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Abstract.  Neural networks that are capable of representing 

symbolic information such as logic programs are said to be 

neural-symbolic. Because the human mind is composed of 

interconnected neurons and is capable of storing and processing 

symbolic information, neural-symbolic networks contribute 
towards a model of human cognition. Given that natural 

evolution and development are capable of producing biological 

networks that are able to process logic, it may be possible to 

produce their artificial counterparts through evolutionary 

algorithms that have developmental properties. The first step 
towards this goal is to design a genome representation of a 

neural-symbolic network. This paper presents a genome that 

directs the growth of neural-symbolic networks constructed 

according to a model known as SHRUTI. The genome is  

successful in producing SHRUTI networks that learn to 
represent relations between logical predicates based on 

observations of sequences of predicate instances. A practical 

advantage of the genome is that its length is independent of the 

size of the network it encodes, because rather than explicitly 

encoding a network topology, it encodes a set of developmental 
rules. This approach to encoding structure in a genome also has  

biological grounding.  

1 INTRODUCTION 

Neural-Symbolic Integration [1, 9] is a field in which symbolic 

and sub-symbolic approaches to artificial intelligence are united 
by representing logic programs as neural networks or by 

developing methods of extracting knowledge from trained 

networks. The motivation behind this work is either the 

construction of effective reasoning systems, the understanding of 

knowledge encoded in neural networks, a model of human 
cognition, or a combination of these. 

It may be possible to find powerful neural-symbolic 

networks through an evolutionary search. However, as the size 

of a logic program increases, so does the size of the network 

used to represent it. An evolutionary search for larger networks 
would take longer than it would for smaller networks as the 

search space would be larger, unless networks can be 

represented in a scalable way. Artificial development is a sub-

field of evolutionary computing in which genomes encode rules  

for the gradual development of phenotypes rather than encoding 
their structures explicitly  [3]. The genomes are scalable because 

genomes of equal length can produce solutions of different sizes. 

Among other applications, this encoding method can be applied 

to the representation of neural networks. This method of 

encoding networks is referred to as indirect encoding.  

In addition to producing powerful reasoning systems, 

representing neural-symbolic networks in this way is more 

biologically plausible than encoding topologies directly. Because 

neural-symbolic networks claim to be a step towards a model of 

human cognition, it seems reasonable to develop them in a way 
which is also biologically plausible. If human cognition can be 

produced through evolution and development, then perhaps an 

artificial model of cognition can be produced through artificial 

models of evolution and development. 

No attempt has yet been made to evolve neural-symbolic 
networks using artificial development. This paper introduces a 

scalable genome representation of neural-symbolic networks 

which adhere to a model known as SHRUTI [22, 23]. The 

genome was  successful in its ability to construct four SHRUTI 

networks that were able to learn a set of relations between 
logical predicates. The intention is to eventually produce these 

genomes using an evolutionary algorithm, but this algorithm has 

yet to be implemented. Nonetheless, if SHRUTI networks can be 

produced through artificial development, it opens the possibility 

that other neural-symbolic models can be too. Section 2 provides  
an overview of SHRUTI and artificial development models used 

for the evolution of standard neural networks. Section 3 

describes the experiments performed, the genome model used in 

these experiments and the target networks. Section 4 presents 

and discusses the results and section 5 concludes. 
 

2 BACKGROUND 

 

2.1 SHRUTI 

SHRUTI is a neural-symbolic model in which predicates are 
represented as clusters of neurons and the relations between 

them as connections between those neurons [22, 23]. Predicate 

arguments are bound to entities filling the roles of those 

arguments by the synchronous firing of the neurons representing 

them. There is therefore no need to create a connection for every 
argument-entity combination. The SHRUTI authors claim that 

their approach, known as temporal synchrony, has biological 

grounding in that it is used for signal processing in biological 

neurons. SHRUTI can be used for forward or backward 

reasoning. In forward reasoning, the system is used to predict all 
the consequences of the facts. In backward reasoning, the system 

is used to confirm or deny the truth of a predicate instance based 

on the facts encoded. In other words, a backward reasoner 

answers �true or false� questions. This paper concerns backward 

reasoning only. 
Figure 1 provides an example of a basic SHRUTI network. 

Argument and entity neurons fire signals in phases, and a 

predicate is instantiated by firing its argument neurons in phase 
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with the entities fulfilling roles in the predicate instance. The 

other neurons in a predicate cluster fire signals of continuous  

phase only upon receipt of signals of the same nature. Positive 

and negative collectors (labelled �+� and �-�) fire when the 

current predicate instance is found to be true or false 
respectively, and enablers ( labelled �?�) fire when the truth value 

of the current predicate instance is queried. Relations between 

predicates are established by linking corresponding neurons such 

that argument bindings are propagated between predicates. Facts 

are represented by static bindings between entities and predicate 
arguments such that the firing of a corresponding fact neuron  

(represented as a triangle in figure 1) is inhibited if the current  

dynamic bindings of the predicate do not match the static 

bindings of the fact. 

