118 research outputs found

    Optimal power flow problem considering multiple-fuel options and disjoint operating zones: A solver-friendly MINLP model

    Get PDF
    This paper proposes a solver-friendly model for disjoint, non-smooth, and nonconvex optimal power flow (OPF) problems. The conventional OPF problem is considered as a nonconvex and highly nonlinear problem for which finding a high-quality solution is a big challenge. However, considering practical logic-based constraints, namely multiple-fuel options (MFOs) and prohibited operating zones (POZs), jointly with the non-smooth terms such as valve point effect (VPE) results in even more difficulties in finding a near-optimal solution. In complex problems, the nonlinearity itself is not a big issue in finding the optimal solution, but the nonconvexity does matter and considering MFO, POZ, and VPE increase the degree of nonconvexity exponentially. Another primary concern in practice is related to the limitations of the existing commercial solvers in handling the original logic-based models. These solvers either fail or show intractability in solving the equivalent mixed integer nonlinear programming (MINLP) models. This paper aims at addressing the existing gaps in the literature, mainly handling the MFOs and POZs simultaneously in OPF problems by proposing a solver-friendly MINLP (SF-MINLP) model. In this regard, due to the actions that are done in the pre-solve step of the existing commercial MINLP solvers, the most adaptable model is obtained by melting the primary integer decision variables, associated with the feasible region, into the objective function. For the verification and didactical purposes, the proposed SF-MINLP model is applied to the IEEE 30-bus system under two different loading conditions, namely normal and increased, and details are provided. The model is also tested on the IEEE 118-bus system to reveal its effectiveness and applicability in larger-scale systems. Results show the effectiveness and tractability of the model in finding a high-quality solution with high computational efficiency

    Improved Optimal Power Flow for a Power System Incorporating Wind Power Generation by Using Grey Wolf Optimizer Algorithm

    Get PDF
    In this paper, an efficient Grey Wolf Optimizer (GWO) search algorithm is presented for solving the optimal power flow problem in a power system, enhanced by wind power plant. The GWO algorithm is based on meta-heuristic method, and it has been proven to give very competitive results in different optimization problems. First, by using the proposed technique, the system independent variables such as the generators’ power outputs as well as the associated dependent variables like the bus voltage magnitudes, transformer tap setting and shunt VAR compensators values are optimized to meet the power system operation requirements. The Optimal power flow study is then performed to assess the impact of variable wind power generation on system parameters. Two standard power systems IEEE30 and IEEE57 are used to test and verify the effectiveness of the proposed GWO method. The obtained results are then compared with others given by available optimization methods in the literature. The outcome of the comparison proved the superiority of the GWO algorithm over other meta-heuristics techniques such as Modified Differential Evolution (MDE), Enhanced Genetic Algorithm (EGA), Particle Swarm Optimization (PSO), Biogeography Based Optimization (BBO), Artificial Bee Algorithm (ABC) and Tree-Seed Algorithm (TSA)

    Energy Management Systems for Smart Electric Railway Networks: A Methodological Review

    Get PDF
    Energy shortage is one of the major concerns in today’s world. As a consumer of electrical energy, the electric railway system (ERS), due to trains, stations, and commercial users, intakes an enormous amount of electricity. Increasing greenhouse gases (GHG) and CO2 emissions, in addition, have drawn the regard of world leaders as among the most dangerous threats at present; based on research in this field, the transportation sector contributes significantly to this pollution. Railway Energy Management Systems (REMS) are a modern green solution that not only tackle these problems but also, by implementing REMS, electricity can be sold to the grid market. Researchers have been trying to reduce the daily operational costs of smart railway stations, mitigating power quality issues, considering the traction uncertainties and stochastic behavior of Renewable Energy Resources (RERs) and Energy Storage Systems (ESSs), which has a significant impact on total operational cost. In this context, the first main objective of this article is to take a comprehensive review of the literature on REMS and examine closely all the works that have been carried out in this area, and also the REMS architecture and configurations are clarified as well. The secondary objective of this article is to analyze both traditional and modern methods utilized in REMS and conduct a thorough comparison of them. In order to provide a comprehensive analysis in this field, over 120 publications have been compiled, listed, and categorized. The study highlights the potential of leveraging RERs for cost reduction and sustainability. Evaluating factors including speed, simplicity, efficiency, accuracy, and ability to handle stochastic behavior and constraints, the strengths and limitations of each optimization method are elucidated

