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Abstract 

 

In recent years, much research attention has been paid to evolving self-

learning game players. Fogel‟s Blondie24 is just one demonstration of a real 

success in this field and it has inspired many other scientists. In this thesis, 

artificial neural networks are employed to evolve game playing strategies for 

the game of checkers by introducing a league structure into the learning 

phase of a system based on Blondie24. We believe that this helps eliminate 

some of the randomness in the evolution. The best player obtained is tested 

against an evolutionary checkers program based on Blondie24. The results 

obtained are promising. In addition, we introduce an individual and social 

learning mechanism into the learning phase of the evolutionary checkers 

system. The best player obtained is tested against an implementation of an 

evolutionary checkers program, and also against a player, which utilises a 

round robin tournament. The results are promising.  

 

N-tuple systems are also investigated and are used as position value 

functions for the game of checkers. The architecture of the n-tuple is utilises 

temporal difference learning. The best player obtained is compared with an 

implementation of evolutionary checkers program based on Blondie24, and 

also against a Blondie24 inspired player, which utilises a round robin 

tournament. The results are promising. We also address the question of 

whether piece difference and the look-ahead depth are important factors in 

the Blondie24 architecture. Our experiments show that piece difference and 

the look-ahead depth have a significant effect on learning abilities.  
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Chapter One 

Introduction 

 

1.1 INTRODUCTION 

The motivation for the work carried out in this thesis is inspired from 

Fogel‟s success in checkers in which his program, Blondie24 (Chellapilla and 

Fogel 2001; Fogel and Chellapilla 2002) was able to play a game of checkers 

at the human expert level, injecting as little expert knowledge as possible 

into the algorithm. Fogel combined evolution strategies with neural networks 

and used a minimax search tree as a look-ahead mechanism to find 

potentially good moves for the game of checkers. Blondie24 only received 

feedback of its performance after a certain number of games, not knowing 

the result of individual games. 

       
Blondie24 represents a landmark in evolutionary learning. Even so, it has 

still attracted comments about its design. One of them is concerned with the 

piece difference feature and how it affects the learning process of Blondie24. 

Although, there has been a lot of discussion about the importance of the 

look-ahead depth level used in Fogel‟s work. In this thesis we also address 

the question of whether piece difference is an important factor in the 

Blondie24 architecture. Although this issue has been addressed before, this 

work provides a different experimental setup to previous work, but arrives at 
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the same conclusion. Our experiments show that piece difference has a 

significant effect on learning abilities. Finally a detailed investigation of the 

importance of the look-ahead depth is carried out. We believe this is the first 

time such an intensive study has been done for evolutionary checkers. Our 

experiments show that increasing the depth of a look-ahead has significant 

improvements on the performance of the checkers program and has a 

significant effect on its learning abilities.   

  

One other thing that can be noticed from the design of Blondie24 is that 

the strategies do not all play the same number of games because, by chance, 

some would be selected as opponents more often than others. Our research 

will investigate if this is a limiting factor in order to eliminate the randomness 

in choosing opponents. Thirty feed forward neural network players are played 

against each other, using a round robin tournament structure, for 140 

generations and the best player obtained is tested against an evolutionary 

checkers program based on Blondie24. We also test the best player against 

an online program, as well as two other strong programs. The results 

obtained are promising. 

 

The work in this thesis is also inspired from the success of Su and 

Kendall‟s work (Kendall and Su 2003 and Su 2005). Su investigated 

imperfect evolutionary systems in her PhD thesis, using the stock market as 

a problem domain (Su 2005). In (Kendall and Su 2003), an investigation of 

the integration of individual and social learning of multi-agent based models 

in a simulated stock market was carried out, where the evolved neural 

network traders learn to trade their stocks, giving the investors‟ higher 
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returns compared to a baseline buy-and-hold strategy. So we decided to 

introduce an individual and social learning mechanism into the learning phase 

of the evolutionary checkers system. The best player obtained is tested 

against an implementation of an evolutionary checkers program, and also 

against a player, which utilises a round robin tournament. The results are 

promising and demonstrate that using individual and social learning enhances 

the learning process of the evolutionary checkers system and produces a 

superior player compared to what was previously possible. In addition, we 

conduct an investigation to choose which values should be used when 

deciding where the individual and social learning phases should occur. 

 

The success of n-tuple systems in many applications including optical 

character recognition, and evolving game playing strategies for the game of 

Othello (Lucas 2008) provides the inspiration to also apply the n-tuple 

systems in this thesis. N-tuple systems are investigated and are used as 

position value functions for the game of checkers. The architecture of the n-

tuple is utilises temporal difference learning. The best player obtained is 

compared with an implementation of evolutionary checkers program based 

on Blondie24, and also against a Blondie24 inspired player, which utilises a 

round robin tournament. The results are promising and demonstrate that 

using n-tuple enhances the learning process of checkers and produces a good 

player. The conclusion is that n-tuple systems learn faster when compared 

against other approaches.  In addition, an investigation of learning rates for 

temporal difference learning is carried out. 
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This chapter is structured as follows: Section 1.2 describes the 

contributions of this thesis, while section 1.3 outlines the structure. A 

summary of the chapter is presented in section 1.4. 

      

1.2 CONTRIBUTIONS 
 

This thesis makes the following contributions: 

 

1- Introducing a round robin tournament into the evolutionary phase of 

the evolutionary checkers program, aiming to eliminate the 

randomness and hence produce a better player. This work is presented 

in chapter four. 

2- Introducing individual and social learning into an evolutionary checkers 

in order to enhance its learning ability and hence produce a superior 

player. In addition, we show that individual and social learning has a 

wider applications area, in addition to the stock market. This work is 

presented in chapter five. 

3- Investigating the use of a round robin tournament within the individual 

and social learning framework, aiming to eliminate the randomness, 

and producing a superior player. This work is presented in chapter five. 

4- Introducing n-tuple systems into evolutionary checkers, producing a 

good player, whilst using less computational time than is required for 

the evolutionary checkers player in step 1. This work is presented in 

chapter six. 
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5- Investigating the importance of piece difference in evolutionary 

checkers by showing the effects of using/not using it. This work is 

presented in chapter seven. 

6- Investigating the importance of the look-ahead depth in evolutionary 

checkers by showing the effects of using/not using it. This work is 

presented in chapter seven.   

 

 

1.3 THESIS OUTLINE 

 

 

This thesis is structured as follows; Chapter two presents the background 

of this thesis. It starts with basic algorithms such as minimax tree search 

together with alpha-beta pruning. A literature review in evolutionary 

computation, artificial neural networks and evolutionary neural networks is 

also presented in this chapter. The chapter continues with a discussion on 

various computer game programs, focussing on those that have employed 

evolutionary methodologies. The chapter also describes Fogels‟ Blondie24 

checkers program. The review of Su‟s work on individual and social learning, 

together with a review of n-tuple systems, are presented before concluding 

the chapter with a summary. 

Chapter three presents various preliminaries for the evolutionary checkers 

that will be used throughout this thesis. These preliminaries include the 

implementation of an evolutionary checkers program named C0, which is 

based on the Blondie24 architecture. It also includes the description of the 

two-move ballot and the standard rating formula as a way to test the 
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outcome of applying the proposed methods that will be used to enhance the 

learning process of C0. 

 

Chapter four presents a round robin tournament as a proposed method to 

eliminate the randomness in the evolutionary phase of C0 in order to enhance 

its learning ability and produce a better player. The resultant player, named 

Blondie24-RR, is tested against C0 using the idea of two-move ballot and the 

standard rating formula. Blondie24-RR also tested against an online program 

and two strong programs.  

 

Chapter five introduces individual and social learning to the evolutionary 

checkers algorithms. Many experiments are carried out in order to determine 

the best values that can be used to decide where the individual and social 

phases should occur. The player with the best values, named C10, plays 

against C0 and Blondie24-RR, using the two-move ballot and standard rating 

formula to test the outcome. Also we decided to use round robin tournament 

with the individual and social learning, and the resultant player named C10-RR 

plays against C0, Blondie24-RR and C10 using the two-move ballot and 

standard rating formula.  

 

Chapter six introduces n-tuple systems into two evolutionary checkers 

programs, one based on C0 and the other using temporal difference learning. 

Various experiments are carried out to determine the best settings for the n-

tuple. All the resultant players are set to play against C0, Blondie24-RR, C10 

and C10-RR using two-move ballot and standard rating formula to test the 

outcome.  
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The final experiments in this thesis are presented in chapter seven, where 

we show the importance of the piece difference feature and the look-ahead 

depth to all evolutionary checkers programs, constructed using the proposed 

methods in chapters three, four, five and six.           

 

We summarise the contributions of this thesis in chapter eight, together 

with suggestions as how the work and ideas presented in this thesis could be 

further developed. 

 
 
1.4 SUMMARY 

 

This chapter has presented the works that have inspired this thesis. It also 

described the main contributions of the work presented in this thesis. Finally 

the thesis structure is presented. The next chapter will present the literature 

review for various artificial intelligence methods, some of which will be used 

in the development of this thesis.
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Chapter Two 

Literature Review 

 

2.1 INTRODUCTION 

 

This chapter discusses the research that has been conducted with respect 

automated game playing. Computer board games that have been associated 

with artificial intelligence techniques will also be discussed along with a 

discussion of evolutionary computation, individual and social learning and n-

tuple systems, as learning techniques that have been utilised in automated 

game playing. 

 

This chapter has been structured as follows; Section 2.2 describes the 

basic algorithms that are used by automated computer games. Evolutionary 

computation will be described in section 2.3. In section 2.4 a description of 

artificial neural networks is presented. Section 2.5 showed the various 

computer games programs. Blondie24 is presented in Section 2.6.  Sections 

2.7, 2.8 and 2.9 described individual and social learning, n-tuple systems and 

temporal difference learning respectively. Finally a summary for this chapter 

is presented in section 2.10.   
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2.2 BASIC ALGORITHMS 

 

In general, for one person games and puzzles, a simple A* algorithm (Hart 

et. al. 1968) can be used to find the best move (Rich and Knight 1991; 

Nilsson 1998; Carter 2007). The A* algorithm is not suitable for complex two 

person games and a minimax search algorithm is commonly used to find the 

best move in these types of games (Kaindl 1990; Nilsson 1998; Carter 2007; 

Luger 2008). A minimax algorithm, in its general form, performs a complete 

depth first search by producing the whole game tree and then, using an 

evaluation function (which could represent the exact result such as win, lose 

or draw if the full game tree can be produced, or a heuristic value if the full 

search tree cannot be built), it computes the value of each leaf node. The 

algorithm then selects the best values and propagates these up towards the 

root of the tree. A best next move is selected to maximise the evaluation 

function. Algorithm 2.1 shows a typical minimax algorithm1.  

- Two players take turns and try respectively to maximize and minimize a scoring function. 
- The two players are called respectively MAX and MIN.  
- The MAX player makes the first move.  
- Players take turns; successive nodes represent positions where different players must move.  
- MAX node means the MAX player must move at that node. 
- MIN nodes means MIN player must move at that node.  
- The leaves represent terminal positions, i.e. positions where MAX wins or MIN wins.  

 
function MINIMAX(N) is 

 begin 
    if N is a leaf then 
         return the estimated score of this leaf 
    else 
         Let N1, N2, .., Nm be the successors of N; 
         if N is a Min node then 
      return min{MINIMAX(N 1), .., MINIMAX(Nm)}  
         else 
      return max{MINIMAX(N1), .., MINIMAX(Nm)}  
 end MINIMAX; 

Algorithm 2.1 Minimax algorithm. 

                                                           
1 http://www. cis.temple.edu/~ingargio/cis587/readings/alpha-beta.html. 
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Although minimax is able to find the best move in complex games, it is 

time consuming especially for larger search spaces. For example chess has 

an average branching factor of 35 (Russell and Norvig 2010) and a complete 

game tree could have about 35100 different positions to evaluate and search, 

which is impractical using methodologies which require a full search tree to 

be built. In order to address this problem, by being able to prune the search 

tree, alpha-beta (or g.┚) search was introduced, which seeks to reduce the 

number of nodes that are evaluated in the search tree when using the 

minimax algorithm (Hsu1990; Rich and Knight 1991; Norvig 1992; 

Junghanns 1998; Luger 2008; Russell and Norvig 2010). g.┚ search is 

commonly used for two-player games. It stops evaluating moves, in a 

particular part of the search tree, when at least one possibility has been 

found that proves the move to be worse than a previously examined move. 

These moves, and more importantly those lower in the search tree, need not 

be evaluated further.  

Alpha-beta pruning returns exactly the same result as minimax but can 

drastically reduce the size of the search space. Algorithm 2.2 presents a 

typical alpha-beta pruning algorithm2. Figure 2.1 shows how the alpha beta 

pruning works.  

- Two players take turns and try respectively to maximize and minimize a scoring function. 
- The two players are called respectively MAX and MIN.  
- The MAX player makes the first move.  
- Players take turns; successive nodes represent positions where different players must move.  
- MAX node means the MAX player must move at that node. 
- MIN nodes means MIN player must move at that node.  
- The leaves represent terminal positions, i.e. positions where MAX wins or MIN wins.  
- ALPHA value of a node is a value never greater than the true score of this node. Initially it is the 

score of that node, if the node is a leaf, otherwise it is -infinity. Then at a MAX node it is set to the 
largest of the scores of its successors explored up to now, and at a MIN node to the alpha value of 
its predecessor.  

                                                           
2 http://www. cis.temple.edu/~ingargio/cis587/readings/alpha-beta.htm. 

http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Game_tree
http://en.wikipedia.org/wiki/Minimax#Minimax_algorithm_with_alternate_moves
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- BETA value of a node is a value never smaller than the true score of this node. Initially it is the 
score of that node, if the node is a leaf, otherwise it is +infinity. Then at a MIN node it is set to the 
smallest of the scores of its successors explored up to now, and at a MAX node to the beta value of 
its predecessor.  

 
function Alpha-Beta(N, A, B) is ;; Here A is always less than B 

 begin 
    if N is a leaf then 
         return the estimated score of this leaf 
    else 
  Set Alpha value of N to -infinity and  

                    Beta value of N to +infinity; 
         if N is a Min node then 
                    For each successor Ni of N loop 
          Let Val be Alpha-Beta (Ni, A, Min{B,Beta of N}); 
          Set Beta value of N to Min{Beta value of N, Val};  
          When A >= Beta value of N then  
      Return Beta value of N endloop; 
                                      Return Beta value of N; 
         Else 
                For each successor Ni of N loop 
          Let Val be Alpha-Beta (Ni, Max{A,Alpha value of N}, B); 
    Set Alpha value of N to Max{Alpha value of N, Val};  
    When Alpha value of N >= B then  
         Return Alpha value of N endloop; 
                Return Alpha value of N; 
 end Alpha-Beta; 

Algorithm 2.2 Alpha-Beta pruning algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Example of Alpha-Beta pruning. 

 
 

A 

B 

G 

C 

F E 

M 

D H 

I J N 

L K 

Min 

Min 

Max 

Max 

3 

3 5 

5 

5 

7 0 

<=0 

7 8 

4 



Literature Review 

 

12 
 

In the figure above, the entire tree headed by B is searched and hence can 

expect a score of at least 3. At A, when this alpha value is passed to F, it will 

enable us to skip the exploration of L. This is because after K is examined, I 

is guaranteed a maximum score of 0 (i.e F is guaranteed a minimum score of 

0). But this is less than alphas value of 3, so no more branches of I need to 

be considered on examining J, F is assigned a value of 5. This value becomes 

the value of beta at node C. 

 

2.3 EVOLUTIONARY COMPUTATION 

 

Yao (1999a) defines evolutionary computation as the study of 

computational systems that use ideas and inspirations from natural evolution 

and adaptation. Although there is no strict definition about the different kinds 

of evolutionary computation, this section describes three variants: Genetic 

Algorithms (GA), Genetic Programming (GP) and Evolutionary Algorithms 

(EA), which can be further sub-divided into evolution strategies and 

evolutionary programming.   

 
 
2.3.1 Evolutionary Algorithms 

 
Evolutionary algorithms (Fogel 1994, 2006) are another form of 

evolutionary computation. Evolutionary algorithms focus on the potential 

solution of the problem, in contrast to genetic algorithms, which focus on the 

encoding structure of the problem (Fogel 1994). The structures that are used 

in evolutionary algorithms are problem dependant, which introduce a more 

natural representation than the general representation (often bit strings, at 
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least in early works) used in genetic algorithms. Another differentiating factor 

between evolutionary and genetic algorithms is that the former emphasizes 

the behavioral link between parents and offspring while the latter focuses on 

the genetic link (Fogel 2006). Evolutionary algorithms can be extended to 

Evolution Strategies (ES) and Evolutionary Programming (EP). The major 

difference between them is in the representation of the problem and the 

reproduction operators employed, where ES has a matrix of mutation vectors 

that corresponds to the population of chromosomes in which each gene in 

each chromosome has its own mutation standard deviation that evolves 

along with the chromosome, therefore the algorithm has self-adaptive 

mutation. An EP has one mutation value per chromosome, or one for the 

entire population. Evolution strategies were developed as a methodology for 

dealing with problems of numerical optimisation (Rechenberg 1965; Schwefel 

(1965, 1981)), where vectors of real numbers, instead of binary strings, 

were used to represent potential solutions. The distinctive characteristics of 

evolution strategies, in general, are Gaussian mutation, and discrete or 

intermediate recombination. Below are the two main schemes of 

deterministic selection in evolution strategies (Yao 1999b):  

 

• (┢+┡): ┢ parents are used to create ┡ offspring. All individuals, (i.e. 

the (┢+┡) solutions) compete and the best ┢ solutions are selected 

as parents for next generation. 

  

• (┢,┡): ┢ parents are used to create ┡ offspring, but only the ┡  

offspring compete for survival and the ┢ parents are completely 

replaced each generation. Algorithm 2.3 shows an implementation 
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of (┢,┡) evolution strategies. 

  

1- Generate the initial population of た individuals. Each individual is a real-valued n-dimensional 
vector, where n is the number of parameters to be optimized.  

2- Evaluate the fitness value for each individual of the population.  

3- Generate そ offspring by adding a Gaussian random variable with zero mean and preselected 
standard deviation to each dimension of an individual.  

4- Evaluate the fitness of each offspring.  

5- Sort the そ offspring into a non-descending order according to their fitness values, and select the た 
best offspring out of そ to be parents of the next generation.  

6- Stop if the stopping criterion is satisfied; otherwise go to step 3.  
 

Algorithm 2.3 An implementation of (┢,┡) evolution strategies (Yao 

1999b). 

 

Algorithm 2.3 describes mutation-based evolution strategies, i.e. offspring 

are generated by applying Gaussian mutations to parents. The Gaussian 

mutation operation used in Fogel (2006) is described by the following: 

 
si

ジ = si . exp(t 
ジ. N (0,1)+ t . Ni (0,1)).                                                   (2.1) 

xi
ジ = xi + N(0, si

ジ).                                                                               (2.2) 

 

Where N(0,1) represents a single standard Gaussian random variable, Ni(0,1) 

represents the ith independent identically distributed standard Gaussian, and t 

and tジ are operator-set parameters affecting global and individual step sizes. 

Evolution strategies make use of recombination operators for the process of 

producing new offspring. Discrete recombination and intermediate 

recombination are the two main recombination operators that are most 

frequently employed. Discrete recombination resembles uniform crossover in 

GAs where new offspring are generated by arbitrarily mixing components 

from the parents. In the intermediate recombination the vectors of two 
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parents are averaged together, element by element, to form a new offspring 

as shown in figure 2.2. 

 

 

 

 

Figure 2.2  Example of intermediate recombination. 

 

Evolutionary Programming employs vectors of real numbers as its 

representation of potential solutions for problem solving (Fogel et al.  1966; 

Bäck and Schwefel 1993; Fogel 1994). The absence of recombination and 

crossover in evolutionary programming is what most notably distinguishes it 

from evolution strategies. Instead, it employs some sort of tournament 

selection as a selection scheme and Gaussian mutation as the only 

reproduction operator. Algorithm 2.4 illustrates a typical application of 

evolutionary programming algorithms.  

1- Generate the initial population of た individuals.  

2- Evaluate the fitness value for each individual of the population.  

3- Each parent creates a single offspring by means of Gaussian mutation. 

4- Evaluate the fitness of each offspring. 

5- Conduct pairwise comparison over the union of parents and offspring. For each individual, q 
opponents are chosen uniformly at random from all the parents and offspring. For each 
comparison, if the individual’s fitness is no smaller than the opponent’s, it receives a “win.” 
  

6- Select た individuals from the union of both the parents and the offspring (generated by 
Gaussian mutation) that have the most wins to be parents of the next generation.  
 

7- Stop if the stopping criterion is satisfied; otherwise go to step 3. 
  

Algorithm 2.4 An implementation of evolutionary programming 

algorithms (Bäck and Schwefel 1993; Yao 1999b; 

Fogel 2000). 
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Algorithm 2.4 is very similar to algorithm 2.3 as the only difference 

between them is in the reproduction operators. 

For the optimisation of real-valued numerical parameters, evolution 

strategies and evolutionary programming, with real-value representations 

and Gaussian mutation, have been shown to have practical uses (Michalewicz 

1992). 

 

 

2.4 ARTIFICIAL NEURAL NETWORKS 

 

Artificial neural networks are based on the idea of natural systems in which 

a set of neurons conduct transmission and communication processes 

travelling through axon (a long, slender projection of a nerve cell, or neuron, 

that conducts electrical impulses away from the neuron's cell body) 

connections (Patterson 1996; Coppin 2004; Galushkin 2007). An axon is one 

of two types of protoplasmic protrusions that extrude from the cell body of a 

neuron, the other type being dendrites(are the branched projections of a 

neuron that act to conduct the electrochemical stimulation received from 

other neural cells to the cell body). Axons are distinguished from dendrites by 

several features, including shape, length and function. Axons make contact 

with other cells at junctions called synapses. At a synapse, the membrane of 

the axon closely adjoins the membrane of the target cell, and special 

molecular structures serve to transmit electrical or electrochemical signals 

across the gap. The neurons constitute points that are able to adjust to new 

conditions, going through a process of learning from examples, and retaining 

that knowledge for future use (Pandya and Macy 1996). This section 

http://en.wikipedia.org/wiki/Neuron
http://en.wikipedia.org/wiki/Action_potential
http://en.wikipedia.org/wiki/Cell_body
http://en.wikipedia.org/wiki/Protoplasm
http://en.wikipedia.org/wiki/Dendrite
http://en.wikipedia.org/wiki/Neuron
http://en.wikipedia.org/wiki/Electrical_conduction
http://en.wikipedia.org/wiki/Electrochemistry
http://en.wikipedia.org/wiki/Stimulation
http://en.wikipedia.org/wiki/Synapse
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discusses artificial neural networks in the context of network architecture, 

learning approaches, and also focuses on evolutionary artificial neural 

networks.  

 

2.4.1 Perceptrons and Multi-layer Perceptrons  

One of the first models introduced to categorize patterns through the 

process of observed learning is the perceptron (Rosenblatt 1959). Figure 2.3 

shows a perceptron. A set of inputs represented as x1,x2,....,xm is received by 

the processing unit. A special input, bk, termed a bias, which has its own 

weight (either fixed to +1 or variable). There is an associated weight (wkj), 

which represents the connection between the processing unit k and an input 

xi. A non-linear activation function, represented as l(.), transforms the 

summed input to produce the output from the perceptron.   

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3 Single Perceptron (Haykin 1999). 
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The common activation functions are shown in table 2.1. 

Name   Formula  
 Range of 
Output  

 Step function         Step(x) = 1 if x ≥ 0, else 0.   0 or 1  

 Sign function   Sign(x) = +1 if x ≥ 0, else -1    ± 1  

 Sigmoid function         Sigmoid(x)=1/(1+e-x)   (0,1) 

 Hyperbolic function  Tanh(x)=(ex-e-x) /  (ex+e-x)   (-1,1)  

Table 2.1 Some commonly used non-linear activation functions in 

artificial neural networks. 

 

Several perceptrons can be grouped together to form a neural network 

where two layers of neurons are fully interconnected, but there is no 

interconnection between neurons in the same layer. Figure 2.4 shows a two 

layer perceptron network. 

   
 

 
 
 

 
 

 
  

 

 

 

 

 

Figure 2.4 A two layer perceptron (Haykin 1999). 

 

A learning task for a perceptron is to tune its weights using the optimiser 

in order to make the network produce the desired output for given inputs. 

There are many learning rules that can be applied to learn the network, 

please refer to Haykin (1999) for full details. 
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Two-layer perceptrons can be successfully trained for solving a number of 

function approximation and pattern classification problems, for which 

Rosenblatt (1962) shows the convergence properties of the perceptron 

learning rule. With regards to the two-layered perceptron, Minsky and Papert 

(1969), in their milestone book, proved that it has limited representational 

capabilities in representing non-linearly separable functions, even if they 

were as simple as XOR. Linearly separable means that a pattern can be 

separated into two classes by a single line (or a plane in higher dimensions). 

The architecture of a multi-layer perceptron with two hidden layers and three 

outputs are shown in Figure 2.5. Signals only pass in a forward direction (left 

to right in figure 2.5). Networks usually utilise one of the activation functions 

shown in Table 2.1.  

 

Figure 2.5 A multi-layer perceptron (Haykin 1999). 

 

2.4.2 Backpropagation Learning and Other Neural Networks Models 

 

Paker (1985) and Rumelhart et al. (1986) introduced the backpropagation 

algorithm for the training of multi-layer networks. The backpropagation 
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algorithm offers an efficient computational method for training multilayer 

networks, and overcome the problems highlighted by Minsky and Papert 

(1969). The objective is to train the network weights so as to minimise the 

Least-Square-Error (Zurada 1996) between the desired and the actual 

output. Algorithm 2.5 presents a backpropagation algorithm for learning a 

multi-layer feedforward network with one hidden layer: 

Initialise the weights in the network (often randomly) 
  Do 
         For each example e in the training set 

- O = neural-net-output(network, e) ; forward pass 
- T = teacher output for e 
- Calculate error (T - O) at the output units 
- Compute delta_wh for all weights from hidden layer to  output layer ; 

backward pass 
- Compute delta_wi for all weights from input layer to hidden layer ; backward 

pass continued 
- Update the weights in the network 

  Until all examples classified correctly or stopping criterion satisfied. 
  Return the network. 

Algorithm 2.5 Backpropagation algorithm for one hidden layer 

(Werbos 1994). 

 

The backpropagation method is essentially a gradient descent method that 

minimises the error between the target output and the actual output from 

the network. More on the mathematical analysis of the backpropagation 

algorithm and delta rules may be obtained in Fausett (1994), Patterson 

(1996) and Russell and Norvig (2010). Other neural network topologies have 

also been proposed. Neural networks with one or more feedback loops are 

categorized as recurrent networks. The feedback may be of local or global 

type. Figure 2.6 demonstrates a basic recurrent network. 
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Figure 2.6 A simple recurrent neural network (Elman 1990). 

 

Gradient-based is one of the many suggested training methods for training 

recurrent networks, as proposed in Williams and Zipser (1995). It is worth to 

mention that training recurrent networks is not as easy task, as the feedback 

networks mean the feed-forward training patterns are not fully known. 

Recurrent neural networks, in which all connections are symmetric, are 

referred to as Hopfield networks (Hopfield 1982), i.e., there must be a 

connection from unit j feedback to unit i whenever there is a connection from 

unit i to unit j. Among other commonly employed neural network models are 

Radial basis function networks (Park and Sandberg 1991), probabilistic neural 

networks (Specht 1990), and Kohonen self-organizing maps (Kohonen 

1997). Readers are referred to Anderson and Rosenfield (1988), Fausett 

(1994) and Callan (1999) for further information about these network types.  

It has been found that Multi-layer perceptrons with backpropagation 

learning are effective and efficient in solving a number of practical problems. 

