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Abstract

Creating systems that can operate autonomously in complex environments is a
challenge for contemporary engineering techniques. Automatic design methods offer
a promising alternative, but so far they have not been able to produce agents that
outperform manual designs. One such method is evolutionary robotics. It has been
shown to be a robust and versatile tool for designing robots to perform simple tasks,
but more challenging tasks at present remain out of reach of the method.

In this thesis I discuss and attack some problems underlying the scalability issues
associated with the method. I present a new technique for evolving modular networks.
I show that the performance of modularity-biased evolution depends heavily on the
morphology of the robot’s body and present a new method for co-evolving morphology
and modular control.

To be able to reason about the new technique I develop reformulation framework:
a general way to describe and reason about metaoptimization approaches. Within
this framework I describe a new heuristic for developing metaoptimization approaches
that is based on the technique for co-evolving morphology and modularity. I validate
the framework by applying it to a practical task of zero-g autonomous assembly of
structures with a fleet of small robots.

Although this work focuses on the evolutionary robotics, methods and approaches
developed within it can be applied to optimization problems in any domain.
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Chapter 1

Introduction

An agent is “anything that can be viewed as perceiving its environment through

sensors and acting upon that environment through actuators” [100]. In design of arti-

ficial agents one feature is almost always desirable: autonomy, the capacity to operate

without human intervention for extended periods of time. Advances in design of au-

tonomous artificial agents have profoundly reshaped humanity’s way of life over past

two centuries. Feedback regulators powered the huge leap of engineering thought

during late nineteenth through the first half of twentieth century, bringing about

modern heavy industry, transportation and early electronics. Autonomous spacecraft

radically changed the way we gather geographical data, communicate and study the

outer space. Introduction of industrial robots in 1950s revolutionized indoors manu-

facturing, making mass production cheaper than ever. Internet, the pinnacle of digital

automation technology, is a layered cake made out of interacting autonomous agents,

mostly artificial.

Despite such an impressive impact of agents engineering, autonomy has remained

confined to simple environments for a long time. Feedback regulators rely on accu-

1



racy of models of systems being controlled and computational tractability of the cor-

responding control problems. Automatic spacecraft and aircraft exploit relative sim-

plicity of laws governing their corresponding environments. Industrial robots mostly

operate in controlled cells and rely very little on perceiving their environments. Most

agents of the Internet operate in environments with few degrees of freedom and use

well-defined protocols.

Recently, however, more complicated environments have been explored. In robotics,

dynamically balanced legged locomotion[95, 64] and sharing the working space with

humans[24, 99] has become possible. Practical artificial agents capable of processing

human speech [72, 30] and raw sensory video streams [81, 4] have been developed.

Stock market, despite being among the most sophisticated artificial environments,

involves autonomous artificial agents to such extent that their behavior sometimes

dominates the market dynamic [48].

Still, many of complex environments of practical interest remain out of reach of

autonomous machines. Most operations in physical settings with complex structure,

such as wilderness, excavation sites∗ and nuclear plant ruins, are performed either

physically by humans or by robots that are meticulously controlled by humans. Au-

tonomous space reconnaissance probes serve their purpose very well, but only until

they have to interact with the complex structures found on the surface of other ce-

lestial bodies. At that point, as Steven Squyres, the principal investigator of NASA’s

Mars Exploration Rover Mission put it,

[t]he unfortunate truth is that most things our rovers can do in a perfect

sol [i.e. a martian day] a human explorer could do in less than a minute†

∗With a notable exception of a few functional automated mining facilities [39, 123].
†[108], p.254-255, see also [27].
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Economical benefits of achieving autonomy in such settings would be enormous.

Obvious applications would yield buildings and power generating facilities at the cost

close to that of the materials used; cheap excavation and mining; complete clean-up

of nuclear disasters without human exposure to radiation. As J. Bongard put it, such

robots would “do the same to outdoor production as what industrial robots did to

the indoor production”. However, those benefits are of minor importance compared

to the benefits yielded by bolder applications.

Machine self-replication is arguably the most powerful constructive technology

currently envisioned. Much like domestication of animals and plants, creation of such

machines would enable humans to thrive in harsher environments, most notably outer

space. With this technology the problem of energy generation can be solved, for all

intents and purposes, forever [42]; enable the humans to efficiently mine, terraform

and settle planets and their moons; eliminate the threat of asteroid impact; provide

enough energy for manned interstellar spaceflight. At this point, machine replication

in controlled, human designed environments has been demonstrated multiple times

[41, 116, 130], The main hurdle on the way to constructing useful macroscopic replica-

tors is the problem in question, autonomous operation in environments with complex

structure.

For these reasons and others, a lot of effort has been made to improve our ability

to create autonomous agents.
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1.1 Challenges And Paradigms In Design

Of Autonomous Agents

Design of agents for autonomous operation in environments with a complex struc-

ture poses a unique set of challenges. In this section I list some of these issues and

compare the ways they are approached in the two existing AI paradigms: symbolic

AI and nouvelle AI.

The first challenge is the large number of actions and interactions that are pos-

sible between a complex environment and an agent. Human designers are good at

finding the ways to exploit some known interactions, but their sheer quantity and/or

incomplete information about the environment can make manual design difficult. For

example, it is possible to design an agent capable of some form of arboreal locomotion

manually [84, 65]. However, the number of ways in which an arbitrary physical agent

can interact with arboreal environment (coil around the trunks, brachiate on the

branches, hang on leaf bundles etc, plus combinations) is large. The effort required

to investigate all of them and come up with an optimal solution for every situation

that agent might face is prohibitive.

Second, autonomous operation implies that the agent must survive, i.e. maintain

its existence and functioning. In simple systems factors that may cause the agent

to cease functioning can be figured out manually during design and testing phases.

On the other hand, in complex systems some aspects of dynamics of the environ-

ment may exhibit unpredictable (chaotic or random) behavior, or even be unknown

until certain actions are performed by the agent. As such, the agent must be able
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to respond heuristically to some stimuli for which it was not explicitly designed to

respond. Moreover, the response must be fast and environment-specific. For example,

for a firefighter robot the heuristic survival strategy “move as fast as possible away

from loud sounds and towards pre-identified strong structures capable of sheltering

you” might work reasonably well. However, this approach will not work for a robot

operating in environments in which ideas of “sound” or “move away” make little sense,

such as in the vacuum of space or on a financial market.

The third challenge is a nontrivial combination of the first two. Aside from avoid-

ing the immediate danger, it is desirable for the survival of an agent to actively

maintain its functioning state against accumulating damage. Natural agents accom-

plish this with regeneration and reproduction. Little is known about how to reproduce

these traits in artificial agents, but the complexity of the processes of growth in na-

ture and manufacturing in engineering suggests that for complex environments the

problem might be too hard to solve manually.

Traditionally, these issues are tackled by a top-down, manual design approach. A

brute force approach to behavior generation, based on the sense-plan-act cycle and

explicit representations of the environment, is employed. Known as symbolic AI,

this approach has been utilized to design very good, but very expensive (in terms

of research needed) solutions to some tasks in some complex environments, the most

notable recent example being legged locomotion on rough terrain [95]. However, the

range of tasks that can be solved by this approach remains limited by the avail-

ability of fast computation and human labor that can be spent on investigating the

particularities of the task-environment pair.

The alternative approach known as embodied or nouvelle AI[16, 92]. It relies on
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multi-scale, reactive approach to control and exploitation of the dynamical behavior

of the agent-environment system. The approach is heavily inspired by our knowledge

of living systems. Automatic design via evolutionary algorithms is often employed, an

approach known as evolutionary robotics[88]. Connectionist representations and

learning techniques are also often utilized (e.g. [106]).

Nouvelle AI has been successful in generating simple agents that learn intelligent

behaviors from experience with minimal prior assumptions about the structure of

the environment [106, 118]. It has produced some of the most impressive results

in contemporary robotics in terms of resilience and behavior sophistication [15, 28,

74, 44]. Despite this, many of more complex environments remain out of reach.

Although there is no single cause to this outcome, there is one major problem with

the approach that is known to exacerbate many others: the large number of operations

required to achieve reasonably good behaviors in evolutionary robotics [79, 103]. In

the next section I review the knowledge that is currently available about causes of

this phenomenon and existing approaches to combating it.

One of the key notions of nouvelle AI is morphological computation [55, 91,

92], the idea that given an environment and a task, complexity of control can be

dramatically reduced if an appropriate morphology, or “body” is chosen. Morphology

is an umbrella term for all aspects of the agent that are not control, i.e. those aspects

that determine which aspects of the environment are perceived by the sensors, which

are affected by motors and which are affected by the presence of the agent per se,

without the involvement of the controller. For example, structure of human skeleton

and mechanical properties of our muscles enable us to walk over flat ground with very

minimal control that fits into out spinal cord.
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1.2 Evolutionary Robotics

Evolutionary robotics is a technique for automatic creation of autonomous agents

that relies on the Darwinian principle of reproduction of the fittest [88]. It is related

to the fields of evolutionary computation and global optimization. Evolutionary com-

putation is a broader field; it differs from evolutionary robotics in that it can work

with non-agent entities [52, 35]. In the majority of cases an instance of evolutionary

computation is also an instance of global optimization; however, research in global

optimization is not tied to the population-based approach and is typically geared

towards optimizing static functions. Due to these large overlaps, many issues and

major ideas are common across the fields, which is reflected in citations.

In its most general form, evolutionary robotics approaches work as follows:

1. Generate an initial population of agents.

2. Directly or indirectly measure some metrics of the agent performance.

3. Select some subset of the agents for reproduction based on performance metrics.

4. Generate new agents by copying and combining the selected agents with random

modifications.

5. Repeat steps 2-4 until some termination condition is met.

Details of each step vary by the approach.

The principal advantage of evolutionary robotics is its ability to automatically

generate agents of almost any kind, with the only restriction being the designer’s

capacity to copy an agent while introducing some random change in it. The agents
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may be represented as bit strings, graphs, generative programs or even evolved in

hardware without a representation. It is also straightforward to combine representa-

tions for different aspects of the agent, such as its physical design (morphology) and

control [105, 14, 20, 22]. This distinguishes evolutionary robotics from reinforcement

learning [81, 74] where the learning algorithm is typically specific to the agent type

(e.g. gradient descent for agents based on neural networks).

Many impressive autonomous agents and behaviors have been created with this

technique [105, 44, 23, 69]. Some major results that were first obtained with this

technique are automated generation of minimal cognitive behaviors [106] and creation

of agents resiliently adapting to the environment through self-modeling [15, 28].

However, evolutionary robotics so far has not been able to scale up to more com-

plex, and most importantly natural, environments. One major issue causing that is

the large number of operations that are required to create an agent with this tech-

nique. While it is hard to identify all the causes of this issue, three large contributing

factors can be isolated: interference between the aspects of the task, deception and

bootstrap problem.

1.2.1 Interference Between The Aspects Of The

Task And Modularity

This aspect is fully analogous to catastrophic forgetting in connectionist learning

[43]. Generally, if some behavior has been learned by a population of robots under

some selection pressure A, it may not be preserved once the selection pressure A

is replaced by some other selection pressure B. And indeed, in practice it is often
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the case that the older behavior is disrupted by the new adaptations. As a result,

to create an agent capable of multiple behaviors it must be evaluated and selected

for reproduction based on all of the behaviors. The situation becomes worse when

the desirable behaviors are defined in a parametric way: the agent must be evalu-

ated for each combination of parameters, with the number of evaluations growing

exponentially with the number of parameters [79]. Complex environments have few

symmetries, so just the number of distinct initial conditions makes the evaluation

prohibitively expensive. For example, to evolve a robot to locomote to a light source

placed on a patch of an uneven forest floor, the designer must evaluate its behavior

for all starting points of the patch and, for each point, for all initial orientations.

Various approaches to this problem have been grouped under the term “modularity

research”. The idea is to create agents that have parts that encapsulate and protect

different aspects of the behavior. To generate the behavior, those parts are mixed

and matched. If the parts can be made to function independently on each other, then

they can be evolved independently without one disrupting the other. An extension of

this idea is that if the dependencies of the parts are, in some sense, “weak” (e.g. form

a directed acyclic graph), then the parts can be optimized “almost” independently

(e.g. in a topological order of the dependency graph).

The idea is widely used in engineering today [3] and arguably have been around

since the Stone Age. The earliest mention of this idea in the context of the au-

tonomous agent generation seems to be in Ross Ashby’s “Design for a brain” [1].

The nature and operation of the parts depends on the type of the agent and can be

multi-layered, with several qualitatively different modular decompositions coexisting

within one agent type. Multiple kinds of modularity have been found in nature [122].
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Among the kinds of modularity, structural modularity is one kind that particularly

stands out in evolutionary theory and engineering. In a structurally modular system,

the parts are the actual objects that are involved in the implementation of the agent.

For example, if an agent consists of nodes and links, i.e. can be represented as a

network, then it can be called modular if the network has more than one connected

component or exhibits a community structure [45]. The heuristic behind this idea is

that if a system can be decomposed into subsystems that are not connected in the

implementation, then their evolution or learning can be done independently without

one disrupting the other.

Many ways to evolve structural modularity have been proposed, both for disem-

bodied [76, 56, 36, 26, 7] (note - [7] is also provided as Section A.1) and embodied

settings [14]. Structural modularity was successfully used to combat the problem of

the interference between the aspects of the task [34, 26] and, in the context of the

evolution with sexual reproduction, even assist in the transfer of partial solutions

within the population [68].

Some approaches to evolving structural modularity rely on designed modular vari-

ation of the task [56, 36], while others exploit statistical properties of networks to bias

the evolution towards more modular solution ([26], see also Appendix A.1). All the

disembodied approaches, however, rely on the assumption that the task-environment

pair is solvable by a modular network in which the modules are arranged properly

to assist with the task interference, an assumption that might not be true. Indeed,

it has been shown that there is a disembodied task for which it is not the case ([26],

figure S4).

Little is known, however, about how does this assumption and the associated
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techniques interact with the embodied setting. It has been demonstrated that for

some tasks, the evolution is more likely to produce more modular solution for some

morphologies than for others [14]. The mechanism behind this phenomenon is, to

some extent, elaborated upon in Chapter 2.

1.2.2 Deception And Multiple Timescales Of

Learning

Global optimization is the area of research studying the methods for finding global

optima of functions with multiple local optima (so-called multimodal functions).

Many experiments in evolutionary robotics follow that paradigm, with some set of

variables describing the agent being the inputs to the function and some experimenter-

defined utility is the function being optimized.

If the function that is being optimized is a blackbox, the task of finding a global

optimum is not solvable without exhaustively enumerating all possible combinations

of input variables’ values. That is why the performance of global optimization tech-

niques, including the corresponding subset of evolutionary computation, is measured

by their ability to find a “good-enough” solution: a solution that corresponds to a

value that sufficiently close to the global optimum for practical purposes.

Deception in global optimization is any property of the optimized function that

makes iterative optimization procedures prematurely converge to solutions that are

worse than “good-enough”. The points to which the evolution can converge prema-
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turely can be local optima or saddles‡, with the latter being far more common if the

optimization occurs in a space with many dimensions [29].

Formal definition of the deception can be given as follows. Considering the opti-

mization process as a discrete dynamical system, one can divide the space of possible

solutions into basins of attraction. If basins of attraction corresponding to the so-

lutions that are not “good-enough” have much larger hypervolume than their more

hospitable counterparts, then the function (or a landscape) is said to be deceptive.

An example of a one-dimensional deceptive fitness landscape is given in fig. 1.1

(b).

Attacks on the problem of deception constitute a large fraction of all effort within

the field of evolutionary computation. Several approaches exist:

Diversification. The selection algorithm is modified to explicitly or implicitly in-

centivise the escape from attractors, e.g. [46, 102, 94, 86]. The most extreme

approach[71, 70] abandons the utility altogether, in favor of an efficient diversity

objective.

Coevolution. The utility function is optimized alongside the agents, such that when-

ever the optimization settles on some solution, a parallel evolutionary process

tries to come up with a different, typically harder task (e.g. [111]).

Constraining/biasing. The search is constrained to some subset of possible so-

lutions, often by a nonlinear genotype-to-phenotype map that favors certain

phenotypes. This approach works in much the same way as search patterns
‡Saddles can behave much like attractors if they have have many more attracting dimensions

than repelling ones, or if the latter repel the points weakly. Any gradient-following optimization
algorithm with a finite number of iterations will find such “attractors”.
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Figure 1.1: One-dimensional fitness functions f exhibiting properties typical for the fitness
functions in evolutionary robotics. Dotted horizontal lines represent a “good-enough” level
of fitness, red and green bars above the horizontal axis - attractors for gradient ascent.
(a) Convex fitness function that can be optimized by following its gradient without much
difficulty. (b) Deceptive fitness function: attractor for “good-enough” solution is much
smaller than for the local optima. (c) Fitness function with a bootstrap problem: no gradient
anywhere except for a tiny attractor of a “good-enough” solution. Blue arrows show the
effect of one possible scaffolding: steady migration of the search to the right which helps
find the solution. (d) Deceptive fitness function with a bootstrap problem. Solution space
is mostly gradientless, with many tiny attractors that mostly lead to solutions that are not
“good-enough”. It can be seen that scaffolding does not help with deception in this example.
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work in underwater searches [101, 67], by providing a guiding manifold that

is easy to search with quasi-random search. If such a guide covers the search

space densely enough so that it is likely to be an uninterrupted chain of benefi-

cial mutations away from most potential optima, then at some point the search

will happen upon the point that is close enough to a good optimum so that

gradient climbing process can arrive to it without having to do any detrimental

mutations. The most popular method of this family is [109]. Biasing works in a

similar way, but instead of constraining the search to a subset of solution space

the solutions that are closer, by some metric, to this subset, are visited earlier

as the search algorithm iterates.

Nesting/metaoptimization. First discovered in the context of the relationship of

learning over the lifetime and evolution, the idea now starts to take shape of the

notion of synergy between different timescales of learning in which the evolution

on one timescale speeds up the other by reducing the associated deceptiveness.

The presence of a faster timescale increases the effective hypervolume of the

genotypic space that an individual agent explores over its lifetime. This expands

the sizes of all attractors, effectively smoothing the optimized function for the

slower timescale.

If both timescales optimize the same subset of agent parameters, the result is a

fast fixation of learned traits in the genotype, a phenomenon called canaliza-

tion[120, 51].

Recently, it has been discovered that if the subset of the slowly optimized agent

parameters represents a genotype-to-phenotype map and the fast timescale un-

dergoes repeated periods of neutral and directional selection, then the slow
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timescale evolves a map that biases the fast optimization away from the low

fitness local optima[125, 61]. In effect, the fitness landscape for the fast opti-

mization becomes smoother. Arguably, this finding constitutes the explanation

of the elusive phenomenon of evolution of evolvability.

The ability to smooth fitness landscapes also makes certain forms of nesting

useful in dealing with the bootstrap problem described in the next section.

In the embodied setting there is a natural separation of the aspects of the agent

into morphology and control. If the control is governed by evolution, mor-

phology can be seen as one aspect of genotype-to-phenotype map. Hence, the

idea of evolution of evolvability readily applies if the morphology is optimized

in a slower timescale than control. This observation is used by the emerging

technique called morphological protection[21, 20].

Scaffolding. External knowledge is used to smooth the fitness landscape. For exam-

ple, robots evolving for locomotion often use falling to achieve an initial increase

of fitness. In this case genotypes that exhibit upright gaits are typically many

deleterious mutations away from the genotypes that exhibit falling, making the

falling strategy a deceptive local optimum. To alleviate this problem, in evolu-

tion of upright locomotion the upright posture is often explicitly rewarded or

ensured by using external forces (e.g. [96]).

The knowledge used to smooth the function can be expressed as an additional

objective prior to the optimization procedure, or learned online, e.g. from hu-

man observers [13, 8].
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1.2.3 Bootstrap Problem And Scaffolding

In evolutionary robotics, designer’s intent is expressed with utility function (error

or fitness) that provide a quantitative measure of usefulness of a solution candidate.

An empirical observation is that for many tasks and environments “natural”, in-

tuitively understandable utility functions have the same or almost the same value,

corresponding to no progress towards the target behavior, within the vast majority of

the solution space. Over these regions of the solution space there is no gradient that

can be used by a gradient-climbing method (fig. 1.1 (c)), and such methods tend to

perform on par or worse than random search on such landscapes. This is known as

bootstrap problem [104].

