
Evolution and Morphogenesis of Simulated
Modular Robots: A Comparison Between a

Direct and Generative Encoding

Frank Veenstra, Andres Faina, Sebastian Risi and Kasper Stoy

IT University of Copenhagen, Denmark
{frve, anfv, sebr, ksty}@itu.dk

Abstract. Modular robots offer an important benefit in evolutionary
robotics, which is to quickly evaluate evolved morphologies and control
systems in reality. However, artificial evolution of simulated modular
robotics is a difficult and time consuming task requiring significant com-
putational power. While artificial evolution in virtual creatures has made
use of powerful generative encodings, here we investigate how a genera-
tive encoding and direct encoding compare for the evolution of locomo-
tion in modular robots when the number of robotic modules changes.
Simulating less modules would decrease the size of the genome of a di-
rect encoding while the size of the genome of the implemented generative
encoding stays the same. We found that the generative encoding is sig-
nificantly more efficient in creating robot phenotypes in the initial stages
of evolution when simulating a maximum of 5, 10, and 20 modules. This
not only confirms that generative encodings lead to decent performance
more quickly, but also that when simulating just a few modules a gen-
erative encoding is more powerful than a direct encoding for creating
robotic structures. Over longer evolutionary time, the difference between
the encodings no longer becomes statistically significant. This leads us to
speculate that a combined approach – starting with a generative encod-
ing and later implementing a direct encoding – can lead to more efficient
evolved designs.

Keywords: Modular Robots, Evolutionary Algorithms, Direct & Gen-
erative Encodings

1 Introduction

Evolutionary Robotics has covered a vast amount of research on the automated
design of Robotic entities via artificial evolution [1, 2, 3]. To rapidly explore
different robotic morphologies and control systems that can be physically as-
sembled in the real world, robotic modules are useful as evolutionary building
blocks. A robotic module being an independent unit that encapsulates part of
its functionality [4]. This encapsulation is important for the (re)configuration
of modular robot compositions. In contrast to static robotic entities, modular
robots can be reconfigured enabling researchers to quickly explore different mor-
phologies. However, it is difficult to design a representation of the genotype to



phenotype mapping of a modular robot and we can either evolve all parameters
of every simulated module or reuse parts of the genome to construct and control
a modular robot. The latter approach – a generative encoding – would require a
smaller genome and could in turn evolve decent morphologies and control more
quickly. In contrast, evolving all parameters of every robotic module enables us
to fine tune behavioral parameters but also increases the search space.

In nature, most multicellular organisms develop from a zygote [5]. The zygote
and its genome comprises the developmental representation of the organism [6].
The resulting developmental process allows for the reuse of genes which can give
rise to recursive structures in the phenotype. Computational models representing
an artificial organism’s phenotype either use a direct or generative encoding
(also indirect encoding). A direct encoding constitutes a one-to-one mapping
of genotypic components into the phenotype meaning that the genes encode
for every simulated module. In contrast, generative encodings – similar to the
development of an organism from a zygote – reuse elements of the genome for
constructing the phenotype. Generative encodings have a smaller genotypic state
space due to this reuse of genes.

Since the morphological search space in modular robots is limited to the
amount of connection sites available on each module, encodings that directly
map the assembling process of modular building blocks have been implemented
for the generation of robot morphologies [7, 8, 9]. Usually, these direct encodings
implement an additional symmetry operator that increases the effectiveness of
artificial evolution. Simple generative encodings [10, 11, 12, 2, 13, 14, 15, 16]
have been shown to quickly lead to useful robot morphologies. It is, however,
unclear whether designing platforms that evolve modular robot morphologies
should rather use a direct or generative representation and if the generative
encoding is still useful when just a few modules are being used. A generative
encoding should no longer have an advantage if the genetic state space in both
encodings is of similar size since the amount of mutable parameters are equal.

