
Al-Khateeb, Belal (2011) Investigating evolutionary
checkers by incorporating individual and social learning,
N-tuple systems and a round robin tournament. PhD
thesis, University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/12267/1/Thesis.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

School of Computer Science

Investigating Evolutionary Checkers by

Incorporating Individual and Social Learning,

N-tuple Systems and a Round Robin Tournament

by

Belal Al-Khateeb

BSc (Hons), MSc (Hons)

Thesis submitted to the University of Nottingham for
the degree of Doctor of Philosophy

June 2011

i

Abstract

In recent years, much research attention has been paid to evolving self-

learning game players. Fogel‟s Blondie24 is just one demonstration of a real

success in this field and it has inspired many other scientists. In this thesis,

artificial neural networks are employed to evolve game playing strategies for

the game of checkers by introducing a league structure into the learning

phase of a system based on Blondie24. We believe that this helps eliminate

some of the randomness in the evolution. The best player obtained is tested

against an evolutionary checkers program based on Blondie24. The results

obtained are promising. In addition, we introduce an individual and social

learning mechanism into the learning phase of the evolutionary checkers

system. The best player obtained is tested against an implementation of an

evolutionary checkers program, and also against a player, which utilises a

round robin tournament. The results are promising.

N-tuple systems are also investigated and are used as position value

functions for the game of checkers. The architecture of the n-tuple is utilises

temporal difference learning. The best player obtained is compared with an

implementation of evolutionary checkers program based on Blondie24, and

also against a Blondie24 inspired player, which utilises a round robin

tournament. The results are promising. We also address the question of

whether piece difference and the look-ahead depth are important factors in

the Blondie24 architecture. Our experiments show that piece difference and

the look-ahead depth have a significant effect on learning abilities.

ii

List of Publications

During my PhD research programme, the following publications have been

produced, representing the research work conducted for this thesis:

1- Al-Khateeb B. and Kendall G., Introducing a Round Robin Tournament

into Blondie24, In Proceedings of the IEEE 2009 Symposium on

Computational Intelligence and Games (CIG09), Milan, Italy, 2009,

112-116.

The work in chapter four is based on this paper.

2- Al-Khateeb B. and Kendall G., The Importance of a Piece Difference

Feature to Blondie24, In Proceedings of the the 10th Annual

Workshop on Computational Intelligence (UK2010), Essex, UK,

2010, 1-6.

The work in chapter seven is based on this paper.

3- Al-Khateeb B. and Kendall G., The Importance of look ahead Depth in

Evolutionary Checkers, In Proceeding of the 2011 IEEE Congress on

Evolutionary Computation (CEC 2011), New Orleans, USA, 2011.

The work in chapter seven is based on this paper.

4- Al-Khateeb B. and Kendall G., Introducing Individual and Social

Learning into Evolutionary Checkers, Submitted (Second Review) to

the Transactions on Computational Intelligence and AI in Games

(TCIAIG), 2011.

The work in chapter five is based on this paper.

5- Al-Khateeb B., Kendall G. and Lucas S., Introducing N-Tuple Systems

into Evolutionary Checkers, Submitted to the Transactions on

Computational Intelligence and AI in Games (TCIAIG), 2011.

The work in chapter six is based on this paper.

iii

Acknowledgements

It is a pleasure to thank those who made this thesis possible. First of all, I

would like to thank my father Ismail Al-Khateeb and my mother Layla Salih for

their unlimited support. They were always beside me when I needed

incorporeal support. I would like to thank my wife Eman for her endless love

and support.

Thanks are also due to Iraqi Government/Ministry of Higher Education

and Scientific Research for the doctoral scholarship and all the financial

support during my PhD study.

I would like to thank my supervisor, Professor Graham Kendall for sharing

thoughts with me, for his time, encouragement, guidance, advice, and

patience. This thesis would not have been possible without him.

Also I would like to thank the staff members of the Iraqi Cultural

department/London for their continuous help and support.

Also, I would like to show my gratitude to my friends Ahmed Fuad and

Ammar Albakaa for their help and support.

At last but not least, I would like to acknowledge the staff members of the

School of Computer Science, ASAP Group and The International Office at the

University of Nottingham.

iv

Table of Contents

Abstract ... i

List of Publications ... ii

Acknowledgements ... iii

List of Tables .. vi

List of Figures ... ix

List of Algorithms ... x

GLOSSARY ... xi

Chapter One .. 1

1.1 INTRODUCTION ... 1

1.2 CONTRIBUTIONS ... 4

1.3 THESIS OUTLINE .. 5

1.4 SUMMARY .. 7

Chapter Two .. 8

2.1 INTRODUCTION ... 8

2.2 BASIC ALGORITHMS ... 9

2.3 EVOLUTIONARY COMPUTATION .. 12

2.3.1 Evolutionary Algorithms ... 12

2.4 ARTIFICIAL NEURAL NETWORKS .. 16

2.4.1 Perceptrons and Multi-layer Perceptrons .. 17

2.4.2 Backpropagation Learning and Other Neural Networks Models 19

2.4.3 Evolutionary Artificial Neural Networks .. 22

2.4.3.1 Evolving Connection Weights .. 23

2.4.3.2 Evolving Network Architecture .. 25

2.4.3.3 Simultaneous Evolution of Architecture and Weights 28

2.4.3.4 Evolving Learning Rules ... 32

2.5 COMPUTER GAME PLAYING .. 32

2.6 BLONDIE24.. 45

2.6.1 Blondie24 Implementation ... 45

2.6.1.1 The Artificial Neural Network Module ... 46

2.6.1.2 Checkers Engine ... 48

2.6.2 The Evolutionary Process ... 49

2.6.3 Results .. 51

2.6.4 Discussion ... 53

2.7 INDIVIDUAL AND SOCIAL LEARNING .. 53

2.8 N-TUPLE SYSTEMS ... 62

2.9 TEMPORAL DIFFERENCE LEARNING .. 65

2.10 SUMARRY .. 67

Chapter Three ... 68

3.1 INTRODUCTION ... 68

3.2 C0 ... 69

3.3 TWO-MOVE BALLOT IN CHECKERS ... 70

3.4 STANDARD RATING FORMULA .. 73

3.5 SUMMARY .. 76

Chapter Four ... 77

4.1 INTRODUCTION ... 77

v

4.2 EXPERIMENTAL SETUP ... 78

4.3 RESULTS .. 80

4.3.1 Results When Playing Blondie24-RR Against C0 81

4.3.2 Results When Playing Blondie24-RR Against Online Program 82

4.3.3 Results When Playing Blondie24-RR Against WinCheck3D 83

4.3.4 Results When Playing Blondie24-RR Against SXcheckers 84

4.3.5 Results When Playing Blondie24-RR Against C0 Using Two-Move

Ballot. ... 86

4.4 SUMMARY ... 87

Chapter Five .. 89

5.1 INTRODUCTION ... 89

5.2 INDIVIDUAL AND SOCIAL LEARNING ... 90

5.3 EXPERIMENTAL SETUP ... 94

5.4 RESULTS .. 98

5.5 Introducing Round Robin Tournament into C10 106

5.6 SUMMARY ... 110

Chapter Six ... 112

6.1 INTRODUCTION ... 112

6.2 APPLICATION of N-tuple to EVOLUTIONARY CHECKERS 113

6.3 EXPERIMENTAL SETUP FOR 5-TUPLE WITH RANDOM WALK 115

6.4 RESULTS FOR 5-TUPLE WITH RANDOM WALK 117

6.5 EXPERIMENTAL SETUP FOR 1-TUPLE .. 120

6.6 RESULTS FOR 1-TUPLE ... 122

6.7 EXPERIMENTAL SETUP FOR 5-TUPLE WITH RANDOM WALK and TDL 125

6.8 RESULTS FOR 5-TUPLE WITH RANDOM WALK AND TDL 127

6.9 EXPERIMENTAL SETUP FOR 1-TUPLE WITH TDL 132

6.10 RESULTS FOR 1-TUPLE WITH TDL ... 133

6.11 C5-N0.001 Against C1-N0.001 ... 139

6.12 SUMMARY .. 140

Chapter Seven ... 142

7.1 INTRODUCTION ... 142

7.2 PIECE DIFFERENCE .. 143

7.3 EXPERIMENTAL SETUP FOR PIECE DIFFERENCE 146

7.4 RESULTS FOR PIECE DIFFERENCE ... 147

7.5 LOOK-AHEAD .. 151

7.6 EXPERIMENTAL SETUP FOR LOOK-AHEAD DEPTH 152

7.7 RESULTS FOR LOOK-AHEAD DEPTH ... 153

7.7.1 Results for C1Ply, C2Ply, C3Ply and C4Ply 154

7.7.2 Results Using Round Robin Players .. 158

7.7.3 Results Using Individual and Social Learning Players and N-tuple

Players .. 163

7.8 SUMMARY ... 165

Chapter Eight .. 168

8.1 CONCLUSIONS ... 168

8.2 FUTURE WORK ... 174

References .. 177

vi

List of Tables

Table 2.1 Some commonly used non-linear activation functions in artificial

neural networks. .. 18

Table 3.1 The 49 possible two-move ballot openings. 72

Table 3.2 Number of wins and losses (for the row player) out of 774 games. ... 73

Table 3.3 The relevant categories of player indicated by the corresponding

range of rating score (Chellapilla and Fogel 2001). 75

Table 3.4 Examples of Standard Rating Formula... 75

Table 4.1 Number of wins and losses (for the row player) out of 344 games 80

Table 4.2 Blondie24-RR Against C0. .. 81

Table 4.3 C0 and Blondie24-RR Against an Online Checkers Program. 82

Table 4.4 C0 and Blondie24-RR Against WinCheck3D. 83

Table 4.5 C0 and Blondie24-RR Against SXcheckers. 85

Table 4.6 Blondie24-RR Against C0 using the Two-Move Ballot. 86

Table 4.7 Standard rating formula for Blondie24-RR and C0 after 5000

orderings. ... 87

Table 5.1 Example of the Social Pool. ... 98

Table 5.2 Number of wins (for the row player) out of 430 games. 99

Table 5.3 Results when Playing C1, C200, C100, C50, C20 and C10 against C0

using the Two-Move Ballot. ... 100

Table 5.4 Results when Playing C1, C200, C100, C50, C20 and C10 against

Blondie24-RR using the Two-Move Ballot. 100

Table 5.5 Summary of Wins/Loses when not Using Two-Move Ballot. 101

Table 5.6 Standard rating formula for all the players against C0 after 5000

orderings. ... 102

Table 5.7 Standard rating formula for all the players against Blondie24-RR

after 5000 orderings. .. 102

Table 5.8 Results when Playing C10-RR against C0 using the Two-Move Ballot. 107

Table 5.9 Results when Playing C10-RR against Blondie24-RR using the Two-

Move Ballot. .. 107

Table 5.10 Results when Playing C10-RR against C10 using the Two-Move

Ballot. .. 107

Table 5.11 Summary of Wins/Loses When not Using Two-Move Ballot. 108

Table 5.12 Standard rating formula for playing C10-RR against C0, Blondie24-

RR and against C10 after 5000 orderings. 108

Table 6.1 The 32 random possible 5-tuple. .. 115

Table 6.2 Results when Playing C0, Blondie24-RR, C10 and C10-RR against C5-

tuple using the Two-Move Ballot. ... 117

Table 6.3 Summary of Wins/Loses When not Using Two-Move Ballot. 118

Table 6.4 Standard rating formula for C5-tuple against C0, Blondie24-RR, C10

and C10-RR after 5000 ordering. ... 119

Table 6.5 Results when Playing C0, Blondie24-RR, C10 and C10-RR against C1-

tuple using the Two-Move Ballot. ... 122

Table 6.6 Summary of Wins/Loses When not Using Two-Move Ballot. 123

vii

Table 6.7 Standard rating formula for C1-tuple against C0, Blondie24-RR, C10

and C10-RR after 5000 orderings. ... 123

Table 6.8 Results when playing all C5-N0.01, C5-N0.001 and C5-N0.0001

using the Two-Move Ballot. ... 127

Table 6.9 Standard rating formula for C5-N0.01, C5-N0.001 and C5-N0.0001

against each other after 5000 ordering. 128

Table 6.10 Results when Playing C0, Blondie24-RR, C10 and C10-RR against C5-

N0.001 using the Two-Move Ballot. .. 129

Table 6.11 Summary of Wins/Loses When not Using Two-Move Ballot. 130

Table 6.12 Standard rating formula for C5-tuple against C0, Blondie24-RR, C10

and C10-RR after 5000 ordering. ... 130

Table 6.13 Results when playing all C1-N0.01, C1-N0.001 and C1-N0.0001

using the Two-Move Ballot. ... 134

Table 6.14 Standard rating formula for C1-N0.01, C1-N0.001 and C1-N0.0001

against each other after 5000 ordering. 134

Table 6.15 Results when Playing C0, Blondie24-RR, C10 and C10-RR against C1-

N0.001 using the Two-Move Ballot. .. 136

Table 6.16 Summary of Wins/Loses When not Using Two-Move Ballot. 136

Table 6.17 Standard rating formula for C1-tuple against C0, Blondie24-RR, C10

and C10-RR after 5000 ordering. ... 137

Table 6.18 Results when Playing C5-N0.001 against C1-N0.001 using the Two-

Move Ballot. .. 139

Table 7.1 Results of Playing 14 Games between Blondie24 and Piece-count

Using Material Advantage to Break Tie. 144

Table 7.2 Results of Playing 14 Games between Blondie24 and Piece-count

Using Blitz98 to Break Tie. .. 144

Table 7.3 Results of Playing 1000 Games between the Evolved Piece Count

player and Piece-count player. ... 145

Table 7.4 Results of Playing 1000 Games between the Evolved Piece Count

player and xcheckers. ... 145

Table 7.5 Results when Playing C0 against C0-NPD using the Two-Move Ballot.148

Table 7.6 Results when Playing Blondie24-RR against Blondie24-RRNPD using

the Two-Move Ballot. .. 148

Table 7.7 Results when Playing C10 against C10-NPD using the Two-Move

Ballot. .. 148

Table 7.8 Results when Playing C5-N0.001 against C5-N0.001-NPD using the

Two-Move Ballot. ... 148

Table 7.9 Summary of Wins/Loses When not Using Two-Move Ballot. 149

Table 7.10 Standard rating formula for C0 against C0-NPD, Blondie24-RR

against Blondie24-RRNPD, C10 against C10-NPD and C5-

N0.001against C5-N0.001-NPD.after 5000 ordering. 149

Table 7.11 Number of wins (for the row player) out of 258 games. 154

Table 7.12 Number of draws (for the row player) out of 258 games. 154

Table 7.13 Number of losses (for the row player) out of 258 games. 154

Table 7.14 Standard rating formula for all players after 5000 different

orderings of the 86 games played. ... 156

Table 7.15 Summary of Wins/Loses for C1Ply, C2Ply, C3Ply and C4Ply When

not Using Two-Move Ballot. ... 156

viii

Table 7.16 Number of wins (for the row player) out of 258 games for the

round robin players. ... 158

Table 7.17 Number of draws (for the row player) out of 258 games for the

round robin players. ... 159

Table 7.18 Number of losses (for the row player) out of 258 games for the

round robin players. ... 159

Table 7.19 Standard rating formula for all players after 5000 different

orderings of the 86 games played. ... 160

Table 7.20 Summary of Wins/Loses for Blondie24-RR1Ply, Blondie24-RR2Ply,

Blondie24-RR3Ply and Blondie24-RR When not Using Two-Move

Ballot. ... 160

Table 7.21 Results when Playing C10-4Ply against C10-1Ply using the Two-

Move Ballot. .. 163

Table 7.22 Results when Playing C5-N0.001-4Ply against C5-N0.001-1Ply

using the Two-Move Ballot. ... 163

Table 7.23 Standard rating formula for all players after 5000 different

orderings of the 86 games played. ... 164

Table 7.24 Summary of Wins/Loses for C10-1Ply, C10-4Ply, C5-N0.001-1Ply

and C5-N0.001-4Ply When not Using Two-Move Ballot. 165

Table 8.1 Summary of Wins/Loses for C10-RR, C10, C5-N0.001, Blondie24-RR

and C0 when not Using the Standard Rating Formula. 173

ix

List of Figures

Figure 2.1 Example of Alpha-Beta pruning. .. 11

Figure 2.2 Example of intermediate recombination. 15

Figure 2.3 Single Perceptron. ... 17

Figure 2.4 A two layer perceptron. ... 18

Figure 2.5 A multi-layer perceptron. ... 19

Figure 2.6 A simple recurrent neural network. ... 21

Figure 2.7 A NEAT genotype to phenotype mapping example. 29

Figure 2.8 The two types of structural mutation in NEAT. 29

Figure 2. 9 Matching up genomes for different network topologies using

innovation numbers. ... 31

Figure 2.10 The three chess board positions. ... 44

Figure 2.11 EANN architecture. .. 48

Figure 2.12 Blondie24 rating after 165 games on zone.com. 52

Figure 2.13 Blondie24 Performance after 165 games on zone.com. 52

Figure 2.14 Model of a multi-agent based Simulated Stock Market. 55

Figure 2.15 The system architecture of the N-Tuple-based value function,

showing a single 3-tuple sampling at its eight equivalent

positions, equivalent under reflection and rotation. 63

Figure 3.1 Checkers board with Black moves first. .. 71

Figure 4.1 Results when Playing Blondie24-RR against C0 using the Two-Move

Ballot………………………………………………………………… 86

Figure 5.1 C1, C200, C100, C50, C20 and C10 against C0. 100

Figure 5.2 C1, C200, C100, C50, C20 and C10 against Blondie24-RR. 101

Figure 5.3 C10-RR against C0, Blondie24-RR and C10. 108

Figure 6.1 C0, Blondie24-RR, C10 and C10-RR against C5-tuple using the Two-

Move Ballot. .. 118

Figure 6.2 C0, Blondie24-RR, C10 and C10-RR against C5-tuple using the Two-

Move Ballot. .. 122

Figure 6.3 C5-N0.01, C5-N0.001 and C5-N0.0001 against each other. 127

Figure 6.4 C0, Blondie24-RR, C10 and C10-RR against C5-N0.001 using the

Two-Move Ballot. ... 129

Figure 6.5 C1-N0.01, C1-N0.001 and C1-N0.0001 against each other. 134

Figure 6.6 C0, Blondie24-RR, C10 and C10-RR against C5-N0.001 using the

Two-Move Ballot. ... 136

Figure 6.7 C5-N0.001 against C1-N0.001. .. 139

Figure 7.1 C0 against C0-NPD, Blondie24-RR against Blondie24-RRNPD, C10

against C10-NPD and C5-N0.001against C5-N0.001-NPD. 148

Figure 7.2 Results of playing a league between C1Ply, C2Ply, C3Ply and

C4Ply. .. 155

Figure 7.3 Results of playing a league between Blondie24-RR1Ply, Blondie24-

RR2Ply, Blondie24-RR3Ply and Blondie24-RR. 159

Figure 7.4 C10-4Ply against C10-1Ply and C5-0.001-4Ply against C5-0.001-1Ply.164

x

List of Algorithms

Algorithm 2.1 Minimax algorithm. ... 9

Algorithm 2.2 Alpha-Beta pruning algorithm. ... 11

Algorithm 2.3 An implementation of (┢,┡) evolution strategies. 14

Algorithm 2.4 An implementation of evolutionary programming algorithms. 15

Algorithm 2.5 Backpropagation algorithm for one hidden layer. 20

Algorithm 2.6 A typical algorithm for evolving connection weights in

evolutionary artificial neural networks. 23

Algorithm 2.7 A typical cycle for evolving network architectures in

evolutionary artificial neural networks. 25

Algorithm 2.8 Individual Learning. .. 58

Algorithm 2.9 Social Learning. ... 59

Algorithm 2.10 Modified Social Learning. ... 60

Algorithm 3.1 C0. ... 70

Algorithm 4.1 Blondie24-RR. ... 79

Algorithm 5.1 Social Learning Activities. .. 92

Algorithm 5.2 Individual and Social Learning. .. 96

Algorithm 6.1 5-tuple with random walk for evolutionary checkers. 116

Algorithm 6.2 1-tuple for evolutionary checkers. .. 121

Algorithm 6.3 5-tuple with random walk for evolutionary checkers with TDL. . 126

Algorithm 6.4 1-tuple for evolutionary checkers with TDL. 133

xi

GLOSSARY

ANN Artificial Neural Network.

Blondie24
................ An evolutionary checkers program, produced by

David Fogel.

Blondie24-

RR

................ A round robin player, based on the

implementation of Blondie24.

Blondie24-

RR1Ply

................ A round robin player, based on the

implementation of Blondie24. This player trained

using one ply depth.

Blondie24-

RR2Ply

................ A round robin player, based on the

implementation of Blondie24. This player trained

using two ply depth.

Blondie24-

RR3Ply

................ A round robin player, based on the

implementation of Blondie24. This player trained

using three ply depth.

Blondie24-

RRNPD

................ A round robin player, based on the

implementation of Blondie24 without the piece

difference feature.

C0
................ Base line player, based on the implementation of

Blondie24.

C0-NPD
................ Base line player, based on the implementation of

Blondie24 without the piece difference feature.

C1
................ An individual and social learning player, with only

one player saved in the social pool.

C10

................ An individual and social learning player, with the

values of 5 and 10 for deciding where the

individual and social phases occur.

C100

................ An individual and social learning player, with the

values of 50 and 100 for deciding where the

individual and social phases occur.

C10-1Ply

................ An individual and social learning player, with the

values of 5 and 10 for deciding where the

individual and social phases occur. This player

trained using one ply depth.

C10-4Ply

................ An individual and social learning player, with the

values of 5 and 10 for deciding where the

individual and social phases occur. This player

trained using four ply depth.

C10-NPD

................ An individual and social learning player, with the

values of 5 and 10 for deciding where the

individual and social phases occur. This player is

constructed with the piece difference feature.

C10-RR

................ A round robin individual and social learning

player, with the values of 5 and 10 for deciding

where the individual and social phases occur.

xii

C1-N0.0001
................ 1-tuple with alpha value=0.0001 temporal and

difference learning checkers player.

C1-N0.001
................ 1-tuple with alpha value=0.001 temporal and

difference learning checkers player.

C1-N0.01
................ 1-tuple with alpha value=0.01 temporal and

difference learning checkers player.

C1Ply

................ An evolutionary checkers player, based on the

implementation of Blondie24. This player trained

using one ply depth.

C1-tuple 1-tuple evolutionary checkers player.

C20

................ An individual and social learning player, with the

values of 10 and 20 for deciding where the

individual and social phases occur.

C200

................ An individual and social learning player, with the

values of 100 and 200 for deciding where the

individual and social phases occur.

C2Ply

................ An evolutionary checkers player, based on the

implementation of Blondie24. This player trained

using two ply depth.

C3Ply

................ An evolutionary checkers player, based on the

implementation of Blondie24. This player trained

using three ply depth.

C4Ply

................ An evolutionary checkers player, based on the

implementation of Blondie24. This player trained

using four ply depth.

C50

................ An individual and social learning player, with the

values of 20 and 50 for deciding where the

individual and social phases occur.

C5-N0.0001

................ 5-tuple with random walk and alpha

value=0.0001 temporal and difference learning

checkers player.

C5-N0.001
................ 5-tuple with random walk and alpha value=0.001

temporal and difference learning checkers player.

C5-N0.001-

1Ply

................ 5-tuple with random walk and alpha value=0.001

temporal and difference learning checkers player.

This player trained using one ply depth.

C5-N0.001-

4Ply

................ 5-tuple with random walk and alpha value=0.001

temporal and difference learning checkers player.

This player trained using four ply depth.

C5-N0.001-

NPD

................ 5-tuple with random walk and alpha value=0.001

temporal and difference learning checkers player.

This player is constructed with the piece

difference feature.

C5-N0.01
................ 5-tuple with random walk and alpha value=0.01

temporal and difference learning checkers player.

C5-tuple
................ 5-tuple with random walk evolutionary checkers

player.

CIGAR Case-Injected Genetic Algorithm.

EA Evolutionary Algorithm.

xiii

EANN Evolutionary Artificial Neural Network.

EP Evolutionary Programming.

ES Evolution Strategies.

GA Genetic Algorithm.

GP Genetic Programming.

NEAT NeuroEvolution of Augmenting Topologies.

Piece

Difference

................ The difference of the number of the player pieces

currently on the board and the number of the

opponent pieces currently on the board.

PLY

................ The ply of a node is the number of moves needed

to reach that node (i.e. arcs from the root of the

tree). The ply of a tree is the maximum of the

plies of its nodes.

SANE Symbiotic Adaptive Neuro-Evolution.

TDL Temporal Difference Learning.

Introduction

1

Chapter One

Introduction

1.1 INTRODUCTION

The motivation for the work carried out in this thesis is inspired from

Fogel‟s success in checkers in which his program, Blondie24 (Chellapilla and

Fogel 2001; Fogel and Chellapilla 2002) was able to play a game of checkers

at the human expert level, injecting as little expert knowledge as possible

into the algorithm. Fogel combined evolution strategies with neural networks

and used a minimax search tree as a look-ahead mechanism to find

potentially good moves for the game of checkers. Blondie24 only received

feedback of its performance after a certain number of games, not knowing

the result of individual games.

