
1

A Scalable Genome Representation for Neural-Symbolic

Networks

Joe Townsend, Antony Galton and Ed Keedwell
College of Engineering, Mathematics and Physical Sciences, Harrison Building, University

of Exeter, North Park Road. Exeter, EX4 4QF
jt231@ex.ac.uk, A.P.Galton@ex.ac.uk , E.C.Keedwell@ex.ac.uk

Abstract. Neural networks that are capable of representing

symbolic information such as logic programs are said to be

neural-symbolic. Because the human mind is composed of

interconnected neurons and is capable of storing and processing

symbolic information, neural-symbolic networks contribute
towards a model of human cognition. Given that natural

evolution and development are capable of producing biological

networks that are able to process logic, it may be possible to

produce their artificial counterparts through evolutionary

algorithms that have developmental properties. The first step
towards this goal is to design a genome representation of a

neural-symbolic network. This paper presents a genome that

directs the growth of neural-symbolic networks constructed

according to a model known as SHRUTI. The genome is

successful in producing SHRUTI networks that learn to
represent relations between logical predicates based on

observations of sequences of predicate instances. A practical

advantage of the genome is that its length is independent of the

size of the network it encodes, because rather than explicitly

encoding a network topology, it encodes a set of developmental
rules. This approach to encoding structure in a genome also has

biological grounding.

1 INTRODUCTION

Neural-Symbolic Integration [1, 9] is a field in which symbolic

and sub-symbolic approaches to artificial intelligence are united
by representing logic programs as neural networks or by

developing methods of extracting knowledge from trained

networks. The motivation behind this work is either the

construction of effective reasoning systems, the understanding of

knowledge encoded in neural networks, a model of human
cognition, or a combination of these.

It may be possible to find powerful neural-symbolic

networks through an evolutionary search. However, as the size

of a logic program increases, so does the size of the network

used to represent it. An evolutionary search for larger networks
would take longer than it would for smaller networks as the

search space would be larger, unless networks can be

represented in a scalable way. Artificial development is a sub-

field of evolutionary computing in which genomes encode rules

for the gradual development of phenotypes rather than encoding
their structures explicitly [3]. The genomes are scalable because

genomes of equal length can produce solutions of different sizes.

Among other applications, this encoding method can be applied

to the representation of neural networks. This method of

encoding networks is referred to as indirect encoding.

In addition to producing powerful reasoning systems,

representing neural-symbolic networks in this way is more

biologically plausible than encoding topologies directly. Because

neural-symbolic networks claim to be a step towards a model of

human cognition, it seems reasonable to develop them in a way
which is also biologically plausible. If human cognition can be

produced through evolution and development, then perhaps an

artificial model of cognition can be produced through artificial

models of evolution and development.

No attempt has yet been made to evolve neural-symbolic
networks using artificial development. This paper introduces a

scalable genome representation of neural-symbolic networks

which adhere to a model known as SHRUTI [22, 23]. The

genome was successful in its ability to construct four SHRUTI

networks that were able to learn a set of relations between
logical predicates. The intention is to eventually produce these

genomes using an evolutionary algorithm, but this algorithm has

yet to be implemented. Nonetheless, if SHRUTI networks can be

produced through artificial development, it opens the possibility

that other neural-symbolic models can be too. Section 2 provides
an overview of SHRUTI and artificial development models used

for the evolution of standard neural networks. Section 3

describes the experiments performed, the genome model used in

these experiments and the target networks. Section 4 presents

and discusses the results and section 5 concludes.

2 BACKGROUND

2.1 SHRUTI

SHRUTI is a neural-symbolic model in which predicates are
represented as clusters of neurons and the relations between

them as connections between those neurons [22, 23]. Predicate

arguments are bound to entities filling the roles of those

arguments by the synchronous firing of the neurons representing

them. There is therefore no need to create a connection for every
argument-entity combination. The SHRUTI authors claim that

their approach, known as temporal synchrony, has biological

grounding in that it is used for signal processing in biological

neurons. SHRUTI can be used for forward or backward

reasoning. In forward reasoning, the system is used to predict all
the consequences of the facts. In backward reasoning, the system

is used to confirm or deny the truth of a predicate instance based

on the facts encoded. In other words, a backward reasoner

answers �true or false� questions. This paper concerns backward

reasoning only.
Figure 1 provides an example of a basic SHRUTI network.

Argument and entity neurons fire signals in phases, and a

predicate is instantiated by firing its argument neurons in phase

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/43097966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

with the entities fulfilling roles in the predicate instance. The

other neurons in a predicate cluster fire signals of continuous

phase only upon receipt of signals of the same nature. Positive

and negative collectors (labelled �+� and �-�) fire when the

current predicate instance is found to be true or false
respectively, and enablers (labelled �?�) fire when the truth value

of the current predicate instance is queried. Relations between

predicates are established by linking corresponding neurons such

that argument bindings are propagated between predicates. Facts

are represented by static bindings between entities and predicate
arguments such that the firing of a corresponding fact neuron

(represented as a triangle in figure 1) is inhibited if the current

dynamic bindings of the predicate do not match the static

bindings of the fact.