In this paper we investigate whether a generative encoding or a direct encod-
ing is more useful for evolving modular robots for locomotion. Both encodings
make use of evolutionary algorithms to optimize the simulated robots. The direct
encoding utilizes the ’Evolutionary designer of heterogeneous modular robots’
(Edhmor; see section 2.2)[8] system. The generative encoding is based on a paral-
lel rewriting system called a Lindenmayer System (L-System) [17]. As mentioned
earlier, the size of the search space of the direct encoding grows exponentially
considering the amount of mutatable parameters (in our case the amount of
modules) while the search space of the generative encoding stays roughly the
same size. The ability of the direct encoding to mutate parameters of individual
modules enables more local improvements. In contrast, since small mutations in
the generative encoding can lead to drastic phenotypic changes, the generative
encoding might be more prone to stagnate in local optima. Though the scope of
this paper does not encompass transferability, the implemented encodings serve
as a stepping stone towards evolving feasible modular robotic entities in reality.



2 Methodology

Many modular robotic systems make use of central pattern generators for con-
trolling the modules [18, 19, 15]. These central pattern generators are derived
from their natural equivalents seen in biology [20, 21]. The implementation of
modifiable central pattern generators seems a logical step towards evolving mod-
ular robots, however, we think that this convolutes the search space of the evo-
lutionary system unnecessarily for the aim of this paper. To still achieve a pat-
terned output in our modular system, sinusoidal functions control each module
individually in a decentralized manner. By fixing the morphological parameters
of the simulated modules and limiting the control parameters of the modules
to sinusoidal functions, we are able to analyze how the different encodings can
be implemented for evolving robotic structures. For evolving simulated robot
morphologies, two evolutionary platforms were used to evaluate the direct and
the generative encoding. Both platforms employ the robotics simulator ’Virtual
Robot Experimentation Platform’ (V-REP; version 3.32) [22]. The next sections
will discuss the common elements as well as the differences for each platform.

2.1 Common Elements for both Platforms

Both encodings simulate the exact same modules modeled in V-REP. A cube
module and a servo module were designed for the platforms. The modules are
based on earlier designs of physical modules (figure 1a; developed at the IT Uni-
versity of Copenhagen). In turn, the simulated modules (figure 1b) are modeled
according to the physical properties of these modular units. The real modules
can be attached to one another via magnets and the breaking force and torque
parameters resulting from these connections is modeled in the simulated mod-
ules.

a b

Fig. 1. Illustration of the modules created in the real world (a) and in the simulator
(b).

The modules contain male and female connection sites that enable the mod-
ules to connect together. The connections are modeled with a force sensor in



V-REP. If the force on a connection site exceeds 1.7 N m of torque or 80.0 N of
force, the force sensor between the modules breaks leading to the fragmentation
of the morphology. 10 consecutive threshold violations for the force sensor had
to be registered before a connection could break.

The cube module (dimensions x,y,z is 55mm,55mm,55mm; weight is 100g) is
used as an initial building block for the modular robot to which other modules are
attached. This cube has five female conection sites (top, right, left, front, back).
The servo module (dimensions x,y,z is 55mm,55mm,80mm; weight is 160g) has
three female connection sites (top, right, left) and one male attachment site
(bottom). The bottom male connection site of the servo module is thus able to
connect to any of the female connection sites of other cube or servo modules.

The joint of the servo module implements a PI controller (P is 0.1 and I is
0.01) and could exert a maximum torque of 1.5 N m. A sinusoidal wave function
controls the position of the joint in the servo module. The maximum amplitude of
the sinusoidal wave function ranged from -90◦and +90◦degrees from its original
position. The offset, phase and amplitude of the sinusoidal function are mutable
parameters. When a new module is added to the simulation, only the male con-
nection site of the new module can be connected to any female connection site of
the robot. The new module has four different orientations in which it can attach
to a new connection site (note that the amount of orientations is a bit different
in the direct encoding: section 2.2). The servo modules implemented the default
simulation material while the cube module used the ”rest stack grasp material”
as material types simulated by V-REP.

The goal of the simulated robots was to move as far away from its initial
position in a horizontal direction as possible within 20 seconds of simulation
time. This distance is measured by the horizontal distance that the initial cube
module has traveled. Before starting a simulation in V-REP, modules are joined
together to form a robot morphology. The entire robot is then shifted upwards so
that its lowest point is 0.1 millimeter above the simulated ground. To take into
account the movement due to the robot simply falling over, the distance traveled
in the first 2.5 seconds of the simulation is discarded. An additional cost function
was added to compensate for modules that were disconnected due to the breaking
of a connection site. The fitness value of each individual is directly correlated to
the horizontal distance traveled multiplied by the amount of connections broken
between the modules to the power 0.8 and can be derived from equation 1.