Blondie24 represents a landmark in evolutionary learning. Even so, it has

still attracted comments about its design. One of them is concerned with the

piece difference feature and how it affects the learning process of Blondie24.

Although, there has been a lot of discussion about the importance of the

look-ahead depth level used in Fogel‟s work. In this thesis we also address

the question of whether piece difference is an important factor in the

Blondie24 architecture. Although this issue has been addressed before, this

work provides a different experimental setup to previous work, but arrives at

Introduction

2

the same conclusion. Our experiments show that piece difference has a

significant effect on learning abilities. Finally a detailed investigation of the

importance of the look-ahead depth is carried out. We believe this is the first

time such an intensive study has been done for evolutionary checkers. Our

experiments show that increasing the depth of a look-ahead has significant

improvements on the performance of the checkers program and has a

significant effect on its learning abilities.

One other thing that can be noticed from the design of Blondie24 is that

the strategies do not all play the same number of games because, by chance,

some would be selected as opponents more often than others. Our research

will investigate if this is a limiting factor in order to eliminate the randomness

in choosing opponents. Thirty feed forward neural network players are played

against each other, using a round robin tournament structure, for 140

generations and the best player obtained is tested against an evolutionary

checkers program based on Blondie24. We also test the best player against

an online program, as well as two other strong programs. The results

obtained are promising.

The work in this thesis is also inspired from the success of Su and

Kendall‟s work (Kendall and Su 2003 and Su 2005). Su investigated

imperfect evolutionary systems in her PhD thesis, using the stock market as

a problem domain (Su 2005). In (Kendall and Su 2003), an investigation of

the integration of individual and social learning of multi-agent based models

in a simulated stock market was carried out, where the evolved neural

network traders learn to trade their stocks, giving the investors‟ higher

Introduction

3

returns compared to a baseline buy-and-hold strategy. So we decided to

introduce an individual and social learning mechanism into the learning phase

of the evolutionary checkers system. The best player obtained is tested

against an implementation of an evolutionary checkers program, and also

against a player, which utilises a round robin tournament. The results are

promising and demonstrate that using individual and social learning enhances

the learning process of the evolutionary checkers system and produces a

superior player compared to what was previously possible. In addition, we

conduct an investigation to choose which values should be used when

deciding where the individual and social learning phases should occur.

The success of n-tuple systems in many applications including optical

character recognition, and evolving game playing strategies for the game of

Othello (Lucas 2008) provides the inspiration to also apply the n-tuple

systems in this thesis. N-tuple systems are investigated and are used as

position value functions for the game of checkers. The architecture of the n-

tuple is utilises temporal difference learning. The best player obtained is

compared with an implementation of evolutionary checkers program based

on Blondie24, and also against a Blondie24 inspired player, which utilises a

round robin tournament. The results are promising and demonstrate that

using n-tuple enhances the learning process of checkers and produces a good

player. The conclusion is that n-tuple systems learn faster when compared

against other approaches. In addition, an investigation of learning rates for

temporal difference learning is carried out.

Introduction

4

This chapter is structured as follows: Section 1.2 describes the

contributions of this thesis, while section 1.3 outlines the structure. A

summary of the chapter is presented in section 1.4.

1.2 CONTRIBUTIONS

This thesis makes the following contributions:

1- Introducing a round robin tournament into the evolutionary phase of

the evolutionary checkers program, aiming to eliminate the

randomness and hence produce a better player. This work is presented

in chapter four.

2- Introducing individual and social learning into an evolutionary checkers

in order to enhance its learning ability and hence produce a superior

player. In addition, we show that individual and social learning has a

wider applications area, in addition to the stock market. This work is

presented in chapter five.

3- Investigating the use of a round robin tournament within the individual

and social learning framework, aiming to eliminate the randomness,

and producing a superior player. This work is presented in chapter five.

4- Introducing n-tuple systems into evolutionary checkers, producing a

good player, whilst using less computational time than is required for

the evolutionary checkers player in step 1. This work is presented in

chapter six.

Introduction

5

5- Investigating the importance of piece difference in evolutionary

checkers by showing the effects of using/not using it. This work is

presented in chapter seven.

6- Investigating the importance of the look-ahead depth in evolutionary

checkers by showing the effects of using/not using it. This work is

presented in chapter seven.

1.3 THESIS OUTLINE

This thesis is structured as follows; Chapter two presents the background

of this thesis. It starts with basic algorithms such as minimax tree search

together with alpha-beta pruning. A literature review in evolutionary

computation, artificial neural networks and evolutionary neural networks is

also presented in this chapter. The chapter continues with a discussion on

various computer game programs, focussing on those that have employed

evolutionary methodologies. The chapter also describes Fogels‟ Blondie24

checkers program. The review of Su‟s work on individual and social learning,

together with a review of n-tuple systems, are presented before concluding

the chapter with a summary.

Chapter three presents various preliminaries for the evolutionary checkers

that will be used throughout this thesis. These preliminaries include the

implementation of an evolutionary checkers program named C0, which is

based on the Blondie24 architecture. It also includes the description of the

two-move ballot and the standard rating formula as a way to test the

Introduction

6

outcome of applying the proposed methods that will be used to enhance the

learning process of C0.

Chapter four presents a round robin tournament as a proposed method to

eliminate the randomness in the evolutionary phase of C0 in order to enhance

its learning ability and produce a better player. The resultant player, named

Blondie24-RR, is tested against C0 using the idea of two-move ballot and the

standard rating formula. Blondie24-RR also tested against an online program

and two strong programs.

Chapter five introduces individual and social learning to the evolutionary

checkers algorithms. Many experiments are carried out in order to determine

the best values that can be used to decide where the individual and social

phases should occur. The player with the best values, named C10, plays

against C0 and Blondie24-RR, using the two-move ballot and standard rating

formula to test the outcome. Also we decided to use round robin tournament

with the individual and social learning, and the resultant player named C10-RR

plays against C0, Blondie24-RR and C10 using the two-move ballot and

standard rating formula.

Chapter six introduces n-tuple systems into two evolutionary checkers

programs, one based on C0 and the other using temporal difference learning.

Various experiments are carried out to determine the best settings for the n-

tuple. All the resultant players are set to play against C0, Blondie24-RR, C10

and C10-RR using two-move ballot and standard rating formula to test the

outcome.

Introduction

7

The final experiments in this thesis are presented in chapter seven, where

we show the importance of the piece difference feature and the look-ahead

depth to all evolutionary checkers programs, constructed using the proposed

methods in chapters three, four, five and six.

We summarise the contributions of this thesis in chapter eight, together

with suggestions as how the work and ideas presented in this thesis could be

further developed.

1.4 SUMMARY

This chapter has presented the works that have inspired this thesis. It also

described the main contributions of the work presented in this thesis. Finally

the thesis structure is presented. The next chapter will present the literature

review for various artificial intelligence methods, some of which will be used

in the development of this thesis.

Literature Review

8

Chapter Two

Literature Review

2.1 INTRODUCTION

This chapter discusses the research that has been conducted with respect

automated game playing. Computer board games that have been associated

with artificial intelligence techniques will also be discussed along with a

discussion of evolutionary computation, individual and social learning and n-

tuple systems, as learning techniques that have been utilised in automated

game playing.

This chapter has been structured as follows; Section 2.2 describes the

basic algorithms that are used by automated computer games. Evolutionary

computation will be described in section 2.3. In section 2.4 a description of

artificial neural networks is presented. Section 2.5 showed the various

computer games programs. Blondie24 is presented in Section 2.6. Sections

2.7, 2.8 and 2.9 described individual and social learning, n-tuple systems and

temporal difference learning respectively. Finally a summary for this chapter

is presented in section 2.10.

Literature Review

9

2.2 BASIC ALGORITHMS

In general, for one person games and puzzles, a simple A* algorithm (Hart

et. al. 1968) can be used to find the best move (Rich and Knight 1991;

Nilsson 1998; Carter 2007). The A* algorithm is not suitable for complex two

person games and a minimax search algorithm is commonly used to find the

best move in these types of games (Kaindl 1990; Nilsson 1998; Carter 2007;

Luger 2008). A minimax algorithm, in its general form, performs a complete

depth first search by producing the whole game tree and then, using an

evaluation function (which could represent the exact result such as win, lose

or draw if the full game tree can be produced, or a heuristic value if the full

search tree cannot be built), it computes the value of each leaf node. The

algorithm then selects the best values and propagates these up towards the

root of the tree. A best next move is selected to maximise the evaluation

function. Algorithm 2.1 shows a typical minimax algorithm1.

- Two players take turns and try respectively to maximize and minimize a scoring function.
- The two players are called respectively MAX and MIN.
- The MAX player makes the first move.
- Players take turns; successive nodes represent positions where different players must move.
- MAX node means the MAX player must move at that node.
- MIN nodes means MIN player must move at that node.
- The leaves represent terminal positions, i.e. positions where MAX wins or MIN wins.

function MINIMAX(N) is

 begin
 if N is a leaf then
 return the estimated score of this leaf
 else
 Let N1, N2, .., Nm be the successors of N;
 if N is a Min node then
 return min{MINIMAX(N 1), .., MINIMAX(Nm)}
 else
 return max{MINIMAX(N1), .., MINIMAX(Nm)}
 end MINIMAX;

Algorithm 2.1 Minimax algorithm.

1 http://www. cis.temple.edu/~ingargio/cis587/readings/alpha-beta.html.

Literature Review

10

Although minimax is able to find the best move in complex games, it is

time consuming especially for larger search spaces. For example chess has

an average branching factor of 35 (Russell and Norvig 2010) and a complete

game tree could have about 35100 different positions to evaluate and search,

which is impractical using methodologies which require a full search tree to

be built. In order to address this problem, by being able to prune the search

tree, alpha-beta (or g.┚) search was introduced, which seeks to reduce the

number of nodes that are evaluated in the search tree when using the

minimax algorithm (Hsu1990; Rich and Knight 1991; Norvig 1992;

Junghanns 1998; Luger 2008; Russell and Norvig 2010). g.┚ search is

commonly used for two-player games. It stops evaluating moves, in a

particular part of the search tree, when at least one possibility has been

found that proves the move to be worse than a previously examined move.

These moves, and more importantly those lower in the search tree, need not

be evaluated further.

Alpha-beta pruning returns exactly the same result as minimax but can

drastically reduce the size of the search space. Algorithm 2.2 presents a

typical alpha-beta pruning algorithm2. Figure 2.1 shows how the alpha beta

pruning works.

- Two players take turns and try respectively to maximize and minimize a scoring function.
- The two players are called respectively MAX and MIN.
- The MAX player makes the first move.
- Players take turns; successive nodes represent positions where different players must move.
- MAX node means the MAX player must move at that node.
- MIN nodes means MIN player must move at that node.
- The leaves represent terminal positions, i.e. positions where MAX wins or MIN wins.
- ALPHA value of a node is a value never greater than the true score of this node. Initially it is the

score of that node, if the node is a leaf, otherwise it is -infinity. Then at a MAX node it is set to the
largest of the scores of its successors explored up to now, and at a MIN node to the alpha value of
its predecessor.

2 http://www. cis.temple.edu/~ingargio/cis587/readings/alpha-beta.htm.

http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Game_tree
http://en.wikipedia.org/wiki/Minimax#Minimax_algorithm_with_alternate_moves

Literature Review

11

- BETA value of a node is a value never smaller than the true score of this node. Initially it is the
score of that node, if the node is a leaf, otherwise it is +infinity. Then at a MIN node it is set to the
smallest of the scores of its successors explored up to now, and at a MAX node to the beta value of
its predecessor.

function Alpha-Beta(N, A, B) is ;; Here A is always less than B

 begin
 if N is a leaf then
 return the estimated score of this leaf
 else
 Set Alpha value of N to -infinity and

 Beta value of N to +infinity;
 if N is a Min node then
 For each successor Ni of N loop
 Let Val be Alpha-Beta (Ni, A, Min{B,Beta of N});
 Set Beta value of N to Min{Beta value of N, Val};
 When A >= Beta value of N then
 Return Beta value of N endloop;
 Return Beta value of N;
 Else
 For each successor Ni of N loop
 Let Val be Alpha-Beta (Ni, Max{A,Alpha value of N}, B);
 Set Alpha value of N to Max{Alpha value of N, Val};
 When Alpha value of N >= B then
 Return Alpha value of N endloop;
 Return Alpha value of N;
 end Alpha-Beta;

Algorithm 2.2 Alpha-Beta pruning algorithm.

Figure 2.1 Example of Alpha-Beta pruning.

A

B

G

C

F E

M

D H

I J N

L K

Min

Min

Max

Max

3

3 5

5

5

7 0

<=0

7 8

4

Literature Review

12

In the figure above, the entire tree headed by B is searched and hence can

expect a score of at least 3. At A, when this alpha value is passed to F, it will

enable us to skip the exploration of L. This is because after K is examined, I

is guaranteed a maximum score of 0 (i.e F is guaranteed a minimum score of

0). But this is less than alphas value of 3, so no more branches of I need to

be considered on examining J, F is assigned a value of 5. This value becomes

the value of beta at node C.

2.3 EVOLUTIONARY COMPUTATION

Yao (1999a) defines evolutionary computation as the study of

computational systems that use ideas and inspirations from natural evolution

and adaptation. Although there is no strict definition about the different kinds

of evolutionary computation, this section describes three variants: Genetic

Algorithms (GA), Genetic Programming (GP) and Evolutionary Algorithms

(EA), which can be further sub-divided into evolution strategies and

evolutionary programming.

2.3.1 Evolutionary Algorithms

Evolutionary algorithms (Fogel 1994, 2006) are another form of

evolutionary computation. Evolutionary algorithms focus on the potential

solution of the problem, in contrast to genetic algorithms, which focus on the

encoding structure of the problem (Fogel 1994). The structures that are used

in evolutionary algorithms are problem dependant, which introduce a more

natural representation than the general representation (often bit strings, at

Literature Review

13

least in early works) used in genetic algorithms. Another differentiating factor

between evolutionary and genetic algorithms is that the former emphasizes

the behavioral link between parents and offspring while the latter focuses on

the genetic link (Fogel 2006). Evolutionary algorithms can be extended to

Evolution Strategies (ES) and Evolutionary Programming (EP). The major

difference between them is in the representation of the problem and the

reproduction operators employed, where ES has a matrix of mutation vectors

that corresponds to the population of chromosomes in which each gene in

each chromosome has its own mutation standard deviation that evolves

along with the chromosome, therefore the algorithm has self-adaptive

mutation. An EP has one mutation value per chromosome, or one for the

entire population. Evolution strategies were developed as a methodology for

dealing with problems of numerical optimisation (Rechenberg 1965; Schwefel

(1965, 1981)), where vectors of real numbers, instead of binary strings,

were used to represent potential solutions. The distinctive characteristics of

evolution strategies, in general, are Gaussian mutation, and discrete or

intermediate recombination. Below are the two main schemes of

deterministic selection in evolution strategies (Yao 1999b):

• (┢+┡): ┢ parents are used to create ┡ offspring. All individuals, (i.e.

the (┢+┡) solutions) compete and the best ┢ solutions are selected

as parents for next generation.

• (┢,┡): ┢ parents are used to create ┡ offspring, but only the ┡

offspring compete for survival and the ┢ parents are completely

replaced each generation. Algorithm 2.3 shows an implementation

Literature Review

14

of (┢,┡) evolution strategies.

1- Generate the initial population of た individuals. Each individual is a real-valued n-dimensional
vector, where n is the number of parameters to be optimized.

2- Evaluate the fitness value for each individual of the population.

3- Generate そ offspring by adding a Gaussian random variable with zero mean and preselected
standard deviation to each dimension of an individual.

4- Evaluate the fitness of each offspring.

5- Sort the そ offspring into a non-descending order according to their fitness values, and select the た
best offspring out of そ to be parents of the next generation.

6- Stop if the stopping criterion is satisfied; otherwise go to step 3.

Algorithm 2.3 An implementation of (┢,┡) evolution strategies (Yao

1999b).

Algorithm 2.3 describes mutation-based evolution strategies, i.e. offspring

are generated by applying Gaussian mutations to parents. The Gaussian

mutation operation used in Fogel (2006) is described by the following:

si

ジ = si . exp(t
ジ. N (0,1)+ t . Ni (0,1)). (2.1)

xi
ジ = xi + N(0, si

ジ). (2.2)

Where N(0,1) represents a single standard Gaussian random variable, Ni(0,1)

represents the ith independent identically distributed standard Gaussian, and t

and tジ are operator-set parameters affecting global and individual step sizes.

Evolution strategies make use of recombination operators for the process of

producing new offspring. Discrete recombination and intermediate

recombination are the two main recombination operators that are most

frequently employed. Discrete recombination resembles uniform crossover in

GAs where new offspring are generated by arbitrarily mixing components

from the parents. In the intermediate recombination the vectors of two

Literature Review

15

parents are averaged together, element by element, to form a new offspring

as shown in figure 2.2.

Figure 2.2 Example of intermediate recombination.

Evolutionary Programming employs vectors of real numbers as its

representation of potential solutions for problem solving (Fogel et al. 1966;

Bäck and Schwefel 1993; Fogel 1994). The absence of recombination and

crossover in evolutionary programming is what most notably distinguishes it

from evolution strategies. Instead, it employs some sort of tournament

selection as a selection scheme and Gaussian mutation as the only

reproduction operator. Algorithm 2.4 illustrates a typical application of

evolutionary programming algorithms.

1- Generate the initial population of た individuals.

2- Evaluate the fitness value for each individual of the population.

3- Each parent creates a single offspring by means of Gaussian mutation.

4- Evaluate the fitness of each offspring.

5- Conduct pairwise comparison over the union of parents and offspring. For each individual, q
opponents are chosen uniformly at random from all the parents and offspring. For each
comparison, if the individual’s fitness is no smaller than the opponent’s, it receives a “win.”

6- Select た individuals from the union of both the parents and the offspring (generated by
Gaussian mutation) that have the most wins to be parents of the next generation.

7- Stop if the stopping criterion is satisfied; otherwise go to step 3.

Algorithm 2.4 An implementation of evolutionary programming

algorithms (Bäck and Schwefel 1993; Yao 1999b;

Fogel 2000).

Literature Review

16

Algorithm 2.4 is very similar to algorithm 2.3 as the only difference

between them is in the reproduction operators.

For the optimisation of real-valued numerical parameters, evolution

strategies and evolutionary programming, with real-value representations

and Gaussian mutation, have been shown to have practical uses (Michalewicz

1992).

2.4 ARTIFICIAL NEURAL NETWORKS

Artificial neural networks are based on the idea of natural systems in which

a set of neurons conduct transmission and communication processes

travelling through axon (a long, slender projection of a nerve cell, or neuron,

that conducts electrical impulses away from the neuron's cell body)

connections (Patterson 1996; Coppin 2004; Galushkin 2007). An axon is one

of two types of protoplasmic protrusions that extrude from the cell body of a

neuron, the other type being dendrites(are the branched projections of a

neuron that act to conduct the electrochemical stimulation received from

other neural cells to the cell body). Axons are distinguished from dendrites by

several features, including shape, length and function. Axons make contact

with other cells at junctions called synapses. At a synapse, the membrane of

the axon closely adjoins the membrane of the target cell, and special

molecular structures serve to transmit electrical or electrochemical signals

across the gap. The neurons constitute points that are able to adjust to new

conditions, going through a process of learning from examples, and retaining

that knowledge for future use (Pandya and Macy 1996). This section

http://en.wikipedia.org/wiki/Neuron
http://en.wikipedia.org/wiki/Action_potential
http://en.wikipedia.org/wiki/Cell_body
http://en.wikipedia.org/wiki/Protoplasm
http://en.wikipedia.org/wiki/Dendrite
http://en.wikipedia.org/wiki/Neuron
http://en.wikipedia.org/wiki/Electrical_conduction
http://en.wikipedia.org/wiki/Electrochemistry
http://en.wikipedia.org/wiki/Stimulation
http://en.wikipedia.org/wiki/Synapse

Literature Review

17

discusses artificial neural networks in the context of network architecture,

learning approaches, and also focuses on evolutionary artificial neural

networks.

2.4.1 Perceptrons and Multi-layer Perceptrons

One of the first models introduced to categorize patterns through the

process of observed learning is the perceptron (Rosenblatt 1959). Figure 2.3

shows a perceptron. A set of inputs represented as x1,x2,....,xm is received by

the processing unit. A special input, bk, termed a bias, which has its own

weight (either fixed to +1 or variable). There is an associated weight (wkj),

which represents the connection between the processing unit k and an input

xi. A non-linear activation function, represented as l(.), transforms the

summed input to produce the output from the perceptron.

Figure 2.3 Single Perceptron (Haykin 1999).

Literature Review

18

The common activation functions are shown in table 2.1.

Name Formula
 Range of
Output

 Step function Step(x) = 1 if x ≥ 0, else 0. 0 or 1

 Sign function Sign(x) = +1 if x ≥ 0, else -1 ± 1

 Sigmoid function Sigmoid(x)=1/(1+e-x) (0,1)

 Hyperbolic function Tanh(x)=(ex-e-x) / (ex+e-x) (-1,1)

Table 2.1 Some commonly used non-linear activation functions in

artificial neural networks.

Several perceptrons can be grouped together to form a neural network

where two layers of neurons are fully interconnected, but there is no

interconnection between neurons in the same layer. Figure 2.4 shows a two

layer perceptron network.

Figure 2.4 A two layer perceptron (Haykin 1999).

A learning task for a perceptron is to tune its weights using the optimiser

in order to make the network produce the desired output for given inputs.

There are many learning rules that can be applied to learn the network,

please refer to Haykin (1999) for full details.

Literature Review

19

Two-layer perceptrons can be successfully trained for solving a number of

function approximation and pattern classification problems, for which

Rosenblatt (1962) shows the convergence properties of the perceptron

learning rule. With regards to the two-layered perceptron, Minsky and Papert

(1969), in their milestone book, proved that it has limited representational

capabilities in representing non-linearly separable functions, even if they

were as simple as XOR. Linearly separable means that a pattern can be

separated into two classes by a single line (or a plane in higher dimensions).

The architecture of a multi-layer perceptron with two hidden layers and three

outputs are shown in Figure 2.5. Signals only pass in a forward direction (left

to right in figure 2.5). Networks usually utilise one of the activation functions

shown in Table 2.1.

Figure 2.5 A multi-layer perceptron (Haykin 1999).

2.4.2 Backpropagation Learning and Other Neural Networks Models

Paker (1985) and Rumelhart et al. (1986) introduced the backpropagation

algorithm for the training of multi-layer networks. The backpropagation

Literature Review

20

algorithm offers an efficient computational method for training multilayer

networks, and overcome the problems highlighted by Minsky and Papert

(1969). The objective is to train the network weights so as to minimise the

Least-Square-Error (Zurada 1996) between the desired and the actual

output. Algorithm 2.5 presents a backpropagation algorithm for learning a

multi-layer feedforward network with one hidden layer:

Initialise the weights in the network (often randomly)
 Do
 For each example e in the training set

- O = neural-net-output(network, e) ; forward pass
- T = teacher output for e
- Calculate error (T - O) at the output units
- Compute delta_wh for all weights from hidden layer to output layer ;

backward pass
- Compute delta_wi for all weights from input layer to hidden layer ; backward

pass continued
- Update the weights in the network

 Until all examples classified correctly or stopping criterion satisfied.
 Return the network.

Algorithm 2.5 Backpropagation algorithm for one hidden layer

(Werbos 1994).

The backpropagation method is essentially a gradient descent method that

minimises the error between the target output and the actual output from

the network. More on the mathematical analysis of the backpropagation

algorithm and delta rules may be obtained in Fausett (1994), Patterson

(1996) and Russell and Norvig (2010). Other neural network topologies have

also been proposed. Neural networks with one or more feedback loops are

categorized as recurrent networks. The feedback may be of local or global

type. Figure 2.6 demonstrates a basic recurrent network.

Literature Review

21

Figure 2.6 A simple recurrent neural network (Elman 1990).

Gradient-based is one of the many suggested training methods for training

recurrent networks, as proposed in Williams and Zipser (1995). It is worth to

mention that training recurrent networks is not as easy task, as the feedback

networks mean the feed-forward training patterns are not fully known.

Recurrent neural networks, in which all connections are symmetric, are

referred to as Hopfield networks (Hopfield 1982), i.e., there must be a

connection from unit j feedback to unit i whenever there is a connection from

unit i to unit j. Among other commonly employed neural network models are

Radial basis function networks (Park and Sandberg 1991), probabilistic neural

networks (Specht 1990), and Kohonen self-organizing maps (Kohonen

1997). Readers are referred to Anderson and Rosenfield (1988), Fausett

(1994) and Callan (1999) for further information about these network types.

It has been found that Multi-layer perceptrons with backpropagation

learning are effective and efficient in solving a number of practical problems.

For example financial time series predictions (Zirilli 1996), computer game

Context Units

Literature Review

22

playing (Tesauro and Sejnowski 1989), and industrial applications such as

steel scheduling (Schlanget al. 1996). However, there are some drawbacks

with backpropagation training. One of these is the minimisation of the mean

square error over all training examples. Another drawback is that it is

necessary to calculate a derivative, which is computationally expensive. The

learning is also liable to get trapped at a local minimum (Sutton 1986). A

further consideration in using backpropagation is that it is still an art rather

that a science to derive the network architecture. ANN research has not yet

precisely identified any protocols to follow in terms of the number of layers

and hidden units and the type of activation functions that should be used. In

most cases, the design of a network will be subject to experience or

repetitive tests using a different number of layers and hidden units.