Figure 1 � A simple SHRUTI network for the relations

Give(x,y,z) ! Own(y,z) and Buy(x,y) ! Own(x,y) and the

facts Give(John, Mary, Book) and Buy(Paul,y)

The example network in figure 1 represents the relations
Give(x,y,z) ! Own(y,z) (if person x gives z to person y, then

person y owns z) and Buy(x,y) ! Own(x,y) (if person x buys y,

then person x owns y). Also, two facts are represented:

give(John,Mary,Book) (John gave Mary the book) and

buy(Paul,x) (Paul bought something). This network is configured
for backward reasoning. If one wishes to find the truth for

own(Mary, Book) (Does Mary own the Book?), an instance of

the own predicate must first be created by firing its owner and

object neurons in the same phases as the neurons representing

Mary and Book respectively. This creates a pair of dynamic
bindings. The enabler (?) of own must also be fired to indicate

that a search of own�s current instance is sought. The dynamic

bindings are propagated along the connections to give and buy

such that the neurons representing recipient and buyer are now
firing in phase with Mary and the neurons representing object for

give and buy are firing in phase with Book. Give and buy are

therefore instantiated with the queries give(x, Mary, Book) (did

somebody give Mary the book?) and buy(Mary, Book) (did Mary

buy the book?). The dynamic bindings are then propagated to the
static bindings representing facts. The static bindings of

buy(Paul,x) do not match the dynamic bindings of buy(Mary,

Book), and so the static bindings inhibit the firing of the

corresponding fact node which would otherwise activate the

positive collector of buy. However, the dynamic bindings of
give(x, Mary, Book) do match the static bindings of

give(John,Mary,Book). The corresponding fact node is therefore

not inhibited and activates the positive collector of give to assert

that give(x, Mary, Book) is true. This collector in turn activates

the positive collector of own to assert that own(Mary, Book) is

also true, i.e. that Mary does indeed own the book.

There are many more features which may be included in a
SHRUTI network. The literature also presents means of

restricting dynamic bindings by entity types, conjoining

predicates, enabling multiple instantiations of a predicate, and

many other features. More complex models even use multiple

neurons to represent one argument or entity, as the use of only
one neuron to represent a concept lacks biological plausibility.

One particular feature worth discussing in further detail is

SHRUTI�s learning mechanism [26] since it plays an important

role in the developmental process discussed later in this paper.

SHRUTI�s learning mechanism takes inspiration from
Hebbian learning [10]. The training data is a sequence of events

(predicate instances) observed over time that reflect the causal

relations between the predicates. When two predicates are

observed within a fixed time window, any connections

representing relations between them are strengthened to increase
the likelihood that the predicate observed first is a cause of the

second. After a predicate is observed, any predicates that are

connected to it but are not observed within the time window

have those connections weakened to reflect the likelihood that

they are not consequents of the first predicate. When a weight !
is strengthened, it is updated according to equation 1. When ! is

weakened, it is updated according to equation 2. In both cases,

the learning rate " is defined according to equation 3. This

ensures that it becomes more difficult to change a relation for

which evidence has been observed a large number of times.

(1)

(2)

(3)

For example, if B(a,b) is observed shortly after A(a,b),

connections will be updated to reflect A(x,y) # B(x,y).
However, if A(a,b) is observed with no immediate observation of

B(a,b), the same connection weights are weakened to reflect the

lack of a relation between the two predicates. A new predicate

can be recruited into the network once the connection weights of

its neurons have gained sufficient strength.
The SHRUTI developers argue that some level of pre-

organisation would be necessary for this learning model to work,

and that this pre-organisation could be the product of

evolutionary and developmental processes. To support the

biological plausibility of pre-organisation, they point to the work
of Marcus [16], who proposed ideas similar to those found in

artificial development. However, a further review of literature

has failed to find any attempts to produce SHRUTI networks

using artificial development or similar methods. This is what

motivates the ideas proposed in this paper.

2.2 Artificial Development of Neural Networks

Artificial development is a form of evolutionary computing in

which the genome encodes instructions for the gradual

development of the phenotype. This method is argued to be more
biologically plausible than the alternative of encoding the

structure of a phenotype explicitly in the genome, as it is closer

3

to the means by which DNA encodes biological structures.

Dawkins argues that DNA is not a blueprint of biological

structure but is more like a recipe for its construction [5].

Artificial development can be applied to a range of problems,

and Chavoya provides a recent overview of artificial
development models [3]. However, this paper is only concerned

with the artificial development of neural networks.

One approach to evolving neural networks involves

genomes which encode network topologies [24, 25]. For

example, the genome may contain a list of neurons and another
list of connections between them, or it may represent a

connection matrix. Such methods of encoding are often referred

to as direct encoding. The disadvantage of direct encoding is that

the size of the genome increases in proportion to that of the

network it represents. The alternative, indirect encoding,
overcomes this problem by encoding a set of rules for the

gradual development of the network. Just as a biological

organism�s cells all contain the same DNA, neurons within

networks encoded by indirect encoding all contain or refer to a

copy of the same genome, which represents a set of
developmental rules. These rules provide instructions as to how

the neuron should develop, for example by duplicating or

deleting itself or by establishing a connection to another neuron.