This problem most often occurs in complex tasks that require coordination of

several actions in time or space to make any progress. Here are some examples:

• Jumping, with height of the bottommost point of the robot’s body as fitness.

Consider an attempt to evolve a robot’s body (composed of structural compo-

nents, sensors and actuators) and controller to jump. Unless the actuators are

very strong by default, the vast majority of robots and controllers in the search

space never enter the fly phase and will have fitness of exactly zero.

• Manufacturing, with the amount of the final product as fitness. Consider the

task of designing a system that transforms matter in stages (e.g. metabolic

network). If in the evolutionary algorithm the genome rules how subsystems

(e.g. individual chemical reactions) are combined to create such a system and

more than one or two subsystems are required to produce the product, then

vast majority of genotypes will not produce any and will have fitness of exactly
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zero.

• Manipulation tasks in which the robot must travel to the object and carry it to

some desired position. One measure of fitness is the negative difference between

the initial and the desirable position. If there is any distance between the robot

and the object at the beginning of the simulation, then most movements will

not touch the object. The corresponding controllers will have all have the same

value of fitness corresponding to the initial position of the object. More on this

in chapter 4.

• Complex prey-catching strategies in prey-predator systems [47].

Bootstrap problem shares some features with deception, but these are different

problems. Figure 1.1 (c) shows a non-deceptive fitness function that exhibits boot-

strap problem: there is no gradient in most of the search space, but there is only one

optimum and it leads to a “good-enough” solution. For a deceptive function with a

bootstrap problem (fig. 1.1 (d)) there is also no gradient present, but there are local

optima that do not lead to “good-enough” solutions. Figure 1.1 (d) shows the case

when the landscape is deceptive, but has no bootstrap problem: there is gradient

everywhere, yet the attractor for the “good-enough” maximum is much smaller than

for the local optima.

Since the ratios between the hypervolumes of the “good-enough” attractor and the

rest of the space falls exponentially as the number of dimensions grows, bootstrap

problem and deception both become more difficult to deal with as the number of

optimized variables increases.

When a high-dimensional fitness function exhibits the bootstrap problem, it will
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very probably appear constant based on any reasonable sample of its values (i.e.

a sample of a size much less than the size of the search space). The structure of

the function thus remains invisible to blackbox optimization algorithms and no such

algorithm can outperform random search [128].

All approaches to the bootstrap problem utilize some form of a priori knowledge

to guide or augment the search. Since the bootstrap problem is similar to deception,

all approaches that are useful in dealing with the bootstrap problem are also useful

in dealing with deception, but not vice versa.

In scaffolding approaches, additional knowledge of potentially useful features

of the final solution can be used to create a fitness gradient where there was none

(fig. 1.1 (c),(d)). In the example of a manufacturing system evolution, that may

correspond to adding extra fitness functions that reward production of intermediate

products from which the final one can be produced with relative ease. There is a flurry

of ways to define and combine these additional fitness functions. Approaches of this

type include incremental evolution, behavioral decomposition and human-in-the-loop

type approaches [104].

Temporal development is a type of metaoptimization that optimizes solutions

that change over an additional fast timescale [51]. In evolutionary robotics this typ-

ically corresponds robots that change as they perform the task. If the task is such

that the successful behavior can manifest itself for a fraction of the evaluation time

and the fitness function rewards for that, then the number of evaluations is effectively

increased by the factor of states that the agent visits during its lifetime. Behaviors

that are hard to bootstrap, such as rolling, were evolved with this approach [62].

Diversity-based approaches can overcome the bootstrap problem by redefining
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the task in terms of meaningful difference between genotypes (e.g. the evolution of

upright gait in [70]).

1.3 Contribution Outline

Research described in this thesis began as an attempt to improve scalability of

evolutionary robotics by combining the techniques of evolution of modularity and

morphological computation via metaoptimization. In the process, however, more

general principles were uncovered which can be applied to non-convex optimization

outside of robotics.

By suppressing the interference between the aspects of the task, evolutionary

techniques with a bias towards structural modularity have been shown to increase

the convergence rate drastically [7, 26] (note - [7] is also provided as Section A.1).

Indeed, in many cases the analogy with parallel and serial adaptation [1] applies,

resulting in reduction of bounds for adaptation time from exponential to polynomial

or even constant in the size of the problem. However, this speedup is only possible if

the task can be solved by a structurally modular agent.

I demonstrate that morphology can determine whether or not the control task is

solvable by a structurally modular controller (Chapter 2). I show that if the mor-

phology is such that it enables modular control to solve the task, the techniques for

solving modularity converge much more rapidly than for a morphology that does not

admit modular control.

I show that this dependence of the rate of optimization of control on morphol-

ogy can be used to evolve structurally modular agents (Chapter 3). This is achieved

19



by evolving the morphology alongside the control, but in a slower time scale, while

applying the pressure towards structural modularity to control. In this case, struc-

ture of the control task varies together with morphology. Whenever it happens to

admit a modular solution, the rate of convergence of the fast evolutionary timescale

increases drastically, giving reproductive advantage to agents with the corresponding

morphologies. If, additionally, morphologies that are few mutations away from each

other tend to produce similar convergence rates, the landscape of morphological op-

timization becomes smooth and the convergence of the full evolutionary process can

happen very fast and yield modular solutions. I show that the convergence in this

case indeed happens at an increased rate, compared to the case when the morphology

is not evolved.

I formulate an idea of automatic reformulation in optimization generalizes

this method and many other existing ones (Chapter 3 and Section 5.1). Within this

approach, design variables are separated into those that must be optimized as a part

of solving the task (I call them non-driving variables) and those that influence

the difficulty of this optimization process (driving variables). For example, in

a task of automatic design of a neural network to approximate a certain mapping

the weights of the neural network might selected as non-driving variables; then the

numbers of hidden neurons and layers in the network might influence the difficulty

of optimizing the weights, thus qualifying as driving variables. If difficulty of the

optimization of non-driving variables varies strongly enough as the driving variables

vary, then depending on the difficulty of optimizing the driving variables it might be

advantageous, in terms of the overall optimization rate, to co-optimize driving and

non-driving variables.
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Based on my investigations of the morphology and modularity co-evolution I in-

troduce a variant of the reformulation approach which I call guided reformulation

(Chapter 3 and Section 5.1). It relies on the fact that the dependence of the difficulty

of the optimization approach on certain variables is itself dependent on the biases

of the underlying method for optimizing the non-driving variables. For example, in

my investigations the dependence of the convergence rate of the control evolution on

morphology was much more pronounced if the control evolution was biased towards

structurally modular controllers. Thus, the impact of certain driving variables on

the difficulty of the task can be increased by applying an appropriate bias to the

optimization of the non-driving variables, making the automatic reformulation more

efficient.

Formal treatment of the ideas of reformulation and guided reformulation is given

in Section 5.1.

In Chapter 4 I validate the reformulation approach by using it to develop a new

metaoptimization method to attack the bootstrap problem (through scaffolding) in

the context of a practical problem of autonomous robotic assembly of structures in

zero gravity. The new method can be used to tackle a vast array of optimization tasks

suffering from the bootstrap problem.

Additionally, I introduce a new technique for evolving modularity (Appendix A.1).

For a disembodied task I show that seeding the initial population with sparse net-

works substantially reduces the convergence time of the connection cost technique for

evolving modularity [26]. Furthermore, I show that with this kind of initialization

modular solutions can evolve in ordinary evolutionary algorithms without any selec-

tion pressure towards modularity. I observed an even more rapid convergence in this
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case compared to the combination of this initialization and the connection cost tech-

nique, but unlike for this combination, modularity of the solutions that evolved over

the initial period of rapid convergence later decayed. I widely used initial populations

of sparse networks in the aforementioned investigations as an alternative to and and

in conjunction with the performance and connection cost multiobjective optimization

technique.
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Chapter 2

Choice Of Robot Morphology Can

Prohibit Modular Control And

Disrupt Evolution

This work has been published as Bernatskiy, Anton, and Bongard, Josh C.. (2017).

"Choice of robot morphology can prohibit modular control and disrupt evolution."

Proceedings of the 14th European Conference on Artificial Life. Vol. 14. P.60-67.

2.1 Abstract

In evolutionary robotics, controllers are often represented as networks. Modu-

larity is a desirable trait of such networks because modular networks are resistant

to catastrophic forgetting and tend to have less connections than nonmodular ones.

However, these advantages can only be realized if the control task is solvable by a

modular network, and for any given practical task the control task depends on the
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choice of the robot’s morphology. Here we provide an example of a task solvable by

robots with two different morphologies. We consider the most extreme kind of mod-

ularity – disconnectedness – and show that with the first morphology the task can

be solved by a disconnected controller with few connections. On the other hand, the

second morphology makes the task provably impossible for disconnected controllers

and requires about three times more connections. For this morphology, most con-

trollers that partially solve the task constitute local optima, forming an extremely

deceptive fitness landscape. We show empirically that in this case a connection cost-

based evolutionary algorithm for evolving modular controllers is greatly slowed down

compared to the first morphology’s case. Finally, this performance gap increases as

the task is scaled up. These results show that the morphology may be a major factor

determining the performance of controller optimization. Although in our task the

optimal morphology is obvious to a human designer, we hypothesize that as evolu-

tionary robotics is scaled to more sophisticated tasks the optimization of morphology

alongside the control might become a requirement for evolving modular controllers.

2.2 Frequently used symbols

Ti – target orientation of ith segment;

Ai – absolute orientation of ith segment;

ri – relative orientation of ith segment (defined in eq. (2.2));

si – reading of the target orientation sensor measuring the orientation of the ith

segment (2.5);

fi – motor output for ith segment (2.6);
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T ,A, r, s, f – corresponding N -dimensional vectors,

where

N – is a number of segments; J – sensor attachment matrix (2.5); K – constant N×N

matrix such filled with ones on and below the main diagonal and zeros everywhere

else (2.4).

2.3 Introduction

Evolutionary computation and particularly evolutionary robotics are important

research tools in the area of artificial life ([66, 75, 97]). A lot of research effort con-

cerning evolutionary computation is dedicated to the evolution of networks. Network

representation has several advantages. First, it can describe many kinds of systems,

including controllers and morphologies of artificial agents (e.g. [105]). Second, it is

relatively straightforward to design genetic operators such as mutation and crossover

for networks. Last but not least, a lot of models in biology are network-based, making

it easier to draw inspiration from natural evolution.

One characteristic property of biological networks that attracts a lot of atten-

tion from evolutionary computation community is modularity (e.g. [45]). A network

is structurally modular if its nodes can be divided into subsets (modules) that are

connected more tightly within themselves than with the rest of the network. In

computational (e.g. neural, genetic regulatory) networks structural modularity often

leads to weak or absent functional dependence. Consequences of such weak depen-

dence include resistance to catastrophic forgetting both in neuroevolutionary setting

([56, 36, 26]) and in learning ([34]). Such resistance allows for a reduced number of
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training examples ([18]). In addition, modular networks tend to contain less connec-

tions, which further simplifies their optimization ([26, 7] (note - [7] is also provided

as Section A.1)).

Although some techniques for evolving modular computational networks have been

developed (e.g. [56, 36, 26, 7] (note - [7] is also provided as Section A.1)), they

mostly focus on finding nearly-optimal modular solutions that are assumed to be

exist. In addition, to harness the full power of the approach an appropriate modular

variation of the task is desirable, either among the training examples ([18]) or over

the evolutionary time ([56, 36, 26]). However, in practice, it cannot be assumed that

modular solutions for a given task exist, nor that the task itself is modularly varying.

Indeed, in the work presented here, we demonstrate that there is a robotic task and

a robot morphology for which even the former assumption does not hold.

In evolutionary robotics, controllers are often represented as computational net-

works. Properties of modular networks make modularity a desirable property of such

controllers. However, previous work ([14, 18]) suggests that performance of modular

network evolution techniques in this setting can vary depending on the choice of the

robot’s body.

In [14] evolution produced more modular controllers if the morphology was under

the evolutionary control. It was observed that certain morphologies enable modular

control while others do not, but it was not clear which mechanism might be responsible

for that.

In [18], a morphology is defined to be modular iff activation of less than all of

robot’s motors results in a change of less than all of its sensors. Similarly, a control

system is modular iff a change in less than all of the sensors induces a change in less
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than all of the motor neurons. It is shown that the number of environments in which

the robot needs to be evaluated can be reduced significantly if both morphology and

control are fixed to be modular.

Despite these findings, many things remain unclear regarding the relationship

between the morphology and modularity. In particular, while it is known that certain

morphologies are beneficial for the evolution of modular controllers, it is not known

why. Another open question is how much worse can the performance of evolution be if

a less appropriate morphology is chosen. Here we fill these gaps by introducing a task

and a family of robot morphologies with two extremities. The first is a morphology

for which some optimal controllers consist of multiple disconnected modules. For the

second morphology of interest it is provably impossible for any optimal controller to

be disconnected. Additionally, we show the that the latter morphology induces an

extremely deceptive fitness landscape in the space of possible controllers.

2.4 System description

2.4.1 Robot and task

Robots of the family described in this paper are called Arrowbots. An Arrowbot

(Fig. 2.1b) is a dynamic version of road sign with multiple destinations (Fig. 2.1a).

The task of a road sign is to show the direction towards several fixed objects, such as

cities or mountains. In contrast, the task of an Arrowbot is to track N objects that

may move and point towards them.

To accomplish this task the robot’s body is divided into N segments attached to
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a) b)

Figure 2.1: a) Regular road sign with multiple destinations. b) Arrowbot. Lines on the
segments show orientations of segments’ arrows.
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each other in series by coaxial, actuated rotary joints, forming a stack (Fig. 2.1b).

Segment #1 is located at the bottom of the stack. It is attached to a fixed base.

We define the orientation of the fixed base to be zero. For each segment i its

absolute orientation angles Ai and target orientation Ti are defined relative to this

reference (see Figure 2.2). If Ai = Ti, the segment points exactly in the target

direction. Denoting T ≡ [T1, T2, ..., TN ]T , A ≡ [A1, A2, ..., AN ]T we can reformulate

the task as the minimization of

E ≡ |T −A|, (2.1)

at t → ∞ for some T (t) and initial condition A(t = 0). Throughout this work we

assume constant target orientations, T (t) = const.

Each segment i is associated with two sensors: a proprioceptive sensor and a

target orientation sensor.

Each proprioceptive sensor measures the relative angle ri between the orien-

tation of its segment (ith) and the orientation of the i − 1st segment below it (for

segment #1, the fixed base). Readings of these sensors are tied to absolute orienta-

tions of segments:

A = Kr, (2.2)

or equivalently,

r = K−1A. (2.3)

Here r ≡ [r1, r2, ..., rN ]T and K is defined to be the constant N×N matrix filled with
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ones on and below its main diagonal and zeros above it:

Kij = 1 if i > j else 0. (2.4)

The determinant of this matrix is 1 for any N , so the inverse always exists, hence the

equivalence of (2.2) and (2.3).

Each target orientation sensor si outputs the angle between the orientation

of whatever it is attached to and the target orientation of its segment. Each target

orientation sensor can be attached to any segment or to the fixed base.

Different ways of attaching target direction sensors give rise to different Arrowbot

morphologies. We describe them with sensor attachment matrix J : an N × N

matrix for which any element Jij is equal to 1 if sensor si is attached to the jth segment

and 0 otherwise. There is always exactly one sensor for every target direction, so

every row of J contains at most one unit entry. If ith sensor is attached to the fixed

base, then it is not attached to any of the moving segments and all the elements of

the ith row of J are zeros.

With J we can express the absolute orientations of the parts to which the target

orientation sensors are attached as JA. Then target orientations sensor readings

s ≡ [s1, s2, ..., sN ] are

s = T − JA = T − JKr. (2.5)

Actuated joints between the segments are the only motors of the system. Arrow-

bot’s inputs are joint rotational velocities of segments relative to the segments right

below them, ṙi.
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Figure 2.2: Arrowbot segment, top view. Solid radial line shows the orientation of the
current (ith) segment. Dashed radial line shows the orientation of the segment right below
the current one (i − 1st). In this example, only one target direction sensor is attached to
the segment. The sensor perceives the target direction of pth segment (Jpi = 1).

2.5 Control

A controlled Arrowbot is described by the following dynamical system:

ṙ = f(r, s(r,T )), (2.6)
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where f(r, s) : R2N → RN is the controller and s(r,T ) is given by (2.5). For the con-

troller to solve the task (2.1), this dynamical system must have an isolated, asymptot-

ically stable fixed point corresponding to T = A = Kr. This translates into several

conditions, each of which must be met for every T ∈ RN . Equilibrium at T = Kr

translates to:

f(r = K−1T , s(r = K−1T ,T )) = 0. (2.7)

The equilibrium point must be of the attracting, or asymptotically stable, kind:

∃δ0 > 0 s.t. |K−1T − r(0)| < δ0 ⇒ lim
t→∞

r(t)→ K−1T , (2.8)

where r(t) denotes the trajectory of the dynamical system (2.6) given target orienta-

tions T and initial conditions r(0).

If some controller, in addition to satisfying these two necessary conditions, also

ensures that the fixed point is unique, then the point A = T will attract all trajecto-

ries regardless of the initial conditions r(0). Such controllers are globally optimal for

the task (2.1).

We characterize the connectivity of the controller using the following formalized

notion of dependence. In a system with n variables V = {x1, x2, ..., xn} subject to

some constraints C, xi is dependent on xj iff for some setting of the n−2 remaining

variables x̂ and some pair of settings x′j 6= x′′j the setsX ′i ≡ {xi such that {xi, x′j, x̂} satisfiesC}

and X ′′i ≡ {xi such that {xi, x′′j , x̂} satisfiesC} do not coincide. Dependencies induced

by the constraint C on the variables define an undirected dependence graph

G = (V,E) where (xi, xj) ∈ E iff xi depends on xj or xj depends on xi.

If some variable xi depends on some other variable xj and the dependence is
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not satisfied by definition of these variables (as is the case, for example, for radius

and diameter or r and A), then in any implementation of the constraint C xi is

connected to xj via some kind of channel transmitting the information about xj to

the process generating xi. For example, in a system involving two coordinates x,

y of some material body on a plane the constraint x = −y can only be enforced

by introducing some physical contraption (e.g. a diagonal rail) which ensures that

whenever y changes, x changes accordingly. Due to this property, the connectivity of

the undirected dependence graph is the same as the connectivity of any undirected

graph representing the information channels in the implementation, except possibly

for situations when the implementation involves hidden variables that are neither

influenced by nor influence the variables in V .

To investigate the connectivity of optimal Arrowbot controllers we consider undi-

rected dependence graphs on V ∗ = {f , r, s} subject to the constraint f = f(r, s(r,T )).

As we will see, necessary conditions (2.7) and (2.8) restrict the connectivity of the

graphs in a way that depends on the sensor attachment matrix J , i.e. on the robot’s

morphology. Since the definitions of all variables in V ∗ do not imply any automati-

cally satisfied constraints, we can draw conclusions about the connectivity of arbitrary

nonlinear controllers from the connectivity of undirected dependence graphs.

This approach is inspired by similar tools used to treat dynamical dependencies

as well as constraints: diagrams of immediate effect ([1]) and functional dependence

graphs ([37]).
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2.5.1 J=I admits disconnected optimal

controllers

Attachment matrix J = I corresponds to the morphology in which every sensor is

attached to the segment for which it tracks the target orientation. In this case each

sensor si measures its segment’s signed pointing error, Ti − Ai.

Consider a family of controllers

f(r, s) = W s, (2.9)

whereW = diag[w11, w22, ..., wNN ] are diagonal matrices for which all wii are positive.

Then the dynamical system (2.6) turns into

ṙ = WT −WKr. (2.10)

Right hand side of this equation turns into 0 iff T = A = Kr, making sure that (2.7)

and (2.15) are satisfied. Also, it shows that the fixed point T = A is unique. The

Jacobian

−WK =


−w11 0 ... 0

0 −w22 ... 0
. .

0 0 ... −wNN



1 0 ... 0
1 1 ... 0
. .

1 1 ... 1

 =

=


−w11 0 ... 0
−w22 −w22 ... 0

. .
−wNN −wNN ... −wNN

 .
(2.11)

is a triangular matrix, therefore its eigenvalues are the values at the diagonal, −w11,

−w22, ... , −wNN . All of them are negative, so the stability condition (2.8) is also

satisfied.
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Figure 2.3: Examples of undirected dependency graphs (UDGs). (a) UDG of one of the
controllers of the family (2.9) optimal for J = I; (b) UDG of one possible optimal controller
for J = 0.

