and single-unit pattern generators (SUPG)). We observed a predictive relationship between the evolvability signature of each encoding and the number of generations required by hexapods to adapt from incurred damages. Our study also reveals that, across the five investigated encodings, the SUPG scheme achieved the best evolvability signature, and was always foremost in recovering an effective gait following robot damages. Overall, our evolvability signatures neatly complement existing task-performance benchmarks, and pave the way for stronger foundations for research in evolutionary robotics.Comment: 24 pages with 12 figures in the main text, and 4 supplementary figures. Accepted at Information Sciences journal (in press). Supplemental videos are available online at, see http://goo.gl/uyY1R

    Combating catastrophic forgetting with developmental compression

    Full text link
    Generally intelligent agents exhibit successful behavior across problems in several settings. Endemic in approaches to realize such intelligence in machines is catastrophic forgetting: sequential learning corrupts knowledge obtained earlier in the sequence, or tasks antagonistically compete for system resources. Methods for obviating catastrophic forgetting have sought to identify and preserve features of the system necessary to solve one problem when learning to solve another, or to enforce modularity such that minimally overlapping sub-functions contain task specific knowledge. While successful, both approaches scale poorly because they require larger architectures as the number of training instances grows, causing different parts of the system to specialize for separate subsets of the data. Here we present a method for addressing catastrophic forgetting called developmental compression. It exploits the mild impacts of developmental mutations to lessen adverse changes to previously-evolved capabilities and `compresses' specialized neural networks into a generalized one. In the absence of domain knowledge, developmental compression produces systems that avoid overt specialization, alleviating the need to engineer a bespoke system for every task permutation and suggesting better scalability than existing approaches. We validate this method on a robot control problem and hope to extend this approach to other machine learning domains in the future

    A novel generative encoding for evolving modular, regular and scalable networks

    Full text link
    In this paper we introduce the Developmental Symbolic En-coding (DSE), a new generative encoding for evolving net-works (e.g. neural or boolean). DSE combines elements of two powerful generative encodings, Cellular Encoding and HyperNEAT, in order to evolve networks that are modular, regular, scale-free, and scalable. Generating networks with these properties is important because they can enhance per-formance and evolvability. We test DSEā€™s ability to gener-ate scale-free and modular networks by explicitly rewarding these properties and seeing whether evolution can produce networks that possess them. We compare the networks DSE evolves to those of HyperNEAT. The results show that both encodings can produce scale-free networks, although DSE performs slightly, but significantly, better on this objective. DSE networks are far more modular than HyperNEAT net-works. Both encodings produce regular networks. We fur-ther demonstrate that individual DSE genomes during de-velopment can scale up a network pattern to accommodate different numbers of inputs. We also compare DSE to Hyper-NEAT on a pattern recognition problem. DSE significantly outperforms HyperNEAT, suggesting that its potential lay not just in the properties of the networks it produces, but also because it can compete with leading encodings at solv-ing challenging problems. These preliminary results imply that DSE is an interesting new encoding worthy of additional study. The results also raise questions about which network properties are more likely to be produced by different types of generative encodings

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrĆ³nicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Masterā€“slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results ā€“ the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers ā€“ Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Evolutionary Reinforcement Learning: A Survey

    Full text link
    Reinforcement learning (RL) is a machine learning approach that trains agents to maximize cumulative rewards through interactions with environments. The integration of RL with deep learning has recently resulted in impressive achievements in a wide range of challenging tasks, including board games, arcade games, and robot control. Despite these successes, there remain several crucial challenges, including brittle convergence properties caused by sensitive hyperparameters, difficulties in temporal credit assignment with long time horizons and sparse rewards, a lack of diverse exploration, especially in continuous search space scenarios, difficulties in credit assignment in multi-agent reinforcement learning, and conflicting objectives for rewards. Evolutionary computation (EC), which maintains a population of learning agents, has demonstrated promising performance in addressing these limitations. This article presents a comprehensive survey of state-of-the-art methods for integrating EC into RL, referred to as evolutionary reinforcement learning (EvoRL). We categorize EvoRL methods according to key research fields in RL, including hyperparameter optimization, policy search, exploration, reward shaping, meta-RL, and multi-objective RL. We then discuss future research directions in terms of efficient methods, benchmarks, and scalable platforms. This survey serves as a resource for researchers and practitioners interested in the field of EvoRL, highlighting the important challenges and opportunities for future research. With the help of this survey, researchers and practitioners can develop more efficient methods and tailored benchmarks for EvoRL, further advancing this promising cross-disciplinary research field