The developmental process often begins with only one neuron.

When a neuron divides, its genome is passed on to both of its
children, which is how all neurons are able to share the same

genome. Which developmental operation takes place depends on

the current attributes of the neuron. Therefore even though all

neurons share the same genome, which developmental

operations are executed at which point in time will not
necessarily be the same for each neuron. Some models for the

artificial development of neural networks use graph grammars

inspired by Lindenmayer systems [15], whereas others use more

biologically inspired ideas where neurons and connections are

defined in a two or three dimensional Euclidean grid space.
Figure 2 presents grammar trees used by Gruau to define

cell division processes [8]. Each node in the tree describes a cell

(neuron) division. The children of each node describe the

following division for each child neuron produced by the

previous division. Separate grammar trees define sub-trees, the
roots of which can be referenced by leaf nodes of the main tree.

A sub-structure can therefore be encoded once but reused

multiple times. As a consequence, genomes are more compact

and convergence speed during evolution is reduced because the

search space is smaller. Kitano used grammar encoding to
develop connection matrices [12, 13]. This method could also

produce repeated sub-structures, evident from repeated patterns

in the connection matrices produced.

Figure 2 � Gruau�s grammar trees. Each node corresponds

to a cell division. The left-most tree describes the initial
divisions from the root, and the second tree describes sub-

trees which may grow from the leaves of the first tree. The

third tree depicts the overall cell division process.

In the more biologically inspired methods, neurons and their

connections (often regarded as axons, as with actual biological

neurons) have positional attributes. A neuron's axon grows in the

grid space, guided by developmental rules encoded in the

genome, and form a connection when they come into contact
with another neuron. The positional information of a neuron and

its axons can be used to influence development. Eggenberger

employed this idea using gene regulation [6, 7]. The activation

of one gene, in addition to producing or deleting cells or

connections, may also activate or inhibit the activation of other
genes in the genome. Information can be passed between cells

and the between the genes in those cells using artificial

molecules. Concentration gradients of these molecules provide

the positional information required to direct growth. Kitano also

developed a similar model [14]. A different approach has been to
use Cartesian genetic programs [18] to influence development in

a grid [11]. The genome represents a set of seven interconnected

programs. Three of these programs control signal processing in

neurons, three control life-cycle processes such as the addition

and deletion of neurons, and another controls weight updates.
Nolfi and Parisi used a means of measuring the fitness of a

developing network that may prove useful in further research

[19, 20]. Rather than simply measuring fitness at the end of the

life-cycle of each phenotype, fitness was measured at different

stages throughout development in order to observe how fitness
increased over time. Such information on how the phenotype

develops may be useful in the calculation of an overall fitness.

For example, one might wish to measure overall fitness as the

area under the fitness-time graph.

3 METHOD

A scalable genome model for the development of SHRUTI

networks was produced, and the aim of the experiments

conducted was to demonstrate, using an instance of this genome

model, that the model could be used to develop four networks

that could learn a set of logical relations between predicates
based on a series of observed events. Each event was a predicate

instance and each event sequence was representative of the

relationships between the predicates in each logic program.

Experiments were later repeated with shuffled event sequences

in order to observe whether or not the genome could still develop
networks which could represent the same logic programs. In

additional experiments, sections of the genome were removed in

order to see how the structures of the developed networks were

affected. This section outlines how a SHRUTI model was

implemented for these experiments, the genome model used to
represent this implementation, and the target networks that were

developed by the genome.

3.1 SHRUTI implementation

It seems reasonable to attempt the artificial development of a
simple SHRUTI network before the development of more

complex features is attempted. Therefore the basic SHRUTI

model capable of learning as described in section 2.1 was

implemented but more complicated features such as type

restrictions and conjunction were excluded.
A minor adjustment was made to the learning mechanism in

order to overcome difficulties learning certain structures. If two

relations exist which share the same antecedent but with

different signs for that antecedent, the system struggles to learn

 S S S

 R

 S

 S

 R

 S

 S

+ =

4

both relations because the strengthening of one weakens the

other unless both relations have been observed a sufficient

number of times. To explain why this occurs, the learning of the

relations P(x,y) # Q(x,y) and ¬P(x,y) # R(x,y) will be used as

an example. The collectors of Q and R receive input from
different collectors of P (+P and -P respectively). However, the

enablers of Q and R both provide input to the same (and only)

enabler of P (?P). Observation of P(x,y) and Q(x,y) within the

time window will strengthen the connection from +P to +Q and

the connection from ?Q to ?P. However, since ?P is activated
and ?R is not, the connection from ?R to ?P will weaken.

Likewise, if -P(x,y) and R(x,y) are observed within the time

window, The connection from ?R to ?P will strengthen but the

connection from ?Q to ?P will weaken.

To overcome this problem, the learning mechanism was
configured by adjusting the learning rate " to update by a greater

magnitude when strengthening weights than when weakening

them. Therefore when weakening weights, " is defined as in

equation 3, but when strengthening weights it is increased as

shown in equation 4:

(4)

This makes it possible to learn these conflicting pairs of

relations as long as the events that reflect them occur a sufficient
number of times.

