230 research outputs found

    A Refinement-Based Heuristic Method for Decision Making in the Context of Ayo Game

    Get PDF
    Games of strategy, such as chess have served as a convenient test of skills at devising efficient search algorithms, formalizing knowledge, and bringing the power of computation to bear on “intractable” problems. Generally, minimax search has been the fundamental concept of obtaining solution to game problems. However, there are a number of limitations associated with using minimax search in order to offer solution to Ayo game. Among these limitations are: (i.) improper design of a suitable evaluator for moves before the moves are made, and (ii.) inability to select a correct move without assuming that players will play optimally. This study investigated the extent to which the knowledge of minimax search technique could be enhanced with a refinement-based heuristic method for playing Ayo game. This is complemented by the CDG (an end game strategy) for generating procedures such that only good moves are generated at any instance of playing Ayo game by taking cognizance of the opponent strategy of play. The study was motivated by the need to advance the African board game – Ayo – to see how it could be made to be played by humans across the globe, by creating both theoretical and product-oriented framework. This framework provides local Ayo game promotion initiatives in accordance with state-of-the-art practices in the global game playing domain. In order to accomplish this arduous task, both theoretical and empirical approaches were used. The theoretical approach reveals some mathematical properties of Ayo game with specific emphasis on the CDG as an end game strategy and means of obtaining the minimal and maximal CDG configurations. Similarly, a theoretical analysis of the minimax search was given and was enhanced with the Refinement-based heuristics. For the empirical approach, we simulated Ayo game playing on a digital viii computer and studied the behaviour of the various heuristic metrics used and compared the play strategies of the simulation with AWALE (the world known Ayo game playing standard software). Furthermore, empirical judgment was carried out on how experts play Ayo game as a means of evaluating the performance of the heuristics used to evolve the Ayo player in the simulation which gives room for statistical interpretation. This projects novel means of solving the problem of decision making in move selections in computer game playing of Ayo game. The study shows how an indigenous game like Ayo can generate integer sequence, and consequently obtain some self-replicating patterns that repeat themselves at different iterations. More importantly, the study gives an efficient and usable operation support tools in the prototype simulation of Ayo game playing that has improvement over Awal

    A Multi-Agent Approach to the Game of Go Using Genetic Algorithms

    Get PDF
    This is the published version. Copyright De GruyterMany researchers have written or attempted to write programs that play the ancient Chinese board game called Go. Although some programs play the game quite well compared with beginners, few play extremely well, and none of the best programs rely on soft computing artificial intelligence techniques like genetic algorithms or neural networks. This paper explores the advantages and possibilities of using genetic algorithms to evolve a multiagent Go player. We show that although individual agents may play poorly, collectively the agents working together play the game significantly better

    A learning framework for zero-knowledge game playing agents

    Get PDF
    The subjects of perfect information games, machine learning and computational intelligence combine in an experiment that investigates a method to build the skill of a game-playing agent from zero game knowledge. The skill of a playing agent is determined by two aspects, the first is the quantity and quality of the knowledge it uses and the second aspect is its search capacity. This thesis introduces a novel representation language that combines symbols and numeric elements to capture game knowledge. Insofar search is concerned; an extension to an existing knowledge-based search method is developed. Empirical tests show an improvement over alpha-beta, especially in learning conditions where the knowledge may be weak. Current machine learning techniques as applied to game agents is reviewed. From these techniques a learning framework is established. The data-mining algorithm, ID3, and the computational intelligence technique, Particle Swarm Optimisation (PSO), form the key learning components of this framework. The classification trees produced by ID3 are subjected to new post-pruning processes specifically defined for the mentioned representation language. Different combinations of these pruning processes are tested and a dominant combination is chosen for use in the learning framework. As an extension to PSO, tournaments are introduced as a relative fitness function. A variety of alternative tournament methods are described and some experiments are conducted to evaluate these. The final design decisions are incorporated into the learning frame-work configuration, and learning experiments are conducted on Checkers and some variations of Checkers. These experiments show that learning has occurred, but also highlights the need for further development and experimentation. Some ideas in this regard conclude the thesis.Dissertation (MSc)--University of Pretoria, 2007.Computer ScienceMScUnrestricte

    Investigating evolutionary checkers by incorporating individual and social learning, N-tuple systems and a round robin tournament

    Get PDF
    In recent years, much research attention has been paid to evolving self-learning game players. Fogel's Blondie24 is just one demonstration of a real success in this field and it has inspired many other scientists. In this thesis, artificial neural networks are employed to evolve game playing strategies for the game of checkers by introducing a league structure into the learning phase of a system based on Blondie24. We believe that this helps eliminate some of the randomness in the evolution. The best player obtained is tested against an evolutionary checkers program based on Blondie24. The results obtained are promising. In addition, we introduce an individual and social learning mechanism into the learning phase of the evolutionary checkers system. The best player obtained is tested against an implementation of an evolutionary checkers program, and also against a player, which utilises a round robin tournament. The results are promising. N-tuple systems are also investigated and are used as position value functions for the game of checkers. The architecture of the n-tuple is utilises temporal difference learning. The best player obtained is compared with an implementation of evolutionary checkers program based on Blondie24, and also against a Blondie24 inspired player, which utilises a round robin tournament. The results are promising. We also address the question of whether piece difference and the look-ahead depth are important factors in the Blondie24 architecture. Our experiments show that piece difference and the look-ahead depth have a significant effect on learning abilities

    Evolutionary Artificial Neural Network Weight Tuning to Optimize Decision Making for an Abstract Game

    Get PDF
    Abstract strategy games present a deterministic perfect information environment with which to test the strategic capabilities of artificial intelligence systems. With no unknowns or random elements, only the competitors’ performances impact the results. This thesis takes one such game, Lines of Action, and attempts to develop a competitive heuristic. Due to the complexity of Lines of Action, artificial neural networks are utilized to model the relative values of board states. An application, pLoGANN (Parallel Lines of Action with Genetic Algorithm and Neural Networks), is developed to train the weights of this neural network by implementing a genetic algorithm over a distributed environment. While pLoGANN proved to be designed efficiently, it failed to produce a competitive Lines of Action player, shedding light on the difficulty of developing a neural network to model such a large and complex solution space

    Investigating evolutionary checkers by incorporating individual and social learning, N-tuple systems and a round robin tournament

    Get PDF
    In recent years, much research attention has been paid to evolving self-learning game players. Fogel's Blondie24 is just one demonstration of a real success in this field and it has inspired many other scientists. In this thesis, artificial neural networks are employed to evolve game playing strategies for the game of checkers by introducing a league structure into the learning phase of a system based on Blondie24. We believe that this helps eliminate some of the randomness in the evolution. The best player obtained is tested against an evolutionary checkers program based on Blondie24. The results obtained are promising. In addition, we introduce an individual and social learning mechanism into the learning phase of the evolutionary checkers system. The best player obtained is tested against an implementation of an evolutionary checkers program, and also against a player, which utilises a round robin tournament. The results are promising. N-tuple systems are also investigated and are used as position value functions for the game of checkers. The architecture of the n-tuple is utilises temporal difference learning. The best player obtained is compared with an implementation of evolutionary checkers program based on Blondie24, and also against a Blondie24 inspired player, which utilises a round robin tournament. The results are promising. We also address the question of whether piece difference and the look-ahead depth are important factors in the Blondie24 architecture. Our experiments show that piece difference and the look-ahead depth have a significant effect on learning abilities

    Monte-Carlo tree search enhancements for one-player and two-player domains

    Get PDF
    • …
    corecore