For example financial time series predictions (Zirilli 1996), computer game 

Context Units 
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playing (Tesauro and Sejnowski 1989), and industrial applications such as 

steel scheduling (Schlanget al. 1996). However, there are some drawbacks 

with backpropagation training. One of these is the minimisation of the mean 

square error over all training examples. Another drawback is that it is 

necessary to calculate a derivative, which is computationally expensive. The 

learning is also liable to get trapped at a local minimum (Sutton 1986). A 

further consideration in using backpropagation is that it is still an art rather 

that a science to derive the network architecture. ANN research has not yet 

precisely identified any protocols to follow in terms of the number of layers 

and hidden units and the type of activation functions that should be used. In 

most cases, the design of a network will be subject to experience or 

repetitive tests using a different number of layers and hidden units. 

Evolutionary approaches for learning artificial neural networks have been 

explored for the purpose of tackling such problems.  

 

2.4.3 Evolutionary Artificial Neural Networks  

Yao (1999a) has described the introduction of an evolutionary learning 

approach into artificial neural networks at three different levels; namely, 

connection weights, network architectures, and learning rules. Connection 

weights could be evolved by utilising methodologies such as genetic 

algorithms. These algorithms offer a global search method for training the 

weights of the network and could help the problems of becoming being 

trapped in a local minima caused by gradient descent learning. Without 

human intervention, both the weights and the structure of artificial neural 

networks could be evolved automatically by evolving network architectures 
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using an evolutionary approach. The evolution of learning rules can be 

considered as a process of “learning how to learn” in artificial neural 

networks, where the adaptation of learning rules is attained through 

evolution. Please refer to Moriarty and Miikkulainen (1997), Yao (1999a), 

Miikkulainen (2007) and Yao and Islam (2008) for comprehensive surveys on 

evolutionary artificial neural networks. 

 

2.4.3.1 Evolving Connection Weights 

In artificial neural networks, there are two major phases in the training of 

the weights. The first phase is to decide on the representation of the 

connection weights, which is typically either binary strings or real-valued 

vectors; while the second phase is to decide the genetic operators to be used 

for the evolutionary process, in conjunction with the representation scheme. 

A typical evolutionary algorithm is illustrated in algorithm 2.6.  

 
1- Decode each individual (a chromosome represents all connection weights) in the current generation 

into a set of connection weights and construct a corresponding ANN with the weights. 
 

2- Evaluate each ANN by computing its total mean square error between actual and target outputs. 
Other error functions can also be used and problem-dependent. The higher the error, the lower the 
fitness. A regularization term may be included in the fitness function to penalize large weights. 
  

3- Select parents with higher fitness for reproduction. 
 

4- Apply search operators, such as crossover and/or mutation, to parents to generate offspring, which 
form the next generation of potential connection weights.  

  

Algorithm 2.6 A typical algorithm for evolving connection weights in 

evolutionary artificial neural networks(Yao 1999a). 

 

Real numbers are usually used to represent connection weights. However, 

early works in evolutionary artificial neural networks (Caudell and Dolan 

1989; Garis 1991) showed that binary strings can also be exploited to 
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represent the connection weights. In a binary representation, each 

connection weight is represented by a number of bits with a certain length. 

Moreover, in a binary representation, several encoding methods such as the 

uniform method or the exponential method can be employed to encode real 

valued weights into binary bits using various ranges and precisions. An 

important issue for binary representation is the tradeoff between the 

precision of binary representation and the length of the chromosome. If too 

few bits are used, problems of insufficient accuracy may arise. On the 

contrary, if too many bits are used the chromosomes become exceedingly 

long which leads to a loss of efficiency in the evolutionary algorithm (Whitley 

et al. 1990). As a measure to circumvent loss of precision in representation, 

real numbers are used to represent connection weights. In addition, by using 

a vector of real values in representing all the connection weights of a neural 

network, direct manipulation of the connection weights can be achieved. 

Perhaps a better way to evolve a population of real-valued vectors is to use 

evolution strategies or evolutionary programming that is more suited to 

optimisation problems with continuous values. If the representation is vectors 

of real numbers, a crossover operation only creates new combinations of 

current connection weights. However, mutation actually creates new values 

of connection weights that differ from the initial set of connection weights. 

Furthermore, mutation also avoids the problem of producing offsprings that 

are exactly the same as their parents. Successful applications using 

evolutionary programming or evolution strategies evolving connection 

weights with real-valued representations can be found in Porto et al. (1995), 

Fogel et al. (1995), Yao et al. (1996), Greenwood (1997), Sarkar and 
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Yegnanarayana (1997), Chellapilla and Fogel (2001), Tesauro (2002) and 

Fogel et al. (2004). 

 

2.4.3.2 Evolving Network Architecture 

 
Evolving artificial neural network architectures can be viewed as a search 

through a space of all possible network structures (connectivity and the 

activation function). Algorithm 2.7 shows a typical algorithm for evolving 

network architectures. The process stops when a satisfactory artificial neural 

network is found.  

1- Each hypothesis of network architecture in the current generation is encoded into chromosomes 
for genetic operations, by means of a direct encoding scheme or an indirect encoding scheme.  

 
2- Evaluation of fitness. Decode each individual in the current generation into architecture, and 

build the corresponding ANNs with different sets of random initial connection weights. Train 
the ANNs with a predefined learning rule, such as the Backpropagation algorithm. Compute the 
fitness of each individual (encoded architecture) according to the training results, for example, 
mean-square-error, and other performance criteria such as the complexity of the architecture, 
e.g., less number of nodes and connections preferred.  

 
3- Select parents from the population based on their fitness. 
   
4- Apply search operators to the parents and generate offspring, which form the next generation.  

  

Algorithm 2.7 A typical cycle for evolving network architectures in 

evolutionary artificial neural networks(Yao 1999a). 
 
 
 

A direct encoding scheme for network architectures specifies all the details 

of the architecture in a chromosome, i.e. every connection and node of the 

architecture (Whitley et al. 1990; Fogel 1993; McDonnell et al. 1994). 

Following the encoding of the network architecture into binary strings, the 

evolution of the population of encoded architectures is obtained by employing 

crossover and mutation operators. As mentioned in the previous section, 

crossover operations may lead to inefficiency in the evolution of network 
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architectures which shows itself in several ways. First, artificial neural 

networks, as described in section 2.4.1, are a distributed representation form 

of knowledge, that is, each node and connection weight of the network acts 

as a storage point for the knowledge of solving a problem. One single node or 

connection does not explain any useful knowledge about the complete 

problem. Instead, using a cluster of hidden nodes with a set of connection 

weights, are used to discover and extract certain features from the inputs in 

a way that is comparable to the brain which can be divided into different 

regions with specified functions. During the evolutionary process, crossover 

operators are more likely to obliterate these useful feature detectors than the 

mutation process. Secondly, crossover operators suffer from the negative 

effect resulting from a permutation problem. This happens when two artificial 

neural networks order their hidden nodes differently but still have equivalent 

functionality (Hancock 1992; Igel and Stagge 2002). In general, crossover is 

not used as the principal operator in most evolutionary artificial neural 

network applications (McDonnell and Waagen 1994; Heimes et al. 1997; 

Fang and Xi 1997; Yao 1997; Yao and Liu 1997b). Hancock (1992) and 

Likothanassis (1997) argued that crossover might be imperative for some 

problems. Stanley and Miikkulainen (2002) showed increased efficiency on 

benchmark Reinforcement Learning tasks using their method of crossover on 

different network topologies. Further research is required to understand the 

efficiency of crossover operators in evolving artificial neural networks. With 

regard to direct encoding of network architectures, one of the issues is the 

length of the chromosome. As the size of the network grows, the length of 

the chromosome increases thus reducing the efficiency of the evolutionary 
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algorithm. With an indirect encoding scheme, there is a tendency to decrease 

the length of the genotype representation of architectures and only some 

characteristics of the architecture are encoded (Kitano 1990; Harp et al. 

1990; Gruau 1994; Grönroos et al. 1999). For example, a parametric 

representation may only contain a set of parameters such as the number of 

hidden layers and the numbers of hidden nodes in each layer, assuming the 

networks are all feed forward multi layer perceptrons (Harp et al. 1990). 

Apparently, this greatly restricts the choice of potential network 

architectures. Development rule representation is another well-known 

indirect encoding scheme. It encodes development rules in chromosomes 

(Kitano 1990). These development rules specify certain primary building 

blocks in a network. The evolution of architectures is transferred to the 

evolution of development rules. The development rule representation can 

diminish the damaging effect of crossover although extra effort is needed 

during the encoding and decoding of chromosomes. However, development 

rule representation seems to be inefficient at evolving detailed connectivity 

patterns amongst individual nodes. Another downside of development rule 

representation is that it separates the evolution of architectures and the 

evolution of connection weights, which renders it inappropriate for the 

simultaneous evolution of architecture and connection weights. For more 

discussions on indirect encoding of network architectures, please refer to 

Moriarty and Mikkulainen (1997) and Yao (1999a). 
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2.4.3.3 Simultaneous Evolution of Architecture and Weights 

 
The evolution of network architectures, as a distinct process, from the 

evolution of connection weights is described in algorithm 2.10. This 

separation could give rise to noise problems in the fitness evaluation of 

individual architecture hypothesis (Yao and Liu 1997a). Random initialisation 

of connection weights, when the individual architectures are evaluated, is the 

first source of the noise due to the fact that different random initial weights 

may generate different training outcomes. The training algorithms used for 

the evaluation creates the second source of noise. Even with the same set of 

initial weights, various training algorithms may generate various training 

results. To address these problems, simultaneous evolution of both the 

architecture and weights is recommended. There have been a number of 

studies on evolving architectures and connection weights simultaneously. An 

evolutionary system called NEAT (Stanley and Miikkulainen 2002 and Stanley 

2006) was originally developed to solve difficult control and sequential 

decision tasks. NEAT is based on three principles that work together to 

efficiently evolve network topologies and weights. The first principle is 

homology: NEAT encodes each node and connection in a network with a 

gene. Whenever a structural mutation results in a new gene, that gene 

receives a historical marking. Historical markings are used to match up 

homologous genes during crossover, and to define a compatibility operator. 

Figure 2.7 shows A NEAT genotype to phenotype mapping example, while 

figure 2.8 shows the two types of structural mutation in NEAT. 
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Figure 2.7 A NEAT genotype to phenotype mapping example (Stanley 

and Miikkulainen 2002). A genotype is depicted that produces 

the shown phenotype. There are 3 input nodes, one hidden, one 

output node, and seven connection definitions, one of which is 

recurrent. The second gene is disabled, so the connection that it 

specifies (between nodes 2 and 4) is not expressed in the 

phenotype. In order to allow complexification, genome length is 

unbounded. 

 

 

Figure 2.8 The two types of structural mutation in NEAT (Stanley and 

Miikkulainen 2002). Both types, adding a connection and 

adding a node, are illustrated with the genes above their 

phenotypes. The top number in each genome is the innovation 

number of that gene. The bottom two numbers denote the two 

nodes connected by that gene. The weight of the connection, 

also encoded in the gene, is not shown. The symbol DIS means 

that the gene is disabled, and therefore not expressed in the 

network. The figure shows how connection genes are appended 

to the genome when a new connection and a new node is added 

to the network. Assuming the depicted mutations occurred one 

after the other, the genes would be assigned increasing 

innovation numbers as the figure illustrates, thereby allowing 

NEAT to keep an implicit history of the origin of every gene in 

the population.  



Literature Review 

 

30 
 

The second principle is protecting innovation. A compatibility operator is 

used to speciate the population, which protects innovative solutions and 

prevents incompatible genomes from crossing over. Finally, NEAT follows the 

philosophy that search should begin in as small a space as possible and 

expand gradually. Evolution in NEAT always begins with a population of 

minimal structures. Structural mutations add new connections and nodes to 

networks in the population, leading to incremental growth. Topological 

innovations have a chance to realise their potential because they are 

protected from the rest of the population by speciation. Because only useful 

structural additions tend to survive in the long term, the structures being 

optimised tend to be the minimum necessary to solve the problem. NEAT‟s 

approach allows fast search because the number of dimensions being 

searched is minimised. Figure 2.9 shows the matching up of genomes for 

different network topologies using innovation numbers.   

Another important part of artificial neural network architecture is the 

activation function. In a design described by White and Ligomenides (1993), 

node activation functions are evolved using sigmoid and Gaussian functions 

in different ratios. Node activation functions are evolved by setting 80% of 

the nodes in the initial population using a sigmoid function and using 

Gaussian function to set the remaining 20%. The evolution seeks to establish 

the optimal mixture between these two activation functions.  

 



Literature Review 

 

31 
 

 

Figure 2. 9 Matching up genomes for different network topologies 

using innovation numbers (Stanley and Miikkulainen 

2002). Although Parent 1 and Parent 2 look different, their 

innovation numbers (shown at the top of each gene) tell us that 

several of their genes match up even without topological 

analysis. A new structure that combines the overlapping parts of 

the two parents as well as their different parts can be created in 

crossover. In this case, equal fitnesses are assumed, so each 

disjoint and excess gene is inherited from either parent 

randomly. Otherwise the genes would be inherited from the 

more fit parent. The disabled genes may become enabled again 

in future generations: There is a preset chance that an inherited 

gene is enabled if it is disabled in either parent. 
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2.4.3.4 Evolving Learning Rules 

In addition to learning rules such as backpropagation for multi layer 

perceptrons, other types of learning rules for different types of artificial 

neural networks also exist, such as the Hebbian learning rule (Fausett 1994). 

In fact, we can assume any learning rules to be in a more general form as 

follows (Mitchell 1999):  

 
Wji (t+1) =  Wji (t) + ∆ Wji 

 
Where 

 
∆ Wji = ƒ (ai , oj ,  tj , wji) 

 

ai is the input to unit i. oj is the output from unit j. tj is the targeted output 

from unit j. wji is the current weight on the connection from i to j. We can 

assume the learning rule ƒ to be a linear combination of these variables. 

Examples of evolving learning rules can be found in Chalmers (1990) and 

Baxter (1992).  

 

2.5 COMPUTER GAME PLAYING 

 

Designing automated computer game playing programs has been of 

interest since the 1950s (Turing 1950; Samuel 1959), and is still of interest 

today, with successes such as Deep Blue in 1997 (Newborn 1997; Campbell 

et. al. 2002), which defeated Garry Kasparov, considered the best ever chess 

player. Game playing involves many important aspects of interest to artificial 

intelligence such as knowledge representation, search and machine learning. 

Traditional computer games programs use a knowledge based approach, 

where human knowledge about the game is encoded by hand into the 
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computer by means of an evaluation function and a database of opening and 

end game sequences. 

 

In 1954, Arthur Samuel developed a checkers player in an attempt to 

demonstrate that a computer program could improve by playing against 

itself. Samuel‟s program adjusted weights for 39 features (Samuel 1959, 

1967). Samuel used a form of what is now called “reinforcement learning” (to 

find more about reinforcement learning, please refer to Kaelbling et al. 1996;  

Mitchell 1997; Sutton and Barto 1998; Vrakas and Vlahavas 2008) to adjust 

these features, instead of tuning them by hand. Samuel discovered that the 

most important feature was the piece difference and the remaining 38 

features (including capacity for advancement, control of the centre of the 

board, threat of fork, etc.) varied in their importance. Due to memory 

limitations Samuel used only 16 of the 38 features in his evaluation function, 

swapping between them to include the remaining 22, which he called term 

(Samuel 1959, 1967; Fogel 2002). Two evaluation functions (alpha and beta) 

were used to determine the weights for the features. At the start, both alpha 

and beta have the same weight for every feature. Alpha weights were 

modified during the execution of the algorithm. Beta values remained static. 

The process gave an appropriate weight to each feature when summed 

together. Each leaf node in the game tree was evaluated using this 

evaluation function. This process represents one of the first attempts to use 

heuristic search methods in searching for the best next move in a game tree. 

Samuel (1959) used minimax with three ply search and a procedure called 

rote learning. This procedure was responsible for storing the evaluation of 

different board positions in a look-up table for fast retrieval (Look-Ahead and 

http://www.cs.cmu.edu/~tom
http://www.cs.cmu.edu/~tom
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memorization). Samuel (1967) improved the minimax search with alpha-beta 

pruning that incorporated a supervised learning technique to allow the 

program to learn how to select the best parameters to be calculated in the 

evaluation function. In July 1962 Samuel‟s program played against Robert 

Nealey, described (incorrectly) as a former Connecticut checkers champion, 

and one of the nation‟s foremost players. Samuel‟s program defeated Nealey, 

the first time a computer program had defeated a state champion (although 

he earned this title four years later). At that time it was considered a great 

success and a significant achievement in machine learning. In fact this was 

the only win that Samuel‟s program managed against Nealey, or any other 

players, and there is some controversy about how strong a player Nealey 

really was. Samuel claimed that his program focused on the problem of 

having a machine learning program, rather than be told how to play, but in 

fact he used 39 features (although he wanted to get away from that 

requirement), which some would argue is utilising human knowledge. 

However, the historical importance of this work cannot be underestimated as 

it set the challenge which Fogel was later to accept, and to answer.   

In 1989, Jonathan Schaeffer and his colleagues at the University of 

Alberta, designed a checkers program called Chinook (Schaeffer et al. 1996; 

Schaeffer 2009), which later became the world champion at checkers. 

Schaeffer‟s initial motivation was to solve the game. However, this was a 

challenging goal as there are approximately 5*1020 different positions to 

evaluate (Schaeffer 2009). A further motivation was to produce the world‟s 

best checkers player. This was done by using an evaluation function, which 

comprises several features, all of them based on human expertise, including 
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grand masters. The main feature in Chinook‟s evaluation function is the piece 

count, where each piece on the board takes 100 points. The next most 

important feature is the king, which takes a value that is greater than a 

regular checker by 30 percent, except when the king is trapped (a trapped 

king cannot move because it will be taken by the opponent), when it takes 

the same value as a regular checker. Another feature that is important to 

Chinook‟s evaluation function is the runaway checker (a clear path for a 

checker to become a king, without any obstacles), which takes a value of 50 

points in addition to its previous value, and subtracts three points for each 

move that is required to advance the checker to be a king. There are other 

additional features that are included in the evaluation function, including the 

“turn”, “mobile kings” and the “dog hole” (a checker that is trapped by its 

opponent and cannot be moved). Each one of those features was assigned a 

different weight indicating its importance. The summation of each term 

provided an overall assessment of the board for that particular game state, 

which enabled different game states to be compared. Initially, Schaeffer gave 

initial values to the weights and then hand tuned them when he found an 

error (e.g. an obviously incorrect move being made) or when a Chinook 

move led to position that led to a losing position. Chinook also utilised 

opening and end game databases to further enhance its ability. Initially 

Chinook‟s opening game database comprised of 4,000 sequences. Later it 

contained more than 40,000. The end game database contained all the 

possibilities that lead to a win, a draw or a loss, for a given number of pieces 

left on the board. The final version of Chinook‟s end game database 

contained all six piece end sequences, allowing it, together with the ability to 
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determine the right move, to play perfectly from these positions. In 1989 

Chinook, with a four-piece end game database (Schaeffer et al. 1992), won 

the computer Olympiad. Later, with its final six-piece end game database, 

together with its evaluation function modified by a fudge factor (Schaeffer et 

al. 1993; Schaeffer 2009), it finished in second place to Marion Tinsley 

(recognized as the best checkers player who ever played the game) in the 

U.S. National Checkers Championship held in 1990. After a further sequence 

of matches in 1994 between Chinook and Tinsley, Chinook became the world 

man machine checkers champion (after Tinsley‟s resignation due to health 

problems, he died the following year) (Schaeffer 2009). In 1996 Chinook 

retired with a rating of 2,814. The building of the open/end game databases 

ultimately led Schaeffer to achieve his initial motivation (solving the game of 

checkers) (Schaeffer et al. 2007). Perfect play by both sides leads to a draw. 

Neurogammmon (Tesauro 1989) is computer program that learns how to 

play backgammon. Neurogammon uses a multilayer feed forward neural 

network that was trained on a large data set obtained from human experts. 

The training was carried out using a backpropagation neural network. 

Neurogammon used one network to make a doubling cube and another six 

networks that made ordinary moves. Each network is fully connected with 

one hidden layer. The input to the network was an initial board position and 

this board position also fed directly to the final position. The output was the 

experts‟ decision that judged the best move to make, given initial board 

positions. “Comparison paradigm”, (Tesauro 1989), was used to teach the 

network how to favour moves that were made by the expert by giving it a 

score higher than that assigned to other moves. Neurogammon won the First 
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Computer Olympiad (held in London), with a record of five wins and no losses 

(Tesauro 1989). However, Neurogammon lost to a human expert, Ossi 

Weiner from Germany, with the final score being 7-2. Weiner commented 

that Neurogammon played like a human and only made a few mistakes, 

which was considered as a significant accomplishment for the program.  

 

During the mid 1990s, IBM produced Deep Blue (Campbell et al. 2002) in 

an attempt to create a chess program that was capable of beating the world 

champion at that time. The history of chess computer programs, and early 

works of Deep Blue, is described in (Hsu et al. 1990; Goetsch and Campbell 

1990; Newborn 1997; Heinz 2000; Hsu 2002). Deep Blue had 30 processors 

(Hsu 1999) that were able to carry out a parallel search, and could evaluate 

up to 200 million chess positions per second (Clark 1997). Deep Blue‟s 

evaluation function comprised about 8,000 different features. Each feature 

had a weight, which was initialised by the evaluation function generator 

(some features had static values). The evaluation function can be calculated 

by summing up those weights. The opening database in Deep Blue consisted 

of 4,000 positions that had been manually entered according to human 

grandmasters. A new technique, called “Extended Book” (Campbell 1999) 

was also used in Deep Blue, which was capable of extracting useful 

knowledge from over 700,000 grandmaster chess games. This information 

directed Deep Blue in its opening moves. The extended book evaluation 

function includes a number of factors. Among these were “The number of 

times a move has been played”, “The relative number of times a move has 

been played”, “Strength of the players that play the moves”, “Recentness of 
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the move”, “Results of the move”, “Commentary on the move” and “Game 

moves versus commentary moves”. These factors were combined in a 

nonlinear function to produce a scalar output value (as high as half value of a 

pawn). The end game database of Deep Blue consists of all positions with 

five or fewer chess pieces on the board, which is stored in a database as one 

bit per position (either lose or not). In order to keep control of the time, 

Deep Blue used two types of time settings, which had to be set before each 

search. The first one is the normal time that is set to be the time remaining 

to the next time control divided by the moves remaining, while the second 

time setting is the panic time, which is one third of the remaining time.  

After losing against Gary Kasparov (World Chess Champion) in 1996, Deep 

Blue defeated Kasparov in a six-game match in 1997 to become the first 

computer program to defeat a world chess champion (note that Chinook had 

performed a similar feat for checkers three years earlier). King (1997) 

provides more insights to the 1997 match.      

In 2006, a group of researchers presented MoGo (Gelly et al. 2006; Gelly 

and Wang 2006), a computer program that played the game of Go. The 

design of MoGo focused on two main elements. The first was to make a 

modification to the UCT (Upper bound Confidence for Tree) algorithm (Kocsis 

and Szepesvari 2006), while the second focused on using techniques such as 

parallisation, pruning and dynamic tree structure (Coulom 2006). The design 

of MoGo consisted of two phases; (1) the design of the tree search and, (2) a 

random simulation. The tree is created dynamically by adding one node after 

each simulation phase (used to evaluate the whole tree created so far). In 
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August 2006 MoGo was ranked top of 142 programs to play Go according to 

the classification of 9x9 Computer Go Server. MoGo also won all the 

tournaments which were held by the Kiseido Go Server during October and 

November 2006. The tournaments played matches on 9x9 and 13x13 Go 

boards. MoGo with Monte Carlo tree search reached the level of 3 Dan in 

Taiwan‟s Computer Go Tournament, 2008 (Lee et. al. 2009).      

One of the criticisms of traditional knowledge-based approaches for 

developing game-playing machine intelligence is the large amount of pre-

injected human expertise that is required for the computer program, 

together with the lack of learning capabilities of these programs (Fogel 2000; 

Fogel 2002). The evaluation functions and opening and end game databases 

described above are provided by game experts. In this sense, a computer 

game‟s intelligence is not gained by actually playing a game, but rather 

comes from the pre-designed evaluation function and a look up database of 

moves. Moreover, this intelligence is not adaptive. It could be argued that 

humans read books and watch other people playing a game before they 

actually start playing themselves. Humans also improve their skill through 

trial-and-error. New features and strategies for playing a game can be 

discovered by new players rather than grand masters, while old features 

could be viewed as worthless and old strategies are discarded. Humans also 

adapt their strategies when they meet different types of players, under 

different conditions, in order to accommodate their special characteristics. 

We do not see such adaptations and characteristics in the knowledge-based 

computer game programs. Fogel (2002) commented on this phenomenon in 

computer game-playing: 
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 “… To date, artificial intelligence has focused mainly on creating 

machines that emulate us. We capture what we already know and 

inscribe that knowledge in a computer program. We program 

computers to do things – and they do those things, such as play 

chess, but they only do what they are programmed to do. They are 

inherently “brittle”. … We’ll need computer programs that can teach 

themselves how to solve problems, perhaps without our help. …”  

The following computer games are based on self learning techniques 

rather than the pre-injection of human expertise. 

In 1998 Norman Richards and his colleagues from the university of Texas 

produced a self learning program (Richards et al. 1998) that was capable of 

playing the game of Go on small boards (9x9), without any injection of prior 

knowledge. This program used the SANE (Symbiotic Adaptive Neuro-

Evolution) method (Moriarty and Miikkulainen 1998; Lubberts and 

Miikkulainen 2001) to evolve neural networks to be able to play Go on simple 

boards. The design of the neural network consisted of a three (two input and 

one output) layer feed-forward network with evolvable connection weights. 

The input units were used to indicate whether the black or white stones were 

present, while the output unit indicated whether a move is good or not (a 

positive value reflects a good move, while a negative or zero value indicates 

a bad move). The evaluation function of SANE used Chinese scoring by 

counting all the stones of the same color, together with all locations 

completely surrounded by stones of that color and the difference in the 

scores between SANE and its opponent is summed over N games and used 
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as a fitness level for the networks. SANE was tested by playing against Wally 

(written by Bill Newman), on a 5x5 board, SANE needed only 20 generations 

to defeat Wally, while it needed 50 generations on a 7x7 board. On a 9x9 

board, SANE needed 260 generations.  

     

Blondie24 (Fogel 2002) represents an attempt to design a computer 

checkers program, injecting as little expert knowledge as possible. 

Evolutionary neural networks were used as a self-learning computer 

program. The neural network used for a particular player provided the 

evaluation function for a given board position. Evolution strategies made 

these networks, which acted randomly initially (as their weights were 

initialised randomly), gradually improve over time. The final network was 

able to beat the majority (>99%) of human players registered on 

www.zone.com at that time. Blondie24 represents a significant achievement, 

particularly in machine learning and artificial intelligence. Although Blondie24 

does not play at the level of Chinook (Schaeffer 2009), this was not the 

objective of the research; but rather to answer the challenges set by Samuel 

(1959, 1967) and also by Newell and Simon (two early AI pioneers). The 

next section (section 2.6) provides more details about the implementation of 

Blondie24 and discusses the results along with the perceived shortcomings. 

TD-Gammon (Robertie, 1992; Tesauro 2002) represents a first attempt to 

produce a self learning computer program that is able to play a game of 

backgammon to the level that is competitive with human experts. TD-

Gammon is a neural network based computer program that is able to teach 

itself how to play the game of backgammon by playing against itself starting 

http://www.zone.com/
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from completely random initial play. TD-Gammon used multilayer perceptron 

neural networks, which takes a sequence of board positions from the start, 

until the end (one side succeeds in removing all their pieces) and produces 

an output that represented the network‟s estimation about how good is that 

board position. No features were encoded in the neural network during 

training and the network was used to select the best move for both sides 

(learning from the results of playing against itself). TD-Gammon contained 

160 hidden nodes and performed a three-ply search. It was trained for over 

six million self play games (Tesauro 1992, 1995). TD-Gammon has been 

tested against many human players during its different versions, with 

different modifications, and was shown to be very successful. TD-Gammon 

was also shown to be able to play better against human experts than 

Neurogammon (Tesauro 2002). 