3.2 The Genome

In this first genome model, only the connections between

neurons are developed, and not the neurons themselves. This
approach assumes the pre-existence of neuron clusters

representing facts and predicates, but there is room in future

work to attempt the development of these clusters also.

Each genome describes a tree structure in which leaf nodes

represent actions to be performed and all other nodes represent
conditions. Each path through the tree structure from the root

node to a leaf node represents a different rule. After each event

has been observed and weights have been updated accordingly,

the conditions encoded in a genome are tested for each neuron

and each of its existing and possible inputs. If a leaf node is
reached, the action it encodes is executed. The genome labels the

current neuron for which input connections are being made as

SELF. The neuron from which a connection is being considered

is labelled as P_INPUT (possible input) if it does not yet exist

and E_INPUT (existing input) if it does exist.
Figure 3 shows a set of conditions encoded by a genome for

the development of a SHRUTI network and figure 4 shows them

as a decision tree. Figure 5 presents an example of how an input

connection is created using rule 2. To reduce execution time,

conditions which affect SELF are considered first, so that
evaluation of existing or potential inputs is only performed when

necessary. Branching from one condition to another is therefore

limited such that SELF conditions can branch to P_INPUT and

E_INPUT conditions, but P_INPUT and E_INPUT conditions

cannot branch to SELF conditions. The genome begins with a
header containing the genome index of each type of condition

and of the actions.

For each condition, the genome encodes the attribute to be

tested, an operator (<,$,=,%,>,&), and the value to test that

attribute against. Attributes which can be tested in this model are

the neuron's current level of activity, its type (role, enabler or

collector), the total number of inputs, and for existing inputs, the

weight and the number of updates (how many times a connection

has been strengthened or weakened). The genome also specifies

the next condition to test or action to perform in the event of the
current condition being evaluated as true or false. Alternatively,

the tree search can end when a condition is evaluated as false

and no actions are performed. For each action, the genome

specifies one of two types of action to be performed: the addition

or deletion of a connection. If a new connection is to be created,
the genome also specifies the weight of the new connection.

SELF conditions:

1. If activity > 0.5, go to 2, else go to 5

2. If type = role node, go to 8, else go to 3
3. If type = enabler, go to 9, else go to 4

4. If type = collector, go to 10, else end.

E_INPUT conditions:

5. If number of updates > 7, go to 6, else end
6. If weight < 0.5, go to 12, else end.

P_INPUT conditions:

7. If activity > 0.5, go to 11, else end.

8. If type = role node, go to 7, else end.
9. If type = enabler, go to 7, else end.

10. If type = collector, go to 7, else end.

Actions:

11. Add connection with weight 0.1
12. Delete connection

Figure 3 � Conditions represented in the genome.

Figure 4 � A decision tree representation of the conditions

given in figure 3 (T = True, F = False).

T

T

T

F

T

F

Rule 4

(R4)

Rule 3

(R3)

 1

 2

 8

 7

11

 3

 9

 7 10

 7

 4

 5

 6

 12

Rule 1

(R1)

Rule 2

(R2)

 11

11

F

T

T T

T

T

T

T

T

5

Figure 5 � How rule 2 is used to develop connections between

enablers for the rule P(x,y) ! Q(x,y). All nodes are active

and a connection from -P to -Q already exists (1). The

genome in ?P searches for input connections, starting with

-Q (2). Both neurons are active and ?P is an enabler, but -Q
is not, so no connection is made. The test is repeated for ?Q

(3). Both neurons are enablers and both nodes are active, so

an input connection is made (4).

In the genome defined in figures 3 and 4, rule 1 (R1)

establishes connections between active role nodes. Rule 2 (R2)

does the same for enablers and rule 3 (R3) does the same for

collectors. Unwanted connections between neurons will
inevitably form, but after Hebbian learning has taken place, their

weights will weaken. Rule 4 (R4) prunes connections that are

weak despite a large number of updates. A threshold of seven

updates was chosen because this was the minimum value

required to enable all test networks to learn desired connection
weights without those connections being removed too early. This

genome is one of a number which may be defined using this

model to produce working SHRUTI networks.

3.3 Target networks
Figure 6 shows four target networks to be developed using the

genome in figure 3. One of the networks is smaller than others in

order to demonstrate the scalability of the genome. The two

larger networks are of similar sizes but differ in structure. The

logic program represented by the network with the label SubNets
contains a relation and a predicate that are disjoint from the other

relations and from each other. They are therefore each

represented by separate sub-networks.

The initial state of each network is a set of neurons
encoding facts connected to predicates, with the intention that

connections will develop between predicate neurons over time in

order to represent the relations between the predicates. For each

network, a sequence of events in the form of predicate instances

is defined. Each sequence reflects the relations between the
predicates in the corresponding logic program. Different sub-

sequences provide evidence for different sets of transitive

relations. For example, observing the sub-sequence P(a,b),

Q(a,b), R(a,b) supports the transitive pair of relations

P(x,y)#Q(x,y), Q(x,y)#R(x,y).