F =
√

(pex− p1x)2 + (pey − p1y)2 ∗ η0.8 (1)

Where F represents the fitness value obtained by calculating the eventual po-
sition (pe) minus the position after 2.5 seconds (p1) traveled in both x and y
directions. η represents the amount of broken module connections of the mor-
phology after 20 seconds of simulation time.

A simulation environment consisted of a default floor and was simulated us-
ing the bullet dynamics engine (version 2.78). The dynamics settings were set
to accurate (default) with a time-step of 50ms. Six experiments were done com-
paring the different encodings. Three of the experiments ran twelve evolutionary



runs whereby a maximum of 5, 10 or 20 servo modules and one cube module
were allowed. These three experiments were done to see how the direct encoding
performed. The other three experiments analyzed the efficiency of the genera-
tive encoding and was also composed of twelve evolutionary runs simulating a
maximum of 5, 10 or 20 modules. The runs are limited to a fixed amount of
evaluations. In the simulations that could simulate a maximum of five modules,
12,500 evaluations were done. The other runs were limited to 25,000 evaluations;
more evaluations were performed in these runs since the search space is larger
when increasing the amount of simulated modules. 25,000 evaluations were cho-
sen as a trade-of between performance and computational requirements. Since
a high end physics simulator is used, the computational requirements are con-
siderable. The next sections will cover the direct and indirect encodings in more
detail.

2.2 Direct Encoding

The ’Evolutionary designer of heterogeneous modular robots’ (Edhmor)[23, 8]
system is used as the direct encoding strategy to assemble and evaluate robot
morphologies. The Edhmor system is organized as a tree representation, where
nodes represent control parameters of a module and its type and edges represent
how a module is attached to a parent module. The direct encoding is used
together with a constructive algorithm. This algorithm starts building a random
population of robots with just a few modules. Afterwards, different mutation
phases are applied cyclically. The mutation phases of the algorithm are:

– Add Module: Add a module into a morphology.
– Mutate morphology: Change the orientations or the place where some mod-

ules are connected
– Mutate control: Change the control parameters of some modules
– Prune robot: Test all the morphologies generated by removing a module and

its children.

In every phase, a mutation operator is applied several times to produce different
random mutations of the same individual which are tested in the simulator.
For example, when adding a new module to a robot, five different robots are
generated and each of them have a new module placed in different positions
and orientations. These phases revert to the previous robot if the mutation does
not increase the fitness of the robot, except in the add module phase. This
phase forces morphological evolution to take place which has been shown to be
advantageous when evolving virtual creatures [24].

The evolutionary algorithm of Edhmor is furthermore generational, the 10%
worst performing robots are removed from the population every cycle. Half of
them are replaced by random robots with a low number of modules, the other
half is generated by applying symmetry operators to the best robots. The sym-
bolic representation and its phenotype are depicted in figure 2. A more detailed
overview of the system can be found in [8].



Fig. 2. Representation of the direct encoding. (left) Symbolic representation of the
direct encoding: each rectangle represents a module and each arrow represents a con-
nection between modules. There are two numbers for each connection, which indicate
the face of the parent where the child node is attached and the orientation of the child
node. (right) The symbolic representation of the direct encoding that encodes for a
phenotype.

2.3 Generative Encoding

The implemented generative encoding is based on a context sensitive Lindenmayer-
System (L-System) [17, 25] – a parallel rewriting system. In our case, the vari-
ables used in the L-System represent the modules employed to construct a robot
(figure 3), similar to [26]. In the simulation environment, each variable represents
a specific module state which encompasses all the parameters of the morphol-
ogy, control and attachment rules inherent to a module state. The genome of
the generative encoding is thus composed of a fixed amount of module states
predefined before an individual is generated and evaluated in the simulation
environment. The relevant genetic parameters of the module state are used to
create a new module. These genetic parameters include the attachment rules for
modules. The attachment rules of the cube module included the information of
which module is connected to what connection site and in which orientation.
The same attachment rules are possible in the servo modules but the servo mod-
ules only contain three attachment sites. The implemented attachment rules are
in essence similar to the rewriting rules of a normal context sensitive L-System
[27]. It is context sensitive since a module cannot be placed at an attachment
site if another module is already occupying it. Furthermore, modules cannot be
created if this causes a collision with other created modules.

