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Abstract: Optimal power flow is inherently a very complex nonlinear and nonconvex problem. 

Considering practical logic-based constraints, namely multiple-fuel option (MFO) and prohibited 

operating zones (POZ), jointly with the nonsmooth terms such as valve-point effect results in even 

more difficulties in finding a high-quality solution. Moreover, most of the existing commercial 

solvers either fail in handling the original logic-based models or show intractability in solving the 

equivalent mixed integer nonlinear programming (MINLP) models. This paper proposes a solver-

friendly MINLP (SF-MINLP) model to fill the existing gap in handling the MFO and POZ 

simultaneously in OPF problems. To obtain the most adaptable model with the existing MINLP 

commercial solvers and due to the actions done in the pre-solve step, some primary integer decision 

variables are melted into the objective function. The pre-solve step, via pre-processing and probing 

techniques, reduces the model complexity and then the simplified model is handled via the most 

appropriate optimization algorithms. For the verification and didactical purposes, the proposed SF-

MINLP model is applied to the IEEE 30-bus system under two different loading conditions, 

namely normal and increased, and details are provided. The model is also tested on the IEEE 118-
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bus system to reveal its effectiveness and applicability in larger-scale systems. Results show the 

effectiveness and tractability of the model in finding a high-quality solution with high 

computational efficiency.  

Keywords: Mixed-integer nonlinear programming, multiple fuel option, non-smooth terms, 

optimal power flow, prohibited operating zones. 

NOMENCLATURE 

a) Indices and Sets 

,i j   bus indices 

k   index for disjoint operating zones 

m  index for fuel type m 

ij   index for the transmission line or transformer between bus i and j 

d  index for direct power flow  

r  index for reverse power flow 

bΩ   set of buses. 

gΩ   set of generating units. 

lΩ   set of transmission elements. 

b) Variables and Functions 

( )iF ⋅   fuel cost function of unit i 

, ( )i mF ⋅   fuel cost function of unit i using fuel m 

, ( )ik mF ⋅  fuel cost function of unit i operating at zone k using fuel m 

ijfl   power flow at branch ij 

igP   active power generation of unit i 

ikP   active power corresponding to the operating zone k of unit i 

,ik mP   active power corresponding to unit i while using fuel m and operating at zone k  

/d r
ij ijp p  direct/reverse active power between bus i and bus j of branch ij 

/d r
ij ijq q   direct/reverse reactive power between bus i and bus j of branch ij 
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igQ   reactive power generation of unit i 

ijtp   transformer tap of branch ij 

iku   binary decision-making variables corresponding to unit i operating at zone k 

,ik mu   binary decision-making variables corresponding to unit i while using fuel m and 

operating at zone k 

iv   voltage magnitude at bus i 

iδ   voltage angle of bus i  

ijθ   voltage angle difference between bus i and j, ij i jθ δ δ= − . 

c) Parameters 

, ,i i ia b c   Cost coefficients of unit i. 

, , ,, ,i m i m i ma b c  Cost coefficients corresponding to fuel m of unit i. 

, ,i i ia b c′ ′ ′   Cost coefficients of unit i, used in the MINLP model 

ch
ijb     Charging susceptance of branch ij 

sh
ib     Shunt susceptance of bus i ( ) 

ijb     Susceptance of branch ij ( ) 

,i ie f   Valve-point cost coefficients of unit i 

,i me   Valve-point cost coefficients of fuel m for unit i 

ie′   Valve-point cost coefficients of unit i used in MINLP model 

ijfl     maximum power flow of branch ij 

ijg     conductance of branch ij (Ω ) 

sh
ig     shunt conductance of bus i (Ω ) 

iDP   active power demand at bus i  

igP , 
igP    minimum and maximum active power generation limits of unit i, respectively 
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ikP , ikP    minimum and maximum active power limits correspond to unit i operating at zone 

k, respectively.  

,ik mP , ,ik mP    minimum and maximum active power limits corresponding to unit i while using 

fuel m and operating at zone k, respectively.  

iDQ   reactive power demand at bus i  

igQ ,
igQ   minimum and maximum reactive power generation limits of unit i, respectively 

ijr     resistance of branch ij (Ω ) 

ij
tp , jitp   minimum and maximum limits of transformer tap of branch ij, respectively  

iv , iv   minimum and maximum voltage magnitude limits of bus i, respectively  

iz    number of operating zones for unit i 

I. INTRODUCTION 

In power system problems, economic aspects are the primary concerns to be addressed. In 

power system analysis, economic dispatch (ED) and optimal power flow (OPF) are the most 

widely used tool to address economic concerns. However, compared to ED problem, the OPF not 

only considers the economic aspects but also thoroughly takes into account the operational and 

technical constraints [1, 2]. The conventional OPF problem, which disregards many practical 

constraints, is a very nonlinear and nonconvex problem and finding a high-quality solution has 

always been a challenging issue [3]. Considering practical constraints and terms such as prohibited 

operating zones (POZs), multiple-fuel options (MFO), and valve-point effects (VPEs) bring even 

more difficulties to the problem and may result in intractability or failure in finding an optimal 

solution. On the other hand, the logical constraints such as POZs and MFOs, due to disjoint 

characteristics cannot be handled by existing commercial solvers, while considering the VPEs 

simultaneously with the logical constraints increases the degree of nonconvexity and nonlinearity 

that causes severe problems in finding an optimal solution. Therefore, more often than not, for the 

sake of simplicity, the aforementioned constraints and terms are overlooked. Disregarding such 

formidable hurdles is a great help for the existing commercial solvers, however, the model 
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becomes unrealistic and the results are not trustworthy, i.e., although the simplified model may 

easily find a near-optimal or even the global solution, there is no guarantee that the obtained 

solution be also a feasible solution of the original real-world problem. This paper aims at 

addressing the aforementioned shortcomings by introducing new recast strategies.  