 

Blondie25 (Fogel et. al. 2004) (a development of Blondie24 but now for 

chess), was an attempt to produce a self learning evolutionary chess 

program that can learn how to play the game of chess by playing against 

itself, injecting as little expert knowledge as possible. Blondie25‟s 

implementation worked as follows: The chessboard was represented as a 

vector of length 64, where each component in the vector represents a board 

position. Components in the vector could take values from {-K, -Q, -R, -B, -

N, -P, 0, +P, +N, +B, +R, +Q, +K} where 0 represented an empty square 

and the variables P, N, B, R, Q,  and K represented material values for 

pawns, knights, bishops, rooks, and the queen and king, respectively.  The 

sign of the value indicated whether or not the piece in question belonged to 
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the player (positive) or the opponent (negative). Three fully connected 

artificial feedforward neural networks were used, each one with 16 inputs, 10 

hidden nodes, and a single output. The three neural networks focused on the 

first two rows, the back two rows and the centre of the chess board as shown 

in figure 2.10 (Fogel et. al. 2005). To start the evolutionary process, 20 

computer players were initialised with the values 1,3,3,5,9 and 10,000 for P, 

N, B, R, Q and K respectively (Fogel et. al. 2005). Each player played 10 

games (five as white and five as black) against 10 randomly selected players 

from the same population and according to their scores (+1 for win, 0 for 

draw and -1 for lose) the 10 players which scored more points were selected 

and the others were killed off. The selected players were mutated to produce 

10 offspring. The best player from the last generation was selected to be 

Blondie25. Games were played using an alpha beta search with a four ply 

depth. Blondie25 was tested against many popular chess programs (Fogel et. 

al. 2006) and showed success in defeating Fritz 8, ranked number 5 in the 

world at that time. Also Blondie25 defeated a human master, ranked 2301 at 

that time. Blondie25 itself is ranked at about 2640. 
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Figure 2.10 The three chess board positions (Fogel et al. 2004). 

 

We can find many other studies and applications in game playing in 

recognition of intelligence as an evolutionary process, such as Turing (1950), 

Fogel et al. (1966), Axelrod (1987), Fogel (1992), Fogel (1993), Kendall and 

Hingston (2004) for the Iterated Prisoner‟s Dilemma, Moriarty and 

Miikkulainen (1995) for the game of Othello, Pollack and Blair (1998) for the 

game of Backgammon, Richards et al. (1998) and Kendall et al. (2004) for 

the game of Go, and Kendall and Whitwell (2001), Baxter et al. (2001), 

Stanley et al. (2005) for Nero and Nasreddine et al. (2006) for Chess 

together with Lucas and Kendall (2006) for various computational intelligence 

methods that can be used for various games.  
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2.6 BLONDIE24 

 
In 2000, an evolutionary algorithm was presented by David Fogel which 

was capable of playing the game of checkers, injecting as little expert 

knowledge as possible. By solely using the number, type and positions of 

pieces on the checkers board, the evolutionary program utilises feed forward 

artificial neural networks to evaluate alternative positions in the game. Fogel 

called his evolutionary program Blondie24 (Fogel 2002). Blondie24 is a 

checkers program that is capable of learning how to play checkers to a level 

close to that of human experts. In comparison, the major difference between 

Blondie24 and other traditional game-playing programs is in the employment 

of the evaluation function (Chellapilla and Fogel 2001; Fogel and Chellapilla 

2002). In traditional game-playing programs, evaluation functions usually 

comprise important features derived from expert human techniques for 

generating good moves. Hand tuning is used to alter the weighting of these 

features. In Blondie24, the evaluation function is an artificial neural network 

that only knows the number of pieces on the board, the type of each piece 

and their positions; no other inputs such as human experience about the 

techniques of the game, are pre-programmed into the neural network. 

 

2.6.1 Blondie24 Implementation  

 

 

As mentioned above, the core feature in the design of Blondie24 is to 

make the program learn, through self play, how to play checkers. This is in 

direct contradiction of an alternative which is to preload it with all the 

information about how to make good moves and avoid bad ones (Chellapilla 

and Fogel 2000; Fogel 2000). The design of Blondie24 program consists of 
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two main modules: The artificial neural network and the checkers engine 

module (Chellapilla and Fogel 1999, 2000). Each designed module consists of 

sub-modules that are designed to achieve certain tasks. 

 

2.6.1.1 The Artificial Neural Network Module  

This module concerns the design of the Evolutionary Artificial Neural 

Network (EANN) that will be used as an evaluation function for the current 

checkers board position. The EANN takes a vector of length 32 as input, with 

each element representing an available position on the checkers board 

(checkers is only played on half the available squares on an 8X8 board) and 

produces a scalar output ranged [-1, +1]. A value of +1 represents the value 

of a winning board and -1 represents the value of a losing board. Values 

between -1 and +1 demonstrate how good the board is at this particular 

point (the higher the better). Components in the input vector take elements 

from {-K, -1, 0, +1, +K}, where 0 corresponds to an empty square, 1 is the 

value of a regular checker, and K is the number assigned for a king. Initially 

K was set to 1.5 (Fogel 2002). The sign of the value indicated whether or not 

the piece belonged to the player (positive) or the opponent (negative). The 

evaluation function was structured and implemented as a feed forward neural 

network with an input layer, three hidden layers, and an output node. The 

second and third hidden layers (comprising 40 and 10 units respectively) and 

the output layer had a fully connected structure. The first hidden layer 

connections were specifically designed to capture spatial information from the 

board. The 8x8 checkers board was converted to a 1 x 32 vector as input to 

the first hidden layer, which consisted of 91 pre-processing nodes which 
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captured the spatial characteristics of the board. These 91 nodes covered a 

variety of n x n squares overlapping subsections of the board. The reason to 

choose these n x n subsections was to provide spatial adjacency or proximity 

information such as whether two squares were neighbours, or were close to 

each other, or were far apart. To the first 36 hidden nodes in the first hidden 

layer, all the 36 possible 3 x 3 square subsections of the board were supplied 

as input. The following 25 4 x 4 square subsections were assigned to the 

next 25 hidden nodes in that layer. The 16 5 x 5 square subsections were 

assigned to the next 16 hidden nodes. The 9 6 x 6 square subsections were 

assigned to the next 9 hidden nodes. The 4 7 x 7 square subsections were 

assigned to the next 4 hidden nodes. Finally the entire board (8 x 8 square 

subsections) was assigned to the last hidden node in that layer. All possible 

overlapping squares of sizes 3 to 8 were given as inputs to the 91 nodes of 

the first hidden layer. This made the neural network able to produce features 

from these entire board subsets that could then be processed in subsequent 

hidden layers (of 40 and 10 hidden units). Figure 2.11 illustrates the general 

structure of the neural network. Any inclusion of an expert‟s experience was 

avoided in the design of Blondie24, which was attempting to achieve 

Samuel‟s challenge (Fogel 2002) concerning the level of play that could be 

obtained simply by using evolution to extract linear and nonlinear features 

about the game of checkers and to optimize the interpretation of those 

features within the neural network without using any human expertise, 

making the computer able to learn these features on its own. The only 

exception was achieved by providing the neural network with a piece 

differential that connected directly to the output node (Chellapilla and Fogel 
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1999; Fogel 2002). This originated from the fact that even novice players 

would recognize which side had more pieces.   

      

Figure 2.11 EANN architecture(Fogel 2002). 
  
 
 

The nonlinearity function at each hidden node and output node was the 

hyperbolic tangent (Fogel 2000 and Chellapilla and Fogel 2001) (bounded by 

±1), which can be implemented as follows: 

 

Activation = (Exp(value) - Exp(-value)) / (Exp(value) + Exp(-value))   

Where, value is the summation of the dot product between the inputs and 

corresponding weights in the node. 

 
2.6.1.2 Checkers Engine 

 

The design of this module consists of three sub-modules (Fogel 2002). The 

first, and most important, is the actual checkers playing sub-module which is 

used to record all the information about the board and the checkers pieces. It 
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also indicates legal moves (ordinary moves, jump moves). The checkers 

engine requires a search algorithm that generates a tree of all valid moves at 

any given board positions and then applies the neural network module to 

evaluate the leaf nodes and then, by using alpha-beta cutoff, propagate 

these values back up the search tree in order to choose the best available 

move. Blondie24 used depth first search to expand the search space to a 

certain depth (usually 4 or 6). For each move, the search can be made by 

examining the checkers board from the top left corner taking into 

consideration every available piece on board. If a valid move is found then 

the search is extended by examining the opponent‟s valid moves by using the 

same process. This process continues until the maximum play level is 

reached. The search space is extended every time a jump move is 

discovered, until no further jumps are available. The search stops below any 

discovered jump move and no further expansion of other valid moves is 

performed. This was done to adhere to the rules of checkers. The checkers 

Playing Sub Module takes two players red and white (two EANNs, i for red 

and j for white) and plays checkers in the following way: the Search sub 

module is called to produce a search space tree to the current depth d. The 

leaf nodes are then evaluated using the EANN currently being used. These 

values are propagated back to the root of the tree utilising the Alpha-Beta 

Pruning Sub Module, in order to decide the best move to play.  

 
2.6.2 The Evolutionary Process  

The evolutionary algorithm is started by initialising a population of 30 

neural networks Pi, i= 1, ..., 30. These networks are called strategies 
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(Chellapilla and Fogel 1999, 2001). Each strategy is created randomly by 

assigning weights and biases in the range [-0.2, 0.2]. An associated self-

adaptive parameter vector si, i = 1, ..., 30 is set for each neural network. 

These vectors are initially set to 0.05 to be consistent with the range of 

initialisation (Chellapilla and Fogel 1999, 2001). The associated self-adaptive 

parameter is used to control the step size of the search for mutated 

parameters of the neural network. All the neural networks are put into a 

competition with one another. Five games of checkers are played by each 

neural network as a red player with points being received for their resulting 

play. The five opponents (playing as white) are randomly selected to play 

against each red player. In each game, the red player and the white 

opponent scored -2, 0, or +1 points depending on whether it lost, draw, or 

won the game, respectively. A draw was declared after 100 moves for each 

side. The reason to choose these values was to try to make the player avoid 

losing as much as possible. In total, there were 150 games per generation. 

After all the games were complete, Blondie24 retains the 15 neural networks 

that received the highest points total and uses them as parents for the next 

generation. The other remaining 15 neural networks, with the lowest scores, 

were killed off. To start the next generation, each parent of the 15 selected 

neural networks generated an offspring neural network with all weights and 

biases being mutated. Specifically, for each parent Pi, i = 1, ..., 15 an 

offspring P‟i, i = 1, ..., 15, was created by:  

 

si(j) = si(j)exp( tNj (0,1) ), j = 1, ..., Nw                                                                  (2.3) 

wi(j) = wi(j) + si(j)Nj(0,1), j = 1, ..., Nw                                          (2.4) 
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where Nw is the number of weights and biases in the neural network (here 

this is 5046), t= 1/sqrt(2sqrt(Nw)) = 0.0839, and Nj(0,1) is a standard 

Gaussian random variable resembled for every j. The offspring king value K‟ 

was obtained by: K‟ = K + C, where C was chosen uniformly at random from 

{–0.1, 0, 0.1}. With the range of K being [1.0, 3.0] (Chellapilla and Fogel 

1999; Chellapilla and Fogel 2000; Fogel 2000). 

 

2.6.3 Results 

The evolutionary process was iterated for 840 generations, which took 

about six months. The best evolved neural network was used as the final 

player, and called Blondie24. It played against human opponents on 

www.zone.com. The standard checkers system rating, which is the same as 

used for chess, was used to rate the players at this site. Initially, each player 

has a ranking of R0=1600. The score for each player can be updated 

depending on the result of each game and the rating of the opponent as 

follows:  

Rnew=Rold+C(outcome-W)                                                                   (2.5) 

where )101(1 )400/)(( RoldRoppW  , Ropp is the opponent‟s rating, and C= 32 for 

ratings less than 2100, C = 24 for ratings between 2100 and 2399, and C = 

16 for ratings at or above 2400 Outcome = {1 if Win, 0.5 if Draw, 0 if 

Loss}(Chellapilla and Fogel 1999; Chellapilla and Fogel 2001). 

Blondie24 played 165 (84 as red and 81 as white) games against human 

players on www.zone.com. These 165 games were played over a two month 

period. No opponent was told that they were playing against a computer 

http://www.zone.com/
http://www.zone.com/
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program. When playing against players ranked below 2000 (in 

www.zone.com) Blondie24 won, lost, drew; 84, 20, 11 games respectively. 

However, when playing against expert opponents rated between 2000 and 

2200, Blondie24 won 10, 12 drew and lost 22 games. Figure 2.12 and figure 

2.13  show that after 165 games, Blondie24‟s average rating was 2045.85 

with a standard deviation of 33.94, which put Blondie24 in the top 500 of the 

registered players on zone.com (better than 99.61% of the players 

registered on that website) at that time. Blondie24 was also tested by playing 

against Chinook (current world champion checkers program rated 2814) at 

the novice setting and won.  

 

 

 

 

 

Figure 2.12 Blondie24 rating after 165 games on zone.com 

(Chellapilla and Fogel 2001). 

 

 

 

 

 
 
 

Figure 2.13 Blondie24 Performance after 165 games on zone.com 

(Chellapilla and Fogel 2001). 
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2.6.4 Discussion  

Blondie24 represents a milestone in evolutionary learning but the evolution 

did not allow for the end product to learn any further (i.e. learning was only 

exercised in the evolution phase and no learning took place in the playing 

phase). This makes Blondie24 incapable of adapting itself when interacting 

with human players. Harley comments on this fact in his book review (Harley 

2002):  

 

“… An interesting point is that the end product which looks intelligent 

is Blondie, yet she is not in fact the intelligence. Like the individual 

wasp, Blondie is fixed in her responses. If she played a million 

games, she would not be iota smarter. In this sense, she is like Deep 

Blue. … Perhaps a better example of intelligence would be … a 

human, who can adapt her behavior to any number of new 

challenges…” 

 

To be more accurate, the creation of Blondie24 is to be considered as a 

learning process (achieving Samuel‟s challenge (Samuel 1967) but Blondie24 

itself is unable to learn from its environment (Kendall and Su 2007). 

  

2.7 INDIVIDUAL AND SOCIAL LEARNING  

 

Inspired by Su (2005), this section will present individual and social 

learning in the context of game playing. In these discussions, the structure of 

individual and social learning in an imperfect evolutionary system will 

particularly be focused on. According to Su (2005), an imperfect evolutionary 
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system is “a system where intelligent entities optimise their own utilities with 

the resources available whilst adapting themselves to the new challenges 

from an evolutionary imperfect environment”. To develop an imperfect 

evolutionary system, an integrated concept of individual and social learning 

has been employed. Four blocks participate in the formation of an imperfect 

evolutionary framework; namely, the imperfect environment, the imperfect 

individuals, individual learning mechanism and social learning mechanism. 

Adapted from Su (2005), brief descriptions of each of these blocks are stated 

below: 

 
• The Imperfect Environment 
 

- This is pivotal for the implementation of the imperfect evolutionary 

systems. The environment is made available by supplying 

information and knowledge for survival as well as acting as medium 

for evolution.  

 

• The Imperfect Individuals 
 

- Through individual learning, the imperfect individual exploits the 

available resources. Utilising social learning process, the individual 

attracts new information from the imperfect environment and gains 

better information and knowledge.  

 

• Individual Learning Mechanism 

 

- An evolutionary process where the individual optimises its own 

utilities. 
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• Social Learning Mechanism 

 

- An evolutionary process where there is a process of learning from 

each other amongst all participants of an imperfect environment. 

Alongside, the information and knowledge distribute broadly within 

the imperfect evolutionary system. 

 

In a model described in (Kendall and Su 2003), a stock market was used 

as a problem domain to evaluate the imperfect evolutionary systems. Here, 

an integrated individual and social learning mechanism was utilised by stock 

traders, to learn how to trade the stocks. Figure 2.14 shows a model of 

multi-agent based simulated stock market (Kendall and Su 2003). 

 
                       

Figure 2.14 Model of a multi-agent based Simulated Stock Market 

(Kendall and Su 2003). 
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The general model is as follows (based on Figure 2.14 adapted from 

Kendall and Su 2003): 

 

1. There are 50 traders before trading starts. 

 

2. There are 20 indicators, each is assigned with value 1, and there are zero 

trading strategies in the central pool. Each trader selects a random set of 

indicators as inputs to their trading models. 

3. Each trader generates 10 different artificial neural network models for 

forecasting based on selected indicator(s). These ten models may have 

different network architectures, but they use the same set of indicators 

selected by the trader. The aim is for the trader to evolve models from 

these ten by the means of individual learning. 

4. The experiment is divided into 30 intervals where the total time span is 

3750 trading days. Each interval has 125 days (6-month trading). 

 

5. Each 125-day trading is divided into 25 intervals. At the end of individual 

learning (after 5 days for each interval), evolve the neural networks using 

EANNs with evolutionary programming. 

 

6. Social learning occurs at the end of 125-day trading, where each trader 

has an opportunity whether to copy a better strategy from the central pool 

or publish its own strategy into the central pool. 

 

7. The system enters the next interval after social learning finished and 

repeat steps 5 and 6.  
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Individual learning occurs during every 125-day trading period. Each 

trader builds their 10 prediction models based on the selected indicators. 

These ten models evolve using evolutionary programming. The general 

algorithm for individual learning is as follows (adapted from Su 2005): 

• Select a neural network to be eliminated. 

• Select a neural network for mutation using roulette wheel selection. 

• Decide number of connections to be mutated, m, where m is 

 mparentoffsbring mm                                                                             (2.6) 

Where, j is a random Gaussian number with mean of zero and standard deviation of 0.1. 

 
• set i = 0. 

• While (i < m) 
 
– Select the connection randomly. 

– weight = weight + 〉w, where 〉w is a random Gaussian number with mean zero and standard 

deviation of 1, and 〉w is also generated a new for each mutation. 

– i = i + 1. 

• With 1/3 probability, add a hidden node and randomly generate new connections. 

• With 1/3 probability, delete a hidden node and delete all connections to it. 

• Replace the network to be eliminated with the mutated neural network.  
 

 

All traders enter social learning at the end of 125-trading day. At this stage, all traders compare 

their performance based on their self-assessment, where trader i rate of profit (ROP) in percentage 

is calculated using the following equation: 

 

100
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Where, 
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- Wt is the value for trader’s current assets (cash + shares). 

- Wt−5 is the value of trader’s assets one week before. 
Traders are ranked from 0 to 49 based on their ROP for the previous 125- 

days trading (six months): 

49
1

ii
peer

R
S                                                                                             (2.8) 

 
Where, 
 

- Ri is the rank of trader i in the range of [0, 49] (0 indicates highest rank with greatest 

ROP).  

 
 
The score from equation 2.8 shows trader i’s performance compared to other traders. The 

following equation is used to calculate the performance of each trader for the past six months. 

 

100

PROROP
Si

self


                                                                                     (2.9) 

 
Where, 
 

- ROP is rate of profit for the current six months trading. 

- ROP’ is rate of profit for the previous six months. 
 

 
 
Based on equations 2.8 and 2.9, the overall assessment for trader i is as in the following 

equation 
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1
                                                                      (2.10) 

  

Algorithm 2.8 Individual Learning (Su 2005). 

 

 

The activities in social learning are selected based on the normalisation on 

the overall assessment where they are normalised between 0 and 1. Social 

learning algorithm based on normalised value is as follows: 
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1. If normalised value is 1 and trader is not using a strategy drawn from the pool, 

• Publish the strategy into the pool and use the same strategy for the next 125-day trading. 

 
2. If normalised value is 1 and trader is using a strategy drawn from the pool, 

 
• Do not publish the strategy into the pool but update the strategy’s score in the pool in the 

pool using their six-month ROP. 

 
• Use the strategy for the next 125-day trading. 

 
3. If normalised value is less than 0.9, trader has two options:  
 

a-  With 0.5 probability, replace the current strategy with a selected strategy from the pool. 

The roulette wheel selection is used to select the better trading strategy from the pool and 

use this copied strategy for the next six-month trading. 

 
b- Or, with 0.5 probability, discard the current strategy and select another set of indicators as 

inputs, build 10 new models and use these models for the next 125-day trading. 

 
4. If normalised value is between 1 and 0.9, 
 

• The trader can use the same strategy for the next 125-day trading. 
  

Algorithm 2.9 Social Learning (Su 2005). 

 

Results show that trading strategies were successful when integrating 

individual and social learning. The trader could control the purchase-sell 

timing, hence build wealth quicker. The work of (Kendal and Su 2003) 

showed that individual learning helped traders to learn to trade while the 

search for better information and knowledge in the global space by traders 

was achieved through social learning. 

 

Su continues her work in (Su 2005), which was published in (Kendal and 

Su 2004, 2007), where the integration of individual and social learning was 

implemented on an imperfect evolutionary market. In (Kendal and Su 2003), 
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the 20 market indicators were static during the trading period which, in fact, 

does not accurately reflect real life. Therefore, new indicators were 

introduced into the simulated stock market and the artificial traders learned 

how to use them (Kendal and Su 2004, 2007). They started with ten 

indicators in the central pool, with another ten indicators being gradually 

introduced into the simulated stock market. This model used the same 

mechanism of individual learning as in (Kendal and Su 2003); however some 

modifications were applied to the social learning algorithm as follows: 

 
1. If the normalised value is 1 and trader is not using a strategy drawn from the pool, 

• Publish the strategy into the pool and use the same strategy for the next 125-day trading. 

 
2. If the normalised value is 1 and trader is using a strategy drawn from the pool, 

• Do not publish the strategy into the pool but update the strategy’s score in the pool. 
 

• Use the strategy for the next 125-day trading. 
 

 
3. If the normalised value is less than 0.9, trader has two alternatives: 
 

a- Replace the current strategy with a selected strategy from the pool, or 
 

b- Discard the current strategy and select another set of indicators as inputs, build 10 new 

models and use these models for the next 125-day trading. 

 
4. If the normalised value is between 1 and 0.9, the trader has two alternatives,  

• With 70% probabilities, the trader can use the same strategy for the next 125-day trading, 

or 

• With 30% probabilities, the trader can choose to use a new set of indicators.  
  

Algorithm 2.10 Modified Social Learning (Kendal and Su 2007). 

 

 

Three types of studies were carried out in (Kendal and Su 2004, 2007). 

The first was about the adaptability and creativity of environmental variables, 
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in the imperfect environment, to the new traders. As initial settings, the first 

10 indicators were introduced to the imperfect evolutionary market. The 

remaining 10 indicators were inserted into the market at a frequency of two 

indicators per every 125-day trading. During social learning, poor traders, 

who opt to replace their models with a new indicator, will have a dual chance 

to copy from both the central pool as well as the newly injected indicators to 

the market. The results demonstrated that there has been poor performance 

of the traders in dynamic environment variables in comparison to the traders 

in (Kendal and Su 2003).  

 

The second study was on individual learning. The purpose was to examine 

the time needed by the traders to learn, by individual learning, and the 

frequency at which social learning is should take place. It is worth mentioning 

that there are two types of individual learning. Fast individual learning (every 

5 trading days) and slow individual learning (every 25 trading days). 

Similarly, there are two types of social learning. Fast and slow social learning, 

every 125 and 250 trading days, respectively. Results obtained were mixed 

with some experiments doing better when fast individual learning was used, 

and others being superior when slow individual learning was employed. 

Similar results were obtained in social learning. These findings conclude that 

the nature of the problem is to decide on good parameter settings. Also, it is 

likely that the dynamic individual and social learning would do better than 

fixed learning frequencies. 
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The third study was on social learning. In this study, social learning was 

investigated under different circumstances in the trading society. Four 

different experimental settings were run. These were:  

 

– Social learning was turned off (individual learning only);  

– Individual and social learning were turned on (similar to the 

experiment in Kendal and Su 2003); 

– Individual and social learning were turned on, but the normalised 

values were in the range between 1 and the mean value of 蜘3;  

– Individual and social learning were turned on, but the normalised value 

was between 0.9 and the mean value of 蜘. 

 

In conclusion, the work in (Su 2005) indicated that the integrated 

individual and social learning was of help in making successful trades in the 

stock market. Moreover, it showed that social learning led to superior 

traders. 

 

2.8 N-TUPLE SYSTEMS 

 

Work on optical character recognition, utilising n-tuples, can be dated back 

to the late 1950‟s (Bledsoe and Browning 1959). N-tuples operate by 

sampling n random points. If m is the number of possible values for each 

sample point, we can define an n digit number in base m, and use it as an 

index into a range of weights. N-tuples are in some ways similar to support 

vector machines (SVM), and is also related to Kanerva‟s sparse distributed 

memory model (Kanerva 1988). Figure 2.15 (Lucas 2008) shows an example 
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of a single 3-tuple, which is sampling 3 squares along an edge into the corner 

for the game of Othello, where each square of the game‟s board has three 

possible values (white=0, vacant=1, and black=3). In this case we will have 

27 tuples (m=3, n=3). 

 

Figure 2.15 The system architecture of the N-Tuple-based value 

function, showing a single 3-tuple sampling at its 

eight equivalent positions, equivalent under reflection 

and rotation (Lucas 2008). 

 

N-tuples indexing projects the low dimensional board into a high dimensional 

sample space. There are several varieties of n-tuple systems. The first model 

incorporates n-tuple systems into hardware, which is easy and effective given 

that indexing can be carried out so naturally in hardware. In its simplest form 
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a memory configuration with a single-bit width (a binary n-tuple) is used. 

Each memory location in a binary n-tuple records whether an address has 

occurred during training or not. As all addresses will eventually occur, 

excessive training can lead to poor performance, which is a distinct 

disadvantage of such systems. For this reason, later n-tuple systems tended 

to store continuous value weights, or probabilities. When trained on 

supervised data, probabilistic n-tuple systems can be trained using single-

pass maximum likelihood techniques, where the probability of occurrence of 

each address is estimated as the number of happenings during training 

divided by the number of occurrences of all addresses in the n-tuple.  

 

Although the basic idea of n-tuple systems is simple, obtaining good from 

them in practice is often difficult and the design may have to be carefully 

considered. There are many designs to draw inspiration from, including 

continuous n-tuples used for face recognition (Lucas 1998), scanning n-

tuples for sequence recognition (Lucas and Amiri 1996), scanning n-tuple 

grid for OCR (Lucas and Cho 2005) and the n-tuple classifier (Rohwer and 

Morciniec 1998; Lucas 2003). Bit-plane decomposition methods have also 

produced interesting results (Hoque et. al. 2002). More recently, a back-

propagation training rule based on optimising a cross-entropy measure was 

introduced by (Lucas 2003). For excellent introductions to standard n-tuple 

systems, please refer to (Ullman 1969; Rohwer and Morciniec 1996). 

 

Lucas also introduced n-tuple systems as position value functions for the 

game of Othello (Lucas 2008). The n-tuple architecture is evaluated for use 

with temporal difference learning. Performance is compared with previously 
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developed weighted piece counters and multi-layer perceptrons. The n-tuple 

system is able to defeat the best performing of these after just five hundred 

games of self play learning. The conclusion is that n-tuple networks learn 

faster and are superior to other, more conventional, approaches. The success 

of applying n-tuple to the game of Othello inspired us to apply n-tuple to the 

game of checkers. 

 

   

2.9 TEMPORAL DIFFERENCE LEARNING 
 
 

Temporal Difference Learning (TDL) method (Sutton 1988) has been used 

to estimate the value of positions. This method can be defined as a 

Reinforcement Learning method driven by the difference between two 

consecutive state values aiming at adjusting former state values which 

minimise the difference between two successive state values. The 

multiplication of a learning parameter, , by the sum of the temporal 

difference errors between two successive state values represents the change 

in the value of the state. These temporal differences are weighed 

exponentially according to the difference in time. 

 

Sutton introduced TD (┡), which is used “to weight the influence of the 

current evaluation function value for weight updates of previous moves” 

(Sutton 1988). The ┡ term is decay-rate parameter. It determines the extent 

to which learning is affected by subsequent states. A ┡ of zero indicates 

learning only from the next state. A ┡ of one indicates learning only from the 

final reinforcement signal; in the case of the game playing, the final results 

(win, lose and draw).    
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In TDL the weights of the evaluation function are updated during game 

play using a gradient-descent method. Let x be the board observed by a 

player about to move, and similarly xt the board after the player has moved. 