    Development of a Large-Scale Integrated Neurocognitive Architecture - Part 2: Design and Architecture

    Get PDF
    In Part 1 of this report, we outlined a framework for creating an intelligent agent based upon modeling the large-scale functionality of the human brain. Building on those results, we begin Part 2 by specifying the behavioral requirements of a large-scale neurocognitive architecture. The core of our long-term approach remains focused on creating a network of neuromorphic regions that provide the mechanisms needed to meet these requirements. However, for the short term of the next few years, it is likely that optimal results will be obtained by using a hybrid design that also includes symbolic methods from AI/cognitive science and control processes from the field of artificial life. We accordingly propose a three-tiered architecture that integrates these different methods, and describe an ongoing computational study of a prototype 'mini-Roboscout' based on this architecture. We also examine the implications of some non-standard computational methods for developing a neurocognitive agent. This examination included computational experiments assessing the effectiveness of genetic programming as a design tool for recurrent neural networks for sequence processing, and experiments measuring the speed-up obtained for adaptive neural networks when they are executed on a graphical processing unit (GPU) rather than a conventional CPU. We conclude that the implementation of a large-scale neurocognitive architecture is feasible, and outline a roadmap for achieving this goal

    Improving Scalability of Evolutionary Robotics with Reformulation

    Get PDF
    Creating systems that can operate autonomously in complex environments is a challenge for contemporary engineering techniques. Automatic design methods offer a promising alternative, but so far they have not been able to produce agents that outperform manual designs. One such method is evolutionary robotics. It has been shown to be a robust and versatile tool for designing robots to perform simple tasks, but more challenging tasks at present remain out of reach of the method. In this thesis I discuss and attack some problems underlying the scalability issues associated with the method. I present a new technique for evolving modular networks. I show that the performance of modularity-biased evolution depends heavily on the morphology of the robotā€™s body and present a new method for co-evolving morphology and modular control. To be able to reason about the new technique I develop reformulation framework: a general way to describe and reason about metaoptimization approaches. Within this framework I describe a new heuristic for developing metaoptimization approaches that is based on the technique for co-evolving morphology and modularity. I validate the framework by applying it to a practical task of zero-g autonomous assembly of structures with a fleet of small robots. Although this work focuses on the evolutionary robotics, methods and approaches developed within it can be applied to optimization problems in any domain

    On the Evolutionary Co-Adaptation of Morphology and Distributed Neural Controllers in Adaptive Agents

    Get PDF
    The attempt to evolve complete embodied and situated artiļ¬cial creatures in which both morphological and control characteristics are adapted during the evolutionary process has been and still represents a long term goal key for the artiļ¬cial life and the evolutionary robotics community. Loosely inspired by ancient biological organisms which are not provided with a central nervous system and by simple organisms such as stick insects, this thesis proposes a new genotype encoding which allows development and evolution of mor- phology and neural controller in artiļ¬cial agents provided with a distributed neural network. In order to understand if this kind of network is appropriate for the evolution of non trivial behaviours in artiļ¬cial agents, two experiments (description and results will be shown in chapter 3) in which evolution was applied only to the controllerā€™s parameters were performed. The results obtained in the ļ¬rst experiment demonstrated how distributed neural networks can achieve a good level of organization by synchronizing the output of oscillatory elements exploiting acceleration/deceleration mechanisms based on local interactions. In the second experiment few variants on the topology of neural architecture were introduced. Results showed how this new control system was able to coordinate the legs of a simulated hexapod robot on two diļ¬€erent gaits on the basis of the external circumstances. After this preliminary and successful investigation, a new genotype encoding able to develop and evolve artiļ¬cial agents with no ļ¬xed morphology and with a distributed neural controller was proposed. A second set of experiments was thus performed and the results obtained conļ¬rmed both the eļ¬€ectiveness of genotype encoding and the ability of distributed neural network to perform the given task. The results have also shown the strength of genotype both in generating a wide range of diļ¬€erent morphological structures and in favouring a direct co-adaptation between neural controller and morphology during the evolutionary process. Furthermore the simplicity of the proposed model has showed the eļ¬€ective role of speciļ¬c elements in evolutionary experiments. In particular it has demonstrated the importance of the environment and its complexity in evolving non-trivial behaviours and also how adding an independent component to the ļ¬tness function could help the evolutionary process exploring a larger space solutions avoiding a premature convergence towards suboptimal solutions
    • ā€¦
    corecore