In the real world, due to social welfare importance and environmental issues, power 

generation units might use multiple fuels that can play an important role by not only reducing the 

electricity bills but also mitigating the emission by selecting the most economical-environmental 

fuel at a certain hour. Moreover, the fuel prices fluctuate, and the emission policies frequently 

change while, on the other hand, the demand is also another source of uncertainty, therefore, the 

units with the capability of switching to other fuels bring more flexibility to the power plant in 

addressing such uncertainties. This shows the importance of considering generating units with 

multiple fuels options in the OPF problems. In a multiple fuel-based system, the generation cost 

function is represented as a segmented piecewise quadratic function; therefore, determining the 

most appropriate fuel to satisfy the constraints and the objectives is a complicated task and 

considering these kinds of generators makes the OPF problem even a more complex problem. On 

the other hand, a typical thermal unit might have a discontinuous fuel cost characteristics which 

are mostly due to either the vibrations in the shaft bearing or the effects of auxiliary equipment 

such as boiler or feed pumps [4]. Therefore, the generating units are subject to POZs, and violation 

this constraint may cause undeniable issues. Similar to the OPF problem at the presence of MFO, 

considering POZs also makes hurdles to the solution approach in finding a high-quality solution.  

In the literature, most of the works consider either the conventional OPF or only one logic 

constraint at a time is taken into account. To solve OPF problems with disjoint terms, almost all 

of the works took the advantages of heuristic-based techniques as the existing commercial solvers 

for nonlinear models cannot adequately handle the logic constraints. A hybrid algorithm based on 

the particle swarm optimization and the shuffle frog leaping algorithms has been proposed in [5] 

to handle the OPF problem with MFO. This proposed approach was also applied to OPF problems 

with POZs. The authors in [6] proposed a teaching learning based (TLB) algorithm to solve several 

types of OPF problem including the MFO-based OPF. Likewise, in [7] similar OPF models were 

studied via gravitational search algorithm. In [8], an imperialist competitive algorithm (ICA) has 

been used to handle the OPF problem with MFO. In this work, to address the convergence issues, 
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the ICA was empowered by a TLB algorithm. Results confirmed the enhancement of the algorithm 

in convergence and achieving a higher-quality solution. In [9], a Gbest guided artificial bee colony 

optimization algorithm was used to solve OPF considering MFO at the presence of wind power. 

The authors handled the stochastic characteristic of wind speed via Weibull probability density 

function. A Moth Swarm Algorithm (MSA) was used in [10] to handle fourteen different models 

of OPF problems, including the OPF with MFOs. In [11], a bacterial search algorithm was 

proposed to solve both the single- and multi-objective OPF problems while considering the MFO. 

A particle swarm optimization with differentially perturbed velocity hybrid algorithm jointly with 

an adaptive acceleration coefficient was proposed in [12] to solve MFO-based OPF, while later 

the same authors in [13] proposed a Genetic evolving ant direction hybrid differential evolution to 

solve a similar problem. A robust differential evolution algorithm that use a new recombination 

operator was proposed in [14] two handle both the logic-based OPF model, namely POZ- and 

MFO-based OPF. To solve a dynamic reserve-constrained OPF taking into account the POZs, 

VPEs, and MFOs separately, a charged system search algorithm enhanced by a novel mutation 

strategy was proposed in [15]. A high performance heuristic algorithm, namely social spider 

optimization, was proposed in [16], to address different single objective while considering POZs 

and MFO separately. The authors in [17] proposed an improved artificial bee colony algorithm 

based on Pareto optimization to solve a dynamic OPF problem considering the POZs as 

discontinuous constraints to test the effectiveness of the approach. The OPF problems with VPEs 

and POZs was studied in [18] where to solve the models in an efficient way, three different 

heuristic-based approaches, were proposed. In [19], a Shuffle Frog Leaping Algorithm (SFLA) 

and Simulated Annealing (SA) approach was proposed to address the difficulties of solving the 

OPF problem with non-smooth and non-convex generator fuel cost, while in [20], the hybrid model 

of the same problem was studied via an efficient evolutionary algorithm that works based on 

sensitivity and heuristic approach principles. Unlike the above studies, the authors in [21] 

performed an effective mixed-integer nonlinear model to solve the OPF problems at the presence 

of VPEs and POZs. In this work, the authors recast the logic terms in a way that the existing 

commercial solvers can handle them.  

Table 1 summarizes the existing works that addressed the discontinuous OPF problems. 

The aforementioned recently published and in-press works in this area reveals 1) the necessity and 
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importance of considering the multiple fuel options in OPF problems, and 2) the lack of a model 

that can be solved via commercial solvers. However, neither the solver-based model in [21] nor 

the heuristic-based approaches did not handle two logic constraints, POZs and MFOs, 

simultaneously. The main obstacle in considering more than one logic constraint simultaneously 

is the overlapped areas in which both the logic constraints are active.  