 

 
 

Figure 1 � A simple SHRUTI network for the relations 

Give(x,y,z) ! Own(y,z) and Buy(x,y) ! Own(x,y) and the 

facts Give(John, Mary, Book) and Buy(Paul,y) 

The example network in figure 1 represents the relations 
Give(x,y,z) ! Own(y,z) (if person x gives z to person y, then 

person y owns z) and Buy(x,y) ! Own(x,y) (if person x buys y, 

then person x owns y). Also, two facts are represented: 

give(John,Mary,Book) (John gave Mary the book) and 

buy(Paul,x) (Paul bought something). This network is configured 
for backward reasoning. If one wishes to find the truth for 

own(Mary, Book) (Does Mary own the Book?), an instance of 

the own predicate must first be created by firing its owner and 

object neurons in the same phases as the neurons representing 

Mary and Book respectively. This creates a pair of dynamic 
bindings. The enabler (?) of own must also be fired to indicate 

that a search of own�s current instance is sought. The dynamic 

bindings are propagated along the connections to give and buy 

such that the neurons representing recipient and buyer are now 
firing in phase with Mary and the neurons representing object for 

give and buy are firing in phase with Book. Give and buy are 

therefore instantiated with the queries give(x, Mary, Book) (did 

somebody give Mary the book?) and buy(Mary, Book) (did Mary 

buy the book?). The dynamic bindings are then propagated to the 
static bindings representing facts. The static bindings of 

buy(Paul,x)  do not match the dynamic bindings of buy(Mary, 

Book), and so the static bindings inhibit the firing of the 

corresponding fact node which would otherwise activate the 

positive collector of buy. However, the dynamic bindings of 
give(x, Mary, Book) do match the static bindings of 

give(John,Mary,Book). The corresponding fact node is therefore 

not inhibited and activates the positive collector of give to assert 

that give(x, Mary, Book) is true. This collector in turn activates  

the positive collector of  own to assert that own(Mary, Book) is  

also true, i.e. that Mary does indeed own the book. 

There are many more features which may be included in a 
SHRUTI network. The literature also presents means of 

restricting dynamic bindings by entity types, conjoining 

predicates, enabling multiple instantiations of a predicate, and 

many other features. More complex models even use multiple 

neurons to represent one argument or entity, as the use of only 
one neuron to represent a concept lacks biological plausibility. 

One particular feature worth discussing in further detail is  

SHRUTI�s learning mechanism [26] since it plays an important 

role in the developmental process discussed later in this paper. 

SHRUTI�s learning mechanism takes inspiration from 
Hebbian learning [10]. The training data is a sequence of events 

(predicate instances) observed over time that reflect the causal 

relations between the predicates. When two predicates are 

observed within a fixed time window, any connections  

representing relations between them are strengthened to increase 
the likelihood that the predicate observed first is a cause of the 

second. After a predicate is observed, any predicates that are 

connected to it but are not observed within the time window 

have those connections weakened to reflect the likelihood that 

they are not consequents of the first predicate. When a weight ! 
is strengthened, it is updated according to equation 1. When ! is  

weakened, it is updated according to equation 2. In both cases, 

the learning rate " is defined according to equation 3. This  

ensures that it becomes more difficult to change a relation for 

which evidence has been observed a large number of times.  
 

(1)  

(2)  

(3)  

 

For example, if B(a,b)  is observed shortly after A(a,b), 

connections will be updated to reflect A(x,y) # B(x,y). 
However, if A(a,b) is observed with no immediate observation of 

B(a,b), the same connection weights are weakened to reflect the 

lack of a relation between the two predicates. A new predicate 

can be recruited into the network once the connection weights of 

its neurons have gained sufficient strength.  
The SHRUTI developers argue that some level of pre-

organisation would be necessary for this learning model to work, 

and that this pre-organisation could be the product of 

evolutionary and developmental processes. To support the 

biological plausibility of pre-organisation, they point to the work 
of Marcus [16], who proposed ideas similar to those found in 

artificial development. However, a further review of literature 

has failed to find any attempts to produce SHRUTI networks 

using artificial development or similar methods. This is what 

motivates the ideas proposed in this paper. 
 

2.2 Artificial Development of Neural Networks 

Artificial development is a form of evolutionary computing in 

which the genome encodes instructions for the gradual 

development of the phenotype. This method is argued to be more 
biologically plausible than the alternative of encoding the 

structure of a phenotype explicitly in the genome, as it is closer 
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to the means by which DNA encodes biological structures. 

