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Abstract 

Research in biologically-inspired optimisation has been flourishing over the 

past decades. This approach adopts a bottom-up viewpoint to understand 

and mimic certain features of a biological system. It has been proved useful 

in developing nondeterministic algorithms, such as Evolutionary Algorithms 

(EAs) and Swarm Intelligence (SI). Bacteria, as the simplest creature in nature, 

are of particular interest in recent studies. In the past thousands of millions 

of years, bacteria have exhibited a self-organising behaviour to cope with the 

natural selection. For example, bacteria have developed a number of strategies 

to search for food sources with a very efficient manner. This thesis explores the 

potential of understanding of a biological system by modelling the underlying 

mechanisms of bacterial foraging patterns and investigates their applicability 

to engineering optimisation problems. 

Modelling plays a significant role in understanding bacterial foraging be­

haviour. Mathematical expressions and experimental observations have been 

utilised to represent biological systems. However, difficulties arise from the 

lack of systematic analysis of the developed models and experimental data. 

Recently,. Systems Biology has been proposed to overcome this barrier, with 

the effort from a number of research fields, including Computer Science and 

Systems Engineering. At the same time, Individual-based Modelling (IbM) has 

emerged to assist the modelling of a biological system. Starting from a basic 

model of foraging and proliferation of bacteria, the development of an IbM of 

bacterial systems of this thesis focuses on a Varying Environment BActerial 

Model (VEBAM). Simulation results demonstrate that VEBAM is able to pro­

vide a new perspective to describe interactions between the bacteria and their 
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food environment. 

Knowledge transfer from modelling of bacterial systems to solving optimisa­

tion problems also composes an important part of this study. Three Bacteria­

inspired Algorithms (BalAs) have been developed to bridge the gap between 

modelling and optimisation. These algorithms make use of the self-adaptability 

of individual bacteria in the group searching activities described in VEBAM, 

while incorporating a variety of additional features. In particular, the new 

bacterial foraging algorithm with varying population (BFAVP) takes bacte­

rial metabolism into consideration. The group behaviour in Particle Swarm 

Optimiser (PSO) is adopted in Bacterial Swarming Algorithm (BSA) to en­

hance searching ability. To reduce computational time, another algorithm, a 

Paired-bacteria Optimiser (PBO) is designed specifically to further explore the 

capability of BalAs. Simulation studies undertaken against a wide range of 

benchmark functions demonstrate a satisfying performance with a reasonable 

convergence speed. To explore the potential of bacterial searching ability in 

optimisation undertaken in a varying environment, a dynamic bacterial forag­

ing algorithm (DBFA) is developed with the aim of solving optimisation in a 

time-varying environment. In this case, the balance between its convergence 

and exploration abilities is investigated, and a new scheme of reproduction is 

developed which is different from that used for static optimisation problems. 

The simulation studies have been undertaken and the results show that the 

DBFA can adapt to various environmental changes rapidly. 

One of the challenging large-scale complex optimisation problems is optimal 

power flow (OPF) computation. BFAVP shows its advantage in solving this 

problem. A simulation study has been performed on an IEEE 3D-bus system, 

and the results are compared with PSO algorithm and Fast Evolutionary Pro­

gramming (FEP) algorithm, respectively. Furthermore, the OPF problem is 

extended for consideration in varying environments, on which DBFA has been 

evaluated. A simulation study has been undertaken on both the IEEE 3D-bus 

system and the IEEE 118-bus system, in comparison with a number of existing 

algorithms. The dynamic OPF problem has been tackled for the first time in 
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the area of power systems, and the results obtained are encouraging, with a 

significant amount of energy could possibly being saved. Another application 

of BaIA in this thesis is concerned with estimating optimal parameters of a 

power transformer winding model using ESA. Compared with Genetic Algo­

rithm eGA), ESA is able to obtain a more satisfying result in modelling the 

transformer winding, which could not be achieved using a theoretical transfer 

function model. 
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Chapter 1 

Introduction 

1.1 Motivation 

Over the last two decades, a large number of researchers have been working 

in the area of EA and S1. They have developed various optimisation algo­

rithms stemming from the studies of genetic evolution, originally investigated 

by Fraser [1] and Friedberg [2]. These algorithms mainly offer stochastic search 

capabilities and carry out population-based calculation. They generally have a 

better performance for complex multi-modal optimisation problems in contrast 

with the conventional gradient-based techniques. Therefore they have been ap­

plied to solve various science and engineering problems. Currently there are 

still many researchers working in this area to improve the methodologies for 

specific optimisation issues. However, EA and SI algorithms are notorious for 

their computational load. Due to their time-consuming characteristic, their ap­

plicability has been hampered for large-scale systems, such as power systems, 

telecommunication networks, traffic systems and biological data processing. 

Many researchers have considered ways of improving the computational effi­

ciency and also the capability for global searching and convergency of these 

algorithms. Currently there are two directions which could be taken to tackle 

these problems. One is to improve the algorithm from a mathematical point 

of view, which no doubt can make an optimisation algorithm perform better 
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1.1 Motivation 2 

for a specific problem. However, it does not require the understanding of the 

biological background from which the original methodology was derived. In 

this sense, although many EAs have been developed over the past decades, 

these algorithms share the same biological understanding which has not been 

deepened since the original GA and PSO arrived. We believe that further 

advances of these methodologies will require the knowledge of modelling bio­

logical systems and the knowledge transfer from the biological science, with 

support from mathematical analysis. The other way lies in the study of mod­

elling of biological systems, which will playa significant role in the advance 

of knowledge in this field and provides great opportunities to develop novel 

optimisation techniques. This is why studying biological system modelling is 

necessary for creating new optimisation techniques. 

Biology is traditionally an experiment-based subject and many biological 

problems are increasingly conceptual [3]. However, in recent years, novel tech­

niques have been brought into this subject that allow us to study many vari­

ables in the biological system simultaneously, from different perspectives and 

with increasing accuracy. Generally, these techniques include qualitative or 

rule-based formalisms, which may provide sufficiently predictive models at 

'higher levels', describing the emergent behaviour; and agent (individual)­

based simulations that may be better suited to model the interactions of a 

large number of components. The emergence of these technologies triggered 

the study of an interdisciplinary subject, Systems Biology, as shown in Figure 

1.1 [4]. There is a state-of-the-art approach in this study, called 'modelling the 

heart' [5]. It simulates from genes and cells to the whole organ, including the 

protein genome (i.e. individual proteins that genes code for), and the level of 

protein interaction within the context of subcellular, cellular, tissue, organ and 

system structures. 

Following the success of this subject, many researchers have begun to inves­

tigate a demonstration system to describe phenomena observed across the life 

structure from the 'lower levels' to 'higher levels'. The life system of bacteria, 

as the simplest existing life species, is a reasonable starting point. There have 
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been ordinary discrete equations describing those phenomena but with limited 

success; on the other hand, the data currently available do not permit the use 

of well-establi hed systems engineering tools for parametric system identifica­

tion. Nonetheless, with the emergence of computerised simulation of bacterial 

ystems, this task has finally become fea ible. Literature published in the past 

ten years has euphorically reported some successful models of bacterial foraging 

system [6]. Up until now, this work is still in the frontier of biological system 

modelling and requires even more jnputs from various perspectives. 

Based on theoretical studies reported in the literature and also previous 

work in indivjdual-based modelling, we would like to further explore the re­

search on modelling of bacterial foraging patterns and bas d on it, develop 

mor practical and powerful biologically inspired algorithms which can be used 

for solving complex optimisation problems. We believe that this study will 

broaden the vision of researchers working in the areas of EAs and S1 and it will 

W. J. Tang 



1.2 Biological Background 4 

layout a basis for creating novel optimisation algorithms and enabling their 

applications for real-world problems. 

1.2 Biological Background 

The architecture of a biological system is shown in Fig 1.2. Basically, the 

hierarchical levels of a normal animal can be divided into seven components 

with two parts: part I - organism to community, and part II - molecular to 

organ. Currently, Systems Biology largely lies in part II, especially concerning 

organelles/molecular and cells. However, this thesis mostly focuses on the three 

shaded components: cells, individuals/organism and populations, which breaks 

the barrier of the traditionally-defined architecture of biological system, and 

provides another perspective of the system modelling. 

In a biological system, one of the questions raised by researchers is how 

we can obtain information for studying the interaction between system compo­

nents. The answer appears straightforward. First of all, we have to define basic 

structures of the biological network in a living cell, and tackle the problem with 

the biological system responding to changing conditions and its robustness and 

stability. Then, we could predict the system behaviour based on the model of 

this biological system. 

In recent years, there has been a rapid growth in biological databases. 

Models of cells, tissues, and organs, and the development of powerful computing 

hardware and algorithms have made it possible to explore functionality in a 

quantitative manner all the way from levels of genes to whole organs and 

systems. Although in many cases, the cellular, organ, and system functions 

of genes and proteins are unknown, clues sometimes come from homology in 

the gene sequences and other patterns being investigated by bioinformatics 

and its related fields. For example, at the individual model level, there are 

some well-known models in existence. Fleming et al., developed a model called 

'ATLSS' [7], which is an across trophic level system simulation. Railsback et 

al. investigated an individual-based Model for fish groups [8J. UIUC's Imaging 
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1.2 Biological Background 5 

Systems Laboratory provided 'SmartForest', which deals with the management 

issues at the level of individual trees [9]. Schimitz et ai. modelled ecosystem 

dynamics with 'Gecko', a well-known individual-based simulation tool [10]. 

'Bacsim', investigated by Kreft et ai., models bacterial colony growth [11]. 

Furthermore, Reynolds proposed 'boids' to simulate coordinated group motion 

[12]. 

Generally speaking, there are two approaches in System Biology. The first 

approach is from a top-down point of view: how the activities and communica­

tion networks are implemented in living cells, and how they are ultimately 

encoded in genomes (e.g. vast perturbation experiments coupled to high­

throughput functional experiments). The second approach is from both mi­

croscopic and macroscopic points of view: how proteins interact with each 

other at different levels and how different simulation approaches would be ap­

propriate at different levels of description. For example, at the highest level, 

qualitative network analysis of biological pathways (e. g. with Petri nets) and 

quantitative network analysis (e.g. using the Monte Carlo approach). There 

are also two methods for carrying out molecular simulations of protein-protein 

interactions. The first is quantum mechanical (QM) predictions of chemical 

reaction energies, which is the most accurate method. The second is classical 

(ball-and-spring) force field to describe the atomic interactions [13]. At the 

moment, Systems Biology represents a 'molecular biology revolution', while 

there are still developments necessary to transform biology into a 'systems 

science'. Systems Biology will be extended to the higher levels in biological 

architecture, and will also require significant expertise and resources that cross 

traditional disciplinary boundaries. Also needed is the development of new 

theories and mathematics, as well as the development of new algorithms, their 

implementation on high-performance computer systems, and extensive use of 

large, distributed, and heterogeneous databases with wide availability to make 

software and computer systems usable. Ultimately, this will lead to a new 

model for biological analysis that will involve a cycle beginning with the com­

putational synthesis of available biological information to formulate specific 

W. J. Tang 
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1.3 Modelling of Bacterial Foraging Behaviour 7 

biological hypotheses that will drive new experiments or, in some cases, spe­

cific computational simulations in place of experiments [14]. The data from the 

new experiments will feed back into the next round of synthesis and hypothe­

sis development. Systems Biology Markup Language (SBML) is an early ap­

proach, which is an XML-based language for describing simulations in Systems 

Biology. It enables researchers to develop compatible models of biochemical 

network simulation/analysis tools, as well as simplifies and categorises the com­

ponents and interactions that make up what we define as a 'biological system' 

[15]. 

In summary, Systems Biology is the quantitative study of biological sys­

tems, aided by technological advances that permit both (1) molecular observa­

tions and (2) computational analysis of such observation. The classical mod­

elling strategy in biology is the differential equation (DE) approach [16]. How­

ever, there are some issues in the field of Systems Biology which need to be 

tackled in the future, with the assistance of computation tools and knowledge 

of systems theory. 

1.3 Modelling of Bacterial Foraging Behaviour 

There are two types of cells in nature: prokaryotic cells and eukaryotic cells. 

A prokaryotic cell, such as Escherichia coli {E. coli} has no nucleus or nuclear 

envelope. Prokaryotes also lack membrane-bound cell compartments such as 

vacuoles, endoplasmic reticulum, mitochondria and chloroplasts. In eukaryotes, 

the latter two cell compartments perform various metabolic processes. 

1.3.1 E.coli foraging system 

Bacteria are the prokaryotic cells, the structure of E. coli bacteria is illus­

trated in Fig. 1.3. It is shown in Fig. 1.3 that a prokaryotic cell has three 

envelopes. The Pilus connect the bacterium to another of its species, or to 

another bacterium of a different species, and build a bridge between the cyto­

plasm of both cells. Mesosomes may play a role in cell wall formation during 
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cell division and/or chromosome replication. The Nucleoid is an irregularly­

shaped region within the cell where the genetic material is localised. The nu­

cleic acid is a circular, double-stranded piece of Deoxyribonucleic acid (DNA) , 

and multiple copies may exist. Ribosomes are complexes of Ribonucleic acid 

(RNA) and protein which catalyse the assembly of individual amino acids into 

polypeptide chains· this involves binding a messenger RNA and then using this 

as a template to join together the correct sequence of amino acids [17]. 

P iI US~ 

Cell wall 

Capsule 

plasmalemma 

Cytoplasm 

Ribosomes 

Mesosome 

nucleoid 

~flagellU m 

Figure 1.3: The structure of a prokaryotic cell 

Bacteria swim by rotating thin, helical filaments known as flagella driven 

by a reversible motor embedded in the cell wall. Peritrichously flagellated 

bacteria such as E. coli have 8",10 flagella placed randomly on the cell body. 
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The motion of individual peritrichously flagellated bacteria can be described 

in terms of run intervals during which the microbe swims approximately in a 

straight line interspersed with tumbles so that the organism undergoes a ran­

dom reorientation. For E.coli the run and tumble durations are exponentially 

distributed with means of approximately 1 second and 0.1 second respectively 

in isotropic medium. Chemotactic bacteria sense temporal changes in concen­

tration levels of chemical attractants and repellents. If the concentration level 

of an attractant is increasing, a bacterium responds by reducing its tumbling 

probability. Thus the run times will be longer when bacteria are swimming 

up a chemoattractant gradient. The direction of flagellar rotation determines 

whether peritrichously flagellated cells run or tumble. The direction of rotation 

depends upon chemoattractant concentration levels at the cell site over a time 

interval of up to 4 seconds [18]. 

However, the individuality exhibited by genetically identical bacteria within 

a population is just one intriguing aspect of the function of chemotaxis receptor 

arrays that reflects the overall lack of any simple, fixed relationship between 

stimulus and response. Given this complexity it is not surprising that no two 

bacteria respond in precisely the same way to attractant and repellent stimuli 

[19]. 

1.3.2 Chemotaxis 

Interest in the survival and transport of bacteria has increased in recent 

years due to the research focus on the use of natural and genetically-engineered 

microbes in agriculture as biofertilisers, and in the bioremediation of organic 

toxins. The most familiar strategy for ensuring cooperative behaviour is at­

tractive chemotaxis. 

Swimming was found to consist of smooth 'runs' interrupted roughly every 

second by transient 'tumbles' (or 'twiddles'), which is illustrated in Fig. 1.4 

[17]. Chemotaxis - the ability of the cells to move toward distant sources of 

food molecules - is based on the suppression of tumbles in cells that happened 

by chance to be moving up the gradient [20]. 
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1.3.3 Sensory adaptation 

10 

As tated in S ction l.3 .2, Chemotactic bacteria such as E. coli adapt to 

their nvironment by regulation of the direction of flagellar rotation. Adapta­

tion can be simply defined as a change in th relation hip between environmen­

tal timulus and response that has been induced by the level of the timulus. 

Sensory information is tran duced in E. coli by a family of transmembrane pro­

tein that are located in th inner membrane. They are chemos en ory receptor 

molecules that act via interm diates to inhibit th reversals of flagellar rotation 

that cause them to tumble. Thus, when th receptors are active, the swimming 

bact ria tumbl and change dir ction less often [21]. 

As a result of adaptation, the bacteria are only inhibited from tumbling 

when responding to attractant gradients. Thus bacteria tend to move up con­

centration gradi nt , towards increasing con entration ' of attractant . Con­

versely, tumbling frequ ncy is increased to enhance the probability of moving 

away from an increasing concentration of repellent. S veral minute ' aft r re­

sponding to a stimulus. cells adapt to their nvironment by r turning to thrir 
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prestimulus pattern of behaviour [22]. Chemotaxis of E. coli is one of the best­

charaterised sensory system. 

1.3.4 Quorum sensing 

It is common knowledge that bacterial diseases such as cholera, anthrax, 

meningitis, and many others are among the deadliest in the world. However, 

it may be the case that bacteria cannot cause an illness when they are in small 

quantities. Only when there are a sufficient number of them can they act. 

Some, such as Vibrio Fischeri or Vibrio Harveyi, can glow in the dark. Others, 

like Pseudomonas Aeruginosa, form biofilms, which are composed of millions 

of microorganisms on the surface of human organs, and attack virulently those 

organs multiplying with tremendous speed, making it practically impossible 

for antibiotics to interfere [23]. 

Quorum sensing (QS) is widespread; it occurs in numerous Gram-negative 

and Gram-positive bacteria. In general, processes controlled by quorum sensing 

are ones that are unproductive when undertaken by an individual bacterium 

but become effective when undertaken by the group. For example, quorum 

sensing controls bioluminescence, secretion of virulence factors, sporulation, 

and conjugation. Thus, quorum sensing is a mechanism that allows bacteria 

to function as multi-cellular organisms. 

In Miller and Bassler's discovery, quorum sensing is a process that allows 

bacteria to search for similar cells in their close surroundings using secreted 

chemical signaling molecules called autoinducers [23]. This is also called 'cell­

cell communication'. Other bacteria release the same autoinducers in response. 

One-cell organisms in effect become multi-cellular organisms and can act to­

gether. This process enables a population of bacteria to collectively regulate 

gene expression and, therefore, behavior. In quorum sensing, bacteria assess 

their population density by detecting the concentration of a particular autoin­

ducer, which is correlated with cell density. This 'census-talking' enables the 

group to express specific genes only at particular population densities. 
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1.3.5 Mutation 

Bacteria are capable of surviving in a wide range of seemingly impossible sit­

uations. In the main part this is because very large numbers of individual cells 

are involved, so that even very rare mutations will occur often enough to solve 

the most acute problems and permit growth. But in addition, bacteria have 

evolved in an environment that has fluctuated so often in the past that they 

may have evolved a group of 'last ditch' mechanisms to meet these challenges. 

These include developing a metabolically inactive state; activating previously 

evolved, but silent genes; increasing rates of mutation under dire conditions; 

and favouring movement of exogenous and endogenous genetic elements. To­

gether these survival mechanisms constitute the 'catastrophe insurance' of the 

cells. 

1.4 Biologically-inspired Optimisation 

1.4.1 Evolutionary algorithms 

Genetic Algorithm 

In the 20th century, Artificial Intelligence was one of the cutting-edge re­

search fields. Over the second period of this century, many methodologies 

have been investigated to explore the similarity between natural evolution and 

problem-solving algorithms, one of which is GA. The beginning of the GA's 

development can be traced back to the early 1950s when computers were used 

for modelling and simulation studies of biological systems, such as the work 

of Bremermann [24]. However, the work undertaken in the late 1960s and 

the early 1970s at the University of Michigan, by Holland, first brought GA 

to the attention of a wider audience [25]. GA is a stochastic optimisation 

algorithm with a global search potential. The methodology is inspired by a 

biological metaphor and applies a pseudo-Darwinian process to evolve good 

solutions to real-world problems. As one of the major members of the EA 

family, GA adopts a populational unit of analysis, wherein each member of 
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the population is encoded as a potential solution to an optimisation problem. 

GA developed at the early stage used fixed-length binary strings and only two 

basic genetic operators: binary mutation and binary crossover, which are the 

major operators in 'schema' introduced in 1968 [26]. Evolution in the popula­

tion of encodings is simulated by means of a pseudo-natural selection process 

using differential-fitness selection and pseudo-genetic operators which induce 

variation in the population in successive generations. In addition to the real­

coded GAs implemented in the 1990s, the contribution to the GA theory itself 

also includes trying to create a generic framework for constrained optimisation 

problems [27] and combining the fuzzy logic, variable population size and reini­

tialisation strategy together with a simple GA to enhance the performance [28]. 

Optimisation of the mutation and crossover probabilities as control parameters 

of a GA was also investigated as a controlled Markov process [29]. Another 

branch of GAs lies in multi-objective optimisation problems. Vector Evaluated 

Genetic Algorithm (VEGA) was introduced by Schaffer [30]. Since then, a 

number of GA-based algorithms have been investigated to obtain the Pareto­

optimal solution, such as the Niched Pareto Genetic Algorithm (NPGA) [31] 

and an extended multi-objective GA investigated by Rodriguez-Vazquez [32]. 

The applications of GAs include optimal reactive power dispatch [33], job­

shop scheduling [34], sensor-based robot path planning and the training of 

radial basis function networks [35]. More recently, applications of GAs with 

low computational load in image processing have also been reported [36]. 

Evolutionary Programming 

Modification in chromosome structures has to be taken to deal with non­

trivial constraints which GAs have a certain difficulty to cope with [37]. To 

this end, both richer data structures and applicable genetic operators for these 

structures are needed. One example of using non-string chromosome repre­

sentation and problem specific genetic operators is Evolutionary Programming 

(EP) developed by Fogel [38]. 

By incorporating problem-specific knowledge in the chromosome structure, 
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EP can accommodate a wide range of evolution-based systems. Similar to GA, 

it also maintains a population of individuals, and each individual represents a 

potential solution to the problem. Each solution is evaluated to give a measure 

of its 'fitness'. Then, a new population is formed by selecting the fitter individ­

uals, based on the ranking of these individuals. In contrast to GAs, EP does 

not conduct a crossover operation, but it fully capitalises on the mutation oper­

ation in the evolution process. For each individual, mutation varies in severity, 

which affects the behaviour of the individual. Thus, EP focuses on optimis­

ing continuous functions with only mutation involved, by solely modelling the 

behavioural linkage between parents and their offsprings, which are directly 

coded as numerical numbers. After a certain number of generations, the EP 

converges - it is hoped that the best individual represents a near-optimum or 

reasonable solution [37]. The contemporary variants of EP lie in the use of 

Cauchy mutation instead of Gaussian mutation for a broader range of varia­

tion, which greatly enhances the global search capability of EP [39]. EP has 

been adopted to optimise parameters of an on-chip voltage reference circuit 

[40], and it has also been successfully applied to reactive power dispatch [41]. 

Evolution Strategy 

Evolution strategy (ES) was initially invented in the 1960s for the purpose 

of parameter optimisation by Rechenberg [42] and Schwefel [43]. Schwefel was 

the first researcher to substitute a discrete mutation mechanism with normally 

distributed mutations. The initially two membered ES works by creating one 

real-valued vector of object variables from its parent by applying mutation with 

an identical standard deviation to each object variable. Then, the resulting in­

dividual is evaluated and compared to its parent, and the better one survives 

to become a parent of the next generation, while the other is discarded. This 

simple selection mechanism is fully characterized by the term (1 + 1)-ES. How­

ever, due to the lack of the variation brought by a multimembered population, 

Recherburg added the notion of population to (1 + 1)-ES and introduced a 

multi-member ES with parents, denoted as (J.L + 1)-ES [44]. In (J.L + 1)-ES, J.L 
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parent individuals are recombined to form one offspring, which after being mu­

tated eventually replaces the worst parent individual, if it is better. However, 

this strategy has never been widely used. 

There are other variants of this type of ES, such as (1 + '\)-ES, where ,\ 

mutants can be generated and compete with the parent, and (Il, ?)-ES with all 

parents selected in every generation with a varying population, (Il+'\)-ES with 

the best Il individuals out of the union of parents and offspring surviving, and 

(Il, '\)-ES with only the best /-l offspring individuals forming the next parent 

generation. Rudolph also modelled the mutation of ES using a Markov Chain 

[45]. Currently, the (Il, '\)-ES characterises state-of-the-art in ES research. 

ES has been applied to parameter estimation [46], image processing [47] 

and computer vision system [48]. Task scheduling and car automation have 

also been tackled by ES [49]. 

Genetic Programming 

Another paradigm of EAs is Genetic Programming (GP). GP was initially 

developed to solve various complex optimisation and search problems by Koza 

[50]. Many seemingly different problems in artificial intelligence, symbolic 

processing and machine learning can be viewed as requiring discovery of a 

computer program or functional structure that produces desired outputs for 

particular inputs. Solving these problems can be reformulated as a search for 

a highly fitted individual of computer program or functional structure in the 

feasible search domain. 

GP traditionally distinguishes itself from GA in two fundamental ways. 

Instead of evolving binary strings which represent an indirect encoding of a 

potential solution, a search is applied to the solution directly in GP, and a 

solution in this case could be a computer program. The second fundamental 

difference is in the variable-length representation adopted by GP. With GA we 

normally adopt a fixed-length encoding, whereby the number of genes is fixed 

that will comprise an individual at the outset of a run. In GP, it is recognised 

that the length of a solution program may not be known as a priori, thus, 
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the number of genes must itself be open to evolution. Initialisation of a GP 

population consequently attempts to generate diversity not only in the values 

of the genes (the primitive symbols of the programming language) but also 

in the structure of the individuals [51]. GP has been adopted for a number 

of applications. The first application which appeared in the literature is the 

automated synthesis of analog electrical circuits using GP proposed by Koza 

[52]. There are other fields reporting promising results obtained by GP, such 

as breast cancer diagnosis [53]. 

1.4.2 Swarm Intelligence 

SI has been developed alongside EAs. Two of the most well-known strate­

gies in this area are PSO, Ant Colony Optimisation (ACO). These trajectory 

tracking algorithms are inspired from the collective behaviour of animals, which 

exhibit decentralised, self-organised patterns in the foraging process. 

Particle Swarm Optimiser 

PSO is a population-based stochastic optimisation technique developed by 

Eberhart and Kennedy in 1995 [54], inspired by the social behaviour of bird 

flocking or fish schooling. Consider the following scenario: a group of birds are 

randomly searching for food in an area where there is only one piece of food. 

None of the birds knows where the food is, however, they know the position of 

the leader bird, i.e. the bird nearest to the food. Obviously, one of the effective 

strategies to find the food is to follow the leader bird. 

PSO is based on this scenario to solve optimisation problems. In PSO, each 

single solution is a 'bird' in the search space or a 'particle' in the algorithm. 

All of the particles have their own fitness value which is evaluated by the 

fitness function to be optimised, and have velocities which direct the flying of 

the particles. The particles fly in the search space by following the current 

optimum particles. 

The population of PSO is called a swarm and is initialised with certain 

positions and velocities. In each iteration, the position of an individual is up-
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dated according to the historic,al best position of that individual pbesti and 

the global best position of the population in that iteration gbest. The position 

and the velocity are updated to improve the fitness function at each time step. 

When a particle discovers a pattern that is better than any previously found, 

the positional coordinates are stored in the vector pbesti' the best position 

found by particle i so far. The difference between pbesti and the current po­

sition is stochastically appended to the current velocity. This causes a change 

to the trajectory the particle would take at that position. The stochastically 

weighted difference between the population's best position gbest and the indi­

vidual's current position is also added to the velocity, in order to adjust for the 

step length of the next iteration. These adjustments direct the search around 

two best positions. 

Another important variant of the standard PSO is the constriction factor 

approach PSO (CPSO) which was proposed by Clerc [55]. CPSO ensures the 

convergence of the dynamical system by making sure that the eigenvalues are 

no more than 1, whether from the algebraic point of view or the analytic point 

of view. The CPSO ensures the convergence of the search procedures and 

can generate higher quality solutions than the standard PSO using a modified 

inertia weight. Other variants of PSO have also been developed in recent 

years, such as Particle Swarm Optimiser with Passive Congregation (PSOPC) 

[56], Unified PSO (UPSO), fitness-distance-ratio-based PSO (FDR-PSO), Fully 

Informed Particle Swarm (FIPS) and most recently, Comprehensive Learning 

PSO (CLPSO) [57]. These algorithms have produced encouraging results in 

both benchmark testing and applications in the real world. There are many 

similarities between PSO and EAs. Both of them initialise solutions and update 

generations, however PSO has no evolution operators. In PSO, particles try to 

reach the optimum by following the current global optimum instead of using 

evolutionary operators, such as mutation and crossover. 