The generative encoding was limited to using five different module states.
The first state (the axiom) represents the cube module and the four other states
represent the servo module. The four states that represent a servo module encode
for the same module but can differ in their mutable parameters responsible for
the sinusoidal function that controls the servo module. The internal sinusoidal
function that controlled the PI controller of the modules could be mutated in
the genome of the module states. This means that the robot can actually not
have more than four distinct sinusoidal controllers. For illustrating the different
object states, they are colored in the phenotype. The modules could either be



red, yellow, blue or pink depending on their state. Four iterations of the L-System
were done to create the robot phenotypes starting with the cube module as the
axiom.

All parameters of the module states were subject to evolution. There was
a 15% chance of a morphological parameter to be mutated and a 5% chance
of a control parameter to be mutated. A symmetry mutation operator enabled
an object state to arise at the opposite site of a module where it originally
was expressed. Though symmetry is an inherent trait to an L-System, the sym-
metry operator enhanced the probability of creating symmetrical phenotypes.
Since the genome of an individual is represented by different module states, a
crossover operator enabled different states to be exchanged between individuals.
The crossover function had a 20% chance that a module state of an individual
came from a different individual than its original parent.

Fig. 3. Representation of the generative encoding. (left) The L-System parameters form
the genotype of the morphology whereby the variables of L-Systems are replaced by
module states. The ’+’ constant represents the placing of the next module at the specific
attachment sites of a module. The symbolic representation of the genotype (middle)
serves as a visualization on how the genotype constructs the phenotype (right).

3 Results

The results of the different evolutionary runs were divided in a performance
analysis and a phenotype analysis. The performance analysis was done to get a
clear insight in the efficiency of the encodings. Knowing a bit of what type of
phenotypes resulted from the evolutionary runs gives us more insight in what
prominent evolved characteristics were and how we can ultimately improve the
simulator for the design of actual modular robots.



3.1 Performance analysis

As can be seen in figure 5, the average fitness values – as well as the averages
of the maximum fitness values – of the evolutionary runs is quite different per
encoding. The generative encoding seems to be able to quickly find decent be-
haviors that are rewarded with a high fitness value. A Mann-Whitney U test
has been performed at specified intervals to check whether the encodings per-
formed significantly different. The performance difference was measured using
the average fitness values of the maximum fitness of each individual evolution-
ary run at a specified time. The test resulted in a significant difference between
evolved populations after 6,250 evaluations (p-value: 0.000612) and 12,500 eval-
uations (p-value: 0.003674) when simulating a maximum of 5 modules. There
was also a significant difference between the two encodings at 6,250 evaluations
(p-value: 0.00328), not at 12,500 evaluation (p-value: 0.0124106) but again at
25,000 evaluations (p-value: 0.001617) when evolving a maximum of 10 mod-
ules. The runs of the simulation evolving a maximum of 20 modules was also
statistically different at evaluation 6,250 (0.00332) but not at evaluation 12,500
(p-value: 0.177805) and also not at evaluation 25,000 (p-value: 0.209462). The
maximum and average fitness values of the individual runs can be seen in figure
4.

3.2 Phenotypes

Different distinct phenotypic behaviors emerged after a certain amount of evo-
lutionary time. The direct encoding evolved various kinds of strategies though
the generative encoding had evolved more simple, distinct types of locomotion
due to the similarity in behavior seen in several modules. Caterpillar like behav-
ior could be seen evolved conglomerates that were composed of a single chain
of modules7b. A single chain of modules could also result in a different type
of rolling locomotion 6a, 6b. For some evolved robots there was no apparent
logic to how they moved. Two robots tossed their weight around which resulted
in complex rolling (figure 6c,7c and 7d) and one robot performed a crawling
(figure 7e) behavior. The types of behavior should become more evident when
consulting the supplied video [28].