Dawkins argues that DNA is not a blueprint of biological 

structure but is more like a recipe for its construction [5]. 

Artificial development can be applied to a range of problems, 

and Chavoya provides a recent overview of artificial 
development models [3]. However, this paper is only concerned 

with the artificial development of neural networks. 

One approach to evolving neural networks involves 

genomes which encode network topologies [24, 25]. For 

example, the genome may contain a list of neurons and another 
list of connections between them, or it may represent a 

connection matrix. Such methods of encoding are often referred 

to as direct encoding. The disadvantage of direct encoding is that 

the size of the genome increases in proportion to that of the 

network it represents. The alternative, indirect encoding,  
overcomes this problem by encoding a set of rules for the 

gradual development of the network. Just as a biological 

organism�s cells all contain the same DNA, neurons within 

networks encoded by indirect encoding all contain or refer to a 

copy of the same genome, which represents a set of 
developmental rules. These rules provide instructions as to how 

the neuron should develop, for example by duplicating or 

deleting itself or by establishing a connection to another neuron. 

The developmental process often begins with only one neuron. 

When a neuron divides, its genome is passed on to both of its 
children, which is how all neurons are able to share the same 

genome. Which developmental operation takes place depends on 

the current attributes of the neuron. Therefore even though all 

neurons share the same genome, which developmental 

operations are executed at which point in time will not 
necessarily be the same for each neuron. Some models for the 

artificial development of neural networks use graph grammars  

inspired by Lindenmayer systems [15], whereas others use more 

biologically inspired ideas where neurons and connections are 

defined in a two or three dimensional Euclidean grid space. 
Figure 2 presents grammar trees used by Gruau to define 

cell division processes [8]. Each node in the tree describes a cell 

(neuron) division. The children of each node describe the 

following division for each child neuron produced by the 

previous division. Separate grammar trees define sub-trees, the 
roots of which can be referenced by leaf nodes of the main tree. 

A sub-structure can therefore be encoded once but reused 

multiple times. As a consequence, genomes are more compact 

and convergence speed during evolution is reduced because the 

search space is smaller. Kitano used grammar encoding to 
develop connection matrices [12, 13]. This method could also 

produce repeated sub-structures, evident from repeated patterns 

in the connection matrices produced. 

 
Figure 2 � Gruau�s grammar trees. Each node corresponds 

to a cell division. The left-most tree describes the initial 
divisions from the root, and the second tree describes sub-

trees which may grow from the leaves of the first tree. The 

third tree depicts the overall cell division process. 

In the more biologically inspired methods, neurons and their 

connections (often regarded as axons, as with actual biological 

neurons) have positional attributes. A neuron's axon grows in the 

grid space, guided by developmental rules encoded in the 

genome, and form a connection when they come into contact  
with another neuron. The positional information of a neuron and 

its axons can be used to influence development. Eggenberger 

employed this idea using gene regulation [6, 7]. The activation 

of one gene, in addition to producing or deleting cells or 

connections, may also activate or inhibit the activation of other 
genes in the genome. Information can be passed between cells  

and the between the genes in those cells  using artificial 

molecules. Concentration gradients of these molecules provide 

the positional information required to direct growth. Kitano also 

developed a similar model [14]. A different approach has been to 
use Cartesian genetic programs [18] to influence development in 

a grid [11]. The genome represents a set of seven interconnected 

programs. Three of these programs control signal processing in 

neurons, three control life-cycle processes such as the addition 

and deletion of neurons, and another controls weight updates. 
Nolfi and Parisi used a means of measuring the fitness of a 

developing network that may prove useful in further research 

[19, 20]. Rather than simply measuring fitness at the end of the 

life-cycle of each phenotype, fitness was measured at different 

stages throughout development in order to observe how fitness 
increased over time. Such information on how the phenotype 

develops may be useful in the calculation of an overall fitness. 

For example, one might wish to measure overall fitness as the 

area under the fitness-time graph. 

3 METHOD 

A scalable genome model for the development of SHRUTI 

networks was produced, and the aim of the experiments 

conducted was to demonstrate, using an instance of this genome 

model, that the model could be used to develop four networks 

that could learn a set of logical relations between predicates 
based on a series of observed events. Each event was a predicate 

instance and each event sequence was representative of the 

relationships between the predicates in each logic program.  

Experiments were later repeated with shuffled event sequences 

in order to observe whether or not the genome could still develop 
networks which could represent the same logic programs. In 

additional experiments, sections of the genome were removed in 

order to see how the structures of the developed networks were 

affected. This section outlines how a SHRUTI model was 

implemented for these experiments, the genome model used to 
represent this implementation, and the target networks that were 

developed by the genome.  