Evolutionary approaches for learning artificial neural networks have been

explored for the purpose of tackling such problems.

2.4.3 Evolutionary Artificial Neural Networks

Yao (1999a) has described the introduction of an evolutionary learning

approach into artificial neural networks at three different levels; namely,

connection weights, network architectures, and learning rules. Connection

weights could be evolved by utilising methodologies such as genetic

algorithms. These algorithms offer a global search method for training the

weights of the network and could help the problems of becoming being

trapped in a local minima caused by gradient descent learning. Without

human intervention, both the weights and the structure of artificial neural

networks could be evolved automatically by evolving network architectures

Literature Review

23

using an evolutionary approach. The evolution of learning rules can be

considered as a process of “learning how to learn” in artificial neural

networks, where the adaptation of learning rules is attained through

evolution. Please refer to Moriarty and Miikkulainen (1997), Yao (1999a),

Miikkulainen (2007) and Yao and Islam (2008) for comprehensive surveys on

evolutionary artificial neural networks.

2.4.3.1 Evolving Connection Weights

In artificial neural networks, there are two major phases in the training of

the weights. The first phase is to decide on the representation of the

connection weights, which is typically either binary strings or real-valued

vectors; while the second phase is to decide the genetic operators to be used

for the evolutionary process, in conjunction with the representation scheme.

A typical evolutionary algorithm is illustrated in algorithm 2.6.

1- Decode each individual (a chromosome represents all connection weights) in the current generation

into a set of connection weights and construct a corresponding ANN with the weights.

2- Evaluate each ANN by computing its total mean square error between actual and target outputs.
Other error functions can also be used and problem-dependent. The higher the error, the lower the
fitness. A regularization term may be included in the fitness function to penalize large weights.

3- Select parents with higher fitness for reproduction.

4- Apply search operators, such as crossover and/or mutation, to parents to generate offspring, which
form the next generation of potential connection weights.

Algorithm 2.6 A typical algorithm for evolving connection weights in

evolutionary artificial neural networks(Yao 1999a).

Real numbers are usually used to represent connection weights. However,

early works in evolutionary artificial neural networks (Caudell and Dolan

1989; Garis 1991) showed that binary strings can also be exploited to

Literature Review

24

represent the connection weights. In a binary representation, each

connection weight is represented by a number of bits with a certain length.

Moreover, in a binary representation, several encoding methods such as the

uniform method or the exponential method can be employed to encode real

valued weights into binary bits using various ranges and precisions. An

important issue for binary representation is the tradeoff between the

precision of binary representation and the length of the chromosome. If too

few bits are used, problems of insufficient accuracy may arise. On the

contrary, if too many bits are used the chromosomes become exceedingly

long which leads to a loss of efficiency in the evolutionary algorithm (Whitley

et al. 1990). As a measure to circumvent loss of precision in representation,

real numbers are used to represent connection weights. In addition, by using

a vector of real values in representing all the connection weights of a neural

network, direct manipulation of the connection weights can be achieved.

Perhaps a better way to evolve a population of real-valued vectors is to use

evolution strategies or evolutionary programming that is more suited to

optimisation problems with continuous values. If the representation is vectors

of real numbers, a crossover operation only creates new combinations of

current connection weights. However, mutation actually creates new values

of connection weights that differ from the initial set of connection weights.

Furthermore, mutation also avoids the problem of producing offsprings that

are exactly the same as their parents. Successful applications using

evolutionary programming or evolution strategies evolving connection

weights with real-valued representations can be found in Porto et al. (1995),

Fogel et al. (1995), Yao et al. (1996), Greenwood (1997), Sarkar and

Literature Review

25

Yegnanarayana (1997), Chellapilla and Fogel (2001), Tesauro (2002) and

Fogel et al. (2004).

2.4.3.2 Evolving Network Architecture

Evolving artificial neural network architectures can be viewed as a search

through a space of all possible network structures (connectivity and the

activation function). Algorithm 2.7 shows a typical algorithm for evolving

network architectures. The process stops when a satisfactory artificial neural

network is found.

1- Each hypothesis of network architecture in the current generation is encoded into chromosomes
for genetic operations, by means of a direct encoding scheme or an indirect encoding scheme.

2- Evaluation of fitness. Decode each individual in the current generation into architecture, and

build the corresponding ANNs with different sets of random initial connection weights. Train
the ANNs with a predefined learning rule, such as the Backpropagation algorithm. Compute the
fitness of each individual (encoded architecture) according to the training results, for example,
mean-square-error, and other performance criteria such as the complexity of the architecture,
e.g., less number of nodes and connections preferred.

3- Select parents from the population based on their fitness.

4- Apply search operators to the parents and generate offspring, which form the next generation.

Algorithm 2.7 A typical cycle for evolving network architectures in

evolutionary artificial neural networks(Yao 1999a).

A direct encoding scheme for network architectures specifies all the details

of the architecture in a chromosome, i.e. every connection and node of the

architecture (Whitley et al. 1990; Fogel 1993; McDonnell et al. 1994).

Following the encoding of the network architecture into binary strings, the

evolution of the population of encoded architectures is obtained by employing

crossover and mutation operators. As mentioned in the previous section,

crossover operations may lead to inefficiency in the evolution of network

Literature Review

26

architectures which shows itself in several ways. First, artificial neural

networks, as described in section 2.4.1, are a distributed representation form

of knowledge, that is, each node and connection weight of the network acts

as a storage point for the knowledge of solving a problem. One single node or

connection does not explain any useful knowledge about the complete

problem. Instead, using a cluster of hidden nodes with a set of connection

weights, are used to discover and extract certain features from the inputs in

a way that is comparable to the brain which can be divided into different

regions with specified functions. During the evolutionary process, crossover

operators are more likely to obliterate these useful feature detectors than the

mutation process. Secondly, crossover operators suffer from the negative

effect resulting from a permutation problem. This happens when two artificial

neural networks order their hidden nodes differently but still have equivalent

functionality (Hancock 1992; Igel and Stagge 2002). In general, crossover is

not used as the principal operator in most evolutionary artificial neural

network applications (McDonnell and Waagen 1994; Heimes et al. 1997;

Fang and Xi 1997; Yao 1997; Yao and Liu 1997b). Hancock (1992) and

Likothanassis (1997) argued that crossover might be imperative for some

problems. Stanley and Miikkulainen (2002) showed increased efficiency on

benchmark Reinforcement Learning tasks using their method of crossover on

different network topologies. Further research is required to understand the

efficiency of crossover operators in evolving artificial neural networks. With

regard to direct encoding of network architectures, one of the issues is the

length of the chromosome. As the size of the network grows, the length of

the chromosome increases thus reducing the efficiency of the evolutionary

Literature Review

27

algorithm. With an indirect encoding scheme, there is a tendency to decrease

the length of the genotype representation of architectures and only some

characteristics of the architecture are encoded (Kitano 1990; Harp et al.

1990; Gruau 1994; Grönroos et al. 1999). For example, a parametric

representation may only contain a set of parameters such as the number of

hidden layers and the numbers of hidden nodes in each layer, assuming the

networks are all feed forward multi layer perceptrons (Harp et al. 1990).

Apparently, this greatly restricts the choice of potential network

architectures. Development rule representation is another well-known

indirect encoding scheme. It encodes development rules in chromosomes

(Kitano 1990). These development rules specify certain primary building

blocks in a network. The evolution of architectures is transferred to the

evolution of development rules. The development rule representation can

diminish the damaging effect of crossover although extra effort is needed

during the encoding and decoding of chromosomes. However, development

rule representation seems to be inefficient at evolving detailed connectivity

patterns amongst individual nodes. Another downside of development rule

representation is that it separates the evolution of architectures and the

evolution of connection weights, which renders it inappropriate for the

simultaneous evolution of architecture and connection weights. For more

discussions on indirect encoding of network architectures, please refer to

Moriarty and Mikkulainen (1997) and Yao (1999a).

Literature Review

28

2.4.3.3 Simultaneous Evolution of Architecture and Weights

The evolution of network architectures, as a distinct process, from the

evolution of connection weights is described in algorithm 2.10. This

separation could give rise to noise problems in the fitness evaluation of

individual architecture hypothesis (Yao and Liu 1997a). Random initialisation

of connection weights, when the individual architectures are evaluated, is the

first source of the noise due to the fact that different random initial weights

may generate different training outcomes. The training algorithms used for

the evaluation creates the second source of noise. Even with the same set of

initial weights, various training algorithms may generate various training

results. To address these problems, simultaneous evolution of both the

architecture and weights is recommended. There have been a number of

studies on evolving architectures and connection weights simultaneously. An

evolutionary system called NEAT (Stanley and Miikkulainen 2002 and Stanley

2006) was originally developed to solve difficult control and sequential

decision tasks. NEAT is based on three principles that work together to

efficiently evolve network topologies and weights. The first principle is

homology: NEAT encodes each node and connection in a network with a

gene. Whenever a structural mutation results in a new gene, that gene

receives a historical marking. Historical markings are used to match up

homologous genes during crossover, and to define a compatibility operator.

Figure 2.7 shows A NEAT genotype to phenotype mapping example, while

figure 2.8 shows the two types of structural mutation in NEAT.

Literature Review

29

Figure 2.7 A NEAT genotype to phenotype mapping example (Stanley

and Miikkulainen 2002). A genotype is depicted that produces

the shown phenotype. There are 3 input nodes, one hidden, one

output node, and seven connection definitions, one of which is

recurrent. The second gene is disabled, so the connection that it

specifies (between nodes 2 and 4) is not expressed in the

phenotype. In order to allow complexification, genome length is

unbounded.

Figure 2.8 The two types of structural mutation in NEAT (Stanley and

Miikkulainen 2002). Both types, adding a connection and

adding a node, are illustrated with the genes above their

phenotypes. The top number in each genome is the innovation

number of that gene. The bottom two numbers denote the two

nodes connected by that gene. The weight of the connection,

also encoded in the gene, is not shown. The symbol DIS means

that the gene is disabled, and therefore not expressed in the

network. The figure shows how connection genes are appended

to the genome when a new connection and a new node is added

to the network. Assuming the depicted mutations occurred one

after the other, the genes would be assigned increasing

innovation numbers as the figure illustrates, thereby allowing

NEAT to keep an implicit history of the origin of every gene in

the population.

Literature Review

30

The second principle is protecting innovation. A compatibility operator is

used to speciate the population, which protects innovative solutions and

prevents incompatible genomes from crossing over. Finally, NEAT follows the

philosophy that search should begin in as small a space as possible and

expand gradually. Evolution in NEAT always begins with a population of

minimal structures. Structural mutations add new connections and nodes to

networks in the population, leading to incremental growth. Topological

innovations have a chance to realise their potential because they are

protected from the rest of the population by speciation. Because only useful

structural additions tend to survive in the long term, the structures being

optimised tend to be the minimum necessary to solve the problem. NEAT‟s

approach allows fast search because the number of dimensions being

searched is minimised. Figure 2.9 shows the matching up of genomes for

different network topologies using innovation numbers.

Another important part of artificial neural network architecture is the

activation function. In a design described by White and Ligomenides (1993),

node activation functions are evolved using sigmoid and Gaussian functions

in different ratios. Node activation functions are evolved by setting 80% of

the nodes in the initial population using a sigmoid function and using

Gaussian function to set the remaining 20%. The evolution seeks to establish

the optimal mixture between these two activation functions.

Literature Review

31

Figure 2. 9 Matching up genomes for different network topologies

using innovation numbers (Stanley and Miikkulainen

2002). Although Parent 1 and Parent 2 look different, their

innovation numbers (shown at the top of each gene) tell us that

several of their genes match up even without topological

analysis. A new structure that combines the overlapping parts of

the two parents as well as their different parts can be created in

crossover. In this case, equal fitnesses are assumed, so each

disjoint and excess gene is inherited from either parent

randomly. Otherwise the genes would be inherited from the

more fit parent. The disabled genes may become enabled again

in future generations: There is a preset chance that an inherited

gene is enabled if it is disabled in either parent.

Literature Review

32

2.4.3.4 Evolving Learning Rules

In addition to learning rules such as backpropagation for multi layer

perceptrons, other types of learning rules for different types of artificial

neural networks also exist, such as the Hebbian learning rule (Fausett 1994).

In fact, we can assume any learning rules to be in a more general form as

follows (Mitchell 1999):

Wji (t+1) = Wji (t) + ∆ Wji

Where

∆ Wji = ƒ (ai , oj , tj , wji)

ai is the input to unit i. oj is the output from unit j. tj is the targeted output

from unit j. wji is the current weight on the connection from i to j. We can

assume the learning rule ƒ to be a linear combination of these variables.

Examples of evolving learning rules can be found in Chalmers (1990) and

Baxter (1992).

2.5 COMPUTER GAME PLAYING

Designing automated computer game playing programs has been of

interest since the 1950s (Turing 1950; Samuel 1959), and is still of interest

today, with successes such as Deep Blue in 1997 (Newborn 1997; Campbell

et. al. 2002), which defeated Garry Kasparov, considered the best ever chess

player. Game playing involves many important aspects of interest to artificial

intelligence such as knowledge representation, search and machine learning.

Traditional computer games programs use a knowledge based approach,

where human knowledge about the game is encoded by hand into the

Literature Review

33

computer by means of an evaluation function and a database of opening and

end game sequences.

In 1954, Arthur Samuel developed a checkers player in an attempt to

demonstrate that a computer program could improve by playing against

itself. Samuel‟s program adjusted weights for 39 features (Samuel 1959,

1967). Samuel used a form of what is now called “reinforcement learning” (to

find more about reinforcement learning, please refer to Kaelbling et al. 1996;

Mitchell 1997; Sutton and Barto 1998; Vrakas and Vlahavas 2008) to adjust

these features, instead of tuning them by hand. Samuel discovered that the

most important feature was the piece difference and the remaining 38

features (including capacity for advancement, control of the centre of the

board, threat of fork, etc.) varied in their importance. Due to memory

limitations Samuel used only 16 of the 38 features in his evaluation function,

swapping between them to include the remaining 22, which he called term

(Samuel 1959, 1967; Fogel 2002). Two evaluation functions (alpha and beta)

were used to determine the weights for the features. At the start, both alpha

and beta have the same weight for every feature. Alpha weights were

modified during the execution of the algorithm. Beta values remained static.

The process gave an appropriate weight to each feature when summed

together. Each leaf node in the game tree was evaluated using this

evaluation function. This process represents one of the first attempts to use

heuristic search methods in searching for the best next move in a game tree.

Samuel (1959) used minimax with three ply search and a procedure called

rote learning. This procedure was responsible for storing the evaluation of

different board positions in a look-up table for fast retrieval (Look-Ahead and

http://www.cs.cmu.edu/~tom
http://www.cs.cmu.edu/~tom

Literature Review

34

memorization). Samuel (1967) improved the minimax search with alpha-beta

pruning that incorporated a supervised learning technique to allow the

program to learn how to select the best parameters to be calculated in the

evaluation function. In July 1962 Samuel‟s program played against Robert

Nealey, described (incorrectly) as a former Connecticut checkers champion,

and one of the nation‟s foremost players. Samuel‟s program defeated Nealey,

the first time a computer program had defeated a state champion (although

he earned this title four years later). At that time it was considered a great

success and a significant achievement in machine learning. In fact this was

the only win that Samuel‟s program managed against Nealey, or any other

players, and there is some controversy about how strong a player Nealey

really was. Samuel claimed that his program focused on the problem of

having a machine learning program, rather than be told how to play, but in

fact he used 39 features (although he wanted to get away from that

requirement), which some would argue is utilising human knowledge.

However, the historical importance of this work cannot be underestimated as

it set the challenge which Fogel was later to accept, and to answer.

In 1989, Jonathan Schaeffer and his colleagues at the University of

Alberta, designed a checkers program called Chinook (Schaeffer et al. 1996;

Schaeffer 2009), which later became the world champion at checkers.

Schaeffer‟s initial motivation was to solve the game. However, this was a

challenging goal as there are approximately 5*1020 different positions to

evaluate (Schaeffer 2009). A further motivation was to produce the world‟s

best checkers player. This was done by using an evaluation function, which

comprises several features, all of them based on human expertise, including

Literature Review

35

grand masters. The main feature in Chinook‟s evaluation function is the piece

count, where each piece on the board takes 100 points. The next most

important feature is the king, which takes a value that is greater than a

regular checker by 30 percent, except when the king is trapped (a trapped

king cannot move because it will be taken by the opponent), when it takes

the same value as a regular checker. Another feature that is important to

Chinook‟s evaluation function is the runaway checker (a clear path for a

checker to become a king, without any obstacles), which takes a value of 50

points in addition to its previous value, and subtracts three points for each

move that is required to advance the checker to be a king. There are other

additional features that are included in the evaluation function, including the

“turn”, “mobile kings” and the “dog hole” (a checker that is trapped by its

opponent and cannot be moved). Each one of those features was assigned a

different weight indicating its importance. The summation of each term

provided an overall assessment of the board for that particular game state,

which enabled different game states to be compared. Initially, Schaeffer gave

initial values to the weights and then hand tuned them when he found an

error (e.g. an obviously incorrect move being made) or when a Chinook

move led to position that led to a losing position. Chinook also utilised

opening and end game databases to further enhance its ability. Initially

Chinook‟s opening game database comprised of 4,000 sequences. Later it

contained more than 40,000. The end game database contained all the

possibilities that lead to a win, a draw or a loss, for a given number of pieces

left on the board. The final version of Chinook‟s end game database

contained all six piece end sequences, allowing it, together with the ability to

Literature Review

36

determine the right move, to play perfectly from these positions. In 1989

Chinook, with a four-piece end game database (Schaeffer et al. 1992), won

the computer Olympiad. Later, with its final six-piece end game database,

together with its evaluation function modified by a fudge factor (Schaeffer et

al. 1993; Schaeffer 2009), it finished in second place to Marion Tinsley

(recognized as the best checkers player who ever played the game) in the

U.S. National Checkers Championship held in 1990. After a further sequence

of matches in 1994 between Chinook and Tinsley, Chinook became the world

man machine checkers champion (after Tinsley‟s resignation due to health

problems, he died the following year) (Schaeffer 2009). In 1996 Chinook

retired with a rating of 2,814. The building of the open/end game databases

ultimately led Schaeffer to achieve his initial motivation (solving the game of

checkers) (Schaeffer et al. 2007). Perfect play by both sides leads to a draw.

Neurogammmon (Tesauro 1989) is computer program that learns how to

play backgammon. Neurogammon uses a multilayer feed forward neural

network that was trained on a large data set obtained from human experts.

The training was carried out using a backpropagation neural network.

Neurogammon used one network to make a doubling cube and another six

networks that made ordinary moves. Each network is fully connected with

one hidden layer. The input to the network was an initial board position and

this board position also fed directly to the final position. The output was the

experts‟ decision that judged the best move to make, given initial board

positions. “Comparison paradigm”, (Tesauro 1989), was used to teach the

network how to favour moves that were made by the expert by giving it a

score higher than that assigned to other moves. Neurogammon won the First

Literature Review

37

Computer Olympiad (held in London), with a record of five wins and no losses

(Tesauro 1989). However, Neurogammon lost to a human expert, Ossi

Weiner from Germany, with the final score being 7-2. Weiner commented

that Neurogammon played like a human and only made a few mistakes,

which was considered as a significant accomplishment for the program.

During the mid 1990s, IBM produced Deep Blue (Campbell et al. 2002) in

an attempt to create a chess program that was capable of beating the world

champion at that time. The history of chess computer programs, and early

works of Deep Blue, is described in (Hsu et al. 1990; Goetsch and Campbell

1990; Newborn 1997; Heinz 2000; Hsu 2002). Deep Blue had 30 processors

(Hsu 1999) that were able to carry out a parallel search, and could evaluate

up to 200 million chess positions per second (Clark 1997). Deep Blue‟s

evaluation function comprised about 8,000 different features. Each feature

had a weight, which was initialised by the evaluation function generator

(some features had static values). The evaluation function can be calculated

by summing up those weights. The opening database in Deep Blue consisted

of 4,000 positions that had been manually entered according to human

grandmasters. A new technique, called “Extended Book” (Campbell 1999)

was also used in Deep Blue, which was capable of extracting useful

knowledge from over 700,000 grandmaster chess games. This information

directed Deep Blue in its opening moves. The extended book evaluation

function includes a number of factors. Among these were “The number of

times a move has been played”, “The relative number of times a move has

been played”, “Strength of the players that play the moves”, “Recentness of

Literature Review

38

the move”, “Results of the move”, “Commentary on the move” and “Game

moves versus commentary moves”. These factors were combined in a

nonlinear function to produce a scalar output value (as high as half value of a

pawn). The end game database of Deep Blue consists of all positions with

five or fewer chess pieces on the board, which is stored in a database as one

bit per position (either lose or not). In order to keep control of the time,

Deep Blue used two types of time settings, which had to be set before each

search. The first one is the normal time that is set to be the time remaining

to the next time control divided by the moves remaining, while the second

time setting is the panic time, which is one third of the remaining time.

After losing against Gary Kasparov (World Chess Champion) in 1996, Deep

Blue defeated Kasparov in a six-game match in 1997 to become the first

computer program to defeat a world chess champion (note that Chinook had

performed a similar feat for checkers three years earlier). King (1997)

provides more insights to the 1997 match.

In 2006, a group of researchers presented MoGo (Gelly et al. 2006; Gelly

and Wang 2006), a computer program that played the game of Go. The

design of MoGo focused on two main elements. The first was to make a

modification to the UCT (Upper bound Confidence for Tree) algorithm (Kocsis

and Szepesvari 2006), while the second focused on using techniques such as

parallisation, pruning and dynamic tree structure (Coulom 2006). The design

of MoGo consisted of two phases; (1) the design of the tree search and, (2) a

random simulation. The tree is created dynamically by adding one node after

each simulation phase (used to evaluate the whole tree created so far). In

Literature Review

39

August 2006 MoGo was ranked top of 142 programs to play Go according to

the classification of 9x9 Computer Go Server. MoGo also won all the

tournaments which were held by the Kiseido Go Server during October and

November 2006. The tournaments played matches on 9x9 and 13x13 Go

boards. MoGo with Monte Carlo tree search reached the level of 3 Dan in

Taiwan‟s Computer Go Tournament, 2008 (Lee et. al. 2009).

One of the criticisms of traditional knowledge-based approaches for

developing game-playing machine intelligence is the large amount of pre-

injected human expertise that is required for the computer program,

together with the lack of learning capabilities of these programs (Fogel 2000;

Fogel 2002). The evaluation functions and opening and end game databases

described above are provided by game experts. In this sense, a computer

game‟s intelligence is not gained by actually playing a game, but rather

comes from the pre-designed evaluation function and a look up database of

moves. Moreover, this intelligence is not adaptive. It could be argued that

humans read books and watch other people playing a game before they

actually start playing themselves. Humans also improve their skill through

trial-and-error. New features and strategies for playing a game can be

discovered by new players rather than grand masters, while old features

could be viewed as worthless and old strategies are discarded. Humans also

adapt their strategies when they meet different types of players, under

different conditions, in order to accommodate their special characteristics.

We do not see such adaptations and characteristics in the knowledge-based

computer game programs. Fogel (2002) commented on this phenomenon in

computer game-playing:

Literature Review

40

 “… To date, artificial intelligence has focused mainly on creating

machines that emulate us. We capture what we already know and

inscribe that knowledge in a computer program. We program

computers to do things – and they do those things, such as play

chess, but they only do what they are programmed to do. They are

inherently “brittle”. … We’ll need computer programs that can teach

themselves how to solve problems, perhaps without our help. …”

The following computer games are based on self learning techniques

rather than the pre-injection of human expertise.

In 1998 Norman Richards and his colleagues from the university of Texas

produced a self learning program (Richards et al. 1998) that was capable of

playing the game of Go on small boards (9x9), without any injection of prior

knowledge. This program used the SANE (Symbiotic Adaptive Neuro-

Evolution) method (Moriarty and Miikkulainen 1998; Lubberts and

Miikkulainen 2001) to evolve neural networks to be able to play Go on simple

boards. The design of the neural network consisted of a three (two input and

one output) layer feed-forward network with evolvable connection weights.

The input units were used to indicate whether the black or white stones were

present, while the output unit indicated whether a move is good or not (a

positive value reflects a good move, while a negative or zero value indicates

a bad move). The evaluation function of SANE used Chinese scoring by

counting all the stones of the same color, together with all locations

completely surrounded by stones of that color and the difference in the

scores between SANE and its opponent is summed over N games and used

Literature Review

41

as a fitness level for the networks. SANE was tested by playing against Wally

(written by Bill Newman), on a 5x5 board, SANE needed only 20 generations

to defeat Wally, while it needed 50 generations on a 7x7 board. On a 9x9

board, SANE needed 260 generations.

Blondie24 (Fogel 2002) represents an attempt to design a computer

checkers program, injecting as little expert knowledge as possible.