Therefore, all controllers of the family (2.9) are globally optimal for the task (2.1).

Every controller of this family is a disconnected network of 2N independent mod-

ules. Half of the modules connect motors ṙi to target orientation sensors si associated

with and attached to their segments. Another half are the proprioceptive sensors,

which are, in these controllers, not connected to any other nodes.

2.5.2 There is no disconnected optimal

controller for J=0

J = 0 corresponds to the case when all the target orientation sensors are attached

to the fixed base of the robot and are directly measuring the target orientations,

s = T . The dependence of s on r disappears, so in this case s can be treated as a

constant vector of parameters. The dynamical system (2.6) then has a fixed point
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whenever r = K−1s:

∀s ∈ RN

[r1, r2, .., rN ] = [s1, s2 − s1, .., sN − sN−1]⇒

f(r, s) = 0

(2.12)

This also implies that for every point r ∈ RN there is a set of parameters s = Kr

such that f(r, s) = 0.

Theorem 1. Any controller f(r, s) inducing an asymptotically stable fixed point

in (2.6) for any s ∈ RN and r = K−1s has a connected undirected dependency graph.

See Appendix A for the proof.

Theorem 1 implies that for J = 0 any optimal controller has only one connected

component that is not isolated from sensors and motors. All sensors and motors,

a total of 3N nodes, participate in this component. Such a component cannot be

connected unless there are at least 3N − 1, which is about three times more than

what controllers for J = 0 require.

2.6 Evolution

We have shown that there are disconnected controllers among the globally optimal

ones if the robot’s morphology is defined by the sensor attachment matrix J = I

and that there are none if J = 0. However, it is not clear if this fact influences

the complexity of optimizing the controller for the two morphologies, particularly

if the optimization algorithm is designed to find modular solutions efficiently. We

investigate this using a biobjective error-connection cost optimization [26].
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Figure 2.2: Time series of the smallest error for evolution of Arrowbots with two different
morphologies J = 0 and J = I. Columns (each shown on a separate page in the
dissertation version) correspond to the three settings of Arrowbots’ size (3,5 and 10
segments). For the runs in the top row, the evolution was initialized with a population
of random networks; bottom row shows the performance if the initial population consists
of sparse networks. Each of 50 trajectories is plotted in a semi-transparent line. Initial
conditions in all cases are such that in every environment the error is initially equal to 1. It
can be seen that for J = 0 evolution shows poor performance with random initial population
and is completely disrupted for sparse initial population, even though for J = I the optimum
is found more rapidly in this setting.
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Each controller is represented by a vector of 2N2 connection weights encoding two

N ×N matrices (Y,W ) such that

ṙ = Y r +W s. (2.13)

Connection weights can take values in {−1, 0, 1}.

Controllers are evaluated in a number of environments characterized by initial

conditions r(t = 0) and target orientations T . In each environment, each controller

is evaluated by substituting (2.5) into (2.13) and integrating the resulting linear ODE

system with fourth order Runge-Kutta method over a fixed time span [0, 10] with a

fixed timestep of 0.1. Pointing errors (2.1) are computed for each environment at

t = 10 and averaged to obtain the final evaluation e.

Following the connection cost method for evolving modular networks [26], we

simultaneously minimize pointing error and connection cost, defined as number of

connections with nonzero weight. We use evolutionary algorithm identical to the one

described in [7] (note - also provided as Section A.1). At each generation increment

we select the pointing error – connection cost Pareto front of the current population

and copy it into the new population. Then we proceed to add mutated copies of

networks randomly chosen from Pareto front to the new population until it has the

same size as the old one.

Mutation operator either (1) replaces a value of one nonzero weight with another

(with probability of p1 = 0.5 in all our experiments), or (2) adds a nonzero weight

(p2 = 0.25), or (3) removes a nonzero weight (p3 = 0.25). If an impossible operation

is attempted (e.g. nonzero weight has to be removed from an network with no such

weights), the mutation is attempted repeatedly until it happens to perform a possible
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operation.

Since the Pareto front is copied into the new population without modification

regardless of its size, it can potentially fill the population completely and cause vari-

ation to cease. To prevent this, a sufficiently large population size must be chosen.

Preliminary runs pointed to a population size of 50, and that was sufficient to avoid

such variation cessation in any of the runs mentioned in this paper (see Table 2.1 for

details).

We explored two types of initial populations – a population of networks generated

by randomly choosing weights from {−1, 0, 1} (random setup) and a population of

networks generated by mutating an empty network once (sparse setup, [7] (note -

also provided as Section A.1)). The latter setting trades off some initial variation to

make the convergence faster if the task can be solved by a sparse and/or modular

network. As we will see shortly, this leads to severe performance penalties if the task

cannot be solved by such networks (in our case for J = 0).

2.7 Results and discussion

We investigated performance of the evolution for two types of initial populations

(random and sparse) and three values of the number of segments parameter N =

3, 5, 10. Since each genome encoded a linear controller in form of two N×N matrices,

the length of the genome has grown quadratically with N and the corresponding

genome sizes were 18, 50, 200. We ran batches of 50 evolutionary runs, 500 generations

each, with populations of 50 individuals.
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A set of 3 environments was used to evaluate controllers, with target orientations

T 1 = [1, 0, 0],T 2 = [0, 1, 0],T 3 = [0, 0, 1]. (2.14)

where the upper index indicates the number of the environment. Initial conditions

were r = [0, 0, 0] in all three environments.

The results are shown in Figure 2.2 and 2.1. It can be seen that for J = 0

the performance of evolution is severely impaired, especially for the sparse initial

population setting. In this case the error level is not improved relative to the initial

conditions in any of 50 runs, while for J = I a controller with near-zero error is found

within 30 generations in all runs.

This result can be explained by considering the difference in response to mutation

in non-optimal controllers between the two morphologies.

For J = I the modules in the global optimum are disconnected and any controller

that solves the task partially can retain the partial solution after mutation. This is a

phenomenon called serial adaptation ([1]). In this case fitness landscape is convex.

The other morphology, J = 0, induces a more complicated landscape. Suppose,

for this morphology, that at some point of the evolution there is a controller that

successfully reduces the pointing error of the top N − n segments of the Arrowbot,

but not for the bottom n segments. Absolute orientation of nth segment An is required

to compute ṙi for i = n + 1..N . Since the task for the lower segments is not solved

yet, An = ∑n
i=1 ri will have random dynamics, which must be exploited by the partial

solution. Any mutation which improves the pointing error of any of the lower n

segments will change this dynamics and likely break the partial solution. Thus, the

fitness landscape is deceptive.
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Figure 2.3: Final smallest errors for evolution of Arrowbots with different number of seg-
ments N after 500 generations. Top plot shows the performance if the evolution is initialized
with a population of random networks; bottom plot shown the case of sparse initial popula-
tion setting. It can be seen that the task becomes increasingly more challenging as N grows,
especially for J = 0 and random initial population setting.
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An initial population of sparse networks and the pressure to minimize the number

of connections reinforce such deceptiveness. Under those conditions the most likely

random behavior of the lower segments is staying at rest. This makes exploiting it

especially simple and gives the local optima large basins of attraction with pronounced

gradients, ultimately causing a complete disruption of the evolution.

Figure 2.3 shows how the performance of the evolution, measured by the final

total square pointing error after 500 generations, varies with the number of segments

N . Optimization task becomes more challenging as N grows. For the random initial

population setting and J = 0, the evolution does not improve over the error of initial

conditions at N = 10 in most runs, while for J = I it does. For the sparse initial

population setting, with J = 0 evolution does not improve in any but one of 3x50

runs, while for J = I it achieves near zero pointing error in all 3x50 cases.

Initial population type
Number of segments

N=10 N=5 N=3

random 43/36.2 29/37.5 15/41.4

sparse 29/39.2 23/40.0 13/42.9

Table 2.1: Variation data for the evolutionary runs shown in Figure 2.2. Each cell shows
maximum size of the error-connection cost Pareto front A across all generations and all
runs and the average number of individuals mutated on each generation, B, in format A/B.
Since the maximum Pareto front size never reaches the size of the population (50), the
variation never ceases in any of the runs.
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2.8 Conclusions

We have introduced Arrowbots, a task and a family of scalable robot morphologies

which exhibits strong dependence of control modularity on morphology. In particular,

we have shown that within this family there is (1) a morphology J = I for which

there are optimal controllers consisting of multiple disconnected modules and (2) a

morphology J = 0 for which any optimal controller is necessarily connected. We have

demonstrated that the performance of the evolution of Arrowbot control for the J = 0

morphology can be markedly worse than for the J = 1 and that the performance gap

grows when Arrowbots with more segments are considered. We hypothesize that

the difference in the performance of evolution is due to the extreme deceptiveness of

the fitness landscape which arises if the robot has the J = 0 morphology and does

not arise if J = I.

Thus, we have shown by construction that the choice of morphology can be the

decisive factor in the evolution of modular controllers. The more aggressively the

algorithm exploits the heuristic of modularity, the more important the morphology

seems to become. Although for Arrowbots the morphology corresponding to most

modular controllers is obvious to human designers, we hypothesize that in more so-

phisticated tasks this may not be the case. Optimization of the morphology alongside

the control might be the solution of choice for those more sophisticated tasks.
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2.9 Appendix A. Proof of Theorem 1.

Isolation: asymptotic stability (2.8) implies that the fixed point r = K−1T is

isolated:

∃ε > 0 : 0 < |r −K−1T | 6 ε⇒ f(r, s(r,T )) 6= 0. (2.15)

The statement seems to be well known in the dynamical systems community, so I’ll

only provide a sketch of the proof. Suppose the opposite, then a fixed point r′ can be

found arbitrarily close to K−1T . Trajectories starting at r′ do not approach K−1T ,

which contradict the asymptotic stability of that point.�

We begin by using this property, together with the asymptotic isolation itself, to

constrain necessary dependencies of the involved variables. Then we show that under

these constraints the undirected dependency network must be connected.

Lemma 1. In any controller f(r, s) inducing a stable fixed point in (2.6) for any

s ∈ RN and r = K−1s (part 1) any motor output fi(r, s) depends on the readings

of at least one proprioceptive sensor rj and (part 2) for any proprioceptive sensor

ri, there is a motor output fj(r, s) that depends on it.

Proof. Part 1: Suppose some motor output fi is independent of all proprio-

ceptive sensors r. Then fi is the same for all r ∈ RN . Since we presupposed the

existence of at least one fixed point, fi = 0 at the point and therefore everywhere. It

follows that ri = const, which contradicts the asymptotic convergence.

Part 2: Suppose no motor output depends on some proprioceptive sensor ri. For

any s f(r′ ≡ K−1s, s) = 0. Now, consider a vector

r′′ ≡ K−1s + (0, .., ε/2, .., 0) (2.16)
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where is the second term ε is at ith position in the vector. Since f is independent

from ri, f(r′′, s) = 0. Because ε can be chosen arbitrarily, that means that ∀ε > 0

there is a fixed point r′′ 6= r′ in the ε-neighborhood of r′. This contradicts isolation.

�

Lemma 2. In any controller f(r, s) inducing a stable fixed point in (2.6) at

T = A any target orientation sensor s has at least one motor output f that depends

on it.

Proof. Suppose it is not, then there is a sensor si such that for any two values

si and s∗i ∈ R and any setting of remaining values ŝ ∈ RN−1, r ∈ RN f(si, ŝ, r) =

f(s∗i , ŝ, r). Picking an arbitrary s ∈ RN , we can choose its ith component as si,

remaining values as ŝ and K−1s as r. By the conditions of Lemma 2, in this case the

dynamical system (2.6) has a fixed point, so f(si, ŝ, r) = 0.

We can also choose an arbitrary ε ∈ R and set s∗i = si + ε, then

f(si + ε, ŝ, r) = f(si, ŝ, r) = 0. (2.17)

Denoting the vector s∗ to have the same values as s except for s∗i = si + ε, we can

conclude that the dynamical system ṙ = f(r, s∗) has a fixed point at

r = K−1s = [s1, s2 − s1, ..., sN − sN−1]. (2.18)

However, by Lemma conditions it also has an isolated fixed point at

r∗ ≡ K−1s∗ = [s1, s2 − s1, ...,

si + ε− si−1, si+1 − si − ε, ..., sN − sN−1].
(2.19)
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r and r∗ are no further than 2ε from each other by any distance measure. By choosing

appropriate ε = ε′/3, we can find a fixed point in any ε′-neighborhood of r∗, which

must be an isolated fixed point: contradiction. �.

It follows from Lemma 1 that there is one-to-one correspondence between motors

and proprioceptory sensors: they can be partitioned in N pairs (fi, rj) such that every

fi and every rj participates in some pair and in each pair fi depends on rj. In each

pair (fi, rj), fi may also depend on some ss and rs other than rj.

Theorem 1. Any controller f(r, s) inducing an isolated, stable fixed point in

(2.6) for any s ∈ RN and r = K−1s has a connected undirected dependencies graph.

Proof. Suppose there is a controller that has a disconnected undirected depen-

dencies graph. In this case the variables f , r, s can be divided in two non-empty

subsets α and β, such that no f in α depends on any r or s in β and vice versa. Let

us denote the subset of all variables of type B ∈ {f, r, s} in the subset A ∈ {α, β} as

BA, e.g. a subset of all motors in α as fα. Due to Lemma 1 each of the subsets will

have an equal number m of motors f and proprioceptory sensors r: |sA| = |fA| ≡ mA

for A ∈ {α, β}. We will then have

mα +mβ = N. (2.20)

By Lemma 2 neither subset can be composed only of proprioceptive sensors, so mα

and mβ are both greater than zero.

Since the motors in one set cannot depend on proprioceptive sensors in the other,
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sets α and β will each form its own dynamical system:

ṙα = fα(rα, sα),

ṙβ = fβ(rβ, sβ).
(2.21)

The systems are completely isolated, so the position of fixed points of each only

depends on its set of parameters, sα for the first dynamical system and sβ for the

second. Let us investigate the minimal sizes of these sets. One of the subsets α, β

will contain r1; let us pick α to be definite. In this case the fixed point condition for

the α system is
fαi1(rα1 = s1, ..., sα) = 0,

fαi2(rαj2 = sj2 − sj2−1, ..., sα) = 0,

...

fαimα (rαjmα = sjmα − sjmα−1, ..., sα) = 0.

(2.22)

The number of parameters in sα should be at least the number of parameters through

which rα is expressed; otherwise, due to the necessary dependence of fs on their

corresponding rs, there will be a value of some s for which not all conditions (2.22)

hold. Each condition adds at least one s into the expression for rα, therefore

|sα| > mα. (2.23)

The other subset β does not contain r1. Same reasoning applied to β leads to the
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following conditions:

fβi1(rβj1 = sj1 − sj1−1, ..., sβ) = 0,

...

fβimα (rβj
mβ

= sj
mβ
− sj

mβ
−1, ..., sβ) = 0.

(2.24)

The first equation adds at least two proprioceptory sensors into the expression for rβ

at the fixed point, and each subsequent condition adds at least one. This gives

|sβ| > 1 +mβ. (2.25)

Since sα∩sβ = ∅ and sα∪sβ = s, equations (2.23), (2.25) and (2.20) can be combined

to yield

|s| = N > mα +mβ + 1 = N + 1. (2.26)

Contradiction. �
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Chapter 3

Evolving Morphology

Automatically Reformulates

The Problem Of Designing

Modular Control

This work has been published as Bernatskiy, Anton, and Bongard, Josh C.. (2018).

"Evolving morphology automatically reformulates the problem of designing modular

control." Adaptive Behavior 26.2 (2018): 47-64.

3.1 Abstract

Modularity is a system property of many natural and artificial adaptive systems.

Evolutionary algorithms designed to produce modular solutions have increased con-

vergence rates and improved generalization ability; however, their performance can

62



be impacted if the task is inherently nonmodular. Previously we have shown that

some design variables can influence whether the task on the remaining variables is

inherently modular. We investigate the possibility of exploiting that dependence to

simplify optimization and arrive at a general design pattern that we use to show that

evolutionary search can seek such modularity-inducing design variable values, thus

easing subsequent search for highly fit, modular organization within the remaining

design variables. We investigate this approach with embodied agents in which evolu-

tionary discovery of morphology enables subsequent discovery of highly fit, modular

controllers and show that it benefits from biasing search toward modular controllers

and setting the mutation rate for control policies higher than that for morphology.

This work also reinforces our previous finding that the relationship between modular-

ity and evolvability that is well studied in nonembodied systems can, under certain

conditions, be generalized to include embodied systems as well, and provides a prac-

tical approach to satisfying the conditions in question.

3.2 Frequently Used Symbols

N – the number of segments;

Ti – target orientation of ith segment;

Ai – absolute orientation of ith segment;

ri – relative orientation of ith segment (see equation (3.1));

si – reading of the target orientation sensor measuring the orientation of the ith

segment relative to the body the sensor is attached to (see equation (3.3));

mi – motor output for ith segment (see equation (3.5));
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T ,A, r, s, f – corresponding N -dimensional vectors;

J – N ×N target orientation sensor attachment matrix (see equation (3.3));

K – constant N × N matrix such filled with ones on and below the main diagonal

and zeros everywhere else (see equation (3.2));

W,Y – matrices of coefficients of a linear controller (see equation (3.4));

µ(t) – Hamming distance to the morphology J = I minimized across the Pareto front

observed at generation t of the evolution;

E(t) – practical pointing error (see equation (3.7)) minimized across the population

at generation t.

3.3 Introduction

To behave adaptively is to respond to changes in the environment in such a way

as to achieve a certain goal. A system capable of such a behavior can be seen as

an automatic problem solver for a certain range of tasks. A consequence of that is

the possibility for natural adaptation mechanisms such as evolution and learning be

modeled with problem solvers such as evolutionary or machine learning algorithms [90,

78]. The opposite is also true: when designing systems capable of adaptive behavior,

general approaches to problem solving are valuable tools that can be used either

directly as a component of the solution [15] or to design a solution for a particular

environment automatically [40].

One idea often instantiated in such approaches is to divide the whole problem

into subproblems and solve each one of these with some degree of independence from
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others. This idea, which we will call the division approach ∗ has proven to be

effective for a wide variety of tasks. In politics and warfare, the principle divide et

impera is used at least since antiquity [114]. The approach plays a fundamental role in

engineering [3, 115], including algorithmic design [58] and artificial adaptive systems

[1].

Whenever the division approach is used, the resulting solution possesses a system

property called modularity. It is broadly defined as a capacity of a system consisting of

many components to be decomposed into groups of components (modules) such that

within each group the dependencies between the components are strong, while the

dependencies between the components that are in different groups are comparatively

weak. Although the definitions of “components” and “dependencies” vary depending

on the nature of the system, all systems that are produced with the division approach

are modular at least in one way. In particular, components of the resulting system

that are produced by solving a single subproblem all arise from the same solution

process and in this sense are more dependent on each other than the components

pertaining to different subproblems.

A peculiar property of modularity is that if the process of solving the task is in-

cremental and the modularity is present in a partial solution then even the simplest

search methods can provide the same benefits as the division approach. Consider the

problem of designing an internal combustion engine with a maximum total energy

output. If the optimization process begins with an engine in which all subsystems
∗The term was chosen to distinguish from divide-and-conquer methodology in algorithmic design.

Division approach is a broader term that encompasses all useful ways to split the problem into
subproblems, while divide-and-conquer is its instance that focuses on non-overlapping subproblems.
Approaches that involve overlapping subproblems, such as dynamic programming, are also instances
of the division approach.
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(cooling, lubrication etc.) are tightly coupled, then any chance improvement of one

subsystem will likely cause many other subsystems to change their behavior, increas-

ing the probability that the overall change will be detrimental to the performance.

On the other hand, if the subsystems are functioning with relative independence from

each other, then a possible improvement within one subsystem will not affect other

subsystems much, resulting in an overall increase in performance [115]. In incremen-

tal setting, this is how the division approach operates: after dividing the problem into

subproblems, each of these is solved, to some extent, independently. This pattern can

be enforced by the modular structure of the partial solution, or it can be built into

the solution process by the designer, resulting in modular partial solutions. Thus,

in engineering, whenever the incremental algorithms are used the causal relationship

between the solution modularity and the division approach is bidirectional.