Small

Expected Relations Facts

P(x,y) # Q(x,y)

¬P(x,y) # R(x,y)

P(a,b)

¬P(c,d)

Large1

Expected Relations Facts

P(x,y) # Q(x,y)

Q(x,y) # ¬R(x,y)

¬Q(x,y) # S(x,y)

¬R(x,y) # ¬T(x,y)

¬R(x,y) # ¬U(x,y)
S(x,y) # V(x,y)

P(a,b)

¬Q(c,d)

Q(e,f)

S(g,h)

Large2

Expected Relations Facts

P(x,y) # ¬Q(x,y)
¬P(x,y) # R(x,y)

¬Q(x,y) # ¬S(x,y)

R(x,y) # T(x,y)

¬R(x,y) # ¬U(x,y)

P(a,b)
¬Q(c,d)

¬P(e,f)

R(g,h)

¬R(i,j)

SubNets

Expected Relations Facts

P(x,y) # Q(x,y) P(a,b)

R(c,d)

¬R(e,f)
¬T(g,h)

V(a,b)

R(x,y) # S(x,y)

¬R(x,y) # T(x,y)

¬T(x,y) # ¬U(x,y)

Figure 6 � Target networks. Each table shows the relations
which were expected to develop and the hard coded facts

which make up the background knowledge. In the logic

program represented by SubNets, the relation P(x,y) !

Q(x,y) and the predicate V(a,b) are disjoint from the other

relations and from each other.

Any number of events may occur at each time t, even zero.

At each t, neurons that represent an observed predicate are fired
and Hebbian learning is used to update the weights of the

connections between the neurons that fire within a fixed time

window of each other in order to build relations between

predicates. Developed networks were tested by inputting �true or

false� questions and fitness was based on the number of
questions answered correctly. The reader is reminded that each

predicate includes two collectors: one positive and one negative,

to assert the truth and falsity of the predicate respectively.

Activation of one of these collectors shall be denoted 1, and

deactivation 0. The truth of a predicate instance is therefore
denoted by (1, 0), falsity by (0, 1), uncertainty by (0, 0) and

contradiction by (1, 1). Fitness is measured as the number of

correct collector activations. For example, consider a question

with expected answer (1, 0). Answering (1, 0) would add 2 to the

fitness, answering (0, 0) or (1, 1) would add 1, and (0, 1) would
add 0.

For each network, the following statistics were recorded: the

number of connection additions and deletions, the final number

of connections and the final number of live connections. A

connection is live when its weight is above the threshold of the
neuron for which it is an input. Connections that are not live

-P P(x,y) ?P

Q(x,y)

P(x,y)

Q(x,y)

P(x,y)

Q(x,y)

SELF

SELF

P_INPUT

P_INPUT

1. 2.

3. 4. SELF

E_INPUT

-Q ?Q

-P ?P

-Q ?Q

-P ?P

-Q ?Q

P(x,y)

Q(x,y)

-P ?P

-Q ?Q

6

make no contribution to inference in the network. However, this

does not necessarily mean that all live connections do.

4 RESULTS

All test networks developed such that they could answer all of

their test questions correctly. The same genome was successfully
applied to the development of large and small networks,

demonstrating that the genome is scalable in that its size is

independent of the size of the phenotype. Further experiments

observed how different components of the genome affected the

network structure and what affected the change in fitness over
time.

4.1 Network structure

Table 1 shows the statistics for each network. In each case, the

total number of connections developed was not much greater
than the number of live connections, meaning that only a few

superfluous connections were developed.

Network Connections Live Additions Deletions

Small 10 10 30 20

Large1 49 36 138 89

Large2 43 35 86 43

SubNets 45 29 74 29

Table 1 � Statistics of fully developed networks: the total

number of connections, the number of live connections
(connections for which weight is greater than or equal to

0.5), and the number of connection additions and deletions.

Table 2 shows the results of removing different components

of the genome when testing on the network Large1. In each case,

maximum fitness was achieved with the same number of live

connections. However, the total number of connections was

greater because removing rules and conditions removed
constraints on network size. The genome was constructed not

only to develop networks capable of answering all questions

correctly, but to do so with the minimal number of connections.

Excluded Connections Live Additions Deletions

None 49 36 138 89

Rule 4 98 36 98 0

Condition 7 171 36 491 320

Rule 4 and

Condition 7

328 36 328 0

Table 2 � The effects of excluding rules and conditions from

the genome when developing Large1.

Removing rule 4, which prunes superfluous connections,

caused the total number of connections to double. However the

number of additions decreased, implying that when rule 4 is

included some of the connections it removes redevelop.
Condition 7 limits connections to inputs from active neurons.

Bypassing this caused an even greater increase in the number of

connections. This, coupled with the tendency of deleted

connections to redevelop, suggests that it is more beneficial to

prevent the growth of superfluous connections than it is to delete
them once created. Removing conditions 2 to 4 and 8 to 10,

which limit connections to neurons of the same type, resulted in

the network being unable to answer all questions correctly.

Removing these conditions caused connections to form between

enablers and collectors such that activation of a predicate�s

enabler triggered the immediate activation of one or both of its
collectors, depending on which collectors were activated during

training. All questions were therefore answered true (1,0), false

(0,1) or both (1,1), but never unknown (0,0), and so questions for

which unknown was the correct answer were answered

incorrectly.