In the past several years, PSO has been successfully applied in many re­

search and application areas, such as multi-modal biomedical image registra­

tion [58] and the Iterated Prisoner's Dilemma [59]. It is claimed that PSO has 
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not only obtained satisfied results for continuous functions, but also demon­

strated its stability in multidimensional complex spaces [55]. 

Ant Colony Optimiser 

Another interesting approach in the area of optimisation was inspired by 

ant colony behaviour. During the past ten years, 'the social insect metaphor 

for solving problems has become a hot topic' [60]. By modelling and simulat­

ing ant foraging behaviour, brood sorting, nest building and self-assembling, 

etc, we would be able to develop algorithms which could be used for complex, 

combinatorial optimisation problems. There are several computational mod­

els inspired by the collective foraging behaviour of ants. They are named the 

ACO. Many ant species have trail-laying trail-following behaviour when for­

aging: individual ants deposit a chemical substance called pheromone as they 

move from a food source to their nest, and foragers follow such pheromone 

trails. The process, whereby an ant is influenced to move toward a food source 

by another ant or by a chemical trail, is called recruitment [60], and recruit­

ment based solely on chemical trails is called mass recruitment. This pattern 

has been used to develop optimisation algorithms trying to solve the Travelling 

Salesman Problem (TSP), such as Ant System-TSP (AS-TSP), which attempts 

to solve TSP by a simulated ant system. The solution obtained by AS-TSP 

is much better than the one found by GA [60]. Another approach, called Ant 

Colony System (ACS) has been introduced by Dorigo and Gambardella to im­

prove the performance of ant system [61]. It is based on four modifications of 

ant system: a different transition rule, a different pheromone trail update rule, 

the use of local updates of pheromone trail to favor exploration, and the use of 

a candidate list to restrict the choice of the next city to visit. Thus, this algo­

rithm was introduced initially for solving TSP problems by the synergistic use 

of cooperation among many ants which communicate by distributed memory 

implemented as pheromone deposited on edges of a graph [61]. ACS was tested 

on problems of various sizes and compared with other algorithms, such as the 

elastic net algorithm (EN), self-organising maps (SOM), Simulated Annealing 
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(SA), GA and EP [61], for solving a TSP problem. The results, obtained by 

ACS for the problem with randomly generated sets of a symmetric 50 cities, 

were compared with those obtained by SA, EN and SOM respectively. ACS 

is able to achieve the minumum results in most cases in 2500 iterations with 

10 ants. Furthermore, Dorigo and Gambardella introduced a local search pro­

cedure to be performed in combination with ACS in order to achieve better 

performance in larger problems [62]. 

ACO has a certain relationship with conventional optimisation algorithms. 

Cross-fertilisation of ACO and stochastic gradient descent was analysed in [63]. 

It also proves the convergence of ACO. To understand the mechanism of ACO 

more fundamentally, Theraulaz [64] proposed Stigmergy to explain the rela­

tionship between ACO and natural self-organising. Stigmergy is a method 

of indirect communication in a self-organising emergent system in which the 

individual parts communicate with one another by modifying their local en­

vironment. It explains how individuals work as if they are alone while their 

collective activities appear to be coordinated in an insect society. Neverthe­

less, all the optimisation problems dealt with in the previous sections are static: 

the problem to be solved does not vary over time. One desirable feature of the 

swarm-based approach is that it may allow for enhanced efficiency when the 

representation of the problem under investigation is spatially distributed and 

changing over time. Although it still needs to improve, the research of this 

kind of SI has a promising future with more applications in telecommunication 

networks [60] and other areas. The applications of ACO include TSP [62], 

vehicle routing [65], course timetabling [66], graph colouring [67] and protein 

folding [68]. The merits of ACO are well illustrated by these applications. 

1.5 Thesis Outline 

This thesis is structured as follows: 

Chapter 2 presents a Varying Environment BActerial foraging Model (VE­

BAM), which focuses on the use of an Individual-based Modeling (IbM) 
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method to simulate the activities of bacteria at levels of cells and popula­

tion. Under this architecture, the interactions between the environment 

and bacteria are investigated at both the levels of cells and population. A 

new algorithm describing bacterial chemotaxis is derived from the frame­

work and simulation studies are undertaken to evaluate this algorithm. 

At the level of population, the mechanism of quorum sensing is studied, in 

order to obtain a deeper understanding of how and when this mechanism 

works and its influence on bacterial evolution. This chapter also presents 

the work of using VEBAM to simulate the 'cell-to-cell communication' 

incorporated in bacterial foraging behaviors, in both intracellular and 

population scales. The simulation results show that the proposed model 

can reflect the bacterial foraging behaviour and population evolution in 

varying environments, to a biologically-plausible degree. 

Chapter 3 introduces the major challenges in bridging the gap between mod­

elling and algorithms and illustrates the methodology of knowledge trans­

fer between them. It is followed by the demonstration of three BalAs: 

BFAVP with a mechanism for individual growth simplified from the VB­

BAM, BSA inspired from the foraging behaviour of E.coli bacteria, espe­

cially the population level and PBO, which is similar to PSO, but with 

the modified usage of computation in individual dimensions. The bench­

mark testing results of the above three algorithms are listed in each part 

respectively. 

Chapter 4 presents another BaIA with a different goal, to demonstrate an op­

timisation methodology developed specifically for dynamic environment. 

Optimisation in dynamic environments has received great attention in 

recent years. In this chapter, an algorithm aiming at optimisation in 

dynamic environments, called DBFA, is investigated. A test bed pro­

posed in the literature is adopted to evaluate the performance of DBFA. 

A range of random changes, which occur with different probabilities, are 

considered in a dynamic environment. The simulation results show that 
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DBFA can adapt to various environmental changes and provide satisfac­

tory performance in terms of both accuracy and stability, in comparison 

with the conventional Bacterial Foraging Algorithm (BFA). 

Chapter 5 describes three applications for which the BalAs have been ap­

plied. The first two are concerning with OPF problem, in which opti­

misation is considered in both static and dynamic cases; the third is the 

power transformer winding problem. The simulation results show that 

these problems can be tackled successfully using the algorithms presented 

in the above chapters. 

Chapter 6 concludes the thesis based on the outcomes obtained in this study, 

followed by a discussion of the challenges of this work. Ideas for future 

work are also listed in this chapter. 

1.6 Contributions of The Research 

The major contributions made in this research are highlighted in this section 

and the original investigations have been undertaken on the following aspects. 

1. An IbM approach for modelling of bacterial foraging patterns in a vary­

ing environment: A novel IbM approach has been proposed for modelling 

of bacterial foraging patterns. An architecture, together with a mathe­

matical framework, has been developed. In this architecture, the system 

components of chemotaxis, metabolism, proliferation, and quorum sens­

ing have been designed associated with mathematical equations derived 

to describe these specific biological phenomena. Simulation work of VE­

BAM has been undertaken. Comprehensive simulation results have been 

obtained which show that the model outputs have a g~eat similarity in 

comparison with the real E. coli foraging patterns as described in the 

literature. 

2. A bacterial foraging algorithm with varying population: This work has 

been undertaken in cooperation with fellow colleagues. More biological 
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details have been taken into consideration in developing BFAVP, in or­

der to further reflect the behaviour of bacterial foraging patterns. By 

contrast to conventional population-based EAs, BFAVP has a varying 

population scheme. The algorithm is based on the understanding of bac­

terial proliferation and it contains the following components: chemotaxis, 

metabolism, quorum sensing and proliferation. The algorithm is not only 

biologically realistic but also more efficient in global search performance, 

especially in solving multi-modal problems, which has been observed by 

assessing the function evaluation undertaken on a number of benchmarks. 

The merits of the BFAVP are illustrated in comparison with other EAs. 

3. A bacterial swarming algorithm: Based on the fundamental study of the 

aforementioned aspect, a novel optimisation algorithm called BSA has 

been developed. This algorithm incorporates the merits of swarm per­

formance, with a simplified QS approach, to enhance the global search 

and convergency capabilities. It also keeps the major character of BFA. 

BSA has been evaluated on a number of benchmark problems, which in­

clude uni-modal and multi-modal functions in low and high dimension 

domains, respectively. The simulation results have shown that BSA has 

superior performance in comparison with FEP and PSO. 

4. A paired-bacteria optimiser: In order to reduce the computation load 

of the bacterial foraging algorithm, PBO has been investigated. This 

algorithm builds on the merits of PSO, while using 'divide-and-conquer' 

strategy in dealing with high dimensional problems, but only employs two 

bacteria in a population for global search. Therefore, the computation 

load is significantly reduced, while keeping the satisfactory performance 

in solving global optimisation problems. Simulation studies have been 

undertaken to show the merits of the PBO in comparison with other 

EAs. 

5. Optimisation in varying environments: A new concept of global optimi­

sation in varying environments has been introduced, which is significantly 
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different from the conventional study of optimisation of static systems. 

The simulation study of a varying environment and in this environment, 

solving an optimisation problem propose a great challenge. In order to 

face this challenge, DBFA has been developed. By contrast to most of 

EAs which are developed for static optimisation problems, DBFA adopts 

not only the merits of local search which is inspired from the chemotactic 

process but also a new selection scheme which enables bacteria to flex­

ibly adapt themselves to variation of the environment. The diversity is 

maintained in a certain level throughout the optimisation process. Two 

criteria have been introduced to evaluate the tracking performances of 

DBFA. It has been evaluated on a 'moving peaks benchmark' platform, 

and its satisfying performance has been observed. 

6. Optimal power flow in static form: OPF problem is investigated in or­

der to obtain optimised operating conditions within specific constraints. 

Thus, it can be formulated as a constrained large-scale high-dimensional 

optimisation problem. It has already been attempted by conventional 

gradient-based methods and more recently, non-conventional ones, such 

as EAs. BFAVP has been adopted to tackle this problem and the evalu­

ation has been undertaken on IEEE 30-bus test system. The simulation 

results have demonstrated that BFAVP has a superior performance than 

PSO and FEP. 

7. Optimal power flow with load variations: This is the first time to intro­

duce a concept of solving an OPF problem with consideration of load 

changes alongside the optimisation process. A dynamic environment of a 

power system, which suffers from load changes randomly occurring on a 

number of buses simultaneously with a given probability, has been simu­

lated. DBFA has been evaluated on two test systems: IEEE 30-bus test 

system and IEEE 118-bus system respectively. In order to evaluate the 

convergence rate and tracking ability of DBFA, two error tracking crite­

ria have been designed: one is for evaluating the global tracking ability 
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of DBFA over the whole process of load variations, and the other focuses 

on the assessment of the convergence rate by counting the total number 

of function evaluations of DBFA. The simulation results, obtained by 

evaluating DBFA in comparison with BFA and PSO under the various 

scenarios of power system operation, have been presented and discussed. 

The results have demonstrated great potential of this study which may 

lead to a significant knowledge advance in this field in which the static 

OPF problems have been considered for more than half a century. 

8. Parameter optimisation of power transformer winding model: This work 

was undertaken in cooperation with fellow colleagues. BSA has been ap­

plied to identify the parameters of a lumped parameter model of trans­

former winding. It includes search space estimation for the model pa­

rameters using analytical calculations and performing intelligent learning 

for determining the model parameters with BSA. This work shows that 

transformer winding models can be successfully constructed using BSA. 
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Chapter 2 

Modelling of Bacterial Foraging 

Behaviour 

2.1 Introduction 

This chapter presents an architecture incorporating a mathematical frame­

work for developing VEBAM. Our study focuses on the use of IbM to simulate 

the activities of bacteria at the levels of cells and populations. In particular, 

the interactions between the environment and bacteria are investigated at the 

level of cells. A new model describing bacterial chemotaxis is derived from 

the framework and simulation stud'ies are undertaken to evaluate thismodel. 

At the population level, the mechanism of QS is studied, in order to obtain a 

deeper understanding of how and when this mechanism works and its influence 

on bacterial evolution. This study focuses on the development of VEBAM to 

simulate this 'cell-cell communication' incorporated in bacterial foraging be­

haviour, at both intracellular and population scales. The simulation results 

show that the proposed algorithm can reflect the bacterial foraging behaviors 

and population evolution in varying environments, to a biologically-realistic 

degree. 
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2.2 Individual-based Modelling 

Interest in biologically-inspired modelling, directed at understanding the 

survival and reproduction of bacteria, has been stimulated by Systems Biology 

as an emerging discipline. Research in this area not only benefits the study of 

biological systems, but also aids the development of novel methodologies for 

solving modelling and optimisation problems for non-biological systems [69] 

[70]. One of the most important issues in biologically-inspired modelling is to 

understand the underlying mechanism of a biological system and to develop a 

generic model for bacterial behaviors. 

IbM is one of the emerging approaches in Systems Biology. The basic idea 

of IbM is to simulate the behaviour or dynamics of an individual that inter­

acts with others synchronously or asynchronously. IbM is commonly based 

on cellular automaton models, explaining qualitatively foraging pattern forma­

tions for different nutritional regimes [71]. The essential capability of an IbM 

enables the description of all the states, inputs and outputs of an individual 

and its relationship with other individuals living in the same population. In 

contrast to population-based modelling (PbM), IbM possesses a more flexible 

and robust capability for simulating a complex system where there are a large 

number of individuals that have their own behaviour or dynamics influenced 

by other individuals and the environment. One example is a SIMulator for 

IbM of BACterial colony growth (BacSim), a simulation tool based on under­

standing colonial growth in E. coli. It constructs a spatially explicit IbM of 

bacterial population growth that is quantitatively correct [11]. More recently, 

RUle-based BActerial Modelling (RUBAM) [72], which is an evolved version of 

IbM, introduces a fuzzy logic classifier system to characterise rules for bacterial 

movement. RUBAM utilises a rule-based architecture to investigate ecologi­

cal and evolvable outcomes among very large numbers of artificial agents. The 

symbolic architecture of RUBAM employs a modified learning classifier system, 

which has been applied previously to biological systems. Agents in RUBAM 

that represent bacteria are constrained by rules that enact one or more phe­

notypes. They are able to adapt to changes in their environment through 
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implementing rule sets that mimic regulation of gene expression. In addition, 

agent populations can evolve by mutation and selection. The computational 

architecture employed also allows tracking of the life history and genealogy of 

individual agents within the environment [72]. 

Furthermore, there are other models, such as Individual Discrete Simula­

tions (INDISIM) [73] and Computing Systems of Microbial Interactions and 

Communications (COSMIC) [74] [75], which are concerned with the details 

of cellular genetic interactions. COSMIC is an IbM approach to microbial 

ecology and evolution developed at The University of Liverpool. It seeks to 

encapsulate the behaviour of computational objects and processes with both 

biologically-plausible agent architectures and computational tractability. The 

computational architectures employed in these studies embrace agent-based 

models that employ symbolic (rule-based) systems such as classifier systems 

and sub-symbolic network-based architectures. This approach provides mod­

els for understanding adaptation and evolution in the communities of self­

replicating agents representing bacteria living in virtual computational ecosys­

tems [74]. 

The IbM can perform flexibly to simulate more complex ecological prob­

lems, considering the most important features of bacterial evolution. Moreover, 

the IbM does not require pre-understanding of the aggregate behaviour, which 

makes the model more expandable for various scenarios of biological systems. 

However, bacterial foraging modelling involves high-throughput data pro­

cessing work and poses a dilemma between biological reality and computa­

tional efficiency when modelling the details of a bacterial system. As a result, 

the models either represent these phenomena in a microscopic manner (e.g. 

BacSim and COSMIC only simulate metabolism and evolve bacterial growth) 

or apply an artificial mechanism or metaphor instead of biologically-plausible 

rules. Similar to these models, RUBAM employs fuzzy logic instead of chemo­

tactic descriptions to represent foraging patterns. In this sense, a model that 

is able to represent a biological system with more knowledge of chemotactic 

processes, from a macroscopic point of view, is needed. In this chapter, we 
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propose VEBAM to simulate bacterial foraging patterns in a varying environ­

ment. Two important issues, bacterial foraging patterns at the cell level and 

quorum sensing at the population level, are addressed. 

2.3 Chemotaxis 

The foraging patterns of bacteria have been thoroughly investigated over 

the past few decades [6]. Chemotaxis is one of the most well studied strategies 

for ensuring cooperative behaviors in bacteria [20]. This strategy describes 

the ability of the cells to move toward distant sources of food molecules, by 

sensing temporal changes in concentration levels of chemical attractants and 

repellents. Swimming is found to consist of smooth 'runs' interrupted roughly 

every second by transient 'tumbles'. Chemotaxis is based on the suppression of 

tumbles in cells that takes place in the expectation of moving up a gradient of 

attractants. The study of this bacterial foraging pattern has proved fruitful for 

developing mathematical models [18] [21] [76] [77] [78]. These models describe 

and analyse bacterial phenomena from different viewpoints. For example, a 

mathematical and computational model at the microscopic level of bacterial 

motility and chemotaxis can be found in the work of Dillon et al [18]. The 

optimal chemotactic strategy of E. coli is analysed by evaluating the signal to 

noise ratio [21]. The bacterial chemotaxis signalling pathway is modelled and 

a full set of conditions are derived for this signalling system to achieve perfect 

adaptation to the environment [78]. 

In a bacterium such as E. coli, the chemotaxis pathway is well characterised, 

as shown in Fig. 2.1 [79]. Receptors at the cell surface detect changes in the 

concentrations of attractants and generate shifts in the level of phosphorylation 

of a diffusible signaling protein CheY. Phospho-CheY diffuses from CheA freely 

through the cell, and when it encounters a flagellar motor it binds to a flagellar 

protein called FilM. 

Phosphorylated Che Y modulates the direction of flagellar motor rotation 

and thus affects swimming behavior of the cell. Phospho-Che Y bound to FilM 
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Figure 2.1: Chemotaxis pathway 

induces tumbling by causing a change in the sense of flagellar rotation from 

counterclockwise to clockwise, as viewed from behind. The entire signal trans­

duction pathway includes five attractant-specific receptors (Tsr, Tar, Trg, Tap, 

and Aer), six cytoplasmic chemotaxis proteins (CheA, CheW, CheR, CheB, 

CheY, and CheZ), and three proteins comprising a switch complex at the cy­

toplasmic face of the flagellar motor (FliM, FliN, and FliG). Based on genetic 

and biochemical data, functions have been assigned to all the chemotaxis pro­

teins: CheA is a kinase that phosphorylates the response regulator Che Y and 

also the methylesterase CheB; CheW is an adaptor protein, coupling CheA to 

receptors; CheR, a methyltransferase, and CheB, a methylesterase, mediate 

adaptation to a constant attractant concentration by adjusting the methyla­

tion level of receptors; CheZ is a phosphatase of Che Y to CheP. Despite its 

relative simplicity, the chemotaxis system exhibits features common to many 

cellular networks, such as signal amplification, integration, and adaptation [80]. 

This has inspired a number of recent attempts to mathematically model this 

pathway. 

The methylation state of the MCPs can thereby provide a memory mech­

anism that allows a cell to compare its present situation to its recent past. In 

that case, bacteria could detect a change in occupancy of the aspartate receptor 

as little as 0.1-0.2% [20]. As a result, chemotactic cells tumble less frequently 

if cells experience an increase in chemoattractant concentration over a period 

w. J. Tang 



2.4 Quorum Sensing 32 

of time. And it is known that for the chemoattractant aspartate, a cell com­

pares the occupancy of a given receptor over the past second with that of the 

previous 3 seconds. 

The tendency to tumble is enhanced when the bacterium perceives condi­

tions to be worsening - when attractant concentrations decrease or repellent 

concentrations increase. Conversely, tumbling is suppressed and cells keep run­

ning when they detect that conditions are improving. Thus, when a bacterium 

runs up a gradient of attractants or down a gradient of repellents it tends to 

continue on course [71]. 

In general it is apparent that the change in stimulus concentration that a 

bacterium can detect is a constant fraction of the background stimulus inten­

sity. This relationship, known as Weber's Law of psychophysics, is a general 

feature of animal sensory systems. It is interesting that it seems to apply as 

well to bacteria. 

Recently, bacterial chemotaxis has become a honey pot for modellers. N u­

merous computer programs have been written to represent kinetic and other 

features of the pathway, with significant success. It also provides the funda­

mental knowledge on which this study is based. 

2.4 Quorum Sensing 

Living organisms are always subject to time-varying conditions in the form 

of environmental changes. That is why they develop their own essential ability 

to sense signals in the environment and adapt their behaviour accordingly. To 

understand the intracellular molecular machinery that is responsible for the 

complex collective behaviour of multicellular populations is an exigent prob­

lem of modern biology. A new branch of microbiology, quorum sensing, was 

discovered by Miller et al. (which is also called 'cell-cell communication') [23]. 

Cells that have their specific gene expression programs activated can pro­

duce autoinducers, i.e. signalling molecules, that initiate quorum sensing [81]. 

An 'on-off' gene expression switch controls this phenomenon in response to the 
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Figure 2.2: Quorum sensing (Step I) 

increase of autoinducer concentration. Thus, once a certain level of a cluster 

density is reach d , a quorum sensing network of the population is formed and 

turns to the 'on' state. It also amplifies the autoinducer signal of the 'quorum' 

cells. This signal then turns on the expression of the phenotype-specific genes 

of other cells and boots th production of autoinducers in the entire popula­

tion. Once it turns to the 'on' state, it remains in this state until the density 

of the cluster falls below a certain critical level. The quorum sensing network 

remains in the 'off' state, until a certain concentration of the critical autoin­

ducers is reached once more. Figures 2.2'"'-'2.6 illustrate the quorum sensing 

process within and between two engineered strains of E. coli [82]. 

Communication between bacteria, by the mechanism referred to as quo­

rum sensing', is widespread in nature. Quorum sensing also controls bacterial 

behavior, especially those behaviour that would be unproductive when under­

taken by an individual bacterium, but become effective in a cooperative group. 

Such phenomena as bioluminescence, secretion of virulence factors , sporulation 

and conjugation may be governed by quorum sensing. In this sense, bacteria are 

able to function as multi-cellular organism. A general mathematical model 

of quorum sensing is introduced in bacteria [83]. A mathematical model of 
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quorum sensing in Pseudomonas. aeruginosa is presented to show how quorum 

sensing works using a biochemical switch [84]. A more biologically realistic de­

scription of quorum sensing was considered to study the formation of bacterial 

foraging patterns [85]. A stochastic model to connect intracellular and popu­

lation scales of quorum sensing phenomena was proposed to demonstrate that 

the transition to quorum sensing by an Agrobacterium population in a liquid 

medium requires a much higher threshold cell density than in a biofilm [86]. A 

spatially structured model for a cell population, including a detailed discussion 

of the regulatory network and its bistable behaviour, has been investigated 

and analysed [87]. The other modelling approaches investigated also revealed 

a number of important properties of quorum sensing [81][88]. 

However, these differential equation based biological models, introduced 

above for bacterial foraging patterns and/or quorum sensing, share the same 

drawbacks, such as, relying on experimental data. Moreover, they are not able 

to be generalised for analysis of various events within the biological system 

from which the data were collected. Therefore, it is rare that these models 

could be used to describe complex biological processes such as evolution. 

2.5 Modelling Bacterial Behaviour in Varying 

Environments 

As an IbM approach, VEBAM can be easily expanded and updated, while 

keeping a biologically realistic framework, for simulating different bacterial for­

aging patterns. The core algorithm of VEBAM is driven by a finely simulated 

model of chemotaxis. VEBAM also considers a novel approach to quorum 

sensing, based on biologically realistic mechanisms, including the employment 

of cell density sensing. We model bacterial behaviour with and without quo­

rum sensing, and illustrate numerical differences between them acknowledging 

a wide variety of intrinsic and extrinsic properties of bacterial foraging behav­

iors. Population growth and nutrient variability influenced by quorum sensing, 

and the potential application of VEBAM are discussed. This model has been 
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tested in a varying environment, which demonstrates its potential for dynamic 

problem solving. 

2.5.1 Architecture 

The architecture of VEBAM is shown in Fig. 2.7. This model aims to 

investigate the foraging patterns of E. coli and colony development in a varying 

environment. It includes two fundamental elements: the environment and cells. 

The environment includes the properties of an artificial surface used for search, 

such as the characteristics of the boundary and a map of food distribution. The 

food distribution map is initialised by defining a specific function. 

The cells are a set of bacteria, and each individual is assumed to have a 

receptor that detects the value of its surrounding environment. It also has a 

decision making system, determining the direction of movement, energy and 

status of cells, as well as controlling the quorum sensing switch according to 

information obtained by the receptors. These activities last during the cells' 

lifetime, enabling them to interact with the environment and then modify 

the food map. To simulate the quorum sensing phenomena, a cluster density 

detection scheme is introduced, which functions as a measure of the density 

of the cell population. As the cells grow independently from each other, the 

timescale presents a challenge in modelling such decentralised behavior. In 

VEBAM, the foraging process is artificially defined and fitted into time slots 

by introducing the concept of 'step'. The synchronisation unit is responsible for 

stepping the model in the time scale and keeps a global clock that synchronises 

the updating of both the environment and the cells. Updating the environment 

includes modification of nutrient distribution, while updating of cells consists of 

relocating them according to their positions and initialisation of newly created 

daughter cells. 

One of the important aspects of this model is to emulate the bacterial 

chemotactic process, supported by a decision making system which determines 

the behavioural output of bacteria, according to variation in the environment. 

The behaviour of individual peritrichously flagellated bacteria can be described 
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in terms of run intervals, during which the cell swims approximately in a 

straight line, interspersed with tumbles during which the organism undergoes a 

random reorientation. If the concentration level of an attractant is increasing, 

a bacterium responds by reducing its tumbling probability. Thus the duration 

of run is longer when bacteria are swimming up a chemoattractant gradient 

[71]. Based on these activities, VEBAM adopts a decision making system that 

determines the direction of movement based on probability instead of only the 

random walk used in the description of bacterial behaviour in other IbMs [89]. 

During the chemotactic process, the states of cells change with interactions 

between the environment and these cells. The cells consume their energy to 

move and meanwhile they are rewarded by nutrient proportionally according 

to prevailing conditions. If the available nutrient for a cell is less than a certain 

amount, the cell gets all the available nutrient, and the nutrient is consumed 

fully in that location. If its energy falls below a critical level, the cell becomes 

inactive. In this case, the cell is motionless. Whilst the energy of a cell is 

higher than a pre-determined level, it can divide into two daughters, each of 

which becomes a new cell and a new life cycle begins. The detailed description 

of these elements is presented in Section 2.5.2. 

VEBAM also provides the switching mechanism for quorum sensing. The 

population density of bacteria is assessed by detecting the concentration of 

a particular autoinducer, i.e. a signalling molecule, related to the density of 

a cluster of cells. At a certain stage of the bacterial foraging process, density 

would increase. A colony of bacteria would respond to the density by activating 

a specific gene expression program. This phenomenon, which provides intercel­

lular communication, is exhibited commonly in Gram-negative bacteria, such 

as E.coli. The detailed description of this mechanism is given in Section 2.4. 

2.5.2 Framework 

A mathematical framework has been developed in this thesis to simulate the 

VEBAM. In the framework, the components of this model, including environ­

ment, cells, the synchronisation and interaction between them and population 
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Figure 2.7: VEBAM archit cture 

growth, will be mathematically described. 

Environment 

The model is et in an artificial environment for bacterial movements. This 

environment contain potential nutrients and toxins. The former provides the 

energy required by bacteria to survive, while the latter may b inimical to bac­

terial activity. An environment includes the properties of an artificial surface 

u ed for search, such as the characteri tic of the boundary and the map of food 

di tribution. The food distribution map is initialised by defining a sp cific 

energy distribution function. The int raction between the environment and 

cells ar updat d during the computation process in whi h cells are moving to 

obtain energy. After ea h step of cells' movements, the nutrient distribution i 

modified in relevant grid units. 