In nature, modularity is observed in all biological systems from the molecular to

the ecosystem level [19, 45, 122]. Its emergence in biological systems is hypothesized

to be related to the reduction in cost of complexity that is associated with it [126].

Several mechanisms by which such emergence may occur have been proposed [76,

107, 56, 122, 31, 36, 26]. Many of these were investigated by evolving model problem

solvers, such as genetic regulatory networks or neural networks, with genetic algo-

rithms, and in almost all of these experiments an increased rate of adaptation (i.e.

rate of error reduction or fitness increase) was reported to coincide with the emergence

of modular solution candidates [76, 56, 36, 26]. Similar improvement was observed

even when modularity was introduced into the systems artificially by biasing search

towards more modular solutions [33, 7] (note - [7] is also provided as Section A.1).

This coincidence appears analogous to the relationship between modularity and
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the division approach in the engineered systems. In many models it was indeed

observed that evolution produced modular solutions consisting of quasi-independent

modules solving subtasks and/or capable of evolving separately [56, 36, 26, 34, 18].

This is a non-trivial observation because it has also been discovered that more modular

networks, on average, tend to have smaller number of connections than their less

modular counterparts [76, 26, 7] (note - [7] is also provided as Section A.1). Thus,

the increase of rate of adaptation could be attributed to the decrease in the effective

size of the search space, as opposed to the independent optimization of modules.

There is evidence, however, that the viability of modular solutions, together with

the benefits they bring, is heavily dependent on the task. In our previous work

we provide an example of a task and a robot morphology for which any controller

that solves the task must be nonmodular, and we show that the rate of evolutionary

adaptation for this task/morphology pair is much slower than the rate of evolutionary

adaptation for the same task, but with a morphology that enables modular control

[5] (note - also provided as Chapter 2). Indirectly, the dependence of the feasibility

of modular control on the morphology (and therefore, on the structure of the control

task) is hinted upon by the results showing that modular controllers are more likely to

evolve if the morphology evolves alongside the control, with the additional objective

of behavioral conservatism [14].

3.4 Reformulation

In most of the work cited above, the task itself is considered to be fixed. In engi-

neering, however, this is rarely the case. For almost every real world task there is a
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space of possible ways to approach and formalize it. Changing the approach can triv-

ialize tasks that initially appear intractable. Human problem solvers are well known

to be able to exploit that dependence. We will call the corresponding cognitive tech-

nique – reformulating the problem to make it easier to solve, instead of attacking it

directly – reformulation (e.g. [25]). In human cognition, reformulation is arguably

the instrument of choice when dealing with the hardest tasks. It is widely hypothe-

sized that it underlies many aspects of cognitive insight [32, 127, 113], including the

so-called Eureka effect [59, 113].

We formally define reformulation as follows (Figure 3.1A). Consider a finite-

dimensional optimization problem, for which solutions are encoded as vectors of N

values that minimize some real-valued function. Suppose there is some measure of dif-

ficulty for finding such a solution. Examples of such measures include a binary value

that indicates whether a certain solution technique worked, or the number of opera-

tions required to achieve an acceptable result. Suppose further that changing some

subset of M (M < N) variables (which we will hereafter call driving variables) can

significantly change the difficulty of optimizing the N −M remaining non-driving

variables. The approach is then to isolate the driving variables and optimize their

values (i.e., the formulation of the problem of optimizing the non-driving variables)

to ease of optimization of the non-driving variables.

To instantiate the reformulation approach, a designer must isolate the driving

variables, select the two optimizers – for driving and for non-driving variables – and

provide an appropriate quantitative definition of “optimization difficulty” of the

non-driving variables optimization given some values of driving variables. The driving

variables must influence the difficulty of the optimization of the non-driving variables
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A

B

C
Figure 3.1: Graphical representations of the core approaches of the paper. (Row A) refor-
mulation: shape of the goal function landscape depends on some variables (exemplified by
d). If for some values of these variables the optimization on the landscape can be done more
easily, we call them driving variables. To reformulate the optimization task is to optimize
those variables in order to find the values that simplify the underlying optimization process.
In our example such a value is d = 1, corresponding to convex optimization. (Row B)
bias: the search is biased (as indicated by the green gradient) towards a subset of the search
space (indicated by the blue stripe in the bottom of the square). The technique introduces
some assumptions about the fitness, in our example that the fitness landscape is more con-
vex and contains good enough solutions near the blue stripe. If these assumptions are not
satisfied, the bias may be detrimental. (Row C) guided reformulation: shape of the
goal function landscape depends on some variables (again exemplified by d). However, the
difficulty of the optimization does not depend on those variables unless the bias is applied,
in which case the variable affects whether the assumptions of the bias are satisfied and thus
the optimization difficulty. If the bias is applied, these variables become driving and can be
optimized to reformulate the original optimization problem while utilizing the bias. In our
example the optimal value is again d = 1: for that value, the fitness landscape is convex and
has good-enough solutions around the area towards which the search is biased.
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with the optimizer that has been selected for these. Selecting such driving variables is

a generally a matter of domain knowledge, but some guidelines can be provided (see

Section “Guided reformulation”). The definition of difficulty must be correct in a

sense that it must not assign low difficulty to the driving variables values that prohibit

the discovery of good-enough solutions in the optimization of non-driving variables.

If this condition is not satisfied, a possibility of premature convergence arises. Ad-

ditionally, the definition must be significantly less computationally expensive than

finding a good enough solution for most values of driving variables, because other-

wise it is less computationally expensive to solve the optimization problem without

reformulating it.

If both driving and non-driving variables are optimized with incremental algo-

rithms, one natural way of estimating the difficulty is to set values of the driving

variables, run the algorithm for the non-driving variables for some number of iter-

ations, and estimate the difficulty based on how much did the fitness improve. We

will refer to this difficulty definition as improvement-based. The downside of this

approach is that its correctness depends on the properties of the fitness landscape:

if, for some values of driving variables the fitness improves rapidly, yet its ultimate

value is not good enough, then premature convergence is possible.

The number of iterations that are used to estimate the optimization difficulty for

every value of the driving variables governs the reliability of this difficulty definition:

if this number is unlimited, the definition is correct; if it is small, it is not correct on

many fitness landscapes. We will refer to such definitions of difficulty as approxi-

mately correct. The conflict between the need to spend the iterations on refining

the estimates made with this definition and on optimizing the driving variables results
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in two timescales: a slow one for the driving variables and a fast timescale for the

non-driving variables. This is an instance of separation of timescales of adaptation

[92]: a widespread property of natural and artificial systems originally discovered in

evolutionary biology [54, 117, 77] and later in neuroscience [38, 124, 119] and machine

learning [49, 129, 57].

3.4.1 Evolution and reformulation

Evolutionary computation is an incremental optimization technique that relies on

trial and error. It is possible to use evolution to optimize both driving and non-

driving variables (e.g. [21]), or to only evolve the driving variables, while the non-

driving ones are obtained via other techniques such as gradient descent (e.g. [51, 80]).

Evolutionary optimization can be improved with the reformulation and related ideas

in many ways, and several major ideas of the field are, in the opinion of authors,

related to the reformulation approach.

Canalization [120, 51] can be described as a phenomenon of discovering a set of

values of driving variables that contains much of the information about optimal non-

driving variable values discovered with the corresponding optimizer. It occurs when

the design variables are divided in two subsets, one in which the variable values are

learned during the lifetime and the other, in which they are learned by the evolution.

The variables under the evolutionary control affect the difficulty of lifetime learning

and thus can be thought of as driving variables, with each set of values being a

“learner”. Learner’s fitness is defined as a nondecreasing function of the proportion

of the learner’s lifetime that it spends with all the variables having exactly the right

values; such fitness is a correctly defined difficulty of optimizing the non-driving
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variables. Lifetime learning of the non-driving variables enables the evolution to

evaluate a mutation-continuous subset of the variable values rather than a single point,

effectively smoothing the fitness landscape. As long as the values are correct, the more

information on the non-driving variable values is contained within the driving variable

values, the easier the lifetime learning is; hence, there is an evolutionary pressure

to store all the information on the non-driving variable values within the driving

variables. Thus, the characteristics learned over lifetime (non-driving variable values)

are assimilated into the genome (driving variable values) over the evolutionary time,

ultimately producing a formulation that contains all the information on the solution.

A development of the idea of canalization is evolution for evolvability [60, 125],

where variables describing genotype-to-phenotype map can bias the evolution of un-

derlying variables towards local optima and improve the rate of convergence when

the population is near them. Such genotype-to-phenotype map can be thought of as

a vector of driving variables. Evolving it in a slower timescale compared to the rest

of variables and interleaving the periods of neutral and adaptive evolution forces the

evolution to generalize over multiple ways of reformulating the underlying problem.

Morphological protection [21] can be seen as a method for circumventing the incor-

rectness of the improvement-based difficulty definition. It investigates the evolution

of morphology alongside the controller in robotics control tasks. Morphology governs

the complexity of control and thus is a driving variable. Protecting values of this

variable (i.e., formulations of the control problem) from modification for the period

while the control is optimized enables these values to compete based on the final

fitness of controllers that can be evolved for them and not the fitness improvement

over any fixed number of generations.
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In co-evolution [2, 87, 98] two groups of variables are optimized to make each

other’s optimization more difficult. Thus, co-evolution can be thought of as an ap-

proach similar to reformulation, but with positive influence of one optimization pro-

cess on another’s rate of convergence replaced with a negative feedback. While evo-

lutionary reformulation is good at producing simple solutions, co-evolution tends to

produce the solutions that complexify over evolutionary time, which can be valuable

in many applications.

Aside from fairly general approaches, some evolutionary algorithms for more nar-

row classes of tasks can also be seen as instances of the reformulation approach. One

example is GPESA, a method that evolves a pattern of aggregation of geospatial

variables alongside a genetic programming model for value prediction [63]. Another

is the evolution of deep learning networks [80], in which the topology of the network

is evolved to maximize its learning rate.

A similar but different procedure to the reformulation is optimization of hyperpa-

rameters in machine learning (e.g. [9]). The difference is in the designer’s intention:

in machine learning hyperparameter optimization is typically done in order to improve

the final model, while reformulation aims at simplifying the process of constructing

the model, in order to find good-enough solutions to the toughest tasks.

3.4.2 Guided reformulation and its application

to evolutionary robotics

One difficulty in using the reformulation approach is the need to select the driving

variables. In human cognition, the method is typically “thinking outside the box”:
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finding some controllable variables that influence the difficulty of the task, but of

which the designer is initially unaware. However, whether a given variable does or

does not influence the difficulty of the task depends on the method that is used

to optimize the non-driving variables. This opens up a possibility for either making

certain variables into driving ones or increasing the influence that some known driving

variables exert on the solution difficulty. Here we will explore an approach that uses

that possibility.

One powerful approach to improving the performance of the optimization is to bias

the search (Figure 3.1B). The bias prioritizes the solution candidates from a subset

of the search space in which, based on the domain knowledge, some reasonably good

solutions can be expected, or which has a reasonably good probability of intersecting

a hill climbing path towards such solutions. For example, if an embodied agent such

as human or animal searches the area that can only be spotted from a short distance,

a common procedure is to follow a linear trajectory that covers the area in such a

way that the distance from every point of the area to the trajectory is reasonably

small. The trajectory is also typically organized in such a way that the areas where,

according to the prior knowledge, the object can be found with higher probability

are searched earlier. In machine learning, the same idea can be implemented with

indirect encodings [110] or by co-optimizing some heuristic parameter together with

the goal function. Some examples of such parameters relevant to neural network

optimization are connection cost [26] and L2 norm of the weights [9] (both of these

should be minimized for a useful bias).

This approach effectively reduces the size of the search space and minimizes, based

on the prior knowledge, the average time to arrive to the solution. It can also be used
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to select a solution with useful properties if multiple good-enough solutions exist.

However, it does so at the cost of introducing some assumptions about the solution

and the search space. If the assumptions do not hold, the bias can be detrimental.

For example, in our previous work [5] (note - also provided as Chapter 2) we’ve shown

that for certain control tasks strengthening the bias towards sparsity can make the

evolutionary optimization much more difficult.

Suppose that, for some bias, some subset A of design variables can influence

whether the assumptions introduced by the bias hold or not, with respect to the

optimization of the remaining variables. If the assumptions introduced by the bias

hold, the usage of the bias is likely to have a drastic impact on the difficulty of the

problem of optimizing the variables not in A. Thus, as long as the bias is used in the

optimization of the variables not in A, the variables in A are driving variables. They

then can be used to reformulate the problem in such a way that the assumptions

introduced by the bias do hold and the usage of the bias improves the performance

of the optimization.

We will call the resulting approach guided reformulation (Figure 3.1C). It can

be summarized as follows:

To reformulate an optimization problem, find a pair of an optimization

bias and a set of variables such that the assumptions introduced into the

optimization by the bias are dependent on the variables in the set. The

reformulation procedure that utilizes the variables in the set as driving and

uses the bias in the optimization of the non-driving variables is then likely

to benefit from the bias (typically by producing good-enough solutions

selected for additional properties by the bias more rapidly than in absence
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of bias or reformulation procedure).

Note that this approach does not aim to eliminate the need for domain knowledge,

but to provide some guidance on how to use it instead. Fully automatic instantiation

of the reformulation approach is outside of the scope of this paper.

One particularly powerful type of bias that can be utilized in guided reformulation

is the bias towards modularity (see Introduction). Resistance to catastrophic forget-

ting and (in network optimization) correlation with sparsity can make evolutionary

algorithms biased towards modularity converge much more rapidly than their coun-

terparts with no such bias [26, 7] (note - [7] is also provided as Section A.1). Here

we describe a way to use guided reformulation to get the benefits of the bias towards

modularity in a robotic control task, building on the body of research outlined in

Introduction.

We consider a task of controlling a robotic agent embedded in physical space. From

our previous work [5] (note - also provided as Chapter 2) we know that the capacity

to admit modular control can depend on an agent’s morphology. The results from

[5] (note - also provided as Chapter 2) also suggest that such capacity is sufficient

for the bias towards modularity to make the convergence much more rapid than

in the absence of the bias. We will refer to this statement as hypothesis 0. If

this hypothesis is correct, then whenever the morphological variables influence the

capacity of the agent to admit modular control they also qualify as driving variables

under the bias of control optimization towards modularity.

Due to the generality of hypothesis 0 it is impossible to confirm experimentally.

Instead of attempting to do that, we adopt falsificationist attitude towards it. To this

end, we formulate some of its consequences and attempt to show that they are false.
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We instantiate guided reformulation by optimizing morphology alongside the con-

troller, parameters of which are the non-driving variables in this case. We adopt a

genetic algorithm as the optimization technique for both sets of variables and sepa-

rate the optimization of driving and non-driving variables by using different mutation

rates for morphology and control. If the mutation rate for control is greater than for

morphology, many controllers are considered for every morphology, ensuring that the

current values of error of evolutionary individuals (composed of a morphology and

a controller) provide approximate definitions of difficulty of optimization of control.

The bias towards modularity in control optimization is implemented in two ways: us-

ing the connection cost technique [26] and with initial populations of sparse networks

[7] (note - also provided as Section A.1). It can also be switched off.

The approach is applied to the “Arrowbot” task and the environment from [5]

(note - also provided as Chapter 2).

In this setup, two premises additional to hypothesis 0 are important:

Premise 1: it is known that for the “Arrowbot” task and environment the capac-

ity for modular control depends on certain morphological variables. This is

established in [5] (note - also provided as Chapter 2).

Premise 2: evolutionary algorithm that we employ is capable of following error gra-

dients and converge on error minima (i.e. it is a functioning search algorithm).

This is ensured by elitism of the algorithm: at every change of generation the

best performing individual is preserved.

We predict the following:

Hypothesis 1: within each run, rapid convergence of the control evolution will fol-
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low the discovery of a morphology that admits modular control. Follows from

hypothesis 0 and premise 1.

Hypothesis 2: evolution of morphology will converge on body plans that admit

modular control. Premises ensure that there is a gradient of control optimization

difficulty for the morphological evolution to follow, and that the minima of such

difficulty will coincide with body plans that admit modular control. Follows

from hypothesis 0, premise 1 and premise 2.

Hypothesis 3: evolving the control with a randomly selected fixed morphology will

result in a less rapid convergence than evolving the morphology alongside the

control. Equivalently, the convergence rate will be lower if the morphological

evolution cannot follow its gradient. Follows from hypothesis 0, premise 1 and

premise 2.

Hypothesis 4: without the bias towards modularity, convergence to body plans that

admit modular control will likely not happen or will happen in a larger number

number of generations than in the case when the bias is enabled. From hypoth-

esis 0 and premise 1 we conclude that the impact of morphology on the rate of

convergence of control evolution is dependent on the presence of the bias. With

the bias switched off, morphology’s impact on the rate of convergence of con-

trol evolution will be decreased, causing the gradient guiding the morphological

evolution to disappear or weaken.

Hypothesis 5: by the same reasoning, reducing or disabling the bias towards mod-

ularity will cause a decrease in the adaptation rate.
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Hypothesis 6: as long as the bias towards modularity is switched on, the qualitative

behavior of the system should not depend on the details of implementation of

the bias. Equivalently, the status of morphology as a vector driving variable

should depend on the presence of the modularity bias, but not on how it is

achieved. This follows from hypothesis 0 and premise 1.

Hypothesis 7: there should be a ratio between the mutation rates of morphology

and control that maximizes the convergence rate and is not zero or one, but is

biased such that more control mutations than morphological mutations occur.

This follows from the tension between the need for the difficulty definition to be

as correct as possible and the need to advance the optimization of morphology,

all within the same iterated optimization process.

The expected behavior of the system integrated from all the hypotheses above is

shown in Figure 3.2.

We show the hypotheses 1-5 and 7 to be correct as long as hypothesis 0 is clarified

as follows: discovery of a morphology that admits modular control is a necessary

but not sufficient condition for subsequent rapid convergence of controller evolution.

We fail to obtain any results that contradict hypothesis 0 clarified in that way and

hypothesis 6. We investigate how the results behave as the task is scaled up.
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Figure 3.2: Expected behavior of evolutionary guided reformulation approach that uses mor-
phology a vector driving variable and modularity as optimization bias for control (the non-
driving variables). To exploit the speedup of the evolution that we hypothesize to arise for
morphologies that make modular control feasible, we evolve the morphology alongside the
control, but at a slower timescale; additionally, we bias the evolution of control towards
modularity. Morphologies that admit modular control enable more rapid reduction of error
and thus get an evolutionary advantage. The fast optimization timescale is shown with cir-
cular arrows at the top of the graph, with color intensity of the arrow signifying the difficulty
of control optimization at that point of evolutionary history. If the task permits controllers
consisting of a multitude of modules for some morphology, the error reduction rate will rad-
ically increase as this morphology is approached. Note that what the morphology influences
is the rate of convergence, not the error itself.
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3.5 Methods

In this section we describe in details the task, environment and the family of

robotic morphologies that we used to test our hypotheses and also the genetic algo-

rithm we used.

3.5.1 Robot

We here study the interaction between morphological evolution and modularity-

biased controller evolution using Arrowbots, a robotic substrate we previously used

to demonstrate the influence of morphology on the feasibility of modular control and

its evolution [5] (note - also provided as Chapter 2).

An Arrowbot is a robot which consists of N segments with pointers stacked to

form a column (fig. 3.3). Adjacent segments are connected with motors that share a

common geometric axis of rotation, that is, the vertical axis; the bottommost segment

is connected to a fixed base. Any motor input controls the angular velocity of the

segment that it connects to, relative to the segment below it, or, in the case of the

motor connected to the first segment, the fixed base. We will denote those relative

orientations as ri † , the angular velocities as ṙi and the corresponding motor inputs

as mi.

Absolute orientations of the segments will be measured with respect to the fixed
†Note that in our treatment, all orientations do not wrap around, i.e. angles φ radians and

φ+ 2kπ radians, k ∈ Z are treated as different. In this treatment there are no special angle values
and the need to keep track of angle units is eliminated.
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Figure 3.3: Multi-directional road sign (top), its dynamic version, the Arrowbot (middle)
and the associated kinematic notation (bottom).
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base and denoted as Ai. The relationship between the two is as follows:

Ai =
i∑

k=1
rk

ri =


A1 for i = 1,

Ai − Ai−1 for i = 2..N

(3.1)

For convenience, later we will also use the vector notation:

A = Kr

r = K−1A

K ≡



1 0 ... 0

1 1 ... 0

. .