4.2 Fitness

Figure 7 shows the change in fitness as the network Large1

develops, and figure 8 shows the change in fitness after shuffling

the event sequence. Note that the initial fitness in both cases is
not zero. This is due to the fact that fitness is based on the

number of correct collector firings. An undeveloped network

will answer all questions as �unknown� (0, 0). For some test

questions, this will in fact be the correct answer, so an

undeveloped network automatically answers them correctly. For
other questions, target answers are either (1, 0) (true) or (0, 1)

(false), meaning that an answer of (0, 0) will be half correct for

each of these questions. In summary, the initial fitness is due to

the inability of an undeveloped network to fire any collectors

and the large number of zeros (instances of collectors failing to
fire) in the test data.

Figure 7 � The change in fitness over time for the network

Large 1

Figure 8 � The development of Large1 after shuffling the

event sequence.

7

In figures 7 and 8, maximum fitness is eventually achieved,

but the fitness decreases and increases again before it reaches the

maximum. This behaviour was caused by the weakening of some

relations upon the strengthening of others, as described in

section 3.1. In order to confirm that it was these conflicting
relations that caused the trend of oscillating fitness, the learning

experiment was repeated on a simple network which did not

contain conflicting relations. The network represented a linear

chain of predicates in which each predicate (with the exception

of those at the beginning and end of the chain) was the
consequent and antecedent of only one other predicate (P(x,y) #

Q(x,y), Q(x,y) # R(x,y) �. T(x,y) # U(x,y)). Figure 9 shows

that in this case, the fitness only increased and never decreased,

as no learned relations were disturbed by the learning of others.

Figure 9 � The development of a network representing a

linear chain of predicates

In the process of learning conflicting relationships which

affect each other in this way, relations are learned and unlearned
until both have been observed enough times (usually about 3) to

support evidence for both, at which point both relations are

successfully represented. This learning and unlearning of

relations affects the truth values of predicate instances that

depend on them, meaning that the correct assertion of these
predicate instances is also periodic until the network settles. As a

consequence, questions are periodically answered correctly and

incorrectly before they can be consistently answered correctly,

which explains the peaks and troughs in the graph. How soon a

network settles into a state whereby this behaviour stops depends
on the number of event sub-sequences supporting each relation

and on the order in which they occur. This is due to the fact that

the magnitude of change depends on the value of ", which is

defined slightly differently for the weakening and strengthening

of weights (as in equations 3 and 4 respectively) but is inversely
proportional to the number of updates in both cases. In other

words, how long the network takes to settle depends on how

many times connections have been strengthened and how many

times they have been weakened.

For example, consider the shuffled event sequence used for
learning Large1 as shown in figure 8. The set of relations

dependent on Q(x,y) is [Q(x,y)#¬R(x,y), ¬R(x,y)# ¬T(x,y),

¬R(x,y)# ¬U(x,y)]. The set of sub-sequences that supports this

set will be referred to as X. The set of relations dependent on

¬Q(x,y) is [¬Q(x,y)# S(x,y), S(x,y)# V(x,y)]. The set of event
sub-sequences supporting evidence for this set will be referred to

as Y. The initial peak in fitness occurs when a member of X, X1,

completes at t=7, and drops again when Y1 completes at t=17.

Y2 and Y3 then complete at t=25 and t=39. X2 completes at

t=54, but has no effect on fitness because the number of

instances of X isn�t enough to balance the connection weights.

Y4 completes at t=66. X3 completes at t=72 and instances of

both X and Y have now occurred enough times that the

relationships they each support are strong enough to maintain
maximum fitness without the observation of one disturbing the

relationship supported by the other. After X3, further instances of

X and Y occur interchangeably but fitness does not drop now

that the relationships are balanced.

This hypothesis as to why the peaks and troughs occur was
tested by moving X1 further along the timeline of events in order

to move the initial peak in fitness seen in figure 8 along the

graph. This is demonstrated in figure 10. In the first image, X1 is

moved to occur just before Y1, causing the peak to become

narrower. In the second image, X1 is moved to occur after Y1
but just before Y2, creating another narrow peak as X1 improves

fitness but Y2 reduces it again. In the third image, X1 is moved to

occur just before Y3 to temporarily increase fitness to the

maximum. After Y3 causes fitness to drop soon after, X2 is able

to increase it again, for a bit longer, before Y4 causes a drop in
fitness once more. After X3, the network is balanced. In the final

image, X1 is moved to occur just before X2 and this balances the

relations. Note that unlike the other graphs, the third graph

contains two peaks before fitness settles. In this case, instances

of X and Y alternate more than they do in others, and the graph
contains the greatest number of fitness peaks before the network

settles. In the fourth graph, there are no peaks and only one

change from Y to X before the network settles. Furthermore, the

network settles slightly earlier than in the other trials. These

behaviours imply that fitness peaks are caused by observation
sub-sequences that alternate more, and that conflicting relations

can be learned more quickly when the evidence for them

alternates less.