Then the evaluation function may be updated during play using the following 

equation (Lucas and Runarsson 2006):- 

 iii xxvxvxvww ))(1)](()'([ 2                                                    (2.11)   

Where: 

- 1
))(2exp(1

2
))(tanh()( 




xf
xfxv  is used to force the value function 

v to be in the range -1 to 1. 

- iw  represents the weight to be updated. 

- )(xf represents the state of the board. 

 
 

If x‟ is a terminal state then the game has ended and the following update is 

used: 

iii xxvxvrww ))(1)](([ 2                                                      (2.12) 

 

Where r corresponds to the final utilities: +1 if the winner is Black, −1 when 

White, and 0 for a draw. 

  

Temporal difference learning is a prediction-based method in which future 

behaviour is calculated using past experiences with a partly known system 

(Sutton 1988). Examples of temporal difference learning include Samuel‟s 

checkers program (Samuel 1959), and works on Adaptive Heuristic Critic 

(Barto et. al. 1983; Sutton 1984). An example of successful temporal 

difference learning in games is (Tesauro 2002), where Tesauro produced a 

strong backgammon program, TD-Gammon that is able to teach itself to play 

backgammon solely by playing against itself and learning from the results, 

starting from random initial play. Another example can be found in 
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(Runarsson and Lucas 2005), where temporal difference learning is used to 

evaluate the position on small-board Go (5x5 board). It was compared to a 

co-evolutionary approach. Temporal difference learning was shown to learn 

faster than a co-evolutionary approach, yet the latter played at a higher level 

than the temporal difference player. Lucas and Runarsson (2006) found that 

temporal difference learning learns much faster than co-evolution in the 

game of Othello, but that properly tuned co-evolution can learn better 

playing strategies.  

One last example of using temporal difference learning can be found in 

(Burrow and Lucas 2009), where temporal difference learning was found to 

perform more reliably (with a tabular function approximator) than an 

evolutionary approach in Ms. Pac-Man.  

 

2.10 SUMARRY 

 

This chapter has provided an overview of various artificial intelligence 

researches, which includes the basic algorithms that can be used in computer 

games. Evolutionary computation algorithms have also been described in 

addition to artificial neural networks. Many computer games were presented, 

including a detailed description of the design of Blondie24. Individual and 

social learning, n-tuple systems and temporal difference learning were also 

presented as we utilise these methods to enhance evolutionary checkers 

methodologies. The next chapter will describe the evolutionary checkers 

preliminaries that will form the foundation for the rest of this thesis.  
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Chapter Three 

Evolutionary Checkers Preliminaries 

 

 

3.1 INTRODUCTION 

 

In this chapter a description of the implementation of an evolutionary 

checkers player, C0, is presented as it will be used as a test bed for all the 

proposed algorithmic developments in this research. The structure and 

architecture of C0 is mainly based on those used to construct Blondie24. Two-

move ballot is also presented, together with the standard rating formula as 

both will also be used to test the outcome of the methods that are used in 

this research.   

 
This Chapter is structured as follows: Section 3.2 describes the 

implementation of C0, while section 3.3 describes the two-move ballot that is 

used in the game of checkers. Section 3.4 describes the standard rating 

formula, which is used to rate the checkers players. A summary of the 

chapter is presented in section 3.5.      
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3.2 C0 
 

 

In order to investigate our proposed extensions and enhancements to an 

evolutionary checkers system we firstly implemented an evolutionary 

checkers program, which we will refer to as C0 throughout this thesis, in 

order to provide a firm foundation for our research. Our implementation has 

the same structure and architecture that Fogel utilised in Blondie24, with the 

exception that the value of the King is fixed to 2. Intuitively, the King is more 

valuable than an ordinary piece, and this is a well known, even to novice 

players. So putting the value of the King as two (or any other value that is 

greater than an ordinary piece value) will not be considered as knowledge 

injection to the program. Algorithm 3.1 (Chellapilla and Fogel 1999, 2001) is 

used to construct C0. It is worth mentioning that C0 used depth first search to 

expand the search space to a four ply depth, while a ply depth of six is used 

in all algorithms comparisons. 

 

1- Initialise a random population of 30 neural networks (strategies) Pi, i=1,…,30, sampled uniformly [-
0.2,0.2] for the weights and biases.  

2- Each strategy has an associated self-adaptive parameter vector si, i=1,…,30 initialised to 0.05. 

3- Each neural network plays (as red) against five other neural networks selected randomly from the 
population. 

4- For each game, each competing player receives a score of +1 for a win, 0 for draw and -2 for a loss. 

5-  Games are played until either one side wins, or until one hundred moves are made by both sides, in 
which case a draw was declared. 

6-  After completing all games, the 15 strategies that have the highest scores are selected as parents and 
retained for the next generation. Those parents are then mutated to create another 15 offspring using 
the following equations: 

 
si(j) =  si(j)exp( tNj (0,1) ), j =  1, ..., Nw                                                                             (3.1)                             
wi(j) =  wi(j) +  si(j)Nj(0,1), j =  1, ..., Nw                                                                            (3.2) 
 
where Nw is the number of weights and biases in the neural network (here this is 5046), 

wN
t




2

1
 = 0.0839, and Nj(0,1) is a standard Gaussian random variable resembled for 
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every j. 

7- Repeat steps 3 to 6 for 840 generations (this number was an arbitrary choice in the implementation 
of Blondie24). 

Algorithm 3.1 C0 adapted from (Chellapilla and Fogel 1999, 2001). 

 

We run the above algorithm for about 19 days (Fogel required about six 

months, but technology has moved on in the past ten years). All our 

experiments were run on the same computer (1.86 GHz Intel core2 

processor and 2 GB Ram). For comparison, Fogel used a 400-MHz Pentium II 

processor. 

 

3.3 TWO-MOVE BALLOT IN CHECKERS 
 
 

When the world‟s best players play the game of checkers, it often ends in 

a draw. To overcome this, and make the games more competitive, the Two-

Move Ballot is used. 

This was introduced in the 1870s (see Schaeffer 2009). The first two 

moves (each side‟s first move) are randomly chosen. There are 49 

possibilities to play in this way, but research showed that six possibilities 

should be excluded, either because they were certain losses for one side, or 

because they were, at least, regarded as excessively unbalanced. Figure 3.1 

shows all the positions for a checkers board, while table 3.1 shows all the 49 

possibilities, where the six excluded ones are highlighted in Bold.    
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Figure 3.1 Checkers board with Black moves first. 

 
 

No. Two-move Ballot Possibility 
1 21-17, 9-13 
2 21-17, 9-14 
3 21-17, 10-14 
4 21-17, 10-15 
5 21-17, 11-15 
6 21-17, 11-16 
7 21-17, 12-16 
8 22-17, 9-13 
9 22-17, 9-14 
10 22-17, 10-14 
11 22-17, 10-15 
12 22-17, 11-15 
13 22-17, 11-16 
14 22-17, 12-16 
15 22-18, 9-13 
16 22-18, 9-14 
17 22-18, 10-14 
18 22-18, 10-15 
19 22-18, 11-15 
20 22-18, 11-16 
21 22-18, 12-16 
22 23-18, 9-13 
23 23-18, 9-14 
24 23-18, 10-14 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

17 18 19 20 

21 22 23 24 

25 26 27 28 

29 30 31 32 
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25 23-18, 10-15 
26 23-18, 11-15 
27 23-18, 11-16 
28 23-18, 12-16 
29 23-19, 9-13 
30 23-19, 9-14 
31 23-19, 10-14 
32 23-19, 10-15 
33 23-19, 11-15 
34 23-19, 11-16 
35 23-19, 12-16 
36 24-19, 9-13 
37 24-19, 9-14 
38 24-19, 10-14 
39 24-19, 10-15 
40 24-19, 11-15 
41 24-19, 11-16 
42 24-19, 12-16 
43 24-20, 9-13 
44 24-20, 9-14 
45 24-20, 10-14 
46 24-20, 10-15 
47 24-20, 11-15 
48 24-20, 11-16 
49 24-20, 12-16 

Table 3.1 The 49 possible two-move ballot openings. 
 

 

Therefore, only 43, of the 49 available moves are considered. At the start 

of the game a card is randomly chosen indicating which of the 43 moves is to 

be played. The original game, with no forced opening moves, is called go-as-

you-please (GAYP). 

 

In order to make sure that the C0 is not a „fluke‟ of optimisation, we 

decided to construct ten players, comparing them using the idea of two move 

ballot and test if they are statistically the same by using student t-test 

(assuming unequal variances, g = 0.05, and one-tail test) for the total 

number of wins and losses. The null hypothesis is that two players are the 
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same if the P value obtained from the t-test is greater than alpha.  Table 3.2 

shows the results. 

    C0(1) C0(2) C0(3) C0(4) C0(5) C0(6) C0(7) C0(8) C0(9) C0(10) ぇ 
Wins 

ぇ 
Loses 

C0(1) - 22 25 20 19 17 23 24 22 20 192 200 
C0(2) 20 - 20 22 24 21 20 21 23 24 195 187 
C0(3) 21 19 - 20 21 19 18 23 21 22 184 192 
C0(4) 25 23 18 - 20 24 20 24 18 19 191 187 
C0(5) 24 20 23 19 - 18 20 22 22 21 189 188 
C0(6) 21 24 22 23 20 - 22 20 23 22 197 184 
C0(7) 24 18 20 21 21 19 - 19 18 20 180 180 
C0(8) 25 17 19 24 20 20 17 - 22 23 187 198 
C0(9) 21 22 21 18 22 24 20 24 - 22 194 193 

C0(10) 19 22 24 20 21 22 20 21 24 - 193 193 

Table 3.2 Number of wins and losses (for the row player)  

out of 774 games. 
 

Based on Table 3.1, there is no statistical difference between the players 

as the P value (P-value=0.5) for the one tail t-test is greater than alpha. So 

as all the players are statistically the same we decided to choose the player 

with the most number of wins to be our baseline player, C0.   

 
 

3.4 STANDARD RATING FORMULA  

 

Checkers players are rated according to a standard system (following the 

tradition of the United States Chess Federation) where the initial rating for a 

player is R0 = 1600 and the player‟s score is adjusted based on the outcome 

of a match and the rating of the opponent (Chellapilla and Fogel 2001): 

 

Rnew = Rold + C(Outcome – W)                      (3.3) 

 

Where  
 

-  )101(1 )400/)(( RoldRoppW                                  

-  Outcome value is 1 for Win, 0.5 for Draw, or 0 for Loss. 

-  Ropp is the opponent‟s rating. 
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-  C = 32 for ratings less than 2100, C = 24 for ratings between 2100 

and 2399, and C = 16 for ratings at or above 2400. 

- Rnew is the computed new rating based on an old rating of Rold. 

 

It is clear that a player rating increases when a win occurs and decreases 

when a loss occurs, but the amount of increase or decrease depends on how 

big the difference between the rating of the player and its opponent‟s rating. 

It is also worth noting that constant factor C will be lower as the rating of the 

player increases, making it more difficult to gain or lose points. Standard 

designations for the level of play are shown in Table 3.3 (Chellapilla and 

Fogel 2001). While Table 3.4 shows some examples of using equation (3.3). 

  

For the purpose of providing some form of statistical test, we will use 5000 

different orderings for the 86 (each player plays 43 games as red and 43 

games as white) games and then compute the mean and the standard 

deviation for the standard rating formulas. We say that a player is 

statistically better than his opponent if his mean value of the standard rating 

formula puts him in a level that is higher than his opponent. The 

determination of the player level is according to table 3.3. We note that the 

purpose of this paper is to compare the performance of the two players and 

not to measure their actual ratings, which could only realistically be done by 

playing against a number of different players. 
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Class Rating 
Senior Master 2400+ 

Master 2200-2399 
Expert 2000-2199 
Class A 1800-1999 
Class B 1600-1799 
Class C 1400-1599 
Class D 1200-1399 
Class E 1000-1199 
Class F 800-999 
Class G 600-799 
Class H 400-599 
Class I 200-399 
Class J below 200 

 

Table 3.3 The relevant categories of player indicated by the 

corresponding range of rating score (Chellapilla and 

Fogel 2001). 

 

 
 

Table 3.4 Examples of Standard Rating Formula. 

 

  

Analysing table 3.4, it is clear that the difference between the ratings for 

the players will proportionally affect the final rating for them. For example, 

suppose you have a player rated at 1200 (Class D) playing against a better 

opponent rated at 2000 (Expert). If the opponent wins then his rating will 

climb by less than a point and the rating for the player will decrease by the 

same amount, while if the player wins, his rating will increase by almost 32 

points and the opponent rating will decrease by the same amount. 

 

Rold Ropp W Rnew (win) Rnew (draw) Rnew (lose) 
1600 1600 0.5 1616 1600 1584 
1600 1365 0.79 1606.57 1590.57 1574.57 
1930 1600 0.87 1957.84 1918.16 1902.16 
1750 2200 0.07 1779.77 1763.77 1747.77 
2000 1400 0.97 2000.98 1984.98 1968.98 
2100 2100 0.5 2112 2100 2088 
1200 2000 0.01 1231.68 1215.68 1199.68 
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The Rating System is designed to make a smaller adjustment to a player 

rating once he reaches 2100 points and even smaller adjustment once 

reaching 2400 points. It gets very difficult to reach extremely high ratings as 

the player always needs to play and defeat the best players. For the highly 

rated players, there is no point playing against weaker players as an easy win 

wouldn‟t earn the master even one full rating point.    

 

 

3.5 SUMMARY 

 

This chapter has provided details of the implementation of C0, which will be 

used as a test bed for the proposed methods that are used in subsequent 

chapters. The C0 implementation was based on the same architecture and 

structure that was used for Blondie24. This chapter has also provided a 

description of the two moves ballot method and the standard rating formula 

that will be used in this thesis in order to compare the various enhancements 

that we propose. The introduction of a round robin tournament into an 

evolutionary checkers program is the first such enhancement and it will be 

presented in the next chapter. 
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Chapter Four 

Introducing a Round Robin Tournament into 

Evolutionary Checkers 

 

 

4.1  INTRODUCTION 

 

In chapter three many preliminaries that will be used in the subsequent 

chapters in this thesis were presented. This chapter investigates the effects 

of introducing a round robin tournament into an evolutionary computer 

checkers system. Artificial neural networks, evolved via an evolution 

strategy, are utilised to evolve game playing strategies for the game of 

checkers by introducing a league structure into the learning phase of a 

system based on Blondie24. We believe that this will help eliminate some of 

the randomness in the evolution. Thirty feed forward neural network players 

are played against each other, using a round robin tournament structure, for 

140 generations and the best player obtained is tested against an 

implementation of evolutionary checkers program (C0). The best player will 

be tested against an online program, as well as two other strong programs.  

 

This chapter has been structured as follows; Section 4.2 describes the 

experimental setup by showing the proposed algorithm in detail together with 
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a justification for the parameters choices. In section 4.3 the results for our 

experiments are presented, together with a discussion for those results. 

Finally, a summary for this chapter is presented in section 4.4. This chapter 

has been disseminated via the following publication: Al-Khateeb and Kendall 

(2009). 

 

4.2 EXPERIMENTAL SETUP 

 

In order to eliminate the randomness in the evolutionary phase of C0 and 

hence produce a better player, a league competition between all the 30 

neural networks is suggested, by making all the neural networks play against 

each other. This means that all networks would play, as a red player, against 

the other 29 players instead of only playing against five randomly chosen 

players, which was the case in Fogel‟s seminal work and our 

reimplementation, C0. The total number of matches per generation in this 

model will be 870 (30 X 29) rather than 150 (30 X 5), as in the 

implementation of C0. This increase in the number of matches will decrease 

the number of generations (140 verses 840) that can be played in the same 

amount of time, in order to provide a meaningful comparison against the 

original work, as C0 has a total of 126,000 games (30 X 5 X 840) so 

Blondie24-RR (a player obtained as a result of applying the proposed 

algorithm) needs 140 generations to play a similar (actually slightly less) 

number of games (29 X 30 X 140=121,800).   
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The only difference with algorithm 3.1 are in steps 3 and 7 (see algorithm 

4.1), where every network competes against every other for 140 

generations. We refer to this player as Blondie24-RR. 

1- Initialise a random population of 30 neural networks (strategies), Pi=1,…,30, sampled uniformly [-
0.2,0.2] for the weights and biases.  

2- Each strategy has an associated self-adaptive parameter vector, si=1,…,30 initialised to 0.05. 

3- Use a round robin tournament to play each neural network (as red) against every other 
neural network. 

4- For each game, each competing player receives a score of +1 for a win, 0 for draw and -2 for a 
loss. 

5- Games are played until either one side won, or until one hundred moves have been made by both 
sides, in which case a draw was declared. 

6- After completing all games, the 15 strategies that have the highest scores are selected as parents 
and retained for the next generation. Those parents are then mutated to create another 15 offspring 
using equations (3.1) and (3.2). 

 
7- Repeat steps 3 to 6 for 140 generations.  

Algorithm 4.1 Blondie24-RR. 

 

 

It is worth mentioning that Blondie24-RR is a result of a single optimisation 

run, therefore there is a chance that Blondie24-RR is a „fluke‟. In order to 

make sure that this might not the case, we decided to play the top five 

players of the last generation of the EA for Blondie24-RR using the idea of 

the two-move ballot and using student t-test (assuming unequal variances, g 

= 0.05, and one-tail test) to see if the players are the same or not. Table 4.1 

shows the results. 
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    P1 P2 P3 P4 P5 ぇ Wins ぇ Loses 

P1 - 24 20 25 19 88 77 

P2 20 - 21 24 20 85 88 

P3 18 21 - 22 23 84 85 

P4 19 23 23 - 18 83 91 

P5 20 20 21 20 - 81 80 

Table 4.1 Number of wins and losses (for the row player) out of 344 

games. 

 

Based on Table 4.1, there is no statistical difference between the players 

as the P value (P-value=0.5) for the one tail t-test, for the total number of 

wins and losses, is greater than alpha. So one can conclude that the results 

in table 4.1 are of comparable performance. This provides some indication 

about trusting the single optimiser for Blondie24-RR.  

 

4.3 RESULTS 

To guage the effect of introducing a round robin tournament we play C0 

against Blondie24-RR. Bearing in mind the fact that both players are end 

products, a win result for our modified player should be seen as a success. 

Also we play several matches against an online program, which can be found 

at http://www.darkfish.com/checkers/checkers.html, in addition to playing 

against two strong checkers programs (their implementation details are not 

available in the freeware versions). The first one called WinCheck3D, which 

was created in 2001 by Jean-Bernard Alemanni using the C++ programming 

language. WinCheck3D is considered as one of the strongest computer 

checkers programs that can play at a master level. The details for 

http://www.darkfish.com/checkers/checkers.html
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WinCheck3D can be found at http://pagesperso-orange.fr/alemanni/. The 

second program called SXcheckers, which is produced by 504 software 

studio, is a strong checkers program with a strong AI component. 

SXcheckers can play at a human master level and has managed draw against 

WinCheck3D. The details for SXcheckers can be found at 

http://www.cs.504.com/checkers. The following subsections show the 

results. 

 

4.3.1 Results When Playing Blondie24-RR Against C0 
  

In order to test the outcome of the proposed method, Blondie24-RR was 

set to play two matches (as red and as white) against C0, Table 4.2 shows 

the results. It is worth mentioning that both players are biased (playing 

stronger games) towards playing as red.  

 

Table 4.2 Blondie24-RR Against C0. 
 

 
Analysing the results in table 4.2, Blondie24-RR (after 140 generations) 

played two matches (one as red and one as white) against C0. Blondie24-RR 

won as red (starts first) against C0, the result was a draw when Blondie24-RR 

moves second. This clearly reflects a success for our hypothesis based on the 

 C0 (red) C0 (white) 

Blondie24-RR (red) - Win 

Blondie24-RR (white) Draw - 

http://www.cs.504.com/checkers
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fact that both players are end products. It should be noted that both players 

will always play with the same strategy due to their deterministic nature.  

 

 

4.3.2 Results When Playing Blondie24-RR Against Online Program 
 

 

In order to test the outcome of the proposed method, C0 and Blondie24-

RR played two matches (as red and as white) against an online checkers 

program. Table 4.3 shows the results. It is worth mentioning that C0 and 

Blondie24-RR are biased (playing stronger games) towards playing as red.  

  

Table 4.3 C0 and Blondie24-RR Against an Online Checkers Program. 

 

 

   

The results in table 4.3 show that C0 won as red (with a four piece 

advantage) and as white (with a two piece advantage) against this online 

program. The results in table 4.3 also show that Blondie24-RR won as red 

 Online (red) Online (white) 

C0 (red) - Win (with four piece difference) 

C0 (white) Win (with two piece 

difference) 

- 

Blondie24-RR (red) - Win (with seven piece difference) 

Blondie24-RR (white) Win (with four piece 

difference) 

- 
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(with a seven piece advantage) and as white (with a four piece advantage) 

against this online program. This reflects another success for our hypothesis 

as it is clear that Blondie24-RR performed better than C0, with the piece 

advantage that each player gained supporting the conclusion. 

 

 

4.3.3 Results When Playing Blondie24-RR Against WinCheck3D 
 

 

Table 4.4 shows the results of playing C0 and Blondie24-RR against 

WinCheck3D. In this case C0 and Blondie24-RR were set to play two matches 

(as red and as white) against WinCheck3D.  

 

 

Table 4.4 C0 and Blondie24-RR Against WinCheck3D. 

 

 WinCheck3D (red) WinCheck3D (white) 

C0 (red) - Lose (with seven piece 

difference) 

C0 (white) Lose (with eight piece 

difference) 

- 

  Blondie24-RR (red) - Lose (with two piece difference) 

Blondie24-RR (white) Lose (with four piece 

difference) 

- 
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The results in table 4.4 show that C0 lost as red (with a seven piece 

difference) and as white (with an eight piece difference), while the results in 

table 4.4 also show that Blondie24-RR lost as red (with a two piece 

difference) and as white (with a four piece difference) against WinCheck3D. 

Several matches were played with WinCheck3D in order to investigate 

whether it is deterministic or not. The results were the same, indicating that 

the player always responds with the same moves. These results show that 

Blondie24-RR is performing better than C0. Losing by two checkers is still a 

loss, but in this experiment we want to compare the performance of 

Blondie24-RR with C0 and not with those computer programs, bearing in 

mind that all of them are end products.  

 
 
4.3.4 Results When Playing Blondie24-RR Against SXcheckers 
 

 

In order to further test the outcome of the proposed method, C0 and 

Blondie24-RR were set to play two matches (as red and as white) against 

SXcheckers. Table 4.5 shows the results. It is worth mentioning that C0 and 

Blondie24-RR are biased (playing stronger games) towards playing as red. 
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Table 4.5 C0 and Blondie24-RR Against SXcheckers. 

 

The results in table 4.5 show that C0 lost as red (with an eight piece 

difference) and as white (with an eight piece difference). The results in table 

4.5 also show that Blondie24-RR lost as red (with a four piece difference) and 

as white (with a five piece difference) against SXcheckers. Several matches 

were played with SXcheckers in order to investigate whether it is 

deterministic or not. The results were the same, indicating that the player 

always respond with the same moves. These results show that Blondie24-RR 

is performing better than C0. Losing by four checkers is still a loss, but in this 

experiment we want to compare the performance of Blondie24-RR with C0 

and not with those computer programs, bearing in mind that all of them are 

end products.  

 SXcheckers (red) SXcheckers (white) 

C0 (red) - Lose (with eight piece 

difference) 

C0 (white) Lose (with eight piece 

difference) 

- 

  Blondie24-RR (red) - Lose (with four piece 

difference) 

Blondie24-RR (white) Lose (with five piece 

difference) 

- 
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4.3.5 Results When Playing Blondie24-RR Against C0 Using Two-Move 

Ballot. 

 

 

When playing only two games between the players there is a possibility 

that we could just have well have found an unlucky flaw in one player, or the 

other. In order to avoid this we decided to compare the performance of 

Blondie24-RR over C0 by using Two-Move Ballot. The results are shown in 

table 4.6 and figure 4.1. 

 

Table 4.6 Blondie24-RR Against C0 using the Two-Move Ballot. 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 4.1 Results when Playing Blondie24-RR against C0 using the 

Two-Move Ballot. 

 Opponent: C0 

Win Draw Lose 

Blondie24-RR 47 26 13 



Introducing a Round Robin Tournament into Evolutionary Checkers 

 

87 
 

The results in table 4.6 show that Blondie-RR achieved 47 wins (from 86 

games) over C0, while C0 only achieved 13 wins. There were 26 draws. It is 

clear that Blondie24-RR is superior to C0. Table 4.7 shows the mean and the 

standard deviation of the players‟ ratings after 5000 different orderings for 

the 86 played games. 

Table 4.7 Standard rating formula for Blondie24-RR and C0 after 5000 

orderings. 

 

The results in table 4.7, obtained using 5000 different orderings for the 86 

games (obtained using the two-move ballot) show that Blondie24-RR is 

better (using our definition given earlier with respect to players having a 

different rating class)  than C0, as the average ratings put Blondie24-RR in 

class D (rating = 1251) and put C0 in Class E (rating = 1102). It is worth 

mentioning that these are not the actual ratings for the players, as the 

purpose here is to compare the performance of Blondie24-RR against C0. By 

using the student t-test (assuming unequal variances, g = 0.05, and one-tail 

test), the results show that Blondie24-RR and C0 are statistically different as 

the P value (P-value=0) for the one tail t-test is less than alpha.  

     

Based on all results above, it would seem appropriate to use the league 

structure, instead of only choosing five random opponents to play against 

during the evolutionary phase. 

4.4 SUMMARY  

 

In this chapter evolutionary neural networks, evolved via an evolution 

strategy, are utilised to evolve game playing strategies for the game of 

 Mean SD Class 
Blondie24-RR 1251.67 25.76 D 

C0 1102.89 25.06 E 
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checkers by introducing a league structure into the learning phase of a 

system based on Blondie24. We believe that this helps eliminate some of the 

randomness in the evolution. Thirty feed forward neural network players are 

played against each other, using a round robin tournament structure, for 140 

generations and the best player obtained is tested against C0 (the 

evolutionary checkers program based on Blondie24). We also tested the best 

player against an online program, and Blondie24-RR was able to beat this 

program. Also we tested Blondie24-RR against two strong programs 

(WinCheck3D and SXcheckers). The results obtained are promising, although 

resulting in losses. The results showed that Blondie24-RR is better than C0 by 

using two-move ballot and standard rating formula to test the outcome. 

Blondie24-RR was able to beat C0 when all the pieces are in their original 

positions (i.e. without the two-move ballot). 

 

Recent work for the superiority and progress in coevolution (Miconi 2009) 

showed that playing against a small number of opponents gives good results 

as long as it is the same set of individuals tested against all members of the 

population. This might/might not be the case for checkers, so further work 

need to be done to see if this is the case or not.       

 

Now that we have shown that enhancements are possible to the 

evolutionary checkers, based on the Blondie24 framework, our future work 

will investigate if other changes are possible. We will investigate using 

individual and social learning methods and n-tuple systems in the next two 

chapters in order to further enhance the ability of C0 and Blondie24-RR. 

 



Introducing Individual and Social Learning into Evolutionary Checkers 

89 
 

Chapter Five 

Introducing Individual and Social Learning into 

Evolutionary Checkers 

 

 

5.1 INTRODUCTION 

 

Chapter Four investigated the effects of introducing a round robin 

tournament into an evolutionary computer checkers and eliminate some of 

the randomness in the evolution of an evolutionary checkers program based 

on the architecture of Blondie24. The motivation of the work in this chapter is 

inspired by the success of Blondie24 but we hypothesise that the introduction 

of an individual and social learning mechanism will evolve a superior player. 

The resulting player will be tested against C0 and Blondie24-RR. 

 

This chapter will also investigate including round robin into the individual 

and social learning algorithm. This is done by playing the resulting player 

against C0, Blondie24-RR and against the player that will be obtained from 

introducing individual and social learning into evolutionary checkers.  