Table 1. Comparison of Works with Discontinuous OPF Model.  
Work POZ Multiple Fuel Valve Point Approach 
[5–16]    Heuristic-based 
[5, 14–18]    Heuristic-based 
[8, 18–20]     Heuristic-based 
[21]    Solver-based 
Proposed SF-MINLP    Solver-based 

Comparing with the existing models in the literature, the main contributions of this paper 

are twofold.  

1) Addressing OPF problems with more than one logical constraints simultaneously. Until 

now, to the best of our knowledge, due to tractability issues, only one logical constraints 

was considered in the existing models, either MFOs or POZs, while in this paper, both 

the logical constraints are considered simultaneously. Moreover, to have a more 

practical model, the valve-point effect is also taken into account.  

2) Finding a solver-friendly model that is adaptable to the pre-solving and solving process 

of existing commercial solvers. To this end, first, the original model is recast into an 

equivalent MINLP model, and then, to facilitate the pre-processing and probing 

techniques, the model is adapted to the nature of commercial MINLP solvers via some 

innovative recast techniques that transfer the primary decision variables from 

constraints into the objective function.  

II. OPF PROBLEM CONSIDERING MULTIPLE FUEL OPTIONS AND 

PROHIBITED OPERATING ZONES 

In this section, first, the general formulation of OPF problem considering multiple fuel 

options is presented, and then, the general formulation of OPF problem with multiple fuel options 

at the presence of disjoint operating zones is considered.  

A. OPF problem with multiple fuel options 

The OPF problem with considering multiple fuel option units is formulated as follows. 
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i g
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(1) 

 2 0,
i i

l l

sh d r
g D i i ij ji b

ij ji
P P g v p p i

∈Ω ∈Ω

− − − − = ∈Ω∑ ∑
 

(2) 

 2 0,
i i

l l

sh d r
g D i i ij ji b

ij ji
Q Q b v q q i

∈Ω ∈Ω

− + − − = ∈Ω∑ ∑  (3) 

 ,
i i ig g g gP P P i≤ ≤ ∈Ω  (4) 

 ,
i i ig g g gQ Q Q i≤ ≤ ∈Ω  (5) 

 ,i i i bv v v i≤ ≤ ∈Ω  (6) 

 ,ij ij ij ltp tp tp ij≤ ≤ ∈Ω

 

(7) 

 ( , , ) ,ij lijfl v tp fl ijθ ≤ ∈Ω  (8) 

where (1) stand for the objective function, which is usually the costs corresponding with the fossil 

fuel costs; (2) and (3) stand for the active and reactive equality constraints; active power output of 

a generating unit is limited by its upper and lower limits in (4), while the reactive power output 

can vary between its lower and upper limits in (5); voltage magnitude at each bus should be 

remained between a predefined limit, as (6); (7) stand for the transformer upper and lower limits; 

and (8) presents the transmission line limit in which usually is the active or the apparent powers. 

In OPF problems, more often than not, the fuel cost of a generating unit, ( )iF × , is 

approximated by a quadratic function, as (9).  

 2( ) a
i i ii g i g i g iF P P b P c= + +  (9) 

However, in practice, multiple valves result in the ripples and therefore considering the 

valve point effects in cost function is inevitable [22]. The valve point effect is models as a 

rectified sinusoidal term as (10). 

 2( ) ( ) sin( ( ))
ii i i igi g i g i g i i i gF P a P b P c e f P P= + + + −  (10)
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where ie  and if  are the cost coefficients corresponding to the valve point effect; and 
igP  is the 

minimum generation capacity of the unit i . 

However, the cost function of a unit with multi-fuel options and without valve-point effects 

is modeled as (11), and it shows that for each operating zone only one fuel can be used. 

,1 ,1

,1 ,2 ,2

, 2 , 1 , 1

2
,1 ,1 ,1

2
,2 ,2 ,2

2
, 1 , 1 , 1

a , for fuel type 1, = ,or

a , for fuel type 2, ,  or
( )

a , for fuel type m-1, 

i i i i i i

i i i i i i

i

i i i m i m i i m

i g i g i g g

i g i g i g

i g

i m g i m g i m g

P b P c P P P P

P b P c P P P P
F P

P b P c P P P P
− − −− − −

+ + ≤ ≤

+ + = ≤ ≤

=
+ + = ≤ ≤



, 1 , ,

2
, , ,

,  or

a , for fuel type m, 
i i i m i m i i m ii m g i m g i m g gP b P c P P P P P

−









+ + = ≤ ≤ =


 (11)

 

where ,a i m , ,bi m , and ,ci m  are the quadratic, linear, and constant cost coefficients of unit i working 

with fuel m.   

By considering valve point, (11) is modified to (12).  

,1 ,1

,1 ,2 ,2

2
,1 ,1 ,1 ,1

2
,2 ,2 ,2 ,2

2
, 1 , 1 , 1 , 1

a sin( ( )) ,fuel type 1, = ,or

a sin( ( )) ,fuel type 2, ,  or

( )
a sin

ii i i i i i i

ii i i i i i i

i

i i

gi g i g i i i g g g

gi g i g i i i g g

i g

i m g i m g i m i m

P b P c e f P P P P P P

P b P c e f P P P P P P

F P
P b P c e− − − −

+ + + − ≤ ≤

+ + + − = ≤ ≤

=
+ + +



, 2 , 1 , 1

, 1 , ,

2
, , , ,

( ( )) ,fuel type m-1, ,  or

a sin( ( )) ,fuel type m, 
i i i m i m i i m

ii i i i m i m i i m i

gi g g

gi m g i m g i m i m i g g g

f P P P P P P

P b P c e f P P P P P P P
− − −

−

− = ≤ ≤

+ + + − = ≤ ≤ =











 (12)

 

where ,i me  and ,i mf  are the cost coefficients corresponding to the valve point effects of unit i 

working with fuel m.  