1

2

3

4

1. X1 Y1 Y2 Y3 X2 Y4 X3 X4 Y5 X5 Y6 X6

2. Y1 X1 Y2 Y3 X2 Y4 X3 X4 Y5 X5 Y6 X6

3. Y1 Y2 X1 Y3 X2 Y4 X3 X4 Y5 X5 Y6 X6

4. Y1 Y2 Y3 X1 X2 Y4 X3 X4 Y5 X5 Y6 X6

Figure 10 � The effects of moving sub-sequence X1, which

supports evidence for relations depending on Q(x,y), further
along the timeline. The resultant ordering of sub-sequences

for each graph is displayed at the bottom.

8

This tendency of fitness to rise and fall before development

is complete is similar to a phenomenon referred to as U-shaped

development which has been observed in various aspects of

cognitive development [2, 4, 17, 21]. One example from natural

language is the way children learn past tense conjugation [21]. In
early stages of natural language development children will know

some regular and irregular past tense verbs and apply them

correctly. However, data shows that once they realise that a large

number of verbs are conjugated by the addition of �ed� to those

verbs, they over-generalise this rule to the irregular verbs as
well, ignoring the irregularities they have already acquired and

incorrectly conjugating them like any other. For example, upon

noticing correct conjugations such as the derivation of 'reached'

from 'reach' and 'heated' from 'heat', they often derive 'eated'

from 'eat', 'goed' from 'go', and so forth, even though they
correctly used �ate� and �went� before. Only once they have had

more exposure to the English language and have heard

regularities and irregularities frequently enough do they realise

that the addition of �ed� does not apply to all verbs. They are

then able to apply regularities and irregularities correctly once
again. In summary, the child's language ability gets worse before

it improves. Though correction by adults may play some part in

this process, it is largely credited to observations of how others

use language. Errors tend to occur with verbs heard less often.

Only when an irregularity is observed enough times is that
irregularity able to �block� the application of the rule to a verb

stem. In SHRUTI�s learning system, conflicting relations also

require a sufficient number of observations before the

representation of both relations can be balanced.

U-shaped development in children has been observed in a
range of other cognitive tasks [2, 4, 17]. The U-shaped

development observed in the SHRUTI learning model gives it

another level of biological plausibility. Of course, the U-shaped

development observed in SHRUTI is not caused by rules being

over-generalised to irregularities but by rule pairs for which
antecedents are of the same predicate but have different signs.

However, the developmental process is similar in the sense that

it is influenced by observations that may result in the ability of

the developing structure declining before it is able to improve

even further. It should also be noted that SHRUTI�s U-shaped
development is a result of the learning process and not of the

developmental model which was implemented for these

experiments. Nonetheless, the results above have been useful in

determining that the genome model is able to support weights

that continually gain and lose strength before they are
consistently strong enough to represent relations. There was

always the danger that a weight would lose enough strength that

the genome would prune the connection before it was given a

change to gain its strength back. This was not the case.

SHRUTI�s U-shaped development will need to be taken into
consideration when assessing the fitness of genomes in planned

attempts to evolve them. A genome in the population which

exhibits a lower fitness may have more potential for

improvement than a genome with a slightly higher fitness. It may

be necessary to adjust the measurement of fitness so that this
potential is also taken into account, in addition to the number of

questions a developed network can answer correctly. However,

the challenge this idea presents is that of finding a way to

quantify this potential.

5 CONCLUDING REMARKS

A scalable genome encoding of basic SHRUTI networks has

been produced. A genome constructed using the presented model

was successful in growing neural connections in SHRUTI

networks such that those networks were able to correctly answer
all their test questions correctly. Due to the rule-instructed

growth, the size of the genome is independent of that of the

phenotype, i.e. a network representing a logic program. The

model applies the reuse of sub-structure as used by Gruau and

Kitano. The four rules depicted in figure 4 share some repeated
conditions, but these are only encoded once in the genome.

Encoding these rules separately would have resulted in repeated

encoding of these conditions, thus reducing the compactness of

the genome.

The genome model proposed contributes towards two goals
of neural-symbolic integration. For those interested in the

practical application of neural-symbolic networks, a scalable

means of representing them has been produced. With regards to

developing a working model of logic representation in the

human brain, this model is relevant because artificial
development and neural-symbolic implementation both claim

some degree of biological plausibility. The biologically plausible

traits currently exhibited by the system as a whole include the

indirect encoding and gradual development of the phenotype, the

temporal synchrony and Hebbian learning employed by
SHRUTI, and the U-shaped development observed in the change

in fitness over time. However, one function that the current

genome model lacks that would otherwise increase its biological

plausibility further is the production of neurons. The current

genome model only develops connections between neurons and
not the neurons themselves. Biological development produces

neurons and the genome model presented should eventually be

updated to include rules for neuron production also. Cell division

would be a suitable, biologically plausible means of

implementing this.
The model presented is the first step towards producing

SHRUTI networks, and possibly other types of neural-symbolic

network, using artificial development. The next stage is to

attempt the production of these genomes using an evolutionary

algorithm. The current fitness function only takes into account
the number of questions a network can answer correctly.

However, it should be adapted to also take into account a

network�s potential to improve through further development.

Successful evolution of these developmental genomes would

contribute towards a means of producing artificial models of
cognition that takes inspiration from the way cognitive structures

emerge through natural evolution.