 

3.1 SHRUTI implementation 

It seems reasonable to attempt the artificial development of a 
simple SHRUTI network before the development of more 

complex features is attempted. Therefore the basic SHRUTI 

model capable of learning as described in section 2.1 was  

implemented but more complicated features such as type 

restrictions and conjunction were excluded.  
A minor adjustment was made to the learning mechanism in 

order to overcome difficulties learning certain structures. If two 

relations exist which share the same antecedent but with 

different signs for that antecedent, the system struggles to learn 
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both relations because the strengthening of one weakens the 

other unless both relations have been observed a sufficient  

number of times. To explain why this occurs, the learning of the 

relations P(x,y) # Q(x,y) and ¬P(x,y) # R(x,y) will be used as 

an example. The collectors of Q and R receive input from 
different collectors of P (+P and -P respectively). However, the 

enablers of Q and R both provide input to the same (and only) 

enabler of P (?P). Observation of P(x,y) and Q(x,y) within the 

time window will strengthen the connection from +P to +Q and 

the connection from ?Q to ?P. However, since ?P is activated 
and ?R is not, the connection from ?R to ?P will weaken. 

Likewise, if -P(x,y) and R(x,y) are observed within the time 

window, The connection from ?R to ?P will strengthen but the 

connection from ?Q to ?P will weaken.  

To overcome this problem, the learning mechanism was  
configured by adjusting the learning rate " to update by a greater 

magnitude when strengthening weights than when weakening 

them. Therefore when weakening weights, " is defined as in 

equation 3, but when strengthening weights it is increased as  

shown in equation 4: 
 

(4)  

 

This makes it possible to learn these conflicting pairs of 

relations as long as the events that reflect them occur a sufficient  
number of times. 

 

3.2 The Genome 

In this first genome model, only the connections between 

neurons are developed, and not the neurons themselves. This 
approach assumes the pre-existence of neuron clusters 

representing facts and predicates, but there is room in future 

work to attempt the development of these clusters also. 

Each genome describes a tree structure in which leaf nodes 

represent actions to be performed and all other nodes represent 
conditions. Each path through the tree structure from the root 

node to a leaf node represents a different rule. After each event  

has been observed and weights have been updated accordingly, 

the conditions encoded in a genome are tested for each neuron 

and each of its existing and possible inputs. If a leaf node is  
reached, the action it encodes is executed. The genome labels the 

current neuron for which input connections are being made as  

SELF. The neuron from which a connection is being considered 

is labelled as P_INPUT (possible input) if it does not yet exist 

and E_INPUT (existing input) if it does exist.  
Figure 3 shows a set of conditions encoded by a genome for 

the development of a SHRUTI network and figure 4 shows them 

as a decision tree. Figure 5 presents an example of how an input 

connection is created using rule 2. To reduce execution time, 

conditions which affect SELF are considered first, so that 
evaluation of existing or potential inputs is only  performed when 

necessary. Branching from one condition to another is therefore 

limited such that SELF conditions can branch to P_INPUT and 

E_INPUT conditions, but P_INPUT and E_INPUT conditions 

cannot branch to SELF conditions. The genome begins with a 
header containing the genome index of each type of condition 

and of the actions. 

For each condition, the genome encodes the attribute to be 

tested, an operator (<,$,=,%,>,&), and the value to test that 

attribute against. Attributes which can be tested in this model are 

the neuron's current level of activity, its type (role, enabler or 

collector), the total number of inputs, and for existing inputs, the 

weight and the number of updates (how many times a connection 

has been strengthened or weakened). The genome also specifies  

the next condition to test or action to perform in the event of the 
current condition being evaluated as true or false. Alternatively, 

the tree search can end when a condition is evaluated as false 

and no actions are performed. For each action, the genome 

specifies one of two types of action to be performed: the addition 

or deletion of a connection. If a new connection is  to be created, 
the genome also specifies the weight of the new connection.  

 

SELF conditions: 

1. If activity > 0.5, go to 2, else go to 5 

2. If type = role node, go to 8, else go to 3  
3. If type = enabler, go to 9, else go to 4 

4. If type = collector, go to 10, else end.  

 

E_INPUT conditions: 

5. If number of updates > 7, go to 6, else end 
6. If weight < 0.5, go to 12, else end.  

 

P_INPUT conditions: 

7. If activity > 0.5, go to 11, else end. 

8. If type = role node, go to 7, else end.  
9. If type = enabler, go to 7, else end.  

10. If type = collector, go to 7, else end.  

 

Actions: 

11. Add connection with weight 0.1 
12. Delete connection 

 

Figure 3 � Conditions represented in the genome. 