In (2) and (3), direct and reverse active and reactive powers at each bus are calculated as 

follows.   

 2( ) ( ) [ cos( ) sin( )]d
ij ij i ij ij i j ij ij ij ijp tp v g tp v v g bθ θ= − +  (13) 

 2 ( ) [ cos( ) sin( )]r
ij j ij ij i j ij ij ij ijp v g tp v v g bθ θ= − −  (14) 

 2( ) ( ) [ sin( ) cos( )]
2

ch
ijd

ij ij i ij i j ij ij ij ij

b
q tp v b v v g bθ θ= − + − −  (15) 
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 2 ( ) ( ) [ sin( ) cos( )]
2

ch
ijr

ij j ij ij i j ij ij ij ij

b
q v b tp v v g bθ θ= − + + +  (16) 

B. OPF problem with multiple fuel options and POZs  

Considering multi-fuel option simultaneously with POZs brings lots of difficulties in 

solving the problem. The first problem is that by considering these logic constraints simultaneously 

the degree of nonlinearity and nonconvexity goes higher, and the second issue is related to the 

overlapping the operating zones with the fuel type operating zones. The mathematical formulation 

of the OPF problem with POZs and multi-fuel option is presented as follows.  

 
min ( )

. .

i
g

i g
i

F P

s t
∈Ω
∑

 

(17) 

 2 0,
i i

l l

sh
g D i i ij ji b
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i i

l l
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g D i i ij ji b

ij ji
Q Q b v q q i
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 ,
i i ig g g gP P P i≤ ≤ ∈Ω  (20) 

 ,
i i ig g g gQ Q Q i≤ ≤ ∈Ω  (21) 

 ,i i i bv v v i≤ ≤ ∈Ω  (22) 

 ( , , ) ,ij lijfl v tp fl ijθ ≤ ∈Ω  (23)

 The active power limits (20) for a unit with disjoint operating zone and multi-fuel options 

are modified as follows.  

 

1,1 1,1

,1 ,1

,1 ,1

1, 1,
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, ,
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, 2 ( 1),  for fuel type 1or

,or
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ii i i

ik i ik

iz i izi i

i m i i m

ik m i ik

iz m i iz m iim im

g g

g i

g

g

g im

g g

P P P P

P P P k z

P P P

P P P

P P P k z m

P P P P

 = ≤ ≤
 ≤ ≤ ≤ ≤ −


≤ ≤

 ≤ ≤ ≤ ≤ ≤ ≤ −

 ≤ ≤ =






 (24) 
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As can be seen from (24), each fuel’s cost function may cover one or more POZs, therefore, 

practically for each fuel type, several disjoint operating zones may occur.  

On the other hand, depending on the unit’s active power generation a unit with multiple 

fuel options may change its fuel, and consequently, depending on the type of cost function, with 

or without valve point effect, one of the cost functions (11) or (12) are taken into account, 

respectively. 

Comparing with the mathematical formulation presented in section A, this formulation is 

much more complicated to be solved, even with heuristic-based approaches. Moreover, 

considering the valve point effect makes the model even more complicated 

C. Mixed integer nonlinear programming (MINLP) model 

In this section, a mixed integer nonlinear programming model for OPF problems 

considering POZs and multiple fuel options is proposed. In this regard, the constraints related to 

the POZs and multiple fuel options are recast into the mixed integer terms of the objective function. 

First, we consider a unit with multiple fuel options, and then the POZs are taken into account. 

 
Figure 1. The input-output curve of unit i considering multiple fuel option with (—) and without (--) valve point effect. 

Figure 1 demonstrates a generating unit with two different fuel types. As can be seen, the 

generating unit before reaching the upper limit of unit i, 
,1i

P , works on fuel 1 and afterward it 

switches to the second fuel; this point is called the switching point, therefore the upper limit of 
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unit i using fuel 1 is equal to the initial point or lower limit of unit i using fuel 2, ,2iP . In this figure, 

the same as a practical situation, the fuels are incrementally ordered with their corresponding costs, 

e.g., fuel type 1 is cheaper than the fuel type 2. This situation is called logical condition, due to 

fuel cost discontinuity, and cannot be handled by classical approaches or commercial nonlinear 

solvers. In Figure 1, the unit’s cost function is divided into two sub-functions, which are indexed 

by the unit and its corresponding fuel types. For example, ,i mF  stand for the cost function 

corresponding to the active power generated by unit i working with fuel m. Finding an equivalent 

for the multi-fuel-based generating units requires appropriate recast techniques, which is not an 

easy task. However, the main obstacle is revealed when a unit is subject to the MFOs and POZs 

simultaneously, specifically when there is an overlap between their regions.  