1 1 ... 1



K−1 =



1 0 0 ... 0 0

−1 1 0 ... 0 0

0 −1 1 ... 0 0

. . . .

0 0 0 ... −1 1



(3.2)

Arrowbots are equipped with sensors of two kinds: N proprioceptive sensors that

directly measure the orientations of the segments they are attached to r and N target

orientation sensors s. Any target orientation sensor si outputs the difference between

the orientation of the object it is attached to and the target orientation Ti. Possible

attachment points for any sensor include any segment as well as the fixed base. For
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example, the sensor s3 always measures the difference between the target direction of

the third segment T3 and whatever it is attached to. If it is attached to the second

segment, it will output T3 −A2; if it is attached to the fixed base, it will output just

T3.

More generally,

s ≡ T − JA, (3.3)

where J is an N × N matrix such that Jij = 1 if the jth target orientation sensor

sj is attached to the ith segment and 0 otherwise. Within a fixed environment, the

matrix J fully determines the effect that any motor action of an Arrowbot has on

its sensors; therefore, it determines its morphology. Hereafter we will use the terms

“morphology”, “target orientation sensor attachment pattern” and “the matrix J”

interchangeably.

A controller of an Arrowbot is the part that takes the sensor readings as inputs

and feeds its outputs to the motors. It can be abstracted as a mapping f = f(s, r).

Throughout this paper we will discuss the general case of nonlinear control and its

properties; for the experimental part of the paper, however, we will use linear control:

f(s, r) = W s + Y r. (3.4)

Further, we limit the elements of the matrices W and Y to be in the set {−1, 0, 1} to

reduce the size of the search space.

To define the connectivity of such controllers we represent them as graphs. Each

sensor or motor is represented as a node and each nonzero coefficient in the matrices

W and Y is represented as a bidirectional connection between a sensor node and a
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Figure 3.4: Types of network modularity in linear controllers. (A) Fully connected con-
troller is nonmodular. (B) A controller with high Q, but with a single connected component.
(C) A controller with two connected components. To use analytical results from (Bernatskiy
& Bongard, 2017) we must require complete independence between modules within the con-
troller for the controller to be called modular. Hence, only the networks of type (C) are
considered modular within the present paper.

motor node. With this definition, the analysis of the dependence (defined as in [5]

(note - also provided as Chapter 2)) is reduced to the analysis of connectivity of the

graph it is represented with: whenever there is a connected path between any two

nodes, they are dependent. Thus, the connected components of the controller graph

represent groups of variables in which every variable is dependent on every other one.

We will consider a controller to be modular if its graph has more than one con-

nected component. This definition will be used for consistency with [5] (note - also

provided as Chapter 2), which is required for using some analytical results from that

work. Compared to the more traditional Q metric [85], this definition provides a more

coarse grained picture in which modular networks are guaranteed to have at least two

groups of completely independent variables (see Figure 3.4). This, in turn, guarantees

that the connections within each group can be changed without influencing any other

group through the controller, ensuring that the pattern of adaptation characteris-

tic of the division approach (see Introduction) is induced within any trial-and-error
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optimization method with localized changes in connections.

Knowing the morphology and the controller, it is possible to determine the dy-

namics of an Arrowbot:

ṙ = f(r, s(r,T )), (3.5)

where s(r,T ) is given by equation (3.3).

3.5.2 Task

The task of the robot is to orient its pointers in arbitrary target orientations T

starting the movement at arbitrary initial conditions r0. Ideally, the performance of

the robot should be measured with all possible settings of initial conditions and target

orientations; additionally, since we’re only interested in the final pointing error and

not the transient time, the evaluation times should be infinite. The performance in

this case can be quantified as

Eideal = sup
{T },{r0}

lim
t→∞

(T −A(t)|r0,T )2 (3.6)

where x2 is a scalar product, x2 ≡ ∑
i x

2
i , and {T } and {r0} are sets of all possible

target orientation vectors and initial conditions vectors, correspondingly.

In practice we evaluated the performance of the robot by averaging its pointing

error after a finite simulation time t over a finite sets of initial conditions and target

orientations:

E = 1
nICnTO

nIC∑
α=1

nTO∑
β=1

(
T β −A(t)|rα0 ,T β

)2
, (3.7)

where nIC and nTO are the numbers of variants of initial conditions rα0 and target
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orientations T β that the robot is being tested at. In particular, throughout this paper

we used the following set of N target orientation vectors:

T 1 = [1, 0, ..., 0],T 2 = [0, 1, ..., 0], ...,TN = [0, 0, ..., 1]. (3.8)

Each of these target orientation vectors was tested with just one set of initial con-

ditions r0 = [0, 0, ..., 0]. Thus, nIC = nTO = N . A(t) is obtained by integrating

equation (3.5) forward in time over the span of t with the fourth order Runge-Kutta

method. Fitness is is computed using equation 3.7 using the final state of the system.

The system (3.5) exhibits linear dynamics, resulting in a tendency for an expo-

nential growth or decay of r over time. This results in heavy tailed distributions of

the derived variables such as the approximate error E for Arrowbots with randomly

generated morphologies and/or controllers. To simplify the statistical analysis of our

data, we account for this tendency by running all statistical tests on the decimal

logarithm of error, log10 E.

3.5.3 Genetic encoding and mutation

In this paper, we encoded each Arrowbot as a concatenation of two vectors of

integers.

The first vector encodes the morphology of the Arrowbot in N integers from

{0, 1, ..., N}. An integer at the ith position is the number of the segment to which

the ith target orientation sensor si is attached, with the value of 0 representing

attachment to the fixed base. It is thus a compressed encoding of the sparse matrix

J (equation (3.3)).
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The second part encodes the linear controller (equation (3.4)) as 2N2 integers

drawn from {−1, 0, 1}. The first N2 elements of the genome are the elements of the

matrix W and the second half are the elements of Y , reshaped to form a linear array.

Random genomes for initial populations were generated by concatenating a vector

of N integers randomly selected from {0, 1, ..., N} (the morphology) with an encod-

ing of a randomly generated controller. We compare two methods of generating the

controllers randomly in this paper. The default method for producing the controller

is to generate a vector of 2N2 integers randomly selected from {−1, 0, 1}. This pro-

duces a linear controller in which about 2/3 of the coefficients are nonzero; we will

refer to such controllers and to initial populations composed of them as dense. The

alternative is to use the method introduced in [7] (note - also provided as Section

A.1): take a vector of 2N2 zeros and mutate it once using the control mutation op-

erator described below. Due to the structure of the operator, such controllers will

have exactly one nonzero coefficient drawn from {−1, 1} and placed randomly. We

will call such controllers and initial populations composed of them sparse.

We use a mutation operator that always changes the genome upon application.

With a fixed probability Pmm it changes the morphology; failing that, the controller

is changed.

We considered two ways of performing a morphological mutation. By default, a

randomly selected sensor was moved by one segment up or down, unless the sensor

ended up below the fixed base or above the Nth segment as a result; in these cases, the

operation was repeated starting with selecting the sensor randomly. The alternative

was to discard the morphology altogether and replace it with a newly generated one.

We will refer to this latter method as a random jump in the morphological space.
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For control mutations, we employed the same operator as in our previous work

([5, 7] (note - also provided as Chapter 2 and Section A.1, correspondingly)). It treats

the controller as a graph as described in Section “Robot and task”. Each field of the

weight vector represents a possible connection. Mutation can result in one of three

outcomes: addition of a connection (probability 0.1), deletion (probability 0.1) and

a density-preserving change in the network (probability 0.8). If a connection is to

be added, a field with the value of zero is found, a value from {−1, 1} is randomly

selected, and the field is set to the value. Deletion randomly selects a field with

nonzero value and sets it to zero. Density-preserving mutation flips the sign of the

value at a randomly selected nonzero field. If the operation is impossible (e.g. deletion

is attempted on a network with no connections), the outcome selection is repeated

until a feasible operation is selected.

3.5.4 Evolutionary algorithm

Our evolutionary algorithm is based on the simplified version [7, 5] (note - also

provided as Section A.1 and Chapter 2, correspondingly) of the biobjective perfor-

mance and connection cost Pareto optimization technique introduced by [26].

Here, the two objectives of the algorithm are minimization of the pointing error

(equation (3.7)) and minimization of the number of nonzero-weight connections in

the controller. The algorithm starts by generating an initial population consisting of

a fixed number of genomes as described in the previous section. At each generation,

a stochastic Pareto front is constructed as follows. Each genome is compared with

every other genome in the population. Within each comparison, with probability PCC

the first genome is marked as dominated if the second genome has both lower error
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and less connections, or, if genomes are equivalent with respect to these objectives, if

the first genome was generated or mutated earlier than the second. With probability

1− PCC , the first genome is marked as dominated if just its error is greater than the

second genome’s error. Genomes that are not marked as dominated at the end of the

procedure constitute the stochastic Pareto front.

For the values of the constant PCC not in {0, 1}, there is a non-negligible probabil-

ity that every genome in the population will be marked as dominated, resulting in an

empty stochastic Pareto front. Whenever that happens, a genome with the smallest

error is added to the Pareto front.

All of the genomes that are not on the stochastic Pareto front are removed from

the population and replaced by offspring of genomes from the stochastic Pareto front.

The population size is thus kept constant.

The parameter PCC is added to control the relative emphasis evolution places on

the two objectives [26]. Here, we use it to investigate the role of connection cost in

the search for morphologies admitting modular control.

3.5.5 Prior knowledge of the morphospace

It has been shown [5] (note - also provided as Chapter 2) that for the Arrow-

bots there are two morphologies with radically different properties with respect of

possibility of modular control (Figure 3.5).

If every target orientation sensor is placed on the segment for which it tracks the

target, the sensor placement matrix J is equal to the N × N identity matrix I. In

this case every target orientation sensor measures the contribution of the segment

it is attached to the total pointing error, ri + Ai. We will refer to this morphology
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A B
Figure 3.5: Some Arrowbot morphologies with certain known properties for N = 2. Blue
circles with dotted lines represent target orientation sensors; blue rectangles represent motors
with proprioceptive sensors within. The red and green lines show an example of an optimal
(with respect to the ideal error (3.6)) controller for each morphology: red for negative and
green for positive feedback. (A) The J = I morphology that can be controlled by a controller
made of N disconnected modules. (B) For the J = 0 morphology, provably no controller
that is optimal can have more than one connected component.
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as J = I (Figure 3.5A). Previously we’ve shown that for this morphology there is a

family of linear controllers with N disconnected modules with one connection (from

si to mi) each that reduces the ideal error (equation (3.6)) to zero.

It is also easy to see that this morphology admits controllers that have the maxi-

mum number of disconnected modules. Any graph in which the connections are only

possible between the N motor nodes and sensor nodes with N − 1 or less connec-

tions will necessarily have a disconnected motor node, preventing the pointing error

from converging to zero unless the initial orientation of the corresponding segment is

aligned with the target orientation. Thus, the task cannot be solved without at least

N connections that can form up to N disconnected modules.

Another morphology corresponds to the case when all of the target orientation

sensors are attached to the fixed base. In this case all elements of the matrix J are

zeros, J = 0, and the target orientation sensor measure the absolute angular positions

of the targets (Figure 3.5B). For this morphology any controller that reduces the ideal

error to zero must be fully connected, as shown in [5] (note - also provided as Chapter

2).

In [5] (note - also provided as Chapter 2) we found that evolution decreases the

final pointing error much more rapidly for the J = I morphology, compared to the

morphology J = 0, and that the difference becomes more pronounced as the task is

scaled up to more segments.

Here we additionally provide a way to design a controller for any morphology

that reduces the ideal pointing error (equation (3.6)) to zero and provides a constant

baseline performance that does not depend on the morphology for the practical error

(equation (3.7)). See Appendix A for details.
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3.6 Results

We began by comparing the performance of the evolution for Arrowbots comprised

of three segments with morphological mutation enabled (Pmm = 0.2) and without

morphological mutations (Pmm = 0) with initial populations of dense controllers. For

each on these settings, we performed 100 evolutionary runs and computed statistics

on the decimal logarithm of final pointing error (Fig. 3.5, left panel). We have found

that for the case when morphological mutations were possible, evolution converged

more rapidly and after 600 generations achieved a lower final error, consistent with

the hypothesis 3.

Next, we analyzed morphologies that were evolved. We have found that in all

of the runs with morphological mutation the J = I morphology was discovered.

We verified this using the new parameter µ - the minimal Hamming distance of the

morphologies of the genomes on the Pareto front to the J = I morphology (Fig. 3.5,

middle panel). As expected, in the absence of morphological mutation the parameter

did not change much throughout the run and stayed around a value of three which

is typical for initial populations of randomly generated genomes. However, with

morphological mutation, the parameter µ reached zero in every run, consistent with

the hypothesis 2.

We have also investigated the causal relationship between convergence and the

discovery of the J = I morphology. We arbitrarily defined the moment of convergence

as the generation tb when the error goes below the baseline performance of a hand-

designed controller (see Appendix A). We define τconv as the difference between the
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Figure 3.5: Evolving morphology alongside control facilitates the convergence of evolution
of the latter and leads to a morphology admitting modular control. (top, previous page)
Error time series for evolution without morphological mutations (Pmm = 0, blue line and
error strip) and with morphological mutations that move a randomly selected sensor by one
segment in random direction (Pmm = 0.2, red line). The time series were obtained by
evolving 3-segment Arrowbots with a population size of 50. Solid lines represent averages
and 95% confidence intervals of the decimal logarithm of error based on a sample of 100
evolutionary runs. Dashed line represent the baseline level of performance for N = 3 that is
achievable for any morphology (see Appendix A). (middle, previous page) Time series
of the minimal Hamming distance µ to the morphology J = I across the Pareto front for
the same setups. The initial change is due to the evolution utilizing the diversity of the
morphologies present within the initial population. (bottom, right above this caption)
Defining the moment of convergence as the generation when the error goes below the baseline
performance level and the time to convergence τconv as the difference between the current
time and this moment, we consider the state of the population at each generation as a point
on the µ− τconv plane. The figure is the density plot for such points. It can be observed that
in the majority of runs, convergence occurs after the morphology J = I is found (µ = 0).
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Table 3.1: Parameters of evolutionary runs for experiments involving Arrowbots of different
sizes.

Number of Population Total evolutionary

segments N size time

3 50 600

5 100 1600

10 200 4000

current evolutionary time and this moment:

τconv = tb − t. (3.9)

Note that if evolution has reached the baseline performance in the past, τconv is

negative. For every generation of every run in the Pmm group we considered the

position of the population on the µ-τconv plane. The density of the points is shown in

Figure 3.5, right panel. It can be seen that convergence (τconv 6 0) in the majority of

cases occurred after discovering the J = I morphology, and in almost all cases after

coming within a Hamming distance of 1 from it. It can also be seen that even after the

J = I morphology is found, it took more than 50 generations for some runs to converge

(compare with the maximum convergence time of about 200 (data not shown)). These

results are consistent with the hypothesis 1, but suggest a the following clarification

of hypothesis 0: approaching a morphology that admits modular control is usually

a necessary but not sufficient condition for rapid convergence of modularity-biased

control evolution.
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Figure 3.1: (A1-A3) Parameters of populations as a function of probability of connection
cost to be taken into account when comparing individuals, PCC , with initial populations
of dense networks. Columns (pages in thesis version, A1-A3) correspond to numbers
of segments in Arrowbots N (see Table 3.1 for details about evolutionary algorithm’s pa-
rameters). Top (I) row shows the average decimal logarithm of error log10E and its 95%
confidence interval computed using the data from 100 evolutionary runs; bottom (II) row
shows the average minimal distance µ to the morphology J = I across the stochastic Pareto
front and its 95% confidence interval. Different lines represent values measured at differ-
ent points of evolutionary time (see legend). It can be seen that the convergence to the
morphology J = I (corresponding to µ = 0) coincides with the lowest observed errors and
is reached reliably only for PCC = 1. (B1-B3) Same, but with an initial population of
sparse networks. This modification decreases the error more rapidly and approaches the
J = I morphology for all values of PCC , not just PCC ≈ 1. However, the impact of initial
population decreases as the task is scaled up.

103



Next, we investigated whether the outcome of evolution depends on whether the

connection cost objective is used. To do that, we investigated the dependence of the

behavior of the system on the probability of connection cost to be taken into account

when deciding on dominance, PCC (Fig. 3.1A). Dependence was investigated for three

values of robot size (N = 3, 5, 10) with the population size and maximum number

of generations selected separately for each value in order to account for the disparity

in task difficulty (Table 3.1). The populations were initialized with dense networks

as described in Methods. For each value of N , we selected five equidistant temporal

slices at which we measured two properties of the population – smallest achieved error

E and the parameter µ. We varied PCC across {0, 0.05, 0.1, ..., 1} and observed that

for all values of N there is a sharp decrease in both error and µ as PCC approaches

1. This suggests that the presence of bias towards modularity is crucial for evolving

the morphologies that admit modular control and for achieving rapid convergence of

control evolution, consistent with hypotheses 4 and 5.

Additionally, we have found that the decrease in the error and µ becomes more

pronounced as the task is scaled up. This suggests that for more complex tasks bias

towards modularity is more crucial than for the simpler ones.

We also investigated whether the approach relies on the particular bi-objective

performance and connection cost technique, or if it is agnostic with respect to the

particular biasing technique. Previously we demonstrated that initializing the pop-

ulation with sparse networks can cause modularity to evolve even in the absence of

the connection cost objective, albeit modularity tends to decrease at the later stages

of evolution under such conditions [7] (note - also provided as Section A.1). This

suggests that initializing the population with sparse networks can be an efficient way
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to bias evolution towards modular networks, although the efficiency of the approach

may decrease as the number of generations required to reach an optimal solution

increases (e.g. for more complex tasks).

We repeated the experiments detailing the dependence of evolutionary dynamic

on PCC with initial populations of sparse networks and found that evolution exhibits

smaller final errors and more rapid convergence for all values of PCC , although the

effect decreased as the task was scaled up (Fig. 3.1B). In particular, for N = 3 the

final error for PCC = 0 (connection cost not used) was comparable to the final error of

the runs initialized with dense networks with PCC = 1 (fully bi-objective approach).

The runs with sparse populations also exhibited on average smaller minimal distance

from the J = I morphology to the Pareto front, µ. For greater values of N , the

differences were qualitatively the same, but of magnitude that decreased with N .

This is consistent with hypothesis 6.
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Figure 3.-3: (A1-A3) Parameters of populations as a function of probability of mutation
to be morphological Pmm. Columns (each shown on a separate page in the dissertation
version) correspond to numbers of segments in Arrowbots N (see Table 3.1 for details about
evolutionary algorithm’s parameters). Top (I) row shows the decimal logarithm of error
log10E and its 95% confidence interval computed using the data from 100 evolutionary
runs; bottom (II) row shows the minimal distance µ to the morphology J = I across the
Pareto front and its 95% confidence interval. Different lines represent values measured at
different points of evolutionary time (see legend). It can be seen that the convergence to
J = I is reached for a wide range of Pmm values; however, this process occurs most rapidly
for lower values of Pmm, resulting in lower errors being achieved earlier on. The effect
get more pronounced as the task is scaled up. (B1-B3) Same, but with the morphological
mutation replaced by a random jump in the morphospace. It can be seen that convergence
does occur even if the space of morphologies is searched randomly, although the performance
of this approach suffers more as the task is scaled up, compared to the mutation operator
that moves a sensor by one segment.
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Finally, we investigated the relationship between the probability of mutation to

be morphological, Pmm and the evolutionary behavior of the system (Fig. 3.-3A). We

found that convergence of the morphology to J = I occurs for most values of Pmm

within (0, 1), except for values that are very close to 0 or 1. However, lower values

of Pmm lead to a more rapid error reduction and make the discovery of J = I occur

more rapidly than for higher values of Pmm. This is consistent with hypothesis 7.

The data we currently have does not allow to reliably measure the optimal value of

Pmm, but the value appears to not depend strongly on the number of segments N .

We also checked how the adaptation rate depends on the morphological mutation

operator. To that end, we repeated the Pmm investigation with the mutation operator

replaced by a random jump in the morphological space (Fig. 3.-3B). It can be seen

that the J = I morphology is still found and that evolution still reaches the baseline

level, although it takes longer, especially as the task is scaled up. This suggests that

the complexity of the control optimization task is sufficient to justify random search

of morphology, especially for lower values of N . As the task is scaled up, however,

the design of the morphological mutation operator starts to play a more significant

role. Another observation is that if the morphological mutation is a random jump,

then the number of generations required to perform the search in the morphological

space increases and so does the optimal value of the probability Pmm.