The environment is defined as 

(2.5.1) 

where in indicates the nutrient distribution and (3 represents the boundary 

characteristic, indicating whether it is reflective or periodic. The environ-
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ment is segmented equally into small niches as a discrete grid, covering a 2-

dimensional grid of M x N grid units. Thus the Env contains !v! x N equally 

divided units, which can be represented as: 

Env= {Env!jli= 1,2"" ,M;j=1,2, .. · ,N;t=1,2, .. · ,oo} (2.5.2) 

where Env~j denotes the nutrient or toxin level in the niche of (i, j) and a 

positive value of Env!j indicates nutrient while negative ones represent toxin; 

i and j are indices of each dimension along the coordinates; and t denotes the 

time instant of the step of the foraging process. 

During the simulation time, the nutrient map is constantly distorted by 

the surviving bacteria. Since the toxin produced by cells is not considered, the 

only factor that modifies the nutrient map is the consumption of nutrients by 

bacteria. Thus, the nutrient depletion in the environment can be expressed as 

Pij 

E t+ 1 E t '"" cl nVij = nVij - ~ gain (2.5.3) 
1=1 

where C~ain is the nutrient obtained by the lth bacterium in grid (i,j) per step. 

Pij is the number of bacteria in grid (i, j) at time t. 

Bacteria and their foraging patterns 

Following the definition of the environment, a set of bacteria is represented 

as: 

B = {Bill = 1,2,,,' , Pj t = 1,2"" , T} (2.5.4) 

where 

(2.5.5) 

denotes an individual bacterium or cell; P is the maximum population size 

in the foraging process and T the final time of this process; Bf has its own 

position p!, p1 = {i, j Ii, t}, energy cL and status 'tiL 'til E {<PI, <P A, <PD}, where 

<PI, <P A, <PD stand for the status of Inactive, Active and Divided, respectively. 

An action T[ depends on a probability-based variable Af to indicate whether 

the cell is running or tumbling at time t, T{+1 E {XR, XT}, where XR denotes 
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the action of Run, while XT represents Tumble. If it is tumbling, the cell moves 

with an orientation 4>1 as an angle formed by the flagellar axis. For the run 

orientation, 4>1 is the same as 4>~-1; 1St is the length of run, which is set to be a 

constant; and >'f, which represents a probability of run, is defined as follows: 

{ 
A 'f E t E t· >.t+! = ,1 nVij < nVij 

I 1 _ A 'f E t > E t* , 1 nVij _ nVij 
(2.5.6) 

where A represent the probability of run, which is determined according to the 

change of environment, and 0 < A < 0.5. 

It is known that chemotactic cells tumble less frequently if the cells ex­

perience an increase in chemoattractant concentration over a period of time. 

Equation (2.5.6) implies that a better environment leads to a higher probability 

of run. However in nature the direction of bacterial motion depends upon the 

changes of chemoattractant concentration levels, which take place at the cell 

site over a time interval of up to 4 seconds [76]. VEBAM considers the bacterial 

chemoattractant concentration over a period of time, for example values of the 

environment observed over the past three steps, as shown in Fig. 2.8. In this 

case, Env~j3, Env!j2 and Env~jl, are adopted to obtain an average measure 

of the previous environment, which is denoted by Env!;, where t* indicates 

the fictitious time instant associated with the average value of the changed en­

vironment. Bacteria compare their receptor occupancies between those which 

occurred at t* and t, i. e. let d = Env~j - Env!;. If d < 0, the cell will reduce 

the rate of run to A, otherwise it remains at 1 - A, as described in (2.5.6). 

It should be mentioned that (2.5.6) influences whether the next action of the 

bacterium is tumble or run. Given a random number, E (0,1), the decision is 

made by the following equation: 

if , > >.~+! 
if , s >.!+l 

Hence, the angle 4>f can be given as follows: 

(2.5.7) 
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(2.5. ) 

(2.5.9) 

wher f.l 1 a random number, and 11 E [-0.5,0.5]. The nonlin ar r lationship 

between e and J.l is shown in Fig. 2.10. 

If Tt+1 = AT, the tumbling angle of E. coli is randomly gen rat d and non­

uniformly distributed. It i found that the mean tumbling angle of wild typ 

E.coli i about 6 0 with a tandard deviation of 360 approximat ly [6]. In thi 

case, the tumbling angle for the next step i the previous angle plus e, as shown 

in Fig. 2.9. Th oretically e could b any angle between -7r and 7r. 

It is known that bacteria swim by rotating whip-like flagella driven by a 

reversible motor embedded in the cell wall. Th direction of flagellar rotation 

determines wh ther peritri hou ly flagellated c 11s run or tumbl . For E. coli, 

the run and tumble interval' are exponentially di tribut d approximately with 

means of 1 second and 0.1 second resp tively in an i otropic m dium [76]. 

Since the duration of the activity of run is about 10 times of the activity of 

tumble, the time taken by tumble is ignored in this model. The angle changes 
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while the tumble takes place. As a result, the cell position changes in each step, 

which can be described as follows: 

(2.5.10) 

where p~+l indicates the position of each cell 1 at step t + 1. The distance 

between the cell's current position p1 and the next position pf+1 can be repre­

sented by 81 L4>1. 
At this step, the decision making system requires the cell statistics that 

include energy variation as one of the major factors, described as follows: 

t+1 t . (E t+1 Cl ) 
Cl = Cl + mm nVij' gain (2.5.11) 

where (i, j) = p;+1. In each step, if the nutrient available in grid (i, j), Env!t, 
is less than the nutrient required by the cell, C~ain' the cell lowers its nutrient 

consumption level and then takes up the available nutrient in this grid. 

The decision making system then decides whether it will be alive or dead 

based on the statistics of each cell. A cell can either carryon living or be 

removed from the system or divide into two cells according to the following 

equation: 

if cf+1 < O"A 

if O"D > cf+l > O"A 

if c~+1 > O"D 

(2.5.12) 

where [O"D,O"A] E (0,1), the thresholds for the energy level, are preset at the 

start of the computation. The bacterial foraging process, as addressed above, 

is repeated until all the cells in the environment terminate. 

2.5.3 Proliferation of the population 

Since motility of E. coli cells in clusters is formed by chemotactic aggre­

gation, the population of E. coli in clusters varies according to the available 

nutrient. Given good growth conditions, a bacterium grows in size until a new 
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septal cell wall grows through the centre of the cell to produce two daughter 

cells. In favorable conditions, the generation time can be as low as 20 minutes. 

Generally, the population growth has three phases, namely a lag phase, an 

exponential phase and a death phase. In the lag phase, growth is slow at first, 

while the cells acclimatise to the food in their new habitat. It was discovered 

that the growth rate doubles in the middle of the division cycle, which leads to 

a doubling of the reproduction rate of the population [90]. In the death phase, 

as more and more bacteria compete for dwindling food, growth stops and the 

number of bacteria becomes stable until toxic waste products build up; at the 

same time food is depleted and the bacteria begin to die. 

Cell populations have been modelled using partial differential equations, gas 

kinetic theory, cellular automata, and Brownian agents [91] [92] [93]. These 

models, however, either concentrate on macroscopic calculation of the process 

without a detailed description of the internal mechanisms, or apply a specific 

individual behaviour rather than chemotaxis. 

VEBAM has adjustable growth and reproduction rates, which can be de­

termined dynamically according to environmental variation. During a cell's 

lifetime, mass grows as long as the cell obtains energy from the environment. 

When cellular energy exceeds a preset threshold, it divides into two daughters, 

each of which gets a randomised allocation of the initial energy, as shown in 

Fig. 2.11. In a rich nutrient area, a cell takes a shorter time to obtain enough 

energy for reproduction. The population variation can be represented as: 

(2.5.13) 

where ~Pd and ~11 indicate the populations of divided cells and inactive cells, 

respectively. They are two main factors affecting variation in the population. 

After each step of the chemotactic process, the divided cells are listed in a 

memory pool to keep a record of the evolutionary trajectory, while the inactive 

cells are deleted from the memory in the simulation study. 
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2.6.1 The definitions and computation of quorum sens­

ing in VEBAM 

In VEBAM, quorum ensing is calculated based on the definition and com­

putation rules of clust rs. A set of clusters is an aggr gation of population, 

and i defined as follows: 

(2.6.1) 

wh re 

(2.6.2) 

d notes the kth clust r in the population, Dk the population density, Gk the 

position of the centre of gravity and Fk the diffu ion exponent of the autoin­

ducers in clust r Ck · 

At each chemota tic step, bacteria move from one position to another, and 

they Lend to move towards a nutrient-ri h area. In general, variation in bacte­

rial population density is affect d by four factors: the availability of nutri nt , 

the presen e of comp titors, the ho t r sponse and the quorum sensing net­

work. However, due to the complex relationship of these four factors and also 

insufficient data used for simulation studies, only the availability of th nutri-
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ents and the quorum sensing network are considered. In VEBAM, each cluster, 

Ck, the population is classified according to the distribution of cells and their 

population density. The positions of gravity center, Gk , are also calculated for 

each cluster Ck' 

At time t, the amount of autoinducers, emitted by cluster Ck with the 

mechanism of quorum sensing, is calculated as: 

(2.6.3) 

where Wk is the weight of cluster Ck, to is the time at which the quorum 

sensing is turned to the 'on' state, ap denotes the amplitude of the peak of the 

autoinducer congregation (and is to be tuned as appropriate) and Pi,j covers 

the whole environment. 

The autoinducers could be added to the environment as an attractive factor. 

Then the environment is modified as 

Pi.j 

EnvfjI = Envfj - L C~ain + AL,j (2.6.4) 
1=1 

The energy of each bacterium producing autoinducers also needs recalculation. 

Select Cm C C, where Cm is the cluster which produces autoinducers, the 

energy of the lth individual in Cm is modified as: 

t+1 (1 ) t . (E HI C1 ) cl = - a cl + mm nVij' gain (2.6.5) 

where 1 E [1,2,·.· ,nm ], nm is the total number of individuals in cluster m 

and a is the coefficient used to control the rate of the energy to autoinducer 

transformation. 

To model the bacterial foraging behaviour, a software package has been 

developed, based on the MATLAB language. It involves three major parts: 

initialisation, the chemotaxis step and colony updating. The pseudo code of 

the whole algorithm is shown in Table 2.1. 
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Table 2.1: Pseudo code for VEBAM 

Randomly initialise states of bacteria represented by (2.5.2) and (2.5.5); 

Tumble: For bacterium I, the initial direction is randomly chosen; 

While (Number of survival bacteria> 0) 

FOR (Chemotactic step t) 

Environment: 

FOR (bacterium I) 

Without quorum sensing, Env;J1 is updated 

using (2.5.3), as the cells are now ready to 

run in this cycle. 

Decision making: Get the environmental value of each bac­

terium I as Env~:; the average environmen­

tal value of the past three steps, Env~i is 

stored in the cell's memory for making de­

cisions. Calculate ).~+1 by (2.5.6) and Tt+1 
using (2.5.7). 

Tumble: 

Run: 

END FOR 

Individual: 

Colony updating: 

If T{ = XR, Run; otherwise, Tumble; 

Calculate the tumbling angle by (2.5.9). Bac-

terium I moves to a new position using 

(2.5.10); 

For bacterium I, it takes another unit walk 

of the same direction by (2.5.10). 

Calculate the energy of bacteria using 

(2.5.11). The decision making system deter­

mines the status of cells by (2.5.12). 

Using statistics and chemotactic rates ob­

tained from Table 2.2, modify the environ­

mental value of the cell's position, and cal­

culate the current population by (2.5.13); the 

positions of divided cells are recorded. 
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Quorum sensing: Once the density of a population reaches 

the threshold, the quorum sensing switch 

turns on. The clusters Ck of the population 

are classified using the density-based algo­

rithm; calculate each element of Ck defined 

in (2.6.2)' and the autoinducer by (2.6.3); 

modify the environment according to quorum 

sensing and the energy of the autoinducer­

generating bacteria, by (2.6.4) and (2.6.5), 

respectively. 

END FOR 

END While 

2.6.2 Environment setting and parameter selection 

The VEBAM is set in a multi-modal environment. The nutrient distribution 

of the toroidal grid environment at t = 0 is represented by the function fn(x, y) 

given by [69]: 

+ 3e-O.08((x-25)2+(y-1O)2) + 2e-O.1((x-1O)2+(y-1O)2) 

2e -O.5((x-5)2+(y-lO)2) _ 4e -O.1((x-15)2+(y-5)2) 

2e-O.5((x-8)2+(y-25)2) _ 2e-O.5((x-21)2+(y-25)2) 

+ 2e-O.5((x-25)2+(y-16)2) + 2e-O.5((x-5)2+(y-14)2) (2.6.6) 

The above equation is normalised as fn(x, y) = fo(x, y)/ fmax, where fmax = 
max(Jn(x, y)), x, y E [0,30], both x and y change with an incremental value of 

0.1 and the environment is divided into 300 x 300 grids. 

During the whole process of computation, the nutrient in the environment 

is constantly consumed by bacteria at each grid unit, which they occupy until 

the nutrient is lower than a minimal level. The bacteria are initially located 
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Nutrient concentration (valleys=food. peaks=noxious) 

30 

o 0 

Figure 2.12: Environment setting 

in a distribution generated by the Halton Quasi-random equence, which has 

been shown to assist in reducing generation needed in GAs effectively [94]. 

The initjal population size is 100. The parameter settings are given in Table 

2.2. 

2.6.3 Density-based clustering algorithm 

As dis uss d in Section 2.4, in each cluster Ok, the population can be 

classifi d, according to the po itions of the cells, using the method of 'density­

based spatial clust ring' [95]. If we define an individual as a 'point', then all 

points can b lassified as follows: 

First of all, E, the neighbourhood radius of a cluster is defined. Given the 

parameters: T, the minimal number of points in a clu ter; X, X = {xLii = 
1,2, . . . ,P}, a set of the positions of all points; and n, the dimension of the 

W. J. Tang 



2.6 Simulation Studies 51 

Table 2.2: Parameter settings 

Symbol Parameter Range Value 

Env Environment dimension ~ 1 2 

Eg Metabolic coefficient (0,1) 0.02 

Ee Energy cost for a swim (0,1) 0.01 

E Energy level of organism [0,1] N/A 

O"A Energy level for active state [0,1] 0.2 

O"D Energy level for divided state [0,1] 0.8 

PI Initial population size ~ 1 100 

<5 Run length [1,100] 5 

A Probability of run 

when Envcur is worse than Envpre [0,1] 0.3 

ap Amplitude of the peak in quorum sensing [0,1] 0.1 

Fk Diffusion effector [0,10] 0.5 

a Metabolism factor for quorum sensing [0,1] 0.05 

positions, the € is calculated as: 

( 

n ) lin 

€ = TI(max(Xd) - min(Xd)) X k X r(a))/M (2.6.7) 

where r(a) = Jooo e-tta-Idt, a = 0.5n + 1, M = r(1T)n/2, and Xd = {Xldl l = 

1,2,· .. , P} and Xld is the position value on the cfh dimension. 

Given an arbitrary point p in the environment, let di be the distance from p 

to its ith nearest neighbour; set D as the radius of the neighbourhood of p, and 

the D-neighbourhood of p contains exactly s + 1 points, where s is the total 

number of neighbours of p. In this neighbourhood, the longest distance exists, 

denoted as dmax , dmax = m8Xi { di }. If and only if dmax ~ € and s + 1 ~ r, the 

D-neighbourhood of p is considered to be a cluster. 

For each cluster Ck, all points of Ck fall into two categories: points inside 

of the cluster (core points) and points on the border of the cluster (border 

points). Given a point p, which belongs to Ck, if dmax ~ €, it is called a core 
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point, Pc, otherwise it is deemed a border point, Pb. 

The position of the gravity center Gk, for each cluster Ok, is obtained 

according to the identification of core points. Set the position of a Pc in Ok as 

P kc , and P kc = (Pkc,b Pkc,2,'" ,Pkc,d,'" ,Pkc,n]' then the coordinate of Gk in 

the cfh dimension is calculated as: 

G
kd 

= 2:N Pkc,d 
N 

where N is the number of core points in cluster Ok. 

2.6.4 Simulation results and analysis 

Single bacterial behaviour 

(2.6.8) 

While foraging, bacteria absorb energy from nutrients in the environment in 

order to survive and reproduce. In this case, the nutrient is depleted constantly 

until the computation ends. Meanwhile, in accordance with the principle of 

chemotaxis, bacteria are always moving towards a richer nutrient area, which 

in turn, modifies the distribution of nutrient. In this way, the environment 

changes following each iteration of bacterial movement. 

Figures 2.13,,-,2.16 illustrate the trajectories of bacteria in two separate 

experiments. In VEBAM, (1D is set to 0.8 for a cell to split; and (1 A is set to 

0.2 for a cell to become active. The probabilities for action of Run when the 

environment is worse is set to A = 0.3. The run length is set to 5 grid units 

per step. The energy gained and the energy consumed by each cell at a single 

step are denoted by Eg and Ec respectively. Figures 2.13 and 2.14 show the 

behaviour of cells 4 and 18, where Eg = 0.2 and Ec = 0.1. Figures 2.15 and 

2.16 concern cells 8 and 14, where Eg = 0.02 and Ec = 0.01 are adopted. 

Figure 2.13 shows that when a bacterium moves up a gradient, it approaches 

an area that contains higher energy. The action of tumble and run are com­

bined together to execute the chemotactic process. However, the cell cannot 

stay still in the area containing the highest energy because of the stochastic 

nature of its movement. The cell continues to run across this area before a 

tumble takes place, as shown in Fig. 2.13. This foraging behavior could be 

W. J. Tang 



2.6 Simulation Studies 53 

400 ~ - - ~ 

200[ 

Z 
300f 

1 
I 0

1 '1 ,., 200 ~ t» ,., 
160 ' I 

I 
I 

100 
1401 J \ t-....,fr 

L 0
0 220 240 260 280 100 200 300 400 

x x 

Figure 2.13: Cell 4 (E9 = 0.2, Ec = 0.1) Figure 2.14: Cell 18 (Eg = 0.2, £C. = 0.1) 

~I r 

200 I 
\ 

( I 
280 f 

180! /' 260 
-f ~ 

,., 1601 I 't ,., 240 

1 
.,. 

l~l 
220 ( 

\ I 

120 1 200 

~I 180 - ~ 

40 60 80 100 120 140 0 20 40 60 80 100 
x x 

Figure 2.15: Cell (E9 = 0.02, Ec = O.Ol)Figur 2.16: Cell 14 (E9 = 0.02, Ec = 0.01) 

considered as turbul nee, which enables the cell to avoid getting trapped in 

the 10 a1 optima. Figure 2.14 shows that a bacterium starts at a position 

around [50,50], with a number of tumbles until it reaches the boundary where 

x = O. Th ell continues to move in the same direction. For the simulation 

purpose, considering the periodical boundary, the cell is arranged to re-enter 

the environment from the right ide, across the boundary which is indicated 

by the dashed line. Aft r r -entering th environment, the cell moves up the 

gradient towards the ar a of rich st nutrient. A pure random walk could be 

observed in Fig. 2.15, from which it can be seen that b fore a cell detect. a 

gradient change, it chooses a next action randomly in the environment. This 

phenomenon indicates that a foraging cell moves without a fixed direction in a 

plateau nutrient area. 1\1 anwhil ,Figur 2.16 illustrates that the cell takes a 

probability-based run/tumble trategy to approach th nutrient-rich area, and 
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the probability of tumble is suppressed over this period. In this case, it can be 

observed that tumbles take place less frequently when the cell swims upwards 

along gradient than before the cell detects the gradient. 

Figures 2.13",,2.16 illustrate the various characteristics of cell movements, 

which include the scenarios of foraging patterns such as tumbling in plateau 

nutrient area, swimming up a gradient and crossing the periodic boundary. 

2.6.5 Population evolution without quorum sensing 

The population evolution of VEBAM has been simulated and it is illus­

trated in Fig. 2.17. The blue points indicate the active bacteria and the 

magenta ones represent the bacteria which are ready to divide. Figure 2.17 

also illustrates that bacteria have the ability to approach a high level of nu­

trient and avoid a toxin. If they could not obtain enough nutrient to survive, 

they would be eliminated in the evolution process. 

The rules introduced to describe the interaction between the environment 

and bacteria provide a mechanism for nutrient consumption calculation and 

bacterial status updating. The bacterial swimming mechanism is a combina­

tion of rules and stochastic searching. Furthermore, the population modelling 

includes the processes of initialisation, reproduction and termination of bac­

teria. VEBAM is a generic and expandable IbM for simulating population 

evolution based on the framework for modelling bacterial foraging patterns. 

2.6.6 Population evolution with quorum sensing 

VEBAM follows the basic biological rules by which each cell attempts to 

obtain as much energy as possible in a relatively short period of time. The 

population evolution of the VEBAM has been simulated and it is illustrated in 

Fig. 2.18. The evolution process proceeds via 100 steps, featuring the swarming 

of the cells towards the high-level nutrient as shown in Fig. 2.18. It has been 

noted in Fig. 2.18(b) that the quorum sensing was switched 'on' at or before 

t = 20, as four clusters were identified in this case (using (2.6.1)). From this 
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(a) Step 1 (b) Step 20 

(c) Step 40 (d) Step 60 

(f) Step 100 

Figme 2.17: The interaction between cells and environment in 100 steps 
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(a) t=l (b) t=20 

( ) t=40 (d) t=60 

(f) t=100 

Figure 2.1 : The int raction b twe n cells and environment in 100 step 
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time, the cell steadily produced a small amount of autoinducer molecules, that 

can freely diffuse in and out of the cell. At t = 40, three clusters were identified, 

which are highlighted in Fig. 2.18(c). In this case, the population densities 

of the top two clusters were low and most of the autoinducer molecules were 

washed out and dispersed in the environment by diffusion. In other words, at 

a low cell density the autoinducer is synthesised at a basal level and diffuses 

into the surrounding medium, where it is diluted. Much clearer features of 

quorum sensing are shown in Fig. 2.18(d), in which the cells in the two most 

highlighted clusters send out autoinducers and attract surrounding cells. When 

the nutrient is consumed gradually, quorum sensing no longer functions and 

active cells do not affect each other. 

Figure 2.18 shows the evolution process of bacteria with autoinducers artifi­

cially described in the environment. The environmental modification achieved 

using (2.6.4) is illustrated in Fig. 2.19. 

For comparisonal purposes, the simulation of bacterial foraging behaviour 

without quorum sensing was also undertaken. Figures 2.20 and 2.21 demon­

strate differences in population evolution and their influence on the environ­

ment with and without quorum sensing, respectively. Three characteristics are 

illustrated in Fig. 2.20, which are: the total population, the active population 

and the inactive population of cells. Throughout the process of 100 steps, the 

total population in the case with quorum sensing is lower than that without 

it. However, the inactive population is also lower and the peak of the active 

population is higher than the one without quorum sensing. The simulation re­

sults shown in Fig. 2.20 are consistent with the experimental data in terms of 

population-time profile [96]. It has also been demonstrated that quorum sens­

ing can optimise population growth or survival which is an important step in 

making the model conform to the theoretical understanding of that "quorum 

sensing provides a benefit at the popUlation level by increasing the produc­

tion of cooperative exoproducts that can aid growth in certain environmental 

conditions" [97]. 

The available nutrient in the environment and that obtained by active and 
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inactive cells are shown in Fig. 2.21. The results were calculated using the 

following equation: 

300 300 

Nutrient = L L !n(Xi, Yj) 
i=1 j=1 

where Xi, Yj E [0,30], and !n(Xi, Yj) ~ o. 
There is no significant difference between the total available nutrient in the 

two cases which are given with and without quorum sensing. However, the 

energy of active cells with quorum sensing is much less than the one without, 

during the peak period of active population shown in Fig. 2.20. This result 

indicates that cells foraging with the quorum sensing are able to achieve a 

higher population level with less nutrient consumed than that achieved without 

quorum sensing. 

2000r-----~----~----~----~----. 
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Figure 2.20: Population evolution 

Further simulation results on quorum sensing influence can be obtained if 

the model parameters, such as A and Fk , are given in different values. However, 

the basic features of population and environment variation would not change. 

Therefore, we do not present further results on this aspect in this chapter. 
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2.7 Summary 

100 

60 

This chapter has presented VEBAM for modelling bacterial foraging be­

haviour in varying environments. The details of individual foraging behaviour 

and population development process have been described. The chemotactic 

process, developed as a kernel of IbM from the novel model, has been eval­

uated in the simulation studies which include modelling a group of bacteria 

during an infinite number of generations. The quorum sensing mechanism has 

been successfully incorporated into this model and also evaluated in the simula­

tion studies. A density-based clustering algorithm has been adopted to classify 

the clusters of cells, which assists in identifying the timing of quorum sensing 

switching. The centre of gravity in each cluster has also been identified to 

pinpoint to centre for sending and diffusing autoinducers in the environment. 

The simulation results show that the bacteria move towards nutrient, avoid­

ing toxin in a chemotactic manner and this IbM-based approach is able to pro­

vide a plausible methodology to simulate the bacterial foraging behaviour. It 

has also been demonstrated that quorum sensing can significantly influence the 

variation of bacteria populations and environmental nutrients, which provides 
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a more biologically-realistic solution for modelling bacterial foraging patterns. 

Furthermore, the work presented in this chapter would provide a basis for the 

development of novel bacteria-inspired optimisation algorithms. 
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Chapter 3 

Advances in Bacteria-inspired 

Algorithms 

3.1 Introduction 

The use of biological processes or behaviour as metaphor, inspiration, or 

enabler in developing new computing technologies has been emerging in recent 

years. These techniques are the so-called BIA. The main steps of BIA can be di­

vided into two parts: 1) observing animal and human behaviour and modelling 

biological phenomena; 2) mimicking acquired knowledge to develop computing 

algorithms for solving the problems of engineering systems and machines. 

Nature is a powerful paradigm. A number of BIAs have been reported, 

such as EAs stemmed from evolutionary theory; PSO inspired by flocking birds 

as well as other SIs with insects as its counterpart in nature. In comparison 

with the conventional gradient-based algorithms, BIAs, which can be self-tuned 

using raw experimental data, may require little or no knowledge of the physical 

system they emulate. 

In Chapter 2, we have introduced the fundamental work concerning the 

modelling of bacterial foraging patterns. This modelling work has exhibited a 

potential in solving optimisation problems. However, as we understand, there 

is a huge gap between modelling and optimisation. Modelling is 'a study of a 
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miniature of the actual', thus it is concerned with representing the behaviour 

of bacterial foraging; while optimisation is generally problem-oriented, and 

does not require a strict biological description for each element. Therefore, 

analysing the nature of optimisation problems and developing the algorithms 

to solve these problems accordingly is investigated in this chapter. 

In this chapter, three algorithms inspired by bacterial foraging patterns are 

described. The first one, BFAVP, is derived directly from VEBAM, the comp­

nents of BFAVP are introduced in detail in comparison with their counterpart 

in VEBAM. To enhance the group behaviour of BalAs, a modified algorithm, 

BSA is presented, which also adopts the merits of VEBAM. Finally, to reduce 

the computational load, another algorithm, PBO, is investigated. 

3.2 From Models to Algorithms 

Developing a system model always depends on the understanding of the 

phenomena of a physical system and the mathematical expressions available 

to represent the system. From the viewpoint of mathematics, chaotic dynam­

ics is a typical complex system in which the order of mathematical equations 

increases exponentially as the system dynamics is described at a further level. 

However, in most industrial and public systems, the complexity of a system 

arises from its hierarchical structure, distributed local modes, hybrid dynam­

ics, multiple mixed variables, stochastic nature, uncertainties and inconsistent 

component behaviour, etc. For these complex systems, there have been no es­

tablished modelling approaches reported apart from dedicated methods applied 

to specific problems. To develop a new paradigm of complex system modelling, 

the study of biological systems, in particular at the bacteria level, would indi­

cate a new direction to success. The use of biological processes or behaviour as 

metaphor, inspiration, or enabler in developing new computing technologies is 

emerging in the recent years. As aforementioned, IbM approaches have shown 

their success in modelling biological systems which could be more complex than 

any industrial systems. We are motivated, by modelling bacterial foraging pat-
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terns, to develop a new systematic methodology to model not only complex 

biological systems but also non-biology systems. However, this goal requires 

a significant amount of efforts which are much beyond the work presented in 

this thesis. 