The input-output curve of a unit with two fuels and three disjoint operating zones, two 

POZs, is depicted in Figure 2. As can be seen, in this figure, the second POZ is overlapped with 

the region that the unit should switch the fuel. It is worth mentioning that if there is no overlapped 

region between the operating zones and this fuel types, the concept of the model remains 

unchanged. 

 
Figure 2. The input-output curve of unit i considering multiple fuel options and POZs with (—) and without (--) valve point effect. 

To obtain the proposed model, first, the cost function of each generating unit is indexed 

with its corresponding operating region and corresponding fuel; ,iiz mF  means that the cost function 

C
os

t (
$/

h)
 

P (MW) 
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corresponding to the active power generated by unit i at operating zone iz  and fuel m. Then, the 

following formulation is proposed to consider the POZs and multiple fuel options jointly.  

 

1,1 1,1

,1 ,1

,1 ,1 ,1 ,1,1 ,1

1, 1,

2
,1 1,1 ,1 1,1 ,1
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,1 ,1 ,1 ,1 ,1 ,1
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m

 = + +
 = + + ∀ ≤ ≤ −


= + +
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
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ik m ik m

iz m iz m im imim im
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i m ik m i m ik m i m i m
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b P c

F P a P b P c k z

F P a P b P c









  + +   = + + ∀ ≤ ≤ −

 = + + 

 (25) 

And for the case with VPEs, (25) is modified as follows, (26).  
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2
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From this fact that only one fuel and only one of its operating zones can be selected, the 

following MINLP model is proposed.  

We consider an integer variable to decide which fuel and which operating zone to be 

selected. Therefore, the following recasts are made for units without and with VPEs, cost function 

(27) and (28) are considered, respectively. 
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As can be seen from this equation, the coefficients are different from the coefficients of the 

fuel cost functions, instead, auxiliary variables have been defined to select the most appropriate 

fuel by selecting its corresponding cost coefficients. Therefore, by taking into account the 

following equations, (29)-(33), are applied.  

 , ,
1

,
iz

i m ik m i g
k m

a u a i
=

′= ∀ ∈Ω∑∑  (29) 
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1

,
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 , ,
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,
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1

,
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i m ik m i g
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=
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 ,
1

1,
iz

ik m g
k m

u i
=
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where (33) guarantees that only one of the fuels and its corresponding operating region can be 

selected. 

In order to consider these equations in more detail, (29) related to Figure 2, can be expanded 

as follows, (34). 

 ,1 1,1 ,1 2,1 ,2 1,2i i i i i i ia u a u a u a′+ + =  (34) 

And by considering (33), 1,1 2,1 1,2 1i i iu u u+ + = , either one of the first terms (related to two 

different operating zones of the first fuel), or the third term (related to the one operating zone of 

the second fuel) is selected. Consequently, the other coefficients are selected as well.  

However, to obtain the mixed-integer programming model, some more definition such as 

(35) is necessary while the 
igP  in (18) must be replaced by (36). 
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Therefore, by making some modifications in the mathematical formulations presented in 

subsection B, the proposed model is obtained. These modifications are 1) replacing the functions 

in (17) with a sub-functions (27) or (28), 2) by putting (36) in (18), and 3) considering (29)-(33), 

(35), and (36).  

III. CASE STUDIES AND RESULTS 

In order to validate the proposed models and for didactical purposes, the commonly used 

IEEE 30-bus system, which is the only system that the data related to the VPEs, POZs, and MFOs 

are available in the literature, is thoroughly studied. It is worth mentioning that although the data 

of both the logical constraints have been derived from the published papers, to the best of the 

authors’ knowledge, until now, none of the existing works in the literature has considered the POZs 

and VPEs simultaneously. This system is studied under two loading conditions, normal and 17.5% 

increased load for each load bus, and each condition is tested with two cost functions, without and 

with valve-point effects. However, to show the effectiveness of the model, IEEE 118-bus system 

is considered under normal and critical loading conditions. Details of finding the critical loading 

condition is explained below in subsection B.  

In this work, to implement the proposed models, a modeling language for mathematical 

programming (AMPL) [23] is used and to solve the proposed mixed integer nonlinear 

programming models via a 2.67-GHz computer with 3 GB of RAM, the nonlinear commercial 

solvers KNITRO [24] is used.  

A. IEEE 30-bus test system  

The IEEE 30-bus system, among the others, is a commonly used system in the literature. 

This system consists of 30 buses (9 buses with shunt VAR compensator), 41 branches (4 branches 

with transformer) and 6 generators [25]. For this system, four different cases are considered. The 

data of POZs are obtained from [18], while the data of multiple fuel options are obtained from 

[26]. However, as a quick reference, the fuel options and POZs are presented in Table VI. The 

minimum and maximum bounds of voltages at load buses are 0.95 p.u. and 1.05 p.u. while for the 
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generator buses are 0.95 p.u. and 1.1 p.u., respectively. The maximum and minimum bounds for 

the transformer tap setting are 0.9 p.u. and 1.1 p.u., respectively. 

a) IEEE 30-bus under normal loading condition  

In order to show the effectiveness of the proposed model, the IEEE 30-bus system without 

and with valve-point effects is tested under normal loading condition, while the POZs and multiple 

fuel options are considered simultaneously.  