 

 
Figure 4 � A decision tree representation of the conditions 

given in figure 3 (T = True, F = False). 
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Figure 5 � How rule 2 is used to develop connections between 

enablers for the rule P(x,y) ! Q(x,y). All nodes are active 

and a connection from -P to -Q  already exists (1). The 

genome in ?P searches for input connections, starting with    

-Q (2). Both neurons are active and ?P is an enabler, but -Q 
is not, so no connection is made. The test is repeated for ?Q 

(3). Both neurons are enablers and both nodes are active, so 

an input connection is made (4). 

In the genome defined in figures 3 and 4, rule 1 (R1) 

establishes connections between active role nodes. Rule 2 (R2) 

does the same for enablers and rule 3 (R3) does the same for 

collectors. Unwanted connections between neurons will 
inevitably form, but after Hebbian learning has taken place, their 

weights will weaken. Rule 4 (R4) prunes connections that are 

weak despite a large number of updates. A threshold of seven 

updates was chosen because this was the minimum value 

required to enable all test networks to learn desired connection 
weights without those connections being removed too early. This 

genome is one of a number which may be defined using this  

model to produce working SHRUTI networks. 

 

3.3 Target networks 
Figure 6 shows four target networks to be developed using the 

genome in figure 3. One of the networks is smaller than others in 

order to demonstrate the scalability of the genome. The two 

larger networks are of similar sizes but differ in structure. The 

logic program represented by the network with the label SubNets  
contains a relation and a predicate that are disjoint from the other 

relations and from each other. They are therefore each 

represented by separate sub-networks. 

The initial state of each network is a set of neurons 
encoding facts connected to predicates, with the intention that 

connections will develop between predicate neurons over time in 

order to represent the relations between the predicates. For each 

network, a sequence of events in the form of predicate instances 

is defined. Each sequence reflects the relations between the 
predicates in the corresponding logic program. Different sub-

sequences provide evidence for different sets of transitive 

relations. For example, observing the sub-sequence P(a,b), 

Q(a,b), R(a,b) supports the transitive pair of relations  

P(x,y)#Q(x,y), Q(x,y)#R(x,y). 

 

Small  

Expected Relations Facts 

P(x,y) # Q(x,y) 

¬P(x,y) # R(x,y) 

P(a,b) 

¬P(c,d) 

 
Large1  

Expected Relations Facts 

P(x,y) # Q(x,y) 

Q(x,y) # ¬R(x,y) 

¬Q(x,y) # S(x,y) 

¬R(x,y) # ¬T(x,y) 

¬R(x,y) # ¬U(x,y) 
S(x,y) # V(x,y) 

P(a,b) 

¬Q(c,d) 

Q(e,f) 

S(g,h) 

 

Large2  

Expected Relations Facts 

P(x,y) # ¬Q(x,y) 
¬P(x,y) # R(x,y) 

¬Q(x,y) # ¬S(x,y) 

R(x,y) # T(x,y) 

¬R(x,y) # ¬U(x,y) 

P(a,b) 
¬Q(c,d) 

¬P(e,f) 

R(g,h) 

¬R(i,j) 

 

SubNets  

Expected Relations Facts 

P(x,y) # Q(x,y) P(a,b) 

R(c,d) 

¬R(e,f) 
¬T(g,h) 

V(a,b) 

R(x,y) # S(x,y) 

¬R(x,y) # T(x,y) 

¬T(x,y) # ¬U(x,y) 

Figure 6 � Target networks. Each table shows the relations 
which were expected to develop and the hard coded facts 

which make up the background knowledge. In the logic 

program represented by SubNets, the relation P(x,y) ! 

Q(x,y) and the predicate V(a,b) are disjoint from the other 

relations and from each other. 

Any number of events may occur at each time t, even zero. 

At each t, neurons that represent an observed predicate are fired 
and Hebbian learning is used to update the weights of the 

connections between the neurons that fire within a fixed time 

window of each other in order to build relations between 

predicates. Developed networks were tested by inputting �true or 

false� questions and fitness was based on the number of 
questions answered correctly. The reader is reminded that each 

predicate includes two collectors: one positive and one negative, 

to assert the truth and falsity of the predicate respectively. 

Activation of one of these collectors shall be denoted 1, and 

deactivation 0. The truth of a predicate instance is therefore 
denoted by (1, 0), falsity by (0, 1), uncertainty by (0, 0) and 

contradiction by (1, 1). Fitness is measured as the number of 

correct collector activations. For example, consider a question 

with expected answer (1, 0). Answering (1, 0) would add 2 to the 

fitness, answering (0, 0) or (1, 1) would add 1, and (0, 1) would 
add 0. 