On the other hand, it has been well understood that all BIAs built on mod­

elling of genetic evolution, biological systems or animal behaviour and these 

modelling-based methods have been well developed for optimisation purposes. 

Currently, the complex while organised activities exhibited in bacterial forag­

ing patterns could inspire approaches to solve complex optimisation problems. 

Therefore, we will focus on the study of major features of bacterial foraging 

patterns, built on modelling of these complex patterns as presented in the 

previous chapter, to develop novel, more efficient and powerful algorithms for 

complex optimisation problems. 

3.3 Previous Studies of BalAs 

Not surprisingly, the study of bacterial foraging behaviour has become a 

new branch in the area of BIAs. The complex while organised activities ex­

hibited in bacterial foraging patterns could inspire a new approach to solve 

complex optimisation problems. The underlying mechanism of the surviving 

of bacteria, especially E. coli in a complex environment has been reported by 

researchers in the area of biological sciences [6]. These research outcomes have 

been adopted by the models simulating bacterial foraging patterns [98]. 

In the early part of this century, a few optimisation algorithms based on 

models of bacterial chemotaxis emerged. However, these biological models in 

their original form are mostly used to formulate simple optimisation algorithms. 

Thus, how to add more features to the basic algorithm in order to obtain an 

enhanced optimisation strategy is still an open question. 
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3.3.1 Preliminary studies of bacterial foraging patterns 

Previously, there have been two attempts to work towards this goal. One 

is called the 'bacterial chemotaxis (BC)' algorithm, proposed by Muller et al. 

[99], and the other is entitled 'Bacterial Foraging Algorithm (BFA)' which was 

invented by Passino [69]. In this section, these two algorithms will be briefly 

introduced. 

BC is the first algorithm in the literature considering bacterial foraging 

behaviour to solve optimisation problems. However, although it is now well 

recognised that bacteria communicate with each other to generate a coopera­

tive action, bacteria are considered as individuals and social interaction is not 

used in BC. As a preliminary study, BC concentrated on studying microscopic 

models that consider the chemotaxis of a single bacterium instead of macro­

scopic models that analyse the movement of bacteria colonies. Thus for the 

first time, BC introduced the concept of a 'virtual' bacterium in optimisation 

algorithms. 

In BC, the path of a bacterium is a sequence of straight-line trajectories 

joined by instantaneous turns, each trajectory being characterised by velocity, 

direction (angle) and duration. 

The velocity v for each individual is assumed to be a scalar constant value: 

v = const (3.3.1) 

The duration of the trajectory, is selected according to the distribution of 

a random variable with an exponential probability density function. 

1 
P(X = ,) = - exp-i'/T 

T 

where T is adaptive according to the fitness of the bacterium. 

(3.3.2) 

The new direction is also computed from a probability distribution. The 

probability density of the angle Q between the previous and the new direction 

follows a Gaussian distribution, with an expectation of 62° and a standard 

deviation of 26°, as suggested in Berg and Brown's work [6]. Thus the length 
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of a path l is given by 

l = v,,/ (3.3.3) 

The normalised new direction vector ~ is multiplied by l to obtain the 

displacement vector ;t, ;t = ~l. The new location of the bacterium is 

- - -l x new = X old + n u (3.3.4) 

By adopting this strategy, BC is developed to answer the previously un­

solved optimisation problems in the following three aspects. 

• How to decide the strategy parameters, i.e. the minimum duration time 

To, velocity v, etc. From an evolutionary perspective, bacteria adapt 

their motility properties so that they have a better chance to survive in 

changing environments. However, how parameters are chosen to perform 

an optimised foraging behaviour needs to be carefully considered. 

In BC, all strategy parameters are optimised by a covariance-matrix 

adaptation evolution strategy (CMA-ES). According to the chosen tar­

get precision f, the initial precision finit and the final precision fend, start 

the computation searching for the minimum of the function. When the 

initial precision is reached, the parameters area, such as the chosen strat­

egy parameters To, v, are adapted to another precision and the search 

continues, until this new precision is reached. 

• The extension of the 2-D to a multi-dimensional model. Most of the 

real world problems are high-dimensional rather than 2-D in biological 

experiments, thus an algorithm which is optimisation-oriented should be 

considered in a multi-dimensional form. 

• The automatic modification of strategy parameters according to the prop­

erties of the optimisation function, such as a possibility of escaping 
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plateaus, and additional features to facilitate the search of global op­

tima. To refine the result, there are also 'mark and explore' strategies to 

adapt the Be Strategy for the search of Global minima. 

It starts from searching the whole domain of the multimodal function 

with a significantly reduced precision and mark all the points visited by 

the bacterium. This can be interpreted as the deposition of a marker 

by the bacterium. The points with the highest frequency of passages 

are identified by the concentration of this marker and are considered 

as 'potential' global minima. Then it analyse the concentration of the 

marker deposited over the whole domain. The neighbourhood of the 

point with the highest concentration is considered as a candidate for 

the global minimum. At the second state, it starts a local search with 

refined parameters from this candidate point and runs until the needed 

final precision is reached. The final value is chosen as the global minimum 

of the function reached by the algorithm. 

Be has been tested on a number of benchmarks. However, it has been 

shown that the performance of Be is worse than that of ESs for quadratic 

functions but comparable for the Rosenbrock function [99]. Therefore, Be has 

provided a coarse-grained prototype for bacteria-inspired optimisation algo­

rithms and it would be helpful to add the feature of group behaviour into this 

algorithm. 

3.3.2 Bacterial foraging algorithm 

Shortly after Be was developed, BFA, which is inspired by the patten ex­

hibited by bacterial foraging behaviour, was proposed [69]. Bacteria have the 

tendency to gather to nutrient-rich areas by chemotaxis. It is known that bac­

teria swim by rotating whip-like flagella driven by a reversible motor embedded 

in the cell wall. E. coli has 8-10 flagella placed randomly on the cell body. When 

all flagella rotate counterclockwise, they form a compact, propelling the cell 

along a helical trajectory, which is called Run. When the flagella rotate clock-
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wise, they all pull on the bacterium in different directions, which causes the 

bacteria to Tumble. BFA is based on the tumble and run model. 

Chemotaxis 

In comparison with Be, bacterial chemotaxis in BFA is solely based on 

the suppression of tumbles in cells that happen by chance to be moving along 

an upward gradient. Bacteria make decisions according to their ambient envi­

ronment. The motion of individual peritrichously flagellated bacteria can be 

described in terms of run intervals during which the cell swims approximately 

in a straight line interspersed with tumbles, when the organism undergoes a 

random reorientation. 

In BFA, a unit walk with random direction represents a Tumble and a unit 

walk with the same direction as the last step indicates a Run, as shown in Fig. 

3.1. After one step move, the position of the ith bacterium can be represented 

as: 

(3.3.5) 

where (}i(j, r, l) indicates the position of the ith bacterium at the ph chemotactic 

step in the rth reproductive loop of the [th elimination and dispersion event; 

C(i) is the length of a unit walk, which is set to be a constant; and ¢(j) is the 

direction angle of the lh step. When its activity is Run, ¢(j) is the same with 

¢(j - 1); otherwise, ¢(j) is a random angle generated within a range of [O,271l 

With the activity of run or tumble taken at each step of the chemotaxis 

process, a step fitness, denoted as Ji(j, r, I), will be evaluated. 

Reproduction 

The total fitness of each bacterium is calculated as the sum of the step fit­

ness during its life, i.e. E:~l Ji(j, r, I) which is obtained after all chemotactic 

steps, where Nc is the maximum number of steps in a chemotaxis process. All 

bacteria are sorted in reverse order according to their fitness. In the reproduc­

tion step, only the first half of population survive and a surviving bacterium 
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---~~ Unit Walk 

Figure 3.1: Tumble and Run. 

splits into two identical ones, which occupy the same positions in the environ­

ment at 1st step. Thus, the population of bacteria remains constant in each 

chemotactic process. 

Dispersion and elimination 

Chemotaxis provides a basis for local search, and the reproduction pro­

cess speeds up the convergence as demonstrated by Passino [69]. To a large 

extent, however, chemotaxis and reproduction are not sufficient for global op­

tima searching. Since bacteria may get stuck around the initial positions or 

local optima, it is possible for the diversity of BFA to change either gradually 

or suddenly to eliminate the accidents of being trapped into the local optima. 

In the BFA, the dispersion event happens after a certain number of reproduc­

tion processes. A bacterium is chosen, according to a preset probability Ped, 

to be dispersed and moved to another position within the environment. These 

events may prevent the local optima trapping effectively, but unexpectedly 

disturb the optimisation process. The detailed work can be found in [69]. 

BFA has made a great contribution to BalAs. For the first time group 

behaviour is considered. Together with bacterial chemotaxis, and it yields a 

satisfying performance in solving low-dimensional optimisation problems. Fig-

w. J. Tang 



3.4 Bacterial Foraging Algoritl1m Witl1 Varying Population 70 

ure 3.2 demon trate the trajectory of bacteria in the first 100 'virtual step . 
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Figure 3.2: Trajectory of bacteria 

3.4 Bacterial Foraging Algorithm With Vary­

ing Population 

Th two afor mentioned algorithms are preliminary work of BalAs, whi h 

al 0 b long to the EA family. However) like many other existing EA , th y 

suffer from a numb r of drawback . For instance Be only explores individual 

searching capability i. e. bacterial chemotaxi ; therefore a low convergenc 

rate can be pr dieted du to the lack of group behaviour. BFA was developed 

based on a fixed population fram work with a coar e-grain d 'split and repro­

duce'm chanis111, thus Ulln cessary computation is inevitably introduced in the 

optimisation pro ess. To tackl the e problems, w need to expand our vi ion 

to other relatcd biological phen 111 na . .MOl' characteristics could be analysed 

and transferr d fro111 ba terial foraging in 0 the optimisation algorithms. 

As describ din hapter 2 be cteria urvive in a large population. However. 

population siz is varying all th tim i.. when nutrient i sufficient, popula­

tion siz will 1 c in rca ing; wh reas wh n the available nutri nt i not enough. 
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population size could diminish rapidly. In particular, in extreme situations, 

the whole group can be extinct. This adaptiveness of bacterial population is 

ensured by its corresponding metabolism, proliferation and elimination system, 

as well as the newly discovered quorum sensing. 

In this section, BFAVP is introduced, which involves further details of bac­

terial foraging behaviour, and concentrates on describing the relationship be­

tween the population size and the complexity of the optimisation problem, and 

how the aforementioned factors can be organised together to ensure a satisfying 

performance. 

3.4.1 The algorithm 

In BFAVP, bacteria follow the chemotactic process, i.e. the tumble and 

run process. This biased random walk also performs 'local search' in problem­

solving. Furthermore, in order to reduce the computation load, two proper­

ties, namely bacterium's energy and bacterium's age, are incorporated in this 

algorithm, which assist the simulation of the proliferation and elimination of 

bacteria. The bacterium's energy is proportional to its fitness value in the envi­

ronment. Superior bacteria usually contain more energy, which leads to a more 

filial generation. Based on this feature, bacteria are able to aggregate around 

optima at an earlier stage of optimisation. Bacterium's age is corresponding to 

the lifespan of a bacterium. With this mechanism, the computational complex­

ity of the optimisation problem can be reduced and unnecessary computation 

can be largely avoided, as those bacteria which do not possess sufficient energy 

during their evolutionary process tend to be eliminated. In order to enhance 

the group searching performance, a simplified version of quorum sensing is also 

simulated in this algorithm. 

Chemotaxis 

Chemotaxis is the tumble-run process that consists of a tumble step and 

possibly several run steps. Bacteria's positions are represented as 'spots' in 

an n-dimensional search space, which is also adopted by BC. Suppose the pth 
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bacterium in the kth chemotactic process, has a current position e; E jRn, and 

a tumble angle cP; = (CP;1,CP;2, ... ,CP;(n-l») E jRn-l. Then the tumble length 

D;(cp;) = (d;l' d;2' ... , d;n) E jRn can be calculated from cP; via a Polar-to­

Cartesian coordinate transform: 

n-l 

d;l II cos (CP;i) , 
i=l 

n-l 

d;j - sin (CP;(j-l») IT cos (cp~) j = 2,3, ... , n - 1, 
i=p 

(3.4.1) 

Note that the maximal tumble angle ¢max is proportional to the number of 

dimensions of the objective function, and can be formulated as: 

7r 

¢max = (round( vn+J))2 (3.4.2) 

A tumble angle can be generated randomly from the range of [0, ¢max], which 

is also the direction followed by the run process, if there is any. Therefore, a 

step of tumble and run can be expressed as: 

cP; -

0;(1) = 

k+1 
CPconst -

CP~onst + rl ¢max/2 

X; + r2lmaxD;(cp;) 

CP~onst + r3¢max 

(3.4.3) 

(3.4.4) 

(3.4.5) 

where rI, r3 E jRn-l are normally distributed random numbers generated from 

N(O, 1) and (0,1), respectively, and r2 is a random number with a range of [-1,1]. 

lmax the maximal step length of a run, 0;(1) the position of the pth bacterium 

immediately after the first tumble step, and CP~onst is the angle indicating the 

searching range for all bacteria in the kth iteration. 

Once the angle is set after the tumble step, the bacterium will run for a 

maximum of nc steps, or until reaching a position with a worse evaluation 

value. The position of the pth bacterium is updated at the hth (h > 1) run step 

in the following way: 

(3.4.6) 
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Here, for the convenience of description, the position of the pth bacterium 

immediately after the tumble-run process of the kth iteration is denoted by 
Ak 
()p(nf), nf ~ nco 

Metabolism 

In VEBAM, the nutrient can be absorbed by bacteria, for chemotactic be­

haviour and proliferation. Here in BFAVP, energy quantity of the pth bacterium 

at the kth iteration is denoted bye;. The fitness value of this bacterium at the 

kth iteration, J(();), can be deemed the source of its energy e; .. 
In each iteration, a bacterium absorbs energy subsequent to the tumble-run 

process. The energy transform in the kth iteration is defined as: 

(3.4.7) 

where ~ is a coefficient for energy transform. For the pth bacterium, there is 

an upper limit set for proliferation and a lower limit for elimination, which 

are related to the energy. For instance, if e; reaches the upper limit, the 

proliferation process is triggered; however, if e; is less than the lower limit, it 

will be eliminated at the end of the tumble-run process of the (k+ l)th iteration. 

Proliferation and elimination 

In the proliferation process, bacteria reproduce through binary fission, i. e. 

the cell splits into two identical daughter cells. As aforementioned, the prolif­

eration process is controlled by the bacterium's energy e; in BFAVP. As soon 

as e; of the pth bacterium reaches the upper limit, it splits into two new in­

dividuals. For one of the new bacteria, the bacterium's energy is represented 

as: 

(3.4.8) 

where m is the population size in the current iteration, and the other new 

bacterium keeps the index of its mother cell and also half of the energy as 

follows: 

(3.4.9) 
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For computational purposes, the newly proliferated pth bacterium carries 

on the computation of metabolism behaviour as its mother cell, i. e. e; will 

not change until the next metabolism behavior takes place. However, the new 

{m + l)th bacterium will not be involved in the optimisation process until the 

next tumble-run iteration, thus its energy can be also denoted as e~+l' 

In order to prevent the population from increasing exponentially, the bac­

terium's age is also introduced, and works together with the bacterium's energy. 

For example, for the pth bacterium at the kth iteration, the age is recorded by 

the counter of fJ;. In the next iteration, the bacterium's age is changed accord­

ingly: 

(3.4.lO) 

If a cell divides, the ages of the two daughter cells are set to be O. When 

a bacterium's age reaches the upper limit of its lifespan, it should be removed 

from the population. The probability density of lifespan for each individual 

follows a normal distribution, which reads: 

__ 1_ (_ (fJ;+1 - J1)2) 
Pp - rn= exp 2 2 ' 

Y 2m] a 
(3.4.11) 

where J1 is the mean of the bacteria's lifespan, and a indicates the standard 

deviation of the bacteria's lifespan. Here, for statistical purposes, the positions 

of the eliminated cells are recorded. 

Quorum sensing 

In BFAVP, the quorum sensing modelled in VEBAM is also incorporated. 

Considering the optimisation problem as a nutrient environment, it is assumed 

that more 'nutrients' should be located around optima, which correspond to 

better fitness values. Based on this assumption, the density of the inducer 

is increased if the bacteria's fitness are generally better. A simplified version 

of the one modelled in VEBAM is present in BFAVP, i.e. most bacteria are 

attracted by local optima randomly. In this part of computation, updating of 
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a bacterium's position is described as follows: 

(3.4.12) 

where 8 is a coefficient describing the strength of the bacterium's attraction, 

Bbest indicates the position of current best global solution updated after each 

function evaluation. 

However, to avoid premature convergence, a small number of bacteria are 

randomly selected to be repelled. If the pth bacterium is chosen to enter the 

repelling process, a random angle in the range of [0,7r] is generated. The 

bacterium is thereby 'jumped' with a random step length following this angle 

in the search space, which can be described as: 

(3.4.13) 

where T4 E ffi,n is a normally distributed random sequence drawn from N(O, 1), 

and lrange is the range of the search space. It should be mentioned that ev­

ery individual in the population will either be attracted or repelled without 

exception. 

3.4.2 Simulation studies 

Simulation Setting 

In order to evaluate the performance of BFAVP, thirteen benchmark func­

tions which are divided into three sets are adopted in simulation studies. This 

work is based on the benchmark functions [39] listed in Appendix A. Func­

tions 11,/2,14,15 and 16 are high-dimensional uni-modal benchmark functions, 

used to investigate the convergence rate of each algorithm. Functions Is f'V 112 
are high-dimensional multimodal benchmark functions, which have many lo­

cal optima, and the total number of local optima increases exponentially as 

the dimension increases. Hence, it is difficult for most EAs to find the global 

optimum accurately. Functions 114 "" 116 are low-dimensional multi-modal 

benchmark functions. 
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BFA, PSO [54], CPSO and EP are compared with BFAVP in the simulation 

studies. In all experiments, the initial population size of all the algorithms is 

selected to be 50. For BFAVP, the mean of the bacterium's lifespan, j-l, is set 

to be 50 iterations, i.e. 50 tumble-run processes, and the standard deviation, 

a, is set to be 10 iterations. Nc is set to be 4. The repelling rate of BFAVP is 

set to be 0.2, i. e. 20 percent of the bacteria will be repelled during the process 

of quorum sensing. For the parameters of PSO, the inertia weight w is set as 

0.73 and the acceleration factors Cl and C2 are both set to 2.05. The CPSO 

is adopted from [100], which indicates that the use of a constriction factor in 

the range of [0,1] may be necessary to ensure convergence of the CPSO. The 

tournament size is set to be 10 for selection in EP . 

3.4.3 Simulation results and discussion 

As it can be seen from Table 3.1, CPSO outperforms other EAs for most of 

the uni-modal functions. Nonetheless, BFAVP obtains a stabler performance 

than BFA, PSO and EP for most of the functions. Figure 3.3 demonstrates the 

convergence process of these five algorithms in solving the Sphere's problem. 

The results listed in Tables 3.2 and 3.3 are obtained from the evaluation 

on multimodal benchmark functions for high-dimensional functions and low­

dimensional ones respectively. It is shown that multimodal problems can be 

solved effectively by BFAVP, due to its varying population scheme, which en­

ables it to achieve better performance with the same number of function evalua­

tion. Figures 3.4 and 3.5 illustrate the performance of the listed five algorithms 

in Schwefel's function and Rastrigin's function, respectively. Schwefel's func­

tion is deceptive in that the global minimum is geometrically distant, over the 

parameter space, from the next best local minima. Therefore, the search algo­

rithms are potentially prone to convergence in the wrong direction. It can be 

observed in Fig. 3.4 that there is a big gap between the best result obtained 

by BFAVP and the next best algorithm, CPSOj the other three algorithms 

perform even worse. Rastrigin's function is based on Sphere'S function with 

the addition of cosine modulation to produce many local minima. However, 
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Table 3.1: Average Best Results and Standard Deviations of BFAVP, BFA, PSO, CPSO and EP for uni-modal functions 

Function BFAVP BFA PSO CPSO EP 

It 1.9848 X 10-5 2.8743 x 10-2 11.7381 7.3170 x 10-61 2.0800 X 10-22 

(1.0894 x 10-5) (28540 x 10-3 ) (6.8628) (1.6407 x 10-6°) (8.1789 x 10-24 ) 

Iz 1.0648 X 10-3 8.6442 0.7664 1.5541 x 10-15 6.26572 X 10-12 

(7.8569 x 10-4 ) (17.1490) (0.2219) (8.4929 x 10-15) (1.5593 x 10-13) 

/4 50.8701 3.8078 501.7887 3.1957 X 10-6 69.5189 

(31.9344) (12.7994) (135.3998) (4.9756 x 10-6 ) (45.8909) 

/5 0.3297 12.8941 4.8835 2.3865 x 10-4 6.4993 X 10-12 

(0.1458) (4.1394) (0.6045) (3.4761 x 10-4 ) (1.9971 x 10-13 ) 

/6 20.4322 4.0946 x 102 8.7329 X 104 39.6272 2.6392 x 102 

(1.0978 X 102 ) (2.2369 X 103 ) (1.0227 X 105) (1.5080 X 102) (9.0153 X 102) 
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Table 3.2: Average Best Results and Standard Deviations of BFAVP, BFA, PSO, CPSO and EP for high-dimensional 
multi-modal functions 

Function BFAVP BFA PSO CPSO EP 

18 -12213.0879 -7126.0912 -7097.5321 -6664.3791 -9080.5037 

(338.8019) (648.3530) (829.2348) (874.9836) (660.4163) 

fg 9.2972 72.9443 50.4906 46.6635 18.9373 

(3.0271) (17.6868) (14.37599) (13.9913) (4.8354) 

110 1.4193 X 10-3 14.6715 2.0143 0.8248 0.1391 

(1.4064 X 10-3 ) (0.8448) (0.5417) (0.7631) (0.3631) 

111 1.3920 X 10-2 0.1021 1.4570 2.3868 X 10-2 1.8292 X 10-2 

(3.0061 X 1O-2 ) (6.7710 X 1O-2 ) (0.1779) (3.5925 X 10-2 ) (3.5037 X 10-2) 

h2 4.7498 X 10-5 26.0503 1.0565 X 104 0.2110 0.3853 

(1.1948 X 104 ) {8.9542} (1.0341 X 104 ) (0.2993) (0.5189) 
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Table 3.3: Average Best Results and Standard Deviations of BFAVP, BFA, PSG, CPSO and EP for low-dimensional 
multi-modal functions 

Function BFAVP BFA PSG CPSO EP 

1t4 0.9980 12.1168 2.6065 3.0638 1.0642 

(4.7612 X 10-14 ) (6.2813) (2.5707) (2.9457) (0.2521) 

1t5 5.9637 X 10-4 1.7424 X 10-2 1.3739 X 10-3 1.0358 X 10-3 8.9079 X 10-4 

(2.7141 X 10-4) (2.2276 X 10-2 ) (3.5982 x 10-3 ) (3.6554 x 10-3 ) (8.5889 x 10-4 ) 

/16 -1.0316 -1.0316 -1.0316 . -1.0316 -1.0316 

(4.8085 x 10-16 ) (8.3205 x 10-9 ) (5.5199 x 10-15) (6.2532 x 10-16) (1.0792 X 10-4 ) 
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the location of th minima ar regularly di tributed. It is shown in Fig. 3.5 

that BFAVP i able to search for better local minima in the function valua­

tion process in compari on with th premature convergenc of th other four 

algorithm. Figure 3.6 al 0 d monstrates the similar characteri tic of BFAVP 

in solving low-dimensional problems. 
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3.4.4 Variation of population size 

It is r ported from theor tical studi s that bacterial growth follow four 

ph s: lag phase, log phas , stationary ( table) phase and death phase [90]. 

Lag phas happens immediat ly after the introdu tion of the ells into th 
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Figur 3.7: The varying population siz in BFAVP 

nutrient nvironm nt , and the population remains temporarily un hang d. As 

soon as cells ar dividing regularly by binary fission, it enters into th exponen­

tial phas , i. . the doubling time of the bacterial population. In th stationary 

phas , as mor and mor bact ria are comp ting for dwindling nutri nt , the 

growth stops and th numb r of bacteria b om s stabili ed [101]. During th 

death phas th number of viable c 11s deer ases exponentially, essentially the 

revers of growth during the log pha . 

Figure 3.7 shows the variation of population size in 2500 iterations. In this 

case is in a 2-dimensional form is adopt d for investigation, so th compu­

tational complexity is 1 s than that of the pr viou simulation studies. As a 

result, the initial population i reduc d from 50 to 20. Th mean maximum 

population limitation is t to b 150. It can be ob rved from Fig. 3.7 that 

the lag pha ,th log phase, and the stabl phase exhibited by the variation 

of population are roughly in lin with their ount rparts in biological studi s. 

3.4.5 Discussion 

An effe tive optimi ation algorithm, BFAVP, is propo ed to bridge the gap 

b tween mod Ding and optimi ation. It i inspir d by a number of chara t r-
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istics of bacterial foraging behaviors, including chemotaxis, metabolism, pro­

liferation, elimination and quorum sensing. In order to build a framework 

of varying population, the bacterium's energy and age have been introduced 

to I3FAVP to gauge the searching capability and life cycle of an individual. 

Chemotaxis enables the local searching capability, which ensures that the bac­

terium always moves to a better position than the previous step. Quorum 

sensing plays a role in controlling the diversity of bacterial population. 

Simulation studies have shown that BFAVP is able to adapt the population 

according to different types of benchmark functions. BFAVP also overcomes 

the lack of population diversity, which most EAs suffer from, and it has better 

computation efficiency than other EAs. With the flexible operation in quorum 

sensing, BFAVP is more suitable for high-dimensional multimodal functions 

than the other EAs adopted for comparison. 

3.5 Bacterial Swarming Algorithm 

Over the past few decades, many biologically inspired computational method­

ologies have been invented. However, the running of EAs may be time consum­

ing in searching along the directions which are randomly selected. Therefore 

they have slow convergence rates and are reluctantly used in many large op­

timisation problems. Although hybrid EAs have been introduced [102]' these 

hybrid EAs require the objective function to be differentiable. Recently, two SI 

paradigms have been developed to tackle many optimisation problems for which 

robust solutions are difficult or impossible to find using traditional approaches. 

One ofthem is ACO [61], which is inspired by ant routing behavior. The other 

is PSO [54], simulating animal swarm behavior. However, although the EAs 

and SI have been comprehensively studied, these methods face difficulties in 

applications to large-scale high-dimensional optimisation problems, primarily 

because of the huge computational burden they impose. A key advance in this 

field will therefore be made by a significant reduction in the computational 

time-costs whilst further improving the efficiency of global search capabilities 

w. J. Tang 



3.5 Bacterial Swarming Algorithm 83 

of these algorithms. 

More recently, the study of BFA [69] has received great attention in the 

Computational Intelligence community worldwide. BFA is based on study of 

the bacterial foraging behaviors. The complex and organised activities exhib­

ited in bacterial foraging patterns could inspire a new solution for optimisation 

problems. The underlying mechanism of the surviving of bacteria, especially 

E. coli, in a complex environment has been reported by researchers in the field 

of biological sciences [6]. Inspired by these phenomena, BFA was developed as 

an optimisation algorithm, in which the self-adaptability of individuals in the 

group searching activities has attracted a great deal of interest. However, in 

BFA, the chemotactic process is artificially set, hence this process could not 

achieve convincing results in a certain range of optimisation problems, espe­

cially high dimensional and multi-modal problems. 

As a consequence, we propose a novel optimisation algorithm, BSA. BSA 

is based on BFA but incorporates ideas from the modelling of bacterial forag­

ing patterns studied recently [103]. The behaviour of tumble and run actions 

of bacteria and modelling of these actions have been further incorporated to 

develop BSA. To improve the performance of BSA for complex optimisation 

problems, we have also introduced an adaptive step length of run actions, which 

is independent of the optimisation problems but can speed up the convergence 

process of BSA. To demonstrate the merits of BSA, we have evaluated it on a 

number of mathematical benchmark functions which cover a range of optimi­

sation problems from uni-modal and multi-modal to low and high dimensions. 