3.7 Discussion

We have shown that, at least for one task and family of robot morphologies,

it is possible to discover, via evolutionary search, a morphology admitting highly
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modularized and successful control by evolving the morphology alongside the control

in a particular manner (hypothesis 2). We found that biasing evolution towards

modular controllers is crucial for finding such a morphology (hypotheses 4 and 5),

that the change in implementation of the bias does not make prevent the morphology

from being found (hypothesis 6) and that under such bias and once such a morphology

is found, rapid convergence of control towards a modular solution is likely to occur

(hypotheses 1 and 3). Additionally, we have found that slowing the morphological

change relative to change in control is beneficial for the occurrence of the phenomenon

(hypothesis 7), unless the morphological mutation operator is very inefficient (random

jump).

Those results are consistent with our previous findings that morphology can pro-

foundly influence the difficulty of evolving modular control and describe conditions

that make modular control more likely to evolve. By supporting these findings, our

results also indirectly support the idea of morphological computation [93], as they

represent a case of radical simplification of control due to the choice of morphology.

These results can be used in engineering, in particular, in evolutionary robotics,

where they may allow the designers to place a greater number of heterogeneous design

variables under the control of evolution, while avoiding, through modularity, the

requirement for a combinatorially large number of evaluation environments [18] and

the problem of catastrophic forgetting [34] and thus retaining the capacity of evolution

to find good-enough solutions in reasonable time. For example, these results may be

of interest to engineers and researchers who wish to evolve whole physical agents,

complete with morphology, circuitry and actuator design.

The results also have implications for biology, as living systems satisfy the basic
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requirements of our approach to the evolution of modular control: the bias towards

modular nervous systems is present in living systems in form of metabolic connection

cost [26] and morphology is evolved alongside the control. Based on that, we speculate

that morphological evolution might be a factor in evolution of modularity of nervous

systems.

To formulate our approach to evolving modular control, we formalized the refor-

mulation approach to problem solving [25, 113] (see Section 3.4). Within the reformu-

lation framework, morphology is one example of a more general entity which we term

driving variables, defined as design parameters that influence the search difficulty of

finding the best overall values of the remaining (non-driving) variables. Finding such

variables requires domain knowledge, but once they are found, they can be optimized

to reduce the search difficulty of optimizing the remaining variables and thus “re-

formulate” the corresponding optimization problem. We extend the reformulation

approach with a qualitative rule of thumb that suggests that the driving variables

can be found by examining the influence of the design variables on the behavior of

optimization of non-driving variables under biases. We call the resulting approach

guided reformulation. The method for evolving modular control then follows from the

hypothesis that morphology influences the effectiveness of evolution if a bias towards

modularity is present. We speculate that the guided reformulation approach can be

applied to reformulating a wider range of optimization problems than the problem of

controlling embodied agents, possibly using optimization biases other than the bias

towards modularity.

We briefly review one mechanism of optimization difficulty reduction, the division

approach, in Introduction. We link it with solution modularity and explain why mor-
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phology can influence this mechanism, thus establishing morphology as a candidate

for a vector driving variable. Our set of testable hypotheses about the properties of

the resulting optimization approach is based on this analysis.

We see three challenges for applying the reformulation approach and guided re-

formulation to a wider range of tasks. First, a possibility of premature convergence

arise if the method is used with a definition of optimization difficulty that can mis-

takenly assign low difficulty to driving variable values that prohibit convergence of

optimization of non-driving variables to good-enough solutions. Our instantiation of

reformulation based on morphology and modularity-biased control optimization uses

such a definition, and we plan to correct that in our future work using methods sim-

ilar to morphological protection [21]. Second, despite the guidance provided by the

guided reformulation rule-of-thumb, the identification of driving variables currently

must be performed in an ad hoc manner by a human designer. Systematizing and/or

automating the identification of driving variables will be the focus of our future stud-

ies. Third, for more complex tasks, a good mutation operator for driving variables is

required. At present, there is no systematic way to assess or design such operators.

See the following GitHub repository for all the materials and instructions required

to reproduce our results: https://github.com/abernatskiy/reformulation2018

3.8 Appendix A. Baseline performance

for an arbitrary morphology

Theorem: It is possible to construct a linear controller satisfying equation (3.4)

that reduces the ideal error (equation (3.6)) to zero for every valid sensor attachment
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matrix J .

Proof: Substituting equation (3.3) and equation (3.2) into equation (3.4), we get

ṙ = W s + Y r = WT −WJKr + Y r

= WT + (Y −WJK)r.
(3.10)

At the equilibrium r = K−1T and

WT + (Y −WJK)K−1T = 0,

Y = W (J − I)K.
(3.11)

Assuming this condition holds, equation (3.10) simplifies to

ṙ = WT + (W (J − I)K −WJK)r

= WT −WKr.

(3.12)

Consider a controller with W = I: a matrix with no values outside of {−1, 0, 1}.

The Jacobian of the system then becomes −K, making the system stable.

Next, we verify that for each such controller, a matrix Y exists such that all its

elements are in {−1, 0, 1}. From equation (3.11),

Y = (J − I)K. (3.13)

Each row of the matrix J − I contains at most one entry equal to -1 and one equal to

1, with the rest of entries being zeros. Multiplying that by the ith column of K will

produce a sum of all entries to the right of the ith field, including the ith field itself.

There will be at most two nonzero components in this sum, one equal to -1 and one
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equal to 1. Such a sum necessarily lies in {−1, 0, 1}. �

The Jacobian for all controllers constructed in this way is the same, thus the

temporal trajectories of the systems are the same. We verified that this is true by

evaluating the controllers constructed as described above for 100000 randomly picked

morphologies for the three values of N = 3, 5, 10. Within each group, all logarithms

of the pointing error equation (3.7) coincided up to tenth decimal point: log10 E(N =

3) = −6.9408767850, log10 E(N = 5) = −6.0563588899 and log10 E(N = 10) =

−5.3115293183.

We will use these values to define a baseline for controller performance. Such

definition has the following property: given N , we can guarantee that for any mor-

phology there exists a controller that achieves the pointing error no greater than the

baseline.
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Chapter 4

Reformulating Scaffolding

Fitness Functions To Address

The Bootstrap Problem

This work is in preparation for publication in Genetic and Evolutionary Compu-

tation Conference 2019.

4.1 Abstract

Fitness, or utility functions are the primary way in which designer’s intent is ex-

pressed in design-by-optimization techniques such as evolutionary robotics. For many

tasks, “natural” fitness functions are constant within most of their domains, a prop-

erty that severely impedes optimization. This is known as the bootstrap problem.

One way to approach it is by scaffolding the optimization process, for example by

adding auxiliary utility functions expressing potentially useful building blocks of the

125



solution. However, it is not trivial to combine the primary and auxiliary objectives,

especially if some of them are in conflict. In this paper we study a simple metaop-

timization algorithm that evolves scaffolding fitness functions, expressed as linear

combinations of primary and auxiliary utility functions, in order to minimize the dif-

ficulty of the underlying evolutionary search. We apply the method to the problem

of designing controllers for robots collectively assembling structures in zero gravity.

We show that the approach with evolvable scaffolding outperforms the approaches

with a fixed scaffolding fitness function. Additionally, we test a prediction made by

the reformulation in optimization theory and show that a bias towards sparsity in the

controller optimization negatively impacts the performance of the approach.

4.2 Intro

In design-by-optimization approaches such as evolutionary robotics and reinforce-

ment learning, designer’s intent is typically expressed as (or equivalently to) a fitness

function on the set of possible designs. The function is then optimized using an ap-

propriate method, such as a genetic algorithm. Performance of this approach depends

heavily on the interplay between properties of the utility function and capabilities of

the optimization method. For example, a simple hill climber is unlikely to find the

global optimum of a deceptive non-convex fitness function. Fitness function design is

one of the decisive factors in whether the design-by-optimization approach succeeds

or fails.

For many task and environments, “natural”, intuitive metrics of solution utility

exist. For example, an easy way to quantify success of a mobile robot at locomotion
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tasks is by measuring the distance traveled. For a wide range of tasks such “natural”

utility functions are constant across most of their domains. Consider, for example,

a mobile robot that is tasked with hauling an object from one point on the plane it

inhabits to another. One natural utility function is the negative distance between the

object and the target point at the end of the trial. If the robot is not close to the

object at the beginning of the trial, most of its possible movements will never touch

the object and the distance will stay exactly as it was at the beginning of the trial.

In such a fitness landscape any gradient-following algorithm with random initial

conditions will, with high probability, pick up no fitness gradient. The most ex-

treme case occurs when the fitness function is different from its base level only at

the optima, the landscape shrewdly described in [51] as “needle in a haystack”. For

such landscapes, no structure of the function is exposed by any point measurement

except for those that happen to be at the optima. It follows from No Free Lunch

theorems [128] that no optimization algorithm can outperform random search under

these conditions.

The situation does not become much better even if the fitness landscape is not as

extreme and there is a small region of solution space with some gradient in it. If the

representation of the solution has few dimensions, the search may happen to find this

region by drifting or random restarts. However, assuming that the diameter of the

region remains constant, the probability of that happening decreases exponentially

with the number of dimensions in the solution representation. For complex tasks that

require solution representations with many dimensions this type of landscape is as

good as the needle in the haystack.

In evolutionary robotics this issue is known as the bootstrap problem [104].
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It is extremely widespread in practical tasks and their “natural” fitness functions.

A common feature of many such tasks is that they require a spatial or temporal

coordination of multiple actions to make any progress. This includes many tasks in

manipulation, manufacturing and some tasks in locomotion such as jumping. So-

called multimodal tasks [47, 73, 53], in which the robot must exhibit different modes

of behavior in different circumstances, are largely all in that category.

Bootstrap problem is similar to, but different from the more widely known problem

of deception. In deceptive functions, the probability of a randomly selected solution

candidate to land within an attractor of a “good-enough” optimum is much lower

than the probability of it landing near a local optimum that is not “good-enough”. In

such a landscape, a simple greedy gradient follower is likely to get stuck at the local

optimum and never progress from there. There are, however, methods for protecting

the solutions that occupy different peaks than the champion (e.g. [102]), thus escaping

the deception.

In contrast, for fitness functions that exhibit the bootstrap problem it is very

difficult to discover any optimums, global or local.

Some functions can exhibit both problems. If most peaks of a function that

exhibits the bootstrap problem are not “good-enough”, any peak-seeking algorithm

will be more likely to find one of these than one of the “good-enough” peaks. An

example of such a function is a locomotion of a tetrapod robot with a directly encoded

controller towards a goal in a deceptive labyrinth: any locomotion requires an unlikely

coordination of actuator movement, and additionally there are many ways to locomote

that bring the robot closer to the target without letting it reach the target.

The common feature of deception and the bootstrap problem is that the hypervol-
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ume of attractors of “good-enough” solutions is small compared to the hypervolume

of the less desirable subsets of the search space. This makes many methods designed

for attacking one of these problems also applicable to the other and vice versa.

Due to the fundamental difficulty of the bootstrap problem all approaches that

attack it necessarily must use some external knowledge about the structure of the

task. The knowledge might come in form of a meaningful distance between behaviors

(e.g. evolution of upright locomotion in [70]) or as an ability to decompose evaluation

into multiple time scales, effectively increasing the number of evaluations by a large

factor [51, 62], or in some other form.

The most straightforward approach is to utilize the available a priori knowledge

about useful building blocks of the solution. This approach called scaffolding is

arguably the most common way to attack the bootstrap problem. In the previous

example with the robot tasked with hauling an object, scaffolding might involve

adding an objective of minimizing the minimum distance between the robot and the

object. In this case the robots that get closer than others to the object over their

lifetime will get a reproductive advantage, until eventually a robot that touches the

object will emerge, thus reaching the region of the solution space where the gradient

of the fitness function is not zero.

Although scaffolding takes many forms, in this paper we will focus on scaffold-

ing based on auxiliary objectives or fitness functions, similar to the example above.

Auxiliary fitness functions express designer’s domain knowledge of potentially useful

building blocks of the solution. These functions are typically simpler to optimize, in

a sense that they exhibit less bootstrap issues.

In this type of scaffolding, multiple auxiliary fitness functions are often useful.
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Consider a variant of the object hauling task described above in which the robot is

equipped with a manipulator, the object is a raw egg and the main (or ultimate) fitness

function is now low if the egg breaks. Optimizing the auxiliary objective of closing

in to the object will likely yield many solutions in which the robot approaches the

egg too quickly, collides with it and breaks it; or solutions in which the egg survives

the collision and rolls away. Solutions in which the robots closes in to the egg at a

reasonable speed and grasps it will be extremely rare, again creating a “needle in a

haystack” situation. To mend this, more auxiliary objectives corresponding to known

useful building blocks are added. In this example, such objectives might include

an auxiliary fitness function that penalizes high velocity approaches to objects and

another one that rewards grasping.

Some objectives, such as the objective of approaching the egg and doing so at the

slowest possible speed, might to some extent conflict with each other. As a result,

combining such auxiliary objectives is a nontrivial task. A variety of methods have

been proposed, including a simple linear combination [89, 53], gradual addition of

subtasks into a single fitness objective [50, 11] and multiobjective optimization [53,

83]. However, all previous approaches fall into one of the two categories: they either

adopt a diversity-based, Pareto multiobjective approach to exploring the search space,

or they use a particular, human-designed way of combining the auxiliary objectives.

In the former case the search becomes prone to the dimensionality curse; in the

latter the way in which the objectives are combined introduces a bias that can be

detrimental if the auxiliary objectives conflict.

In this paper we study a simple metaoptimization approach that evolves scaf-

folding fitness functions, represented as linear combinations of primary and auxiliary
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fitness functions with evolvable coefficients. By letting the coefficients vary, the ap-

proach avoids the bias introduced by setting them to a constant value.

We apply the approach to a practically important task of assembling structures

in zero gravity with a fleet of autonomous, tethered robots. We show that for this

task it outperforms the search based on a fitness functions in which the coefficients

are fixed (both by human and by random selection).

Method searches for a scaffolding fitness function that makes optimizing the pri-

mary fitness function easier; in this way it is an instance of reformulation in optimiza-

tion [6] (note - also provided as Chapter 3). In this case, the coefficients of the linear

combination are the variables influencing the difficulty of the underlying optimization

process. Following [6] (note - also provided as Chapter 3) we refer to such variables

as driving variables. One prediction of the reformulation framework is the heuristics

of biased reformulation: if a bias is applied to the underlying optimization process

and there is domain knowledge that suggests that the combination of this bias and

some value of the driving variables drastically reduces the difficulty of the underlying

optimization process, then adding such a bias is likely to increase the convergence rate

of the metaoptimization. Conversely, if domain knowledge suggests that no value of

driving variables will make optimization substantially easier under this bias, addition

of the bias is likely to decrease the convergence rate.

It is well known [76, 26, 7] (note - [7] is also provided as Section A.1) that bias

towards sparsity can substantially reduce the difficulty of certain optimization prob-

lems. A lot of open questions remain regarding the properties that distinguish the

problems that are simplified by such a bias from those that are not. However, ex-

isting domain knowledge suggests that those properties have to do with the internal
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structure of the task [26], in particular admissibility of modular solution [5] (note -

also provided as Chapter 2).

Changing a scaffolding fitness functions does not change the task, but rather

it changes the way the task is approached by the optimization algorithm. It can

be inferred that there is no scaffolding fitness function that makes the search for

a solution substantially easier with the bias towards sparsity than it was without.

Based on that we predict that adding such a bias would hurt the convergence rate of

the scaffolding fitness function evolution and confirm this prediction.

4.3 Methods

All materials required to reproduce this work can be found at https://github.

com/abernatskiy/walter.

4.3.1 Task and robot

We consider a task of assembling a structure consisting of heavy parts that float

in a zero gravity, frictionless environment. The assembly is performed by a fleet

of lightweight robots equipped with thrusters, reaction control wheels and adhesive

surfaces that can attach to the parts.

From a practical standpoint we’re interested in evolving control strategies for

lightweight robots. This approach is attractive because it reduces the mass that

need to be launched, but large ratios of masses of parts to masses of robots makes it

difficult to change both linear and, to a smaller extent, rotational velocities of parts

using thrusters. We intentionally make this limitation more severe by modeling finite
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fuel and saturatable reaction control wheels: thrusters can only deliver a finite amount

of linear momentum over the lifetime of the robot and the rotational momentum that

the reaction control wheels can deliver is similarly limited.

To make the robots capable of overcoming this limitation, they are also equipped

with tethers and shock absorbers that enable them to pull the parts together and

reduce the relative velocity of parts when they are in close proximity. The intention

is to approximate the performance of human astronaut during a EVA: versatile limbs

capable of pushing and pulling on objects enable the astronaut to change their relative

position and orientation without spending any fuel. Tethers provide means to pull

on objects separated by significant distances; shock absorbers provide pushing.

In present work we use a simulation based on Pyrosim∗ to study a variant of such a

system that uses six spherical robots that form three pairs. Each robot has sensors of

four kinds: proximity, light, proprioception of adhesive actuator and proprioception

of tether. Robots within each pair are connected with an actuated tether.

Proximity sensors provide information about the position of the closest point of

any physical object other than the body of the robot to the robot’s center. Each

sensor is sensitive only to objects within a spherical volume of radius four times that

of the robot, centered around the same point. The sensor outputs three channels:

(1) maximum penetration depth of any object into the spherical volume, divided

by the diameter of the volume and (2,3) spherical angles θ and φ of closest point

of any object to the center of the spherical volume. In practice this sensor can be

implemented using several LiDARs.

Light sensors provide information about the proximity of remote light sources.
∗https://ccappelle.github.com/pyrosim
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Each light sensor and light source is associated with a “color”: a feature of the

radiation signal that allows to distinguish different kinds of it, such as wavelength or

temporal modulation pattern. Output of each light sensor is given by

L
(c)
i (x, y, z) = ln l(c)(x, y, z)/l(c)0 , (4.1)

where l(c) is the total luminosity created by all light sources at (x, y, z):

l(c) =
∑
j

[
1
r2
j

if rj > R else 1
R2

]
(4.2)

and l(c)0 is such luminosity at the sensor’s position at the first time step of the simu-

lation. In this equation is the distance from point (x, y, z) to the position of jth light

source; R is the radius of the light source and summation is over all light sources of

color c. No occlusion is modeled in present work. In practice such a sensing system

may be implemented using temporally modulated gamma- or X-rays.

Within each pair, robots perceive the same “color” of light (see below); each pair

of robots is associated with its own color.

Additionally, each robot is equipped with six proprioceptive sensors supplying the

data about the state of the actuators:

• The number of objects currently adhesed to the adhesive surfaces.

• The tension of the tether.

• Reaction control wheels saturation data, one number for each axis.

• Thruster fuel gauge.
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Actuators consist of a thruster fixed to the hull of the robot, three reaction control

wheels, adhesive surface of the robot that can be turned on or off and tether that

can be tensioned. Shock absorbers are currently implemented through adhesion: the

robot’s body inelastically absorbs kinetic energy if it is hit by the two parts from

different sides while the adhesive sensor is active.

In total, each robot provides ten sensory channels and six actuator channels.

The control is by a standard continuous time-recurrent neural networks (CTRNNs)

(e.g. [106]) with 10 sensor, 6 hidden and 6 motor neurons each. The output of each

sensor neuron is the hyperbolic tangent of the output of the sensor it is attached to;

outputs of all other neurons are given by

sti = tanh(αist−1
i + τi

∑
j

wjis
t−1
j ), (4.3)

where sti is the output of ith neuron at time step t, αi and τi are the parameters of the

neuron, wji is the connection weight between ith and jth neuron and the summation

is over all connections terminating at the ith neuron (the neuron emitting each such

connection is denoted as j).

Within the hidden layer, a connection can be made from any to any neuron,

including self-recurrent connections. A bias neuron with a constant value of 1 is

provided. The controllers for all robots in the fleet are identical.

Parts are modeled as two large cylinders (see table 4.1). On one of flat faces of

each part we place three light sources of three different colors, corresponding to the

colors of the robot pairs. Positioning error Ep is defined as the sum of distances

between the light sources of the same color placed on different parts.