    Hybrid harmony search algorithm for global optimization

    Full text link
    Abstract—This paper proposes two hybrid optimization methods based on Harmony Search algorithm (HS) and two different nature-inspired metaheuristic algorithms. In the first contribution, the combination was between the Improved Harmony Search (IHS) and the Particle Swarm Optimization (PSO). The second contribution merged the IHS with the Differential Evolution (DE) operators. The basic idea of hybridization was to ameliorate all the harmony memory vectors by adapting the PSO velocity or the DE operators in order to increase the convergence speed. The new algorithms (IHSPSO and IHSDE) have been compared to the IHS, DE, PSO and some other algorithms like DHS and HSDM. The DHS and HSDM are two existing algorithms, which use different hybridization concepts between HS and DE. All of these algorithms have been evaluated by different test Benchmark functions. The results demonstrated that the hybrid algorithm IHSDE have the better convergence speed into the global optimum than the IHSPSO and the standard IHS, DE and PSO

    Optimisation algorithms inspired from modelling of bacterial foraging patterns and their applications

    Get PDF
    Research in biologically-inspired optimisation has been fl<;lurishing over the past decades. This approach adopts a bott0!ll-up viewpoint to understand and mimic certain features of a biological system. It has been proved useful in developing nondeterministic algorithms, such as Evolutionary Algorithms (EAs) and Swarm Intelligence (SI). Bacteria, as the simplest creature in nature, are of particular interest in recent studies. In the past thousands of millions of years, bacteria have exhibited a self-organising behaviour to cope with the natural selection. For example, bacteria have developed a number of strategies to search for food sources with a very efficient manner. This thesis explores the potential of understanding of a biological system by modelling the' underlying mechanisms of bacterial foraging patterns and investigates their applicability to engineering optimisation problems. :rvlodelling plays a significant role in understanding bacterial foraging behaviour. Mathematical expressions and experimental observations have been utilised to represent biological systems. However, difficulties arise from the lack of systematic analysis of the developed models and experimental data. Recently, Systems Biology has be,en proposed to overcome this barrier, with the effort from a number of research fields, including Computer Science and Systems Engineering. At the same time, Individual-based Modelling (IbM) has emerged to assist the modelling of a biological system. Starting from a basic model of foraging and proliferation of bacteria, the development of an IbM of bacterial systems of this thesis focuses on a Varying Environment BActerial Model (VEBAM). Simulation results demonstrate that VEBAM is able to provide a new perspective to describe interactions between the bacteria and their food environment. Knowledge transfer from modelling of bacterial systems to solving optimisation problems also composes an important part of this study. Three Bacteriainspired Algorithms (BalAs) have been developed to bridge the gap between modelling and optimisation. These algorithms make use of the. self-adaptability of individual bacteria in the group searching activities described in VEBAM, while incorporating a variety of additional features. In particular, the new bacterial foraging algorithm with varying population (BFAVP) takes bacterial metabolism into consideration. The group behaviour in Particle Swarm Optimiser (PSO) is adopted in Bacterial Swarming Algorithm (BSA) to enhance searching ability. To reduce computational time, another algorithm, a Paired-bacteria Optimiser (PBO) is designed specifically to further explore the capability of BalAs. Simulation studies undertaken against a wide range of benchmark functions demonstrate a satisfying performance with a reasonable convergence speed. To explore the potential of bacterial searching ability in optimisation undertaken in a varying environment, a dynamic bacterial foraging algorithm (DBFA) is developed with the aim of solving optimisation in a time-varying environment. In this case, the balance between its convergence and exploration abilities is investigated, and a new scheme of reproduction is developed which is different froin that used for static optimisation problems. The simulation studies have been undertaken and the results show that the DBFA can adapt to various environmental changes rapidly. One of the challenging large-scale complex optimisation problems is optimal power flow (OPF) computation. BFAVP shows its advantage in solving this problem. A simulation study has been performed on an IEEE 30-bus system, and the results are compared with PSO algorithm and Fast Evolutionary Programming (FEP) algorithm, respectively. Furthermore, the OPF problem is extended for consideration in varying environments, on which DBFA has been evaluated. A simulation study has been undertaken on both the IEEE 30-bus system and the IEEE l1S-bus system, in compariso~ with a number of existing algorithms. The dynamic OPF problem has been tackled for the first time in the area of power systems, and the results obtained are encouraging, with a significant amount of energy could possibly being saved. Another application of BaIA in this thesis is concerned with estimating optimal parameters of a power transformer winding model using BSA. Compared with Genetic Algorithm (GA), BSA is able to obtain a more satisfying result in modelling the transformer winding, which could not be achieved using a theoretical transfer function model