The algorithm evaluation has been undertaken in comparison with FEP and 

PSO. Finally, the simulation results are provided to support our discussions on 

BSA. 
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3.5.1 Mathematical framework and algorithm 

The role of cell-cell communication 

Cell-cell communication is concerned with the ability of exploration and 

exploitation in an optimisation algorithm. Communication between bacteria, 

by the mechanism referred to 'quorum sensing', is widespread in nature. This 

phenomenon is related to the density of a colony. The higher the density, the 

more attraction would be generated by a colony to the individuals outside of 

the colony, which will influence bacterial foraging patterns and development of 

colonies during the whole evolutionary process. This bacterial phenomenon is 

similar to that emulated in PSO. PSO adopts the attraction of the particles as 

the major or determining factor of the algorithm. Each particle in PSO updates 

its position at each iteration according to its historical best position and the 

global best position in that iteration. The direction from the current position 

to the global best position can be regarded as the communication between 

particles, while the other one towards the historical best can be regarded as 

random walk. The inertia weight vector used in PSO can effectively stop the 

particles converging prematurely. 

In BSA, the position of the global best is supposed to be the center of a 

colony, and a simplified cell-cell communication is adopted, in a similar way to 

PSO. Apart from the attraction, we also introduce dispersion events into BSA. 

The cells are dispersed to the area near the best performed ones according to 

a preset probability. As a result, the combination of attraction and dispersion 

events ensures the diversity and the searching ability of this algorithm. 

Mathematical representation 

Bacterial chemotaxis is based on the suppression of tumbles in cells that 

happen by chance to be moving up along an upward gradient. Bacteria make 

decision according to their ambient environment. The motion of individual 

peritrichously flagellated bacteria can be described in terms of run intervals 

during which the cell swims approximately in a straight line interspersed with 
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tumbles, when the organism undergoes a random reorientation. 

In BSA, a unit walk with random direction represents a Tumble and a unit 

walk with the same direction of the last step indicates a Run. Similar to BFA, 

a chemotactic process in BSA consists of one step of Tumble and Ns steps of 

Run, depending on the variation of the environment. 

In the process of Tumble, the position of the ith bacterium can be repre­

sented as 

(3.5.1) 

where ()i(j, r) indicates the position of the ith bacterium at the lh chemotactic 

step in the rth iteration IOOPi Ci(j) is the length vector of a unit walk for the 

ith bacterium at the lh chemotactic step and L.<Pi (j) is the direction angle of 

the lh step for bacterium i, and it is a random angle generated within the 

range [0, 271"]. 

However in BSA, in order to accelerate the convergence rate and enhance 

its searching ability in different types of problems. Ci(j) is set to be adaptive 

and is defined as follows: 

if Tumble 

if Run 
(3.5.2) 

where Cinit is the step size for a unit walk, Dl a constant, rl a random number, 

and rl E [0,1], B is the length vector of the boundaries of the search domain. 

The fitness of the ith bacterium at the lh chemotactic step is represented 

by Ji(j, r). If Ji(j + 1, r) is better than Ji(j, r), then the process of Run follows, 

which can be represented by: 

(3.5.3) 

where 1 ::; k ::; Ns , and Of denotes the position of the ith bacterium in the 

kth step of Run. This process continues until Ji
k+1(j + 1, r) is worse than 

Jik(j + 1, r). The angle L<Pi(j) remains unchanged during this process. 
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After each chemotactic process, the energy obtained by a single bacterium 

in its life time, which is denoted by Ne, is accumulated. Compared with the 

others, the individual with most energy gained is defined as the best cell and 

its position 8P(r) is kept for the calculation of the other bacteria in the next se­

lection process. A certain percentage of bacteria undergo an attraction action, 

which are selected with probability Pa. Based on both their current positions 

and the global best position, their positions are recalculated as follows. 

(3.5.4) 

where D2 is a constant and T2 is a random number, T2 E [0,1]. It should be 

mentioned that in the above equation the position of each bacterium starts to 

be updated by the attraction action using its position at the last step of the 

current chemotactic process for the first step of the next chemotactic process. 

This is why the index of chemotactic process is set to be 1 on the left side of 

the above equation. 

Figure 3.8 illustrates the mechanism for attraction and dispersion. This 

simplified cell-cell communication process shares some similarities with PSO 

while keeping its simplicity by only using the global best, which reduces the 

computational complexity to a certain extent. The rest of the bacteria are 

dispersed to positions around the best individual with a randomly chosen mu­

tation step and mutation angle, using the following equation: 

(3.5.5) 

where r3 is a random number, T3 E [0, 1], and 'I/J is a random angle chosen from 

[0,21l-j. 

Pseudo code 

The pseudo code of BSA is given in Table 3.4, which indicates the executable 

procedure of the mathematical framework and shows the implementation of 

BSA. 
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... Global optimum 
• 80% selected cells * 20% selected cells 

Figure 3.8: Attraction and dispersion 

Table 3.4: Pseudo code of BSA 

Randomly initialize po itions of bacteria in the domain' 

FOR (Selection r = 1 : N s ) 

FOR (chemotactic steps per bacterium j = 1 : Nc ) 

Calculate: 

Tumble : 

Calculate the nutrient function of bacterium i a 

Ji(j, r); 

For bacterium i, et Ji(j,1') as Jlast. 

Generate a random angle represented by an array 

X, where each element belong to [0,1]; 

Move to a random dire tion II~II by a unit walk 

by step size Cinit , the new position is calculated by 

(3.5.1); Start another chemotactic step. 

IF Pt (j + 1, 7') < Ji (j J) ) 

WHILE (Jt+1(j + 1,1') < JNj + 1,1') and k < Nc ) 
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Run: For bacterium i, calculate the step fitness as Jf(j+ 

1, r), the positions are calculated by (3.5.3). If 

Jf (j + 1, r) < Jlast, take another walk of the same 

direction, the step size is defined in (3.5.2). Set 

Ji(j, r) as Jlast; 

END WHILE 

END IF 

END FOR (chemotactic steps) 

Sum: Set Ji as the sum of the step fitness over the life 

time of bacterium i; 

Sort: Sort J i in ascending values of fitness in the popu-

lation; 

Communication Calculate the rank of bacterium i according to 

their fitness in its life time; keep the position of 

the fittest individual; randomly select the rest of 

the individuals, by a probability Pa, to undergo 

attraction using (3.5.4); other individuals undergo 

dispersion using (3.5.5). 

END FOR (Selection) 

3.5.2 Simulation studies 

The benchmark functions 

In order to evaluate the performance of BSA, seven benchmark functions 

selected from [39] are listed below. 

Generalized Rosenbrock's Function: 

29 

fl(X) = I)100(Xi+l - xn2 + (Xi - 1)2) (3.5.6) 
i=l 

where X E [-30,30]3°; 
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Step Function: 
30 

h(x) = 2)lxi + 0.5J)2 
i=1 

where x E [-100,100]3°; 

Quartic Function, i.e., Noise: 

30 

h(x) = L ixt + random[O, 1) 
i=1 

where x E [-1.28,1.28]30; 

Generalized Schwefel's Problem 2.26: 

30 

f4(X) = - L(Xi sin( JIxJ)) 
i=1 

where x E [-500,500]3°; 

Generalized Rastrigin's Function: 

30 

f5(X) = LX~ -lOcos(27rXi) + 10 

where x E [-5.12,5.12]3°; 

Ackley's Function: 

where x E [-32,32]30; 

i=1 

( 
1 30 ) 

-20exp - 0.2 - LX~ 
30 i=1 

( 
1 30 ) 

- exp 0 L cos 27rXi + 20 + e 
3 i=1 

Shekel's Foxholes Function: 

h(x) = [_1 + t . 2 1 6]-1 
500 j=1 J + Li=1 (Xi - aij) 

where x E [-65.536,65.536]2, and 

( 
-32 -16 0 16 32 -32 .. · 0 16 32 ) 

a = -32 -32 -32 -32 -32 -16 ... 32 32 32 

89 

(3.5.7) 

(3.5.8) 

(3.5.9) 

(3.5.10) 

(3.5.11) 

(3.5.12) 
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The benchmark functions h rv 16 are well-known. They are high dimen­

sional, and among them h rv /3 are uni-modal functions, 14 rv 16 are multi­

modal functions. The function h falls into the category of low dimension 

functions. 

Parameter settings 

Table 3.5: The evaluation numbers 

Function FEP PSO BSA 

h 2,000,000 200,000 200,000 

h 150,000 200,000 200,000 

/3 300,000 200,000 200,000 

14 900,000 200,000 200,000 

15 500,000 200,000 200,000 

16 150,000 200,000 200,000 

17 10,000 200,000 5,000 

In the simulation studies, BSA is evaluated on the benchmark functions 

in comparison with FEP and PSO. Here, the number of evaluations of an 

objective function in each algorithm is adopted for comparison purpose. The 

total evaluation number for each algorithm, taken in a complete optimisation 

process, is listed in Table 3.5. The evaluation numbers of FEP and PSO are 

used in [39] and [104], respectively. The parameters of FEP and PSO are set 

as indicated in [39] and [104], respectively. The population of each algorithm 

is set as 50. The cross over rate for FEP is set to be 0.7. The parameters in 

BSA are set as Cinit = 0.001, Dl = 0.5, D2 = 1 and Pa = 0.8. 

Simulation results 

BSA, FEP and PSO are used to optimise the benchmark functions respec­

tively. Each algorithm was run 20 times to give a mean value of the best 

solutions and a standard deviation obtained from the 20 runs. Table 3.6 shows 

the results obtained by the three algorithms applied on the seven benchmark 
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functions . In this table, the r ults of FEP and PSO wer generated using the 

program develop d by ourselve and they are clo e to the results reported in 

[39]. It should b m ntion d that the r suIt of 15 i significantly different from 

that given in [39] although w have attempt d to a hieve the same result with­

out su cess. This will r main as an issue for us to investigate in the near future. 

From Tabl 3.6, it can b se n learly that BSA can provide a bett r optimi­

sation olution with a much smaller d viation for four out of seven b nchmark 

function , ncompa ing both uni-modal and multi-modal probl ms with low 

and high dim nsions. The merits and chara teristics of BSA are discussed in 

comparison with FEP and PSO as follows. 

Convergence 

10° '----~--~--~------' o 0.5 1 1.5 2 
Function evaluation x 105 

Figure 3.9: Best results for Function 11 

Figur 3.9 "-' 3.15 show the convergenc proc ses of BSA, FEP and PSO 

respectiv ly, ondu ted on the even benchmark fun tions. The three algo­

rithm take 200,000 function evaluations for functions 11 ,....., 16 and 5,000 func­

tion evaluations for function 17. It should be mentioned here that a g neration 

of BSA involves mor valuation of th obje tive function than that taken 

by FEP and PSO sinc the generation is on ern d with th lit time of a 

ba t rium, which onsi t of an unfix d number of chemotactic proc sse . For 

omparison purpose , we u c th number of valuation to plot the converg n e 
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performance of the three algorithms. All the figures illustrate the average best 

fitness in a population obtained from 20 runs of the program, which is plotted 

using a logarithmic scale in order to reduce the biggest and smallest values in 

the whole optimisation process. 

BSA has also demonstrated a better ability of global searching for functions 

11,/4,/5, h· However, PSG performs significantly better than the other two 

algorithms for 16 thanks to its great ability of escaping from local optima. BSA 

performs almost as well as FEP for 13. For 13) the combination of local search 

and global search should be finely tuned to offer the best search performance. 

From the results presented in Table 3.6, it can be seen that BSA performs 

the best on average for most of the benchmark functions. This is because the 

adaptive local search and swarming of BSA enables its capability for searching 

global optimum for multi-modal functions. 

The role of attraction and mutation 

BSA has been proposed to represent the survival and reproduction of bac­

teria from the viewpoint of underlying biological mechanisms. However, since 

it is inspired by the bacterial foraging patterns, it follows the basic biological 

rules by which each cell attempts to obtain as much energy as possible in its 

lifetime. The simulation results show that BSA usually converges to the global 

optimum at an early stage for most of the evaluation functions, and specifically 

for !4 rv 15. As discussed in Section 3.5.1, BSA inherits certain merits from 

PSG, especially the add-on of attraction. Similar to its counterpart in bacterial 

system, e.g. quorum sensing, the algorithm of attraction which is artificially 

set, has arguably accelerated the convergence process. 

On the other hand, PSO has only utilised the features of 'attraction' and 

inertia weight, which makes it ineffective for a certain number of multi-modal 

optimisation problems, such as 14. FEP has adopted the Cauchy mutation 

operator for EP, which covers a wider range of mutation intensity. Note that 

mutation in FEP plays a key role in searching for the global optimum for 

h. In this step function, the range of this mutation increases exponentially 
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as the dimension gets higher. As h is evaluated with a higher dimension, 

therefore, a greater range of mutation enables FEP to be more capable of 

global search. FEP performs very well for this benchmark function while the 

other two algorithms focus more on local searches. Thus they do not have a 

sufficient level of mutation, which hampers their performance for this function. 

Robustness 

In most EAs, the algorithm robustness is a crucial issue, as EAs are based 

on stochastic research and random selections. This issue is also considered in 

PSO. Regarding bacterial foraging behaviors, by an appropriate observation of 

population development and environmental difference in a bacterial foraging 

process, it has been well noted that bacteria have a potential capability of 

growing in and moving towards rich nutrient areas. The behavior is more 

certain than that emulated in most of EAs and PSO. Although the sensitivity 

to the initial positions and the instability in different functions have been noted 

during the course of the simulation studies, the simulation results show that 

the standard deviations obtained by BSA for most of the benchmark functions 

are smaller than those obtained by FEP and PSO. 

3.5.3 Discussion 

The novel BSA has been proposed for global optimisation. In this algo­

rithm, the adaptive tumble and run operators have been developed and incor­

porated, which are based on the understanding of the details of the bacterial 

chemotactic process. The operators involve two parts: the first is concerned 

with the selections of tumble and run actions, based on their probabilities which 

are updated during the searching process; the second is related to the length of 

run steps, which is made adaptive and independent of the pre-acquired knowl­

edge of optimisation problems. These two parts are utilised to balance the 

global and local searching capabilities of BSA. Beyond the tumble and run 

operators, attraction and mutation operations have also been developed. The 

former is inspired from the quorum sensing phenomenon of bacterial foraging 
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patterns, incorporating the idea of PSO attraction, and the latter, considering 

the dispersion events of the growing process of bacteria, plays a significant 

role in keeping a certain diversity of bacterial population for retaining a global 

searching capability, in particular in the cases of optimisation of high dimen­

sional functions. 

BSA has been evaluated on a number of benchmark problems, which include 

uni-modal and multi-modal functions in low and high dimension domains, re­

spectively. The convergence rates and robustness of BSA have been discussed 

in this section. The simulation results have shown that BSA has a superior per­

formance in comparison with FEP and PSO. Through the simulation studies, 

it has been seen that BSA possesses a great potential for global optimisation 

of complex problems. 

3.6 Paired-bacteria Optimiser 

EAs are notorious for their intensive computation caused by a large number 

of evaluations of the objective function required by all individuals in every sin­

gle searching process. Most of the EAs introduce unnecessary computation in 

calculating for the badly performing individuals. This is caused by the nature 

of uncertainty in association with the random search undertaken in the opti­

misation process. It should be noted that the higher dimension the objective 

function is, the more uncertainties an EA has to face. For example, in an n­

dimension search space, an individual would have n directions to move or move 

in an arbitrary direction which is in fact composed by n coordinates. There­

fore for the computation purpose, n random numbers have to be generated 

for n coordinates respectively to form this arbitrary position of the individual. 

Apparently, the uncertainty of the search process can be reduced if an individ­

ual is forced to move on a coordinate direction or a few coordinate directions, 

and consequently the amount of unnecessary computation can be significantly 

reduced. It may be argued that forcing an individual to move on a single co­

ordinate would weaken the global search capability. Therefore, the coordinate, 
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on which the position of the individual changes, should be randomly selected 

at each search step. 

Based on this idea, thus, instead of adopting the commonly used population 

based computation, we propose a PBO, which has only a pair of individuals in 

a population, the primary individual and the pseudo individual. The primary 

individual playa role in gradient-based search and the pseudo individual func­

tions a random walk in an arbitrary coordinate to keep the nature of random 

search. The primary individual can also be regarded as a bacterium which 

evolves in a sufficient rich nutrient area. The random bacterium can always be 

seen as an explorer. It also incorporates certain features of other widely used 

EAs, such as PSO, to enhance the cooperation between these two bacteria. 

The simulation results illustrate its advantage when applied to multi-modal 

problems. The performance in multi-modal problems is intensively discussed 

and compared with the results obtained by BFA and FEP. The potentials of 

parallel computation for this algorithm are also discussed. 

3.6.1 The algorithm of PBO 

Only two individuals are involved in the computation, a primary bacterium, 

X and a pseudo one, X. The primary bacterium, X, performs basic search in 

the problem space. The position of X at the kth iteration, 0, is defined as: 

(3.6.1 ) 

where Of is the ith component of Ok and n the number of dimensions. 

Meanwhile, the pseudo bacterium X accompanies X at each iteration to 

function as a mutation of bacterium X. Choose a random dimension 1, 1 E 

{1, 2" .. ,n}, the position of the pseudo bacterium e at the kth iteration is 

placed as: 

(3.6.2) 

where t:l.Dk = [0, ... ,0, d~, 0, ... ,0], and d~ indicates a value randomly chosen 
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between the lower boundary and the upper boundary of the search space on the 

[th dimension. Furthermore, d7 is chosen according to a parameter m, which 

defines the proportion of the distance to the boundary. 

According to the fundamental theory of bacterial chemotaxis, environmen­

tal change can be represented roughly by the gradient change. Set 9f as an 

alternative format of pseudo gradient [105] along the [th dimension at the kth 

iteration, as follows. 

k j(Ok) - j«()k) 
91 = Ok _ ()k 

1 1 

(3.6.3) 

where j«()k) and j(Ok) are the fitness of ()k and Ok, respectively. 

The primary bacterium has its own velocity, denoted by Ck, Ck = [c~, c~, ... , c~], 

where c: is the ith component of Ck at the kth iteration. The gradient 9f is 

added to the [th component of velocity as follows: 

Ck [k k k k k] = c1 , c2 , • •• ,cl + 91 , . . • ,cn 

The velocity is updated at the kth iteration as follows: 

(3.6.4) 

(3.6.5) 

where (;Jk = [w~,,·· ,w~] indicates the inertia weight vector of the bacterium 

velocity Ck; P: the position of the best bacterium in the past k iterations; n 

the attractor factor, which is a constant; and r a random number, r E [0,1]. 

Ci
k
+1 is clipped into the range of [0, Crax

], where Crax is the maximum velocity 

of bacterium X along the ith dimension, which is scaled proportionally to the 

maximum value of search boundary of that dimension. 

as: 

Hence, the position of the primary bacterium is updated at the kth iteration 

(3.6.6) 

This process is continually performed until a termination criterion is reached. 

The overall operation of PBO is as follows: 
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Table 3.7: Pseudo code of PBO 

Initiate the positions of the primary bacterium and pseudo bacterium; 

Initiate the velocity of the primary bacterium; 

Evaluate the fitness of the primary bacterium; 

Set cg as the value of global optimum; 

WHILE (the termination conditions are not met) 

Select a dimension I randomly; 

Pseudo bacterium: Move X along dimension I by (3.6.2); 

Evaluate fitness of Xk; 

Position updating: Calculate the pseudo gradient along the 

lth dimension using (3.6.3); Update the 

step length of primary bacterium along di­

mension 1 by (3.6.4); Calculate the step 

length of primary bacterium by (3.6.5); 

Generation: 

k = k+ 1; 

END WHILE 

Update the position of primary bacterium 

by (3.6.6); Update c~ if the fitness of cur-

rent bacterium is better; 

3.6.2 Simulation studies 

99 

PBO is evaluated in comparison with PSO [54] and FEP [39], which are 

widely used to test an EAs' efficiency [39]. The evaluation is undertaken on 

four benchmark minimization problems given as follows: 
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30 

F1: h(X) - LX~ 
i=1 

30 

F2: h(X) - - 2:)Xi sin( vTx:i)) 
i=1 

30 

F3: fa(X) - L(X; - 10cos(21l'Xi) + 10)2 
i=1 

100 

F4: fM) -20 exp ( - 0.2V :fa L::~l Xi) 

- exp ( do E:~l cos 21l'Xi) + 20 + e 

Table 3.8: Best fitness and evaluation times 

Functions Algorithms Evaluations Mean Std Dev 

PSO 150,000 1.4638 x 10-20 5.2324 X 10-20 

F1 FEP 150,000 2.5842 x 10-14 5.7785 X 10-14 

PBO 100,000 7.3948 X 10-4 9.2655 X 10-4 

PSO 150,000 -9717.1033 714.7094 

F2 FEP 150,000 -11397 364 

PBO 100,000 -12569.4603 0.01954 

PSO 150,000 56.5377 19.6174 

F3 FEP 150,000 13.92 3.9577 

PBO 100,000 0.1584 0.4176 

PSO 150,000 0.3260 0.6127 

F4 FEP 150,000 0.4482 0.3869 

PBO 100,000 8.1896 x 10-3 3.2052 X 10-3 

The parameters are set as follows: m is chosen as 0.05 or 0.1, randomly. n 

is set as 7 by trial and 7J is set as 0.3 in each dimension. Ciax is set as 0.1 % 

of the maximum length along the ith dimension. 

These objective functions are evaluated respectively by PSO and FEP for 

150,000 times while they are evaluated for 100,000 times by PBO. The average 
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b st r ults obtained in 50 runs ar Ii t d in Table 3.8. From Table 3.8, it can b 

seen learly that PBO is not abI to achiev a more accurate r suIt on this uni­

mod 1 fun tion Fl' This is b aus th PBO contains only two ba t ria in a 

population. For this uni-modal fun tion which has a flat valley, th two bacteria 

an only r a h a limit d a ura y of the minimum within a limited numb r of 
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iterations. How v r, PBO performs mu h b tt r than PSO and FEP on th 

multi-modal fun tions F2",F4 , in t rms of the numb r of function valuation 

and earch accuracy. Figur s 3.16 '" 3.19 demonstrate th onvergence proc s 

obtain d in each fun tion valu tion of the thr e algorithms during 100 000 

evaluations. The merits of PBO are repr sented by its characteristi s which 
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include that (1) PBO involves the historic best individual into the computation, 

in the same way adopted by PSO; (2) the step length of a bacterium is used 

to guide local search and (3) the pseudo bacterium plays an important role 

in mutation, i. e. a random walk which generates a certain range of diversity 

for global search. It should be mentioned that we place the pseudo bacterium 

on a randomly selected dimension. This is because this strategy can not only 

create a random search feature but also minimise uncertainties which may 

lead to unnecessary function evaluations, in order to reduce the amount of 

computation. 

3.6.3 Discussion 

A very simple BaJA, PBO, has been presented, which contains only two 

individuals in a population: a primary bacterium and a pseudo bacterium. In 

every iteration, the pseudo bacterium has exactly the same position as the 

primary one except on only one selected dimension. A gradient-based search is 

introduced to enhance the convergence speed. With this methodology, a high­

dimensional problem can be scale down to a multi low-dimensional problem, 

thus, it can fully exploit the searching ability of bacteria. 

The simulation study has been undertaken on four benchmark function, 

one is a uni-modal function, the other three are multi-modal functions, all of 

them are high dimensional problems. The simulation results show that this 

novel algorithm provides a better global search capability and convergence 

performance, given the same or lpwer evaluation numbers of the objective 

function, in comparison with PSO and FEP. The less computation load is one 

of the major merits of the algorithm. 

3.7 Summary 

In this chapter, a new branch of BIA - BaIA, has been introduced. Two pre­

liminary works have been presented in detail. This original study demonstrates 

paradigm of optimisation techniques and will provide a foundation for algo-
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rithm development. The three BalAs, BFAVP, BSA and PBO have been pro­

posed to tackle optimisation problems from three different perspective. BFAVP 

was developed to demonstrate the knowledge transfer from models to algo­

rithms: how to incorporate the bacterial foraging patterns, e.g. chemotaxis 

and metabolism, into the optimisation algorithms, and enhance its search­

ing ability. A further knowledge transfer from biology to optimisation can be 

found in BSA, in which the study of group behaviour of bacterial foraging, (i. e. 

quorum sensing) has been concentrated on. The factors of attraction and dis­

persion were introduced to make sure the balance between global exploration 

and local search was achieved. Finally, PBO was investigated with the aim 

of reducing computational load. In PBO, computation is based on individual 

coordinates instead of a combination of coordinates. Thus, a pseudo-gradient­

based local search can be performed on a specific direction, which outperforms 

the other strategies in terms of convergency speed, given a certain level of 

randomness. All the simulation studies have been undertaken to evaluate the 

developed algorithms on the benchmark problems. The simulation results have 

demonstrated their effectiveness in solving complex optimisation problems. 
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Chapter 4 

Bacteria-inspired Algorithms 

For Global Optimisation in 

Varying Environments 

4.1 Introduction 

Optimisation in dynamic environments has received great attention in re­

cent years [106]. In this case, optimisation algorithms are required to be able to 

continuously track a changing optimum over time. Thus, the balance between 

the convergence and searching ability should be carefully considered. Over the 

last two decades, EAs designed to solve static optimisation problems, have been 

comprehensively and intensively investigated, while EAs developed specifically 

for dynamic environments were rarely considered. In recent years, with the 

emergence of another member of the EA family - BFA, the self-adaptability 

of individuals in group searching activities has attracted a great deal of inter­

est. In this chapter, a BFA aimed at optimisation in dynamic environments, 

called DBFA, is developed. A test bed proposed previously in [107] is adopted 

to evaluate the performance of DBFA. The simulation studies offer a range of 

changes in a dynamic environment and the results show that DBFA can adapt 

to various environmental changes which occur with different probabilities, with 
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both satisfactory accuracy and stability, in comparison with BFA [69]. 

4.2 Conventional Dynamic Evolutionary Algo­

rithms 

Static optimisation problems have been the focus of evolutionary compu­

tation for a long time. However, there are many practical problems in various 

fields in the real word, which need optimisation methodologies suitable for a 

changing environment. 

In the changing environment problems, there are only a few very coarse­

grained classifications distinguishing alternating (or cyclic) problems: problems 

with changing morphology, drifting landscapes, and abrupt and discontinuous 

problems. Other classifications are based on the parameters of problem gen­

erators. Many real-world applications are dynamic, e.g. scheduling control 

problems, vehicle routing, and portfolio optimisation. However, current ap­

proaches either ignore dynamics and re-optimise regularly or use very simple 

control rules. There are some possible remedies, such as: restart after a change 

(only choice if changes are too severe), but this is too slow; or generate diversity 

after a change. However, randomisation destroys information, only local search 

can be performed afterwards, which functions similar to restart. Some other 

algorithms maintain diversity throughout the run, however they also disturb 

optimisation process. 

There has already been some previous research to tackle this issue [108] 

[109]. One of these approaches detects a change in the environment, and then 

adjusts the algorithm parameters to increase the diversity or probability of 

mutation, which, on the other hand, destroys the information gained by previ­

ous search. Another maintains a certain diversity throughout the evolutionary 

process, for example, by introducing random immigrants; or taking the ages 

of individuals into account, which nonetheless, still disturbs the optimisation 

process. Recently, a new algorithm, called 'Memory - Enhanced Approach' 

[110] [111], claimed to cope with periodically changing environments. The 
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performance of this algorithm depends on memorising the history of the opti­

misation process and maintaining the diversity of the population. Therefore, it 

is only useful when the optimum reappears at an old location, and the problem 

of convergence still remains. Inspired by nature, there is a new group of ap­

proaches investigated recently, called 'Multi-Population Approach', which are 

gaining more attention [112] [113]. It proposes the use of a number of sub­

population groups for covering possible solutions, and enables itself to detect 

new optima by maintaining a suitable diversity. An algorithm called 'Self­

organizing Scouts' is an example of this approach [108]. Furthermore, there 

are other ideas to deal with dynamic problems, such as 'thermodynamical GA' 

[114], ACO for dynamic problems [115] and varying population swarming [116]. 

However, the problems of conflict between convergence and diversity still exist 

in these algorithms. 