For each network, the following statistics were recorded: the 

number of connection additions and deletions, the final number 

of connections and the final number of live connections. A 

connection is live when its weight is above the threshold of the 
neuron for which it is an input. Connections that are not live 

-P P(x,y) ?P 

Q(x,y) 

P(x,y) 

Q(x,y) 

P(x,y) 

Q(x,y) 

SELF 

SELF 

P_INPUT 

P_INPUT 

1. 2. 

3. 4. SELF 

E_INPUT 

-Q ?Q 

-P ?P 

-Q ?Q 

-P ?P 

-Q ?Q 

P(x,y) 

Q(x,y) 

-P ?P 

-Q ?Q 
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make no contribution to inference in the network. However, this 

does not necessarily mean that all live connections do. 

4 RESULTS 

All test networks developed such that they could answer all of 

their test questions correctly. The same genome was successfully 
applied to the development of large and small networks, 

demonstrating that the genome is scalable in that its size is 

independent of the size of the phenotype. Further experiments 

observed how different components of the genome affected the 

network structure and what affected the change in fitness over 
time. 

 

4.1 Network structure 

Table 1 shows the statistics for each network. In each case, the 

total number of connections developed was not much greater 
than the number of live connections, meaning that only a few 

superfluous connections were developed.  

 

Network Connections Live  Additions Deletions 

Small 10 10 30 20 

Large1 49 36 138 89 

Large2 43 35 86 43 

SubNets 45 29 74 29 

Table 1 � Statistics of fully developed networks: the total 

number of connections, the number of live connections 
(connections for which weight is greater than or equal to 

0.5), and the number of connection additions and deletions. 

Table 2 shows the results of removing different components 

of the genome when testing on the network Large1. In each case, 

maximum fitness was achieved with the same number of live 

connections. However, the total number of connections was 

greater because removing rules and conditions removed 
constraints on network size. The genome was constructed not 

only to develop networks capable of answering all questions 

correctly, but to do so with the minimal number of connections.  

 

Excluded Connections Live  Additions Deletions 

None 49 36 138 89 

Rule 4 98 36 98 0 

Condition 7 171 36 491 320 

Rule 4 and 

Condition 7 

328 36 328 0 

Table 2 � The effects of excluding rules and conditions from 

the genome when developing Large1. 

Removing rule 4, which prunes superfluous connections, 

caused the total number of connections to double. However the 

number of additions decreased, implying that when rule 4 is 

included some of the connections it removes redevelop. 
Condition 7 limits connections to inputs from active neurons. 

Bypassing this caused an even greater increase in the number of 

connections. This, coupled with the tendency of deleted 

connections to redevelop, suggests that it is more beneficial to 

prevent the growth of superfluous connections than it is to delete 
them once created. Removing conditions 2 to 4 and 8 to 10, 

which limit connections to neurons of the same type, resulted in 

the network being unable to answer all questions correctly. 

Removing these conditions caused connections to form between 

enablers and collectors such that activation of a predicate�s 

enabler triggered the immediate activation of one or both of its 
collectors, depending on which collectors were activated during 

training. All questions were therefore answered true (1,0), false 

(0,1) or both (1,1), but never unknown (0,0), and so questions for 

which unknown was the correct answer were answered 

incorrectly. 
 

4.2 Fitness 

Figure 7 shows the change in fitness as the network Large1 

develops, and figure 8 shows the change in fitness after shuffling 

the event sequence. Note that the initial fitness in both cases is  
not zero. This is due to the fact that fitness is based on the 

number of correct collector firings. An undeveloped network 

will answer all questions as �unknown� (0, 0). For some test 

questions, this will in fact be the correct answer, so an 

undeveloped network automatically answers them correctly. For 
other questions, target answers are either (1, 0) (true) or (0, 1) 

(false), meaning that an answer of (0, 0) will be half correct for 

each of these questions. In summary, the initial fitness is due to 

the inability of an undeveloped network to fire any collectors 

and the large number of zeros (instances of collectors failing to 
fire) in the test data. 

 
 

Figure 7 � The change in fitness over time for the network 

Large 1 

 
 

Figure 8 � The development of Large1 after shuffling the 

event sequence. 
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In figures 7 and 8, maximum fitness is eventually achieved, 

but the fitness decreases and increases again before it reaches the 

maximum. This behaviour was caused by the weakening of some 

relations upon the strengthening of others, as described in 

section 3.1. In order to confirm that it was these conflicting 
relations that caused the trend of oscillating fitness, the learning 

experiment was repeated on a simple network which did not 

contain conflicting relations. The network represented a linear 

chain of predicates in which each predicate (with the exception 

of those at the beginning and end of the chain) was the 
consequent and antecedent of only one other predicate (P(x,y) # 

Q(x,y), Q(x,y) # R(x,y) �. T(x,y) # U(x,y)). Figure 9 shows 

that in this case, the fitness only increased and never decreased, 

as no learned relations were disturbed by the learning of others. 