    Modified rice husk and activated carbon filters for the removal of organics and heavy metals in water

    Get PDF
    Discharge of untreated industrial effluents containing heavy metals and organics is hazardous to the environment because of their toxicity and persistent nature. At the same time, agricultural waste poses disposal challenges, which can be converted into value added products like adsorbents that could serve as tools for contaminants abatement. Previous findings proved that, adsorption was a sustainable, economical and lucrative separation technique for the removal of such contaminants. This thesis presents the fabrication of a filter for the removal of organics and heavy metals in water which was prepared from treated rice husk and modified activated carbon (AC). The analysis of AC via Brunauer-Emmett-Teller (BET) surface area and scanning electron microscopy evidenced porosity of 707 m2/g as surface and a pore volume of 0.31 cm3/g. The elemental and thermogravimetric analysis proved that AC contain 48. 7% carbon, while the Fourier transform infrared spectroscopy shows that the surface contains functional groups such as O-H, C=C, C-O, C-O-C and C-H. The experimental results were fitted with fixed-bed adsorption models to understand the adsorbate-adsorbent relationship. Fixed-bed adsorption studies show that, the highest adsorption capacity of 248.2 mg/g and 234.12 mg/g for BPA and phenol respectively was obtained at 250 mg/L concentration and 9 mL/min flow rate. The results also revealed 73 % and 87 % as the highest removal capacity for heavy metal Pb and Cd respectively at 20 mg/L concentration and 9 mL/min flow rate. For sustainability, regeneration of the spent AC was carried out in a microwave which showed 75% yield after five cycles, while the rice husk was eluted with 0.lM hydrogen chloride and 37.8% efficiency was achieved after three successive cycles. The UV lamp incorporated in the filter shows total inactivation of E. coli after 7 minutes

    Improved Fitness Dependent Optimizer for Solving Economic Load Dispatch Problem

    Full text link
    Economic Load Dispatch depicts a fundamental role in the operation of power systems, as it decreases the environmental load, minimizes the operating cost, and preserves energy resources. The optimal solution to Economic Load Dispatch problems and various constraints can be obtained by evolving several evolutionary and swarm-based algorithms. The major drawback to swarm-based algorithms is premature convergence towards an optimal solution. Fitness Dependent Optimizer is a novel optimization algorithm stimulated by the decision-making and reproductive process of bee swarming. Fitness Dependent Optimizer (FDO) examines the search spaces based on the searching approach of Particle Swarm Optimization. To calculate the pace, the fitness function is utilized to generate weights that direct the search agents in the phases of exploitation and exploration. In this research, the authors have carried out Fitness Dependent Optimizer to solve the Economic Load Dispatch problem by reducing fuel cost, emission allocation, and transmission loss. Moreover, the authors have enhanced a novel variant of Fitness Dependent Optimizer, which incorporates novel population initialization techniques and dynamically employed sine maps to select the weight factor for Fitness Dependent Optimizer. The enhanced population initialization approach incorporates a quasi-random Sabol sequence to generate the initial solution in the multi-dimensional search space. A standard 24-unit system is employed for experimental evaluation with different power demands. Empirical results obtained using the enhanced variant of the Fitness Dependent Optimizer demonstrate superior performance in terms of low transmission loss, low fuel cost, and low emission allocation compared to the conventional Fitness Dependent Optimizer. The experimental study obtained 7.94E-12.Comment: 42 page
    corecore