The constructive strategy of the direct encoding has a tendency to add mod-
ules to the robot. This results in the best individual of all the different evo-
lutionary runs to be composed of 5 modules when simulating a maximum of 5
modules. In the case that the maximum number of modules is 10, 8 out of 12 runs
have reached the maximum number of modules and the average is 9 modules.
When 20 modules are allowed, the average is 12.33 with a standard deviation of
2.87. In this experiment, the amount of modules are limited by the fact that the
excess of torque breaks the connections between the modules, which are heavily
penalized by the fitness function.

All the robots with a maximum of five modules developed similar morpholo-
gies, linear structures, with a rolling behavior. One of them is shown in figure
6a. With a limit of 10 modules, branches in the structure of the robots appear.



Fig. 4. The graphs represent the individual runs done for each experiment. The six
graphs are represent the direct encoding simulating a maximum of 5 servo modules (a);
generative encoding simulating a maximum of 5 modules (b); direct encoding simulating
a maximum of 10 servo modules (c); generative encoding simulating a maximum of 10
modules (d); direct encoding simulating a maximum of 20 servo modules (e), generative
encoding simulating a maximum of 20 modules (f). The bold black line represents the
average maximum fitness values for all runs while the black dotted line represents the
average of the average fitness values of all runs. The colored lines represent individual
runs, where the solid line represents the maximum fitness value of the population and
the dotted line the average fitness of the population.



Fig. 5. The graphs display the average maximum fitness values of the different evo-
lutionary runs when simulating a maximum of 5 modules (a), 10 modules (b) and 20
modules (c). The solid blue line marked with circles represents the average maximum
fitness value of all the runs of the generative encoding. The red solid line marked with
triangles represents the average maximum fitness values of the direct encoding. The
dotted lines represent the median of the two types of encodings. The thick error bars
depict the 25-75 percentiles and the thin error bars depict the 0-100 percentiles.

Despite the fact that the rolling behavior is still predominant, a crawling behav-
ior can be found in some individuals (figure 6b). When increasing the maximum
number of modules to 20, some unspecified conglomerates of modules are found
but most of the behaviors roll or crawl as in figure 6c.

In the generative encoding there was a recurrence of simple friction based
phenotype (figure 7a) when simulating a maximum of 5 modules. This friction
based phenotype seemed to exploit friction parameters of the simulator. Exactly
half of the evolutionary runs that allowed for a maximum of 5 servo modules stag-
nated in a local optima with this kind of phenotype. Moreover, the fitness values
of these individuals were quite low while other simple more effective morpholo-



gies, such as the phenotype shown in 7b, were possible to evolve. Considering the
amount of modules of the resulting phenotypes, the amount of modules present
in all robots was considerably smaller in the generative encoding compared to the
direct encoding. The average amount of modules in the best evolved individuals
of all runs was 3.5, 6.83 and 8.615 for the runs allowing 5, 10 and 20 modules
max respectively. 5 out of 12 runs, when simulating a maximum of 20 modules,
led to the evolution of morphologies composed of more than 10 modules (as seen
in figure 7); 10 out of twelve led to the use of more than 5 modules. Seven out
of 12 runs simulating a maximum of 10 modules led to the evolution of using
more than 5 modules.

In the generative encoding not all genes of module states are represented in
the evolved phenotypes. On the contrary, it seems that the evolutionary algo-
rithm actively selects against the use of more modules. Out of all the evolutionary
runs, the runs with a maximum of 5 modules only evolved phenotypes with on
average 1.33 expressed servo module states. The runs simulating a maximum of
10 modules had an average of 2.66 expressed servo module states and the runs
of simulating a maximum of 20 modules had on average 2.23 expressed servo
module states. The phenotypes seen in figure 7d and 7e are examples of large
phenotypes using only two types of servo module states.

a

b

c

Fig. 6. Phenotypes obtained through the direct encoding. Resulting phenotypes sim-
ulated with a maximum of 5 modules (a), 10 modules (b) and 20 modules (c). For a
more detailed visualization of the phenotypes, see [28]



a

b

c

d

e

Fig. 7. Various phenotypes acquired through the generative encoding. Resulting pheno-
types simulated with a maximum of five modules (a), ten modules (b) and 20 modules
(c;d). For a more detailed visualization of the phenotypes, see [28]