 

This chapter has been structured as follows; Section 5.2 describes the 

individual and social learning mechanism. The experimental setup is 

described in section 5.3. In section 5.4 results are presented. Section 5.5 
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shows the result of introducing round robin into the individual and social 

learning algorithm, along with a discussion on those results. Finally a 

summary for this chapter is presented in section 5.6. This chapter has been 

disseminated via the following publication: Al-Khateeb and Kendall (2011a).   

 

 

5.2 INDIVIDUAL AND SOCIAL LEARNING 

 
Humans, when developing strategies to defeat other humans, use a 

variety of techniques. For example, humans can improve their strategy by 

themselves or through learning from the experience of competing with other 

humans. Developing their own strategies based on a copy of a better player 

model is another technique utilised by humans. 

 

In other words, humans can learn through individual and social learning. 

According to (Simon 1997), "learning from others" is called social learning. In 

general, social learning can be defined as learning indirectly from the 

experiences of others (as opposed to one's own experiences). In competitive 

learning (Rosin and Belew 1997), in order to survive to the next generation, 

all the players will play against each other. The sources of inspiration for our 

work can be found in (Kendall and Su 2003, 2007), (Chen 2004), (Yamamoto 

2005) and (Chen and Yeh 2001), where a simulated stock market used co-

evolving neural networks (evolved through a process of individual and social 

learning) was used. Agent-based computational economics is by far the most 

common use of social learning research (Kendall and Su 2003) and (Vriend 

2000). In individual learning, the agents learn solely from their own 
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experience while in social learning, it is the other agents‟ experience that 

form the source of learning for the agents (Vriend 2000).  

 

In this work, individual and social learning are utilised in two stages. The 

player will accumulate experience and undertake individual learning by 

playing against five other players. After a certain time has elapsed we enter a 

social learning phase when players are able to learn from each other.  

 

To further expand on the concept of individual and social learning, in an 

automated game playing context, individual learning is defined as a player 

which learns and generates a strategy by himself from the cumulative 

experience gained through playing against other players. The player neither 

opts to copy another strategy from other players nor replaces its own 

strategy with a new strategy. This is in contrast to the idea of social learning 

where the player is given the chance to copy or generate a new strategy to 

replace its current one. That is, the player has the option to evolve its own 

strategy through individual learning. However; if the strategy is not good 

enough, it has the option of either copying a better strategy from a pool of 

accumulated good strategies or creating a new random strategy.  

 

Best strategies from the population are retained in a social pool. This pool 

is made available to those players which are not performing well. In this 

respect it closely resembles hall of fame (Rosin and Belew 1997), where the 

progress of learning is tested against a panel of all the best evolved players 

at every generation. There are two reasons to save the best players at every 

generation. Firstly is to contribute genetic material to future generations. 

Secondly is for the purpose of testing. Hall of fame has been applied to many 



Introducing Individual and Social Learning into Evolutionary Checkers 

92 
 

games such as Nim and 3-D Tic-Tac-Toe and has been shown to be 

successful (Rosin and Belew 1997). 

 

In social learning the player has the opportunity to replace their existing 

strategy with another one selected from the social pool in the hope that the 

selected strategy is better than their current one. All strategies in the social 

pool have their own score, updated over time. Algorithm 5.1 shows the 

activities in social learning. 

1. Rank the players in descending order.  

2. Copy the best player or players (if more than one) to the social pool.  

3. For the rest of the players, there are two possibilities,  

(a) If the player is satisfied with his current strategy (based on their current score), retain 

that strategy,  

(b) If the player is not satisfied with their current strategy, three alternatives are available,  

i. Copy a strategy from the pool; 

ii. Create a new random strategy;  

iii. Retain their current strategy.  

  

Algorithm 5.1 Social Learning Activities. 
 

 

When considering social learning, it is interesting to compare it with the 

island model in evolutionary computation. In an island model, each individual 

in a sub-population evolves independently (Spieth et. al. 2004). Moreover, 

the best player from a sub-population can migrate to another sub-population, 

if and only if it is the better strategy. However, there is no creation of a new 

strategy in the sub-population. In social learning, as mentioned above, the 

individual players have the opportunity to copy a better strategy, retain their 

current strategy or generate a new random strategy. 
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The individual and social learning mechanism that we utilise is also 

different to Case-Injected Genetic Algorithm (CIGAR) (Louis and Miles 2005) 

and (Miles et. al. 2004) that combines genetic algorithms with case-based 

reasoning to play a computer strategy game. CIGAR works by injecting the 

best strategies (players) obtained from past games into the future population 

of a genetic algorithm in order to try and produce better players. This can be 

done along with a suitable representation. Results demonstrate that case 

injection can produce superior players. 

 

Cultural algorithms are also different to individual and social learning 

mechanisms since cultural algorithms (Reynolds 1979, 1994) are models of 

evolutionary learning that are set to emulate cultural evolutionary processes. 

Two levels of evolution constitute a cultural algorithm, namely, the 

microevolution in a population space and the macroevolution in a belief 

space. Utilising an acceptance function, the experiences of individuals in the 

population space are employed to create problem solving knowledge which is 

then stored in the belief space. The knowledge is manipulated by the belief 

space and this subsequently guides the evolution of the population space 

through an influence function. A fraud detection system was designed by 

(Sternberg and Reynolds 1997) who used a cultural algorithm-based 

evolutionary learning approach to learn about the behaviour of a commercial 

rule-based system for detecting fraud. The acquired knowledge in the belief 

space of the cultural algorithm is then used to re-engineer the fraud 

detection system. Another application of cultural algorithms is in modelling 

the evolution of complex social systems (Reynolds et. al. 2003, 2005). 

Furthermore, the application of cultural algorithms for function optimization 
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problems in dynamic environments has been described by (Reynolds and 

Saleem 2001, 2004) and (Reynolds and Peng 2004). In their experiments, 

the dynamic environment is modelled as a two-dimensional plane on which 

four cones of varying heights and slopes are haphazardly positioned. At 

certain generations, the four cones change their locations on the plane hence 

the location of the optimum solution is constantly changing. When applied to 

the problem of finding the new optima in dynamic environments, (Reynolds 

and Saleem 2001) demonstrated that the cultural algorithm is superior 

compared to an evolutionary algorithm with only a single-level evolution. 

(Reynolds and Peng 2004) discuss how the learning of knowledge in the 

belief space warrants the adaptability of cultural algorithms. (Reynolds and 

Saleem 2004) further examine the contributions of various types of 

knowledge from the belief space in piloting the quest for the best solutions in 

both deceptive and non-deceptive environments. 

 
 
5.3 EXPERIMENTAL SETUP 

 

Our hypothesis is that the introduction of social learning into an 

evolutionary checkers system will provide a richer environment for learning. 

The players outside the social pool are called individual players, all of which 

attempt to develop their own strategy. At certain times, the best players are 

drawn from the social pool to replace poorly performing individual players. 

 

In our experiments, we have made some modifications to the algorithm 

described in (Kendall and Su 2007) in order to investigate how to increase 
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the number of players in the social pool, thus, producing a larger number of 

strategies that can be copied by individual players.  

 

We propose two phases. The first will use individual learning, with the best 

players being copied to the social pool after every M generations. In the 

second phase social learning occurs every N generations. In comparison to 

(Kendall and Su 2007), we copy strategies to the social pool more often 

(they called a social learning phase at every generation for 30 generations). 

It is worth mentioning that there is no maximum size fir the social pool, as 

setting maximum pool size can limit the number of players to be copied into. 

  

In fact a decision for the number of generations to be considered for the 

individual phase and the learning phase was taken after checking many 

values and the experiments showed that M=5 and N=10 were suitable. 

Algorithm 5.2 represents our experimental setup. 

1- Initialise a random population of 30 neural networks (players) sampled uniformly [-0.2,0.2] for the 
weights. 

2- Each player has its associated self-adaptive parameter, initialised to 0.05. 

3- Initialise M (frequency of individual learning) and N (frequency of social learning).  

4- For each player in the current population, randomly chose five players to play against. 

5- For each game, the player receives a score of +1 for a win, 0 for draw and -2 for a loss. 

6-    Games are played until either side wins, or until one hundred moves are made by both sides, in 
which case a draw is declared. 

7- If the generation number is exactly divisible by M and not by N  then 

- Select the best player(s) with the highest score (if two or more players have equal scores, we 
will select all those players) and copy them to the social pool. 

- Select the best 15 players and mutate them to get 15 offspring using equations (3.1) and (3.2). 

8- If the generation number is exactly divisible by N then for all players, i, do: 
- Normalize the individual scores (values between 0 and 1) for all the players using the 

following equation: 
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where Vi is the normalized value for player i, Min and Max is the lowest and highest score in 
the current population among all players, Xi is the score of player i before being normalized.   

- If the normalised value is 1 and the player is not using a strategy drawn from the pool, then 
publish the strategy into the pool. 

- If the normalised value is 1 and the player is using a strategy drawn from the pool then do not 
publish the strategy into the pool but update the strategy’s score in the pool. 

- For the rest of the players, there are two cases:- 

1. If the normalised value is between 1 and 0.9, then the player is satisfied with his current 
strategy and retains it. 

2. If the normalised value is less than 0.9, then the player is not satisfied with his current 
strategy. The player has three options:- 

a- With 1/3 probability, replace the current strategy by copying a new strategy from the 
pool. Roulette wheel selection is used to select the new strategy from the pool.  

b- With 1/3 probability, replace the current strategy by creating a new random strategy. 

c- With 1/3 probability, retain the current strategy. 

9- If the generation number is not exactly divisible by M or N then  

- Select the 15 best players and mutate them to get 15 offspring using equations (3.1) and (3.2). 

10- Repeat steps 4-9 for K generations or for specified time. 

Algorithm 5.2 Individual and Social Learning. 
 
 

Two experiments were carried out. The first determined the best values for 

the number of generations to determine where the individual (M) and social 

(N) phases occur. This experiment was also used to see the effects of 

increasing the number of players in the social pool. Different values for (M,N) 

were chosen, these being (100,200), (50,100), (20,50), (10,20) and (5,10), 

the players representing them were called: 

1- C200 a player when M=100 and N=200. 

2- C100 a player when M=50 and N=100.  

3- C50 a player when M=20 and N=50. 
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4- C20 a player when M=10 and N=20. 

5- C10 a player when M=5 and N=10.     

 

In order to provide an additional comparison we also used a baseline 

player, C1 (M=5, N=10), which took just the best player, line 7 in the 

algorithm, choosing randomly if there are more than one, and retained only 

this player in the social pool.   

 

The second experiment uses the best player from the above experiments 

to investigate the effects of introducing individual and social learning for 

evolutionary checkers. 

 

In order to provide a fair comparison, we run the above algorithms for 840 

generations (126,000 games) that was required to produce C0. All our 

experiments were run on the same computer (1.86 GHz Intel core2 

processor and 2GB Ram). 

 

Algorithm 5.2 presents three options for the player who is not satisfied 

with his current strategy. All of those options have an equal probability to 

occur, so there is no guarantee about which one of them makes the 

difference. Therefore table 5.1 shows a copy of the social pool after 160 

generations to illustrate how the players learn from each others.  
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Table 5.1 Example of the Social Pool. 

 
 

Table 5.1 clearly shows that individual and social learning provides learning 

to the evolved checkers program as many players in the social pool has been 

reused for at least one time. Another thing to notice is that the recent social 

pool players have a higher probability of being selected for copying by the 

individual players with a poor strategy.  

 
 
5.4 RESULTS 

 

To measure the effect of introducing individual and social learning into an 

evolutionary checkers system, a league structure between C1, C200, C100, C50, 

C20 and C10 was held, in order to determine the best values for M and N. Each 

player was set to play against all other players by using the two-move ballot. 

We play all of the 43 possible games, both as red and white, giving a total of 

86 games. The games were played until either one side wins or a draw is 

declared after 100 moves for each player. The total number of games to be 

played is 430. Table 5.2 shows the results. 

 

 

 

 

Player Generation Pool  Score Reused 
1 100 734.22 0 
2 110 734.22 1 
3 120 734.22 1 
4 130 1468.43 2 
5 130 2202.65 4 
6 140 2936.86 7 
7 150 2936.86 5 
8 160 3671.08 6 
9 160 4405.29 7 
10 160 4405.29 8 



Introducing Individual and Social Learning into Evolutionary Checkers 

99 
 

 

Table 5.2 Number of wins (for the row player) out of 430 games. 
 

 

It is worth mentioning that although each player is the result of a single 

run, the trends in performance are consistent. For example the wins vs. C1, 

C200, C100, C50, C20 and C10 are all increasing. i.e. although there is uncertainty 

in how representative each player is of the approach used to create it, the 

trends do suggest that the learning strategy used is more significant.        

 
Based on the results in table 5.2, C10 received most wins, providing 

evidence that M=5, N=10 are the best values to use in the individual and 

social learning experiment. Also to support this conclusion, and to see the 

effects of introducing the individual and social learning to the game of 

checkers, we decided to play each player against C0 and against Blondie24-

RR, which is a result of our previous work to enhance Blondie24 obtained by 

introducing a round robin tournament into C0 (see chapter four)  by using 

two-move ballot.  We play all of the 43 possible games, both as red and 

white, giving a total of 86 games. The games were played until either one 

side wins or a draw is declared after 100 moves for each player. The detailed 

results for each player {C1, C200, C100, C50, C20, C10} against both C0 and 

Blondie24-RR are in tables 5.3 and 5.4 and in figures 5.1 and 5.2. 

 

 C1 C200 C100 C50 C20 C10 ぇ wins 
C1 - 22 14 12 10 8 66 

C200 35 - 29 22 16 10 112 

C100 39 25 - 21 17 12 114 

C50 40 37 26 - 21 18 142 

C20 47 41 32 27 - 15 162 

C10 59 55 49 41 34 - 238 



Introducing Individual and Social Learning into Evolutionary Checkers 

100 
 

Table 5.3 Results when Playing C1, C200, C100, C50, C20 and C10 against 

C0 using the Two-Move Ballot. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 C1, C200, C100, C50, C20 and C10 against C0. 
 
 
 

 
Table 5.4 Results when Playing C1, C200, C100, C50, C20 and C10 against 

Blondie24-RR using the Two-Move Ballot. 
 
 
 

 Opponent:C0 
Win Draw Lose 

C1 20 22 44 

C200 27 31 28 

C100 30 30 26 

C50 40 21 25 

C20 44 22 20 

C10 51 20 15 

 Opponent: Blondie24-RR 
Win Draw Lose 

C1 17 16 53 

C200 20 29 37 

C100 22 28 36 

C50 30 17 39 

C20 31 25 30 

C10 43 18 25 
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. 

 
 
 

Figure 5.2 C1, C200, C100, C50, C20 and C10 against Blondie24-RR. 
 
 
 
Table 5.5 summarises the results when playing against C0 and against 

Blondie24-RR using a starting position where all pieces are in their original 

positions (i.e. no two-move ballot), while tables 5.6 and 5.7 show the mean 

and the standard deviation of the players‟ ratings after 5000 different 

ordering for the 86 played games. 

  

 C0 Blondie24-RR 
 

C1 
Red Lost Lost 

White Drawn Lost 

C200 Red Drawn Lost 

White Drawn Lost 

C100 Red Won Lost 

White Drawn Lost 

C50 Red Won Lost 

White Won Drawn 

C20 Red Won Drawn 

White Won Drawn 

C10 Red Won Won 

White Won Won 

 
Table 5.5 Summary of Wins/Loses when not Using Two-Move Ballot. 
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Table 5.6 Standard rating formula for all the players against C0 after 

5000 orderings. 
 

 

Table 5.7 Standard rating formula for all the players against 

Blondie24-RR after 5000 orderings. 
 
 

 

According to the results in tables 5.3, 5.4, 5.6 and 5.7, it is not 

recommended to use a social pool with only one player as both C0 and 

Blondie24-RR is statistically better (using our definition given earlier with 

respect to players having a different rating class) than C1, and by using the 

average value for the standard rating formula the results (when playing C0 

 Mean SD Class 
C1 
C0 

1190.20 28.81 E 
1288.07 27.47 D 

C200 
C0 

1134.32 28.14 E 
1148.69 26.87 E 

C100 
C0 

1175.19 28.26 E 
1173.69 27.01 E 

C50 
C0 

1197.75 27.65 E 
1110.59 26.62 E 

C20 
C0 

1320.93 28.69 D 
1227.47 27.63 D 

C10 
C0 

1424.95 28.45 C 
1288.49 27.49 D 

 Mean SD Class 
C1 

Blondie24-RR 
1258.97 28.38 D 
1415.01 27.15 C 

C200 
Blondie24-RR 

1190.51 26.64 E 
1258.98 25.38 D 

C100 
Blondie24-RR 

1113.61 27.41 E 
1168.74 26.12 E 

C50 
Blondie24-RR 

1303.45 30.02 D 
1339.21 28.67 D 

C20 
Blondie24-RR 

1194.45 28.48 E 
1187.32 27.23 E 

C10 
Blondie24-RR 

1205.58 25.88 D 
1082.35 25.07 E 
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against C1) put C0 in class D (rating = 1288) and put C1 in Class E (rating = 

1190), and by using student t-test (assuming unequal variances, g = 0.05, 

and one-tail test), the results show that C0 and C1 are statistically different as 

the P value (P-value=0) for the one tail t-test is less than alpha. Also the 

results (when playing Blondie24-RR against C1) put Blondie24-RR in class C 

(rating = 1415) and put C1 in Class D (rating = 1258), and by using student 

t-test (assuming unequal variances, g = 0.05, and one-tail test), the results 

show that Blondie24-RR and C1 are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha. 

    
The results in tables 5.3, 5.4, 5.6 and 5.7 also show there is no point of 

using the values (M=100 and N=200) for deciding where the individual and 

social learning phases occur as there is no statistical difference in the results 

in tables 5.3 and 5.6, as the results (when playing C0 against C200) put C0 in 

class E (rating = 1148) and put C200 in class E (rating = 1134), and by using 

student t-test (assuming unequal variances, g = 0.05, and one-tail test), the 

results show that C0 and C200 are statistically the same as the P value (P-

value=0.5) for the one tail t-test is greater than alpha. Also  results in 

tables 5.4 and 5.7 showed that Blondie24-RR is better than C200, as the 

results (when playing Blondie24-RR against C200) put Blondie24-RR in class D 

(rating = 1258) and put C200 in class E (rating = 1190), and by using student 

t-test (assuming unequal variances, g = 0.05, and one-tail test), the results 

show that Blondie24-RR and C200 are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha.  
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It is worth to mention that as C200 has a very few epochs of social learning, 

the performance results should be very similar to the C0, which they are. This 

observation suggests lends evidence that the uncertainty in performance due 

to one run of the optimisation process is small. 

 

Based on the results in tables 5.2 through 5.4, it is not sensible to use the 

values (M=50 and N=100) and (M=20 and N=50) for deciding where the 

individual and social learning phases occur. Although C100 and C50 look better 

than C0, the results in table 5.6 put them in the same class, which means 

they are statistically the same, as the results (when playing C0 against C100) 

put C0 in class E (rating = 1173) and put C100 in class E (rating = 1175), and 

by using student t-test (assuming unequal variances, g = 0.05, and one-tail 

test), the results show that C0 and C100 are statistically the same as the P 

value (P-value=0.5) for the one tail t-test is greater than alpha. The results 

(when playing C0 against C50) put C0 in class E (rating = 1110) and put C50 in 

class E (rating = 1197), and by using student t-test (assuming unequal 

variances, g = 0.05, and one-tail test), the results show that C0 and C50 are 

statistically the same as the P value (P-value=0.5) for the one tail t-test is 

greater than alpha. Also Blondie24-RR, which is a result of a simple 

modification to the C0, is better than C100 and C50 so it is not worth using the 

values (50 and 20) for M and the values (100 and 50) for N. The results in 

table 5.7 put Blondie24-RR in the same class as C100 and C50, which means 

they are statistically the same, as the results (when playing Blondie24-RR 

against C100) put Blondie24-RR in class E (rating = 1168) and put C100 in class 

E (rating = 1113), and by using student t-test (assuming unequal variances, 

g = 0.05, and one-tail test), the results show that C0 and C100 are statistically 
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the same as the P value (P-value=0.5) for the one tail t-test is greater than 

alpha. The results (when playing Blondie24-RR against C50) put Blondie24-RR 

in class D (rating = 1339) and put C50 in class D (rating = 1303), and by 

using student t-test (assuming unequal variances, g = 0.05, and one-tail 

test), the results show that C0 and C50 are statistically the same as the P 

value (P-value=0.5) for the one tail t-test is greater than alpha.  

     

The results in tables 5.3 show that using the values of (M=10 and N=20) 

for deciding where the individual and social learning phases occur, enhanced 

the process of C0, but as there is not much difference in the results in table 

5.4 as C20 is about equal to Blondie24-RR and the results in tables 5.6 and 

5.7 showed that C20 is in the same class like C0 and Blondie24-RR, as the 

results (when playing C0 against C20) put C0 in class D (rating = 1227) and 

put C20 in class D (rating = 1320), and by using student t-test (assuming 

unequal variances, g = 0.05, and one-tail test), the results show that C0 and 

C20 are statistically the same as the P value (P-value=0.5) for the one tail t-

test is greater than alpha. The results (when playing Blondie24-RR against 

C20) put Blondie24-RR in class E (rating = 1187) and put C20 in class E (rating 

= 1194), and by using student t-test (assuming unequal variances, g = 0.05, 

and one-tail test), the results show that C0 and C20 are statistically the same 

as the P value (P-value=0.5) for the one tail t-test is greater than alpha. 

According to these results, it is not recommended to use the values 10 and 

20 for M and N.   

 

Based on the results obtained from tables 5.3 and 5.4 it is clear that 

increasing the number of players in the social pool will increase the 
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performance for the checkers player. Also the results in tables 5.6 and 5.7 

showed that C10 is statistically better than both C0 and Blondie24-RR, as the 

results (when playing C0 against C10) put C0 in class D (rating = 1288) and 

put C10 in class C (rating = 1424), and by using student t-test (assuming 

unequal variances, g = 0.05, and one-tail test), the results show that C0 and 

C10 are statistically different as the P value (P-value=0) for the one tail t-

test is less than alpha. The results (when playing Blondie24-RR against C10) 

put Blondie24-RR in class E (rating = 1082) and put C10 in class D (rating = 

1205), and by using student t-test (assuming unequal variances, g = 0.05, 

and one-tail test), the results show that C0 and C20 are statistically different 

as the P value (P-value=0) for the one tail t-test is less than alpha. 

Therefore it is recommended to use the values (M=5 and N=10) to 

determine where the individual and social learning phases occur.  

 
In order to eliminate the randomness in choosing five random opponents 

(step 4 in algorithm 5.2) to play against in the evolutionary phase of C10 and 

hence produce a better player, a league competition between all the 30 

neural networks is suggested, by making all the neural networks play against 

each other. This is based on the success of introducing round robin 

tournament into evolutionary checkers (see chapter four). The next section 

shows the results of introducing round robin into C10.  

 

5.5 Introducing Round Robin Tournament into C10 

 

The only difference between algorithm 5.2 and the algorithm to introduce 

the round robin tournament into C10 is in step 4, where every network 

competes against every other network using the same computer and for 140 
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generations. We refer to this player as C10-RR. It is worth to mention that 

C10-RR is constructed using the same values of M and N (M=5, N=10) that 

were used to construct C10, i.e. both C10-RR and C10 used 1/6 of their total 

number of generations.  

 

In order to test the outcome of introducing round robin tournament into 

the evolutionary phase of C10, C10-RR is set to play against C0, Blondie24-RR 

and C10 using two-move ballot. The results are shown in tables 5.8 through 

5.10 and figure 5.3. 

 

 

Table 5.8 Results when Playing C10-RR against C0 using the Two-

Move Ballot. 
 
 
 
 
 
 
 

Table 5.9 Results when Playing C10-RR against Blondie24-RR using 

the Two-Move Ballot. 
 
 
 
 
 
 

 

Table 5.10 Results when Playing C10-RR against C10 using the Two-

Move Ballot. 
 
 
 
 
 
 
 
 
 
 
 
 

 Opponent:C0 
Win Draw Lose 

C10-RR 49 20 17 

 Opponent:Blondie24-RR 
Win Draw Lose 

C10-RR 41 22 23 

 Opponent:C10 
Win Draw Lose 

C10-RR 35 23 28 
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Figure 5.3 C10-RR against C0, Blondie24-RR and C10. 

 

Table 5.11 summarises the results when playing against C0, Blondie24-RR 

and against C10 using a starting position where all pieces are in their original 

positions (i.e. no two-move ballot), while table 5.12 shows the mean and the 

standard deviation of the players‟ ratings after 5000 different ordering for the 

86 played games.  

 

 C0 Blondie24-RR C10 

 
C10-RR 

Red Won Won Won 

White Won Won Won 

 
Table 5.11 Summary of Wins/Loses When not Using Two-Move 

Ballot. 
 
 

Table 5.12 Standard rating formula for playing C10-RR against C0, 

Blondie24-RR and against C10 after 5000 orderings. 

 Mean SD Class 
C10-RR 

C0 
1405.51 27.54 C 
1264.71 26.66 D 

C10-RR 
Blondie24-RR 

1250.44 28.71 D 
1171.91 27.61 E 

C10-RR 
C10 

1229.99 29.08 D 
1188.00 27.86 E 
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The results in tables 5.8 and 5.12 show that C10-RR is statistically better 

than C0 as the results (when playing C10-RR against C0) put C10-RR in class C 

(rating = 1405) and put C0 in class D (rating = 1264), and by using student 

t-test (assuming unequal variances, g = 0.05, and one-tail test), the results 

show that C10-RR and C0 are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha.   

The results in tables 5.9 and 5.12 show that C10-RR is statistically better 

than Blondie24-RR as the results (when playing C10-RR against Blondie24-

RR) put C10-RR in class D (rating = 1250) and put Blondie24-RR in class E 

(rating = 1171), and by using student t-test (assuming unequal variances, g 

= 0.05, and one-tail test), the results show that C10-RR and C0 are 

statistically different as the P value (P-value=0) for the one tail t-test is less 

than alpha.  

 
Finally the results in tables 5.10 and 5.12 show that C10-RR is statistically 

better than C10 as the results (when playing C10-RR against C10) put C10-RR in 

class D (rating = 1229) and put C10 in class E (rating = 1188), and by using 

student t-test (assuming unequal variances, g = 0.05, and one-tail test), the 

results show that C10-RR and C0 are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha.  

 
As C10-RR is better than C0 and Blondie24-RR and most importantly is 

better than C10, then it seems quite appropriate to use the individual and 

social learning together with a round robin tournament in order to enhance 

the process of evolutionary checkers. 
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5.6 SUMMARY  

 

This Chapter has introduced individual and social learning into an 

evolutionary checkers algorithm that is based on the Blondie24 architecture. 

The proposed algorithm shows promising results when tested against an 

implementation of an evolutionary checkers program, C0, and also against a 

player obtained as a result of the previous efforts to introduce a round robin 

tournament into C0. 

 

Six players were implemented in order to see the effects of increasing the 

number of players in the social pool. Each player was implemented using a 

selected pair of values for the individual and social learning phases. 

 

Based on the results in table 5.2 we can conclude that increasing the 

number of players in the social pool will increase the performance of the 

player. A value of 5 is the best to determine where the individual learning 

phase occurs. The value of 10 was found to be best when deciding where 

social learning should occur. Using these values C10 is the best player we 

obtained and is superior to C0 (see tables 5.3, 5.5 and 5.6). Also the result in 

tables 5.4, 5.5 and 5.6 showed that C10 is better than Blondie24-RR. 

 

Based on the results it would seem appropriate to use individual and social 

learning to enhance the evolutionary checkers systems. 

 

Following the success of introducing round robin into evolutionary checkers 

in chapter four, we decided to use round robin within the individual and social 

learning framework. The resultant algorithm showed promising results as the 

best player, C10-RR, was able to beat C0, Blondie24-RR and C10. We conclude 
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that it is appropriate to use a combination of round robin and individual and 

social learning in evolutionary checkers. 