Evolutionary neural networks were used as a self-learning computer

program. The neural network used for a particular player provided the

evaluation function for a given board position. Evolution strategies made

these networks, which acted randomly initially (as their weights were

initialised randomly), gradually improve over time. The final network was

able to beat the majority (>99%) of human players registered on

www.zone.com at that time. Blondie24 represents a significant achievement,

particularly in machine learning and artificial intelligence. Although Blondie24

does not play at the level of Chinook (Schaeffer 2009), this was not the

objective of the research; but rather to answer the challenges set by Samuel

(1959, 1967) and also by Newell and Simon (two early AI pioneers). The

next section (section 2.6) provides more details about the implementation of

Blondie24 and discusses the results along with the perceived shortcomings.

TD-Gammon (Robertie, 1992; Tesauro 2002) represents a first attempt to

produce a self learning computer program that is able to play a game of

backgammon to the level that is competitive with human experts. TD-

Gammon is a neural network based computer program that is able to teach

itself how to play the game of backgammon by playing against itself starting

http://www.zone.com/

Literature Review

42

from completely random initial play. TD-Gammon used multilayer perceptron

neural networks, which takes a sequence of board positions from the start,

until the end (one side succeeds in removing all their pieces) and produces

an output that represented the network‟s estimation about how good is that

board position. No features were encoded in the neural network during

training and the network was used to select the best move for both sides

(learning from the results of playing against itself). TD-Gammon contained

160 hidden nodes and performed a three-ply search. It was trained for over

six million self play games (Tesauro 1992, 1995). TD-Gammon has been

tested against many human players during its different versions, with

different modifications, and was shown to be very successful. TD-Gammon

was also shown to be able to play better against human experts than

Neurogammon (Tesauro 2002).

Blondie25 (Fogel et. al. 2004) (a development of Blondie24 but now for

chess), was an attempt to produce a self learning evolutionary chess

program that can learn how to play the game of chess by playing against

itself, injecting as little expert knowledge as possible. Blondie25‟s

implementation worked as follows: The chessboard was represented as a

vector of length 64, where each component in the vector represents a board

position. Components in the vector could take values from {-K, -Q, -R, -B, -

N, -P, 0, +P, +N, +B, +R, +Q, +K} where 0 represented an empty square

and the variables P, N, B, R, Q, and K represented material values for

pawns, knights, bishops, rooks, and the queen and king, respectively. The

sign of the value indicated whether or not the piece in question belonged to

Literature Review

43

the player (positive) or the opponent (negative). Three fully connected

artificial feedforward neural networks were used, each one with 16 inputs, 10

hidden nodes, and a single output. The three neural networks focused on the

first two rows, the back two rows and the centre of the chess board as shown

in figure 2.10 (Fogel et. al. 2005). To start the evolutionary process, 20

computer players were initialised with the values 1,3,3,5,9 and 10,000 for P,

N, B, R, Q and K respectively (Fogel et. al. 2005). Each player played 10

games (five as white and five as black) against 10 randomly selected players

from the same population and according to their scores (+1 for win, 0 for

draw and -1 for lose) the 10 players which scored more points were selected

and the others were killed off. The selected players were mutated to produce

10 offspring. The best player from the last generation was selected to be

Blondie25. Games were played using an alpha beta search with a four ply

depth. Blondie25 was tested against many popular chess programs (Fogel et.

al. 2006) and showed success in defeating Fritz 8, ranked number 5 in the

world at that time. Also Blondie25 defeated a human master, ranked 2301 at

that time. Blondie25 itself is ranked at about 2640.

Literature Review

44

Figure 2.10 The three chess board positions (Fogel et al. 2004).

We can find many other studies and applications in game playing in

recognition of intelligence as an evolutionary process, such as Turing (1950),

Fogel et al. (1966), Axelrod (1987), Fogel (1992), Fogel (1993), Kendall and

Hingston (2004) for the Iterated Prisoner‟s Dilemma, Moriarty and

Miikkulainen (1995) for the game of Othello, Pollack and Blair (1998) for the

game of Backgammon, Richards et al. (1998) and Kendall et al. (2004) for

the game of Go, and Kendall and Whitwell (2001), Baxter et al. (2001),

Stanley et al. (2005) for Nero and Nasreddine et al. (2006) for Chess

together with Lucas and Kendall (2006) for various computational intelligence

methods that can be used for various games.

Literature Review

45

2.6 BLONDIE24

In 2000, an evolutionary algorithm was presented by David Fogel which

was capable of playing the game of checkers, injecting as little expert

knowledge as possible. By solely using the number, type and positions of

pieces on the checkers board, the evolutionary program utilises feed forward

artificial neural networks to evaluate alternative positions in the game. Fogel

called his evolutionary program Blondie24 (Fogel 2002). Blondie24 is a

checkers program that is capable of learning how to play checkers to a level

close to that of human experts. In comparison, the major difference between

Blondie24 and other traditional game-playing programs is in the employment

of the evaluation function (Chellapilla and Fogel 2001; Fogel and Chellapilla

2002). In traditional game-playing programs, evaluation functions usually

comprise important features derived from expert human techniques for

generating good moves. Hand tuning is used to alter the weighting of these

features. In Blondie24, the evaluation function is an artificial neural network

that only knows the number of pieces on the board, the type of each piece

and their positions; no other inputs such as human experience about the

techniques of the game, are pre-programmed into the neural network.

2.6.1 Blondie24 Implementation

As mentioned above, the core feature in the design of Blondie24 is to

make the program learn, through self play, how to play checkers. This is in

direct contradiction of an alternative which is to preload it with all the

information about how to make good moves and avoid bad ones (Chellapilla

and Fogel 2000; Fogel 2000). The design of Blondie24 program consists of

Literature Review

46

two main modules: The artificial neural network and the checkers engine

module (Chellapilla and Fogel 1999, 2000). Each designed module consists of

sub-modules that are designed to achieve certain tasks.

2.6.1.1 The Artificial Neural Network Module

This module concerns the design of the Evolutionary Artificial Neural

Network (EANN) that will be used as an evaluation function for the current

checkers board position. The EANN takes a vector of length 32 as input, with

each element representing an available position on the checkers board

(checkers is only played on half the available squares on an 8X8 board) and

produces a scalar output ranged [-1, +1]. A value of +1 represents the value

of a winning board and -1 represents the value of a losing board. Values

between -1 and +1 demonstrate how good the board is at this particular

point (the higher the better). Components in the input vector take elements

from {-K, -1, 0, +1, +K}, where 0 corresponds to an empty square, 1 is the

value of a regular checker, and K is the number assigned for a king. Initially

K was set to 1.5 (Fogel 2002). The sign of the value indicated whether or not

the piece belonged to the player (positive) or the opponent (negative). The

evaluation function was structured and implemented as a feed forward neural

network with an input layer, three hidden layers, and an output node. The

second and third hidden layers (comprising 40 and 10 units respectively) and

the output layer had a fully connected structure. The first hidden layer

connections were specifically designed to capture spatial information from the

board. The 8x8 checkers board was converted to a 1 x 32 vector as input to

the first hidden layer, which consisted of 91 pre-processing nodes which

Literature Review

47

captured the spatial characteristics of the board. These 91 nodes covered a

variety of n x n squares overlapping subsections of the board. The reason to

choose these n x n subsections was to provide spatial adjacency or proximity

information such as whether two squares were neighbours, or were close to

each other, or were far apart. To the first 36 hidden nodes in the first hidden

layer, all the 36 possible 3 x 3 square subsections of the board were supplied

as input. The following 25 4 x 4 square subsections were assigned to the

next 25 hidden nodes in that layer. The 16 5 x 5 square subsections were

assigned to the next 16 hidden nodes. The 9 6 x 6 square subsections were

assigned to the next 9 hidden nodes. The 4 7 x 7 square subsections were

assigned to the next 4 hidden nodes. Finally the entire board (8 x 8 square

subsections) was assigned to the last hidden node in that layer. All possible

overlapping squares of sizes 3 to 8 were given as inputs to the 91 nodes of

the first hidden layer. This made the neural network able to produce features

from these entire board subsets that could then be processed in subsequent

hidden layers (of 40 and 10 hidden units). Figure 2.11 illustrates the general

structure of the neural network. Any inclusion of an expert‟s experience was

avoided in the design of Blondie24, which was attempting to achieve

Samuel‟s challenge (Fogel 2002) concerning the level of play that could be

obtained simply by using evolution to extract linear and nonlinear features

about the game of checkers and to optimize the interpretation of those

features within the neural network without using any human expertise,

making the computer able to learn these features on its own. The only

exception was achieved by providing the neural network with a piece

differential that connected directly to the output node (Chellapilla and Fogel

Literature Review

48

1999; Fogel 2002). This originated from the fact that even novice players

would recognize which side had more pieces.

Figure 2.11 EANN architecture(Fogel 2002).

The nonlinearity function at each hidden node and output node was the

hyperbolic tangent (Fogel 2000 and Chellapilla and Fogel 2001) (bounded by

±1), which can be implemented as follows:

Activation = (Exp(value) - Exp(-value)) / (Exp(value) + Exp(-value))

Where, value is the summation of the dot product between the inputs and

corresponding weights in the node.

2.6.1.2 Checkers Engine

The design of this module consists of three sub-modules (Fogel 2002). The

first, and most important, is the actual checkers playing sub-module which is

used to record all the information about the board and the checkers pieces. It

Literature Review

49

also indicates legal moves (ordinary moves, jump moves). The checkers

engine requires a search algorithm that generates a tree of all valid moves at

any given board positions and then applies the neural network module to

evaluate the leaf nodes and then, by using alpha-beta cutoff, propagate

these values back up the search tree in order to choose the best available

move. Blondie24 used depth first search to expand the search space to a

certain depth (usually 4 or 6). For each move, the search can be made by

examining the checkers board from the top left corner taking into

consideration every available piece on board. If a valid move is found then

the search is extended by examining the opponent‟s valid moves by using the

same process. This process continues until the maximum play level is

reached. The search space is extended every time a jump move is

discovered, until no further jumps are available. The search stops below any

discovered jump move and no further expansion of other valid moves is

performed. This was done to adhere to the rules of checkers. The checkers

Playing Sub Module takes two players red and white (two EANNs, i for red

and j for white) and plays checkers in the following way: the Search sub

module is called to produce a search space tree to the current depth d. The

leaf nodes are then evaluated using the EANN currently being used. These

values are propagated back to the root of the tree utilising the Alpha-Beta

Pruning Sub Module, in order to decide the best move to play.

2.6.2 The Evolutionary Process

The evolutionary algorithm is started by initialising a population of 30

neural networks Pi, i= 1, ..., 30. These networks are called strategies

Literature Review

50

(Chellapilla and Fogel 1999, 2001). Each strategy is created randomly by

assigning weights and biases in the range [-0.2, 0.2]. An associated self-

adaptive parameter vector si, i = 1, ..., 30 is set for each neural network.

These vectors are initially set to 0.05 to be consistent with the range of

initialisation (Chellapilla and Fogel 1999, 2001). The associated self-adaptive

parameter is used to control the step size of the search for mutated

parameters of the neural network. All the neural networks are put into a

competition with one another. Five games of checkers are played by each

neural network as a red player with points being received for their resulting

play. The five opponents (playing as white) are randomly selected to play

against each red player. In each game, the red player and the white

opponent scored -2, 0, or +1 points depending on whether it lost, draw, or

won the game, respectively. A draw was declared after 100 moves for each

side. The reason to choose these values was to try to make the player avoid

losing as much as possible. In total, there were 150 games per generation.

After all the games were complete, Blondie24 retains the 15 neural networks

that received the highest points total and uses them as parents for the next

generation. The other remaining 15 neural networks, with the lowest scores,

were killed off. To start the next generation, each parent of the 15 selected

neural networks generated an offspring neural network with all weights and

biases being mutated. Specifically, for each parent Pi, i = 1, ..., 15 an

offspring P‟i, i = 1, ..., 15, was created by:

si(j) = si(j)exp(tNj (0,1)), j = 1, ..., Nw (2.3)

wi(j) = wi(j) + si(j)Nj(0,1), j = 1, ..., Nw (2.4)

Literature Review

51

where Nw is the number of weights and biases in the neural network (here

this is 5046), t= 1/sqrt(2sqrt(Nw)) = 0.0839, and Nj(0,1) is a standard

Gaussian random variable resembled for every j. The offspring king value K‟

was obtained by: K‟ = K + C, where C was chosen uniformly at random from

{–0.1, 0, 0.1}. With the range of K being [1.0, 3.0] (Chellapilla and Fogel

1999; Chellapilla and Fogel 2000; Fogel 2000).

2.6.3 Results

The evolutionary process was iterated for 840 generations, which took

about six months. The best evolved neural network was used as the final

player, and called Blondie24. It played against human opponents on

www.zone.com. The standard checkers system rating, which is the same as

used for chess, was used to rate the players at this site. Initially, each player

has a ranking of R0=1600. The score for each player can be updated

depending on the result of each game and the rating of the opponent as

follows:

Rnew=Rold+C(outcome-W) (2.5)

where)101(1)400/)((RoldRoppW , Ropp is the opponent‟s rating, and C= 32 for

ratings less than 2100, C = 24 for ratings between 2100 and 2399, and C =

16 for ratings at or above 2400 Outcome = {1 if Win, 0.5 if Draw, 0 if

Loss}(Chellapilla and Fogel 1999; Chellapilla and Fogel 2001).

Blondie24 played 165 (84 as red and 81 as white) games against human

players on www.zone.com. These 165 games were played over a two month

period. No opponent was told that they were playing against a computer

http://www.zone.com/
http://www.zone.com/

Literature Review

52

program. When playing against players ranked below 2000 (in

www.zone.com) Blondie24 won, lost, drew; 84, 20, 11 games respectively.

However, when playing against expert opponents rated between 2000 and

2200, Blondie24 won 10, 12 drew and lost 22 games. Figure 2.12 and figure

2.13 show that after 165 games, Blondie24‟s average rating was 2045.85

with a standard deviation of 33.94, which put Blondie24 in the top 500 of the

registered players on zone.com (better than 99.61% of the players

registered on that website) at that time. Blondie24 was also tested by playing

against Chinook (current world champion checkers program rated 2814) at

the novice setting and won.

Figure 2.12 Blondie24 rating after 165 games on zone.com

(Chellapilla and Fogel 2001).

Figure 2.13 Blondie24 Performance after 165 games on zone.com

(Chellapilla and Fogel 2001).

Literature Review

53

2.6.4 Discussion

Blondie24 represents a milestone in evolutionary learning but the evolution

did not allow for the end product to learn any further (i.e. learning was only

exercised in the evolution phase and no learning took place in the playing

phase). This makes Blondie24 incapable of adapting itself when interacting

with human players. Harley comments on this fact in his book review (Harley

2002):

“… An interesting point is that the end product which looks intelligent

is Blondie, yet she is not in fact the intelligence. Like the individual

wasp, Blondie is fixed in her responses. If she played a million

games, she would not be iota smarter. In this sense, she is like Deep

Blue. … Perhaps a better example of intelligence would be … a

human, who can adapt her behavior to any number of new

challenges…”

To be more accurate, the creation of Blondie24 is to be considered as a

learning process (achieving Samuel‟s challenge (Samuel 1967) but Blondie24

itself is unable to learn from its environment (Kendall and Su 2007).

2.7 INDIVIDUAL AND SOCIAL LEARNING

Inspired by Su (2005), this section will present individual and social

learning in the context of game playing. In these discussions, the structure of

individual and social learning in an imperfect evolutionary system will

particularly be focused on. According to Su (2005), an imperfect evolutionary

Literature Review

54

system is “a system where intelligent entities optimise their own utilities with

the resources available whilst adapting themselves to the new challenges

from an evolutionary imperfect environment”. To develop an imperfect

evolutionary system, an integrated concept of individual and social learning

has been employed. Four blocks participate in the formation of an imperfect

evolutionary framework; namely, the imperfect environment, the imperfect

individuals, individual learning mechanism and social learning mechanism.

Adapted from Su (2005), brief descriptions of each of these blocks are stated

below:

• The Imperfect Environment

- This is pivotal for the implementation of the imperfect evolutionary

systems. The environment is made available by supplying

information and knowledge for survival as well as acting as medium

for evolution.

• The Imperfect Individuals

- Through individual learning, the imperfect individual exploits the

available resources. Utilising social learning process, the individual

attracts new information from the imperfect environment and gains

better information and knowledge.

• Individual Learning Mechanism

- An evolutionary process where the individual optimises its own

utilities.

Literature Review

55

• Social Learning Mechanism

- An evolutionary process where there is a process of learning from

each other amongst all participants of an imperfect environment.

Alongside, the information and knowledge distribute broadly within

the imperfect evolutionary system.

In a model described in (Kendall and Su 2003), a stock market was used

as a problem domain to evaluate the imperfect evolutionary systems. Here,

an integrated individual and social learning mechanism was utilised by stock

traders, to learn how to trade the stocks. Figure 2.14 shows a model of

multi-agent based simulated stock market (Kendall and Su 2003).

Figure 2.14 Model of a multi-agent based Simulated Stock Market

(Kendall and Su 2003).

Literature Review

56

The general model is as follows (based on Figure 2.14 adapted from

Kendall and Su 2003):

1. There are 50 traders before trading starts.

2. There are 20 indicators, each is assigned with value 1, and there are zero

trading strategies in the central pool. Each trader selects a random set of

indicators as inputs to their trading models.

3. Each trader generates 10 different artificial neural network models for

forecasting based on selected indicator(s). These ten models may have

different network architectures, but they use the same set of indicators

selected by the trader. The aim is for the trader to evolve models from

these ten by the means of individual learning.

4. The experiment is divided into 30 intervals where the total time span is

3750 trading days. Each interval has 125 days (6-month trading).

5. Each 125-day trading is divided into 25 intervals. At the end of individual

learning (after 5 days for each interval), evolve the neural networks using

EANNs with evolutionary programming.

6. Social learning occurs at the end of 125-day trading, where each trader

has an opportunity whether to copy a better strategy from the central pool

or publish its own strategy into the central pool.

7. The system enters the next interval after social learning finished and

repeat steps 5 and 6.

Literature Review

57

Individual learning occurs during every 125-day trading period. Each

trader builds their 10 prediction models based on the selected indicators.

These ten models evolve using evolutionary programming. The general

algorithm for individual learning is as follows (adapted from Su 2005):

• Select a neural network to be eliminated.

• Select a neural network for mutation using roulette wheel selection.

• Decide number of connections to be mutated, m, where m is

 mparentoffsbring mm (2.6)

Where, j is a random Gaussian number with mean of zero and standard deviation of 0.1.

• set i = 0.

• While (i < m)

– Select the connection randomly.

– weight = weight + 〉w, where 〉w is a random Gaussian number with mean zero and standard

deviation of 1, and 〉w is also generated a new for each mutation.

– i = i + 1.

• With 1/3 probability, add a hidden node and randomly generate new connections.

• With 1/3 probability, delete a hidden node and delete all connections to it.

• Replace the network to be eliminated with the mutated neural network.

All traders enter social learning at the end of 125-trading day. At this stage, all traders compare

their performance based on their self-assessment, where trader i rate of profit (ROP) in percentage

is calculated using the following equation:

100
5

5

t

tt
i

W

WW
ROP (2.7)

Where,

Literature Review

58

- Wt is the value for trader’s current assets (cash + shares).

- Wt−5 is the value of trader’s assets one week before.
Traders are ranked from 0 to 49 based on their ROP for the previous 125-

days trading (six months):

49
1

ii
peer

R
S (2.8)

Where,

- Ri is the rank of trader i in the range of [0, 49] (0 indicates highest rank with greatest

ROP).

The score from equation 2.8 shows trader i’s performance compared to other traders. The

following equation is used to calculate the performance of each trader for the past six months.

100

PROROP
Si

self

 (2.9)

Where,

- ROP is rate of profit for the current six months trading.

- ROP’ is rate of profit for the previous six months.

Based on equations 2.8 and 2.9, the overall assessment for trader i is as in the following

equation

i
selfS

i
peeri

e
Sassessment

11

1
 (2.10)

Algorithm 2.8 Individual Learning (Su 2005).

The activities in social learning are selected based on the normalisation on

the overall assessment where they are normalised between 0 and 1. Social

learning algorithm based on normalised value is as follows:

Literature Review

59

1. If normalised value is 1 and trader is not using a strategy drawn from the pool,

• Publish the strategy into the pool and use the same strategy for the next 125-day trading.

2. If normalised value is 1 and trader is using a strategy drawn from the pool,

• Do not publish the strategy into the pool but update the strategy’s score in the pool in the

pool using their six-month ROP.

• Use the strategy for the next 125-day trading.

3. If normalised value is less than 0.9, trader has two options:

a- With 0.5 probability, replace the current strategy with a selected strategy from the pool.

The roulette wheel selection is used to select the better trading strategy from the pool and

use this copied strategy for the next six-month trading.

b- Or, with 0.5 probability, discard the current strategy and select another set of indicators as

inputs, build 10 new models and use these models for the next 125-day trading.

4. If normalised value is between 1 and 0.9,

• The trader can use the same strategy for the next 125-day trading.

Algorithm 2.9 Social Learning (Su 2005).

Results show that trading strategies were successful when integrating

individual and social learning. The trader could control the purchase-sell

timing, hence build wealth quicker. The work of (Kendal and Su 2003)

showed that individual learning helped traders to learn to trade while the

search for better information and knowledge in the global space by traders

was achieved through social learning.

Su continues her work in (Su 2005), which was published in (Kendal and

Su 2004, 2007), where the integration of individual and social learning was

implemented on an imperfect evolutionary market. In (Kendal and Su 2003),

Literature Review

60

the 20 market indicators were static during the trading period which, in fact,

does not accurately reflect real life. Therefore, new indicators were

introduced into the simulated stock market and the artificial traders learned

how to use them (Kendal and Su 2004, 2007). They started with ten

indicators in the central pool, with another ten indicators being gradually

introduced into the simulated stock market. This model used the same

mechanism of individual learning as in (Kendal and Su 2003); however some

modifications were applied to the social learning algorithm as follows:

1. If the normalised value is 1 and trader is not using a strategy drawn from the pool,

• Publish the strategy into the pool and use the same strategy for the next 125-day trading.

2. If the normalised value is 1 and trader is using a strategy drawn from the pool,

• Do not publish the strategy into the pool but update the strategy’s score in the pool.

• Use the strategy for the next 125-day trading.

3. If the normalised value is less than 0.9, trader has two alternatives:

a- Replace the current strategy with a selected strategy from the pool, or

b- Discard the current strategy and select another set of indicators as inputs, build 10 new

models and use these models for the next 125-day trading.

4. If the normalised value is between 1 and 0.9, the trader has two alternatives,

• With 70% probabilities, the trader can use the same strategy for the next 125-day trading,

or

• With 30% probabilities, the trader can choose to use a new set of indicators.

Algorithm 2.10 Modified Social Learning (Kendal and Su 2007).

Three types of studies were carried out in (Kendal and Su 2004, 2007).

The first was about the adaptability and creativity of environmental variables,

Literature Review

61

in the imperfect environment, to the new traders. As initial settings, the first

10 indicators were introduced to the imperfect evolutionary market. The

remaining 10 indicators were inserted into the market at a frequency of two

indicators per every 125-day trading. During social learning, poor traders,

who opt to replace their models with a new indicator, will have a dual chance

to copy from both the central pool as well as the newly injected indicators to

the market. The results demonstrated that there has been poor performance

of the traders in dynamic environment variables in comparison to the traders

in (Kendal and Su 2003).

The second study was on individual learning. The purpose was to examine

the time needed by the traders to learn, by individual learning, and the

frequency at which social learning is should take place. It is worth mentioning

that there are two types of individual learning. Fast individual learning (every

5 trading days) and slow individual learning (every 25 trading days).

Similarly, there are two types of social learning. Fast and slow social learning,

every 125 and 250 trading days, respectively. Results obtained were mixed

with some experiments doing better when fast individual learning was used,

and others being superior when slow individual learning was employed.

Similar results were obtained in social learning. These findings conclude that

the nature of the problem is to decide on good parameter settings. Also, it is

likely that the dynamic individual and social learning would do better than

fixed learning frequencies.

Literature Review

62

The third study was on social learning. In this study, social learning was

investigated under different circumstances in the trading society. Four

different experimental settings were run. These were:

– Social learning was turned off (individual learning only);

– Individual and social learning were turned on (similar to the

experiment in Kendal and Su 2003);

– Individual and social learning were turned on, but the normalised

values were in the range between 1 and the mean value of 蜘3;

– Individual and social learning were turned on, but the normalised value

was between 0.9 and the mean value of 蜘.

In conclusion, the work in (Su 2005) indicated that the integrated

individual and social learning was of help in making successful trades in the

stock market. Moreover, it showed that social learning led to superior

traders.

2.8 N-TUPLE SYSTEMS

Work on optical character recognition, utilising n-tuples, can be dated back

to the late 1950‟s (Bledsoe and Browning 1959). N-tuples operate by

sampling n random points. If m is the number of possible values for each

sample point, we can define an n digit number in base m, and use it as an

index into a range of weights. N-tuples are in some ways similar to support

vector machines (SVM), and is also related to Kanerva‟s sparse distributed

memory model (Kanerva 1988). Figure 2.15 (Lucas 2008) shows an example

Literature Review

63

of a single 3-tuple, which is sampling 3 squares along an edge into the corner

for the game of Othello, where each square of the game‟s board has three

possible values (white=0, vacant=1, and black=3). In this case we will have

27 tuples (m=3, n=3).