Table II. Outputs Results of Proposed Model considering POZs and Multiple Fuel Option with and without Valve Point Effect— IEEE 30-Bus 
System Under Normal Loading Condition 

Optimal Output Without Valve Point With Valve Point 
Pg1 (MW) 140.00 140.00 
Pg2 (MW) 45.00 45.00 
Pg5 (MW) 25.8299 25.8162 
Pg8 (MW) 35.00 35.00 
Pg11 (MW) 22.5162 23.0777 
Pg13 (MW) 21.4713 20.9169 
𝑡𝑡𝑡𝑡6−9  (p.u.) 0.95001 0.95 
𝑡𝑡𝑡𝑡6−10  (p.u.) 1.09163 1.09127 
𝑡𝑡𝑡𝑡4−12  (p.u.) 1.02786 1.02810 
𝑡𝑡𝑡𝑡28−27  (p.u.) 1.02729 1.02736 
Cost ($/h) 672.3587 715.7730 
Loss (MW) 6.42 6.41 
Time (s) 0.217 0.304 
# of nodes 4 5 
# of subproblems 4 6 

 
Table III. Fuel Type and Operating Zones of the Generating Units Corresponding to the Cases with and Without Valve Point Effects— IEEE 30-

Bus System Under Normal Loading Condition 
Without Valve Point With Valve Point 

Unit # (Bus #) Fuel type 1 Fuel type 2 Unit # (Bus #) Fuel type 1 Fuel type 2 OZ 1 OZ 2 OZ 3 OZ 1 OZ 2 OZ 3 
1 (1)   *  1 (1)   *  
2 (2)   *  2 (2)  *   
3 (5) *    3 (5) *    
4 (8)  *   4 (8)  *   
5 (11) *    5 (11) *    
6 (13) *    6 (13) *    

Table II presents the optimal solution of IEEE 30-bus system considering POZs and 

multiple fuel options via the proposed model. As can be seen from this table, the proposed model 

is very fast; this is mainly because of the adaptability of the model with the pre-solving and solving 

process of the commercial solver Knitro. The adaptability of the model can be seen from the 

number of nodes to be probed, subproblems to be handled, and the execution time. While for the 

case without valve point effect, only 4 nodes have been probed and 4 subproblems have been 
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solved, for the case with valve-point effects that is more complicated, 5 nodes and 6 subproblems 

have been handled. Moreover, the execution time for both cases is less than one second. Results 

show that the cost of the case with valve-point effect is higher than the case without valve point 

effect; this is not only the effect of the valve point but also can be the effect of POZs and multiple 

fuel options.  

Table III presents the binary decision variables related to the operating zones (OZ), and 

multiple fuel option. As can be seen from this table, for none of the cases, without or with VPEs, 

under normal loading condition the second fuel has been selected. However, the pattern of units’ 

operating zone has been changed. Without considering valve point effect, unit 2 is operated in the 

second operating zone (OZ 2), while with considering valve point effect, its operating zone has 

changed to the third one (OZ 3).  

b) IEEE 30-bus under increased loading condition  

Since in subsection a) the IEEE 30-bus system only worked with the first fuel, therefore, 

in this subsection, this system is tested under increased loading condition to show the potential of 

the proposed model in choosing among multiple fuels.  

Table IV. Outputs Results of Proposed Model considering POZs and Multiple Fuel Option with and without Valve Point Effect— IEEE 30-Bus 
System under Increased Loading Condition 

Optimal Output Without Valve Point With Valve Point 
Pg1 (MW) 140.00 140.00 
Pg2 (MW) 80.00 80.00 
Pg5 (MW) 28.2441 27.7562 
Pg8 (MW) 35.00 35.00 
Pg11 (MW) 28.0468 28.5491 
Pg13 (MW) 30.00 30.00 
𝑡𝑡𝑡𝑡6−9  (p.u.) 0.95 0.95 
𝑡𝑡𝑡𝑡6−10  (p.u.) 1.08236 1.0819 
𝑡𝑡𝑡𝑡4−12  (p.u.) 1.03178 1.03205 
𝑡𝑡𝑡𝑡28−27  (p.u.) 1.03209 1.03211 
Cost ($/h) 925.3260 976.4617 
Loss (MW) 8.30 8.31 
Time (s) 0.718 0.595 
# of nodes 21 13 
# of subproblems 23 15 

 

Table V. Fuel Type and Operating Zones of the Generating Units Corresponding to the Cases with and Without Valve Point Effects— IEEE 30-
Bus System Under Increased Loading Condition 

Without Valve Point With Valve Point 

Unit # (Bus #) Fuel type 1 Fuel type 2 Unit # (Bus #) Fuel type 1 Fuel type 2 OZ 1 OZ 2 OZ 3 OZ 1 OZ 2 OZ 3 
1 (1)   *  1 (1)   *  
2 (2)    * 2 (2)    * 
3 (5) *    3 (5) *    
4 (8)  *   4 (8)  *   
5 (11)  *   5 (11)  *   
6 (13)  *   6 (13)  *   
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Table IV presents the optimal solution of IEEE 30-bus system considering POZs and 

multiple fuel options via the proposed model. As can be seen from this table, even under increased 

load condition in which the system operation is critical, the proposed model is very fast. Compared 

to the case in subsection a), even by increasing the number of nodes to be probed and the number 

of subproblems to be handled, the execution time is still less than one second for both cases, with 

and without valve-point effects. This proves the adaptability of the proposed model with the pre-

solving and solving process of the commercial solver Knitro. Results show that the cost of the case 

with valve-point effect is higher than the case without valve point effect; this is not only the effect 

of the valve point but also can be the effect of POZs and multiple fuel options.  