7 REFERENCES

[1] Bader, S., Hitzler, P (2005) �Dimensions of Neural-Symbolic
Integration� in We Will Show Them: Essays in Honour of Dov
Gabbay, 1, College Publications, pp167-194.

[2] Baylor, A.L. (2001) �A U-shaped model for the development of
intuition by level of expertise�, New Ideas in Psychology, 19,
pp237-244.

[3] Chavoya, A. (2009), �Artificial Development�, Foundations of

Computational Intelligence, 1, Springer, 185-215.
[4] Davis, J. (1997) �Drawing�s Demise: U-shaped Development in

Graphic Symbolization�, Studies in Art Education, 38, No 3,

pp132-157.

9

[5] Dawkins, R. (1986), �The Blind Watchmaker: Why the Evidence

of Evolution Reveals a Universe without Design�, Norton, New
York.

[6] Eggenberger, P. (1997) �Creation of Neural Networks Based on
Developmental and Evolutionary Principles� in Proceedings of the

International Conference on Artificial Neural Networks, Springer-
Verlag, pp337-342.

[7] Eggenberger, P., Gómez, G., Pfeifer, R. (2003) �Evolving the

Morphology of a Neural Network for Controlling a Foveating
Retina � and its Test on a Real Robot� in Proceedings of the Eighth
International Symposium on Artificial Life, pp243-251.

[8] Gruau, F. (1994) �Automatic Definition of Modular Neural

Networks�, Adaptive Behaviour, 3, No 2, pp152-183.
[9] Hammer, B., Hitzler, P (2007), �Perspectives of Neural-Symbolic

Integration�, Springer.
[10] Hebb, D.O. (1949) �The Organization of Behaviour: A

Neuropsychological Theory�, Wiley.
[11] Khan, G.M., Miller, J.F., Halliday, D.M. (2010) �Intelligent Agents

Capable of Developing Memory of Their Environment� in Loula
A., Queiroz J., editors, Advances in Modelling Adaptive and

Cognitive Systems, UEFS, pp77-114.
[12] Kitano, H (1990) �Designing Neural Networks Using Genetic

Algorithms with Graph Generation System�, Complex Systems

Journal, 4, pp461-476.
[13] Kitano, H. (1994) �Neurogenetic Learning: An Integrated Method

of Designing and Training Neural Networks Using Genetic
Algorithms�, Physica D: Nonlinear Phenomena, 75, No 1-3,

pp225-238.
[14] Kitano, H. (1995), �A Simple Model of Neurogenesis and Cell

Differentiation based on Evolutionary Large-Scale Chaos�,
Artificial Life, 2, pp79-99.

[15] Lindenmayer, A. (1968) �Mathematical Models for Cellular
Interactions in Development�, Journal of Theoretical Biology, 18,
No 3, pp280-299.

[16] Marcus, G. (2001) �Plasticity and Nativism: Towards a Resolution

of an Apparent Paradox� in Wermter S., Austin J., Willshaw D.,
editors, Emergent Neural Computational Architectures Based on
Neuroscience, Lecture Notes in Computer Science, 2036, Springer
Berlin / Heidelberg, pp368-382.

[17] McNeil, N.M. (2007) �U-shaped Development in Math: 7-Year-
Olds Outperform 9-Year-Olds on Equivalence Problems�,
Developmental Psychology, 43, No 3, 687-695.

[18] Miller, J.F., Thomson P. (2000) �Cartesian Genetic Programming�
in Proceedings of the 3

rd
 European Conference on Genetic

Programming, 1802, Berlin, Springer-Verlag, pp121-132.
[19] Nolfi, S., Parisi, D. (1995) �Evolving Artificial Neural Networks

That Develop in Time� in Morán F., Moreno A., Merelo J., Chacón
P., editors, Advances in Artificial Life, Lecture Notes in Computer
Science, 929, Springer Berlin / Heidelberg, pp353-367.

[20] Nolfi, S., Parisi, D. (1996) �Learning to Adapt to Changing

Environments in Evolving Neural Networks�, Adaptive Behaviour,
5, pp75-98

[21] Pinker, S. (1999) �Kids Say the Darnedest Things� in Words and
Rules: The Ingredients of Language, pp189-210.

[22] Shastri, L., Ajjanagadde, V. (1993) �From Simple Associations to
Systematic Reasoning�, Behavioral and Brain Sciences, 16, No 3,
pp417-494.

[23] Shastri, L. (1999) �Advances in SHRUTI � A Neurally Motivated
Model of Relational Knowledge Representation and Rapid
Inference using Temporal Synchrony�, Applied Intelligence, 11,
pp79-108.

[24] Siebel, N.T., Sommer G. (2007) �Evolutionary Reinforcement
Learning of Artificial Neural Networks�, International Journal of
Hybrid Intelligent Systems, 4, No 3, pp171-183

[25] Stanley, K.O., Miikkulainen R. (2002), �Efficient Evolution Of

Neural Network Topologies� in Proceedings of the Genetic and
Evolutionary Computation Conference, Morgan Kaufmann,
pp1757-1762.

[26] Wendelken, C., Shastri, L. (2003) �Acquisition of Concepts and

Causal Rules in SHRUTI� in Proceedings of the Twenty Fifth
Annual Conference of the Cognitive Science Society, Boston.