A screenshot of Pyrosim showing the fleet of the robots and its environment is
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Figure 4.1: Screenshot of the simulator showing the fleet of robots and its environment.
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Parameter Value

Robot radius 0.25

Robot mass 1.0

Proximity sensor range 1.0

Light source radius 0.2

Part mass 1000.0

Part dimensions 10.0d2.5

Max evaluation time 52

Max RCW torque on each axis 0.1

RCW momentum budget ±0.05

Max thrust 1.0

Thruster momentum budget 10.0

Table 4.1: Physical and geometric parameters of the simulated system. All values are given
in internal simulator units of their corresponding physical quantities.

shown at Figure 4.1.

4.3.2 Fitness

Primary fitness function expressed the following designer intent: “bring the parts

together and align them without breaking anything”. It is based on the positioning

error, with a heavy penalty for high speed collisions:

FP ≡ E0
p −min

t
(Et

p) if vmaxcoll < vlimcoll else 0 (4.4)
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where Ep is the positioning error described in section Task, E0
p = 375 is its value at

the first time step of the simulation, vmaxcoll is the maximum relative velocity of the

centers of mass of the colliding bodies in any collisions that occur over the simulation

time and vlimcoll = 10 simulation velocity units is its maximum allowed value.

In addition, we provide five auxiliary fitness functions, each of which expresses a

useful (hopefully) solution building block:

Light following :

FL ≡
6∑

k=1

1
T

∑
t

(L(c)
i )k, (4.5)

where (Li)k is the output of light sensor of kth robot (characterized by id i and

color c).

Obstacle avoidance :

FX ≡
6∑

k=1

1
T

∑
t

pk0, (4.6)

where pk0 is the reading of the first channel (channel 0) of the proximity sensor

of robot k.

Attachment :

FA ≡
6∑

k=1
[1 if kth robot has attached to any surface else 0] , (4.7)

Fuel conservation :

FF ≡
6∑

k=1

1
plim

[
plim −

∫ T

0
fkthruster(t)dt

]
, (4.8)

where fkthruster(t) is the force exerted on the body of kth robot by its thruster at
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time t, T is the total time of the simulation and plim is the thruster’s momentum

budget.

Collision speed minimization :

FC ≡
vlimcoll − vmaxcoll

vlimcoll
if vmaxcoll < vlimcoll else 0 (4.9)

Total scaffolding fitness is a linear combination of all components:

FS = FP + α0FL + α1FX + α2FA + α3FF + α4FC , (4.10)

where the coefficients [α0...α4] were evolvable.

4.3.3 Genetic encoding and operators

Genome of a robotic fleet consists of two parts: the parameters of the scaffolding

fitness and the parameters of the controller.

Parameters of the scaffolding fitness (see eq. 4.10) are encoded directly as a vector

of five real numbers. Unless explicitly mentioned, their values are initialized as 2i,

where i is a random integer between -4 and 4, inclusively. Mutation of this part

of the genome divided or multiplied a randomly selected value by 2, with a retry if

the resulting value was outside of [2−4, 24]. This enabled the evolution to increase or

decrease the relative magnitude of different scaffolding fitness components with ease.

The second part of the genome encoded a CTRNN-based controller, common for

all robots in the fleet. The first part of the genome encodes the parameters of each

neuron except sensor neurons: τi, αi and the initial state s0
i , a total of 3∗ (6+6) = 36

139



values. The second part of the genome describes connections and weights within the

three layers of the CTRNN: from sensor to hidden neurons, from hidden to hidden

neurons and from hidden to motor neurons.

Mutation operator can perform one of the following actions:

• change a uniformly selected neuron parameter (with probability p = 0.3),

• change the weight of a uniformly selected connection (p = 0.4),

• add a new connection (p = 0.15),

• remove an existing connection (p = 0.15).

Whenever the mutation operator attempts to remove a connection from a network in

which there are none or add a connection to a fully connected network, it is restarted.

A change in all continuous-valued parameters (neuron parameters and connection

weights) is implemented with a simple Gaussian jump:

v ← v +N (v, |v|). (4.11)

Crossover is not used in this work.

When generating initial populations, the algorithm initializes the initial state of

all neurons to -1, α’s and τ ’s to 1. For connections, two types of initialization are

explored:

Random , in which a connection is added between any pair of nodes in any two

adjacent layers with a probability based of the average in-degree of 2.0 of the

resulting network. Recurrent and non-recurrent connections are considered sep-
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arately, leading to an average in-degree of 4.0 for hidden nodes in terms of

combined connections.

Sparse , in which initially a single connection is added between a randomly selected

pair of nodes [7] (note - also provided as Section A.1).

Self-loops were allowed. The initial value of the connection weight was chosen uni-

formly from [−1, 1].

4.3.4 Evolutionary Algorithm

Our meta-evolutionary algorithm optimizes scaffolding fitness functions 4.10 in

order to maximize the primary fitness 4.4. The algorithm is inspired by Age-Fitness

Pareto Optimization technique for protecting innovation [102].

The population is divided into lineages. Each lineage is associated with a partic-

ular scaffolding fitness function (i.e., a vector of coefficients for 4.10). Additionally,

age of each lineage is tracked.

At every generation, new population is formed as follows:

1. A set of nondominated genomes (i.e., genomes that provide optimal tradeoffs,

see [102]) is found within the population, with respect to two objectives: maxi-

mization of the primary fitness 4.4 and minimization of age. This set, to which

we will refer to as age-primary fitness Pareto front, forms the first part of the

elite that is copied to the next generation without modifications.

2. Lineages that contain no individuals on the age-primary fitness Pareto front are

discarded.
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3. For each remaining lineage, one individual with a maximum scaffolded fitness

function of the lineage is selected and copied to the new population without

modifications, provided it is not already contained in there.

4. A lineage is selected at random among the remaining ones, and within the

lineage a genome is selected for reproduction. Probability of reproduction is as-

signed to each genome of the lineage in a manner similar to fitness proportionate

selection:

P i = ε+ F i
S∑

i(ε+ F i
S) . (4.12)

Here, F i
S is the scaffolding fitness of the genome 4.10 and ε = 1.0 is a constant

added to avoid divisions by zero and situations when a small improvement

of fitness of a single individual in the lineage gives it a decisive reproductive

advantage.

5. The selected genome is copied. Mutation operator (see section 4.3.3) is applied

to the controller part of the copy and the result is added to the new

population.

6. Steps 4 and 5 are repeated until the size of the new population reaches N − 1,

where N is the fixed size of the population.

7. Once every m generations a new lineage is added into the population. All the

lineages except the first initially contain a single genome. We experiment with

three strategies of adding such a genome:

(a) Adding a genome in which both the scaffolding fitness function and the

controller are generated randomly. In this case each lineage uses the same
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randomly generated scaffolding fitness function over its entire lifetime; we

will refer to this strategy as no turning.

(b) Adding a genome every odd step is as in first strategy. At every even

step a genome is selected as described in step 4. Its scaffolding fitness

function is mutated as described in section 4.3.3 and it is added to the new

population. This strategy enables the evolution to make slight adjustments

to the scaffolding fitness function over the evolutionary history; we will

refer to it as smooth turning.

(c) Adding a genome every odd step is as in first strategy. At every even

step a genome is selected as described in step 4, but instead of mutating

its fitness function it is discarded, a new one is generated randomly and

assigned to the copy of the selected individual, which is then added to

the new population. This strategy enables the evolution to make abrupt

changes in the scaffolding fitness function; we will refer to it as abrupt

turning.

8. If no new lineage was added, one more new individual is generated as described

in steps 4 and 5 and added to the new population.

9. Age of all lineages is increased by 1. If a new lineage has been added, its age is

reset to zero.

We also study a sparsity biased version of this algorithm. Similarly to [26], it

uses multiobjective Pareto optimization of performance and connection cost to protect

solution candidates which are sparser. This version of the algorithm differs from the

one described above in two ways:
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• At step 3, a set of nondominated individuals with respect to maximization of

the scaffolding fitness function and minimization of the number of connections

(scaffolding fitness - connection cost Pareto front) is found within the lineage.

The set is copied to the new population without modifications.

• At step 4, a lineage is selected at random as before, but the genome is selected

for reproduction among the genomes from the scaffolding fitness - connection

cost Pareto front, with uniform probability.

In the preliminary runs we experimented with three values of the period of new

lineage addition m: 25, 50 and 100. We found that the behavior of the algorithm is

qualitatively the same within this set, so a value of m = 50 was chosen for subsequent

use in all runs where the scaffolding fitness function was evolved. In all experiments

described in this paper evolution runs for 6000 generations and the population size

N is 100.

4.4 Results

In the first experiment we compare the performance of the algorithm to two con-

trols in which evolution of scaffolding fitness functions is disabled (figure 4.2). Both

controls are implemented by setting the period of lineage update to a value greater

than the length of the run. With this setting, the algorithm turns into a simple

GA with an elite of size 1 or 2† and fitness proportionate selection of parents for

the rest of the population. In the first control group, the scaffolding fitness function

was designed manually by setting all coefficients αi to 1; in the second group, the
†1 if the champions of the ultimate fitness and the scaffolding fitness coincide and 2 otherwise.
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Figure 4.2: Performance of the evolutionary algorithm with evolution of scaffolding fitness
function enabled (red line); disabled, with the coefficients alphai selected randomly at the
beginning of each run (green line); disabled, with the coefficients set manually to 1 (blue
line). Error strips show 95% confidence interval of Student’s t-distribution based on a
sample of 50 runs.
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Figure 4.3: Performance of the scaffolding fitness function evolution for different strategies
of adding new lineages (see section 4.3.4). Blue line corresponds to the no turning strategy
(7(a) in text); green line corresponds to smooth turning (7(b) in text); red line corresponds
to abrupt turning (7(c) in text). Error strips show 95% confidence interval of Student’s
t-distribution based on a sample of 50 runs.

coefficients were chosen randomly (as described in section 4.3.3) at the beginning of

the run and never changed over its course. The approach with the evolvable fitness

function outperformed both of these controls.

In the next experiment we investigated whether the performance of the algorithm

depends on which strategy was used when adding new lineages (figure ??). Interest-

ingly, we did not find any substantial differences between the behavior of the system

for the three strategies.
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Figure 4.4: Performance of the scaffolding fitness function evolution under various forms
of bias towards sparsity: (red line) with initial population of random networks and connec-
tion cost co-optimization - RIP-CC; (green line) with initial population of sparse networks
and connection cost co-optimization - SIP-CC; (blue line) with initial population of sparse
networks only - SIP; (cyan line) with no bias. Error strips show 95% confidence interval of
Student’s t-distribution based on a sample of 50 runs.
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Lastly, we investigate the performance of our approach under a bias towards spar-

sity (figure 4.4). We apply three methods of such biasing – initialization with pop-

ulations of sparse networks (section 4.3.3), biasing of the selection algorithm itself

(section 4.3.4) and the combination of the two. In all of these cases the algorithm

converged less rapidly than in the case when the bias was disabled.

4.5 Discussion and conclusion

We have developed a metaevolutionary algorithm for co-optimizing scaffolding

and solution candidates. Despite using less evaluations to optimize each scaffolding

function, the algorithm outperforms both manually designed and randomly gener-

ated scaffolding fitness functions. The algorithm is applicable to a wide range of

design problems in which “natural” fitness functions exhibit the bootstrap problem,

yet useful building blocks are available to the designers in form of auxiliary fitness

functions.

We have shown that, in line with the predictions of the reformulation frame-

work, biasing the underlying search towards sparsity decreases the convergence rate

of the co-optimization algorithm. This is in contrast to the case of co-optimization

of morphology and control, where biasing control evolution towards sparse solution

candidates can increase the convergence rate [6] (note - also provided as Chapter 3).
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Chapter 5

Conclusion

In this thesis I have shown that in control tasks the morphology of the robot’s

body can determine if certain tasks can be solved by modular controllers. I demon-

strated that, by using evolutionary algorithms biased towards modularity and for

morphologies that admit modular control it is possible to produce controllers that

solve the task much more rapidly than in the case when the morphology does not

admit modular control (chapter 2). I have shown that if the morphology and control

are co-optimized by an evolutionary algorithm and the evolution of control is biased

towards modularity, then morphological evolution finds the morphologies that admit

modular control. Evolution in this case finds more fit solutions more rapidly com-

pared to the case when the morphology is not evolved. I have shown that for this

type of setup there is an optimal ratio of mutation rates for morphology and control

(chapter 3).

I generalized these results within reformulation approach: a general framework

that can be used to describe and reason about optimization systems with multiple

time scales. Within this framework I described a new design principle of guided
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reformulation (chapter 3).

The next section of this chapter describes the reformulation approach more for-

mally than chapter 3, giving a quantitative interpretation to the guided reformulation

heuristic and to a certain type of deception that occurs as an artifact of multiple op-

timization time scales. In section 5.2 I discuss broader impact of my results. Finally,

in section 5.3 I discuss some possible extensions of the present work.

5.1 Formal Theory of Reformulation

Reformulation approach is based on the theory of insight through reformulation

[25, 127] from cognitive science. The way I interpret this theory is as follows: cognitive

insight or epiphany may occur as a result of searching through the space of the

approaches to the problem until the process of solving the problem becomes trivial.

In stacked optimization this idea translates into searching the space of extra pa-

rameters of optimization or design (driving variables) to minimize the difficulty of

optimizing the primary solution parameters (non-driving variables) (see chapter 3).

In this section I describe this idea more formally and give quantitative explanations

to the principle of guided reformulation and to the problem of premature convergence

that can be induced by the reformulation approach on certain landscapes.

Consider a task of finding a maximum of a parametric function fa(x) : Xa → R,

a ∈ A. The maximum is searched for over the full domain of the function {x, a|a ∈

A, x ∈ X(a)}. For example, f might be a fitness function of a robot, the value that

depends on its morphology a ∈ A and its controller x ∈ X(a). Since the number

of sensors and motors depends on the morphology, the set of all possible controllers
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X(a) depends on the morphology.

Suppose that there is a family of optimization methods Pb, b ∈ B that can find

a maximum fmaxa of fa for any a ∈ A. Here, b ∈ B stands for the parameters of

optimization method that are available to the designer. For example, if P is a family

of evolutionary algorithms, then b might include mutation rate, population size etc.

In the absence of additional constraints, the solution of this problem is straight-

forward: the designer chooses a reasonable value of b (possibly dependent on a) and

applies Pb to find fmaxa of fa(x) over X(a). A search of a maximum of fmaxa over the

values of a is then performed with any optimization algorithm, e.g. by exhaustively

enumerating A.

In practice, however, resource constraints often make this approach impractical.

If no additional information about the function fa is available, then finding the exact

value of fmaxa will require exhaustively searching the function’s domain X(a). For

practical problems this is often a prohibitively expensive operation. Instead of using

this “brute force” strategy, iterative algorithms are employed that provide an estima-

tion of fmaxa that may get better as more resources are spent on the optimization.

I begin by considering the case of deterministic optimization algorithms. To this

end I introduce effort function τa,b(y) : fa(Xa) → R>0 that describes the amount

of resources (e.g. computational) that is required to obtain the estimate y of fmaxa

using the optimization system Pb. Since any estimate that can be obtained using

a certain amount of resources can always be obtained using a larger amount, this

function is monotonically increasing. Note that the effort function depends both on

the parameters of the task a and on the parameters of the optimization system b.

An example of an effort function would be the number of gradient ascent steps

154



that is required to get an estimate y of the maximum value of the function −αx2.

The parameters in this case are the coefficient α (a = [α]), starting position x0 and

the learning rate γ (b = [x0, γ]).

The new task is to obtain the biggest possible value of the maximum estimate

given a certain fixed resource budget T . In certain cases (e.g. in classical control op-

timization) it is possible to choose reasonable values of a and b based on the available

domain knowledge and get “good-enough” results by optimizing f with these fixed

values of the parameters.

In other cases a certain small (much less than T ) amount of resources spent on

optimization for any a ∈ A and some b ensures that the value produced by the

optimizer is near the value that corresponds to infinite resources. This enables de-

signers to focus on the quality of final solutions instead of the optimization rate when

choosing parameter values. A common example of this type of metaoptimization is

hyperparameter tuning in machine learning.

Here we will focus on the most difficult case: there is no direct knowledge of the

effort function and the effort required to estimate the final value produced by the opti-

mization process is, for most sets of parameters, comparable to the budget T . In this

case it is crucial to optimize the parameters to make the convergence of P more rapid.

Due to the resemblance that such approaches bear to one hypothetic mechanism of

cognitive insight [127] I call this methodology reformulation in optimization.

Reformulation divides the resources between several optimization processes with

different values of the parameters. The simplest strategy is to allocate a small amount

of resources to each (a, b) ∈ A × B, measure the increase in fitness that resulted in

each case and allocate the rest of the resources to the value that produced the best
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fitness (fig. 5.1). This approach works well if the effort function is such that for every

value of the parameters the results that are obtained with any fixed amount of effort

are indicative of the results that can be obtained with any larger amount of effort (fig.

5.1 (a)). I will call effort functions that possess this property convex. For non-convex

effort functions this simple strategy may yield inconclusive results (fig. 5.1 (b)) or

converge prematurely to the parameter values that permit more rapid improvement

of the solution, but ultimately reach lower fitness (fig. 5.1 (c)).

Often, size of the set A×B prevents all the values of the parameters to be explored

at once. Typical strategy in this case is to explore a subset of the parameters settings

at any given time. It is important, however, to compare parameters setting using the

same amount of resources. If the resources are allocated in parallel to several compet-

ing parameters settings, then the ones that are considered for a longer period of time

will reach higher values of fitness due to more resources spent and outcompete even

the parameters settings that have superior rate of convergence. Thus, in memoryless

systems with competition even convex effort functions are deceptive! This problem

is at heart of the difficulty of co-evolving morphology and modularity [20].

Innovation protection through Pareto optimization [102, 22] is an efficient way to

cope with both non-convexity of the effort function and with the deception due to

parallel resource allocation. In this approach, parameter settings that received less

resources can, if they yield higher fitness, displace the parameter settings that received

more, but not the other way around. As the total allocated amount of resources T

grows, resources allocated for any given parameters setting increase indefinitely, and

in the limit of T →∞ the method is guaranteed to find the parameters setting that

produces the best result with this amount.
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Figure 5.1: Simple reformulation strategy and its failure modes. In this approach, each
settings of parameters is evaluated with a certain small amount of resources τI � T . The
approach that yields the best fitness gets the bulk of the resources. (a) For a convex effort
function the approach succeeds, i.e. it finds the setting of the parameters that maximizes
the convergence rate and the final result. (b) If τI is insufficient to improve fitness for
any setting of the parameters, there is no winner. (c) If τI is insufficient to discriminate
between an approach that converges rapidly, but to a low value of fitness, and an approach
that converges slowly, but to a higher value, then the wrong combination of parameters will
be chosen.
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Another issue of the reformulation methodology has to do with the fact that not

all parameters in a and b have appreciable impact on how rapidly the convergence

occurs. If the parameters that are varied during the optimization do not affect the rate

of convergence, reformulation approaches will not be much more effective than simply

using all the budget on a single value of the parameters selected randomly. Hence, it

is crucial to ensure that at least some parameters do influence the convergence rate.

Following the terminology of chapter 3, I’ll call them driving variables.

Presence of strong effect of some variables in a and b on the convergence rate

becomes even more important once we consider a more realistic setting in which

the optimization algorithm is stochastic. In this case effort function becomes ef-

fort distribution function which maps the effort spent optimizing fa with Pb to

a probability distribution of the outcome (i.e., the maximum estimate produced). If

variance of such distribution is comparable to the size of the effect of changing a

variable, then parameters optimization algorithm will need many costly evaluations

to determine the effect of changing the parameters. On the other hand, if the variable

is pronouncedly driving (i.e. has a strong effect on how fast the algorithm converges,

compared to variances of the outcome distributions), then a single short run of the

optimization algorithm will show which value of the variable leads to a more rapid

convergence with high probability.

Certain parameters can influence how other parameters affect the convergence

rate of the underlying search. By choosing values of such parameters it is possible

to make driving strongly variables out of variables that have slight or no effect on

the convergence rate otherwise. This observation is at the heart of the guided re-

formulation heuristic (chapter 3) which states that whether or not a bias is applied
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to the underlying optimization process is one such variable. The heuristic itself is as

follows: if domain knowledge available suggests that for a certain value of a certain

task parameter ai or optimization process parameter bi some bias makes the task very

simple, then the reformulation process is likely to be more rapid if the bias is applied.