 
 

Figure 9 � The development of a network representing a 

linear chain of predicates 

 

In the process of learning conflicting relationships which 

affect each other in this way, relations are learned and unlearned 
until both have been observed enough times (usually about 3) to 

support evidence for both, at which point both relations are 

successfully represented. This learning and unlearning of 

relations affects the truth values of predicate instances that 

depend on them, meaning that the correct assertion of these 
predicate instances is also periodic until the network settles. As a 

consequence, questions are periodically answered correctly and 

incorrectly before they can be consistently answered correctly, 

which explains the peaks and troughs in the graph. How soon a 

network settles into a state whereby this behaviour stops depends 
on the number of event sub-sequences supporting each relation 

and on the order in which they occur. This is  due to the fact that 

the magnitude of change depends on the value of ", which is  

defined slightly differently for the weakening and strengthening 

of weights (as in equations 3 and 4 respectively) but is inversely 
proportional to the number of updates in both cases. In other 

words, how long the network takes to settle depends on how 

many times connections have been strengthened and how many 

times they have been weakened. 

For example, consider the shuffled event sequence used for 
learning Large1 as shown in figure 8. The set of relations 

dependent on Q(x,y) is [Q(x,y)#¬R(x,y), ¬R(x,y)# ¬T(x,y), 

¬R(x,y)# ¬U(x,y)]. The set of sub-sequences that supports this 

set will be referred to as X. The set of relations dependent on  

¬Q(x,y) is [¬Q(x,y)# S(x,y), S(x,y)# V(x,y)]. The set of event 
sub-sequences supporting evidence for this set will be referred to 

as Y. The initial peak in fitness occurs when a member of X, X1,  

completes at t=7, and drops again when Y1 completes at t=17.  

Y2 and Y3 then complete at t=25 and t=39. X2 completes at 

t=54, but has no effect on fitness because the number of 

instances of X isn�t enough to balance the connection weights. 

Y4 completes at t=66. X3 completes at t=72 and instances of 

both X and Y have now occurred enough times that the 

relationships they each support are strong enough to maintain 
maximum fitness without the observation of one disturbing the 

relationship supported by the other. After X3, further instances of 

X and Y occur interchangeably but fitness does not drop now 

that the relationships are balanced.  

This hypothesis as to why the peaks and troughs occur was 
tested by moving X1 further along the timeline of events in order 

to move the initial peak in fitness seen in figure 8 along the 

graph. This is demonstrated in figure 10. In the first image, X1 is  

moved to occur just before Y1, causing the peak to become 

narrower.  In the second image, X1 is moved to occur after Y1  
but just before Y2, creating another narrow peak as X1 improves 

fitness but Y2 reduces it again. In the third image, X1 is moved to 

occur just before Y3  to temporarily increase fitness to the 

maximum. After Y3 causes fitness to drop soon after, X2 is able 

to increase it again, for a bit longer, before Y4 causes a drop in 
fitness once more. After X3, the network is balanced. In the final 

image, X1 is moved to occur just before X2 and this balances the 

relations. Note that unlike the other graphs, the third graph 

contains two peaks before fitness settles. In this case, instances  

of X and Y alternate more than they do in others, and the graph 
contains the greatest number of fitness peaks before the network 

settles. In the fourth graph, there are no peaks and only one 

change from Y to X before the network settles. Furthermore, the 

network settles slightly earlier than in the other trials. These 

behaviours imply that fitness peaks are caused by observation 
sub-sequences that alternate more, and that conflicting relations  

can be learned more quickly when the evidence for them 

alternates less. 

 

1 

 

2 

 
 

3 

 

4 

 
 

1. X1 Y1  Y2  Y3  X2 Y4  X3 X4 Y5  X5 Y6  X6 

2. Y1  X1 Y2  Y3  X2 Y4  X3 X4 Y5  X5 Y6  X6 

3. Y1  Y2  X1 Y3  X2 Y4  X3 X4 Y5  X5 Y6  X6 

4. Y1  Y2  Y3  X1 X2 Y4  X3 X4 Y5  X5 Y6  X6 

 