Figure 2.15 The system architecture of the N-Tuple-based value

function, showing a single 3-tuple sampling at its

eight equivalent positions, equivalent under reflection

and rotation (Lucas 2008).

N-tuples indexing projects the low dimensional board into a high dimensional

sample space. There are several varieties of n-tuple systems. The first model

incorporates n-tuple systems into hardware, which is easy and effective given

that indexing can be carried out so naturally in hardware. In its simplest form

Literature Review

64

a memory configuration with a single-bit width (a binary n-tuple) is used.

Each memory location in a binary n-tuple records whether an address has

occurred during training or not. As all addresses will eventually occur,

excessive training can lead to poor performance, which is a distinct

disadvantage of such systems. For this reason, later n-tuple systems tended

to store continuous value weights, or probabilities. When trained on

supervised data, probabilistic n-tuple systems can be trained using single-

pass maximum likelihood techniques, where the probability of occurrence of

each address is estimated as the number of happenings during training

divided by the number of occurrences of all addresses in the n-tuple.

Although the basic idea of n-tuple systems is simple, obtaining good from

them in practice is often difficult and the design may have to be carefully

considered. There are many designs to draw inspiration from, including

continuous n-tuples used for face recognition (Lucas 1998), scanning n-

tuples for sequence recognition (Lucas and Amiri 1996), scanning n-tuple

grid for OCR (Lucas and Cho 2005) and the n-tuple classifier (Rohwer and

Morciniec 1998; Lucas 2003). Bit-plane decomposition methods have also

produced interesting results (Hoque et. al. 2002). More recently, a back-

propagation training rule based on optimising a cross-entropy measure was

introduced by (Lucas 2003). For excellent introductions to standard n-tuple

systems, please refer to (Ullman 1969; Rohwer and Morciniec 1996).

Lucas also introduced n-tuple systems as position value functions for the

game of Othello (Lucas 2008). The n-tuple architecture is evaluated for use

with temporal difference learning. Performance is compared with previously

Literature Review

65

developed weighted piece counters and multi-layer perceptrons. The n-tuple

system is able to defeat the best performing of these after just five hundred

games of self play learning. The conclusion is that n-tuple networks learn

faster and are superior to other, more conventional, approaches. The success

of applying n-tuple to the game of Othello inspired us to apply n-tuple to the

game of checkers.

2.9 TEMPORAL DIFFERENCE LEARNING

Temporal Difference Learning (TDL) method (Sutton 1988) has been used

to estimate the value of positions. This method can be defined as a

Reinforcement Learning method driven by the difference between two

consecutive state values aiming at adjusting former state values which

minimise the difference between two successive state values. The

multiplication of a learning parameter, , by the sum of the temporal

difference errors between two successive state values represents the change

in the value of the state. These temporal differences are weighed

exponentially according to the difference in time.

Sutton introduced TD (┡), which is used “to weight the influence of the

current evaluation function value for weight updates of previous moves”

(Sutton 1988). The ┡ term is decay-rate parameter. It determines the extent

to which learning is affected by subsequent states. A ┡ of zero indicates

learning only from the next state. A ┡ of one indicates learning only from the

final reinforcement signal; in the case of the game playing, the final results

(win, lose and draw).

Literature Review

66

In TDL the weights of the evaluation function are updated during game

play using a gradient-descent method. Let x be the board observed by a

player about to move, and similarly xt the board after the player has moved.

Then the evaluation function may be updated during play using the following

equation (Lucas and Runarsson 2006):-

 iii xxvxvxvww))(1)](()'([2 (2.11)

Where:

- 1
))(2exp(1

2
))(tanh()(

xf
xfxv is used to force the value function

v to be in the range -1 to 1.

- iw represents the weight to be updated.

-)(xf represents the state of the board.

If x‟ is a terminal state then the game has ended and the following update is

used:

iii xxvxvrww))(1)](([2 (2.12)

Where r corresponds to the final utilities: +1 if the winner is Black, −1 when

White, and 0 for a draw.

Temporal difference learning is a prediction-based method in which future

behaviour is calculated using past experiences with a partly known system

(Sutton 1988). Examples of temporal difference learning include Samuel‟s

checkers program (Samuel 1959), and works on Adaptive Heuristic Critic

(Barto et. al. 1983; Sutton 1984). An example of successful temporal

difference learning in games is (Tesauro 2002), where Tesauro produced a

strong backgammon program, TD-Gammon that is able to teach itself to play

backgammon solely by playing against itself and learning from the results,

starting from random initial play. Another example can be found in

Literature Review

67

(Runarsson and Lucas 2005), where temporal difference learning is used to

evaluate the position on small-board Go (5x5 board). It was compared to a

co-evolutionary approach. Temporal difference learning was shown to learn

faster than a co-evolutionary approach, yet the latter played at a higher level

than the temporal difference player. Lucas and Runarsson (2006) found that

temporal difference learning learns much faster than co-evolution in the

game of Othello, but that properly tuned co-evolution can learn better

playing strategies.

One last example of using temporal difference learning can be found in

(Burrow and Lucas 2009), where temporal difference learning was found to

perform more reliably (with a tabular function approximator) than an

evolutionary approach in Ms. Pac-Man.

2.10 SUMARRY

This chapter has provided an overview of various artificial intelligence

researches, which includes the basic algorithms that can be used in computer

games. Evolutionary computation algorithms have also been described in

addition to artificial neural networks. Many computer games were presented,

including a detailed description of the design of Blondie24. Individual and

social learning, n-tuple systems and temporal difference learning were also

presented as we utilise these methods to enhance evolutionary checkers

methodologies. The next chapter will describe the evolutionary checkers

preliminaries that will form the foundation for the rest of this thesis.

Evolutionary Checkers Preliminaries

68

Chapter Three

Evolutionary Checkers Preliminaries

3.1 INTRODUCTION

In this chapter a description of the implementation of an evolutionary

checkers player, C0, is presented as it will be used as a test bed for all the

proposed algorithmic developments in this research. The structure and

architecture of C0 is mainly based on those used to construct Blondie24. Two-

move ballot is also presented, together with the standard rating formula as

both will also be used to test the outcome of the methods that are used in

this research.

This Chapter is structured as follows: Section 3.2 describes the

implementation of C0, while section 3.3 describes the two-move ballot that is

used in the game of checkers. Section 3.4 describes the standard rating

formula, which is used to rate the checkers players. A summary of the

chapter is presented in section 3.5.

Evolutionary Checkers Preliminaries

69

3.2 C0

In order to investigate our proposed extensions and enhancements to an

evolutionary checkers system we firstly implemented an evolutionary

checkers program, which we will refer to as C0 throughout this thesis, in

order to provide a firm foundation for our research. Our implementation has

the same structure and architecture that Fogel utilised in Blondie24, with the

exception that the value of the King is fixed to 2. Intuitively, the King is more

valuable than an ordinary piece, and this is a well known, even to novice

players. So putting the value of the King as two (or any other value that is

greater than an ordinary piece value) will not be considered as knowledge

injection to the program. Algorithm 3.1 (Chellapilla and Fogel 1999, 2001) is

used to construct C0. It is worth mentioning that C0 used depth first search to

expand the search space to a four ply depth, while a ply depth of six is used

in all algorithms comparisons.

1- Initialise a random population of 30 neural networks (strategies) Pi, i=1,…,30, sampled uniformly [-
0.2,0.2] for the weights and biases.

2- Each strategy has an associated self-adaptive parameter vector si, i=1,…,30 initialised to 0.05.

3- Each neural network plays (as red) against five other neural networks selected randomly from the
population.

4- For each game, each competing player receives a score of +1 for a win, 0 for draw and -2 for a loss.

5- Games are played until either one side wins, or until one hundred moves are made by both sides, in
which case a draw was declared.

6- After completing all games, the 15 strategies that have the highest scores are selected as parents and
retained for the next generation. Those parents are then mutated to create another 15 offspring using
the following equations:

si(j) = si(j)exp(tNj (0,1)), j = 1, ..., Nw (3.1)
wi(j) = wi(j) + si(j)Nj(0,1), j = 1, ..., Nw (3.2)

where Nw is the number of weights and biases in the neural network (here this is 5046),

wN
t

2

1
 = 0.0839, and Nj(0,1) is a standard Gaussian random variable resembled for

Evolutionary Checkers Preliminaries

70

every j.

7- Repeat steps 3 to 6 for 840 generations (this number was an arbitrary choice in the implementation
of Blondie24).

Algorithm 3.1 C0 adapted from (Chellapilla and Fogel 1999, 2001).

We run the above algorithm for about 19 days (Fogel required about six

months, but technology has moved on in the past ten years). All our

experiments were run on the same computer (1.86 GHz Intel core2

processor and 2 GB Ram). For comparison, Fogel used a 400-MHz Pentium II

processor.

3.3 TWO-MOVE BALLOT IN CHECKERS

When the world‟s best players play the game of checkers, it often ends in

a draw. To overcome this, and make the games more competitive, the Two-

Move Ballot is used.

This was introduced in the 1870s (see Schaeffer 2009). The first two

moves (each side‟s first move) are randomly chosen. There are 49

possibilities to play in this way, but research showed that six possibilities

should be excluded, either because they were certain losses for one side, or

because they were, at least, regarded as excessively unbalanced. Figure 3.1

shows all the positions for a checkers board, while table 3.1 shows all the 49

possibilities, where the six excluded ones are highlighted in Bold.

Evolutionary Checkers Preliminaries

71

Figure 3.1 Checkers board with Black moves first.

No. Two-move Ballot Possibility
1 21-17, 9-13
2 21-17, 9-14
3 21-17, 10-14
4 21-17, 10-15
5 21-17, 11-15
6 21-17, 11-16
7 21-17, 12-16
8 22-17, 9-13
9 22-17, 9-14
10 22-17, 10-14
11 22-17, 10-15
12 22-17, 11-15
13 22-17, 11-16
14 22-17, 12-16
15 22-18, 9-13
16 22-18, 9-14
17 22-18, 10-14
18 22-18, 10-15
19 22-18, 11-15
20 22-18, 11-16
21 22-18, 12-16
22 23-18, 9-13
23 23-18, 9-14
24 23-18, 10-14

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

Evolutionary Checkers Preliminaries

72

25 23-18, 10-15
26 23-18, 11-15
27 23-18, 11-16
28 23-18, 12-16
29 23-19, 9-13
30 23-19, 9-14
31 23-19, 10-14
32 23-19, 10-15
33 23-19, 11-15
34 23-19, 11-16
35 23-19, 12-16
36 24-19, 9-13
37 24-19, 9-14
38 24-19, 10-14
39 24-19, 10-15
40 24-19, 11-15
41 24-19, 11-16
42 24-19, 12-16
43 24-20, 9-13
44 24-20, 9-14
45 24-20, 10-14
46 24-20, 10-15
47 24-20, 11-15
48 24-20, 11-16
49 24-20, 12-16

Table 3.1 The 49 possible two-move ballot openings.

Therefore, only 43, of the 49 available moves are considered. At the start

of the game a card is randomly chosen indicating which of the 43 moves is to

be played. The original game, with no forced opening moves, is called go-as-

you-please (GAYP).

In order to make sure that the C0 is not a „fluke‟ of optimisation, we

decided to construct ten players, comparing them using the idea of two move

ballot and test if they are statistically the same by using student t-test

(assuming unequal variances, g = 0.05, and one-tail test) for the total

number of wins and losses. The null hypothesis is that two players are the

Evolutionary Checkers Preliminaries

73

same if the P value obtained from the t-test is greater than alpha. Table 3.2

shows the results.

 C0(1) C0(2) C0(3) C0(4) C0(5) C0(6) C0(7) C0(8) C0(9) C0(10) ぇ
Wins

ぇ
Loses

C0(1) - 22 25 20 19 17 23 24 22 20 192 200
C0(2) 20 - 20 22 24 21 20 21 23 24 195 187
C0(3) 21 19 - 20 21 19 18 23 21 22 184 192
C0(4) 25 23 18 - 20 24 20 24 18 19 191 187
C0(5) 24 20 23 19 - 18 20 22 22 21 189 188
C0(6) 21 24 22 23 20 - 22 20 23 22 197 184
C0(7) 24 18 20 21 21 19 - 19 18 20 180 180
C0(8) 25 17 19 24 20 20 17 - 22 23 187 198
C0(9) 21 22 21 18 22 24 20 24 - 22 194 193

C0(10) 19 22 24 20 21 22 20 21 24 - 193 193

Table 3.2 Number of wins and losses (for the row player)

out of 774 games.

Based on Table 3.1, there is no statistical difference between the players

as the P value (P-value=0.5) for the one tail t-test is greater than alpha. So

as all the players are statistically the same we decided to choose the player

with the most number of wins to be our baseline player, C0.

3.4 STANDARD RATING FORMULA

Checkers players are rated according to a standard system (following the

tradition of the United States Chess Federation) where the initial rating for a

player is R0 = 1600 and the player‟s score is adjusted based on the outcome

of a match and the rating of the opponent (Chellapilla and Fogel 2001):

Rnew = Rold + C(Outcome – W) (3.3)

Where

-)101(1)400/)((RoldRoppW

- Outcome value is 1 for Win, 0.5 for Draw, or 0 for Loss.

- Ropp is the opponent‟s rating.

Evolutionary Checkers Preliminaries

74

- C = 32 for ratings less than 2100, C = 24 for ratings between 2100

and 2399, and C = 16 for ratings at or above 2400.

- Rnew is the computed new rating based on an old rating of Rold.

It is clear that a player rating increases when a win occurs and decreases

when a loss occurs, but the amount of increase or decrease depends on how

big the difference between the rating of the player and its opponent‟s rating.

It is also worth noting that constant factor C will be lower as the rating of the

player increases, making it more difficult to gain or lose points. Standard

designations for the level of play are shown in Table 3.3 (Chellapilla and

Fogel 2001). While Table 3.4 shows some examples of using equation (3.3).

For the purpose of providing some form of statistical test, we will use 5000

different orderings for the 86 (each player plays 43 games as red and 43

games as white) games and then compute the mean and the standard

deviation for the standard rating formulas. We say that a player is

statistically better than his opponent if his mean value of the standard rating

formula puts him in a level that is higher than his opponent. The

determination of the player level is according to table 3.3. We note that the

purpose of this paper is to compare the performance of the two players and

not to measure their actual ratings, which could only realistically be done by

playing against a number of different players.

Evolutionary Checkers Preliminaries

75

Class Rating
Senior Master 2400+

Master 2200-2399
Expert 2000-2199
Class A 1800-1999
Class B 1600-1799
Class C 1400-1599
Class D 1200-1399
Class E 1000-1199
Class F 800-999
Class G 600-799
Class H 400-599
Class I 200-399
Class J below 200

Table 3.3 The relevant categories of player indicated by the

corresponding range of rating score (Chellapilla and

Fogel 2001).

Table 3.4 Examples of Standard Rating Formula.

Analysing table 3.4, it is clear that the difference between the ratings for

the players will proportionally affect the final rating for them. For example,

suppose you have a player rated at 1200 (Class D) playing against a better

opponent rated at 2000 (Expert). If the opponent wins then his rating will

climb by less than a point and the rating for the player will decrease by the

same amount, while if the player wins, his rating will increase by almost 32

points and the opponent rating will decrease by the same amount.

Rold Ropp W Rnew (win) Rnew (draw) Rnew (lose)
1600 1600 0.5 1616 1600 1584
1600 1365 0.79 1606.57 1590.57 1574.57
1930 1600 0.87 1957.84 1918.16 1902.16
1750 2200 0.07 1779.77 1763.77 1747.77
2000 1400 0.97 2000.98 1984.98 1968.98
2100 2100 0.5 2112 2100 2088
1200 2000 0.01 1231.68 1215.68 1199.68

Evolutionary Checkers Preliminaries

76

The Rating System is designed to make a smaller adjustment to a player

rating once he reaches 2100 points and even smaller adjustment once

reaching 2400 points. It gets very difficult to reach extremely high ratings as

the player always needs to play and defeat the best players. For the highly

rated players, there is no point playing against weaker players as an easy win

wouldn‟t earn the master even one full rating point.

3.5 SUMMARY

This chapter has provided details of the implementation of C0, which will be

used as a test bed for the proposed methods that are used in subsequent

chapters. The C0 implementation was based on the same architecture and

structure that was used for Blondie24. This chapter has also provided a

description of the two moves ballot method and the standard rating formula

that will be used in this thesis in order to compare the various enhancements

that we propose. The introduction of a round robin tournament into an

evolutionary checkers program is the first such enhancement and it will be

presented in the next chapter.

Introducing a Round Robin Tournament into Evolutionary Checkers

77

Chapter Four

Introducing a Round Robin Tournament into

Evolutionary Checkers

4.1 INTRODUCTION

In chapter three many preliminaries that will be used in the subsequent

chapters in this thesis were presented. This chapter investigates the effects

of introducing a round robin tournament into an evolutionary computer

checkers system. Artificial neural networks, evolved via an evolution

strategy, are utilised to evolve game playing strategies for the game of

checkers by introducing a league structure into the learning phase of a

system based on Blondie24. We believe that this will help eliminate some of

the randomness in the evolution. Thirty feed forward neural network players

are played against each other, using a round robin tournament structure, for

140 generations and the best player obtained is tested against an

implementation of evolutionary checkers program (C0). The best player will

be tested against an online program, as well as two other strong programs.

This chapter has been structured as follows; Section 4.2 describes the

experimental setup by showing the proposed algorithm in detail together with

Introducing a Round Robin Tournament into Evolutionary Checkers

78

a justification for the parameters choices. In section 4.3 the results for our

experiments are presented, together with a discussion for those results.

Finally, a summary for this chapter is presented in section 4.4. This chapter

has been disseminated via the following publication: Al-Khateeb and Kendall

(2009).

4.2 EXPERIMENTAL SETUP

In order to eliminate the randomness in the evolutionary phase of C0 and

hence produce a better player, a league competition between all the 30

neural networks is suggested, by making all the neural networks play against

each other. This means that all networks would play, as a red player, against

the other 29 players instead of only playing against five randomly chosen

players, which was the case in Fogel‟s seminal work and our

reimplementation, C0. The total number of matches per generation in this

model will be 870 (30 X 29) rather than 150 (30 X 5), as in the

implementation of C0. This increase in the number of matches will decrease

the number of generations (140 verses 840) that can be played in the same

amount of time, in order to provide a meaningful comparison against the

original work, as C0 has a total of 126,000 games (30 X 5 X 840) so

Blondie24-RR (a player obtained as a result of applying the proposed

algorithm) needs 140 generations to play a similar (actually slightly less)

number of games (29 X 30 X 140=121,800).

Introducing a Round Robin Tournament into Evolutionary Checkers

79

The only difference with algorithm 3.1 are in steps 3 and 7 (see algorithm

4.1), where every network competes against every other for 140

generations. We refer to this player as Blondie24-RR.

1- Initialise a random population of 30 neural networks (strategies), Pi=1,…,30, sampled uniformly [-
0.2,0.2] for the weights and biases.

2- Each strategy has an associated self-adaptive parameter vector, si=1,…,30 initialised to 0.05.

3- Use a round robin tournament to play each neural network (as red) against every other
neural network.

4- For each game, each competing player receives a score of +1 for a win, 0 for draw and -2 for a
loss.

5- Games are played until either one side won, or until one hundred moves have been made by both
sides, in which case a draw was declared.

6- After completing all games, the 15 strategies that have the highest scores are selected as parents
and retained for the next generation. Those parents are then mutated to create another 15 offspring
using equations (3.1) and (3.2).

7- Repeat steps 3 to 6 for 140 generations.

Algorithm 4.1 Blondie24-RR.

It is worth mentioning that Blondie24-RR is a result of a single optimisation

run, therefore there is a chance that Blondie24-RR is a „fluke‟. In order to

make sure that this might not the case, we decided to play the top five

players of the last generation of the EA for Blondie24-RR using the idea of

the two-move ballot and using student t-test (assuming unequal variances, g

= 0.05, and one-tail test) to see if the players are the same or not. Table 4.1

shows the results.

Introducing a Round Robin Tournament into Evolutionary Checkers

80

 P1 P2 P3 P4 P5 ぇ Wins ぇ Loses

P1 - 24 20 25 19 88 77

P2 20 - 21 24 20 85 88

P3 18 21 - 22 23 84 85

P4 19 23 23 - 18 83 91

P5 20 20 21 20 - 81 80

Table 4.1 Number of wins and losses (for the row player) out of 344

games.

Based on Table 4.1, there is no statistical difference between the players

as the P value (P-value=0.5) for the one tail t-test, for the total number of

wins and losses, is greater than alpha. So one can conclude that the results

in table 4.1 are of comparable performance. This provides some indication

about trusting the single optimiser for Blondie24-RR.

4.3 RESULTS

To guage the effect of introducing a round robin tournament we play C0

against Blondie24-RR. Bearing in mind the fact that both players are end

products, a win result for our modified player should be seen as a success.

Also we play several matches against an online program, which can be found

at http://www.darkfish.com/checkers/checkers.html, in addition to playing

against two strong checkers programs (their implementation details are not

available in the freeware versions). The first one called WinCheck3D, which

was created in 2001 by Jean-Bernard Alemanni using the C++ programming

language. WinCheck3D is considered as one of the strongest computer

checkers programs that can play at a master level. The details for

http://www.darkfish.com/checkers/checkers.html

Introducing a Round Robin Tournament into Evolutionary Checkers

81

WinCheck3D can be found at http://pagesperso-orange.fr/alemanni/. The

second program called SXcheckers, which is produced by 504 software

studio, is a strong checkers program with a strong AI component.

SXcheckers can play at a human master level and has managed draw against

WinCheck3D. The details for SXcheckers can be found at

http://www.cs.504.com/checkers. The following subsections show the

results.

4.3.1 Results When Playing Blondie24-RR Against C0

In order to test the outcome of the proposed method, Blondie24-RR was

set to play two matches (as red and as white) against C0, Table 4.2 shows

the results. It is worth mentioning that both players are biased (playing

stronger games) towards playing as red.

Table 4.2 Blondie24-RR Against C0.

Analysing the results in table 4.2, Blondie24-RR (after 140 generations)

played two matches (one as red and one as white) against C0. Blondie24-RR

won as red (starts first) against C0, the result was a draw when Blondie24-RR

moves second. This clearly reflects a success for our hypothesis based on the

 C0 (red) C0 (white)

Blondie24-RR (red) - Win

Blondie24-RR (white) Draw -

http://www.cs.504.com/checkers

Introducing a Round Robin Tournament into Evolutionary Checkers

82

fact that both players are end products. It should be noted that both players

will always play with the same strategy due to their deterministic nature.

4.3.2 Results When Playing Blondie24-RR Against Online Program

In order to test the outcome of the proposed method, C0 and Blondie24-

RR played two matches (as red and as white) against an online checkers

program. Table 4.3 shows the results. It is worth mentioning that C0 and

Blondie24-RR are biased (playing stronger games) towards playing as red.

Table 4.3 C0 and Blondie24-RR Against an Online Checkers Program.

The results in table 4.3 show that C0 won as red (with a four piece

advantage) and as white (with a two piece advantage) against this online

program. The results in table 4.3 also show that Blondie24-RR won as red

 Online (red) Online (white)

C0 (red) - Win (with four piece difference)

C0 (white) Win (with two piece

difference)

-

Blondie24-RR (red) - Win (with seven piece difference)

Blondie24-RR (white) Win (with four piece

difference)

-

Introducing a Round Robin Tournament into Evolutionary Checkers

83

(with a seven piece advantage) and as white (with a four piece advantage)

against this online program. This reflects another success for our hypothesis

as it is clear that Blondie24-RR performed better than C0, with the piece

advantage that each player gained supporting the conclusion.

4.3.3 Results When Playing Blondie24-RR Against WinCheck3D

Table 4.4 shows the results of playing C0 and Blondie24-RR against

WinCheck3D. In this case C0 and Blondie24-RR were set to play two matches

(as red and as white) against WinCheck3D.

Table 4.4 C0 and Blondie24-RR Against WinCheck3D.

 WinCheck3D (red) WinCheck3D (white)

C0 (red) - Lose (with seven piece

difference)

C0 (white) Lose (with eight piece

difference)

-

 Blondie24-RR (red) - Lose (with two piece difference)

Blondie24-RR (white) Lose (with four piece

difference)

-

Introducing a Round Robin Tournament into Evolutionary Checkers

84

The results in table 4.4 show that C0 lost as red (with a seven piece

difference) and as white (with an eight piece difference), while the results in

table 4.4 also show that Blondie24-RR lost as red (with a two piece

difference) and as white (with a four piece difference) against WinCheck3D.

Several matches were played with WinCheck3D in order to investigate

whether it is deterministic or not. The results were the same, indicating that

the player always responds with the same moves. These results show that

Blondie24-RR is performing better than C0. Losing by two checkers is still a

loss, but in this experiment we want to compare the performance of

Blondie24-RR with C0 and not with those computer programs, bearing in

mind that all of them are end products.

4.3.4 Results When Playing Blondie24-RR Against SXcheckers

In order to further test the outcome of the proposed method, C0 and

Blondie24-RR were set to play two matches (as red and as white) against

SXcheckers. Table 4.5 shows the results. It is worth mentioning that C0 and

Blondie24-RR are biased (playing stronger games) towards playing as red.