4 Discussion

As can be derived from the graphs (figures 4 and 5) there is a difference in perfor-
mance between the generative and direct encoding. The most striking difference
in performance can be seen in the initial phase of the generative encoding where
it outperforms the direct encoding. Over time, the direct encoding was able to
catch up with the generative encoding and the performance differences were no
longer statistically significant. The generative encoding still had an advantage
in the long run when only a maximum of 5 modules could be simulated. This re-
sult was counter intuitive since we expected the generative encoding to perform
better in the long run when more modules could be simulated.

A smaller portion of the genome of the generative encoding can lead to mod-
ular robots containing more modules than the direct encoding. The amount of
servo module states used in the generative encoding was 2.23 on average in the fi-
nal evaluations of the evolutionary runs of the generative encoding. Since 4 servo
module states could be stored in the genome it is noteworthy to see that not
all genetic information is expressed in the phenotype of the generative encoding.
This result illustrates the usefulness of reusing the genome for creating modu-
lar robot morphologies. Being able to evolve robots with just a few genotypic
parameters is furthermore an advantage and might lead to discovering abstract
recursive mechanisms that are useful for the specified objective.

All evolutionary runs of the direct encodings led to phenotypes that utilized
more modules compared to the generative encoding. This is due to a strong
pressure in the direct encoding for adding new modules to the existing morphol-
ogy. The mutations in the generative encoding can lead to destructive genotypes
more quickly potentially posing a limiting factor to the amount of modules sim-
ulated for the individuals. Although the generative encoding outperformed the
direct encoding in our comparison, the generative encoding was still prone to
premature convergence. This premature convergence was not seen in the direct
encoding due to other evolutionary parameters that were used in the encoding.
An improved version of the evolutionary algorithm could implement methods
to increase diversity and evolvability as done in speciation [29] – implemented
in Neuroevolution of Augmenting Topologies (NEAT) [30] –, novelty search [31]
or Age Layered Population Structure (ALPS) [32, 33]. Regarding the L-System,
an alternative generative encoding, such as a Compositional Pattern Producing
Network ([34]), can be a relevant alternative generative encoding for evolving
modular robots (as applied in [16]).

Albeit out of the scope of this paper, the presented data is of limited use
for robotic applications since we do not know how well the evolved behaviors
transfer to reality. However, we expect that a hybrid approach of the two en-
codings would be a useful strategy to cope with the reality gap. The generative
encoding can be used to evolve the global morphology and control of the robot
while the direct encoding would tweak morphological and control parameters
online or in a feedback loop with the simulator. This would be beneficial since
the generative encoding cannot locally change parameters specific to individual
modules. Nonetheless, it might also be better to evolve phenotypes using the



generative encoding and have an online learning system – such as a form of local
decentralized learning [35] – adjust the control of the modules accordingly.

The presented semi-homogeneous modular robot system presents a promising
step in the direction of evolving feasible modular robots. Increasing the hetero-
geneity in the system would give us additional insight in how we should model or
modules in the future to produce even better robots. One could think of applying
additional structural modules that have a variable stiffness. Since many organ-
isms exploit various biomechanical attributes – be it elasticity, friction, strength
– adding this type of module can enable evolution to come up with morpholog-
ical solutions [36] and reduces the need for every part of the robot morphology
to be actuated. Additionally, sensory modules can be implemented to extent the
functionality of the system giving the robot inputs to its control system. The
products of evolution of these potentially evolved hetegeneous modular robots
can become experimental platforms that can be consulted before designing and
building a non-modular equivalent.

5 Conclusion

Much work in evolutionary robotics is devoted to brain-body optimization strate-
gies though few studies take into account the transferability of the evolved mor-
phologies and control systems. We try to decrease this gap and enable researchers
to have a fast way of evolving and evaluating robots in simulation and reality.
Our robotic platform that simulates conglomerates of modules showed that a
generative encoding, despite, having less optimization freedom, is more effective
for evolving locomotion in simulated robots. The reuse of genes in the generative
encoding seems to work well for the evolution of robot morphologies and control.
This is a great advantage when constructing a robot out of many modules since
many of them can be assigned with the same control parameters. We conceive
that the generative encoding is able to evolve more abstract and simple robots
and suspect that a hybrid system would be ideal for experimenting with the re-
ality gap of the evolved robots. This hybrid system can initially use a generative
encoding in simulation followed up by a direct encoding that locally optimizes
parameters in a real robot.