Table V presents the binary decision variables related to the operating zones (OZ), and 

multiple fuel option. As can be seen from this table, in both cases, without or with VPEs, under 

increased loading condition, the second fuel has been selected by unit 2. Although the binary 

decision variables in both cases are similar, from Table IV the generation pattern by generating 

units at buses 5 and 11 are different; such difference is mainly the result of valve point effect of 

generating units.  

B. IEEE 118-bus test system  

This system consists of 118 buses, 186 branches, and 54 generators where 20 out of 54 

generating units have a total 42 prohibited operating zones, and nine out of these 20 units work 

with two or three different fuel types. The system data and information related to the POZs are 

obtained from [27] and [21], respectively, while the data of multiple fuel option are provided in 

the appendix, Table VII. It is worth mentioning that the cost coefficients related to fuel types 2 and 

3 are considered to be 10% and 15% higher than the first fuel type, respectively. This system is 

tested under two loading conditions, namely normal and critical. To obtain the critical loading 

conditions, first the maximum loading point (MLP) of this system is obtained [28] and then to 

obtain more practical results 90% of the obtained MLP is considered as the critical active load. 

For validity purposes, the data related to the critical loading condition is provided in Appendix, 

Table X. 
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Table VI. Results of the Proposed Model considering POZs and Multiple Fuel Option Under Normal and Critical Loading Conditions— IEEE 
118-Bus System 

Optimal Output Normal Loading  Critical Loading 
Pg1 (MW) 36.989 60.000 
Pg4 (MW) 0.000 60.000 
Pg6 (MW) 0.000 60.000 
Pg8 (MW) 0.000 100.000 
Pg10 (MW) 336.498 395.000 
Pg12 (MW) 87.168 185.000 
Pg15 (MW) 20.000 60.000 
Pg18 (MW) 20.325 100.000 
Pg19 (MW) 28.290 100.000 
Pg24 (MW) 0.000 100.000 
Pg25 (MW) 190.000 320.000 
Pg26 (MW) 283.787 414.000 
Pg27 (MW) 16.340 100.000 
Pg31 (MW) 7.301 107.000 
Pg32 (MW) 21.249 100.000 
Pg34 (MW) 30.000 60.000 
Pg36 (MW) 13.115 100.000 
Pg40 (MW) 45.000 100.000 
Pg42 (MW) 45.000 100.000 
Pg46 (MW) 19.199 119.000 
Pg49 (MW) 200.00 304.000 
Pg54 (MW) 49.827 148.000 
Pg55 (MW) 37.452 100.000 
Pg56 (MW) 38.169 100.000 
Pg59 (MW) 140.000 140.000 
Pg61 (MW) 145.000 210.000 
Pg62 (MW) 0.000 100.000 
Pg65 (MW) 350.000 350.000 
Pg66 (MW) 353.937 492.000 
Pg69 (MW) 460.545 805.200 
Pg70 (MW) 0.000 60.000 
Pg72 (MW) 0.000 100.000 
Pg73 (MW) 0.308 100.000 
Pg74 (MW) 24.173 100.000 
Pg76 (MW) 30.819 100.000 
Pg77 (MW) 0.000 100.000 
Pg80 (MW) 439.942 577.000 
Pg85 (MW) 0.000 100.000 
Pg87 (MW) 3.929 102.268 
Pg89 (MW) 410.000 410.000 
Pg90 (MW) 0.745 100.000 
Pg91 (MW) 0.000 100.000 
Pg92 (MW) 0.000 100.000 
Pg99 (MW) 0.000 100.000 
Pg100 (MW) 238.722 352.000 
Pg103 (MW) 39.022 140.000 
Pg104 (MW) 7.216 100.000 
Pg105 (MW) 15.725 100.000 
Pg107 (MW) 34.729 100.000 
Pg110 (MW) 13.534 100.000 
Pg111 (MW) 35.477 136.000 
Pg112 (MW) 39.704 100.000 
Pg113 (MW) 0.000 100.000 
Pg116 (MW) 0.000 100.000 
Cost ($/h) 131984.681 379644.983 
Loss (MW) 67.24 111.02 
Time (s) 12.030 154.226 
# of nodes 96 971 
# of subproblems 197 1072 

Table VI presents the proposed model under two loading conditions. As can be seen from 

this table, under the critical condition, 42 out of 54 units are generating at their maximum capacity, 
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while under normal loading condition the system has more degree of freedom and none of the units 

are operating at its maximum limit. Results also show that the model complexity is increased as 

the loading condition changes; for the normal loading condition, only 96 nodes have been 

explored, and 197 sub-problems have been solved, while for the critical loading condition, 971 

nodes have been explored and 1072 sub-problems have been solved. Although under critical 

condition, compared to the normal loading condition, 875 more sub-problems have been solved, 

the CPU time has been increased by only 142.194 seconds, which accounts for 0.162 seconds per 

sub-problem. This shows the high computational efficiency of the proposed model in solving OPF 

problems under critical condition.  

Table VII shows the operating pattern of the generating unit with POZs and MFOs. As can 

be seen, under the critical condition, the units work with their second fuel option that generates 

more power. The only unit with three fuel option is at bus 89 that never uses its third fuel option 

due to the economic priorities. 