 

The next chapter will investigate if other enhancements to evolutionary 

checkers are possible by introducing an n-tuple architecture into evolutionary 

checkers and investigate the effect. 
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Chapter Six 

Introducing N-tuple Systems into Evolutionary 

Checkers 

 

 

6.1 INTRODUCTION 

 

Chapter five showed that using individual and social learning for 

evolutionary checkers produced a superior player. This chapter investigates 

the effects of introducing n-tuple architecture into evolutionary computer 

checkers. Evolutionary neural networks, evolved via an evolution strategy, 

are utilised to evolve game playing strategies for the game of checkers. This 

will be done by introducing 5-tuple with random walk and 1-tuple to the 

learning phase of a system based on Blondie24 and also into a checkers 

program, which uses temporal difference learning (TDL). We believe that this 

helps in evolving a good player in a time that is faster than that required to 

evolve C0, Blondie24-RR, C10 and C10-RR. The resulting players will be tested 

against our baseline player, C0, our round robin player (Blondie24-RR) and 

the two players from our individual and social learning experiments (C10 and 

C10-RR).  
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This chapter is structured as follows; Section 6.2 describes the application 

of n-tuple to checkers and how the n-tuple framework is organised. Sections 

6.3 and 6.4 describe the experimental setup and the results of using 5-tuple 

with a random walk. In sections 6.5 and 6.6 we describe the experimental 

setup and the results of using a 1-tuple. Sections 6.7 and 6.8 describe the 

experimental setup and the results of using 5-tuple with random walk utilises 

TDL.  Sections 6.9 and 6.10 describe the experimental setup and the results 

of using 1-tuple with TDL.  The comparison of 5-tuples with random walk and 

1-tuple in an evolutionary checkers with TDL are presented in section 6.11. 

Finally a summary for this chapter is presented in section 6.12. This chapter 

has been disseminated via the following publication: Al-Khateeb and Kendall 

(2011b).   

 

6.2 APPLICATION of N-tuple to EVOLUTIONARY CHECKERS 

 
To apply an n-tuple system to Checkers, we firstly decide to cover all the 

32 squares on the checkers board. The value function for the board is then 

calculated by summing over all table values indexed by all the n-tuples. Each 

n-tuple specifies a set of n board locations. Each n-tuple has an associated 

look-up table (LUT). The output for each n-tuple is calculated by summing 

the LUT values indexed by each of its equivalent sample positions. Each 

sample position is simply interpreted as an n digit quinary (base 5) number, 

since each square has five possible values (ordinary white, white king, 

vacant, ordinary black or black king). The board digit values were chosen as 

(vacant=0, ordinary white=1, white king=2, ordinary red=3, red king=4). 

The value function for a board is simply the sum of the values for each n-

http://en.wikipedia.org/wiki/Base_(mathematics)
http://en.wikipedia.org/wiki/5_(number)
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tuple. Also the value of the piece difference for the checkers board is also 

added to the summation. For convenient training with error back-propagation 

the total output is passed through a tanh function.  

 

The n positions can be arranged in a square, in a rectangle, or as random 

points scattered over the board. The results in this chapter are based on two 

types of sampling. 

  

The first one is based on random walks, where each n-tuple is constructed 

by starting with each 32 squares on the board, and taking a random walk 

from that point. At each step of the walk, the next square is chosen as one of 

the immediate neighbours of the current square, which represents a legal 

checkers move. Each walk is for five steps. Each randomly constructed n-

tuple had 5 sample points. The results in this chapter are based on 32 such 

n-tuples. One would expect some n-tuples to be more useful than others, 

and there should be scope for evolving the n-tuples sample points while 

training the look-up table values. A randomly constructed n-tuple sample is 

shown in Table 6.1 in which the samplings are based on the checkers board 

in figure 3.1. The experimental setup and its related results are shown in 

sections 6.3 and 6.4. 

 

The second type of sampling is based on just one sample, which can be 

done by considering each square on the checkers board (see figure 3.1) at a 

time. In this case we will have 32 (as checkers board played on 32 squares) 

1-tuple samples and the experimental setup and its results are shown in 

sections 6.5 and 6.6.  
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No. 5-tuple Sample 
1 1,6,9,14,17 
2   2,6,10,15,19 
3 3,7,2,6,1 
4 4,8,11,7,10 
5 5,1,6,2,7 
6 6,2,7,3,8 
7 7,2,6,10,15 
8 8,12,16,19,24 
9 9,14,18,22,26 
10 10,14,17,21,25 
11 11,15,18,23,26 
12 12,8,3,7,11 
13 13,17,22,25,21 
14 14,17,21,25,29 
15 15,18,22,26,30 
16 16,12,8,3,7 
17 17,14,9,5,1 
18 18,14,9,6,1 
19 19,24,27,32,28 
20 20,16,12,8,4 
21 21,25,22,17,14 
22 22,17,13,9,5 
23 23,18,14,9,5 
24 24,28,32,27,31 
25 25,30,26,31,27 
26 26,22,17,14,9 
27 27,23,18,14,9 
28 28,32,27,24,20 
29 29,25,22,26,30 
30 30,26,22,17,14 
31 31,26,23,18,22 
32 32,27,31,26,30 

Table 6.1 The 32 random possible 5-tuple. 
 
 
 
 
6.3 EXPERIMENTAL SETUP FOR 5-TUPLE WITH RANDOM WALK 

 

Our hypothesis is that using n-tuple architecture will facilitate faster 

learning for the game of checkers and produce a better player.  
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The value function for the proposed n-tuple system is calculated by 

summing over all table values indexed by all the n-tuples. Algorithm 6.1 

shows our n-tuple framework.    

1- Take all the 32 possible checkers board squares. The n (n=5 for our experiments) positions can be 
arranged as random points scattered over the board. Each n-tuple is constructed by choosing each 
square on the board, and taking a random walk from that point. At each step of the walk, the next 
square is chosen as one of the immediate neighbours of the current square, which represents a legal 
checkers move. 

2- There is a one Look-Up Table (LUT) for each 5-Tuple. 

3- Since we have 5 types of pieces (our checker, our king, opponent’s checker, opponent’s king, and 
empty square), we require 55=3,125 possibilities for each n-tuple. 

4- The values for the pieces will be:- 

- 0 for opponent’s checker. 

- 1 for opponent’s king. 

- 2 for Empty Square. 

- 3 for our checker. 

- 4 for our king. 

5- Initialise a population of 30 n-tuple networks (players), each one with total number of weights 
(32*3125)=100,000, are initialised to zero. 

6- The result of evaluation the checkers board can be achieved by summing up all the corresponding 
LUT entries that are indexed by each n-tuple (in our case it will be only 32 entries each time). 

7- Each n-tuple network plays against five other neural networks selected randomly from the 
population. 

8- For each game, each competing player receives a score of +1 for win, 0 for draw and -2 for a loss. 

9- Games are played until either one side wins, or until one hundred moves are made by both sides, in 
which case a draw is declared. 

10- After completing all games, the 15 players that have the highest scores are selected as parents and 
retained for the next generation. Those parents are then mutated to create another 15 offspring by 
using the following equation: 

wi(j) =  wi(j) +Nj(0,1), j =  1, ..., Nw                                                                            (6.1) 
 
where Nw is the number of weights in the neural network and Nj(0,1) is a standard Gaussian 
random variable resembled for every j. 

11- Repeat the process for G generations. 

Algorithm 6.1 5-tuple with random walk for evolutionary checkers. 
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It is worth mentioning that the number of weights for constructing the 5-

tuple player (step 5 in the algorithm) is much bigger than those required to 

construct C0 which increases the complexity of evolving the ANN player. Two 

5-tuples would provide a chromosome with 6250 weights. But in this case not 

all the board squares covered, and this will prevent the ANN discovering 

many useful features in the board. For this reason we decided to use the 32 

5-tuple system.     

   

In order to provide a fair comparison, we run the above algorithm for the 

same number of generations (840 generations with 126,000 games) that was 

required to produce C0. All our experiments were run on the same computer 

(1.86 GHz Intel core2 processor and 2GB Ram). 

 

  

6.4 RESULTS FOR 5-TUPLE WITH RANDOM WALK 

 

In order to test the effectiveness of algorithm 6.1, the best player (named 

C5-tuple) was played against C0, Blondie24-RR, C10, and C10-RR using two-

move ballot. The detailed results are in table 6.2 and figure 6.1. 

 

Table 6.2 Results when Playing C0, Blondie24-RR, C10 and C10-RR 

against C5-tuple using the Two-Move Ballot. 
 
 
 
 
 
 
 

 Opponent: C5-tuple  
Win Draw Lose 

C0 43 23 20 

Blondie24-RR 47 21 18 

C10 43 23 20 

C10-RR 58 15 13 
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Figure 6.1 C0, Blondie24-RR, C10 and C10-RR against C5-tuple using 

the Two-Move Ballot. 
 
 
 

Table 6.3 summarises the results when playing against C0, Blondie24-RR, 

C10 and against C10-RR using a starting position where all pieces are in their 

original positions (i.e. no two-move ballot), while table 6.4 shows the mean 

and the standard deviation of the players‟ ratings after 5000 different 

ordering for the 86 played games.  

 

 C0 Blondie24-RR C10 C10-RR 

 
C5-tuple 

Red Lost Lost Lost Lost 

White Drawn Lost Drawn Lost 

Table 6.3 Summary of Wins/Loses When not Using Two-Move Ballot. 
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Table 6.4 Standard rating formula for C5-tuple against C0, Blondie24-

RR, C10 and C10-RR after 5000 ordering. 

 

 

 

The results in tables 6.2 and 6.4 show that C0 is statistically better than 

C5-tuple as the results (when playing C0 against C5-tuple) put C0 in class D 

(rating = 1275) and put C5-tuple in class E (rating = 1175), and by using 

student t-test (assuming unequal variances, g = 0.05, and one-tail test), the 

results show that C0 and C5-tuple are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha. 

  

The results in tables 6.2 and 6.4 also show that Blondie24-RR is 

statistically better than C5-tuple as the results (when playing Blondie24-RR 

against C5-tuple) put Blondie24-RR in class D (rating = 1321) and put C5-

tuple in class E (rating = 1195), and by using student t-test (assuming 

unequal variances, g = 0.05, and one-tail test), the results show that 

Blondie24-RR and C5-tuple are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha. 

 
The results in tables 6.2 and 6.4 show that C10 is statistically better than 

C5-tuple as the results (when playing C10 against C5-tuple) put C10 in class D 

(rating = 1274) and put C5-tuple in class E (rating = 1176), and by using 

 Mean SD Class 
C5-tuple 

C0 
1175.50 27.06 E 
1275.01 28.06 D 

C5-tuple 
Blondie24-RR 

1195.76 26.94 E 
1321.18 27.86 D 

C5-tuple 
C10 

1176.03 27.04 E 
1274.40 28.05 D 

C5-tuple 
C10-RR 

1254.55 26.16 D 
1461.32 26.83 C 
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student t-test (assuming unequal variances, g = 0.05, and one-tail test), the 

results show that C10 and C5-tuple are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha. 

 

Finally the results in tables 6.2 and 6.4 show that C10-RR is statistically 

better than C5-tuple as the results (when playing C10-RR against C5-tuple) put 

C10-RR in class C (rating = 1461) and put C5-tuple in class D (rating = 1254), 

and by using student t-test (assuming unequal variances, g = 0.05, and one-

tail test), the results show that C10-RR and C5-tuple are statistically different 

as the P value (P-value=0) for the one tail t-test is less than alpha. 

 

The results clearly showed that C5-tuple is not a good player compared 

with C0, Blondie24-RR, C10 and C10-RR. This could be because of the choice of 

the n-tuple sampling. In order to investigate this we use 1-tuple within 

algorithm 6.1. The experimental setup and the results are shown in sections 

6.5 and 6.6.  

 

6.5 EXPERIMENTAL SETUP FOR 1-TUPLE  

 

This section describes how we applied 1-tuple architecture. The difference 

with algorithm (6.1) are in steps 1, 3 and 5 (see algorithm 6.2), where a 5-

tuple will be replaced by 1-tuple. As a result the number of weights will be 

changed. We refer to this player as C1-tuple. 

 

1- Take all the 32 possible checkers board squares. The n (n=1 for our experiments) positions 
can be arranged by choosing each square at a time. 

2- There is a one Look-Up Table (LUT) for each 5-Tuple. 

3- Since we have 5 types of pieces (our checker, our king, opponent’s checker, opponent’s king, 
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and empty square), we require 51=5 possibilities for each n-tuple. 

4- The values for the pieces will be:- 

- 0 for opponent’s checker. 

- 1 for opponent’s king. 

- 2 for Empty Square. 

- 3 for our checker. 

- 4 for our king. 

5- Initialise a population of 30 n-tuple networks (players), each one with total number of 
weights (32*5)=160 are initialised to zero. 

6- The result of evaluation the checkers board can be achieved by summing up all the corresponding 
LUT entries that are indexed by each n-tuple (in our case it will be only 32 entries each time). 

7- Each n-tuple network plays against five other neural networks selected randomly from the 
population. 

8- For each game, each competing player receives a score of +1 for win, 0 for draw and -2 for a loss. 

9- Games are played until either one side wins, or until one hundred moves are made by both sides, in 
which case a draw is declared. 

10- After completing all games, the 15 players that have the highest scores are selected as parents and 
retained for the next generation. Those parents are then muted to create another 15 offspring by 
using equation (6.1). 

11- Repeat the process for G generations. 

Algorithm 6.2 1-tuple for evolutionary checkers. 

 

 

It is clear from step 1 that the 1-tuple system is effectively a weighted 

piece counter as each square of the 32 squares is assigned its own tuple. 

    

In order to provide a fair comparison, we run the above algorithm for the 

same number of generations (840 generations with 126,000 games) that was 

required to produce C0. All our experiments were run on the same computer 

(1.86  GHz Intel core2 processor and 2GB Ram). 
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6.6 RESULTS FOR 1-TUPLE  

 

In order to test the outcome of algorithm 6.2, the best player (named C1-

tuple) was played against C0, Blondie24-RR, C10, and C10-RR using two-move 

ballot. The detailed results are in table 6.5 and figure 6.2. 

 
Table 6.5 Results when Playing C0, Blondie24-RR, C10 and C10-RR 

against C1-tuple using the Two-Move Ballot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 6.2 C0, Blondie24-RR, C10 and C10-RR against C5-tuple using 

the Two-Move Ballot. 
 

 

 

Table 6.6 summarises the results when playing against C0, Blondie24-RR, 

C10 and against C10-RR using a starting position where all pieces are in their 

original positions (i.e. no two-move ballot), while table 6.7 shows the mean 

 Opponent: C1-tuple  
Win Draw Lose 

C0 46 22 18 

Blondie24-RR 48 21 17 

C10 47 24 15 

C10-RR 58 16 12 
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and the standard deviation of the players‟ ratings after 5000 different 

ordering for the 86 played games.  

 

 C0 Blondie24-RR C10 C10-RR 
 

C1-
tuple 

Red Lost Lost Lost Lost 
White Drawn Lost Drawn Lost 

Table 6.6 Summary of Wins/Loses When not Using Two-Move Ballot. 
 

 

 
Table 6.7 Standard rating formula for C1-tuple against C0, Blondie24-

RR, C10 and C10-RR after 5000 orderings. 

 
 
 

The results in tables 6.5 and 6.7 show that C0 is statistically better than 

C1-tuple as the results (when playing C0 against C1-tuple) put C0 in class D 

(rating = 1303) and put C1-tuple in class E (rating = 1180), and by using 

student t-test (assuming unequal variances, g = 0.05, and one-tail test), the 

results show that C0 and C1-tuple are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha.  

 

The results in tables 6.5 and 6.7 also show that Blondie24-RR is 

statistically better than C1-tuple as the results (when playing Blondie24-RR 

against C1-tuple) put Blondie24-RR in class D (rating = 1326) and put C1-

tuple in class E (rating = 1190), and by using student t-test (assuming 

 Mean SD Class 
C1-tuple 

C0 
1180.63 26.61 E 
1303.47 27.53 D 

C1-tuple 
Blondie24-RR 

1190.59 26.56 E 
1326.75 27.43 D 

C1-tuple 
C10 

1138.90 25.74 E 
1280.62 26.55 D 

C1-tuple 
C10-RR 

1235.57 25.86 D 
1447.89 26.49 C 
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unequal variances, g = 0.05, and one-tail test), the results show that 

Blondie24-RR and C1-tuple are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha. 

 

The results in tables 6.5 and 6.7 show that C10 is statistically better than 

C1-tuple as the results (when playing C10 against C1-tuple) put C10 in class D 

(rating = 1280) and put C1-tuple in class E (rating = 1138), and by using 

student t-test (assuming unequal variances, g = 0.05, and one-tail test), the 

results show that C10 and C1-tuple are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha. 

 

Finally the results in tables 6.5 and 6.7 show that C10-RR is statistically 

better than C1-tuple as the results (when playing C10-RR against C1-tuple) put 

C10-RR in class C (rating = 1447) and put C1-tuple in class D (rating = 1235), 

and by using student t-test (assuming unequal variances, g = 0.05, and one-

tail test), the results show that C10-RR and C1-tuple are statistically different 

as the P value (P-value=0) for the one tail t-test is less than alpha. 

 

The results clearly showed that C1-tuple is not a good player compared 

with C0, Blondie24-RR, C10 and C10-RR. By considering these results together 

with those in section 6.4, we arrive at two conclusions. The first one is that 

the n-tuple architecture is not suitable for use within an evolutionary 

checkers system. The second conclusion is that 5-tuple constructed with 

random walk is slightly better than 1-tuple and this is because some of the 

tuples are like the 3X3 subsections that are used in the Blondie24 

architecture. 

   



Introducing N-tuple Systems into Evolutionary Checkers 

 

125 
 

In order to test whether the n-tuple architecture can be used with other 

evolutionary methods, we decided to use n-tuple with temporal difference 

learning, TD(0). The success of applying n-tuple to the game of Othello, 

together with TDL (Lucas 2008) inspired us to try the same approach within 

evolutionary checkers.  Two experimental setups are considered. Firstly, one 

with the use of 5-tuple with random walks where the experimental setup and 

its related results are reported in sections 6.7 and 6.8. The second setup is 

with the use of a 1-tuple, where the experimental setup and its related 

results are reported in sections 6.9 and 6.10.  

 

6.7 EXPERIMENTAL SETUP FOR 5-TUPLE WITH RANDOM WALK and 

TDL 

 

The value functions for the proposed n-tuple system are calculated by 

summing over all table values indexed by all the n-tuples. Algorithm 6.3 

presents our first experiment. 

1- Take all the 32 possible checkers board squares. The n (n=5 for our experiments) positions can be 
arranged as random points scattered over the board. Each n-tuple is constructed by choosing each 
square on the board, and taking a random walk from that point. At each step of the walk, the next 
square is chosen as one of the immediate neighbours of the current square, which represents a legal 
checkers move. 

2- There is a one Look-Up Table (LUT) for each 5-Tuple. 

3- Since we have 5 types of pieces (our checker, our king, opponent’s checker, opponent’s king, and 
empty square), we require 55=3,125 possibilities for each n-tuple. 

4- The values for the pieces will be:- 

- 0 for opponent’s checker. 

- 1 for opponent’s king. 

- 2 for Empty Square. 

- 3 for our checker. 
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- 4 for our king. 

5- The total number of weights (32*3125)=100,000, are initialized to zero. 

6- The result of evaluation the checkers board can be achieved by summing up all the corresponding 
LUT entries that are indexed by each n-tuple (in our case it will be only 32 entries each time). 

7- In TDL the weights of the evaluation function are updated during game play using a gradient-
descent method. Let x be the board observed by a player about to move, and similarly xガ the board 
after the player has moved. Then the evaluation function may be updated during play using the 
following equation (taken from Lucas and Runarsson 2006):- 

 ))(1)](()'([ 2xvxvxvww ii                                                                          (6.2)   

           
               Where 

       1
))(2exp(1

2
))(tanh()( 




xf
xfxv   is used to force the value function v to be in the 

range -1 to 1. 

8- If x’ is a terminal state then the game has ended and the following update is usedμ 

))(1)](([ 2xvxvrww ii                                                                          (6.3) 

Where r corresponds to the final utilitiesμ +1 if the winner is Black, −1 when White, and 0 for a 
draw. Draw is declared after 100 moves by each player. 

9- Repeat the process for G generations. 

Algorithm 6.3 5-tuple with random walk for evolutionary checkers 

with TDL. 
 
 

Three experiments were carried out, each one with different value for 

 (0.01, 0.001 and 0.001). Three players are constructed; those players are 

C5-N0.01, C5-N0.001 and C5-N0.0001, where each player represents one of 

the selected values for .    

 

We run the above algorithm for the same number of games (126,000, 

which requires about two days), required to produce C0 (which took 19 days 

to evolve). All our experiments were run on the same computer (1.86 GHz 

Intel core2 processor and 2GB Ram). 
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6.8 RESULTS FOR 5-TUPLE WITH RANDOM WALK AND TDL 

 

In order to determine which value is suitable for  from the three selected 

values, C5-N0.001, C5- N0.01 and C5-N0.0001 were played against each 

other by using the idea of a two-move ballot. Table 6.8 and Figure 6.3 show 

the results, while table 6.9 shows the mean and the standard deviation of the 

players‟ ratings after 5000 different ordering for the 86 played games.  

 

 

 

 

 

 

 

Table 6.8 Results when playing all C5-N0.01, C5-N0.001 and C5-

N0.0001 using the Two-Move Ballot. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 6.3 C5-N0.01, C5-N0.001 and C5-N0.0001 against each other. 
 
 

 C5-N0.001 C5-N0.01 C5-N0.0001 
W D L W D L W D L 

C5-N0.001 - - - 41 15 30 45 12 29 

C5-N0.01  - - - 44 11 31 
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Table 6.9 Standard rating formula for C5-N0.01, C5-N0.001 and C5-

N0.0001 against each other after 5000 ordering. 

 

 

The results in tables 6.8 and 6.9 show that C5-N0.001 is statistically better 

than C5-N0.01 and C5-N0.0001 as the results (when playing C5-N0.001 against 

C5-N0.01) put C5-N0.001 in class D (rating = 1228) and put C5-N0.01 in class E 

(rating = 1182), and by using student t-test (assuming unequal variances, g 

= 0.05, and one-tail test), the results show that C5-N0.001 and C5-N0.01 are 

statistically different as the P value (P-value=0) for the one tail t-test is less 

than alpha. The results (when playing C5-N0.001 against C5-N0.0001) put C5-

N0.001 in class C (rating = 1438) and put C5-N0.0001 in class D (rating = 

1370), and by using student t-test (assuming unequal variances, g = 0.05, 

and one-tail test), the results show that C5-N0.001 and C5-N0.0001 are 

statistically different as the P value (P-value=0) for the one tail t-test is less 

than alpha. 

 
Finally the results in tables 6.8 and 6.9 show that C5-N0.01 is statistically 

better than C5-N0.0001 as the results (when playing C5-N0.01 against C5-

N0.0001) put C5-N0.01 in class C (rating = 1447) and put C5-N0.0001 in class D 

(rating = 1393), and by using student t-test (assuming unequal variances, g 

= 0.05, and one-tail test), the results show that C5-N0.01 and C5-N0.0001 are 

 Mean SD Class 
C5-N0.001  
C5-N0.01  

1228.28 30.75 D 
1182.09 29..48 E 

C5-N0.001  
C5-N0.0001  

1438.72 30.90 C 
1370.54 29.66 D 

C5-N0.01  
C5-N0.0001  

1447.86 31.22 C 
1393.70 29.94 D 
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statistically different as the P value (P-value=0) for the one tail t-test is less 

than alpha.  

 

By using these results, it is clear that the C5-N0.001 is better than both C5-

N0.01 and C5-N0.0001 and thus the best value among the three selected 

ones is  =0.001.   

 

To measure the effect of introducing 5-tuple as a learning method for the 

game of checkers, together with TDL, C5-N0.001 was played against our four 

benchmark players (C0, Blondie24-RR, C10, and C10-RR) using two-move 

ballot. The detailed results are in table 6.10 and figure 6.4. 

Table 6.10 Results when Playing C0, Blondie24-RR, C10 and C10-RR 

against C5-N0.001 using the Two-Move Ballot. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.4 C0, Blondie24-RR, C10 and C10-RR against C5-N0.001 using 

the Two-Move Ballot. 

 Opponent: C5-N0.001 
Win Draw Lose 

C0 30 10 46 

Blondie24-RR 29 19 38 

C10 37 20 29 

C10-RR 49 16 21 
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Table 6.11 summarises the results when playing against C0, Blondie24-RR, 

C10 and against C10-RR using a starting position where all pieces are in their 

original positions (i.e. no two-move ballot), while table 6.12 shows the mean 

and the standard deviation of the players‟ ratings after 5000 different 

ordering for the 86 played games.  

 
 

 C0 Blondie24-RR C10 C10-RR 
 

C5-N0.001 
Red Won Won Lost Lost 

White Won Won Drawn Lost 

Table 6.11 Summary of Wins/Loses When not Using Two-Move 

Ballot. 
 
 

 

Table 6.12 Standard rating formula for C5-tuple against C0, 

Blondie24-RR, C10 and C10-RR after 5000 ordering. 
 
 
 

The results in tables 6.10 and 6.12 show that C5-N0.001 is statistically 

better than C0 as the results (when playing C5-N0.001 against C0) put C5-

N0.001 in class C (rating = 1451) and put C0 in class D (rating = 1382), and 

by using student t-test (assuming unequal variances, g = 0.05, and one-tail 

test), the results show that C5-N0.001 and C0 are statistically different as the 

P value (P-value=0) for the one tail t-test is less than alpha.  

 Mean SD Class 
C5-N0.001 

C0 
1451.85 31.23 C 
1382.87 29.97 D 

C5-N0.001 
Blondie24-RR 

1209.79 29.54 D 
1169.43 28.32 E 

C5-N0.001 
C10 

1255.27 28.01 D 
1291.06 29.28 D 

C5-N0.001 
C10-RR 

1280.09 28.37 D 
1400.12 29.40 C 
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The results in tables 6.10 and 6.12 also show that C5-N0.001 is statistically 

better than Blondie24-RR as the results (when playing C5-N0.001 against 

Blondie24-RR) put C5-N0.001 in class D (rating = 1209) and put Blondie24-

RR in class E (rating = 1169), and by using student t-test (assuming unequal 

variances, g = 0.05, and one-tail test), the results show that C5-N0.001 and 

Blondie24-RR are statistically different as the P value (P-value=0) for the 

one tail t-test is less than alpha. 

 
The results in tables 6.10 and 6.12  show that C5-N0.001 and C10 are 

statistically the same as the results (when playing C5-N0.001 against C10) put 

C5-N0.001 in class D (rating = 1255) and put C10 in class D (rating = 1291), 

and by using student t-test (assuming unequal variances, g = 0.05, and one-

tail test), the results show that C5-N0.001 and C10 are statistically same as 

the P value (P-value=0.5) for the one tail t-test is greater than alpha. 

 

Finally the results in tables 6.10 and 6.12 show that C10-RR is statistically 

better than C5-N0.001 as the results (when playing C10-RR against C5-

N0.001) put C10-RR in class C (rating = 1400) and put C5-N0.001 in class D 

(rating = 1280), and by using student t-test (assuming unequal variances, g 

= 0.05, and one-tail test), the results show that C10-RR and C5-N0.001 are 

statistically different as the P value (P-value=0) for the one tail t-test is less 

than alpha. 

 

The results in table 6.11 showed that C5-N0.001 is better than C0 and 

Blondie24-RR as C5-N0.001 won as both red and white against them. Also 

the results in table 6.11 showed that C5-N0.001 managed to get a draw as 

red against C10. 
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Those results clearly validate our hypothesis (using an n-tuple 

architecture, together with TDL, will facilitate faster learning for the game of 

checkers and produce a good checkers player). As it took only two days to 

produce C5-N0.001 (126,000 games), as opposed to the 19 days for the 

other versions.  