For dynamic problems, rapid convergence, which is an important charac­

teristic for algorithms used in static optimisation problems, is not only desired, 

but also the ability of finding a global optimum is required. However these two 

requirements are contradictory to each other. There should be a compromise 

between the convergence and the diversity of the algorithm designed for solving 

a specific problem. Some of the reported results are encouraging. However, 

most of these methods were evaluated in periodically changing environments 

or they involve intensive computation, as detection of environmental changes 

is required in each search step, which are either too hypothetic or unrealistic 

for the complexity of real-world problems. 

However, the complex and organised activities exhibited in bacterial for­

aging patterns could inspire a new solution for dynamic problems. The un­

derlying mechanism of the survival of bacteria, especially E. coli in a changing 

environment has been reported by researchers in the area of biological sciences 

[6]. Inspired by these phenomena, an optimisation algorithm called BFA was 

introduced in [69], which is known to be useful for applications in control [69] 

or parameter estimation [70]. Based on BFA, we propose a DBFA, which is 

especially designed to deal with dynamic optimisation problems, combining 
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the advantages of local search in BFA and a new selection scheme for diversity 

generating. 

We use the moving peaks benchmark (MPB) [107] as the test bed for ex­

periments. The performance of the DBFA is evaluated in two ways. The first is 

concerned with the convergence of the algorithm in random - periodical changes 

in an environment, which are divided into three ranges from a low probability 

of changes to a higher one. The second is testing a set of combinations of the 

algorithm parameters which are largely related to the accuracy and stability of 

the algorithm. All results are compared with the existing BFA [69], and show 

the effectiveness of DBFA for solving dynamic optimisation problems. 

4.3 Dynamic Bacterial Foraging Algorithm 

4.3.1 Local search 

Local search of DBFA is similar to the one in BFA. Both of them are 

inspired by bacterial chemotaxis, which is based on the suppression of tumbles 

in cells that happen by chance to be moving along an upward gradient. A unit 

walk with random direction represents a Tumble and a unit walk with the same 

direction as the last step indicates a Run. After one step's move, the position 

of the ith bacterium can be represented as: 

()i(j + 1,r,l) = ()i(j,r,l) + C(i)L.</J(j) (4.3.1) 

where ()i(j, r, l) indicates the position of the ith bacterium at the jth chemotactic 

step in the rth reproductive loop of the lth elimination and dispersion event; 

C(i) is the length of a unit walk, which is set to be a constant; and L.</J(j) is 

the direction angle of the ph step. When its activity is Run, L.</J(j) is the same 

as L.</J(j - 1); otherwise, L.</J(j) is a random angle generated within a range of 

[0,211"]. 

With the activity of Run or Tumble taken at each step of the chemotaxis 

process, a step fitness, denoted by Ji(j, r, l), will be evaluated. 
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4.3.2 Selection process 

The performance of BFA in static environments has been reported in detail 

[69]. The process of chemotaxis enables bacteria to obtain a satisfactory ability 

to perform a local search. It is worth noticing that the individuals in BFA could 

converge rapidly without information sharing between themselves, which is 

different from most EAs. 

In dynamic environments, a rapid convergence needs to be reconsidered as 

the environment is changing and a fast convergence may not lead to an effective 

trace of the global optimum in all possible directions. The reproduction process 

of BFA aiming to speed up the convergence is suitable in static problems, but 

lacks adaptation in dynamic environments. Thus, in order to compromise 

between rapid convergence and high diversity, we propose a dynamic bacterial 

foraging algorithm (DBFA) in which a selection process is introduced using a 

more flexible scheme to enable a better adaptability in a changing environment. 

The basic idea of the DBFA is to maintain a suitable diversity for global search, 

while the local search ability is not degraded, and changes in the environment 

are also considered. The scheme is described as follows: 

n 

Ji = I: Ji(j, r) 
j=l 

ranki =sort(Ji ) 

W;. - (ranki)k (1 _ ) J i 
t -m p + m --:::p--

Li=l (ranki)k Li=l J i 

(4.3.2) 

(4.3.3) 

( 4.3.4) 

where n is the number of chemotactic steps (each step may contain a Run or 

Tumble) during a bacterium's life time, j is its index and P is the population 

size, m is the weight of diversity, and k is the exponent of ranki • At rth selec­

tion step, the fitness of bacterium i, Ji , is still the sum of the step fitness during 

its life as indicated in equation (3.5.3), which has been redefined as Ji(j, r), 

since there are no dispersion events. Thus, those bacteria which have expe­

rienced more nutrient-rich areas are more likely to be selected as parents for 

the next generation. However, this fitness-domination does not help to main-

W. J. Tang 



4.4 Assessment Criteria 110 

tain diversity. Therefore, the combination of the solution and rank is chosen 

to prevent rapid convergence and retain the adaptation ability of the DBFA 

for dynamic environments. This adaptation ability is improved as long as the 

rank of each individual functions as a fitness-independent factor. Thus, the 

whole population is sorted according to Ji using an operator sort, then ranki 

is allocated as the rank of bacterium i in equation (4.3.3). We introduce the 

parameter m, which affects the diversity, to the selection process by combining 

the rank of the bacterium (ranki)k with the fitness calculation Ji . The two 

factors are weighted by m. The survival probability of bacterium i, Wi, is 

given in equation (4.3.4), and 

i=l 

At last, the roulette wheel selection taken from the GA literature is adopted 

to generate the next generation. 

As diversity can be obtained in each generation, i. e. a chemotactic process 

which contains a number of chemotactic steps, the process of 'dispersion and 

elimination' is not considered in this algorithm. The pseudo code of DBFA 

is described in Table 4.1, where Ns indicates the number of selections, Nc 

represents the number of chemotactic steps in a bacterium's life time, Jlast is 

a temporary variable in the process of Run and N r is the maximum number of 

steps for a single activity of Run. 

4.4 Assessment Criteria 

In our experiments, we use three different ways to evaluate the performance 

of DBFA. These involve determing the average best fitness found over a given 

period during the evolutionary process, the accuracy and the stability of the 

algorithm . 

• Average best over a period (AI3P) 

One of the most important factors in optimisation is the ability of search­

ing for the global optimum. In a dynamic environment, comparing the 
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Table 4.1: Pseudo code of DBFA 

Randomly initialise positions of bacteria in the domain; 

FOR (Selection r = 1 : Ns ) 

FOR (chemotactic steps per bacterium j = 1 : Nc ) 

Calculate: Calculate the nutrient function of bacterium i as 

Tumble: 

Run: 

Ji(j, r); 

For bacterium i, set Ji(j, r) as Jlast. 

Generate a random angle represented by an array 

Do, where each element belongs to [0, 1] ; 

Move to a random direction vt::.~xt::. by a unit walk, 

the new position is calculated by equation (4.3.1); 

Start another chemotactic step. 

For bacterium i, calculate the step fitness as 

Ji(j, r). If Ji(j, r) < Jlast, take another unit walk 

of the same direction, set Ji(j, r) as Jlast; other­

wise, start another chemotactic step; 

Continue the Run until Nr steps before start an­

other chemotactic step; 

END FOR (chemotactic steps) 

Sum: 

Sort: 

Select: 

Set Ji as the sum of the step fitness over the life 

time of bacterium i using equation (4.3.2); 

Sort Ji in ascending values of fitness in the popu­

lation; 

Calculate the rank of bacterium i according to 

equation (4.3.3); Obtain Wi for bacterium i by 

equation (4.3.4); Select bacteria by using roulette 

wheel selection. 

END FOR (Selection) 

111 

best solution found after a certain number of generations is not sufficient, 

since the optimum might be varying over time. There is an alternative for 
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reporting the performance of the algorithm, which averages over the best 

solution found at each step during a period between two environmental 

changes. It is concerned with an average of the best values, denoted by 

average best, found over a period Ti, where Ti denotes the ith period. 

This average best over a period is denoted as ABP, which is similar to 

the 'Best Fitness' for static environments, but only for a given period Ti . 

Let Si be the first step of Ti, Ei be the last step. Thus, ABP is defined 

as: 

1 Ei 

ABPTi = E- _ s. L f(t)* 
t Z t=Si 

(4.4.1) 

where f(t)* is the best fitness found in each step, and t = Nc x r + j . 

• Accuracy 

To obtain the accuracy of algorithm A in function F, firstly, we calculate 

accuracy in each step t, 

fp,A(t)* - VwF,A(t) 
AccuraCYF,A(t) = V, (t) - V. (t) 

of,A wF,A 
(4.4.2) 

Then, the accuracy as a whole is defined as 

1 N 
AccuracYF,A = N L AccuracYF,A(t) 

t=l 

( 4.4.3) 

where Vw and Va are the worst and optimum value respectively, N is the 

number of steps . 

• Stability 

Similar to the definition of the accuracy of algorithm A in function F, 

the stability is defined as follows: 

StabilitYF,A(t) = AccuracYF,A(t) - AccuracYF,A(t - 1) (4.4.4) 

1 N 

StabilitYF,A = N L max{O, StabilitYF,A(t)} (4.4.5) 
t=l 
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4.5 Simulation Studies 

4.5.1 Environment setting 

The experiment is set in a testing environment called Moving Peaks Bench­

marks (MPB), which is also called 'DF1' [107]. The dynamic function in­

troduced for general purposes is a 'field of cones', with an objective function 

defined as follows: 

(4.5.1) 

where N is the number of cones in the environment. For the ith cone, Hi 

indicates its height, ~ is the slope control variable, and (Xi, Yi) represent the 

coordinates of its centre. The initialisation of the parameters is shown in Table 

4.2. 

Table 4.2: Parameter settings 

Parameter Value 

N 15 

HI 0 

RI 0 

Xl 0.5 

YI 0.5 

Hi [1,10] 

Ri [8,20] 

Xi [-1,1] 

Yi [-1,1] 

i 2, ... ,N 

The parameters listed in Table 4.2 can be adjusted to change the environ­

ment. But in our simulation studies, the height and range of slope for each 

cone are set to be constant, and only the positions of the cones are changing. 
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In thi case, .Estep, Yst p ar the step izes in the x and Y direction respectively. 

Then, for ach tep i, X i+ 1 and Yi.+l are cal ulated as follow: 

.Estep = Axxstep (1 - Xstep) 

Ystcp = AyY tep(l - Y tep) 

Xi+l = Xi + XstepDXi 

Yi.+l = Yi. + YstepDYi 

(4.5.2) 

(4.5.3) 

(4.5.4) 

(4.5.5) 

where Ax and Ay are both constants. DXi and DYi can each be assigned 

either 1 or -1 with equal probability. An example of the dynamic environment, 

g n rated with DF1, in four tep" i illu trated in Fig. 4.1. 
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4.5.2 Selection of DBFA parameters 

The experiments are designed to 1) evaluate the adaptability of DBFA for 

various dynamic environments; 2) adjust the algorithm parameters (k and m 

in equation (4.3.4)) of the algorithm to optimise its performance. Various 

environmental changes are used in our simulation studies, which are divided 

into three ranges [117]: 

• Range I - Slow level of environmental changes 

• Range II - Intermediate level of environmental changes 

• Range III - High level of environmental changes 

The level of changes is reflected by the frequency of changes in the envi­

ronment, which is defined as a probability T. For the environmental changes 

classified in Range I, T E [0,0.01], in Range II, T E [0.05, 0.2] and in Range III 

T E [0.3,0.8]. In our simulation studies, T indicates the probability of occur­

rence of environmental changes after each chemotactic step. The environmental 

changes are simulated as changes in the values of Xi and li in equation (4.5.1), 

following the process discussed in Section 4.5.1. 

The whole simulation process including the environmental changes is il­

lustrated in Fig. 4.2. The 'Environmental change database', shown in Fig. 

4.2, stores and updates the parameters listed in Table 4.2, which contains the 

characteristics of environmental changes for evaluation of the algorithm. 

4.5.3 Simulation results 

Both BFA and DBFA are evaluated using the MATLAB. Each experiment 

consists of 10 runs of the algorithm programs. The initial parameters, k and 

m of the algorithm, are set as a and 0.5, respectively. The comparison between 

BFA and DBFA is given in Figs. 4.3 and 4.4, where the best fitness and ABP 

in a single run are plotted. To demonstrate the performance in various environ­

ments in both figures, the dynamic environment with T = 0.001, T = 0.01 and 

T = 0.05 are selected, which fall into to Range I and II respectively. As shown 
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in Fig. 4.3, th cliff rent. parameters cause 3 13 and 82 occurences of environ­

m nt.al chang H in 2000 st ps re pe tively. In this case, the performances of 

DBFA, for T = 0.01 and T = 0.05, arc ati fa tory, since the DBFA reacts to all 

nvironmelltal change, off ctiv ly. It is abl to track 2 changes out of 3 when 

T = 0.001. In Fig. 4.4, tho ability of earching for the optimum is evaluated by 

ABP. Compar d with BFA, the DBFA i able to tra k the time-variant global 
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Table 4.3: Comparison of accuracy 

Change severity BFA(%) DBFA(%) Comparison(%) 

0 98.75 98.59 -0.16 

0.001 41.96 59.31 41.35 

0.005 45.60 61.59 35.07 

0.01 51.72 89.25 72.56 

0.05 45.06 58.21 29.18 

0.1 33.03 38.12 15.41 

0.2 67.02 81.90 22.20 

0.3 33.34 53.82 38.05 

0.5 46.92 56.22 19.82 

0.8 33.13 43.07 30.03 

optimum more smoothly and effectively. 

The DBFA has been evaluated in three ranges of dynamic environments 

and compared with the BFA. The comparison of accuracy is shown in Table 

4.3. T = [0.001,0.005,0.01] is selected for Range I, T = [0.05,0.1,0.2] and 

T = [0.3,0.5,0.8] for Ranges II and III, respectively. The performance is most 

satisfactory when T = 0.01, while it degrades when T is much smaller or larger. 

For Range III, it is not surprising that both the BFA and DBFA still obtain 

a high accuracy, since in this case the environment changes rapidly and the 

diversity will playa more important role in contributing to the performance of 

the algorithm than the local search. The difference between the accuracies of 

BFA and DBFA in the static environment is less than 1% when T = 0, which 

indicates that DBFA has the almost same ability of local search. 

The stability in Table 4.4 is related to the accuracy, as shown in equation 

(4.4.4). The most desired value of stability is 0, i.e. the smaller, the better. It 

is illustrated in the table that the values of the comparisons of the two algo­

rithms almost decreases monotonically as the severity of changing environment 

increases, which demonstrates that DBFA becomes stabler than BFA when the 

environment changes more frequently. 
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To a large xtcnt , th p rformance of DBFA depends on the two parameters, 

Tn and k, as givcn in equation (4.3.4). In ord r to obtain a better performance 

of DBFA, we evalnat cl the DBFA with k = {0.2, O.S,l} and Tn = {0.2, 0.4, 0.7} 

instead of It = 0 and m = 0.5 as th initial values. The DBFA was also te ted 

with a set f environmental param ter with T = {a. 005, 0.1, O.S} respectively. 

We compar the average accuracies of BFA and DBFA for 10 runs . The results 
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are shown in Table 4.5. 
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The DBFA with m = 0.7 performs worse than when m = 0.2 and m = 0.4, 

respectively. It is also worse than the BFA in 4 cases out of 9 as Ii ted in Table 

4.5, although it is slightly bett r in the other 2 cases. However, in general, it 

can be s en that for the 2 ca es when m = 0.2, T = 0.005 and m = 0.4 T = 0.1 , 

the DBFA offers the best performance. Table 4.5 indicates that when k = 0.2, 

the DBFA has the tablest performance. In this ituation, the accuracy of 
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Table 4.4: Comparison of stability 

Change severity BFA DBFA Comparison(%) 

0 0.0017 0.0027 58.82 

0.001 0.0014 0.0023 64.29 

0.005 0.0033 0.0043 30.30 

0.01 0.0033 0.0036 9.09 

0.05 0.0107 0.0106 -0.93 

0.1 0.0288 0.0259 -10.07 

0.2 0.0475 0.0417 -12.21 

0.3 0.0204 0.0198 -2.94 

0.5 0.0917 0.0672 -26.72 

0.8 0.1027 0.0683 -33.50 

Table 4.5: Accuracy of different parameter combinations(%) 

m=0.2 m=O.4 m=0.7 

T k BFA DBFA BFA DBFA BFA DBFA 

0.2 61.98 69.21 45.6 61.59 28.65 21.54 

0.005 0.5 58.1 65.4 23.56 11.48 13.46 6.43 

1 42.07 31.95 43.76 25.07 54.63 62.00 

0.2 27.08 39.87 20.51 22.56 8.21 5.63 

0.1 0.5 32.32 40.77 37.21 53.25 19.53 18.41 

1 22.12 23.42 63.24 71.94 52.77 59.53 

0.2 64.66 79.07 31.48 36.40 21.54 21.67 

0.5 0.5 69.13 76.51 26.74 26.32 42.60 56.44 

1 65.27 73.43 56.65 66.11 30.34 30.97 

DBFA is better than that of BFA in all cases except the ones when m = 0.7, 

where the convergence has been disturbed by a high diversity. 

W. J. Tang 



4.6 Summary 121 

4.6 Summary 

A new DBFA for optimisation in dynamic environments, based on bacterial 

foraging behaviour, has been presented in this chapter. The existing BFA 

employs the basic foraging activities to mimic 'chemotaxis' and uses an artificial 

reproduction process to speed up the convergence process. Due to the lack of 

the balance between diversity and convergence, it is not suitable for dynamic 

environments. The DBFA adopts a selection scheme which enables the bacteria 

to flexibly adapt to the changing environment. 

We have used the dynamic environment generated by OF! to evaluate the 

OBFA, and compared the DBFA with BFA in three aspects: the average best 

over a period, algorithm accuracy and stability. The simulation results show 

that in all three ranges of environmental changes, the DBFA is able to provide 

a satisfactory performance, and can react to most of the environmental changes 

in time. The selection of the DBFA parameters has also been discussed. 

It is worth mentioning that the diversity of OBFA changes after each chemo­

tactic process, unlike the dispersion adopted by the BFA after several genera­

tions. The OBFA utilises not only the local search but also applies a flexible 

selection scheme to maintain a suitable diversity during the whole evolutionary 

process. It outperforms BFA in almost all dynamic environments tested in the 

simulation studies. The OBFA has the same computational complexity as the 

BFA but offers a better performance, although the issue of computation is not 

discussed in this chapter. 

It should also be mentioned that the BFA and DBFA stemmed from a 

background which is totally different from that of the evolutionary computa­

tion techniques including GA and PSG, etc. The BalAs are still in the process 

of being investigated and they are not mature yet. However, from the under­

standing of their essential behaviour, we can see the potential of this kind of 

methodology, as demonstrated in this chapter and Passino's work [69]. On 

the other hand, it has been understood that GA and PSO were developed 

specifically for static optimisation problems, although they have also been at­

tempted for use in dynamic optimisation problems. However, we have formally 
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proposed, for the first time, the BalAs for dynamic optimisation problems. 
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Chapter 5 

Applications of 

Bacteria-inspired Algorithms 

5 .1 Introduction 

OPF problem is concerned with the aim of calculating power flow and op­

timising power system operating conditions within specific constraints. The 

OPF problem has already been attempted as a static optimisation problem, 

by adopting conventional gradient-based methods and more recently, non­

conventional ones, such as EAs. This chapter presents the work of solving 

OPF with BFAVP. The simulation results have demonstrated the merits of 

BFAVP in tackling the OPF problem. 

On the other hand, as the loads, generation capacities and network connec­

tions in a power system are always changing, these static-oriented methods are 

of limited use for this issue. This chapter presents how to use DBFA to solve 

the OPF problem in a dynamic environment in which system loads are chang­

ing. DBFA has been evaluated for optimising the power system fuel cost with 

the OPF embedded, on the standard IEEE 30-bus and 118-bus test systems, 

respectively, with a range of load changes which were governed by different 

probabilities. The simulation results show that DBFA can more rapidly adapt 

to load changes, and more closely trace the global optimum of the system fuel 
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cost, in comparison with BFA and PSO. 

Apart from the OPF problem, this chapter also discusses the application 

of BSA to improve modelling of transformer winding based on Frequency Re­

sponse Analysis. With the the aim of deriving the parameters of a well-known 

lumped parameter model of transformer winding, a model-based identification 

approach is proposed. BSA is utilised in performing optimisation. Simulation 

results and discussions are presented to explore the potentials of the proposed 

approach. 

5.2 OPF in Static Form 

5.2.1 Background 

The OPF problem has been well studied over the past a few decades 

[118][119][120]. Many optimisation techniques have been applied to solve this 

problem, which are mainly gradient-based techniques such as nonlinear pro­

gramming. These gradient-based solutions have made considerable contribu­

tions to power system operation and control. However, these techniques do not 

overcome the difficulties in solving complex cost functions which are not differ­

entiable in particular in the case of a high dimension or when more complicated 

constraints are applied. 

In recent years, EAs, such as GA and PSO have been proposed for complex 

optimisation problems to avoid the problems of non-differentiable objective 

functions and local optima solutions. These algorithms have been applied 

to the OPF problem [41][121], but since they are based on stochastic search 

in population and generations, they are computationally intensive and time 

consuming. Although they have been well investigated in academic studies, 

few of them have been used in industrial power systems, since a huge amount 

of computation is involved in solving an OPF problem for a real power system 

which contains thousands of nodes and constraints, and a limited time period 

is given for online OPF computation. Therefore, recently, parallel computation 

of EP applied to the OPF has been proposed [122]. 
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In this section, BFAVP was adopted to solve the OPF problem and has been 

evaluated on a practical OPF problem, focusing on minimising the fuel cost 

of a power system, in comparison with PSO. The evaluation of the algorithm 

was carried out using an IEEE 30-bus power system. The simulation results 

are reported to show the merits of this algorithm. 

5.2.2 OPF formulation 

The OPF problem can be treated as a constrained optimisation problem. 

The requirement of a steady state performance of a power system could be 

represented by an objective function with several equality and inequality con­

straints. Based on the conventional problem statement of power flow [123], 

OPF can be mathematically formulated as follows: 

min F(x, u) 

s.t. g(x, u) = 0 

h(x, u) ~ 0 

x is the vector of dependent variables, which can be given as: 

(5.2.1) 

(5.2.2) 

(5.2.3) 

(5.2.4) 

where PC1 is the slack bus power, VL the load bus voltage, Qc the generator 

reactive power output and Sk the apparent power in branch k. 

u is a set of the control variables, which can be expressed as: 

U T = [Rc ... Rc Vtc " . Vtc Tl ... TN Q ... Q ] 
2 Na' 1 Na' T' Cl CNc (5.2.5) 

where Pc is the generator real power outputs except that at the slack bus, 

Vc the generator voltages, T the transformer tap setting and Qc the reactive 

power generations of VAR sources. 

The equality constraints g(x, u) are the nonlinear power flow equations 

which can be formulated as follows: 
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jEN; 

i E No (5.2.6) 

a - QG; - QD; - Vi L Vj(GijsinOij + BijCOSOij) 

jENi 

(5.2.7) 

The inequality constraints h(x, u) are the limits of the control variables and 

state variables which can be expressed as: 

pmin < p. . < pmax G; - G, - G; i E NG 

Qmin < Q < Qmax 
Gi - G; - G; i E NG 

Qmin < Q < Qrnax c; - c; - c; i E Nc 

r,min < Ti < T max 
k _ k - k i E NT 

v;min < V; < v;rnax 
t _ t - t i E NB 

IS I < smax k - k i E NE (5.2.8) 

One approach tackling a constrained optimisation problem is to turn it 

into an unconstrained one, with special terms added to penalise equality and 

inequality constraint violations [124]. Thus, the objective function equation 

(5.2.9) is generalised as follows: 

J = F + Ap (PGl - p~~)2 + L A\1; (Vi - Vilim) 2 + 
iENtm 

(5.2.9) 

where Ap, )...V;, AG; and AS; are the penalty coefficients. The limit value x~im(x E 

(PG , V, QG, S» can be defined as 

xmax if x. > x~aX t • z 
(5.2.10) 
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5.2.3 Pseudo code of BFAVP-OPF algorithm 

The pseudo code of BFAVP-OPF algorithm is listed in Table 5.1. 

Table 5.1: Pseudo code of the BFAVP-OPF 

Set k = 0; 

Randomly initialise positions of bacteria; 

Initialise the objective function with J, e.g. fuel cost; 

WHILE (termination conditions are not met) 

FOR( each bacterium p) 

END FOR 

Tumble: Generate a random tumbling angle cp;. Move to 

the new direction by equation (3.4.1), and draw en­

ergye; from the environment by equation (3.4.7); 

Run: For the pth bacterium, calculate the evaluation 

value in the current step. If the current evalu­

ation value is less than the value obtained in the 

last step, the bacterium will continue to move with 

an angle cp; until it reaches the maximal step limit 

Nc • It also draw energy e; from the environment 

by equation (3.4.7); 

Reprod uction: Select those bacteria which obtained enough en­

ergy to survive. 

Elimination: 

k=k+l. 

END WHILE 

Calculate the lifespan for each bacterium using 

equation (3.4.11). Those individuals which exceed 

the limit of lifespan will be eliminated. 

w. J. Tang 



5.2 OPF jn Static Form 128 

) 
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29 

Figure 5.1: IEEE 3D-bus y tern with the indication of th varying load bu e 

5.2.4 Simulation studies 

The proposed BFAVP-OPF was tested on the standard IEEE 30-bu test 

syst m shown in Fig. 5.1. The y tem consist of 4 branche , 6 g nerator­

bus s, an 1 22 load-huse. The g nerator are at bu e 1, 2, 5, , 11 and 13. 

Bran he (6. 9). (6, 10), (4, 12) and (27 2 ) contain transformer with off­

nominal tap ratio. Th transformer tap setting can take 17 discrete value ' 

in th rang of [0.9, 1.1J with a step size of 0.0125. Data for thi · model were 

obtained from [121J. This problem has been tackled u ing both a gradient-

1 as d optimisation method [125J and evolutionary algoritlml [126J [127J. Th 

best r sult, averag result and standard deviation obtained by GA [126], PSO 

[54J and BFAVP [127] arc listed in Table 5.2, resp ctiv ly. The parameters 

adopt cI for PSO arc tho sugge ted by Cler et al [55J. ote that the initial 

population size is s las 50 ill all three algorithms however. since the population 

in BFAVP is varying, the maximal population size can reach 150 in BFAVP. 
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Table 5.2: Results from GA, PSO and BFAVP 

Best result A verage result Standard deviation 

GA 802.61 804.77 3.67 

PSO 802.41 804.52 1.73 

BFAVP 802.13 803.05 0.94 
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Figure 5.2: Average fuel cost for all individuals 
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5.2.5 Discussion 

Some of the existing EAs have been attempted in recent years to solve the 

OPF problems. However, few successful, practical applications in real power 

systems have been reported, as a large mount of computation is required for 

these EA solutions. BFAVP is able to obtain a better result, i.e. 0.28 and 0.48 

less than that obtained by PSO and GA, respectively. Considering the OPF 

problem has been attempted for over 50 years, and there have been a handful 

algorithms developed to tackle it, BFAVP got the best result compared with 

the ones reported in the literature. A more remarkable improvement can be 

spotted in terms of standard deviation. BFAVP has demonstrated a satisfying 

performance with robustness. The convergence processes of BFAVP and PSO 

in the first 1000 function evaluation are shown in Fig. 5.2. Compared with 

PSO, BFAVP is able to converge rapidly from the beginning of evaluation. 

5.3 OPF With Varying Loads 

5.3.1 Background 

The OPF has been investigated based on many assumptions made on power 

system operation conditions and load patterns. However, in practice, power 

system operations are always subject to uncertainties, since the loads, genera­

tion capacities and network connections in a power system are always changing 

from time to time. 

It is understood that the online OPF computation takes place every 10 '" 20 

minutes for power system economic dispatch and secondary control purposes. 

It is also noted that after the completion of this online task, the state of a power 

system has already changed, since over such a long period of time, the system 

loads vary. Nonetheless, in the past decades, an assumption has been made 

that no change is applied to power system states during the period of the online 

OPF computation, and the results obtained from this online computation task 

are accurate enough to be used for many other tasks of power system operation 
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such as network and generation control and system dispatch, etc. However, an 

assessment of the errors caused by this assumption has never been attempted. 