5.2 Significance Of Findings

In the opinion of the author, the biggest contribution of the present thesis is the

reformulation framework. Although the idea of reformulation is not novel (see e.g.

[25]), to the best of my knowledge, this thesis is the first instance of this idea being

used to tie multiple concepts from the field of global optimization into a coherent pic-

ture. The result enables to reason and make predictions about optimization processes

with multiple time scales, as I’ve done in chapters 3 and 4.

One idea developed within this framework is the guided reformulation heuristic

that can make it possible to automatically reformulate and solve some tasks that

otherwise resist the reformulation approach. I applied it to the synthetic task of

optimizing Arrowbot controllers (chapter 3), but it can be applied to any task for

which there is a bias in the primary variables optimization that is known to trivialize

the task for some unknown values of some additional variables.

Author hopes that these concepts find applications in the development of optimiz-

ing systems and evolutionary theory. The ideas are especially relevant to evolutionary

robotics and reinforcement learning, although their scope is by no means limited to

these areas.

In addition, several result specific to robotics were obtained. I have shown that
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morphology can influence feasibility of modular control, both analytically and by

evolving the controllers (chapter 2). This provides a useful heuristic for robot design-

ers: modularity of control must be considered at the same stage as when robot’s body

is developed. Analytical side of my work provides some insights into the interplay

between the sensorymotor interactions induced by the body and modular control,

which again may be useful in robotic design.

Further, I have shown that the morphology-modularity dependence can be used

to systematically search for robots that can be controlled with simple, modular con-

trollers (chapter 3). Although the exact scope of this method remains unknown, it

has shown promising results for at least one task and environment.

Finally, I developed a new method for evolving modular networks by initializing

search with sparse networks (Appendix A.1). The method does not require adding

any Pareto optimization objectives, which makes it ideal for the cases when number

of such objectives is a concern. Simplicity of the method allows it to be used in a

wide variety of network optimization applications.

To conclude, this dissertation tackles two out of three issues I listed that con-

tribute to preventing evolutionary robotics and design-by-optimization approaches

to engineering from scaling up: catastrophic forgetting and the bootstrap problem.

Additionally, deception is studied to some extent in chapter 3. Although it solves

none of these issues, it provides a toolset – reformulation theory – for attacking at

least some of their aspects. Author hopes that the contributions will be useful in the

development of autonomous agents that can operate in complex environments.
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5.3 Future Work

More information on the scope of reformulation approach is needed, especially in

its relation to modularity in evolutionary robotics:

1. There seems to be a deep connection between the structure of the environment,

agent’s morphology and feasibility/evolvability of modular control. Research

question that can be asked here is as follows: is it possible to make an

a priori, heuristic guess about which design variables are likely to

influence the optimization rate of others strongly and under which

conditions? Within this work I established that morphology is one such group

of variables if control is optimized with a bias towards modularity. I do hope,

however, that it is possible to be more specific and find out which features of

morphology make its influence on modularity of control so profound.

An answer to this question would inevitably involve some general model of

the task-environment-robot’s body and the morphological degrees of freedom.

Ashby [1] used diagrams of immediate effects, but my preliminary investigations

show that these are not sufficient in some practically important settings (e.g.

locomotion). Different types of causal or dynamical will have to be considered.

2. A related problem is defining the mutation operator for the slow timescale in

such a way that it is not likely to change the rate of convergence of the fast

timescale by much. If the mutation operator does not satisfy this requirement,

the slow timescale part of the evolution is likely to only be as efficient as ran-

dom search. With the hypothesized direct relation between the existence on a
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modular solution and the rate of convergence of the fast timescale, the question

can be reformulated as follows: given a choice of driving variables, it is

possible to design a way to mutate them that is unlikely to not change

the convergence rate of the fast timescale by much?

Again, solving this task requires some a general world model to figure our how a

mutation operator tweaking the driving variables might influence the structure

of the solutions.

3. One particularly prospective idea for searching for strongly driving variables

that rely on the modularity bias is the idea of conditional modularity. In

many complex systems, keeping certain variables within certain limits drasti-

cally reduces the complexity of the interactions within the systems and allows

for simpler control. Some examples include the constant body temperature in

birds and mammals that makes it possible to exhibit a richer set of biochemical

behaviors; in metal recycling, heating the scrap above its melting point helps to

avoid dealing with its complex structure. In both of these examples temperature

happens to be the variable that governs the complexity of the system. How

can we find such variables given some limited information about the

class of system and possibly the capacity to run some experiments?

4. Preliminary investigations suggest that in some tasks, time pressure can be

the factor that pushes the optimal solutions towards more dense de-

pendence of parts. Since this factor is present in many practically important

tasks, it is desirable to investigate its interaction with the evolutionary tech-

niques biased towards structural modularity (and thus sparsity).
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5. To increase the range of the systems for which the approach is helpful, the

interaction of the approach with generative encodings for morphology

and control should be considered.
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Appendix A

Appendix

A.1 Exploiting The Relationship

Between Structural Modularity

And Sparsity For Faster

Network Evolution

This work has been published as Bernatskiy, Anton, and Bongard, Josh C.. (2015)

"Exploiting the relationship between structural modularity and sparsity for faster

network evolution." Proceedings of the Companion Publication of the 2015 Annual

Conference on Genetic and Evolutionary Computation.
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Abstract

A network is structurally modular if it can be divided into tightly connected

groups which are weakly connected or disconnected from each other. Such networks

are known to be capable of fast evolutionary adaptation, which makes modularity

a highly desired property of networks involved in evolutionary computation. Mod-

ularity is known to correlate positively with another network parameter, sparsity.

Based on this relationship, we hypothesize that starting evolution with a population

of sparse networks should increase the modularity of the evolved networks. We find

that this technique can enhance the performance of an existing technique for mod-

ularity evolution, multiobjective performance-connection cost (P&CC) optimization,

and enable a multiobjective algorithm which maximizes performance and minimizes

time since last mutation to produce modular solutions almost as efficiently as the

P&CC optimization does.

Introduction

Many problems in engineering can be reduced to global optimization of a function

f(G) mapping a set of networks (possibly directed and/or weighted) G onto some set

of real numbers R ⊂ R. Suppose G is a set of all possible networks with N nodes

and up to ∼ N2) edges. Further, each edge has one of C possible weights associated

with it (absent connections are defined to have a weight of 0). There are on the order

of CN2 such networks. In the worst case, solving the optimization problem involves

computing f(G) for all G ∈ G, i.e. an exponential number of operations.

Two approaches are utilized to cope with this complexity. First, instead of look-
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ing for the global optimum, a reasonably good solution which can be obtained in a

reasonable time is sought. To this end, metaheuristic methods such as evolution-

ary computation are utilized. The second approach involves constraining or biasing

search towards some small subset of G. The subset is selected heuristically in such a

way that it is likely to contain or to be close to some reasonably good solution.

Indirect encodings (e.g. [112]) and additional optimization objectives (e.g. [26])

have been developed which bias the search towards small subsets of the search space.

These methods perform well on a wide range of tasks.

A lot of attention has been attracted to the subset of networks possessing struc-

tural modularity, a widespread property of biological networks [45]. A network is

modular if it can be divided into subgraphs with strong connections within them,

but with little or no connections between them. It has been shown that many prac-

tical tasks have modular solutions which are reasonably good [12, 17, 26, 36, 56]. It

was also found that modular solutions evolve more rapidly than their nonmodular

counterparts in nonstationary environments [36] and that they generalize better [1,

121].

A variety of techniques for evolving modular networks has been suggested [26, 36,

56, 17]. One trait that many of these techniques share is an explicit [26] or implicit

[36] bias of the evolutionary process towards sparse networks.

Clune et al [26] established that modularity evolves if connection cost is minimized

while the network performance is maximized in a Pareto front-based multiobjective

evolution. They also demonstrated that such an algorithm produces solutions with

higher fitness compared to the case when the performance of a network is the only

objective, and that this fitness was arrived at in fewer generations. They concluded
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that the influence of the connection cost pushed the population towards the region of

the search space with sparser networks. Since sparse networks have less connections

and, correspondingly, weights to be optimized, they adapt more rapidly than dense

networks.

To explain the increase in modularity, they examined the search space and found

a negative correlation between network density and modularity both in random and

in highly fit networks.

Alternatively, one can think of this in terms of graph sets: the bias towards sparse

networks causes search to optimize fitness on the set of sparse networks first, and

this set is much smaller than the set of all possible networks. Due to the relationship

between modularity and sparsity mentioned above, the set of sparse networks happens

to contain many modular networks, which makes this approach even more efficient.

In [26], evolution was initialized with a population of networks generated by as-

signing weights to all possible connections at random. Such networks are dense. From

the optimization point of view, they are probing the unconstrained set of networks,

which is inefficient. They are also not likely to be modular. Plots of density versus

modularity versus generation provided in [26] show that it takes a number of genera-

tions for the population to reach a region of the search space with sparser and more

modular networks.

The fact that the population was seeded with networks with O(N2) connections

leads us to believe that this transient becomes longer for larger networks. Here we

show that seeding evolution with a population of sparse networks can remove this

transient, which results in more rapid adaptation and increased modularity, espe-

cially for larger values of N . We also demonstrate that, given that the evolution
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starts with a population of sparse networks, it is possible to replace the connection

cost objective with another objective of minimizing the time since the last mutation

without significantly affecting the speed of adaptation. This, however, comes with

the expense of destabilizing the process of modularity growth, resulting in a decrease

of the final modularity metric Q.

Methods

Here we describe the particular network optimization problem chosen for testing

our hypothesis and the algorithms involved. All materials for replicating this work

are available at http://git.io/vUmrG.

Task: We use evolution of attractors in boolean networks as an example problem

for our study. The networks and their dynamic are identical to the ones described in

[36].

Boolean networks are dynamical systems which are often used as simple models

of gene regulatory networks (GRNs) found in biological cells. The state of each gene

j is represented by a variable sj which can be equal to either −1 or 1. Complete

state of the network at time t is a vector of states of N individual genes, s(t) =

(s1(t), s2(t), ..., sN(t)). It determines the state of the network at the next time step

as follows:

si(t+ 1) = σ

 N∑
j=1

aijsj(t)
 . (A.1)

Here, aij ∈ {−1, 0, 1} is a strength of connection from gene i to gene j. Function

σ(x) is defined to be −1 if x < 0 and +1 otherwise.

Such a network has a point attractor (hereafter referred to as just “attractor”) at
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state s′ if for some set S of two or more initial conditions the state of the network

converges over time to s′ and then stops changing altogether.

The task for the evolutionary algorithms described in this work is to find a matrix

of connection strength values A which describes a network with a desired attractor.

Fitness: Fitness of a network of N genes is defined against a target attractor s′. For

every target attractor s′ we tested whether the network dynamics converges to it if

it starts at a close initial state. We began by generating a set S ′ of N perturbed

attractor states, each of which differs from s′ at exactly one gene. Then we carried

out the network dynamics (A.1) starting from every state s in S ′ for 20 iterations or

until convergence to some state t (potentially different from s′).

The fitness of the network was then computed as

f(s′) = 1− e−3g, (A.2)

where

g = 1
N

∑
s∈S′

(1−D(s)/N)5, (A.3)

where D(s) is the Hamming distance between s and t if the convergence did happen

and N otherwise.

Note that this fitness function differs from the one used in [36] only in the way in

which the set S ′j is generated. The difference was introduced to reduce the time of

computation.

Optimization objectives: We compare the performance of a multiobjective evo-

lutionary algorithm under different sets of objectives. For the sake of uniformity we

reduce all objectives to a minimization of some function or property of a network.
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Three objectives are used throughout the paper:

1. Performance (P) objective, implemented as minimization of −f , where f is the

fitness function.

2. Connection cost (CC) objective, implemented as minimization of the total num-

ber of connections.

3. Time-since-mutation (TSM) objective, which minimizes the number of gener-

ations since the last mutation of the network. The term is chosen to contrast

with an established “age” objective [102], which minimizes the number of gen-

erations since the emergence of network’s family tree. The objective was chosen

as to test whether diversity-promoting objective can facilitate the evolution of

modular networks and because it does not require a metric in the space of pos-

sible behaviors (a requirement for using the novelty objective [82]) nor periodic

injections of random genomes into the population ([102]).

All objective sets considered in this paper include exactly two objectives.

Evolutionary algorithm: We employ a simple biobjective evolutionary algorithm

which relies on the concept of stochastic Pareto dominance. For a pair of net-

works (A,B) and a pair of minimizable functions (f, g), we determine whether A

stochastically dominates B by first generating a uniformly distributed random num-

ber r ∈ [0, 1) and comparing it to a user-defined constant p ∈ [0, 1]. If r > p,

only the first objective f is taken into account and the dominance is established if

f(A) < f(B). If r 6 p, both objectives are taken into account and A dominates B if

either of the following conditions holds:

1. f(A) < f(B) and g(A) 6 g(B),
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2. g(A) < g(B) and f(A) 6 f(B),

3. f(A) = f(B) and g(A) = g(B) and ID(A) < ID(B).

Here, ID(X) refers to the identification number of the network, a value of a global

integer which is incremented every time any network in the population is created or

mutated, starting from 0. The value is recorded at the moment of the X network’s

mutation or creation. Thus, ID(A) < ID(B) indicates that the network A was either

generated or mutated before network B.

The constant p describes a probability that the second objective is taken into

account. If p = 1, stochastic Pareto dominance becomes deterministic, making the

comparison between the networks simpler. However, it has been shown in [26] that

evolution with the objectives of performance and connection cost (P&CC) has the

best convergence rate when p is distant from both 0 and 1. Despite the differences in

the stochastic Pareto dominance definition and in the selection strategy, we were able

to confirm this result in our preliminary trials (data not shown). Hence, we chose

not to switch to deterministic Pareto dominance in our comparison of the P&CC

approach to other approaches.

The Pareto front is defined as a subset P ′ of a population P consisting of all

elements of P which are not stochastically dominated by any network in P . At

every generation increment, the algorithm finds the Pareto front P ′ in the current

population and adds it to the new population. When done, the algorithm selects a

network from the Pareto front at random, makes a copy, mutates it and appends the

resulting offspring to the new population. This cycle is repeated until the sizes of the

populations become equal, at which point the new population replaces the old one.

In all of our experiments the population was composed of 100 networks.
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Mutation operator: Mutation operator acts on network’s nodes, having a fixed

probability of 0.05 to change the set of strengths of incoming connections to any

given gene. One of the following operations may be performed on the gene:

1. Insertion adds an incoming connection with a strength randomly selected from

{−1, 1}. The gene at the tail of the new connection is selected at random among

the genes which do not yet have a connection from them to the current gene.

2. Deletion deletes a randomly selected incoming connection of the current gene

by setting its weight to 0.

3. Density-preserving mutation, which is a deletion event followed by an insertion

event.

The probability of density-preserving mutation pdpm = 0.5 in all our experiments.

Probabilities of insertion pins and deletion pdel are controlled using their ratio rinsdel ≡

pins/pdel. In all of our experiments this ratio was set to 1.

If any operation is impossible, e.g. if there is no incoming connections to this node

and deletion is invoked, the node’s incoming connections remain unchanged. Thus,

density-preserving mutation only really preserves density when it is applied to a node

with one or more incoming connections.

Initial populations: We consider two types of initial populations of the networks.

We will say that an initial population is composed of random networks if the networks

are generated by choosing connection strength from {−1, 0, 1} at random for every

possible connection in the network.

The alternative to this is to build the initial population out of randomly gener-

ated sparse networks. To obtain such a networks, we create a network without any
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connections and mutate it once. In the resulting network every node has at most one

incoming connection and possibly multiple outgoing connections.

Modularity metric: We quantify the modularity of evolved networks using the

Q metric (e.g. [26, 36]). For a given decomposition of a network into modules it

measures the difference between the actual fraction of the edges within modules and

the expected fraction of edges for a random network of the same density. Q is defined

to be the maximum value of such a difference across all possible decompositions of a

network into modules. To find the optimal decomposition, we use Fast Unfolding of

Communities method [10].

Density: The density of the network is defined as the number of connections in the

network divided by the total number of possible connections, N2.

Results

We investigated the performance of our multiobjective evolutionary algorithm (see

Methods) under the following three sets of objectives and conditions:

P&CC-random This setup is similar to [26]. Following [26], the probability that the

connection cost objective is taken into account was set to p = 0.25. Evolution

starts with an initial population of random networks.

P&CC-sparse Same as P&CC-random, but the initial population is composed of

randomly generated sparse networks.

P&TSM-sparse The two objectives of performance and TSM are taken into account

deterministically (p = 1). Evolution starts with a population of sparse networks.
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The performance of the approaches was measured using the task of finding a network

with N nodes and N2 possible connections that settles into the attractor in which

neighboring gene values are maximally different:

s′ = (1− 2(i mod 2) for i = 1, 2, ..., N).

Two variants of this task were considered: variant A with N = 10 and variant B with

N = 30.

The comparison is presented in Fig. A.1. In both tasks, the P&CC-random

approach led to slower adaptation than both the P&CC-sparse and P&TSM-sparse

approaches. For task A, the average fitness for P&CC-random across 100 runs was

significantly lower than the fitness for both P&CC-sparse (p = 6·10−5 with the Mann-

Whitney U test implementation from scipy.stats) and P&TSM-sparse (p < 2 · 10−6)

at generation 25. Later in the evolutionary history P&CC-random reaches the same

values of fitness as P&TSM-sparse does, marginally surpassing the P&CC-sparse

approach (p < 3 · 10−3 at generation 125).

For the more complex task B, the speedup caused by seeding the initial population

with sparse networks is greater. Here, P&CC-random’s fitness was worse than the

fitness of the two other approaches throughout the whole run of 2250 generations

(p < 6 · 10−14). The two approaches which start with populations of sparse networks

– P&CC-sparse and P&TSM-sparse – show similar adaptation curves for both tasks,

with P&TSM-sparse performing slightly better (p < 4 · 10−5 for generations 50-800;

the highest ratio of the mean fitnesses is 1.054).

The patterns of variation of the Q value are different for all approaches. For both

tasks the connection cost-based techniques both evolve networks with high Q which
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Figure A.1: Comparison of parameters of the most fit networks evolved with different ap-
proaches. Columns A and B correspond to tasks A and B in the text. The lines represent
mean values over 100 runs; bands are 95% confidence intervals for Student t-distribution.
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is maintained among the champions of subsequent generations. However, it takes

less generations for P&CC-sparse than it does for P&CC-random. The number of

the required generations has increased approximately ninefold for task B, which is in

agreement with out O(N2) hypothesis. The final Q value achieved by the P&CC-

sparse approach is higher than that of P&CC-random for both tasks (p < 4 · 10−6).

For both tasks the Q metric of P&TSM-sparse follows the same rising pattern as

it does for P&CC-sparse during the first few generations. Both approaches develop

highly modular solutions at this point, but for subsequent generations modularity

of P&TSM-sparse solutions falls rapidly while the modularity of P&CC-sparse solu-

tions remains the same. This ultimately causes P&TSM-sparse to produce the least

modular solutions for both tasks (p < 9 · 10−5).

The changes in density follow the changes in Q values. For task A, P&CC-random

and P&CC-sparse stabilize at similarly low density, although it takes longer for

P&CC-random to reach this state. For task B, the P&CC-random method evolves

networks whose density stabilizes at a much higher value, perhaps due to the al-

gorithm becoming trapped at local optima. For the P&TSM-sparse approach, the

density keeps growing, but growth slows over generations.

Discussion

Our findings confirm that seeding evolution with a population of randomly gener-

ated sparse networks can facilitate the evolution of modularity and increase the rate

of adaptation. In our experiments this approach worked better for when we evolved

bigger networks.

We demonstrated that this effect is present for a biobjective performance plus
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connection cost (P&CC) algorithm similar, but not identical, to the one described in

[26]. However, when we seeded a multiobjective algorithm which minimized time since

the last mutation instead of connection cost (P&TSM), we found that this initial in-

crease in modularity decays over generations. Despite this, the new algorithm adapts

approximately as fast as (and sometimes faster than) the P&CC-sparse algorithm for

our task.

These results suggest that it is possible to replace the connection cost objective

with another objective and still obtain, at equivalent evolutionary rate, networks

of equivalent performance, possibly at the expense of some penalty to modularity.

We speculate that replacement of connection cost with another diversity-promoting

objective such as age [102] or novelty [82] may be beneficial for some harder tasks.
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