Acknowledgement

This project was in part funded by Project ’flora robotica’ which has received
funding from the European Unions Horizon 2020 research and innovation pro-
gram under the FET grant agreement, no. 640959. Computation/simulation for
the work described in this paper was supported by the DeIC National HPC
Centre, SDU. Special thanks to Rodrigo Moreno Garca (Universidad Nacional
de Colombia) and Ceyue Liu (China University of Mining & Technology) that
helped shape the design and implementation of the robotic Modules.



References

1. Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms.
Nature 406(6799) (2000) 974–978

2. Hornby, G.S., Lipson, H., Pollack, J.B.: Generative representations for the au-
tomated design of modular physical robots. IEEE Transactions on Robotics and
Automation 19(4) (2003) 703–719

3. Eiben, A.E., Bredeche, N., Hoogendoorn, M., Stradner, J., Timmis, J., Tyrrell,
a.M., Winfield, A.F.T.: The Triangle of Life: Evolving Robots in Real-time and
Real-space. Advances in Artificial Life, ECAL 2013 (2013) 1056–1063

4. Stoy, K.: The deformatron robot: A Biologically inspired homogeneous modular
robot. Proceedings - IEEE International Conference on Robotics and Automation
(May) (2006) 2527–2531

5. Reece, J.B., Urry, L.A., Cain, M.L., Wasserman, S.A., Minorsky, P.V., Jackson,
R.B.: Campbell Biology. (2010)

6. Floreano, D., Mattiussi, C.: Bio-Inspired Artificial Intelligence. (2008)
7. Marbach, D., a.J. Ijspeert, Ijspeert, a., a.J. Ijspeert: Online optimization of modu-

lar robot locomotion. IEEE International Conference Mechatronics and Automa-
tion, 2005 1(July) (2005) 248–253

8. Fáıña, A., Bellas, F., López-Peña, F., Duro, R.J.: EDHMoR: Evolutionary designer
of heterogeneous modular robots. Engineering Applications of Artificial Intelligence
26(10) (2013) 2408–2423

9. Guettas, C., Cherif, F., Breton, T., Duthen, Y.: Cooperative co-evolution of con-
figuration and control for modular robots. 2014 International Conference on Mul-
timedia Computing and Systems (ICMCS) (October 2015) (2014) 26–31

10. Sims, K.: Evolving virtual creatures. In: Proceedings of the 21st Annual Conference
on Computer Graphics and Interactive Techniques. Number July (1994) 15–22

11. Sims, K.: Evolving 3D Morphology and Behavior by Competition. Artificial Life
1(4) (1994) 353–372

12. Hornby, G., Pollack, J.: The advantages of generative grammatical encodings for
physical design. Proceedings of the 2001 Congress on Evolutionary Computation
(IEEE Cat. No.01TH8546) 1 (2001) 600–607

13. Auerbach, J.E., Bongard, J.C.: Evolving Complete Robots with CPPN-NEAT:
The Utility of Recurrent Connections. Gecco-2011: Proceedings of the 13th Annual
Genetic and Evolutionary Computation Conference (2011) 1475–1482

14. Cheney, N., MacCurdy, R., Clune, J., Lipson, H.: Unshackling Evolution: Evolving
Soft Robots with Multiple Materials and a Powerful Generative Encoding. Proceed-
ing of the Fifteenth Annual Conference on Genetic and Evolutionary Computation
- GECCO ’13 (2013) 167

15. Bonardi, S., Vespignani, M., Moeckel, R., Kieboom, J.v.d., Pouya, S., Sproewitz,
A., Ijspeert, A.J.: Automatic generation of reduced CPG control networks for
locomotion of arbitrary modular robot structures. In: Proceedings of Robotics:
Science and Systems. (2014)