Moreover, modern power systems have started to involve more distributed 

generations and renewable energies, such as wind power, and tide power. These 

relatively distributed generations will interact with transmission network fre­

quently and make power flow in a changing state within a range from seconds 

to minutes. In this sense, the above assumption on power flow computation 

will no longer be acceptable. 

In order to waive the above assumption, developing a methodology which 

could be used to trace the optimum solution of power flow in a dynamic envi­

ronment is desired, but it is not an easy task. First of all, to consider various 

load changes, disturbances and power system control actions which could take 

place within a short period of time from seconds to minutes, the objective func­

tion of OPF cannot be assumed static and differentiable with the existence of 

only a single optimum. For this multi-modal optimisation problem in which 

the objective function is time variant, gradient-based methods cannot be used. 

Currently, it has been assumed that during the computation process of on­

line OPF, the power system is static as aforementioned; or during the variation 

process of power flow, the computation process of online OPF can be ignored. 

It can be seen that both assumptions are not reasonable. Therefore, it is de­

sired to develop a novel optimisation algorithm which enables the optimisation 

calculation to proceed at the same time while the power flow changes. In other 

words, we need to develop an adaptive optimisation algorithm. 

It is well known that EAs can be used for multi-modal optimisation prob­

lems. However, there are still a few problems if EAs are used to solve the 

dynamic OPF. The current EAs are population-based approaches, mainly us­

ing best-to-survive criteria. The optimisation process is convergence oriented, 

and it lacks the ability of effectively responding to environmental changes. In 

an EA, the whole population shares the same information of the global optima, 

which are found from the current generation, to reproduce a population in the 

next generation. This could be misleading for the EAs' performance in the 
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whole search process, if the environment is changing. For example, PSO can 

only search the global minimum based on the information of the best parti­

cle found in the current population. If the global minimum of the objective 

function will be less than the fitness of the current best particle, once the en­

vironment changes, the knowledge of the whole population will still be used 

for the next generation. However, if the global minimum is becoming bigger 

than the minimum fitness obtained, the use of the best particle will mislead 

the reproduction of the next generation. In this case, the memory of the global 

minimum in each particle will be wrongly updated, consequently PSO will 

corrupt. 

This section presents the application of DBFA to the OPF problem in the 

dynamic environment of a power system. In this environment, the variations 

of power loads are simulated as regular and irregular environmental changes, 

which is undertaken based on both IEEE 30-bus and 118-bus test systems, 

respectively. As the concept of OPF in dynamic environments is new and has 

not been investigated, it is difficult to compare DBFA with most of the existing 

optimisation algorithms which were delicately developed for static optimisation 

problems. Therefore, we compare the performance of DBFA with BFA, which 

is the only existing bacterial foraging algorithm, and PSG, which is a most 

recently developed and widely used EA. The simulation results of the fuel cost 

minimisation show that the proposed DBFA based OPF algorithm has a better 

performance than that of the BFA and PSO. 

5.3.2 Optimal power flow in dynamic environments 

OPF in dynamic environments can be revised as follows: 

min F{x, u, d{ t)) 

S.t. g{x; u, d{t)) = 0 

h{x, u) ::; 0 

(5.3.1) 

(5.3.2) 

(5.3.3) 

x and u are the same with equations (5.2.4) and (5.2.5), respectively. d{t) 
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is the disturbance vector, which can be expressed as 

(5.3.4) 

The equality constraints g{x, u, d(t)) are the nonlinear power flow equations 

with the same form of (5.2.6). 

However, in the dynamic environment, PDi in equation (5.2.6) varies from 

time to time, which could be calculated as 

(5.3.5) 

where Pj!,i is the demand active power at bus i without disturbance. Generally, 

the most common method for solving nonlinear constrained optimisation prob­

lems is transforming a constrained optimisation problem into an unconstrained 

one using penalty functions. 

Thus, the objective function equation is in the same form with (5.2.9). 

5.3.3 Pseudo code of DBFA for dynamic OPF problem 

The pseudo code of DBFA for dynamic OPF problem is described in Table 

5.3, where Ns indicates the number of selections, Jlast is a temporary variable 

in the process of Run and Nr is the maximum number of steps for a single 

activity of Run, the number of step for Tumble is one. 

The flowchart of the whole process is shown in Fig. 5.3. 

5.3.4 Simulation studies 

The proposed DBFA was also tested on the standard IEEE 3D-bus test 

system shown in Fig. 5.1, where the load variations were applied. The ellipses 

in Fig. 5.1 indicate the buses where the demanded active power is varying with 

probability. 

Dynamic environment settings 

The objective of this simulation is to minimise the total fuel cost, which 

can be represented as: 
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Update the 
parameters for the 
OPF formulation 
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Calculate the fitness (nutrient 
gained) of bacterium i in OPF 
problem as J(i,j,k) 
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Figure 5.3: The flowchart of DBFA for dynamic OPF problem 
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Table 5.3: Pseudo code of DBFA for OPF problem 

Randomly initialise positions of bacteria in the domain, which is 

represented by u; 

FOR (Selection k = 1 : Ns ) 

FOR (chemotactic steps per bacterium j = 1 : Nc ) 

Calculate: Calculate the nutrient function F of bacterium i 

as J(i,j,k); 

Tumble: 

Run: 

For bacterium i, set the initial nutrient as JZast. 

Generate a random angle, ¢>(j), ranging from 0° to 

360°, which indicates the new direction; 

Move to the new direction by a unit walk, the new 

position is calculated by equation (3.5.1); 

For bacterium i, calculate the nutrient function 

J(i,j, k). If J(i,j, k) < JZast, take another unit 

walk of the same direction, set J as JZast; other­

wise, return to Tumble; 

Continue the Run with a maximum of Nr steps; 

END FOR (chemotactic steps) 

Sum: 

Sort: 

Select: 

Set Fi as the sum of the nutrient concentrations 

over the life time of bacterium i using equation 

(3.5.3); 

Sort Fi in ascending values of fitness in the popu­

lation; 

Calculate the rank of bacterium i according to 

equation (4.3.3); Obtain Wi for bacterium i by 

equation (4.3.4); Select bacteria using roulette 

wheel selection. 

END FOR (Selection) 
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(5.3.6) 
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where Ii is the fuel cost ($ /h) of the ith generator: 

(5.3.7) 

ai, bi, and Ci are fuel cost coefficients, PG; is the real power output generated 

by the ith generator. 

In order to evaluate the performance of DBFA in dynamic OPF problems, 

various environmental changes are applied in our simulation studies, which are 

divided into three ranges [117]: 

• Range I - Low level of environmental changes 

• Range II - Intermediate level of environmental changes 

• Range III - High level of environmental changes 

The level of environmental changes can be assessed on two aspects, fre­

quency and magnitude of changes applied on buses. The frequency can be 

recorded at the time instants those changes happened, however, the total ef­

fect of the changes in different or same magnitudes is difficult to estimate, 

since a number of changes could happen at different buses simultaneously or 

at different time instants, which would affect the OPF solution jointly during 

the period of environmental changes. In order to introduce a measure to assess 

the level of environmental changes and the degree of the influence of the load 

changes applied to the power systems (consequently leading to an assessment 

of the tracking ability of the algorithm, which is the major concern of this sim­

ulation study), the same magnitude of load changes was assumed to be applied 

on all buses. 

The level of changes is reflected by the frequency of changes in the envi­

ronment, which is defined as a probability T. For the environmental changes 

classified in Range I, T E [0,0.005], in Range II, T E [0.005,0.01] and in Range 

III, T E [0.01,0.05]. In our simulation studies, T indicates the probability of 

occurrence of environmental changes after each chemotactic step. The envi­

ronmental changes are simulated with PDT varying by 20% of P~T' In this case, 
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equation (5.3.5) can be calculated as: 

.( ) _ { o:PDil 0: E [-0.2,0.2] 
dt t -

o 

Tracking error of cost variations 

if i = 7 

if i t 7 
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(5.3.8) 

In the experiment, we evaluate the performance of DBFA by concentrating 

on its ability to track the global optimum. \Ve denote the tracking error of 

DBFA as EL . Therefore, the tracking error of the cost variations in the whole 

process of DBFA is expressed as: 

EL = 1 itf F*(t) - FIDEAdt) dt 
t f - to to FIDEAL(t) 

(5.3.9) 

where F*(t) is the estimated cost at time t and FIDEAdt) is the ideal cost at 

time t. to and tf are the start and final time instants of the DBFA process, 

respectively. 

Parameter settings 

In DBFA, each bacterium is represented by x with a multi-dimensional 

form, as indicated in equation (5.2.4). The objective function is given by 

equation (5.2.9), including the fuel cost F represented by equation (5.3.6). To 

demonstrate the effectiveness of DBFA, BFA and PSG [54] are chosen to be 

compared in various cases in this study. The population in both algorithms 

is set to be 50. This is because this size of population has been widely used 

in the population-based EAs and also it is used for the purpose of comparison 

with the PSO which will be discussed later. The number of chemotactic steps 

in a bacterium's lifetime, Ne , and the maximum swim steps, Nfl for BFA and 

DBFA are set to be 50 and 10 by trial and error, respectively. We have noted 

that the results are not sensitive to these parameters. The reproduction time, 

Nre , in BFA was allowed to be unfixed, since the length of chemotaxis process 

depends on the variation of environment. In the selection process of DBFA, Ns 

is unfixed as well. In equation (4.3.4), the parameter n is the exponent of the 

ranks for each individual and m is used to allocate weights for balancing the 
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ranking and fitness. In this simulation study, nand m are selected to be 0 and 

0.5, respectively. The standard PSO was also used in the comparison study. 

The original algorithm can only handle continuous variables. However, in 

power systems, many control variables are discrete such as transformer tap 

positions. In order to handle discrete variables, the method proposed in [128] 

is employed in DBFA. In this case, the ith member Xi contains nc continuous 

variables and nD discrete variables, and the lh discrete variable is chosen from 

a set of mj discrete values, which is expressed as: 

X P = [xd . 1 ••• xd . I ••• x1. ] 
t,) t,), ' 't,), ' 't,),mj 

(5.3.1O) 

When updating the variables in the optimisation process, the index of the 

discrete variable rather than the variable itself is involved directly in the up­

dating process. For the lh discrete variable, a fictitious real variable x is used 

instead of the discrete variable xfj, where x E [1, mj + 1] and it is updated 

directly in the same way as the continuous variables in the algorithm. Then, 

the index 1 of the chosen value is determined by setting 1 = INT{x), where 

INT{x) denotes the greatest integer less than the real value x, to select a 

discrete value xtj,l of the lh discrete variable Xe, before involving it in the 

function evaluation. 

Hence, the fitness function of the ith member Xi can be expressed as follows: 

where 

i = 1,··· ,AI 

Xi - {xf,j' xtj,ll xf,j E Xp,j = 1,··· ,nc, 

Xt,j,l E Xi~' 1 E [1, mjl, j = 1, ... ,nD} 

(5.3.11) 

(5.3.12) 

and Xf E ]Rnc, Xp E ]RL:j;'l m j , Xf and Xp denote the feasible subsets of 

comprising continuous and discrete variables of member Xi, respectively. 

Simulation results 

BFA, DBFA and PSO are evaluated using the MATLAB. In our simulation 

studies, we consider firstly that the demanding active power varies at a single 
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Figure 5.4: Fuel cost with the variation of load at bus 7 (7 = 0.005) 

bus, i. e. bus 7. We provide an ideal fuel cost for the comparison purpose 

and also assume that the global optimum can be achieved by an optimisation 

algorithm immediately after load changes, which is taken as the ideal cost. In 

our case, the ideal cost is obtained using PSO which calculates the optimal 

objective function as a static optimisation problem in the new environment in 

which the values of load changes have been updated. 

The performances of BFA, DBFA and PSO with the load changes and their 

comparison are given in Figs. 5.4"'5.6. There is no significant difference among 

the results obtained by PSO in the three cases, so the performance of PSO is 

only illustrated in Fig. 5.6. The results shown in Fig. 5.4 were obtained 

from the OPF in a dynamic environment with load changes at a change rate 

7 = 0.005, which belongs to Range I and implies that there are 10 changes in 

a period of 2000 steps. In this case, DBFA converges much faster than BFA 

at the early stage, which is deemed as a static environment before the first 

environmental change occurs at step 370. From the first change, DBFA reacts 

to all the changes in time while BFA always has a delay in responding. 

The significant difference in performance between BFA and DBFA can be 

observed in Fig. 5.5, where 7 = 0.01, which belongs to Range II. DBFA tracks 
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the changes in all cases while BFA is not able to react to most changes in 

time. Compared with DBFA, BFA responds these changes with a delay, and 

it cannot obtain a satisfactory tracing performance rapidly. The difference is 

represented by the big gap between the two curves. 

The results obtained with T = 0.05, which belongs to Range III, are shown 

in Fig. 5.6. The environmental changes are considered to be more severe. In 

this case, it is difficult for an optimisation algorithm to respond to the changes 

in high frequency, since there is a limited time for an algorithm to converge 

to the global minimum before next change occurs. However, DBFA is able to 

track the global minimum and performs better than BFA. In this case, PSO 

fails to respond to the changes most of the time, with a constantly decreasing 

performance. 

It has been demonstrated in Fig. 5.6 that DBFA is able to track the changes 

more rapidly than other algorithms, and PSO fails to converge in some cases. 

This is because the PSO was developed delicately for static optimisation prob­

lems. In the case of static optimisation, the global optimum found in each 

generation is used as a selection reference to reproduce individuals of the next 

generation. However, in a dynamic environment, the information of global 

optimum may not be necessarily useful in guiding the selection, as the real 

optimum of the environment is varying from time to time. Thus, as mentioned 

in Section 5.3.1, the information obtained from a generation is of limited use 

in the next generation in the dynamic environment. In this sense, due to the 

lack of memory updating mechanisms or appropriate diversity, PSO can only 

respond correctly to the environmental change in which the global minimum 

is less than the one in previous generation. Obviously, this is not practical. 

To further demonstrate the tracking ability of DBFA, the tracking errors 

of both BFA and DBFA obtained from the three cases of cost variation are 

listed in Table 5.4. In comparison with BFA, the errors generated by DBFA 

are significantly reduced. In these three cases, the errors of DBFA are 19.6%, 

15.9% and 38.8% of those obtained by BFA, respectively. We have also found 

that PSO has completely failed at all levels of load changes, due to the reason 
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Table 5.4: Results of tracking errors EL 

Load change mode 7' BFA(%) DBFA(%) PSO 

0.005 3.275 0.642 fail 

Single-bus load change 0.01 5.640 0.895 fail 

Bus 7 0.05 30.587 11.864 fail 

M ulti-bus load changes 

Buses 7, 19, 21, 24, 30 0.2 27.132 11.071 fail 

mentioned in Section 5.3.1 that PSO is only suitable for static optimisation 

rather than dynamic problems. 
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Figure 5.5: Fuel cost with the variation of load at bus 7 (7' = 0.01) 

Application to multi-bus load variation 

In BFA, the total number of reproduction steps, N re , is fixed, and a fixed 

N re will most likely lead to the failure of computation in the dynamic OPF 

application. Therefore, N re for DBFA and BFA is an uncertain number for 

solving dynamic problems. It depends on the frequencies of environmental 

changes. As soon as the environment changes, a reproduction occurs to prevent 

the algorithm from converging to the previous optimum. 
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Figure 5.6: Fu 1 co t with th variation of load at bu 7 (T = 0.05) 

• Application to IEEE 30-bus yst m 

The application of these algorithm is ext nded from a single bus load 

variation to multiple buses in this s tion. Both BFA and DBFA are 

tested on the sam set of the standard IEEE-30 bus y tern with d(t) 

applied on bu e 7, 19 21, 24 and 30, indi ated by the Hip in Fig. 

5.1. These load vary by 20% of th rat d load with T = 0.2 for a h of 

th s buses. 

The p rformance of both algorithms in th fir t 200 st p is shown in 

Fig. 5.7, in which th id al cost i obtained by off-line alculati n of th 

fuel ost for OPF with load variation onsid r d afar m ntion d. Th 

results show that the curv obtained by DBF can r v al the variation 

of fuel cost in line with the variations of the load appli d on a numb r 

of buses. Also th compari on b twe n the p rformanc s of BFA and 

DBFA indicate that DBFA i abl to track th 1 ad chang ' mar rapidly 

and effe tiv ly. 

The tracking rrors r ulting from this as are also listed in Tabl 5.4 

in which it can b en that the performance of BFA d t rim'at sin 

the bus loads are varying in a high fr quen y. However, DBFA i abl to 
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trace the changes with f wer rrors in this cas . Th ar a b tw n th 

fuel osts of the DBFA and BFA indi ate a larg amount of n rgy whi h 

ould be saved by using DBFA rather than BFA for th OPF pr bl 111 

with load changes. 
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Figur 5.7: Fu I cost with the variation of multi-bu load chang s (T = 0.2) 

• Appli ation to IEEE 11 -bus sy t m 

The IEEE 11 -bus Test a r pres nt a portion of th Am ri an Ele -

tric Power Sy t m in the Midwest rn S. It has 54 generator bus 64 

load buses and 186 tran mission lines of whi h nin bran h s ar with 

tap s tting transform r. To demonstrat the track ability of DBF , 

load variations ar appli d randomly with probability of T = 0.2 re. p -

tiv lyon fiv buses whi h are buse 11, 45, 60 7 and 2, indi at d 

in Fig. 5. with cirel s. 

Figure 5.9 shows th minimal fuel ost achiev d by DBF in omparison 

with BFA in this dynamic environment. It hould b mention d that 

this figur does not in lude th onverg n proce for ith r DBFA r 

BFA. In oth r words th simulat d variation of the load was appli d 

after the e two algorithm conv rg d to a olution of OPF. In Fig. 5.9, 
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Figure 5.9: Fuel co t with th variation of multi-bus load hang s (T = 0.2) 
with IEEE 11 -bu ystem 

the dotted line indicates th id al solution as that achiev din th ase of 

IEEE 30-bus system. From this figure , it an b n cl arly that DBFA 

an trace th id al solution ov r time more clo ly than the BFA. It can 

be observ d from Fig. 5.9 that the tracking ability of DBFA i always 

b tter than that of BFA as the function valuation pro ds. 

Remarks on real-time application 

This goal of thi work i to achieve real-tim application of DBFA for on­

lin OPF. How ver, this goal still requires further ffort to a hieve and it i 

beyond the scope of this th si . In the meantim , th r s arch focuses on the 

tracking ability of our algorithm in dynamic environment. A this inve ti­

gation was und rtaken by a simulation study, we dis u s th tra king ability 

by counting th numb r of function evaluations of a h algorithm, inc the 

fun tion evaluation consumes the majority of time for on-lin PF. 

With r f r nce to the ideal solution, we count the total number of valua­

tions from a start point of load variation to th point at which 0.2%, 0.5 % and 

0.8 o/c r aI-tim tra king errors EL , has b en reach d for each algorithm, r -

spe tively. Th average numbers of function evaluations requir d for a hi ving 

W. J. Tang 



5.3 OPF With Varying Loads 146 

Table 5.5: Comparison of CPU time required 

Change Real-time Function evaluation 

Bus type severity EL BFA DBFA 

0.2 162 164 

0.005 0.5 151 139 

0.8 108 73 

0.2 731 508 

30-bus 0.01 0.5 600 496 

0.8 331 246 

0.2 1938 1021 

0.05 0.5 1433 979 

0.8 1033 342 

0.2 68 66 

118-bus 0.2 0.5 59 5 

0.8 8 3 

the various tracking errors by BFA and DBFA are listed in Table 5.5. 

It is shown in Table 5.5 that DBFA needs much lower numbers of function 

evaluations than the BFA to achieve the required error levels. This implies 

that it has a greater capability to be used in real-time applications, concern­

ing the real-time on-line OPF achieved by DBFA, which is currently under 

investigation. 

5.3.5 Discussion 

The conventional OPF computation is based on an assumption that no 

changes of power system states would happen during a period of a few minutes 

within which online computation of OPF could complete. This assumption will 

no longer be reasonable in practice, since more distributed generations will be 

involved in modern power systems. This section has presented the application 

of DBFA to dynamic OPF problems. Inspired from the group searching activi­

ties of bacteria, the application of BFA to optimisation problems is flourishing 
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in recent years. Due to the lack of diversity, the existing BFA is not suitable 

for dynamic environments. The DBFA adopts a new selection scheme which 

enables the bacteria to flexibly adapt to dynamic environments, which provides 

a more practical solution to the OPF problems. 

We have simulated the dynamic environment of the OPF problems with 

three different levels of load changes with probability and compared the DBFA 

with both BFA and PSO in this section. We have also introduced an error 

tracking criterion to evaluate the performance of DBFA. The simulation re­

sults demonstrate that in all three ranges of environmental changes, the DBFA 

is able to provide satisfactory performance, and can trace most of the envi­

ronmental changes rapidly. The results also show that a significant amount of 

energy can be saved if the DBFA is used for solving an OPF problem with load 

changes, in comparison with the existing EAs and BFA. 

5.4 Modelling of Power Transformer Winding 

5.4.1 Background 

Monitoring in-service behaviour of power transformers has become an im­

portant issue in power systems. Among various techniques applied to power 

transformer condition monitoring, frequency response analysis (FRA) has proved 

to be suitable for reliable winding displacement as well as deformation assess­

ment and monitoring [129]. Diagnosis of these conditions through FRA relies 

on correct interpretation of the complex FRA results. However, direct and 

manual comparison between two FRA test results is the current approach used 

by maintenance engineers. Measured FRA traces are compared with the ref­

erences taken from the same winding during previous tests or from the corre­

sponding winding of a 'sister' transformer, or from other phases of the same 

transformer. The shifts in resonant frequencies and magnitude of FRA traces 

are believed to be indicators of a potential winding deformation. Nonetheless, 

the question of potential deformation location in a winding still needs to be 

investigated [130]. 
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In the past a few years, there were a range of research activities being con­

ducted, considering the simplified equivalent model of transformer winding of 

observing the model behaviour in frequency domain [131][132]. However, they 

only allow the estimation of the total approximate values of the parameters and 

do not consider the evaluation of winding deformation. The fundamental prob­

lem of the inaccurate simulation of transformer winding frequency behaviour is 

the estimation of internal parameters. Modelling of a real winding in order to 

obtain frequency responses, being close to experimental ones, is an extremely 

complex task since a detailed transformer model must consider each turn or 

section of a winding separately. The reason is the fluctuation of real winding 

parameters such as inductances and resistances per section length as well as in­

tersection capacitances. The insulation property deviation with the frequency 

should also be taken into account. 

A wide range of models have emerged recently to tackle this problem, such 

as the works done in [130][133][134][135], they require pre-knowledge of the 

transformer, e.g. demanding additional experimental tests and knowledge of 

geometric and physical characteristics of the transformer. However, in industry 

measurements it is not always possible to conduct additional tests for precise 

measurements of transformer geometry or insulation parameter estimation. 

Recently, intelligent evolutionary learning techniques were utilised to over­

come such difficulties, that offers a way to identify model parameters using 

available measurement data. For instance, GAs and PSO were employed for 

transformer thermal model parameter identification [136] [137], simplified trans­

former winding models parameter identification [138][139], etc. In this section, 

we consider a model-based identification approach using BSA, which demon­

strates a fast convergence speed and a higher accuracy, in comparison with 

GA. 