Figure 10 � The effects of moving sub-sequence X1, which 

supports evidence for relations depending on Q(x,y), further 
along the timeline. The resultant ordering of sub-sequences 

for each graph is displayed at the bottom. 
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This tendency of fitness to rise and fall before development 

is complete is similar to a phenomenon referred to as U-shaped 

development which has  been observed in various aspects of 

cognitive development [2, 4, 17, 21]. One example from natural 

language is the way children learn past tense conjugation [21]. In 
early stages of natural language development children will know 

some regular and irregular past tense verbs and apply them 

correctly. However, data shows that once they realise that a large 

number of verbs are conjugated by the addition of �ed� to those 

verbs, they over-generalise this rule to the irregular verbs as  
well, ignoring the irregularities they have already acquired and 

incorrectly conjugating them like any other. For example, upon 

noticing correct conjugations such as the derivation of 'reached' 

from 'reach' and 'heated' from 'heat', they often derive 'eated' 

from 'eat', 'goed' from 'go', and so forth, even though they 
correctly used �ate� and �went� before. Only once they have had 

more exposure to the English language and have heard 

regularities and irregularities frequently enough do they realise 

that the addition of �ed� does not apply to all verbs. They are 

then able to apply regularities and irregularities correctly once 
again. In summary, the child's language ability gets worse before 

it improves. Though correction by adults may play some part in 

this process, it is largely credited to observations of how others 

use language. Errors tend to occur with verbs heard less often. 

Only when an irregularity is observed enough times is that 
irregularity able to �block� the application of the rule to a verb 

stem. In SHRUTI�s learning system, conflicting relations also 

require a sufficient number of observations before the 

representation of both relations can be balanced.  

U-shaped development in children has been observed in a 
range of other cognitive tasks [2, 4, 17]. The U-shaped 

development observed in the SHRUTI learning model gives it 

another level of biological plausibility. Of course, the U-shaped 

development observed in SHRUTI is not caused by rules being 

over-generalised to irregularities but by rule pairs for which 
antecedents are of the same predicate but have different signs. 

However, the developmental process is similar in the sense that 

it is influenced by observations that may result in the ability of 

the developing structure declining before it is able to improve 

even further. It should also be noted that SHRUTI�s U-shaped 
development is a result of the learning process and not of the 

developmental model which was implemented for these 

experiments. Nonetheless, the results above have been useful in 

determining that the genome model is able to support weights 

that continually gain and lose strength before they are 
consistently strong enough to represent relations. There was 

always the danger that a weight would lose enough strength that 

the genome would prune the connection before it was given a 

change to gain its strength back. This was not the case. 

SHRUTI�s U-shaped development will need to be taken into 
consideration when assessing the fitness of genomes in planned 

attempts to evolve them. A genome in the population which 

exhibits a lower fitness may have more potential for 

improvement than a genome with a slightly higher fitness. It may 

be necessary to adjust the measurement of fitness so that this 
potential is also taken into account, in addition to the number of 

questions a developed network can answer correctly. However, 

the challenge this idea presents is that of finding a way to 

quantify this potential. 

 
 

5 CONCLUDING REMARKS 

A scalable genome encoding of basic SHRUTI networks has 

been produced. A genome constructed using the presented model 

was successful in growing neural connections in SHRUTI 

networks such that those networks were able to correctly answer 
all their test questions correctly. Due to the rule-instructed 

growth, the size of the genome is independent of that of the 

phenotype, i.e. a network representing a logic program. The 

model applies the reuse of sub-structure as used by Gruau and 

Kitano. The four rules depicted in figure 4 share some repeated 
conditions, but these are only encoded once in the genome. 

Encoding these rules separately would have resulted in repeated 

encoding of these conditions, thus reducing the compactness of 

the genome. 

The genome model proposed contributes towards two goals 
of neural-symbolic integration. For those interested in the 

practical application of neural-symbolic networks, a scalable 

means of representing them has been produced. With regards to 

developing a working model of logic representation in the 

human brain, this model is relevant because artificial 
development and neural-symbolic implementation both claim 

some degree of biological plausibility. The biologically plausible 

traits currently exhibited by the system as a whole include the  

indirect encoding and gradual development of the phenotype, the 

temporal synchrony and Hebbian learning employed by 
SHRUTI, and the U-shaped development observed in the change 

in fitness over time. However, one function that the current 

genome model lacks that would otherwise increase its biological 

plausibility further is the production of neurons. The current 

genome model only develops connections between neurons and 
not the neurons themselves. Biological development produces 

neurons and the genome model presented should eventually be 

updated to include rules for neuron production also. Cell division 

would be a suitable, biologically plausible means of 

implementing this. 
The model presented is the first step towards producing 

SHRUTI networks, and possibly other types of neural-symbolic 

network, using artificial development. The next stage is to 

attempt the production of these genomes using an evolutionary 

algorithm. The current fitness function only takes into account 
the number of questions a network can answer correctly. 

However, it should be adapted to also take into account a 

network�s potential to improve through further development. 

Successful evolution of these developmental genomes would 

contribute towards a means of producing artificial models of 
cognition that takes inspiration from the way cognitive structures 

emerge through natural evolution.  
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