 

The results in section table 6.11 showed that C5-N0.001 lost as white 

against C10. Also the results tables 6.11 and 6.12 clearly show that C10-RR is 

better than C5-N0.001. Although those results showed that C5-N0.001 cannot 

beat C10 and C10-RR but it was not our intention to produce a best player as 

this was not our hypothesis. 

 

   

6.9 EXPERIMENTAL SETUP FOR 1-TUPLE WITH TDL 

 

This section describes how to apply 1-tuple architecture to a checkers 

program with TDL. The difference with algorithm (6.3) are in steps 1, 3 and 5 

(see algorithm 6.4), where a 5-tuple will be replaced by 1-tuple. Accordingly 

the number of weights will change.  

1- Take all the 32 possible checkers board squares. The n (n=1 for our experiments) positions 
can be arranged by choosing one square at a time. 

2- There is a one Look-Up Table (LUT) for each 5-Tuple. 

3- Since we have 5 types of pieces (our checker, our king, opponent’s checker, opponent’s king, 
and empty square), we require 51=5 possibilities for each n-tuple. 

4- The values for the pieces will be:- 

- 0 for opponent’s checker. 

- 1 for opponent’s king. 

- 2 for Empty Square. 

- 3 for our checker. 
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- 4 for our king. 

5- The total number of weights (32*5)=160, are initialized to zero. 

6- The result of evaluation the checkers board can be achieved by summing up all the corresponding 
LUT entries that are indexed by each n-tuple (in our case it will be only 32 entries each time). 

7- In TDL the weights of the evaluation function are updated during game play using a gradient-
descent method. Let x be the board observed by a player about to move, and similarly xガ the board 
after the player has moved. Then the evaluation function may be updated during play using 
equation (6.2). 

8- If x’ is a terminal state then the game has ended and using equation (6.3) for the update. 

9- Repeat the process for G generations. 

Algorithm 6.4 1-tuple for evolutionary checkers with TDL. 

 

Three experiments were done, each one with different value for  (0.01, 

0.001 and 0.001). Three players are constructed; those players are C1-

N0.01, C1-N0.001 and C1-N0.0001, where each player represents one of the 

selected values for .    

 

We run the algorithm for the same number of games (126,000, which 

requires about two days), required to produce C0 (which took 19 days to 

evolve). All our experiments were run on the same computer (1.86 GHz Intel 

core2 processor and 2GB Ram). 

 

 

6.10 RESULTS FOR 1-TUPLE WITH TDL 

 

In order to determine which value is suitable for  from the three selected 

values, C1-N0.01, C1-N0.001 and C1-N0.0001 were played against each other 

by using the idea of a two-move ballot. Table 6.13 and figure 6.5 show the 

results, while table 6.14 shows the mean and the standard deviation of the 

players‟ ratings after 5000 different ordering for the 86 played games. 
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Table 6.13 Results when playing all C1-N0.01, C1-N0.001 and C1-

N0.0001 using the Two-Move Ballot. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 6.5 C1-N0.01, C1-N0.001 and C1-N0.0001 against each other. 
 
 

Table 6.14 Standard rating formula for C1-N0.01, C1-N0.001 and C1-

N0.0001 against each other after 5000 ordering. 

 

 

The results in tables 6.13 and 6.14 show that C1-N0.001 is statistically 

better than C1-N0.01 and C1-N0.0001 as the results (when playing C1-N0.001 

against C1-N0.01) put C1-N0.001 in class C (rating = 1401) and put C1-N0.01 

in class D (rating = 1342), and by using student t-test (assuming unequal 

variances, g = 0.05, and one-tail test), the results show that C1-N0.001 and 

 C1-N0.001 C1-N0.01 C1-N0.0001 
W D L W D L W D L 

C1-N0.001 - - - 43 14 29 40 20 26 

C1-N0.01  - - - 40 14 32 

 Mean SD Class 
C1-N0.001  
C1-N0.01  

1401.31 30.64 C 
1342.21 29.40 D 

C1-N0.001  
C1-N0.0001  

1254.37 29.12 D 
1192.82 27.95 E 

C1-N0.01  
C1-N0.0001  

1389.33 30.93 D 
1353.43 29.63 D 
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C1-N0.01 are statistically different as the P value (P-value=0) for the one tail 

t-test is less than alpha. The results (when playing C1-N0.001 against C1-

N0.0001) put C1-N0.001 in class D (rating = 1254) and put C1-N0.0001 in class 

E (rating = 1192), and by using student t-test (assuming unequal variances, 

g = 0.05, and one-tail test), the results show that C1-N0.001 and C1-N0.0001 

are statistically different as the P value (P-value=0) for the one tail t-test is 

less than alpha. 

 
Finally the results in tables 6.13 and 6.14 show that C1-N0.01 and C1-

N0.0001 are statistically the same as the results (when playing C1-N0.01 

against C1-N0.0001) put C1-N0.01 in class D (rating = 1389) and put C1-

N0.0001 in class D (rating = 1353), and by using student t-test (assuming 

unequal variances, g = 0.05, and one-tail test), the results show that C1-

N0.01 and C1-N0.0001 are statistically same as the P value (P-value=0.5) for 

the one tail t-test is greater than alpha. 

 

By using these results, it is clear that the C1-N0.001 is better than both C1-

N0.01 and C1-N0.0001 and thus the best value among the three selected 

ones is  =0.001.   

 

To measure the effect of introducing 1-tuple as a learning method for the 

game of checkers, together with TDL, C1-N0.001 was played against our four 

benchmark players (C0, Blondie24-RR, C10, and C10-RR) using two-move 

ballot. The detailed results are in table 6.15 and figure 6.6. 



Introducing N-tuple Systems into Evolutionary Checkers 

 

136 
 

Table 6.15 Results when Playing C0, Blondie24-RR, C10 and C10-RR 

against C1-N0.001 using the Two-Move Ballot. 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.6 C0, Blondie24-RR, C10 and C10-RR against C5-N0.001 using 

the Two-Move Ballot. 

 

Table 6.16 summarises the results when playing against C0, Blondie24-RR, 

C10 and against C10-RR using a starting position where all pieces are in their 

original positions (i.e. no two-move ballot), while table 6.17 shows the mean 

and the standard deviation of the players‟ ratings after 5000 different 

ordering for the 86 played games.  

 

 C0 Blondie24-RR C10 C10-RR 
 

C1-N0.001 
Red Won Won Lost Lost 

White Won Won Lost Lost 

Table 6.16 Summary of Wins/Loses When not Using Two-Move 

Ballot. 
 
 

 Opponent: C1-N0.001 
Win Draw Lose 

C0 28 19 39 

Blondie24-RR 24 31 31 

C10 38 26 22 

C10-RR 54 12 20 
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Table 6.17 Standard rating formula for C1-tuple against C0, 

Blondie24-RR, C10 and C10-RR after 5000 ordering. 

 

The results in tables 6.15 and 6.17 show that C1-N0.001 and C0 are 

statistically the same as the results (when playing C1-N0.001 against C0) put 

C1-N0.001 in class D (rating = 1314) and put C0 in class D (rating = 1265), 

and by using student t-test (assuming unequal variances, g = 0.05, and one-

tail test), the results show that C1-N0.001 and C0 are statistically same as the 

P value (P-value=0.5) for the one tail t-test is greater than alpha. 

 

The results in tables 6.15 and 6.17 show that C1-N0.001 and Blondie24-RR  

are statistically the same as the results (when playing C1-N0.001 against 

Blondie24-RR) put C1-N0.001 in class E (rating = 1108) and put Blondie24-

RR in class E (rating = 1077), and by using student t-test (assuming unequal 

variances, g = 0.05, and one-tail test), the results show that C1-N0.001 and 

Blondie24-RR are statistically same as the P value (P-value=0.5) for the 

one tail t-test is greater than alpha. 

 
The results in tables 6.15 and 6.17 also show that C10 is statistically better 

than C1-N0.001 as the results (when playing C10 against C1-N0.001) put C10 

in class D (rating = 1210) and put C1-N0.001 in class E (rating = 1140), and 

by using student t-test (assuming unequal variances, g = 0.05, and one-tail 

 Mean SD Class 
C1-N0.001 

C0 
1314.14 29.62 D 
1265.35 28.41 D 

C1-N0.001 
Blondie24-RR 

1108.78 27.25 E 
1077.25 26.11 E 

C1-N0.001 
C10 

1140.79 26.97 E 
1210.30 28.04 D 

C1-N0.001 
C10-RR 

1331.53 29.06 D 
1480.38 30.07 C 
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test), the results show that C10 and C1-N0.001 are statistically different as 

the P value (P-value=0) for the one tail t-test is less than alpha. 

 

Finally the results in tables 6.15 and 6.17 show that C10-RR is statistically 

better than C1-N0.001 as the results (when playing C10-RR against C1-

N0.001) put C10-RR in class C (rating = 1480) and put C1-N0.001 in class D 

(rating = 1331), and by using student t-test (assuming unequal variances, g 

= 0.05, and one-tail test), the results show that C10-RR and C1-N0.001 are 

statistically different as the P value (P-value=0) for the one tail t-test is less 

than alpha. 

 

The results in section 6.10 showed that C1-N0.001 is statistically the same 

as C0 and Blondie24-RR. Those results clearly validate our hypothesis (using 

an n-tuple architecture, together with TDL, will facilitate faster learning for 

the game of checkers and produce a good checkers player). As it took only 

two days to produce C1-N0.001 (126,000 games), whereas it took 19 days 

for our four other baseline players.  

 

The results in section 6.10 clearly show that C10 and C10-RR are better 

than C1-N0.001. Although those results showed that C1-N0.001 cannot beat 

C10 and C10-RR but it was not our intention to produce a best player as this 

was not our hypothesis. 

 

The results in sections 6.8, and 6.10 show that C5-N0.001 is almost the 

same as C1-N0.001. To be more confident about that, we decided to play C5-

N0.001 and C1-N0.001 using the two move ballot. The next section shows 

the results, which is obtained using a single TDL run.  
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6.11 C5-N0.001 Against C1-N0.001 

 
 

 

 

 

 

Table 6.18 Results when Playing C5-N0.001 against C1-N0.001 using 

the Two-Move Ballot. 
        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
 

Figure 6.7 C5-N0.001 against C1-N0.001. 

 

The results of the 5000 different orderings show that C5-N0.001 and C1-

N0.001 are statistically the same, as the results put C5-N0.001 in class E 

(rating = 1043) and put C1-N0.001 in class E (rating =1011), and by using 

student t-test (assuming unequal variances, g = 0.05, and one-tail test), the 

results show that C5-N0.001 and C1-N0.001 are statistically same as the P 

value (P-value=0.5) for the one tail t-test is greater than alpha. 

 

 

 

 Opponent:  C1-N0.001 
Win Draw Lose 

C5-N0.001 29 35 22 
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6.12 SUMMARY  

 

This chapter has introduced n-tuples to the game of checkers. Two main 

experiments were carried out. The first used the n-tuple with an evolutionary 

checkers based on the architecture of Blondie24. Sections 6.3 and 6.4 

showed the experimental setup and the results of using 5-tuples with a 

random walk. Sections 6.5 and 6.6 showed the experimental setup and the 

results for using a 1-tuple.  

 

The results demonstrated that using 5-tuples with a random walk and a 1-

tuple did not evolve a good player as both the results for 5-tuples with 

random walk in section 6.4 and the results for a 1-tuple in section 6.6 

showed that C5-tuple and C1-tuple are not good players when compared with 

C0, Blondie24-RR, C10 and C10-RR.    

 

The second experiment used both 5-tuples with random walking and a 1-

tuple with TDL. The proposed algorithm in sections 6.7 and 6.9 showed 

promising results when tested against C0, Blondie-RR, C10 and C10-RR. The 

players were trained in a time that is much less than the time required 

evolving C0, Blondie24-RR, C10 and C10-RR (2 days compared with 19 days). 

The results in section 6.11 showed that the 5-tuples with random walks 

player is statistically same 1-tuple player.  

 

In summary, the combination of temporal difference learning with n-tuples 

seems a very promising approach. 

 

The experiments also showed that the best value for  from the three 

selected values is 0.001.  
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Based on the results we obtained it would seem appropriate to use n-tuple 

learning to enhance the ability of the constructed self learning computer 

checkers players. 

 

The next chapter will discuss the importance of piece difference feature 

together with the importance of a look-ahead feature for evolutionary 

checkers.  
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Chapter Seven 

The Importance of Piece Difference Feature and Look-

ahead Depth to Evolutionary Checkers 

 

 

7.1 INTRODUCTION 

 

Chapter six showed that using n-tuple systems within an evolutionary 

checkers framework produced a good player, considerably quicker time than 

previous approaches. This chapter investigates the importance of the piece 

difference feature and the look-ahead depths for evolutionary computer 

checkers. Therefore we will investigate evolutionary neural networks, with 

and without piece difference, and with different ply depths, evolved via an 

evolution strategy. We believe that those two features are important in the 

design of evolutionary computer checkers but we would like to investigate 

this aspect of the framework.  

 

This chapter is structured as follows; Section 6.3 describes the 

experiments that were done by Fogel and Hughes to show the importance of 

piece difference for the design of Blondie24. Sections 7.3 and 7.4 describe 

the experimental setup and the results for the piece difference. In section 7.5 

we start to investigate the effect of the look-ahead depth. Sections 7.6 and 
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7.7 describe the experimental setup and the results for the look-ahead 

depth. Finally a summary for this chapter is presented in section 7.8. This 

chapter has been disseminated via the following publications: Al-Khateeb and 

Kendall (2010, 2011c).  

 

 

7.2 PIECE DIFFERENCE 

 
Blondie24 represents a landmark in evolutionary learning. Even so, it has 

still attracted comments about its design. One of them is concerned with the 

piece difference (The difference of the number of the player pieces currently 

on the board and the number of the opponent pieces currently on the board) 

feature and how it affects the learning process of Blondie24. This was 

answered (by Fogel) by playing a series of fourteen matches (seven as red 

and seven as white) between Blondie24 and a piece-count player (Chellapilla 

and Fogel 1999 and Fogel 2002).  The experiment showed that the piece-

count player played a weak endgame, because it is unable to see far enough 

ahead to capture a piece. The games played out until either the game was 

completed (with one side winning, or a draw being declared due to the 

number of repeated positions). In the case of a draw an assessment of the 

outcome was made by  examining the piece advantage that one player had 

over the other, and also by playing out the game using a strong computer 

program (Blitz98), which played out the remainder of the game and declared 

a winner. 

 

Of the fourteen games played, two were played to completion, with 

Blondie24 winning both. For the remaining twelve games, Blondie24 held an 
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advantage in ten games, while the piece-count player held the advantage in 

two games (see Table 7.1). By using Blitz98 to play out the twelve 

incomplete games, Blondie24 got wins in eight games; the piece-count player 

won one game, while the remaining three games ended in a draw (Table 

7.2).   

 
  

 

 

 

Table 7.1 Results of Playing 14 Games between Blondie24 and Piece-

count Using Material Advantage to Break Tie. 
 
 
 
 
 
 
 

Table 7.2 Results of Playing 14 Games between Blondie24 and Piece-

count Using Blitz98 to Break Tie. 
 

 
 It is clear from Table 7.1 and 7.2 that Blondie24 is better than a piece-

count player, and by using a standard rating formula, the results suggest 

that Blondie24 is about 311 to 400 points better than the piece-count player 

based on material advantage or the final outcome using Blitz98 (Chellapilla 

and Fogel 1999 and Fogel 2002). 

 

The results demonstrate that a piece difference feature is important to 

Blondie24 but the neural network has additional information that is important 

to learning within Blondie24 (Fogel 2002).    

 

 Piece-count 
Win Draw Lose 

Blondie24 12 0 2 

 Piece-count 
Win Draw Lose 

Blondie24 10 3 1 
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Hughes also wanted to investigate the importance of a piece difference 

feature to the design of Brunette24 (a re-implementation of Blondie24) by 

evolving a piece difference heuristic using co-evolution (Hughes 2003). 

   

Hughes used the same experiment as Fogel to show the importance of a 

piece difference. This was done by playing 1000 games against a simple 

piece difference player. The evolved piece difference player managed to win 

68% of the games, drew 30% and lost 2% (Table 7.3). 

 

Also, to measure the success of the evolved piece difference player, 

Hughes played 1000 games against xcheckers, which is free software 

available from http://arton.cunst.net/xcheckers. The evolved piece difference 

player won 22% of the games, drew 66% and lost 12% (Table 7.4).   

 

It is worth to mention that the evolved piece count player is constructed 

by giving each board location a weight. The evolved piece count player is also 

called a weighted piece count player.  

 
 

 
 
 
 
Table 7.3 Results of Playing 1000 Games between the Evolved Piece 

Count player and Piece-count player. 
 
 

 
Table 7.4 Results of Playing 1000 Games between the Evolved Piece 

Count player and xcheckers. 
 
 
 

 Piece-count 
Win Draw Lose 

Evolved Piece Count 680 300 20 

 Xcheckers 
Win Draw Lose 

Evolved Piece Count 220 660 120 

http://arton.cunst.net/xcheckers
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The results in Table 7.3 show that the evolved piece count player is better 

than the piece count player and by using a standard rating formula, the 

results suggest that the evolved piece difference player is about 528 points 

better than piece difference player. While applying the standard rating 

formula to the results in Table 7.4 shows that the evolved piece difference 

player is about 80 points better than xcheckers. These results, like Fogel‟s, 

also show that a piece difference feature is important. 

    

7.3 EXPERIMENTAL SETUP FOR PIECE DIFFERENCE 

 

Our hypothesis is that the piece difference feature is important to 

evolutionary checkers and this can be done by evolving two players, one with 

the piece difference feature and the other without the piece difference 

feature. The work carried out here is differs to the work of Fogel and Hughes 

in that they used a piece count player and evolve a player with piece 

difference feature. Two evolutionary checkers players were implemented; 

one with a piece difference feature, which is called C0, while the other is 

without a piece difference feature and is called C0-NPD. The implementation 

for both players is based on algorithm 3.1.   

 

Our previous efforts to enhance evolutionary checkers introduced a round 

robin tournament (see chapter four). We decided to use the resultant player 

(Blondie24-RR) to show the importance of the piece difference feature. This 

is done by implementing a player which is the same as Blondie24-RR, but, 

does not include a piece difference feature. This player is called Blondie24-

RRNPD.   
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Also, we decided to show the importance of the piece difference feature in 

evolutionary checkers with individual and social learning and with n-tuple 

systems.  

 

In this case C10, the resultant player from introducing individual and social 

learning (chapter five), will be used to show the importance of the piece 

difference feature. This is done by implementing a player which is the same 

as C10, but, does not include a piece difference feature. This player is called 

C10-NPD.   

 

Also C5-N0.001, the resultant player from introducing n-tuple systems 

(chapter six), will be used to show the importance of the piece difference 

feature. This is done by implementing a player which is the same as C5-

N0.001, but, does not include a piece difference feature. This player is called 

C5-N0.001-NPD.   

 

 

7.4 RESULTS FOR PIECE DIFFERENCE 

 

To measure the effect of a piece difference feature in evolutionary 

checkers, C0 was played against C0-NPD by using the idea of a two-move 

ballot. We play all of the 43 possible games, both as red and white. This 

gives a total of 86 games. The games were played until either one side wins 

or a draw is declared after 100 moves for each player. The same procedure 

was also used to play Blondie24-RR against Blondie24-RRNPD, C10 against 

C10-NPD and C5-N0.001against C5-N0.001-NPD. The results are shown in 

Tables 7.5 through 7.8 and in Figure 7.1.  
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Table 7.5 Results when Playing C0 against C0-NPD using the Two-

Move Ballot. 
 

 
Table 7.6 Results when Playing Blondie24-RR against Blondie24-

RRNPD using the Two-Move Ballot. 
 

 

 

Table 7.7 Results when Playing C10 against C10-NPD using the Two-

Move Ballot. 
 

 

 

Table 7.8 Results when Playing C5-N0.001 against C5-N0.001-NPD 

using the Two-Move Ballot. 
 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 C0 against C0-NPD, Blondie24-RR against Blondie24-

RRNPD, C10 against C10-NPD and C5-N0.001against C5-

N0.001-NPD. 

 Opponent:C0-NPD 
Win Draw Lose 

C0 59 14 13 

 Opponent: Blondie24-RRNPD 
Win Draw Lose 

Blondie24-RR 61 16 9 

 Opponent:C10-NPD 
Win Draw Lose 

C10 55 16 15 

 Opponent:C5-N0.001-NPD 
Win Draw Lose 

C5-N0.001 60 12 14 
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Table 6.9 summarises the results when the players playing using a starting 

position where all pieces are in their original positions (i.e. no two-move 

ballot), while table 6.10 shows the mean and the standard deviation of the 

players‟ ratings after 5000 different ordering for the 86 played games.  

 
 

 C0-NPD Blondie24-
RRNPD 

C10-NPD C5-N0.001-
NPD 

C0 
 

Red Won - - - 

White Won - - - 

Blondie24-RR Red - Won - - 

White - Won - - 

C10 Red - - Won - 

White - - Won - 

C5-N0.001 Red - - - Won 

White - - - Won 

Table 7.9 Summary of Wins/Loses When not Using Two-Move Ballot. 
 

 

Table 7.10 Standard rating formula for C0 against C0-NPD, Blondie24-

RR against Blondie24-RRNPD, C10 against C10-NPD and C5-

N0.001against C5-N0.001-NPD.after 5000 ordering. 

 

The results in tables 7.5 and 7.10 show that C0 is statistically better than 

C0-NPD as the results (when playing C0 against C0-NPD) put C0 in class C 

(rating = 1481) and put C0-NPD in class D (rating = 1267), and by using 

student t-test (assuming unequal variances, g = 0.05, and one-tail test), the 

 Mean SD Class 
C0 

C0-NPD 
1481.25 27.40 C 
1267.42 26.73 D 

Blondie24-RR 
Blondie24-RRNPD 

1466.79 25.05 C 
1217.84 24.60 D 

C10 

C10-NPD 
1431.34 27.27 C 
1251.00 26.51 D 

C5-N0.001 
C5-N0.001NPD 

1512.50 28.08 C 
1301.35 27.36 D 
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results show that C0 and C0-NPD are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha. 

 

The results in tables 7.6 and 7.10 also show that Blondie24-RR is 

statistically better than Blondie24-RRNPD as the results (when playing 

Blondie24-RR against Blondie24-RRNPD) put Blondie24-RR in class C (rating 

= 1466) and put Blondie24-RRNPD in class D (rating = 1217), and by using 

student t-test (assuming unequal variances, g = 0.05, and one-tail test), the 

results show that Blondie24-RR and Blondie24-RRNPD are statistically 

different as the P value (P-value=0) for the one tail t-test is less than alpha. 

 
The results in tables 7.7 and 7.10 also show that C10 is statistically better 

than C10-NPD as the results (when playing C10 against C10-NPD) put C10 in 

class C (rating = 1431) and put C10-NPD in class D (rating = 1251), and by 

using student t-test (assuming unequal variances, g = 0.05, and one-tail 

test), the results show that C10 and C10-NPD are statistically different as the P 

value (P-value=0) for the one tail t-test is less than alpha. 

 

Finally the results in tables 7.8 and 7.10 show that C5-N0.001 is 

statistically better than C5-N0.001-NPD as the results (when playing C5-

N0.001 against C5-N0.001-NPD) put C5-N0.001 in class C (rating = 1512) 

and put C5-N0.001-NPD in class D (rating = 1301), and by using student t-

test (assuming unequal variances, g = 0.05, and one-tail test), the results 

show that C5-N0.001 and C5-N0.001-NPD are statistically different as the P 

value (P-value=0) for the one tail t-test is less than alpha. 
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Using the results from our experiments and those of Fogel‟s and Hughes‟, 

we can conclude that a piece difference feature is important to the design of 

the evolutionary checkers. Of course, the neural network is also an important 

element of the whole design but the results presented here demonstrate a 

simple feature is able to significantly improve the overall playing strength.  

 

Now that the importance of piece difference has been shown in the 

design of the evolutionary checkers, the next sections will investigate 

if the depth of the search is also an important element. We suspect 

that it is, but we would like to investigate this aspect of the 

framework. 

 

 

7.5 LOOK-AHEAD 

 

There has been a lot of discussion about the importance of the look-ahead 

depth level used in Fogel‟s work: There is little work that has rigorously 

investigated its importance. Fogel, in his work on evolving Blondie24 (Fogel 

2002),  showed the importance of using a four ply search in Blondie24 by 

stating that “At four ply, there really isn’t any “deep” search beyond what a 

novice could do with a paper and pencil if he or she wanted to”. In fact we 

don‟t believe that this is the case as generating all the possible moves from a 

four ply search is not an easy task for novices, and would also be time 

consuming. Of course, it might be done at some subconscious level, where 

pruning is taking place, but this (as far as we are aware) has not been 

reported in the scientific literature.   
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Many researchers have shown the importance of the look-ahead depth for 

computer games, but none of them was related to checkers. Most of the 

findings are related to chess (Bettadapur and Marsland 1988, Levene and 

Fenner 2001, Nau et.al. 2001 and Smet et. al. 2003), where it was shown 

that increasing the depth level will produce superior chess players. However,  

(Runarsson and Jonsson 2007) showed that this was not the case for 

Othello, as they found that better playing strategies are found when TD 

learning with i–greedy is applied with a lower look-ahead search depth and a 

deeper look-ahead search during game play. Given that chess appears to 

benefit from a deeper look-ahead, but this is not true for Othello, this 

chapter will establish if checkers benefits from a deeper look-ahead. 

  
 
7.6 EXPERIMENTAL SETUP FOR LOOK-AHEAD DEPTH 

 

Our hypothesis is that the look-ahead depth feature is important to 

evolutionary checkers and this can be done by evolving evolutionary checkers 

player, based on the same algorithm that was used to construct Blondie24. 

Our implementation has the same structure and architecture that Fogel 

utilised in Blondie24. 

 

Four implementations were made; those players are listed below:- 

1- C1Ply trained using one ply depth. 

2- C2Ply trained using two ply depth. 

3- C3Ply trained using three ply depth. 

4- C4Ply trained using four ply depth.  

 

http://portal.acm.org/author_page.cfm?id=81100642982&coll=GUIDE&dl=GUIDE&trk=0&CFID=105310612&CFTOKEN=15688160
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Each player played against all other players but was now allowed to search 

to a depth of 6-ply. The reason to choose 6-ply is to allow each program to 

search in a level that is greater than the level trained with, which is the case 

that Fogel used in Blondie24 (trained at 4-ply and played at a higher level).  

 

Our previous efforts to enhance evolutionary checkers introduced a round 

robin tournament (Chapter Four). We also use this player (Blondie24-RR) to 

investigate the importance of the look-ahead depth. This is done by 

implementing three other players, which are the same as Blondie24-RR, but, 

trained on different ply depths, those players are called:- 

1- Blondie24-RR1Ply. 

2- Blondie24-RR2Ply. 

3- Blondie24-RR3Ply  

 

It is worth mentioning that Blondie24-RR is constructed using a four ply 

depth. Each player was set to play against all the other three players but now 

using a six ply depth.    

   

7.7 RESULTS FOR LOOK-AHEAD DEPTH 

 

In order to provide a fair comparison, all the experiments were run using 

same computer (1.86 GHz Intel core2 processor and 2GB Ram). All the 

experiments to evolve the players were run for the same number of 

generations (840 and 126,000 played games). The following subsections 

show the results for all the constructed players. 
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7.7.1 Results for C1Ply, C2Ply, C3Ply and C4Ply 

 

 

To measure the effect of increasing the ply depth in the game of checkers, 

each player trained at a given ply was matched with all of the other players 

trained with on different ply. A league is held between C1Ply, C2Ply, C3Ply 

and C4Ply; each match in the league was played using the idea of a two-

move ballot. For each match we play all of the 43 possible games, both as 

red and white. This gives a total of 86 games. The total number of games 

played is 258. Each game is played using a fixed ply depth of six. The games 

were played until either one side wins or a draw is declared after 100 moves 

for each player. The results are shown in tables 7.11 through 7.13 and in 

figure 7.2.  