Introducing a Round Robin Tournament into Evolutionary Checkers

85

Table 4.5 C0 and Blondie24-RR Against SXcheckers.

The results in table 4.5 show that C0 lost as red (with an eight piece

difference) and as white (with an eight piece difference). The results in table

4.5 also show that Blondie24-RR lost as red (with a four piece difference) and

as white (with a five piece difference) against SXcheckers. Several matches

were played with SXcheckers in order to investigate whether it is

deterministic or not. The results were the same, indicating that the player

always respond with the same moves. These results show that Blondie24-RR

is performing better than C0. Losing by four checkers is still a loss, but in this

experiment we want to compare the performance of Blondie24-RR with C0

and not with those computer programs, bearing in mind that all of them are

end products.

 SXcheckers (red) SXcheckers (white)

C0 (red) - Lose (with eight piece

difference)

C0 (white) Lose (with eight piece

difference)

-

 Blondie24-RR (red) - Lose (with four piece

difference)

Blondie24-RR (white) Lose (with five piece

difference)

-

Introducing a Round Robin Tournament into Evolutionary Checkers

86

4.3.5 Results When Playing Blondie24-RR Against C0 Using Two-Move

Ballot.

When playing only two games between the players there is a possibility

that we could just have well have found an unlucky flaw in one player, or the

other. In order to avoid this we decided to compare the performance of

Blondie24-RR over C0 by using Two-Move Ballot. The results are shown in

table 4.6 and figure 4.1.

Table 4.6 Blondie24-RR Against C0 using the Two-Move Ballot.

Figure 4.1 Results when Playing Blondie24-RR against C0 using the

Two-Move Ballot.

 Opponent: C0

Win Draw Lose

Blondie24-RR 47 26 13

Introducing a Round Robin Tournament into Evolutionary Checkers

87

The results in table 4.6 show that Blondie-RR achieved 47 wins (from 86

games) over C0, while C0 only achieved 13 wins. There were 26 draws. It is

clear that Blondie24-RR is superior to C0. Table 4.7 shows the mean and the

standard deviation of the players‟ ratings after 5000 different orderings for

the 86 played games.

Table 4.7 Standard rating formula for Blondie24-RR and C0 after 5000

orderings.

The results in table 4.7, obtained using 5000 different orderings for the 86

games (obtained using the two-move ballot) show that Blondie24-RR is

better (using our definition given earlier with respect to players having a

different rating class) than C0, as the average ratings put Blondie24-RR in

class D (rating = 1251) and put C0 in Class E (rating = 1102). It is worth

mentioning that these are not the actual ratings for the players, as the

purpose here is to compare the performance of Blondie24-RR against C0. By

using the student t-test (assuming unequal variances, g = 0.05, and one-tail

test), the results show that Blondie24-RR and C0 are statistically different as

the P value (P-value=0) for the one tail t-test is less than alpha.

Based on all results above, it would seem appropriate to use the league

structure, instead of only choosing five random opponents to play against

during the evolutionary phase.

4.4 SUMMARY

In this chapter evolutionary neural networks, evolved via an evolution

strategy, are utilised to evolve game playing strategies for the game of

 Mean SD Class
Blondie24-RR 1251.67 25.76 D

C0 1102.89 25.06 E

Introducing a Round Robin Tournament into Evolutionary Checkers

88

checkers by introducing a league structure into the learning phase of a

system based on Blondie24. We believe that this helps eliminate some of the

randomness in the evolution. Thirty feed forward neural network players are

played against each other, using a round robin tournament structure, for 140

generations and the best player obtained is tested against C0 (the

evolutionary checkers program based on Blondie24). We also tested the best

player against an online program, and Blondie24-RR was able to beat this

program. Also we tested Blondie24-RR against two strong programs

(WinCheck3D and SXcheckers). The results obtained are promising, although

resulting in losses. The results showed that Blondie24-RR is better than C0 by

using two-move ballot and standard rating formula to test the outcome.

Blondie24-RR was able to beat C0 when all the pieces are in their original

positions (i.e. without the two-move ballot).

Recent work for the superiority and progress in coevolution (Miconi 2009)

showed that playing against a small number of opponents gives good results

as long as it is the same set of individuals tested against all members of the

population. This might/might not be the case for checkers, so further work

need to be done to see if this is the case or not.

Now that we have shown that enhancements are possible to the

evolutionary checkers, based on the Blondie24 framework, our future work

will investigate if other changes are possible. We will investigate using

individual and social learning methods and n-tuple systems in the next two

chapters in order to further enhance the ability of C0 and Blondie24-RR.

Introducing Individual and Social Learning into Evolutionary Checkers

89

Chapter Five

Introducing Individual and Social Learning into

Evolutionary Checkers

5.1 INTRODUCTION

Chapter Four investigated the effects of introducing a round robin

tournament into an evolutionary computer checkers and eliminate some of

the randomness in the evolution of an evolutionary checkers program based

on the architecture of Blondie24. The motivation of the work in this chapter is

inspired by the success of Blondie24 but we hypothesise that the introduction

of an individual and social learning mechanism will evolve a superior player.

The resulting player will be tested against C0 and Blondie24-RR.

This chapter will also investigate including round robin into the individual

and social learning algorithm. This is done by playing the resulting player

against C0, Blondie24-RR and against the player that will be obtained from

introducing individual and social learning into evolutionary checkers.

This chapter has been structured as follows; Section 5.2 describes the

individual and social learning mechanism. The experimental setup is

described in section 5.3. In section 5.4 results are presented. Section 5.5

Introducing Individual and Social Learning into Evolutionary Checkers

90

shows the result of introducing round robin into the individual and social

learning algorithm, along with a discussion on those results. Finally a

summary for this chapter is presented in section 5.6. This chapter has been

disseminated via the following publication: Al-Khateeb and Kendall (2011a).

5.2 INDIVIDUAL AND SOCIAL LEARNING

Humans, when developing strategies to defeat other humans, use a

variety of techniques. For example, humans can improve their strategy by

themselves or through learning from the experience of competing with other

humans. Developing their own strategies based on a copy of a better player

model is another technique utilised by humans.

In other words, humans can learn through individual and social learning.

According to (Simon 1997), "learning from others" is called social learning. In

general, social learning can be defined as learning indirectly from the

experiences of others (as opposed to one's own experiences). In competitive

learning (Rosin and Belew 1997), in order to survive to the next generation,

all the players will play against each other. The sources of inspiration for our

work can be found in (Kendall and Su 2003, 2007), (Chen 2004), (Yamamoto

2005) and (Chen and Yeh 2001), where a simulated stock market used co-

evolving neural networks (evolved through a process of individual and social

learning) was used. Agent-based computational economics is by far the most

common use of social learning research (Kendall and Su 2003) and (Vriend

2000). In individual learning, the agents learn solely from their own

Introducing Individual and Social Learning into Evolutionary Checkers

91

experience while in social learning, it is the other agents‟ experience that

form the source of learning for the agents (Vriend 2000).

In this work, individual and social learning are utilised in two stages. The

player will accumulate experience and undertake individual learning by

playing against five other players. After a certain time has elapsed we enter a

social learning phase when players are able to learn from each other.

To further expand on the concept of individual and social learning, in an

automated game playing context, individual learning is defined as a player

which learns and generates a strategy by himself from the cumulative

experience gained through playing against other players. The player neither

opts to copy another strategy from other players nor replaces its own

strategy with a new strategy. This is in contrast to the idea of social learning

where the player is given the chance to copy or generate a new strategy to

replace its current one. That is, the player has the option to evolve its own

strategy through individual learning. However; if the strategy is not good

enough, it has the option of either copying a better strategy from a pool of

accumulated good strategies or creating a new random strategy.

Best strategies from the population are retained in a social pool. This pool

is made available to those players which are not performing well. In this

respect it closely resembles hall of fame (Rosin and Belew 1997), where the

progress of learning is tested against a panel of all the best evolved players

at every generation. There are two reasons to save the best players at every

generation. Firstly is to contribute genetic material to future generations.

Secondly is for the purpose of testing. Hall of fame has been applied to many

Introducing Individual and Social Learning into Evolutionary Checkers

92

games such as Nim and 3-D Tic-Tac-Toe and has been shown to be

successful (Rosin and Belew 1997).

In social learning the player has the opportunity to replace their existing

strategy with another one selected from the social pool in the hope that the

selected strategy is better than their current one. All strategies in the social

pool have their own score, updated over time. Algorithm 5.1 shows the

activities in social learning.

1. Rank the players in descending order.

2. Copy the best player or players (if more than one) to the social pool.

3. For the rest of the players, there are two possibilities,

(a) If the player is satisfied with his current strategy (based on their current score), retain

that strategy,

(b) If the player is not satisfied with their current strategy, three alternatives are available,

i. Copy a strategy from the pool;

ii. Create a new random strategy;

iii. Retain their current strategy.

Algorithm 5.1 Social Learning Activities.

When considering social learning, it is interesting to compare it with the

island model in evolutionary computation. In an island model, each individual

in a sub-population evolves independently (Spieth et. al. 2004). Moreover,

the best player from a sub-population can migrate to another sub-population,

if and only if it is the better strategy. However, there is no creation of a new

strategy in the sub-population. In social learning, as mentioned above, the

individual players have the opportunity to copy a better strategy, retain their

current strategy or generate a new random strategy.

Introducing Individual and Social Learning into Evolutionary Checkers

93

The individual and social learning mechanism that we utilise is also

different to Case-Injected Genetic Algorithm (CIGAR) (Louis and Miles 2005)

and (Miles et. al. 2004) that combines genetic algorithms with case-based

reasoning to play a computer strategy game. CIGAR works by injecting the

best strategies (players) obtained from past games into the future population

of a genetic algorithm in order to try and produce better players. This can be

done along with a suitable representation. Results demonstrate that case

injection can produce superior players.

Cultural algorithms are also different to individual and social learning

mechanisms since cultural algorithms (Reynolds 1979, 1994) are models of

evolutionary learning that are set to emulate cultural evolutionary processes.

Two levels of evolution constitute a cultural algorithm, namely, the

microevolution in a population space and the macroevolution in a belief

space. Utilising an acceptance function, the experiences of individuals in the

population space are employed to create problem solving knowledge which is

then stored in the belief space. The knowledge is manipulated by the belief

space and this subsequently guides the evolution of the population space

through an influence function. A fraud detection system was designed by

(Sternberg and Reynolds 1997) who used a cultural algorithm-based

evolutionary learning approach to learn about the behaviour of a commercial

rule-based system for detecting fraud. The acquired knowledge in the belief

space of the cultural algorithm is then used to re-engineer the fraud

detection system. Another application of cultural algorithms is in modelling

the evolution of complex social systems (Reynolds et. al. 2003, 2005).

Furthermore, the application of cultural algorithms for function optimization

Introducing Individual and Social Learning into Evolutionary Checkers

94

problems in dynamic environments has been described by (Reynolds and

Saleem 2001, 2004) and (Reynolds and Peng 2004). In their experiments,

the dynamic environment is modelled as a two-dimensional plane on which

four cones of varying heights and slopes are haphazardly positioned. At

certain generations, the four cones change their locations on the plane hence

the location of the optimum solution is constantly changing. When applied to

the problem of finding the new optima in dynamic environments, (Reynolds

and Saleem 2001) demonstrated that the cultural algorithm is superior

compared to an evolutionary algorithm with only a single-level evolution.

(Reynolds and Peng 2004) discuss how the learning of knowledge in the

belief space warrants the adaptability of cultural algorithms. (Reynolds and

Saleem 2004) further examine the contributions of various types of

knowledge from the belief space in piloting the quest for the best solutions in

both deceptive and non-deceptive environments.

5.3 EXPERIMENTAL SETUP

Our hypothesis is that the introduction of social learning into an

evolutionary checkers system will provide a richer environment for learning.

The players outside the social pool are called individual players, all of which

attempt to develop their own strategy. At certain times, the best players are

drawn from the social pool to replace poorly performing individual players.

In our experiments, we have made some modifications to the algorithm

described in (Kendall and Su 2007) in order to investigate how to increase

Introducing Individual and Social Learning into Evolutionary Checkers

95

the number of players in the social pool, thus, producing a larger number of

strategies that can be copied by individual players.

We propose two phases. The first will use individual learning, with the best

players being copied to the social pool after every M generations. In the

second phase social learning occurs every N generations. In comparison to

(Kendall and Su 2007), we copy strategies to the social pool more often

(they called a social learning phase at every generation for 30 generations).

It is worth mentioning that there is no maximum size fir the social pool, as

setting maximum pool size can limit the number of players to be copied into.

In fact a decision for the number of generations to be considered for the

individual phase and the learning phase was taken after checking many

values and the experiments showed that M=5 and N=10 were suitable.

Algorithm 5.2 represents our experimental setup.

1- Initialise a random population of 30 neural networks (players) sampled uniformly [-0.2,0.2] for the
weights.

2- Each player has its associated self-adaptive parameter, initialised to 0.05.

3- Initialise M (frequency of individual learning) and N (frequency of social learning).

4- For each player in the current population, randomly chose five players to play against.

5- For each game, the player receives a score of +1 for a win, 0 for draw and -2 for a loss.

6- Games are played until either side wins, or until one hundred moves are made by both sides, in
which case a draw is declared.

7- If the generation number is exactly divisible by M and not by N then

- Select the best player(s) with the highest score (if two or more players have equal scores, we
will select all those players) and copy them to the social pool.

- Select the best 15 players and mutate them to get 15 offspring using equations (3.1) and (3.2).

8- If the generation number is exactly divisible by N then for all players, i, do:
- Normalize the individual scores (values between 0 and 1) for all the players using the

following equation:

Introducing Individual and Social Learning into Evolutionary Checkers

96

)ax(

)(
V

i
i

 - MinM

MinX
 (5.1)

where Vi is the normalized value for player i, Min and Max is the lowest and highest score in
the current population among all players, Xi is the score of player i before being normalized.

- If the normalised value is 1 and the player is not using a strategy drawn from the pool, then
publish the strategy into the pool.

- If the normalised value is 1 and the player is using a strategy drawn from the pool then do not
publish the strategy into the pool but update the strategy’s score in the pool.

- For the rest of the players, there are two cases:-

1. If the normalised value is between 1 and 0.9, then the player is satisfied with his current
strategy and retains it.

2. If the normalised value is less than 0.9, then the player is not satisfied with his current
strategy. The player has three options:-

a- With 1/3 probability, replace the current strategy by copying a new strategy from the
pool. Roulette wheel selection is used to select the new strategy from the pool.

b- With 1/3 probability, replace the current strategy by creating a new random strategy.

c- With 1/3 probability, retain the current strategy.

9- If the generation number is not exactly divisible by M or N then

- Select the 15 best players and mutate them to get 15 offspring using equations (3.1) and (3.2).

10- Repeat steps 4-9 for K generations or for specified time.

Algorithm 5.2 Individual and Social Learning.

Two experiments were carried out. The first determined the best values for

the number of generations to determine where the individual (M) and social

(N) phases occur. This experiment was also used to see the effects of

increasing the number of players in the social pool. Different values for (M,N)

were chosen, these being (100,200), (50,100), (20,50), (10,20) and (5,10),

the players representing them were called:

1- C200 a player when M=100 and N=200.

2- C100 a player when M=50 and N=100.

3- C50 a player when M=20 and N=50.

Introducing Individual and Social Learning into Evolutionary Checkers

97

4- C20 a player when M=10 and N=20.

5- C10 a player when M=5 and N=10.

In order to provide an additional comparison we also used a baseline

player, C1 (M=5, N=10), which took just the best player, line 7 in the

algorithm, choosing randomly if there are more than one, and retained only

this player in the social pool.

The second experiment uses the best player from the above experiments

to investigate the effects of introducing individual and social learning for

evolutionary checkers.

In order to provide a fair comparison, we run the above algorithms for 840

generations (126,000 games) that was required to produce C0. All our

experiments were run on the same computer (1.86 GHz Intel core2

processor and 2GB Ram).

Algorithm 5.2 presents three options for the player who is not satisfied

with his current strategy. All of those options have an equal probability to

occur, so there is no guarantee about which one of them makes the

difference. Therefore table 5.1 shows a copy of the social pool after 160

generations to illustrate how the players learn from each others.

Introducing Individual and Social Learning into Evolutionary Checkers

98

Table 5.1 Example of the Social Pool.

Table 5.1 clearly shows that individual and social learning provides learning

to the evolved checkers program as many players in the social pool has been

reused for at least one time. Another thing to notice is that the recent social

pool players have a higher probability of being selected for copying by the

individual players with a poor strategy.

5.4 RESULTS

To measure the effect of introducing individual and social learning into an

evolutionary checkers system, a league structure between C1, C200, C100, C50,

C20 and C10 was held, in order to determine the best values for M and N. Each

player was set to play against all other players by using the two-move ballot.

We play all of the 43 possible games, both as red and white, giving a total of

86 games. The games were played until either one side wins or a draw is

declared after 100 moves for each player. The total number of games to be

played is 430. Table 5.2 shows the results.

Player Generation Pool Score Reused
1 100 734.22 0
2 110 734.22 1
3 120 734.22 1
4 130 1468.43 2
5 130 2202.65 4
6 140 2936.86 7
7 150 2936.86 5
8 160 3671.08 6
9 160 4405.29 7
10 160 4405.29 8

Introducing Individual and Social Learning into Evolutionary Checkers

99

Table 5.2 Number of wins (for the row player) out of 430 games.

It is worth mentioning that although each player is the result of a single

run, the trends in performance are consistent. For example the wins vs. C1,

C200, C100, C50, C20 and C10 are all increasing. i.e. although there is uncertainty

in how representative each player is of the approach used to create it, the

trends do suggest that the learning strategy used is more significant.

Based on the results in table 5.2, C10 received most wins, providing

evidence that M=5, N=10 are the best values to use in the individual and

social learning experiment. Also to support this conclusion, and to see the

effects of introducing the individual and social learning to the game of

checkers, we decided to play each player against C0 and against Blondie24-

RR, which is a result of our previous work to enhance Blondie24 obtained by

introducing a round robin tournament into C0 (see chapter four) by using

two-move ballot. We play all of the 43 possible games, both as red and

white, giving a total of 86 games. The games were played until either one

side wins or a draw is declared after 100 moves for each player. The detailed

results for each player {C1, C200, C100, C50, C20, C10} against both C0 and

Blondie24-RR are in tables 5.3 and 5.4 and in figures 5.1 and 5.2.

 C1 C200 C100 C50 C20 C10 ぇ wins
C1 - 22 14 12 10 8 66

C200 35 - 29 22 16 10 112

C100 39 25 - 21 17 12 114

C50 40 37 26 - 21 18 142

C20 47 41 32 27 - 15 162

C10 59 55 49 41 34 - 238

Introducing Individual and Social Learning into Evolutionary Checkers

100

Table 5.3 Results when Playing C1, C200, C100, C50, C20 and C10 against

C0 using the Two-Move Ballot.

Figure 5.1 C1, C200, C100, C50, C20 and C10 against C0.

Table 5.4 Results when Playing C1, C200, C100, C50, C20 and C10 against

Blondie24-RR using the Two-Move Ballot.

 Opponent:C0
Win Draw Lose

C1 20 22 44

C200 27 31 28

C100 30 30 26

C50 40 21 25

C20 44 22 20

C10 51 20 15

 Opponent: Blondie24-RR
Win Draw Lose

C1 17 16 53

C200 20 29 37

C100 22 28 36

C50 30 17 39

C20 31 25 30

C10 43 18 25

Introducing Individual and Social Learning into Evolutionary Checkers

101

.

Figure 5.2 C1, C200, C100, C50, C20 and C10 against Blondie24-RR.

Table 5.5 summarises the results when playing against C0 and against

Blondie24-RR using a starting position where all pieces are in their original

positions (i.e. no two-move ballot), while tables 5.6 and 5.7 show the mean

and the standard deviation of the players‟ ratings after 5000 different

ordering for the 86 played games.

 C0 Blondie24-RR

C1
Red Lost Lost

White Drawn Lost

C200 Red Drawn Lost

White Drawn Lost

C100 Red Won Lost

White Drawn Lost

C50 Red Won Lost

White Won Drawn

C20 Red Won Drawn

White Won Drawn

C10 Red Won Won

White Won Won

Table 5.5 Summary of Wins/Loses when not Using Two-Move Ballot.

Introducing Individual and Social Learning into Evolutionary Checkers

102

Table 5.6 Standard rating formula for all the players against C0 after

5000 orderings.

Table 5.7 Standard rating formula for all the players against

Blondie24-RR after 5000 orderings.

According to the results in tables 5.3, 5.4, 5.6 and 5.7, it is not

recommended to use a social pool with only one player as both C0 and

Blondie24-RR is statistically better (using our definition given earlier with

respect to players having a different rating class) than C1, and by using the

average value for the standard rating formula the results (when playing C0

 Mean SD Class
C1
C0

1190.20 28.81 E
1288.07 27.47 D

C200
C0

1134.32 28.14 E
1148.69 26.87 E

C100
C0

1175.19 28.26 E
1173.69 27.01 E

C50
C0

1197.75 27.65 E
1110.59 26.62 E

C20
C0

1320.93 28.69 D
1227.47 27.63 D

C10
C0

1424.95 28.45 C
1288.49 27.49 D

 Mean SD Class
C1

Blondie24-RR
1258.97 28.38 D
1415.01 27.15 C

C200
Blondie24-RR

1190.51 26.64 E
1258.98 25.38 D

C100
Blondie24-RR

1113.61 27.41 E
1168.74 26.12 E

C50
Blondie24-RR

1303.45 30.02 D
1339.21 28.67 D

C20
Blondie24-RR

1194.45 28.48 E
1187.32 27.23 E

C10
Blondie24-RR

1205.58 25.88 D
1082.35 25.07 E

Introducing Individual and Social Learning into Evolutionary Checkers

103

against C1) put C0 in class D (rating = 1288) and put C1 in Class E (rating =

1190), and by using student t-test (assuming unequal variances, g = 0.05,

and one-tail test), the results show that C0 and C1 are statistically different as

the P value (P-value=0) for the one tail t-test is less than alpha. Also the

results (when playing Blondie24-RR against C1) put Blondie24-RR in class C

(rating = 1415) and put C1 in Class D (rating = 1258), and by using student

t-test (assuming unequal variances, g = 0.05, and one-tail test), the results

show that Blondie24-RR and C1 are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha.

The results in tables 5.3, 5.4, 5.6 and 5.7 also show there is no point of

using the values (M=100 and N=200) for deciding where the individual and

social learning phases occur as there is no statistical difference in the results

in tables 5.3 and 5.6, as the results (when playing C0 against C200) put C0 in

class E (rating = 1148) and put C200 in class E (rating = 1134), and by using

student t-test (assuming unequal variances, g = 0.05, and one-tail test), the

results show that C0 and C200 are statistically the same as the P value (P-

value=0.5) for the one tail t-test is greater than alpha. Also results in

tables 5.4 and 5.7 showed that Blondie24-RR is better than C200, as the

results (when playing Blondie24-RR against C200) put Blondie24-RR in class D

(rating = 1258) and put C200 in class E (rating = 1190), and by using student

t-test (assuming unequal variances, g = 0.05, and one-tail test), the results

show that Blondie24-RR and C200 are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha.

Introducing Individual and Social Learning into Evolutionary Checkers

104

It is worth to mention that as C200 has a very few epochs of social learning,

the performance results should be very similar to the C0, which they are. This

observation suggests lends evidence that the uncertainty in performance due

to one run of the optimisation process is small.

Based on the results in tables 5.2 through 5.4, it is not sensible to use the

values (M=50 and N=100) and (M=20 and N=50) for deciding where the

individual and social learning phases occur. Although C100 and C50 look better

than C0, the results in table 5.6 put them in the same class, which means

they are statistically the same, as the results (when playing C0 against C100)

put C0 in class E (rating = 1173) and put C100 in class E (rating = 1175), and

by using student t-test (assuming unequal variances, g = 0.05, and one-tail

test), the results show that C0 and C100 are statistically the same as the P

value (P-value=0.5) for the one tail t-test is greater than alpha. The results

(when playing C0 against C50) put C0 in class E (rating = 1110) and put C50 in

class E (rating = 1197), and by using student t-test (assuming unequal

variances, g = 0.05, and one-tail test), the results show that C0 and C50 are

statistically the same as the P value (P-value=0.5) for the one tail t-test is

greater than alpha. Also Blondie24-RR, which is a result of a simple

modification to the C0, is better than C100 and C50 so it is not worth using the

values (50 and 20) for M and the values (100 and 50) for N. The results in

table 5.7 put Blondie24-RR in the same class as C100 and C50, which means

they are statistically the same, as the results (when playing Blondie24-RR

against C100) put Blondie24-RR in class E (rating = 1168) and put C100 in class

E (rating = 1113), and by using student t-test (assuming unequal variances,

g = 0.05, and one-tail test), the results show that C0 and C100 are statistically

Introducing Individual and Social Learning into Evolutionary Checkers

105

the same as the P value (P-value=0.5) for the one tail t-test is greater than

alpha. The results (when playing Blondie24-RR against C50) put Blondie24-RR

in class D (rating = 1339) and put C50 in class D (rating = 1303), and by

using student t-test (assuming unequal variances, g = 0.05, and one-tail

test), the results show that C0 and C50 are statistically the same as the P

value (P-value=0.5) for the one tail t-test is greater than alpha.