Table VII. Fuel Type and Operating Zones of the Generating Units Corresponding to the Normal and Critical Loading Conditions— 
IEEE 118-Bus System 

Unit at Bus # 
Normal Loading Condition Critical Loading Condition 
Fuel type 1 Fuel type 2 Fuel type 3 Fuel type 1 Fuel type 2 Fuel type 3 
OZ 1 OZ 2 OZ 3 OZ 1 OZ 2 OZ 1 OZ 2 OZ 1 OZ 2 OZ 3 OZ 1 OZ 2 OZ 1 OZ 2 

1  *         *    
4 *          *    
6 *          *    
10    *       *    
15 *          *    
25  *        *     
26   *       *     
34  *         *    
40  *        *     
42  *        *     
49   *        *    
59  *       *      
61 *         *     
65   *      *      
85 *         *     
89    *       *    
99 *         *     
104 *         *     
116 *         *     

IV. CONCLUDING REMARKS 

The importance of optimal power flow in power system operating and planning problems 

especially in recently developed technologies yielded to draw more attention. On the other hand, 

due to the robustness of commercial solvers, the generation and transmission companies are more 
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interested in solver-based models. This paper, by taking advantage of preprocessing and probing 

techniques of the existing commercial solvers, has proposed a solver-friendly mixed-integer 

nonlinear programming (SF-MINLP) model. This model uses innovative recasting techniques to 

transform the binary decision variables, existing in the constraints, into the objective function. The 

model has been tested on two IEEE systems, 30- and 118-bus. Results show that the recast 

techniques in SF-MINLP model not only supports the commercial solver in finding a high-quality 

solution but also increases the computational efficiency.  
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Appendix 
 

Table VIII.  POZs and Fuel Types of IEEE 30-bus System 

Bus # POZs 
Fuel 

Type Range Cost Coefficient 
a b c e f 

1 (55 66), (80 120) 1 [50 140] 0.0050 0.70 55.0 16.5 0.037 
2 (140 200] 0.0075 1.05 82.5 18.0 0.037 

2 (21 24) (45 55) 1 [20 55] 0.0100 0.3 40.0 14.75 0.038 
2 (55 80] 0.0200 0.6 80.0 16.0 0.038 

5 (30 36) 1 [15 50] 0.0625 1.0 0.0 14.0 0.040 
8 (25 30) 1 [10 35] 0.0083 3.25 0.0 12.0 0.045 
11 (25 28) 1 [10 30] 0.0250 3.0 0.0 13.0 0.042 
13 (24 30) 1 [12 40] 0.0250 3.0 0.0 13.5 0.041 

  
 
 

Table IX.  POZs and Fuel Types of IEEE 118-bus System 

Buses with POZ POZs Fuel  
Type Range 

1, 4, 6, 15, 34, 70 (20 30) (60 85) 1 [0 50] 
2 (50 100] 

10 (15 45) (165 200) (395 410) 1 [0 175] 
2 (175 550] 

25 (40 65) (190 200) 1 [0 320] 
26 (75 95) (260 280) 1 [0 414] 
40,42,85,99,104,116 (20 30) (45 55) 1 [0 100] 

49 (45 60) (185 200) 1 [0 210] 
2 (210 304] 

59 (95 105) (140 155) 1 [0 255] 
61 (145 155) (210 230) 1 [0 260] 
65 (180 200) (350 360) 1 [0 491] 

89 (120 145) (410 460) (500 525) 
1 [0 150] 
2 (150 445] 
3 (445 707] 
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Table X.  Critical Loading Condition— IEEE 118-bus System 
Bus # Demand Bus # Demand Bus # Demand Bus # Demand 

1 45.9 31 38.7 59 249.3 92 58.5 
2 18.0063 32 53.1 60 70.20018 93 84.12696 
3 35.10117 33 20.70009 62 69.3 94 101.7423 
4 35.1 34 53.1 64 390.3876 95 57.609 
5 27.72045 35 29.70063 66 35.1 96 34.20009 
6 46.8 36 27.9 67 47.89251 97 16.72533 
7 42.20559 38 74.07963 68 1196.982 98 55.21113 
8 25.2 39 24.30009 70 59.4 99 37.8 
9 520.1226 40 59.4 71 177.4116 100 33.3 

11 63.00018 41 33.30009 72 10.8 101 88.97247 
12 42.3 42 86.4 73 5.4 102 172.9386 
13 30.60009 43 16.20009 74 61.2 103 20.7 
14 12.60036 44 14.86692 75 42.30036 104 34.2 
15 81 45 47.70009 76 61.2 105 27.9 
16 22.50018 46 25.2 77 54.9 106 197.3871 
17 9.90081 47 79.40115 78 63.90009 107 45 
18 54 48 66.16494 79 59.46741 108 62.52399 
19 40.5 49 78.3 80 117 109 166.1013 
20 16.20009 50 32.15151 81 324.423 110 35.1 
21 14.86692 51 15.30009 82 50.17563 112 61.2 
22 9.29196 52 16.20009 83 18.58365 113 5.4 
23 308.9367 53 20.70009 84 30.43458 114 38.20905 
24 11.7 54 101.7 85 21.6 115 52.56108 
27 63.9 55 56.7 86 124.668 116 165.6 
28 45.31536 56 75.6 88 325.2321 117 18.00009 
29 46.08378 57 10.80063 90 146.7 118 29.70018 
30 494.4654 58 10.80018 91 9 Others 0.00 
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