 
 
 
 
 
 
 
 
 

Table 7.11 Number of wins (for the row player) out of 258 games. 
 
 
 
 
 
 
 
 
 
Table 7.12 Number of draws (for the row player) out of 258 games. 

 
 
 
 
 
 
 
 
 
Table 7.13 Number of losses (for the row player) out of 258 games. 

 C1Ply C2Ply C3Ply C4Ply ぇwins 
C1Ply - 28 17 13 58 

C2Ply 33 - 24 19 76 

C3Ply 45 31 - 27 103 

C4Ply 59 40 35 - 134 

 C1Ply C2Ply C3Ply C4Ply ぇdraws 
C1Ply - 25 24 14 63 

C2Ply 25 - 31 27 83 

C3Ply 24 31 - 26 91 

C4Ply 14 27 26 - 67 

 C1Ply C2Ply C3Ply C4Ply ぇlosses 
C1Ply - 33 45 59 137 

C2Ply 28 - 31 40 99 

C3Ply 17 24 - 33 74 

C4Ply 13 19 27 - 59 
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Figure 7.2 Results of playing a league between C1Ply, C2Ply, C3Ply 

and C4Ply. 
 

 

 

It is clear from tables 7.11 and 7.13 that the total number of wins 

increases and the total number of losses decreases when the evolved ply 

depth increases. Therefore, increasing the ply depth leads to a superior 

player. Table 7.14 shows the mean and the standard deviation of the 

players‟ ratings after 5000 different orderings for the 86 played games, while 

table 7.15 summarises the results when playing the league between players 

using a starting position where all pieces are in their original positions (i.e. 

no two-move ballot). 
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Table 7.14 Standard rating formula for all players after 5000 

different orderings of the 86 games played. 
 

 C1Ply C2Ply C3Ply C4Ply 
C1Ply  Red - Lost Lost Lost 

White - Drawn Lost Lost 

C2Ply Red  - Lost Lost 

White  - Drawn Lost 

C3Ply Red   - Lost 

White   - Lost 

Table 7.15 Summary of Wins/Loses for C1Ply, C2Ply, C3Ply and C4Ply 

When not Using Two-Move Ballot. 
 

 
 

The results in table 7.14, obtained using 5000 different orderings for the 

86 games (obtained using the two-move ballot) show that increasing ply 

depth by one increases the performance of the checkers player as C2Ply is 

better (using our definition given earlier with respect to players having a 

different rating class)  than C1Ply, C3Ply is better than C2Ply and C4 is better 

than C3Ply, and by using the average value for the standard rating formula 

the results (when playing C2Ply against C1Ply) put C2Ply in class D (rating = 

1206) and put C1Ply in Class E (rating = 1189),  and by using student t-test 

(assuming unequal variances, g = 0.05, and one-tail test), the results show 

 Mean SD Class 
C1Ply 
C2Ply 

1188.94 28.94 E 
1206.24 27.62 D 

C1Ply 
C3Ply 

1146.58 27.40 E 
1266.18 26.14 D 

C1Ply 
C4Ply 

1264.11 27.21 D 
1474.99 26.14 C 

C2Ply 
C3Ply 

1179.47 26.85 E 
1205.10 25.60 D 

C2Ply 
C4Ply 

1114.61 27.17 E 
1200.21 25.88 D 

C3Ply 
C4Ply 

1176.02 28.26 E 
1205.26 26.98 D 
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that C1Ply and C2Ply are statistically different as the P value (P-value=0) 

for the one tail t-test is less than alpha. 

 

Also the results (when playing C3Ply against C2Ply) in table 7.14 put C3Ply 

in class D (rating = 1205) and put C2Ply in class E (rating = 1179), and by 

using student t-test (assuming unequal variances, g = 0.05, and one-tail 

test), the results show that C2Ply and C3Ply are statistically different as the P 

value (P-value=0) for the one tail t-test is less than alpha and finally (when 

playing C4Ply against C3Ply) put C4Ply in class D (rating = 1205) and put 

C3Ply in class E (rating = 1176), and by using student t-test (assuming 

unequal variances, g = 0.05, and one-tail test), the results show that C3Ply 

and C4Ply are statistically different as the P value (P-value=0) for the one 

tail t-test is less than alpha. 

 

The results shown in table 7.14 also show that increasing ply depth by two 

increases the performance of the checkers player as C3Ply and C4Ply are 

significantly better than the C1Ply and C2Ply respectively, and by using the 

average value for the standard rating formula, the results (when playing 

C3Ply against C1Ply) put C3Ply in class D (rating = 1266) and C1Ply in Class 

E (rating = 1147), and by using student t-test (assuming unequal variances, 

g = 0.05, and one-tail test), the results show that C1Ply and C3Ply are 

statistically different as the P value (P-value=0) for the one tail t-test is less 

than alpha, while (when playing C4Ply against C2Ply), C4Ply is in Class D 

(rating = 1200) and C2Ply is in class E (rating = 1115), and by using student 

t-test (assuming unequal variances, g = 0.05, and one-tail test), the results 
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show that C2Ply and C4Ply are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha. 

 

Finally the results in table 7.14 show that C4Ply is significantly better than 

the C1Ply, and by using the average value for the standard rating formula, 

the results (when playing C4Ply against C1Ply) puts C4Ply in class C (rating = 

1475) and C1Ply in class D (rating = 1264), and by using student t-test 

(assuming unequal variances, g = 0.05, and one-tail test), the results show 

that C1Ply and C4Ply are statistically different as the P value (P-value=0) 

for the one tail t-test is less than alpha. 

 
 

7.7.2 Results Using Round Robin Players 
 
 
The same procedure in section 7.6.1 was also used to play a league 

between Blondie24-RR, Blondie24-RR1Ply, Blondie24-RR2Ply and Blondie24-

RR3Ply. The results are shown in tables 7.16 through 7.18 and figure 7.3. 

 

Table 7.16 Number of wins (for the row player) out of 258 games for 

the round robin players. 
 

 

 Blondie24-
RR1Ply 

Blondie24-
RR2Ply 

Blondie24-
RR3Ply 

Blondie24-
RR 

ぇ wins 

Blondie24-
RR1Ply 

- 28 20 14 62 

Blondie24-
RR2Ply 

32 - 29 21 82 

Blondie24-
RR3Ply 

42 34 - 27 103 

Blondie24-
RR 

57 46 39 - 142 
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Table 7.17 Number of draws (for the row player) out of 258 games 

for the round robin players. 
 

Table 7.18 Number of losses (for the row player) out of 258 games 

for the round robin players. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 7.3 Results of playing a league between Blondie24-RR1Ply, 

Blondie24-RR2Ply, Blondie24-RR3Ply and Blondie24-

RR. 

 Blondie24-
RR1Ply 

Blondie24-
RR2Ply 

Blondie24-
RR3Ply 

Blondie24-
RR 

ぇ 
draws 

Blondie24-
RR1Ply 

- 26 24 15 65 

Blondie24-
RR2Ply 

26 - 23 19 68 

Blondie24-
RR3Ply 

24 23 - 20 67 

Blondie24-
RR 

15 19 20 - 54 

 Blondie24-
RR1Ply 

Blondie24-
RR2Ply 

Blondie24-
RR3Ply 

Blondie24-
RR 

ぇ 
losses 

Blondie24-
RR1Ply 

- 32 42 57 131 

Blondie24-
RR2Ply 

28 - 34 46 108 

Blondie24-
RR3Ply 

20 29 - 39 88 

Blondie24-
RR 

14 21 27 - 62 
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It is clear from tables 7.16 and 7.18 that the total number of wins 

increases and the total number of losses decreases when the ply depth 

increases. Therefore, increasing the ply depth leads to a superior player. 

Table 7.19 shows the mean and the standard deviation of the  players‟ 

ratings after 5000 different orderings for the 86 played games, while table 

7.20 summarises the results when playing the league between players using 

a starting position where all pieces are in their original positions (i.e. no two-

move ballot). 

 

Table 7.19 Standard rating formula for all players after 5000 

different orderings of the 86 games played. 
 
 
 

 Blondie24-
RR1Ply 

Blondie24-
RR2Ply 

Blondie24-
RR3Ply 

Blondie24-
RR 

Blondie24-
RR1Ply 

Red - Lost Lost Lost 

White - Lost Lost Lost 

Blondie24-
RR2Ply 

Red  - Lost Lost 

White  - Lost Lost 

Blondie24-
RR3Ply 

Red   - Lost 

White   - Lost 

Table 7.20 Summary of Wins/Loses for Blondie24-RR1Ply, 

Blondie24-RR2Ply, Blondie24-RR3Ply and Blondie24-

RR When not Using Two-Move Ballot. 

 

 

 Mean SD Class 
Blondie24-RR1Ply 
Blondie24-RR 2Ply 

1187.79 28.86 E 
1200.74 27.55 D 

Blondie24-RR 1Ply 
Blondie24-RR 3Ply 

1160.17 28.15 E 
1252.67 26.84 D 

Blondie24-RR 1Ply 
Blondie24-RR  

1256.00 27.71 D 
1450.51 26.58 C 

Blondie24-RR 2Ply 
Blondie24-RR 3Ply 

1194.62 29.30 E 
1212.04 27.98 D 

Blondie24-RR 2Ply 
Blondie24-RR  

1335.38 28.72 D 
1440.84 27.43 C 

Blondie24-RR 3Ply 
Blondie24-RR  

1348.31 29.24 D 
1495.93 27.91 C 
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The results in table 7.19, obtained using 5000 different orderings for the 

86 games (obtained using the two-move ballot) show that increasing depth 

by one increases the performance of the checkers player as Blondie24-

RR2Ply is better than the Blondie24-RR1Ply, Blondie24-RR3Ply is better than 

Blondie24-RR2Ply and Blondie24-RR is better than Blondie24-RR3Ply. By 

using the average value for the standard rating formula the results (when 

playing Blondie24-RR2Ply against Blondie24-RR1Ply) put Blondie24-RR2Ply in 

class D (rating = 1201) and Blondie24-RR1Ply in Class E (rating = 1188), and 

by using student t-test (assuming unequal variances, g = 0.05, and one-tail 

test), the results show that Blondie24-RR1Ply and Blondie24-RR2Ply are 

statistically different as the P value (P-value=0) for the one tail t-test is less 

than alpha. Playing Blondie24-RR3Ply against Blondie24-RR2Ply puts 

Blondie24-RR3Ply in class D (rating = 1212) and Blondie24-RR2Ply in class E 

(rating = 1195), and by using student t-test (assuming unequal variances, g 

= 0.05, and one-tail test), the results show that Blondie24-RR2Ply and 

Blondie24-RR3Ply are statistically different as the P value (P-value=0) for 

the one tail t-test is less than alpha. Finally, when playing Blondie24-RR 

against Blondie24-RR3Ply, puts Blondie24-RR in class C (rating = 1496) and 

Blondie24-RR3Ply in class D (rating = 1348), and by using student t-test 

(assuming unequal variances, g = 0.05, and one-tail test), the results show 

that Blondie24-RR3Ply and Blondie24-RR are statistically different as the P 

value (P-value=0) for the one tail t-test is less than alpha.. 

 

The results shown in table 7.19 also show that increasing depth by two 

increases the performance of the checkers player as Blondie24-RR3Ply and 
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Blondie24-RR are significantly better than the Blondie24-RR1Ply and 

Blondie24-RR2Ply respectively, and by using the average value for the 

standard rating formula, the results (when playing Blondie24-RR3Ply against 

Blondie24-RR1Ply) put Blondie24-RR3Ply in class D (rating = 1253) and 

Blondie24-RR1Ply in class E (rating = 1160), and by using student t-test 

(assuming unequal variances, g = 0.05, and one-tail test), the results show 

that Blondie24-RR1Ply and Blondie24-RR3Ply are statistically different as the 

P value (P-value=0) for the one tail t-test is less than alpha, while (when 

playing Blondie24-RR against Blondie24-RR2Ply) puts Blondie24-RR in Class 

C (rating = 1441) and Blondie24-RR2Ply in class D (rating = 1335), and by 

using student t-test (assuming unequal variances, g = 0.05, and one-tail 

test), the results show that Blondie24-RR2Ply and Blondie24-RR are 

statistically different as the P value (P-value=0) for the one tail t-test is less 

than alpha.  

 

Finally the results in table 7.19 show that Blondie24-RR is significantly 

better than the Blondie24-RR1Ply, and by using the average value for the 

standard rating formula, the results (when playing Blondie24-RR against 

Blondie24-RR1Ply) puts Blondie24-RR in class C (rating = 1450) and 

Blondie24-RR1Ply in class D (rating = 1256), and by using student t-test 

(assuming unequal variances, g = 0.05, and one-tail test), the results show 

that Blondie24-RR1Ply and Blondie24-RR are statistically different as the P 

value (P-value=0) for the one tail t-test is less than alpha. 

 

Using the results from our experiments, we can conclude that a look-

ahead depth is important to the design of the evolutionary checkers. Also 
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additional experiments are done to check if this is the case for evolutionary 

checkers with individual and social learning and n-tuple systems. Section 

7.7.3 shows the results. 

 

7.7.3 Results Using Individual and Social Learning Players and N-

tuple Players 

 

 

Two individual and social learning players were constructed; C10-4Ply, 

which is trained with four ply depth and C10-1Ply, which is trained using only 

one ply depth. Those players will play against each other using two-move 

ballot. Two n-tuples players were also constructed; C5-N0.001-4Ply, which is 

trained with four ply depth and C5-N0.001-1Ply, which is trained using only 

one ply depth. Those players will play against each other using two-move 

ballot. Tables 7.21 and 7.22 and figure 7.4 show the results. 

 
 
 
 
 
 
 
Table 7.21 Results when Playing C10-4Ply against C10-1Ply using the 

Two-Move Ballot. 
 

 
 
 
 
 
 

 

Table 7.22 Results when Playing C5-N0.001-4Ply against C5-N0.001-

1Ply using the Two-Move Ballot. 

 

 Opponent:C10-1Ply 
Win Draw Lose 

C10-4Ply 56 16 14 

 Opponent:C5-N0.001-1Ply 
Win Draw Lose 

C5-N0.001-4Ply 51 20 15 
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Figure 7.4 C10-4Ply against C10-1Ply and C5-0.001-4Ply against C5-

0.001-1Ply. 

 

 

Table 7.23 shows the mean and the standard deviation of the  players‟ 

ratings after 5000 different orderings for the 86 played games, while table 

7.24 summarises the results when playing the league between players using 

a starting position where all pieces are in their original positions (i.e. no two-

move ballot). 

Table 7.23 Standard rating formula for all players after 5000 

different orderings of the 86 games played. 
 
 
 
 
 
 
 
 

 Mean SD Class 
C10-4Ply 
C10-1Ply 

1437.24 27.20 C 
1245.47 26.48 D 

C5-0.001-4Ply 
C5-0.001-1Ply 

 

1354.60 27.43 D 
1196.35 26.63 E 
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Table 7.24 Summary of Wins/Loses for C10-1Ply, C10-4Ply, C5-

N0.001-1Ply and C5-N0.001-4Ply When not Using Two-

Move Ballot. 
 

 
 

The results in table 7.23 show that C10-4Ply is significantly better than C10-

1Ply, and by using the average value for the standard rating formula, the 

results (when playing C10-4Ply against C10-1Ply) puts C10-4Ply in class C 

(rating = 1437) and C10-1Ply in class D (rating = 1245), and by using student 

t-test (assuming unequal variances, g = 0.05, and one-tail test), the results 

show that C10-1Ply and C10-4Ply are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha. The results in table 7.23 

also show that C5-0.001-4Ply is significantly better than C5-0.001-1Ply, and 

by using the average value for the standard rating formula, the results (when 

playing C5-0.001-4Ply against C5-0.001-1Ply) puts C5-0.001-4Ply in class D 

(rating = 1354) and C5-0.001-1Ply in class E (rating = 1196), and by using 

student t-test (assuming unequal variances, g = 0.05, and one-tail test), the 

results show that C5-0.001-1Ply and C5-0.001-4Ply are statistically different 

as the P value (P-value=0) for the one tail t-test is less than alpha. 

 
 
7.8 SUMMARY  

 

This chapter showed the importance of both the piece difference feature 

and the look-ahead depth to the game of checkers. Two main experiments 

 C10-4Ply C5-N0.001-4Ply 
C10-1Ply Red Lost - 

White Lost - 

C5-N0.001-1Ply Red - Lost 
White - Lost 
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were carried out. The first one was to show the importance of the piece 

difference feature to evolutionary checkers by constructing many players. 

Sections 7.3 and 7.4 showed the experimental setup and the results.  

 

The results showed that the piece difference is an important feature to the 

design of the evolutionary checkers based on Blondie24 and also to the 

design of the evolutionary checkers with round robin, individual and social 

learning and n-tuple systems. 

  

The second experiment was intended to show the importance of a look-

ahead depth to the evolutionary checkers. Sections 7.6 and 7.7 showed the 

experimental setup and the results. The results in sections 7.7.1, 7.7.2, 7.7.3 

and 7.7.4 showed that the look-ahead depth is important to the design of the 

evolutionary checkers, also to the evolutionary checkers with round robin, 

individual and social learning and n-tuple.   

 

An interesting point to note from the results is that increasing the depth 

level by one will give different performances depending on the level number, 

as the results indicates that increasing the level number from two to three 

gives a better performance than the performance gained when increasing the 

level number from one to two. The same occurs when increasing the depth 

level from three to four, which is better than increasing the depth from one 

to two and from two to three. According to this one can predict that the 

performance will increase when training at a level of five, six and so on. Also 

according to this increasing in the performance, there is no point of playing 

at a level that is lower than the trained level.       
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The results suggest that starting with a depth of four ply is the best value 

function to start with during learning phase for checkers. That is, train at four 

ply and then play at the highest ply possible.  

 

In summary, the combination of piece difference feature with look-ahead 

depth seems a very important to the design of evolutionary checkers which 

worth applying to other computer games. 

 

The next chapter will present the conclusions for all the work done in this 

thesis, together with some ideas for future work.  
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Chapter Eight 

Conclusions and Future Work 

 

 

8.1 CONCLUSIONS 

 
 

The main focus of this thesis is in using evolution strategies to evolve 

neural networks to play checkers. As mentioned before, our objective was to 

propose a structure of learning methodologies for the game of checkers and 

also to produce a better player. We started by studying the background of 

evolution in game playing. Our work was inspired from Fogel‟s success in 

checkers in which his program, Blondie24 (Chellapilla and Fogel 2001; Fogel 

and Chellapilla 2002) was able to play a game of checkers at the human 

expert level, injecting as little expert knowledge as possible into the 

algorithm. We implemented a baseline player, C0, which was based on the 

same architecture that Fogel used in the implementation of Blondie24. The 

objective was to investigate the performance of the evolved neural network 

player and also to obtain a baseline player that can be used to test the outcome 

of our proposed methods. 

 
The objective of the first experiment was to eliminate the randomness in 

the choice of the opponents to play against during the evolution of C0. We 
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implemented a round robin tournament, calling the resultant player 

Blondie24-RR. This player used exactly the same architecture that was used 

to evolve C0, the only difference being the use of a round robin tournament, 

instead of randomly choosing opponents to play against. The results show 

that this small modification enhanced the player‟s ability to learn and hence 

produce a better player.       

 
Our next experiment combined the ideas in (Kendall and Su 2003 and Su 

2005). We evolved an individual and social checkers player in which a social 

pool was used to maintain the best player(s) at certain generations. Many 

experiments were carried out in order to test the outcome of increasing the 

number of best players in the social pool. The results were promising and 

encouraged us to also incorporate a round robin tournament within the 

individual and social learning framework. The resultant player, C10-RR was 

the best evolved player in this thesis.   

 
The success of n-tuple systems in many applications including optical 

character recognition, and evolving game playing strategies for the game of 

Othello provided the inspiration for us to investigate the n-tuple systems. 

Many sampling were considered and two main methods were used. The first 

method did not work well, suggesting that using just n-tuples with C0 is not 

recommended. The second method showed that using n-tuples with TDL 

produced a good player using less computation time that required to evolve 

C0. The experiments showed that using 5-tuples with random walk is the best 

sampling, among the selected samplings. 
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Finally all the experiments carried out in this thesis showed that the piece 

difference feature and the look-ahead depth were essential in evolving 

various checkers player. 

        

With respect to further developing the methods used in this thesis, we 

recommend starting with an individual and social learning player that 

incorporates a round robin tournament together with a piece difference 

feature and which searches to a depth of at least four ply.  

 
The research presented in this thesis has contributed in terms of learning 

techniques for evolutionary computer checkers. The main contributions are 

as follows. 

 

1- In chapter three, we implemented an evolutionary checkers player, C0. 

This player is based on the same architecture and structure that were 

used to construct Blondie24. 

2- The results in chapter four demonstrated that it is possible to eliminate 

the randomness in choosing the opponents to play against during the 

evolution of C0. The resultant player, Blondie24-RR was able to beat an 

online program and played well against two other strong programs, 

WinCheck3D and SXcheckers. The various players were compared to 

each other using the two-move ballot and the standard rating formula, 

which also confirmed that Blondie24-RR was superior to C0. 

3- The results in chapter five showed that introducing an individual and 

social learning method enhanced the learning process for the 

evolutionary checkers player and produced a superior player. The 
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resultant player, C10, was better than C0 and Blondie24-RR, shown 

using the two-move ballot and the standard rating formula. 

 

4- The results in chapter five showed that increasing the number of 

players in the social pool will increase the performance for the evolved 

player. In this case values of 5 and 10 were the best values for 

determining when individual and social learning should occur. We 

implemented many players, where each player was constructed using 

a pair of values and all the players were played against each other to 

determine the best one. 

5- The results in chapter five also showed that using a round robin 

tournament together with individual and social learning eliminated the 

randomness in the evolutionary phase of the resultant player, C10-RR. 

We produced a superior player, which was better than C0, Blondie24-

RR and C10, shown by the use of the two-move ballot and the standard 

rating formula. 

6- The results in chapter six showed that using an n-tuples (with 5-tuple, 

constructed randomly, and with a 1-tuple) system, based on a 

Blondie24 architecture, produced a player that was worse than C0. 

Therefore, it is not recommended to use only n-tuple systems for 

evolutionary checkers. 

7- The results in chapter six also showed that using n-tuples (with 5-tuple 

constructed randomly) together with Temporal Difference Learning 

produced a player that was better than C0 and Blondie24-RR. Evolving 
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an n-tuples player took only two days, which is much faster than the 

time required for C0 and Blondie24-RR (19 days). This is because an n-

tuples system is very fast and in TDL we only update the weights that 

are actually used. The evolved n-tuples player cannot beat C10 and C10-

RR but it was not our intention to produce a best player, rather we 

aimed to evolve a good player in a faster time than that required to 

evolve C0, Blondie24-RR, C10 and C10-RR. The n-tuples player, 

constructed using 5-tuple with random walks, was better than the n-

tuples player constructed with 1-tuple. The experiments in chapter six 

also showed that the value of 0.001 is the best value for  among 

those tested values. 

8- Considering all the players evolved in this thesis, C10-RR (this player is 

based on the Blondie24 architecture and incorporates a round robin 

tournament and individual and social learning) was found to be the 

best overall player; with C10 being the second best and C5-N0.001 

being the third best. Blondie24-RR came forth and C0 was the least 

successful. Table 8.1 summarises the results for all players. 

  

 



Conclusions and Future Work 

 

173 
 

Table 8.1 Summary of Wins/Loses for C10-RR, C10, C5-N0.001, 

Blondie24-RR and C0 when not Using the Standard 

Rating Formula. 
 
 

9- The results in chapter seven showed that both the piece difference 

feature and look-ahead depth are very important in the design of an 

evolutionary checkers program, and is also important in the 

evolutionary checkers programs that used round robin, individual and 

social learning and n-tuple systems.  

10- Using the results from the experiments in chapter seven we can 

conclude that a piece difference feature is important in the design of 

Blondie24. Of course, the neural network is also an important element 

of the whole design but the results presented here demonstrate that a 

simple feature is able to significantly improve the overall playing 

strength.  

11- The experiments for showing the importance of a look-ahead depth 

that we have carried out in chapter seven produced many 

evolutionary checkers players, using different ply depths. Our 

expectations were that better value functions would be learned when 

training with deeper look-ahead search. This was found to be the 

case. The main results are that, during training and game playing, 

 C10-RR C10 C5-N0.001 Blondie24-RR C0 
C10-RR  Red - Won Won Won Won 

White - Won Won Won Won 

C10 Red  - Won Won Won 
White  - Drawn Won Won 

C5-
N0.001 

Red   - Won Won 
White   - Won Won 

Blondie
24-RR 

Red    - Won 
White    - Drawn 
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better decisions are made when a deeper look-ahead is used. An 

interesting point to note is that increasing the depth level by one will 

give different performance depending on the level number. The 

results suggest that starting with a depth of four ply is the best value 

function to start with during learning phase for checkers. That is, 

train at four ply and then play at the highest ply possible.  

 
 

8.2 FUTURE WORK 

 

Based on the empirical investigations in this thesis, possible future works 

are as follows: 

1- Apply the proposed methods that were developed in this thesis to 

other computer games such as Connect4. It will be interesting to see 

the outcome for the proposed methods in Connect4 since there are 

only two pieces in the game and there is no taking of the opponent‟s 

pieces, so there is no point of applying the methods with a piece 

difference feature. The Connect4 board consists of 42 squares, which 

means we need to find suitable neural network architecture for 

evolving the player and also to win the game. Since we need four 

pieces either in a row, column or diagonal to win the game, it is 

suitable to start the subsections of the Connect4 board from 4X4, 

and gradually increasing until the entire board is covered. This will 

change the number of weights of the input layer in the neural 

network architecture. This change in the number of weights 

may/may not require changing the number of hidden nodes in the 
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architecture; so many experiments are required to arrive at the best 

architecture for an evolved Connect4 player.  

For an individual and social approach to Connect4, we need to test 

which values are suitable in deciding when the individual and social 

learning phases occur (i.e. test if increasing the number of players in 

the social pool helps evolve a better player or not).  

When applying n-tuples to Connect4, since we have two values for 

the pieces then when using 5-tuples with a random walk, we only 

need (25=32) tuples, similarly for using 1-tuple, we only need (21=2) 

tuples, which means that evolving a Connect4 player using an n-

tuple systems will much faster than evolving a checkers player using 

the same n-tuple system. 

Finally, as we showed that the look-ahead depth is very important 

feature for the game of checkers, and this is not the case for many 

other games, it is really suggested to investigate if this feature is 

important for the game of Connect4 (or not). Our belief is that it is 

important because of the nature of the game, as to win the game we 

need four pieces in a row, column or in a diagonal and this requires 

look-ahead. We think that Connect4 needs to search for at least four 

ply depth but we want to make sure by actually evolve different 

Connect4 players, each one with different ply depths and testing the 

outcome for them, possibly by playing one another.       
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2- Investigate using individual and social learning for solving the 

problem of Blondie24 being an end product. This will bring about a 

continuous learning paradigm. One possible way to do this is by 

keeping the best player from each generation in the social pool and, 

in the case of an evolved player losing a match against a stronger 

player (human or computer), then we either use the second best 

player from the pool or randomly select one and test it (if possible) 

against the same player. This procedure will continue to run every 

time the evolved player loses against human or computer players. 

This will not guarantee a win for the evolved player, but at least we 

will have a player that is able to continuously change its strategy 

when losing, in a hope of a win.     

3- When we carried out research into the n-tuple systems, we found 

that a key aspect is the right choice of the sampling and this is 

problem dependent. There are too many ways to sample a checkers 

board and testing all of them is a time consuming. Although we only 

test two of them and the results were promising; it is recommended 

to use many other n-tuple samples, for example using all the 3X3 

subsections, 4x4 subsections, 3-tuple sampling or 4-tuple sampling, 

in order to arrive at a best n-tuple sample for the game of checkers. 

4- Since most of the experiments in the thesis were constrained by run-

time. We suggest enhancing the run-time by using the evolutionary 

enhancement aspects. Things like the parallel technology, which is 

used by (Franco et. al. 2010), could be useful to apply. 
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