The results in tables 5.3 show that using the values of (M=10 and N=20)

for deciding where the individual and social learning phases occur, enhanced

the process of C0, but as there is not much difference in the results in table

5.4 as C20 is about equal to Blondie24-RR and the results in tables 5.6 and

5.7 showed that C20 is in the same class like C0 and Blondie24-RR, as the

results (when playing C0 against C20) put C0 in class D (rating = 1227) and

put C20 in class D (rating = 1320), and by using student t-test (assuming

unequal variances, g = 0.05, and one-tail test), the results show that C0 and

C20 are statistically the same as the P value (P-value=0.5) for the one tail t-

test is greater than alpha. The results (when playing Blondie24-RR against

C20) put Blondie24-RR in class E (rating = 1187) and put C20 in class E (rating

= 1194), and by using student t-test (assuming unequal variances, g = 0.05,

and one-tail test), the results show that C0 and C20 are statistically the same

as the P value (P-value=0.5) for the one tail t-test is greater than alpha.

According to these results, it is not recommended to use the values 10 and

20 for M and N.

Based on the results obtained from tables 5.3 and 5.4 it is clear that

increasing the number of players in the social pool will increase the

Introducing Individual and Social Learning into Evolutionary Checkers

106

performance for the checkers player. Also the results in tables 5.6 and 5.7

showed that C10 is statistically better than both C0 and Blondie24-RR, as the

results (when playing C0 against C10) put C0 in class D (rating = 1288) and

put C10 in class C (rating = 1424), and by using student t-test (assuming

unequal variances, g = 0.05, and one-tail test), the results show that C0 and

C10 are statistically different as the P value (P-value=0) for the one tail t-

test is less than alpha. The results (when playing Blondie24-RR against C10)

put Blondie24-RR in class E (rating = 1082) and put C10 in class D (rating =

1205), and by using student t-test (assuming unequal variances, g = 0.05,

and one-tail test), the results show that C0 and C20 are statistically different

as the P value (P-value=0) for the one tail t-test is less than alpha.

Therefore it is recommended to use the values (M=5 and N=10) to

determine where the individual and social learning phases occur.

In order to eliminate the randomness in choosing five random opponents

(step 4 in algorithm 5.2) to play against in the evolutionary phase of C10 and

hence produce a better player, a league competition between all the 30

neural networks is suggested, by making all the neural networks play against

each other. This is based on the success of introducing round robin

tournament into evolutionary checkers (see chapter four). The next section

shows the results of introducing round robin into C10.

5.5 Introducing Round Robin Tournament into C10

The only difference between algorithm 5.2 and the algorithm to introduce

the round robin tournament into C10 is in step 4, where every network

competes against every other network using the same computer and for 140

Introducing Individual and Social Learning into Evolutionary Checkers

107

generations. We refer to this player as C10-RR. It is worth to mention that

C10-RR is constructed using the same values of M and N (M=5, N=10) that

were used to construct C10, i.e. both C10-RR and C10 used 1/6 of their total

number of generations.

In order to test the outcome of introducing round robin tournament into

the evolutionary phase of C10, C10-RR is set to play against C0, Blondie24-RR

and C10 using two-move ballot. The results are shown in tables 5.8 through

5.10 and figure 5.3.

Table 5.8 Results when Playing C10-RR against C0 using the Two-

Move Ballot.

Table 5.9 Results when Playing C10-RR against Blondie24-RR using

the Two-Move Ballot.

Table 5.10 Results when Playing C10-RR against C10 using the Two-

Move Ballot.

 Opponent:C0
Win Draw Lose

C10-RR 49 20 17

 Opponent:Blondie24-RR
Win Draw Lose

C10-RR 41 22 23

 Opponent:C10
Win Draw Lose

C10-RR 35 23 28

Introducing Individual and Social Learning into Evolutionary Checkers

108

Figure 5.3 C10-RR against C0, Blondie24-RR and C10.

Table 5.11 summarises the results when playing against C0, Blondie24-RR

and against C10 using a starting position where all pieces are in their original

positions (i.e. no two-move ballot), while table 5.12 shows the mean and the

standard deviation of the players‟ ratings after 5000 different ordering for the

86 played games.

 C0 Blondie24-RR C10

C10-RR

Red Won Won Won

White Won Won Won

Table 5.11 Summary of Wins/Loses When not Using Two-Move

Ballot.

Table 5.12 Standard rating formula for playing C10-RR against C0,

Blondie24-RR and against C10 after 5000 orderings.

 Mean SD Class
C10-RR

C0
1405.51 27.54 C
1264.71 26.66 D

C10-RR
Blondie24-RR

1250.44 28.71 D
1171.91 27.61 E

C10-RR
C10

1229.99 29.08 D
1188.00 27.86 E

Introducing Individual and Social Learning into Evolutionary Checkers

109

The results in tables 5.8 and 5.12 show that C10-RR is statistically better

than C0 as the results (when playing C10-RR against C0) put C10-RR in class C

(rating = 1405) and put C0 in class D (rating = 1264), and by using student

t-test (assuming unequal variances, g = 0.05, and one-tail test), the results

show that C10-RR and C0 are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha.

The results in tables 5.9 and 5.12 show that C10-RR is statistically better

than Blondie24-RR as the results (when playing C10-RR against Blondie24-

RR) put C10-RR in class D (rating = 1250) and put Blondie24-RR in class E

(rating = 1171), and by using student t-test (assuming unequal variances, g

= 0.05, and one-tail test), the results show that C10-RR and C0 are

statistically different as the P value (P-value=0) for the one tail t-test is less

than alpha.

Finally the results in tables 5.10 and 5.12 show that C10-RR is statistically

better than C10 as the results (when playing C10-RR against C10) put C10-RR in

class D (rating = 1229) and put C10 in class E (rating = 1188), and by using

student t-test (assuming unequal variances, g = 0.05, and one-tail test), the

results show that C10-RR and C0 are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha.

As C10-RR is better than C0 and Blondie24-RR and most importantly is

better than C10, then it seems quite appropriate to use the individual and

social learning together with a round robin tournament in order to enhance

the process of evolutionary checkers.

Introducing Individual and Social Learning into Evolutionary Checkers

110

5.6 SUMMARY

This Chapter has introduced individual and social learning into an

evolutionary checkers algorithm that is based on the Blondie24 architecture.

The proposed algorithm shows promising results when tested against an

implementation of an evolutionary checkers program, C0, and also against a

player obtained as a result of the previous efforts to introduce a round robin

tournament into C0.

Six players were implemented in order to see the effects of increasing the

number of players in the social pool. Each player was implemented using a

selected pair of values for the individual and social learning phases.

Based on the results in table 5.2 we can conclude that increasing the

number of players in the social pool will increase the performance of the

player. A value of 5 is the best to determine where the individual learning

phase occurs. The value of 10 was found to be best when deciding where

social learning should occur. Using these values C10 is the best player we

obtained and is superior to C0 (see tables 5.3, 5.5 and 5.6). Also the result in

tables 5.4, 5.5 and 5.6 showed that C10 is better than Blondie24-RR.

Based on the results it would seem appropriate to use individual and social

learning to enhance the evolutionary checkers systems.

Following the success of introducing round robin into evolutionary checkers

in chapter four, we decided to use round robin within the individual and social

learning framework. The resultant algorithm showed promising results as the

best player, C10-RR, was able to beat C0, Blondie24-RR and C10. We conclude

Introducing Individual and Social Learning into Evolutionary Checkers

111

that it is appropriate to use a combination of round robin and individual and

social learning in evolutionary checkers.

The next chapter will investigate if other enhancements to evolutionary

checkers are possible by introducing an n-tuple architecture into evolutionary

checkers and investigate the effect.

Introducing N-tuple Systems into Evolutionary Checkers

112

Chapter Six

Introducing N-tuple Systems into Evolutionary

Checkers

6.1 INTRODUCTION

Chapter five showed that using individual and social learning for

evolutionary checkers produced a superior player. This chapter investigates

the effects of introducing n-tuple architecture into evolutionary computer

checkers. Evolutionary neural networks, evolved via an evolution strategy,

are utilised to evolve game playing strategies for the game of checkers. This

will be done by introducing 5-tuple with random walk and 1-tuple to the

learning phase of a system based on Blondie24 and also into a checkers

program, which uses temporal difference learning (TDL). We believe that this

helps in evolving a good player in a time that is faster than that required to

evolve C0, Blondie24-RR, C10 and C10-RR. The resulting players will be tested

against our baseline player, C0, our round robin player (Blondie24-RR) and

the two players from our individual and social learning experiments (C10 and

C10-RR).

Introducing N-tuple Systems into Evolutionary Checkers

113

This chapter is structured as follows; Section 6.2 describes the application

of n-tuple to checkers and how the n-tuple framework is organised. Sections

6.3 and 6.4 describe the experimental setup and the results of using 5-tuple

with a random walk. In sections 6.5 and 6.6 we describe the experimental

setup and the results of using a 1-tuple. Sections 6.7 and 6.8 describe the

experimental setup and the results of using 5-tuple with random walk utilises

TDL. Sections 6.9 and 6.10 describe the experimental setup and the results

of using 1-tuple with TDL. The comparison of 5-tuples with random walk and

1-tuple in an evolutionary checkers with TDL are presented in section 6.11.

Finally a summary for this chapter is presented in section 6.12. This chapter

has been disseminated via the following publication: Al-Khateeb and Kendall

(2011b).

6.2 APPLICATION of N-tuple to EVOLUTIONARY CHECKERS

To apply an n-tuple system to Checkers, we firstly decide to cover all the

32 squares on the checkers board. The value function for the board is then

calculated by summing over all table values indexed by all the n-tuples. Each

n-tuple specifies a set of n board locations. Each n-tuple has an associated

look-up table (LUT). The output for each n-tuple is calculated by summing

the LUT values indexed by each of its equivalent sample positions. Each

sample position is simply interpreted as an n digit quinary (base 5) number,

since each square has five possible values (ordinary white, white king,

vacant, ordinary black or black king). The board digit values were chosen as

(vacant=0, ordinary white=1, white king=2, ordinary red=3, red king=4).

The value function for a board is simply the sum of the values for each n-

http://en.wikipedia.org/wiki/Base_(mathematics)
http://en.wikipedia.org/wiki/5_(number)

Introducing N-tuple Systems into Evolutionary Checkers

114

tuple. Also the value of the piece difference for the checkers board is also

added to the summation. For convenient training with error back-propagation

the total output is passed through a tanh function.

The n positions can be arranged in a square, in a rectangle, or as random

points scattered over the board. The results in this chapter are based on two

types of sampling.

The first one is based on random walks, where each n-tuple is constructed

by starting with each 32 squares on the board, and taking a random walk

from that point. At each step of the walk, the next square is chosen as one of

the immediate neighbours of the current square, which represents a legal

checkers move. Each walk is for five steps. Each randomly constructed n-

tuple had 5 sample points. The results in this chapter are based on 32 such

n-tuples. One would expect some n-tuples to be more useful than others,

and there should be scope for evolving the n-tuples sample points while

training the look-up table values. A randomly constructed n-tuple sample is

shown in Table 6.1 in which the samplings are based on the checkers board

in figure 3.1. The experimental setup and its related results are shown in

sections 6.3 and 6.4.

The second type of sampling is based on just one sample, which can be

done by considering each square on the checkers board (see figure 3.1) at a

time. In this case we will have 32 (as checkers board played on 32 squares)

1-tuple samples and the experimental setup and its results are shown in

sections 6.5 and 6.6.

Introducing N-tuple Systems into Evolutionary Checkers

115

No. 5-tuple Sample
1 1,6,9,14,17
2 2,6,10,15,19
3 3,7,2,6,1
4 4,8,11,7,10
5 5,1,6,2,7
6 6,2,7,3,8
7 7,2,6,10,15
8 8,12,16,19,24
9 9,14,18,22,26
10 10,14,17,21,25
11 11,15,18,23,26
12 12,8,3,7,11
13 13,17,22,25,21
14 14,17,21,25,29
15 15,18,22,26,30
16 16,12,8,3,7
17 17,14,9,5,1
18 18,14,9,6,1
19 19,24,27,32,28
20 20,16,12,8,4
21 21,25,22,17,14
22 22,17,13,9,5
23 23,18,14,9,5
24 24,28,32,27,31
25 25,30,26,31,27
26 26,22,17,14,9
27 27,23,18,14,9
28 28,32,27,24,20
29 29,25,22,26,30
30 30,26,22,17,14
31 31,26,23,18,22
32 32,27,31,26,30

Table 6.1 The 32 random possible 5-tuple.

6.3 EXPERIMENTAL SETUP FOR 5-TUPLE WITH RANDOM WALK

Our hypothesis is that using n-tuple architecture will facilitate faster

learning for the game of checkers and produce a better player.

Introducing N-tuple Systems into Evolutionary Checkers

116

The value function for the proposed n-tuple system is calculated by

summing over all table values indexed by all the n-tuples. Algorithm 6.1

shows our n-tuple framework.

1- Take all the 32 possible checkers board squares. The n (n=5 for our experiments) positions can be
arranged as random points scattered over the board. Each n-tuple is constructed by choosing each
square on the board, and taking a random walk from that point. At each step of the walk, the next
square is chosen as one of the immediate neighbours of the current square, which represents a legal
checkers move.

2- There is a one Look-Up Table (LUT) for each 5-Tuple.

3- Since we have 5 types of pieces (our checker, our king, opponent’s checker, opponent’s king, and
empty square), we require 55=3,125 possibilities for each n-tuple.

4- The values for the pieces will be:-

- 0 for opponent’s checker.

- 1 for opponent’s king.

- 2 for Empty Square.

- 3 for our checker.

- 4 for our king.

5- Initialise a population of 30 n-tuple networks (players), each one with total number of weights
(32*3125)=100,000, are initialised to zero.

6- The result of evaluation the checkers board can be achieved by summing up all the corresponding
LUT entries that are indexed by each n-tuple (in our case it will be only 32 entries each time).

7- Each n-tuple network plays against five other neural networks selected randomly from the
population.

8- For each game, each competing player receives a score of +1 for win, 0 for draw and -2 for a loss.

9- Games are played until either one side wins, or until one hundred moves are made by both sides, in
which case a draw is declared.

10- After completing all games, the 15 players that have the highest scores are selected as parents and
retained for the next generation. Those parents are then mutated to create another 15 offspring by
using the following equation:

wi(j) = wi(j) +Nj(0,1), j = 1, ..., Nw (6.1)

where Nw is the number of weights in the neural network and Nj(0,1) is a standard Gaussian
random variable resembled for every j.

11- Repeat the process for G generations.

Algorithm 6.1 5-tuple with random walk for evolutionary checkers.

Introducing N-tuple Systems into Evolutionary Checkers

117

It is worth mentioning that the number of weights for constructing the 5-

tuple player (step 5 in the algorithm) is much bigger than those required to

construct C0 which increases the complexity of evolving the ANN player. Two

5-tuples would provide a chromosome with 6250 weights. But in this case not

all the board squares covered, and this will prevent the ANN discovering

many useful features in the board. For this reason we decided to use the 32

5-tuple system.

In order to provide a fair comparison, we run the above algorithm for the

same number of generations (840 generations with 126,000 games) that was

required to produce C0. All our experiments were run on the same computer

(1.86 GHz Intel core2 processor and 2GB Ram).

6.4 RESULTS FOR 5-TUPLE WITH RANDOM WALK

In order to test the effectiveness of algorithm 6.1, the best player (named

C5-tuple) was played against C0, Blondie24-RR, C10, and C10-RR using two-

move ballot. The detailed results are in table 6.2 and figure 6.1.

Table 6.2 Results when Playing C0, Blondie24-RR, C10 and C10-RR

against C5-tuple using the Two-Move Ballot.

 Opponent: C5-tuple
Win Draw Lose

C0 43 23 20

Blondie24-RR 47 21 18

C10 43 23 20

C10-RR 58 15 13

Introducing N-tuple Systems into Evolutionary Checkers

118

Figure 6.1 C0, Blondie24-RR, C10 and C10-RR against C5-tuple using

the Two-Move Ballot.

Table 6.3 summarises the results when playing against C0, Blondie24-RR,

C10 and against C10-RR using a starting position where all pieces are in their

original positions (i.e. no two-move ballot), while table 6.4 shows the mean

and the standard deviation of the players‟ ratings after 5000 different

ordering for the 86 played games.

 C0 Blondie24-RR C10 C10-RR

C5-tuple

Red Lost Lost Lost Lost

White Drawn Lost Drawn Lost

Table 6.3 Summary of Wins/Loses When not Using Two-Move Ballot.

Introducing N-tuple Systems into Evolutionary Checkers

119

Table 6.4 Standard rating formula for C5-tuple against C0, Blondie24-

RR, C10 and C10-RR after 5000 ordering.

The results in tables 6.2 and 6.4 show that C0 is statistically better than

C5-tuple as the results (when playing C0 against C5-tuple) put C0 in class D

(rating = 1275) and put C5-tuple in class E (rating = 1175), and by using

student t-test (assuming unequal variances, g = 0.05, and one-tail test), the

results show that C0 and C5-tuple are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha.

The results in tables 6.2 and 6.4 also show that Blondie24-RR is

statistically better than C5-tuple as the results (when playing Blondie24-RR

against C5-tuple) put Blondie24-RR in class D (rating = 1321) and put C5-

tuple in class E (rating = 1195), and by using student t-test (assuming

unequal variances, g = 0.05, and one-tail test), the results show that

Blondie24-RR and C5-tuple are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha.

The results in tables 6.2 and 6.4 show that C10 is statistically better than

C5-tuple as the results (when playing C10 against C5-tuple) put C10 in class D

(rating = 1274) and put C5-tuple in class E (rating = 1176), and by using

 Mean SD Class
C5-tuple

C0
1175.50 27.06 E
1275.01 28.06 D

C5-tuple
Blondie24-RR

1195.76 26.94 E
1321.18 27.86 D

C5-tuple
C10

1176.03 27.04 E
1274.40 28.05 D

C5-tuple
C10-RR

1254.55 26.16 D
1461.32 26.83 C

Introducing N-tuple Systems into Evolutionary Checkers

120

student t-test (assuming unequal variances, g = 0.05, and one-tail test), the

results show that C10 and C5-tuple are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha.

Finally the results in tables 6.2 and 6.4 show that C10-RR is statistically

better than C5-tuple as the results (when playing C10-RR against C5-tuple) put

C10-RR in class C (rating = 1461) and put C5-tuple in class D (rating = 1254),

and by using student t-test (assuming unequal variances, g = 0.05, and one-

tail test), the results show that C10-RR and C5-tuple are statistically different

as the P value (P-value=0) for the one tail t-test is less than alpha.

The results clearly showed that C5-tuple is not a good player compared

with C0, Blondie24-RR, C10 and C10-RR. This could be because of the choice of

the n-tuple sampling. In order to investigate this we use 1-tuple within

algorithm 6.1. The experimental setup and the results are shown in sections

6.5 and 6.6.

6.5 EXPERIMENTAL SETUP FOR 1-TUPLE

This section describes how we applied 1-tuple architecture. The difference

with algorithm (6.1) are in steps 1, 3 and 5 (see algorithm 6.2), where a 5-

tuple will be replaced by 1-tuple. As a result the number of weights will be

changed. We refer to this player as C1-tuple.

1- Take all the 32 possible checkers board squares. The n (n=1 for our experiments) positions
can be arranged by choosing each square at a time.

2- There is a one Look-Up Table (LUT) for each 5-Tuple.

3- Since we have 5 types of pieces (our checker, our king, opponent’s checker, opponent’s king,

Introducing N-tuple Systems into Evolutionary Checkers

121

and empty square), we require 51=5 possibilities for each n-tuple.

4- The values for the pieces will be:-

- 0 for opponent’s checker.

- 1 for opponent’s king.

- 2 for Empty Square.

- 3 for our checker.

- 4 for our king.

5- Initialise a population of 30 n-tuple networks (players), each one with total number of
weights (32*5)=160 are initialised to zero.

6- The result of evaluation the checkers board can be achieved by summing up all the corresponding
LUT entries that are indexed by each n-tuple (in our case it will be only 32 entries each time).

7- Each n-tuple network plays against five other neural networks selected randomly from the
population.

8- For each game, each competing player receives a score of +1 for win, 0 for draw and -2 for a loss.

9- Games are played until either one side wins, or until one hundred moves are made by both sides, in
which case a draw is declared.

10- After completing all games, the 15 players that have the highest scores are selected as parents and
retained for the next generation. Those parents are then muted to create another 15 offspring by
using equation (6.1).

11- Repeat the process for G generations.

Algorithm 6.2 1-tuple for evolutionary checkers.

It is clear from step 1 that the 1-tuple system is effectively a weighted

piece counter as each square of the 32 squares is assigned its own tuple.

In order to provide a fair comparison, we run the above algorithm for the

same number of generations (840 generations with 126,000 games) that was

required to produce C0. All our experiments were run on the same computer

(1.86 GHz Intel core2 processor and 2GB Ram).

Introducing N-tuple Systems into Evolutionary Checkers

122

6.6 RESULTS FOR 1-TUPLE

In order to test the outcome of algorithm 6.2, the best player (named C1-

tuple) was played against C0, Blondie24-RR, C10, and C10-RR using two-move

ballot. The detailed results are in table 6.5 and figure 6.2.

Table 6.5 Results when Playing C0, Blondie24-RR, C10 and C10-RR

against C1-tuple using the Two-Move Ballot.

Figure 6.2 C0, Blondie24-RR, C10 and C10-RR against C5-tuple using

the Two-Move Ballot.

Table 6.6 summarises the results when playing against C0, Blondie24-RR,

C10 and against C10-RR using a starting position where all pieces are in their

original positions (i.e. no two-move ballot), while table 6.7 shows the mean

 Opponent: C1-tuple
Win Draw Lose

C0 46 22 18

Blondie24-RR 48 21 17

C10 47 24 15

C10-RR 58 16 12

Introducing N-tuple Systems into Evolutionary Checkers

123

and the standard deviation of the players‟ ratings after 5000 different

ordering for the 86 played games.

 C0 Blondie24-RR C10 C10-RR

C1-
tuple

Red Lost Lost Lost Lost
White Drawn Lost Drawn Lost

Table 6.6 Summary of Wins/Loses When not Using Two-Move Ballot.

Table 6.7 Standard rating formula for C1-tuple against C0, Blondie24-

RR, C10 and C10-RR after 5000 orderings.

The results in tables 6.5 and 6.7 show that C0 is statistically better than

C1-tuple as the results (when playing C0 against C1-tuple) put C0 in class D

(rating = 1303) and put C1-tuple in class E (rating = 1180), and by using

student t-test (assuming unequal variances, g = 0.05, and one-tail test), the

results show that C0 and C1-tuple are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha.

The results in tables 6.5 and 6.7 also show that Blondie24-RR is

statistically better than C1-tuple as the results (when playing Blondie24-RR

against C1-tuple) put Blondie24-RR in class D (rating = 1326) and put C1-

tuple in class E (rating = 1190), and by using student t-test (assuming

 Mean SD Class
C1-tuple

C0
1180.63 26.61 E
1303.47 27.53 D

C1-tuple
Blondie24-RR

1190.59 26.56 E
1326.75 27.43 D

C1-tuple
C10

1138.90 25.74 E
1280.62 26.55 D

C1-tuple
C10-RR

1235.57 25.86 D
1447.89 26.49 C

Introducing N-tuple Systems into Evolutionary Checkers

124

unequal variances, g = 0.05, and one-tail test), the results show that

Blondie24-RR and C1-tuple are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha.

The results in tables 6.5 and 6.7 show that C10 is statistically better than

C1-tuple as the results (when playing C10 against C1-tuple) put C10 in class D

(rating = 1280) and put C1-tuple in class E (rating = 1138), and by using

student t-test (assuming unequal variances, g = 0.05, and one-tail test), the

results show that C10 and C1-tuple are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha.

Finally the results in tables 6.5 and 6.7 show that C10-RR is statistically

better than C1-tuple as the results (when playing C10-RR against C1-tuple) put

C10-RR in class C (rating = 1447) and put C1-tuple in class D (rating = 1235),

and by using student t-test (assuming unequal variances, g = 0.05, and one-

tail test), the results show that C10-RR and C1-tuple are statistically different

as the P value (P-value=0) for the one tail t-test is less than alpha.

The results clearly showed that C1-tuple is not a good player compared

with C0, Blondie24-RR, C10 and C10-RR. By considering these results together

with those in section 6.4, we arrive at two conclusions. The first one is that

the n-tuple architecture is not suitable for use within an evolutionary

checkers system. The second conclusion is that 5-tuple constructed with

random walk is slightly better than 1-tuple and this is because some of the

tuples are like the 3X3 subsections that are used in the Blondie24

architecture.

Introducing N-tuple Systems into Evolutionary Checkers

125

In order to test whether the n-tuple architecture can be used with other

evolutionary methods, we decided to use n-tuple with temporal difference

learning, TD(0). The success of applying n-tuple to the game of Othello,

together with TDL (Lucas 2008) inspired us to try the same approach within

evolutionary checkers. Two experimental setups are considered. Firstly, one

with the use of 5-tuple with random walks where the experimental setup and

its related results are reported in sections 6.7 and 6.8. The second setup is

with the use of a 1-tuple, where the experimental setup and its related

results are reported in sections 6.9 and 6.10.