16. Auerbach, J.E., Heitz, G., Kornatowski, P.M., Floreano, D.: Rapid Evolution of
Robot Gaits. In: GECCO15. (2015) 743–744

17. Lindenmayer, A.: Mathematical models for cellular interactions in development.
I. Filaments with one-sided inputs. Journal of theoretical biology 18(3) (1968)
280–299

18. Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.:
Automatic locomotion design and experiments for a modular robotic system.
IEEE/ASME Transactions on Mechatronics 10(3) (2005) 314–325



19. Sproewitz, A., Moeckel, R., Maye, J., Ijspeert, A.J.: Learning to Move in Modular
Robots using Central Pattern Generators and Online Optimization. The Interna-
tional Journal of Robotics Research 27(3-4) (2008) 423–443

20. Still, S., Hepp, K., Douglas, R.J.: Neuromorphic walking gait control. IEEE
Transactions on Neural Networks 17(2) (2006) 496–508

21. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and
robots: A review. Neural Networks 21(4) (2008) 642–653

22. Rohmer, E., Singh, S.P.N., Freese, M.: V-REP: A versatile and scalable robot
simulation framework. IEEE International Conference on Intelligent Robots and
Systems (2013) 1321–1326

23. Faiña, A., Orjales, F., Bellas, F., Duro, R.: First Steps towards a Heterogeneous
Modular Robotic Architecture for for Intelligent Industrial Operation, IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2011) (2011)

24. Cheney, N., Bongard, J., Sunspiral, V., Lipson, H.: On the Difficulty of Co-
Optimizing Morphology and Control in Evolved Virtual Creatures. In: Proceedings
of the Artificial Life Conference 2016 (ALIFE XV). (2016) 226–234

25. Lindenmayer, A., Jürgensen, H.: Grammars of Development: Discrete-State Mod-
els for Growth, Differentiation, and Gene Expression in Modular Organisms. In
Rozenberg, G., Salomaa, A., eds.: Lindenmayer Systems: Impacts on Theoreti-
cal Computer Science, Computer Graphics, and Developmental Biology. Springer
Berlin Heidelberg, Berlin (1992) 3–21

26. Veenstra, F., Faina, A., Stoy, K., Risi, S.: Generating Artificial Plant Morphologies
for Function and Aesthetics through Evolving L-Systems. In: Proceedings of the
Artificial Life Conference 2016, MIT Press (2016) 692–699

27. Prusinkiewicz, P.A.L., Lindenmayer, A.: The algorithmic beauty of plants. Plant
Science 122(1) (1997) 109–110

28. Veenstra, F., Faina, A., Risi, S., Stoy, K.: Video: Evolving
Modular Robots Using Direct and Generative Encodings. In:
https://www.youtube.com/watch?v=HCDftic1AdA. (2017)

29. Cook, O.F.: Factors of Species-Formation. Science 23(587) (1906) 506–507
30. Stanley, K.O., Miikkulainen, R.: Efficient Evolution of Neural Network Topologies.

Evolutionary Computation, 2002. CEC’02. Proceedings of the 2002 Congress on
Evolutionary Computation (2002) 1757–1762

31. Lehman, J., Stanley, K.O.: Exploiting Open-Endedness to Solve Problems Through
the Search for Novelty. Artificial Life XI (2008) 329–336

32. Hornby, G.S.: ALPS: The Age-Layered Population Structure for Reducing the
Problem of Premature Convergence. In: Proceedings of the 8th annual conference
on Genetic and evolutionary computation. (2006) 815–822

33. Hornby, G.S.: The age-layered population structure(ALPS) evolutionary algo-
rithm. Proceedings of the 9th annual conference on Genetic and evolutionary
computation (2009)

34. Stanley, K.O.: Compositional pattern producing networks: A novel abstraction of
development. Genetic Programming and Evolvable Machines 8(2) (2007) 131–162

35. Christensen, D.J., Schultz, U.P., Stoy, K.: A distributed and morphology-
independent strategy for adaptive locomotion in self-reconfigurable modular
robots. Robotics and Autonomous Systems 61(9) (2013) 1021–1035

36. Pfeifer, R., Iida, F.: Morphological computation: Connecting body, brain and
environment. Japanese Scientific Monthly 58(2) (2005) 48–54