5.4.2 Lumped parameter winding model 

The basic measurement circuit is shown in Fig. 5.10. The tested impedance, 

i. e. the transformer winding, is ZT, on which the FRA is based. The standard-
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[J Frequency 

~~~---~ response 
analysis 

lout 

s R T Zout 

Figure 5.10: Ba ic measurement circuit 

ised test impeclan e, i. e. the imp dance of the input and output measurement 

cal I s are Zin and Zout, respectively. The inject d signal is S, the refer nce 

measur m nt is Rand th te t measurement is T. 

TIler are two ways of injecting th wide rang of fr quencies nece sary, 

either by inje 'ting an impulse into th winding or by making a fr quency weep 

u ing a sinusoidal signal, which i al 0 known as sw pt fr quency method [129]. 

\Ve adopt th latter one in our work. 

As th l' sonanc s of an FRA trace arc related to the valu s of capacitan s 

and inductancc::; withill a transformer winding, lump d-param tel' equival nt 

cir 'uit models have be n widely utili cd to analyse fr qu ncy domain behaviour 

[134][140][141][112][135]. Th equivalent circuit of ZT is illustrated in Fig. 5.11 

. Eah section of an equivalent circuit u ually repr sent one or a few di cs in 

the cas of a disc typc winding a w 11 a one or a f w turns for h lical type 

windings [140][141][142]. 

Th mathematical description of the model in frequ ncy domain is u ually 
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Figur 5.11: Equival nt cir uit of a single phase of a power transform r 

giv n in a matrix form of nodal equations applying the Kirchhoff's first and 

se ond law [134][140][141][142]: 

YU = AI + QUo, 

ZI =-A TU + P Uo, 
(5.4.1) 

wh r ve tor U and I r pres nt node voltages and bran h current r spc tively 

and v Itag Uo d notes an input sinusoidal ignal. 

Ea h el m nt of th admittanc matrix Y is a combination of admittan e 

Ys and Yg , orresponding to Gs - Cs and Gg - Cg parall 1 bran he respectively 

as shown in Fig. 5.11. Using matrix notations for th capacitan e and onduc­

tan matric , Y = jw C + G , where w is an angular frequ n y and j denote 

the imaginary op rator. Th branch imp dan e matrix Z = jw L + R on ists 

of the s 1£- and mutual s ctional indu tance Land Af, bing ombined into the 

matrix L , and quival nt s ction re i tances R, building the matrix R [134]. 

The incid n matrix A on ists of -1, 0 and 1 and serve to link nodal 

voltag s with branch curr nts. Matrices Q and P are formed as a component 

vector of Y and A matrice orre pondingly in accordan e with terminal con­

n ctions of th winding mod 1 uch as external voltage ourc imposition, node 

grounding, int rnodal c nn tion, etc. [140][141][142][143]. 

From equation (5.4.1), th branch urr nt and nodal voltages vectors can 
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be expressed as [140][141][142][143]: 

U = (Y + AZ-1AT)-1(AZ-1p + Q)Uo, 

1= Z-I(_AT U + PUo). 

151 

(5.4.2) 

We choose U as the output signal to obtain the transfer function H(jw) 

of a winding in the frequency domain, i. e. the ratio of nodal voltages and 

inductive branch currents with respect to the applied input voltage. 

The detailed analysis of the model parameters, such as the capacitances, 

conductances, inductances and resistances can be found in [144]. 

5.4.3 Model-based identification approach 

The model-based learning approach is based on searching for the optimal in­

vestigated model parameters by minimising the difference, i. e. fitness, between 

reference frequency responses and simulated model outputs. It is achieved by 

measuring the errors between the original responses and the model outputs. 

Therefore, for each individual (bacterium) of a population in BSA, its total 

fitness value is given as follows: 

s 
min L II Ho(wi) - H(Wi) II , (5.4.3) 

j=1 

where HO(Wi) and H(Wi) E ffi.l are the reference and optimised frequency 

responses at frequency Wi, i = 1,," ,S, where S is the number of frequency 

points involved in BSA optimisation. 

Due to the iterative nature of evolutionary algorithms, processing a large 

number of data points can greatly slow down an optimisation process. In the 

case of FRA, frequency responses are characterised mainly by resonant and 

antiresonance frequencies and corresponding magnitude values. Therefore, as 

proposed in [139], the dimension of processed FRA data can be reduced by 

selection of points of resonance and antiresonance and its vicinities for more 

speedy analysis. 

The following steps are performed for parameter identification of the trans­

former windings model: 

W. J. Tang 



5.4 Modelling of Power Transformer Winding 152 

• Measurement FRA data or predefined model parameters are used to ob­

tain the reference frequency responses. 

• The selected points of the generated magnitude- and phase-frequency 

responses are recorded as a reference dataset, being employed as training 

targets for BSA optimisation. 

• Assuming approximate geometrical and material parameters of the tested 

winding are known [143][139], estimated parameter values of an utilised 

winding model are calculated in order to establish the possible search 

space for each parameter of the model. 

• BSA learning is performed, in each step of which the predefined reference 

dataset is compared with the corresponding values of the simulated fre­

quency responses, being produced with the parameters obtained during 

optimisation process, at the same frequency points. 

5.4.4 Simulation result and comparison 

Parameter identification with BSA 

For the numerical study, the results of experimental investigation and mod­

elling of a transformer winding presented in [143] are chosen due to its high 

degree of simulation accuracy in comparison with experimental measurements. 

The test object is a disc-type winding consisting of 60 discs with 9 turns in 

each disc. The ratio of an output neutral current flowing to ground and an 

input signal injected into the terminal end of the winding has been used to 

produce frequency response measurements. 

Using listed model parameters [143], the frequency responses of the test 

transformer winding have been obtained using the above described lumped­

parameter winding model, and 71 selected points are defined as a reference 

dataset in the present study. The FRA simulation is performed assuming a 

grounded winding through a measurement impedance Zout. Since the model 
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Table 5.6: BSA Parameters 

Parameter I Notation I Value 

No. of bacteria in the population p 50 

No. of chemotactic steps per bacteria lifetime Nc 5 

Swim length limits when bacteria is on a gradient Ns 6 

No. of of iteration steps Nr 5 

does not allow us to directly obtain the total neutral current, it is more conve­

nient to express it as a product of the grounded node voltage Un+1 and Zout. 

Estimation of winding parameters are performed on a double disc basis as 

a unit section of the lumped circuit model, since the same partition is used in 

[143] for parameter calculations, which are taken as a reference in Table 5.7. 

Since the mutual inductances between distant sections are negligibly small 

in comparison with self-inductance, it is reasonable to consider solely the self­

inductances and the closest 15 mutual inductances, similar to the approach 

proposed in [139]. In addition, DC resistance Ric is of interest to calculate 

the frequency variable section resistance R, as well as the series and ground 

capacitances and loss tangents Cs, tan b"s and Cg , respectively, as indicated in 

[144]. Therefore, 20 parameters of the model in total as shown in Table 5.7 are 

to be investigated with BSA. Accepted search space variations for parameter 

identification using BSA learning are limited to be within ±10% for the induc­

tive and ±50% ranges for the rest of the parameters from the corresponding 

estimated values. 

The BSA optimisation parameters are selected on the basis of the previous 

study on bacterial foraging optimisation [103] [145] and performing numerous 

trials with BSA parameter variation. The selected parameters are listed in 

Table 5.6. 

Figures 5.12 and 5.13 illustrate the comparisons of the analytically esti­

mated and BSA identified magnitude responses with respect to the reference 

response. Whereas in Figs. 5.14 and 5.15 the corresponding phase responses 

are given. 

w. J. Tang 



5.4 Modelling of Power Transformer W·inding 

6 

> 
- 5 
<C 
ai 
~ 4 
c 
Ol 

~ 3 

II 
II 
II 
I I 
I 

O ~-----L------~----~------~-~-~-~-~-
o 2 4 6 8 10 

Frequency, MHz x 10' 

154 

Figur 5.12: Comparison of th analytically e timat d transf r fun tion mag­
nitude re pons with th ref rence. 

- - - optimised with BSA 

7 
-- reference 

6 

ooL-----~------4~-----L6 ------~8----~10 

Frequency, MHz x 10' 

Figur 5.13: Comparison of th BSA id ntifi d tran fer function magnitud 
r pon with th r f r ne . 

W.1. Tang 



5.4 Modelling of Power Transformer Winding 155 

200 

150 

1\ 
100 

g> 50 

-0 

of 0 
(/) 

'" .t::: 
Il. -50 

\ 
\ I 
,I 

- 150 ,I 
I 

- 200 
0 2 4 6 8 10 

Frequency, MHz x 10' 

Figur 5.14: Comparison of the analytically estimated transfer function phase 
respon with the reference. 

- - - optimised with eSA 
-- reference 

100 

g> 50 

'0 

of 0 
(/) 

'" .t::: 
Il. - 50 

- 100 

- 150 

- 200 
0 2 4 6 8 10 

Frequency, MHz x 10' 

Figur 5.15: Comparison of the BSA identified transfer function phase respon e 
with the refer n e. 

W. J. Tang 



5.4 Modelling of Power Transformer Winding 156 

Table 5.7 summarises the reference parameter and the identified parameter 

values with BSA. It should be noted that the frequency dependent reference 

values of section resistances and conductances are given in a form of data vec­

tors [143] and are not included in Table 5.7. The table contains the results of 

one successful run with BSA and its percentage deviation from the reference, 

analysis of which shows negligible difference between the identified parame­

ters, thus, confirming the convergence stability of the BSA with respect to the 

investigated problem. 

Considering inductance parameters, BSA provides accurate identification 

with maximum deviation of 6.26% from the corresponding reference values. 

This does not essentially differ from the inductance estimations which have a 

maximum deviation of 5.1 % from the corresponding reference values. However, 

the major improvement of BSA identification is an adjustment of series capaci­

tance Cs to 6.72% deviation from the reference, while the initial estimation was 

not successful and showed 48.69% difference. The large deviation of the initial 

estimation of Cs from the reference caused failure to occur at all resonance 

frequencies when using the model with estimated parameters. 

On the other hand, in spite of a slight deviation from the reference values, 

the utilisation of the estimated parameters as a search basis for BSA parameter 

identification essentially improves the model performance. 

Comparison with GA 

In order to compare the performance with BSA and an evolutionary algo­

rithm widely utilised for the parameter identification purposes, GA is employed 

to conduct parameter identification of the equivalent lumped parameter model 

using the same reference responses and fitness function {5.4.3}. The GA pa­

rameters are chosen based on various preliminary trials and are listed in Table 

5.8. 

Table 5.7 also presents the GA identified parameters and their deviation 

from the reference. As seen from the table, the deviation of GA identified 

parameters becomes greater with respect to those obtained with BSA. For 
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Table 5.7: Comparison of the reference and optimised parameters of the transformer winding model 
--- -

Parameter Reference value Estimated Identified Deviation from the reference, % 

(reprinted from [143]) BSA GA Estimated BSA GA 

LI, J-lH 186.0534 194.3 190.1 177.5 4.43 2.17 4.59 

M12, J-lH 141.4607 145.7 147.8 164.0 2.99 4.48 15.93 

M13, J-lH 91.0820 91.8 93.9 95.4 0.79 3.09 4.74 

M14, J-lH 65.3182 63.8 65.5 79.3 2.32 0.28 21.4 

M15, J-lH 48.9240 48.1 48.8 55.8 1.68 0.25 14.05 

MI6,J-lH 37.5984 38.1 38.4 44.2 1.33 2.13 17.55 

M17, J-lH 29.4244 29.9 30.9 32.7 1.61 5.02 11.13 

M18, J-lH 23.3602 22.9 22.8 18.9 1.97 2.39 19.09 

M19, J-lH 18.7726 18.2 17.9 20.7 3.05 4.64 10.26 

Muo, J-lH 15.2490 15.3 15.4 16.4 0.33 0.99 7.55 

MUI, J-lH 12.5083 12.9 13.2 12.4 3.13 5.53 0.87 

MI12, J-lH 10.3530 10.3 10.5 8.2 0.51 1.42 20.79 

MU3, J-lH 8.6410 8.2 8.1 7.0 5.10 6.26 18.99 

MI14, J-lH 7.2688 7.2 7.2 6.1 0.94 0.94 16.08 

MU5, J-lH 6.1593 6.4 6.5 9.1 3.91 2.28 41.55 

MU6, J-lH 5.2552 5.4 5.3 4.3 2.75 0.85 18.17 

Cg,pF 5.0224 5.085 4.8017 4.2384 1.25 4.39 15.61 

Cs,pF 85.686 127.41 79.92 87.55 48.69 6.72 2.18 

Rdc,n - 0.0151 0.0544 0.0204 - - -

tan8s - 0.03 0.0153 0.0670 - - -
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Table 5.8: GA Parameters 

Parameter Value 

Population size 80 

Selection Algorithm tournament 

Crossover Algorithm scattered 

Crossover Fraction 0.8 

Mutation Algorithm adapt feasible 

No. of Elite Individuals 2 

Search space variation from estimated values ±(10,...., 50)% 

instance, the deviation of the GA identified mutual inductance ]\;1115 reaches 

41.55% in comparison with only 2.28% deviation by the BSA identification. 

Moreover, GA gives a worse estimate of ground capacitance Og with 15.61% 

deviation compared to the one identified with BSA (4.39% deviation). On the 

other hand, GA performs better in identification of series capacitance Os with 

only 2.18% deviation against 6.72% deviation with BSA. 

5.4.5 Discussion 

A well-known lumped parameter model of transformer winding is utilised 

for FRA simulation in this section. A model-based identification approach is 

formulated to determine the parameters of the model with BSA. Initial search 

space for identification of the model parameters are established based on pa­

rameter estimated values, which are calculated using analytical expressions. 

The BSA has delivered a satisfactory performance during optimisation com­

pared with the simulated reference FRA responses. The comparative study 

with GA reveals that BSA is more efficient for the given optimisation problem 

and shows better identification performance. There is a slight difference be­

tween the identified and preset parameters, which is negligible in a practical 

sense. The model parameter identification using experimental input admit­

tance responses shows that the proposed approach can be further utilised for 
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the experimental FRA results interpretation aimed at winding fault diagnosis. 

5.5 Summary 

The OPF problem and modelling of power transformer winding have been 

regarded as complicated optimisation problems in power system. This chapter 

demonstrated the results of solving those problems using BalAs, which were 

introduced in Chapters 3 and 4. BFAVP has been used for tackling OPF prob­

lem in static form and DBFA for the OPF in dynamic environments. These 

results have shown their effectiveness in tackling real-world optimisation prob­

lems in both static and dynamic forms. The modelling of power transformer 

winding has been attempted by BSA for parameter optimisation. The simula­

tion results have shown its effectiveness and it can achieve the results closer to 

the referred parameter values than those obtained by GA. 
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Chapter 6 

Conclusions 

This chapter concludes the thesis and summarises the major achievements 

of the research work in bacteria-inspired modelling and optimisation. The ap­

plications of BalAs in real-world optimisation problems of OPF and modelling 

of power transformer winding are also introduced. Challenges of the work are 

described, followed by the suggestions for future research. 

BalAs are an emerging branch of BIA, which introduces a wide range of 

biological features into the algorithm design. For instance, bacterial chemo­

taxis and QS are involved in the formulation of the algorithms. This thesis 

presents four newly developed BalAs, and demonstrates their effectiveness in 

the benchmark testing. They have also been applied to the static and dy­

namic OPF problems. In particular, the new concept of optimisation tracking 

in a varying environment has been proposed and it has been at the first time 

applied to the area of power systems. The BaIA application to identification 

of model parameters of power transformer winding is also novel. These two 

applications have strongly shown the potential of the BalAs in dealing with 

large-scale complex optimisation problems. 

6.1 Outcomes 

This study focuses on analysing and modelling bacterial foraging patterns 

and developing BalAs based on the modelling work. A novel model, VE-
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BAM, has been developed to simulate these patterns, such as chemotaxis and 

QS, etc. Following this model, three BalAs, BFAVP, BSA and PBO, have 

been developed. Variant from the approaches developed for static optimisa­

tion problems, DBFA has been proposed specifically for dynamic optimisation 

problems, which has also been applied successfully to the optimal power flow 

problem with varying loads. The BSA has been applied to the identification of 

model parameters of power transformer windings. The achievements obtained 

from this research are summarised as follows. 

A brief introduction to the recently emerged research branch, Systems Biol­

ogy, was given in Chapter 1. Its relationship with BIAs has also been discussed, 

followed by a non-exhaustive introduction of the existing BIAs. The motivation 

for choosing modelling of bacteria as the departure point to study Systems Biol­

ogy was given, and the most significant features exhibited in bacterial foraging 

behaviour were illustrated in this chapter. The outline and major contributions 

of this thesis were also presented. 

Chapter 2 was devoted to the development of VEBAM, which is a novel 

model simulating bacterial foraging behaviour, especially including Chemotaxis 

and QS at both the individual and the population levels. This model was based 

on IbM, which is a tool to represent global consequences of local interactions 

between individuals of a population. Therefore, not only the characteristics 

of group patterns, such as QS, but also the individual behaviour of bacteria, 

i. e. chemotaxis and metabolism are studied and recorded. This work is sig­

nificantly different from the conventional modelling in which characteristics of 

the population are represented statistically and individual features could only 

be analysed from the modelling results. 

In the past decades, BIAs have flourished, with EAs as a typical representor. 

However, EAs share some similarities, i. e. a simple abstract structure that uses 

a few biological ideas to implement. In order to investigate a more biologically­

plausible algorithm, the study of bacterial foraging patterns has attracted great 

attention. The survival skill of bacteria (i. e. searching for the food source), 

and in particular the patterns exhibited by E.coli in a time-varying environ-
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ment were reported. Chapter 3 introduced two preliminary works in this area, 

BC and BFA, followed by three newly developed algorithms, BFAVP, BSA and 

PBO. BFAVP simulates not only chemotaxis but also proliferation and elimi­

nation, with simplified quorum sensing incorporated to improve convergence. 

BSA explores the potential of bacterial foraging from another perspective, i. e. 

chemotactic ability and group behaviour. PBO, developed with the aim of 

enhancing computational efficiency, markedly reduces the number of function 

evaluations, while generating satisfying optimisation results. The evaluation 

of the algorithms have been undertaken on the existing benchmark problems, 

with encouraging results obtained. 

Apart from the static optimisation problems, a new BaIA, DBFA, developed 

specifically for dynamic optimisation problems was presented in Chapter 4. In 

dynamic environments, a rapid convergence may not lead to an effective tracing 

of the global optimum in all possible directions. Thus, in order to compromise 

between rapid convergence and high diversity, we propose DBFA in which 

the balance has been achieved by adopting a selection scheme assisted by a 

weighting system. 

Chapter 5 demonstrates three applications of BalAs in power systems, 

namely solving OPF problems in both static form and dynamic environments 

with BFAVP and DBFA, respectively; and modelling of power transformer 

winding with BSA. In the first application, a brief introduction of OPF prob­

lems is given, followed by the formulation of OPF problems. BFAVP was 

applied to solve the fuel cost minimisation problem static form and DBFA was 

employed to minimise the fuel cost on both the IEEE 3D-bus test system and 

the IEEE 118-bus test system respectively, under a wide range of variations 

of bus loads. The results obtained by BFAVP and DBFA outperform other 

widely used algorithms. In the third application, the model parameters for 

power transformer winding were optimised by BSA, which is able to obtain a 

superior result than those obtained by estimated results by theoretical analysis 

and GA, respectively. 

In summary, this thesis encompasses both the modelling of bacterial forag-
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ing behaviour and the optimisation algorithms inspired by these phenomena. 

As a new branch of the BIA family, BalAs benefit from the multi-disciplinary 

study in biological system and demonstrate great potential in solving optimi­

sation problems. This thesis also presents the applications of these algorithms 

to power system problems with satisfying performance. 

6.2 Challenges 

Throughout the PhD study, a significant number of challenges have been 

overcome. In conceiving the VEBAM, the study was always in a dilemma that 

the whole project could face two directions, one is modelling-oriented and the 

other is optimisation-oriented. The two directions seem to be unrelated and 

they tend to follow different lines. Modelling aims at representing a biological 

system quantitatively, exploring the details of biological phenomena; However, 

BIA is a reverse process by generalising and simplifying the biological system 

to develop optimisation algorithms. Nevertheless, the approaches should be 

biologically-plausible, although most of the parameters are generated by trail 

and error study. One of the major challenges is to find a way to make VEBAM a 

reasonable analog to the real bacterial foraging system while making it possible 

to be transformed into an optimisation algorithm. 

Furthermore, there is a long-standing problem in BIAs. As we know, the 

'No Free Lunch' theorem generally applies to BIAs, therefore the performance 

of the developed algorithms are difficult to compare. Although there are sets 

of benchmarks for comparing algorithms, results are not conclusive, since a 

given algorithm may perform well in certain scenarios and badly in others. 

In order to develop more effective BalAs, it is crucial to use methodology 

which is stemmed from bacterial foraging patterns. However, the existing al­

gorithms rarely achieve this goal, which denotes the second major challenge of 

this project. 

The third major challenge is the application of BalAs to power systems, 

including the OPF and modelling of power transformer winding. With a large 
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set of parameters to be optimised in these problems, it is not an easy task to 

represent the nature of those problem accurately, such as the formulation of 

the OPF with varying loads, which has not been attempted before. 

There have been other problems, such as recording and analysing data in 

the modelling work, since it is an open-ended simulation and a slight change 

of one parameter will cause the data simulated previously to become invalid. 

Another unforseen problem was the visualisation, the computation process can 

be dramatically slowed down if all the trajectories of a large population are 

printed onto the screen. 

6.3 Future Work 

With the aim of both modelling and optimisation work, there are many 

avenues down which the current work can travel. 

The first avenue concerns VEBAM. The simulation of the bacterial foraging 

patterns contains two levels currently, i.e. individual and population levels. 

However, the study of the colony behaviour in the population level is based 

on one bacterial species, i. e. E. coli. In the future work, the simulation of the 

evolution of the colony could possibly take more species into account. The 

'cell-cell communication' across several species could not only be a necessary 

part to extend VEBAM to a more complex ecological model, but also make it 

possible to be applied to a wider research area. 

As to the detailed components, energy (i. e. the nutrient provided by the 

environment) is the only element currently included. However, this consider­

ation is not enough for modelling of a more realistic biological system. There 

are many other aspects affecting the motion of bacteria, such as the distri­

bution of oxygen and carbon. Beyond this, an unstable environment should 

be further considered. On the other hand, the energy consumption of the 

system is extremely complex. For example, the major part of energy in the 

environment consumed by the bacteria will be used as the 'overhead' of the 

movement, such as the growth of the biomass, and therefore only a small part 
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of the energy can be used to move. However, in the current work, the factor to 

transfer energy from the environment to bacteria is artificially set. Therefore, 

this 'metabolism' should also be considered carefully. 

BFAVP, BSA and PBO may also be extended. For instance, sensory adap­

tation should be studied, since it enhances the adaptability of the algorithms 

to a wider range of optimisation problems. On the aspect of dynamic opti­

misation, DBFA can be refined by implementing a more effective strategy to 

maintain the diversity of population, which is also the key factor in tackling 

dynamic optimisation problems. Furthermore, there has always been an inter­

est in taking the optimisation algorithms toward a more specific application, 

such as vehicle routing problems in telecommunication and financial problems. 

Finally, as has been said many times, the hurdles in terms of spatial and 

temporal scales could be deepened to understand the real biological system. 

This study will no doubt enhance the application of BalAs in engineering 

problems. The gap between the modelling of biological systems and the devel­

opment of BalAs for optimisation will require a large amount of work on the 

study of the Systems Biology. 
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Appendix A 

Global optimisation benchmark 

functions 

Table A.1: The 23 benchmark functions, where n is the dimension of the 
function, S is the feasible search space, and f min is the global minimum value 
of the function. 

h(x) 
h(x) 
!J(x) 
f4(X) 
f5(X) 
f6(X) 
h(x) 
f8(X) 
fg(x) 
flO (x) 
fll(X) 
h2(X) 
h3(X) 
h4(X) 
h5(X) 
h6(X) 
h7(X) 
h8(X) 
f19(X) 
ho(x) 
hl(X) 
h2(X) 
h3(X) 

Test function n 
Sphere Model 30 
Schwefel's Problem 2.22 30 
Schwefel's Problem 1.2 30 
Schwefel's Problem 2.21 30 
Generalized Rosenbrock's Function 30 
Step Function 30 
Quartic Function with Noise 30 
Generalized Schwefel's Problem 2.26 30 
Generalized Rastrigin's Function 30 
Ackley's Function 30 
Generalized Griewank Function 30 
Generalized Penalized Function 1 30 
Generalized Penalized Function 2 
Shekel's Foxholes Function 
Kowalik's Function 
Six-hump Camel-Back Function 
Branin Function 
Goldstein-Price Function 
Hartman's Function 1 
Hartman's Function 2 
Shekel's Family 1 
Shekel's Family 2 
Shekel's Family 3 
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30 
2 
4 
2 
2 
2 
3 
6 
4 
4 
4 

s 
[-100,100]n 
[-1O,10]n 

[-100,100]n 
[-100,100]n 

[-30,30]n 
[-100,100]n 

[-1.28,1.28]n 
[-500,500]n 

[-5.12,5.12]n 
[-32, 32]n 

[-600,600]n 
[-50,50]n 
[-50,50]n 

[-65.536, 65.536]n 
[-5,5]n 
[-5,5]n 

[-5,10] x [0,15] 
[-2,2]n 
[o,l]n 
[o,l]n 
[0,10]n 
[o,lO]n 
[0,10]n 

fmin 
o 
o 
o 
o 
o 
o 
o 

-12569.5 
o 
o 
o 
o 
o 
1 

0.0003075 
-1.0316285 

0.398 
3 

-3.86 
-3.32 
-10 
-10 
-10 
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Sphere Model: 

30 

JI{X) = LX; 
i=l 

Schwefel's Problem 2.22: 

30 30 

h{x) = L IXil + II IXil 
i=l i=l 

Schwefel's Problem 1.2: 

Schwefel's Problem 2.21: 

f4{X) = max{lxil, 1 ~ i ~ 30} , 

Generalized Rosenbrock's Function: 

29 

f5{X) = L{100{XHl - x;)2 + (Xi - 1))2 
i=l 

Step FUnction: 

30 

f6{X) = L(Lxi + O.5J)2 
i=l 

Quartic FUnction with Noise: 

30 

f7{X) = L ixt + random[O, 1) 
i=l 
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Generalized Schwefel's Problem 2.26: 

30 

Js(x) = - L (Xi sin (~)) 
i=l 

Generalized Rastrigin's Function: 

30 

fg(x) = L(x~ - 10 cos (27rXi) + 10)2 
i=l 

Ackley's Function: 

( 
1

30
) (130 ) flO(X) = -20exp -0.2 - Lx; -exp 30 Lcos 27rXi +20+e 

30 i=l i=l 

Generalized Griewank Function: 

1 30 30 X· - 100 
fu(x) = - L(Xi -100)2 - IT cos( t..;i ) + 1 

4000 i=l i=l 'I, 

Generalized Penalized Functions: 

I" = ~{ 10Sin'(1rYl) + t,(Yi -1)'[1 + 10sin'(1rYi+l)] + (Yn - 1)'} 

30 

and 

+ L U(Xi' 10, 100,4) 
i=l 

113 - 0.1 {sin'(1r3X1) + ~(Xi - 1)'[1 + sin'(31rxi+l)] 

30 
+ (Xn - 1)2[1 + sin2(211'X30)J} L U(Xi' 5, 100,4) 

i=l 
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where 

{ 

k(Xi - a)m, 

U(Xi' a, k, m) - 0, 

k( -Xi - a)m, 

1 
Yi = 1 + 4 (Xi + 1) 

Shekel's Foxholes FUnction: 

Xi <-a 

[ 
25 ]-1 1 1 

!I4(X) = - + 2 
500 L j + E. (x· - a .. )6 

3=1 ~=1' ~3 

( 
-32 -16 0 

where (aij) = 
-32 -32 -32 -32 -32 -16 

16 32 -32 

Kowalik's FUnction: 

Six-hump Camel-Back FUnction: 

Branin Function: 

169 

( 
5.1 2 5 ) 2 ( 1 ) 

f17(X) - X2 - 47l"2Xl + ;:Xl - 6 + 10 1- 87l" COS XI + 10 

-5 ~ Xl ~ 10, 0 ~ X2 ~ 15 

Xmin - (-3.142,12.275), (3.142,2.275), (9.425,2.425) 

min(J17) - 0.398 
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Table A.2: Kowalik's Function 115 

i ai b-:- 1 
t 

1 0.1957 0.25 

2 0.1947 0.5 

3 0.1735 1 

4 0.1600 2 

5 0.0844 4 

6 0.0627 6 

7 0.0456 8 

8 0.0342 10 

9 0.0323 12 

10 0.0235 14 

11 0.0246 16 

Goldstein-Price Function: 

/Is = [1 + {Xl + X2 + 1)2{19 - 14xI + 3x~ - 14x2 + 6XIX2 + 3x~)1 
x [30 + (2X1 - 3x2)2{18 - 32xI + 12x~ + 48x2 - 36x1X2 + 27x~)1 

-2 ::; Xi ~ 2 min{/Is) = /Is(O, -1) = 3 

Hartman's Function: 

f(x) = - t c;exp [-~ a;j(Xj - P,j)'] 

170 

with n=3,6 for 119{X) and ho{x), respectively. The coefficients are defined by 

Tables and , respectively. 

min(J19) = /I9{0.114, 0.556, 0.852) = -3.86 

min(J20) = 120(0.201,0.150,0.477,0.275,0.311,0.657) = -3.32 
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Table A.3: Hartman's Function f19 

i aij, j = 1,2,3 Ci Pij, j = 1,2,3 

1 3 10 30 1 0.3689 0.1170 0.2673 

2 0.1 10 35 1.2 0.4699 0.4387 0.7470 

3 3 10 30 3 0.1091 0.8732 0.5547 

4 0.1 10 35 3.2 0.038150 0.5743 0.8828 

w. J. Tang 
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Table AA: Hartman's Function 120 

aij, j = 1,2,3,4,5,6 Ci Pij, j = 1,2,3,4,5,6 

10 3 17 3.5 1.7 8 1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886 

0.05 10 17 0.1 8 14 1.2 0.2329 OA135 0.8307 0.3736 0.1004 0.9991 
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Shekel's Family: 

m 

f(x) = - L[(x - ai)(X - aif + Cit
l 

i=l 

with m = 5,7 and 10 for hl(X), h2(X) and h3(X), respectively. 0 ~ Xj ~ 10. 

X!oca!-opt ~ ai and min(fxlocal_oPt) ~ l/ci for 1 ~ i ~ m. 

Table A.5: Shekel's Family f21.!22.!23 

i aij, j = 1,2,3,4 Ci 

1 4 4 4 4 0.1 

2 1 1 1 1 0.2 

3 8 8 8 8 0.2 

4 6 6 6 6 0.4 

5 3 7 3 7 0.4 

6 2 9 2 9 0.1 

7 5 5 3 3 0.1 

8 8 1 8 1 0.1 

9 6 2 6 2 0.1 

10 7 3.6 7 3.6 0.1 

w. J. Tang 



Appendix B 

A non-exhaustive list of BIAs 

Algorithm Background and features Authors (years) 

GA A simple model using two basic genetic Holland 

operators: mutation and crossover, (1975) 

using fixed-length binary strings 

VEGA A multi-objective GA Schaffer (1985) 

NPGA A multi-objective GA based on Niched Horn et al. 

Pareto-optimal solution (1994) 

EP (Cauchy Cauchy mutation is used instead of Yao et al. 

mutation) Gaussian mutation (1999) 

(1+1) - ES Real-valued vector is used and mutation Rechenberg 

is applied with an identical standard (1973) and 

deviation to each object variable Schwefel (1981) 

(JL + 1) - ES A multi membered ES with JL > 1 Back (1996) 

parents 

GP Based on a tree structure to discover Koza (1992) 

the computer program or functional 

structure 

PSO A trajectory tracking algorithm inspired Kennedy (1995) 

by the social behaviour of bird flocking 

or fish schooling 
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CPSO A constriction factor is used to ensures Clerc (2002) 

the convergence of the dynamic system 

PSOPC A passive congregation behaviour is He et al. 

incorporated into PSO to improve global (2004) 

search performance 

CLPSO Only historical optimum is used in the Liang et al. 

searching process (2006) 

Fixed-length binary strings 

ACO Based on the study of collective Dorigo et al. 

foraging behaviour of ants and used for (1997) 

route optimisation etc. 

GSO Based on 'Producer-Scrounger' (PS) He et ai. 

model of general animal behaviour (2006) 

Fixed-length binary strings 

BFA Inspired by bacterial foraging patterns Passino (2002) 

BSA An improved BFA with introduction of Tang et al. 

quorum sensing (2006) 

BFAVP A varying population algorithm Li et al. 

incorporating a comprehensive model of (2007) 

bacterial foraging 

W. J. Tang 
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