6.7 EXPERIMENTAL SETUP FOR 5-TUPLE WITH RANDOM WALK and

TDL

The value functions for the proposed n-tuple system are calculated by

summing over all table values indexed by all the n-tuples. Algorithm 6.3

presents our first experiment.

1- Take all the 32 possible checkers board squares. The n (n=5 for our experiments) positions can be
arranged as random points scattered over the board. Each n-tuple is constructed by choosing each
square on the board, and taking a random walk from that point. At each step of the walk, the next
square is chosen as one of the immediate neighbours of the current square, which represents a legal
checkers move.

2- There is a one Look-Up Table (LUT) for each 5-Tuple.

3- Since we have 5 types of pieces (our checker, our king, opponent’s checker, opponent’s king, and
empty square), we require 55=3,125 possibilities for each n-tuple.

4- The values for the pieces will be:-

- 0 for opponent’s checker.

- 1 for opponent’s king.

- 2 for Empty Square.

- 3 for our checker.

Introducing N-tuple Systems into Evolutionary Checkers

126

- 4 for our king.

5- The total number of weights (32*3125)=100,000, are initialized to zero.

6- The result of evaluation the checkers board can be achieved by summing up all the corresponding
LUT entries that are indexed by each n-tuple (in our case it will be only 32 entries each time).

7- In TDL the weights of the evaluation function are updated during game play using a gradient-
descent method. Let x be the board observed by a player about to move, and similarly xガ the board
after the player has moved. Then the evaluation function may be updated during play using the
following equation (taken from Lucas and Runarsson 2006):-

))(1)](()'([2xvxvxvww ii (6.2)

 Where

 1
))(2exp(1

2
))(tanh()(

xf
xfxv is used to force the value function v to be in the

range -1 to 1.

8- If x’ is a terminal state then the game has ended and the following update is usedμ

))(1)](([2xvxvrww ii (6.3)

Where r corresponds to the final utilitiesμ +1 if the winner is Black, −1 when White, and 0 for a
draw. Draw is declared after 100 moves by each player.

9- Repeat the process for G generations.

Algorithm 6.3 5-tuple with random walk for evolutionary checkers

with TDL.

Three experiments were carried out, each one with different value for

 (0.01, 0.001 and 0.001). Three players are constructed; those players are

C5-N0.01, C5-N0.001 and C5-N0.0001, where each player represents one of

the selected values for .

We run the above algorithm for the same number of games (126,000,

which requires about two days), required to produce C0 (which took 19 days

to evolve). All our experiments were run on the same computer (1.86 GHz

Intel core2 processor and 2GB Ram).

Introducing N-tuple Systems into Evolutionary Checkers

127

6.8 RESULTS FOR 5-TUPLE WITH RANDOM WALK AND TDL

In order to determine which value is suitable for from the three selected

values, C5-N0.001, C5- N0.01 and C5-N0.0001 were played against each

other by using the idea of a two-move ballot. Table 6.8 and Figure 6.3 show

the results, while table 6.9 shows the mean and the standard deviation of the

players‟ ratings after 5000 different ordering for the 86 played games.

Table 6.8 Results when playing all C5-N0.01, C5-N0.001 and C5-

N0.0001 using the Two-Move Ballot.

Figure 6.3 C5-N0.01, C5-N0.001 and C5-N0.0001 against each other.

 C5-N0.001 C5-N0.01 C5-N0.0001
W D L W D L W D L

C5-N0.001 - - - 41 15 30 45 12 29

C5-N0.01 - - - 44 11 31

Introducing N-tuple Systems into Evolutionary Checkers

128

Table 6.9 Standard rating formula for C5-N0.01, C5-N0.001 and C5-

N0.0001 against each other after 5000 ordering.

The results in tables 6.8 and 6.9 show that C5-N0.001 is statistically better

than C5-N0.01 and C5-N0.0001 as the results (when playing C5-N0.001 against

C5-N0.01) put C5-N0.001 in class D (rating = 1228) and put C5-N0.01 in class E

(rating = 1182), and by using student t-test (assuming unequal variances, g

= 0.05, and one-tail test), the results show that C5-N0.001 and C5-N0.01 are

statistically different as the P value (P-value=0) for the one tail t-test is less

than alpha. The results (when playing C5-N0.001 against C5-N0.0001) put C5-

N0.001 in class C (rating = 1438) and put C5-N0.0001 in class D (rating =

1370), and by using student t-test (assuming unequal variances, g = 0.05,

and one-tail test), the results show that C5-N0.001 and C5-N0.0001 are

statistically different as the P value (P-value=0) for the one tail t-test is less

than alpha.

Finally the results in tables 6.8 and 6.9 show that C5-N0.01 is statistically

better than C5-N0.0001 as the results (when playing C5-N0.01 against C5-

N0.0001) put C5-N0.01 in class C (rating = 1447) and put C5-N0.0001 in class D

(rating = 1393), and by using student t-test (assuming unequal variances, g

= 0.05, and one-tail test), the results show that C5-N0.01 and C5-N0.0001 are

 Mean SD Class
C5-N0.001
C5-N0.01

1228.28 30.75 D
1182.09 29..48 E

C5-N0.001
C5-N0.0001

1438.72 30.90 C
1370.54 29.66 D

C5-N0.01
C5-N0.0001

1447.86 31.22 C
1393.70 29.94 D

Introducing N-tuple Systems into Evolutionary Checkers

129

statistically different as the P value (P-value=0) for the one tail t-test is less

than alpha.

By using these results, it is clear that the C5-N0.001 is better than both C5-

N0.01 and C5-N0.0001 and thus the best value among the three selected

ones is =0.001.

To measure the effect of introducing 5-tuple as a learning method for the

game of checkers, together with TDL, C5-N0.001 was played against our four

benchmark players (C0, Blondie24-RR, C10, and C10-RR) using two-move

ballot. The detailed results are in table 6.10 and figure 6.4.

Table 6.10 Results when Playing C0, Blondie24-RR, C10 and C10-RR

against C5-N0.001 using the Two-Move Ballot.

Figure 6.4 C0, Blondie24-RR, C10 and C10-RR against C5-N0.001 using

the Two-Move Ballot.

 Opponent: C5-N0.001
Win Draw Lose

C0 30 10 46

Blondie24-RR 29 19 38

C10 37 20 29

C10-RR 49 16 21

Introducing N-tuple Systems into Evolutionary Checkers

130

Table 6.11 summarises the results when playing against C0, Blondie24-RR,

C10 and against C10-RR using a starting position where all pieces are in their

original positions (i.e. no two-move ballot), while table 6.12 shows the mean

and the standard deviation of the players‟ ratings after 5000 different

ordering for the 86 played games.

 C0 Blondie24-RR C10 C10-RR

C5-N0.001
Red Won Won Lost Lost

White Won Won Drawn Lost

Table 6.11 Summary of Wins/Loses When not Using Two-Move

Ballot.

Table 6.12 Standard rating formula for C5-tuple against C0,

Blondie24-RR, C10 and C10-RR after 5000 ordering.

The results in tables 6.10 and 6.12 show that C5-N0.001 is statistically

better than C0 as the results (when playing C5-N0.001 against C0) put C5-

N0.001 in class C (rating = 1451) and put C0 in class D (rating = 1382), and

by using student t-test (assuming unequal variances, g = 0.05, and one-tail

test), the results show that C5-N0.001 and C0 are statistically different as the

P value (P-value=0) for the one tail t-test is less than alpha.

 Mean SD Class
C5-N0.001

C0
1451.85 31.23 C
1382.87 29.97 D

C5-N0.001
Blondie24-RR

1209.79 29.54 D
1169.43 28.32 E

C5-N0.001
C10

1255.27 28.01 D
1291.06 29.28 D

C5-N0.001
C10-RR

1280.09 28.37 D
1400.12 29.40 C

Introducing N-tuple Systems into Evolutionary Checkers

131

The results in tables 6.10 and 6.12 also show that C5-N0.001 is statistically

better than Blondie24-RR as the results (when playing C5-N0.001 against

Blondie24-RR) put C5-N0.001 in class D (rating = 1209) and put Blondie24-

RR in class E (rating = 1169), and by using student t-test (assuming unequal

variances, g = 0.05, and one-tail test), the results show that C5-N0.001 and

Blondie24-RR are statistically different as the P value (P-value=0) for the

one tail t-test is less than alpha.

The results in tables 6.10 and 6.12 show that C5-N0.001 and C10 are

statistically the same as the results (when playing C5-N0.001 against C10) put

C5-N0.001 in class D (rating = 1255) and put C10 in class D (rating = 1291),

and by using student t-test (assuming unequal variances, g = 0.05, and one-

tail test), the results show that C5-N0.001 and C10 are statistically same as

the P value (P-value=0.5) for the one tail t-test is greater than alpha.

Finally the results in tables 6.10 and 6.12 show that C10-RR is statistically

better than C5-N0.001 as the results (when playing C10-RR against C5-

N0.001) put C10-RR in class C (rating = 1400) and put C5-N0.001 in class D

(rating = 1280), and by using student t-test (assuming unequal variances, g

= 0.05, and one-tail test), the results show that C10-RR and C5-N0.001 are

statistically different as the P value (P-value=0) for the one tail t-test is less

than alpha.

The results in table 6.11 showed that C5-N0.001 is better than C0 and

Blondie24-RR as C5-N0.001 won as both red and white against them. Also

the results in table 6.11 showed that C5-N0.001 managed to get a draw as

red against C10.

Introducing N-tuple Systems into Evolutionary Checkers

132

Those results clearly validate our hypothesis (using an n-tuple

architecture, together with TDL, will facilitate faster learning for the game of

checkers and produce a good checkers player). As it took only two days to

produce C5-N0.001 (126,000 games), as opposed to the 19 days for the

other versions.

The results in section table 6.11 showed that C5-N0.001 lost as white

against C10. Also the results tables 6.11 and 6.12 clearly show that C10-RR is

better than C5-N0.001. Although those results showed that C5-N0.001 cannot

beat C10 and C10-RR but it was not our intention to produce a best player as

this was not our hypothesis.

6.9 EXPERIMENTAL SETUP FOR 1-TUPLE WITH TDL

This section describes how to apply 1-tuple architecture to a checkers

program with TDL. The difference with algorithm (6.3) are in steps 1, 3 and 5

(see algorithm 6.4), where a 5-tuple will be replaced by 1-tuple. Accordingly

the number of weights will change.

1- Take all the 32 possible checkers board squares. The n (n=1 for our experiments) positions
can be arranged by choosing one square at a time.

2- There is a one Look-Up Table (LUT) for each 5-Tuple.

3- Since we have 5 types of pieces (our checker, our king, opponent’s checker, opponent’s king,
and empty square), we require 51=5 possibilities for each n-tuple.

4- The values for the pieces will be:-

- 0 for opponent’s checker.

- 1 for opponent’s king.

- 2 for Empty Square.

- 3 for our checker.

Introducing N-tuple Systems into Evolutionary Checkers

133

- 4 for our king.

5- The total number of weights (32*5)=160, are initialized to zero.

6- The result of evaluation the checkers board can be achieved by summing up all the corresponding
LUT entries that are indexed by each n-tuple (in our case it will be only 32 entries each time).

7- In TDL the weights of the evaluation function are updated during game play using a gradient-
descent method. Let x be the board observed by a player about to move, and similarly xガ the board
after the player has moved. Then the evaluation function may be updated during play using
equation (6.2).

8- If x’ is a terminal state then the game has ended and using equation (6.3) for the update.

9- Repeat the process for G generations.

Algorithm 6.4 1-tuple for evolutionary checkers with TDL.

Three experiments were done, each one with different value for (0.01,

0.001 and 0.001). Three players are constructed; those players are C1-

N0.01, C1-N0.001 and C1-N0.0001, where each player represents one of the

selected values for .

We run the algorithm for the same number of games (126,000, which

requires about two days), required to produce C0 (which took 19 days to

evolve). All our experiments were run on the same computer (1.86 GHz Intel

core2 processor and 2GB Ram).

6.10 RESULTS FOR 1-TUPLE WITH TDL

In order to determine which value is suitable for from the three selected

values, C1-N0.01, C1-N0.001 and C1-N0.0001 were played against each other

by using the idea of a two-move ballot. Table 6.13 and figure 6.5 show the

results, while table 6.14 shows the mean and the standard deviation of the

players‟ ratings after 5000 different ordering for the 86 played games.

Introducing N-tuple Systems into Evolutionary Checkers

134

Table 6.13 Results when playing all C1-N0.01, C1-N0.001 and C1-

N0.0001 using the Two-Move Ballot.

Figure 6.5 C1-N0.01, C1-N0.001 and C1-N0.0001 against each other.

Table 6.14 Standard rating formula for C1-N0.01, C1-N0.001 and C1-

N0.0001 against each other after 5000 ordering.

The results in tables 6.13 and 6.14 show that C1-N0.001 is statistically

better than C1-N0.01 and C1-N0.0001 as the results (when playing C1-N0.001

against C1-N0.01) put C1-N0.001 in class C (rating = 1401) and put C1-N0.01

in class D (rating = 1342), and by using student t-test (assuming unequal

variances, g = 0.05, and one-tail test), the results show that C1-N0.001 and

 C1-N0.001 C1-N0.01 C1-N0.0001
W D L W D L W D L

C1-N0.001 - - - 43 14 29 40 20 26

C1-N0.01 - - - 40 14 32

 Mean SD Class
C1-N0.001
C1-N0.01

1401.31 30.64 C
1342.21 29.40 D

C1-N0.001
C1-N0.0001

1254.37 29.12 D
1192.82 27.95 E

C1-N0.01
C1-N0.0001

1389.33 30.93 D
1353.43 29.63 D

Introducing N-tuple Systems into Evolutionary Checkers

135

C1-N0.01 are statistically different as the P value (P-value=0) for the one tail

t-test is less than alpha. The results (when playing C1-N0.001 against C1-

N0.0001) put C1-N0.001 in class D (rating = 1254) and put C1-N0.0001 in class

E (rating = 1192), and by using student t-test (assuming unequal variances,

g = 0.05, and one-tail test), the results show that C1-N0.001 and C1-N0.0001

are statistically different as the P value (P-value=0) for the one tail t-test is

less than alpha.

Finally the results in tables 6.13 and 6.14 show that C1-N0.01 and C1-

N0.0001 are statistically the same as the results (when playing C1-N0.01

against C1-N0.0001) put C1-N0.01 in class D (rating = 1389) and put C1-

N0.0001 in class D (rating = 1353), and by using student t-test (assuming

unequal variances, g = 0.05, and one-tail test), the results show that C1-

N0.01 and C1-N0.0001 are statistically same as the P value (P-value=0.5) for

the one tail t-test is greater than alpha.

By using these results, it is clear that the C1-N0.001 is better than both C1-

N0.01 and C1-N0.0001 and thus the best value among the three selected

ones is =0.001.

To measure the effect of introducing 1-tuple as a learning method for the

game of checkers, together with TDL, C1-N0.001 was played against our four

benchmark players (C0, Blondie24-RR, C10, and C10-RR) using two-move

ballot. The detailed results are in table 6.15 and figure 6.6.

Introducing N-tuple Systems into Evolutionary Checkers

136

Table 6.15 Results when Playing C0, Blondie24-RR, C10 and C10-RR

against C1-N0.001 using the Two-Move Ballot.

Figure 6.6 C0, Blondie24-RR, C10 and C10-RR against C5-N0.001 using

the Two-Move Ballot.

Table 6.16 summarises the results when playing against C0, Blondie24-RR,

C10 and against C10-RR using a starting position where all pieces are in their

original positions (i.e. no two-move ballot), while table 6.17 shows the mean

and the standard deviation of the players‟ ratings after 5000 different

ordering for the 86 played games.

 C0 Blondie24-RR C10 C10-RR

C1-N0.001
Red Won Won Lost Lost

White Won Won Lost Lost

Table 6.16 Summary of Wins/Loses When not Using Two-Move

Ballot.

 Opponent: C1-N0.001
Win Draw Lose

C0 28 19 39

Blondie24-RR 24 31 31

C10 38 26 22

C10-RR 54 12 20

Introducing N-tuple Systems into Evolutionary Checkers

137

Table 6.17 Standard rating formula for C1-tuple against C0,

Blondie24-RR, C10 and C10-RR after 5000 ordering.

The results in tables 6.15 and 6.17 show that C1-N0.001 and C0 are

statistically the same as the results (when playing C1-N0.001 against C0) put

C1-N0.001 in class D (rating = 1314) and put C0 in class D (rating = 1265),

and by using student t-test (assuming unequal variances, g = 0.05, and one-

tail test), the results show that C1-N0.001 and C0 are statistically same as the

P value (P-value=0.5) for the one tail t-test is greater than alpha.

The results in tables 6.15 and 6.17 show that C1-N0.001 and Blondie24-RR

are statistically the same as the results (when playing C1-N0.001 against

Blondie24-RR) put C1-N0.001 in class E (rating = 1108) and put Blondie24-

RR in class E (rating = 1077), and by using student t-test (assuming unequal

variances, g = 0.05, and one-tail test), the results show that C1-N0.001 and

Blondie24-RR are statistically same as the P value (P-value=0.5) for the

one tail t-test is greater than alpha.

The results in tables 6.15 and 6.17 also show that C10 is statistically better

than C1-N0.001 as the results (when playing C10 against C1-N0.001) put C10

in class D (rating = 1210) and put C1-N0.001 in class E (rating = 1140), and

by using student t-test (assuming unequal variances, g = 0.05, and one-tail

 Mean SD Class
C1-N0.001

C0
1314.14 29.62 D
1265.35 28.41 D

C1-N0.001
Blondie24-RR

1108.78 27.25 E
1077.25 26.11 E

C1-N0.001
C10

1140.79 26.97 E
1210.30 28.04 D

C1-N0.001
C10-RR

1331.53 29.06 D
1480.38 30.07 C

Introducing N-tuple Systems into Evolutionary Checkers

138

test), the results show that C10 and C1-N0.001 are statistically different as

the P value (P-value=0) for the one tail t-test is less than alpha.

Finally the results in tables 6.15 and 6.17 show that C10-RR is statistically

better than C1-N0.001 as the results (when playing C10-RR against C1-

N0.001) put C10-RR in class C (rating = 1480) and put C1-N0.001 in class D

(rating = 1331), and by using student t-test (assuming unequal variances, g

= 0.05, and one-tail test), the results show that C10-RR and C1-N0.001 are

statistically different as the P value (P-value=0) for the one tail t-test is less

than alpha.

The results in section 6.10 showed that C1-N0.001 is statistically the same

as C0 and Blondie24-RR. Those results clearly validate our hypothesis (using

an n-tuple architecture, together with TDL, will facilitate faster learning for

the game of checkers and produce a good checkers player). As it took only

two days to produce C1-N0.001 (126,000 games), whereas it took 19 days

for our four other baseline players.

The results in section 6.10 clearly show that C10 and C10-RR are better

than C1-N0.001. Although those results showed that C1-N0.001 cannot beat

C10 and C10-RR but it was not our intention to produce a best player as this

was not our hypothesis.

The results in sections 6.8, and 6.10 show that C5-N0.001 is almost the

same as C1-N0.001. To be more confident about that, we decided to play C5-

N0.001 and C1-N0.001 using the two move ballot. The next section shows

the results, which is obtained using a single TDL run.

Introducing N-tuple Systems into Evolutionary Checkers

139

6.11 C5-N0.001 Against C1-N0.001

Table 6.18 Results when Playing C5-N0.001 against C1-N0.001 using

the Two-Move Ballot.

Figure 6.7 C5-N0.001 against C1-N0.001.

The results of the 5000 different orderings show that C5-N0.001 and C1-

N0.001 are statistically the same, as the results put C5-N0.001 in class E

(rating = 1043) and put C1-N0.001 in class E (rating =1011), and by using

student t-test (assuming unequal variances, g = 0.05, and one-tail test), the

results show that C5-N0.001 and C1-N0.001 are statistically same as the P

value (P-value=0.5) for the one tail t-test is greater than alpha.

 Opponent: C1-N0.001
Win Draw Lose

C5-N0.001 29 35 22

Introducing N-tuple Systems into Evolutionary Checkers

140

6.12 SUMMARY

This chapter has introduced n-tuples to the game of checkers. Two main

experiments were carried out. The first used the n-tuple with an evolutionary

checkers based on the architecture of Blondie24. Sections 6.3 and 6.4

showed the experimental setup and the results of using 5-tuples with a

random walk. Sections 6.5 and 6.6 showed the experimental setup and the

results for using a 1-tuple.

The results demonstrated that using 5-tuples with a random walk and a 1-

tuple did not evolve a good player as both the results for 5-tuples with

random walk in section 6.4 and the results for a 1-tuple in section 6.6

showed that C5-tuple and C1-tuple are not good players when compared with

C0, Blondie24-RR, C10 and C10-RR.

The second experiment used both 5-tuples with random walking and a 1-

tuple with TDL. The proposed algorithm in sections 6.7 and 6.9 showed

promising results when tested against C0, Blondie-RR, C10 and C10-RR. The

players were trained in a time that is much less than the time required

evolving C0, Blondie24-RR, C10 and C10-RR (2 days compared with 19 days).

The results in section 6.11 showed that the 5-tuples with random walks

player is statistically same 1-tuple player.

In summary, the combination of temporal difference learning with n-tuples

seems a very promising approach.

The experiments also showed that the best value for from the three

selected values is 0.001.

Introducing N-tuple Systems into Evolutionary Checkers

141

Based on the results we obtained it would seem appropriate to use n-tuple

learning to enhance the ability of the constructed self learning computer

checkers players.

The next chapter will discuss the importance of piece difference feature

together with the importance of a look-ahead feature for evolutionary

checkers.

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

142

Chapter Seven

The Importance of Piece Difference Feature and Look-

ahead Depth to Evolutionary Checkers

7.1 INTRODUCTION

Chapter six showed that using n-tuple systems within an evolutionary

checkers framework produced a good player, considerably quicker time than

previous approaches. This chapter investigates the importance of the piece

difference feature and the look-ahead depths for evolutionary computer

checkers. Therefore we will investigate evolutionary neural networks, with

and without piece difference, and with different ply depths, evolved via an

evolution strategy. We believe that those two features are important in the

design of evolutionary computer checkers but we would like to investigate

this aspect of the framework.

This chapter is structured as follows; Section 6.3 describes the

experiments that were done by Fogel and Hughes to show the importance of

piece difference for the design of Blondie24. Sections 7.3 and 7.4 describe

the experimental setup and the results for the piece difference. In section 7.5

we start to investigate the effect of the look-ahead depth. Sections 7.6 and

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

143

7.7 describe the experimental setup and the results for the look-ahead

depth. Finally a summary for this chapter is presented in section 7.8. This

chapter has been disseminated via the following publications: Al-Khateeb and

Kendall (2010, 2011c).

7.2 PIECE DIFFERENCE

Blondie24 represents a landmark in evolutionary learning. Even so, it has

still attracted comments about its design. One of them is concerned with the

piece difference (The difference of the number of the player pieces currently

on the board and the number of the opponent pieces currently on the board)

feature and how it affects the learning process of Blondie24. This was

answered (by Fogel) by playing a series of fourteen matches (seven as red

and seven as white) between Blondie24 and a piece-count player (Chellapilla

and Fogel 1999 and Fogel 2002). The experiment showed that the piece-

count player played a weak endgame, because it is unable to see far enough

ahead to capture a piece. The games played out until either the game was

completed (with one side winning, or a draw being declared due to the

number of repeated positions). In the case of a draw an assessment of the

outcome was made by examining the piece advantage that one player had

over the other, and also by playing out the game using a strong computer

program (Blitz98), which played out the remainder of the game and declared

a winner.

Of the fourteen games played, two were played to completion, with

Blondie24 winning both. For the remaining twelve games, Blondie24 held an

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

144

advantage in ten games, while the piece-count player held the advantage in

two games (see Table 7.1). By using Blitz98 to play out the twelve

incomplete games, Blondie24 got wins in eight games; the piece-count player

won one game, while the remaining three games ended in a draw (Table

7.2).

Table 7.1 Results of Playing 14 Games between Blondie24 and Piece-

count Using Material Advantage to Break Tie.

Table 7.2 Results of Playing 14 Games between Blondie24 and Piece-

count Using Blitz98 to Break Tie.

 It is clear from Table 7.1 and 7.2 that Blondie24 is better than a piece-

count player, and by using a standard rating formula, the results suggest

that Blondie24 is about 311 to 400 points better than the piece-count player

based on material advantage or the final outcome using Blitz98 (Chellapilla

and Fogel 1999 and Fogel 2002).

The results demonstrate that a piece difference feature is important to

Blondie24 but the neural network has additional information that is important

to learning within Blondie24 (Fogel 2002).

 Piece-count
Win Draw Lose

Blondie24 12 0 2

 Piece-count
Win Draw Lose

Blondie24 10 3 1

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

145

Hughes also wanted to investigate the importance of a piece difference

feature to the design of Brunette24 (a re-implementation of Blondie24) by

evolving a piece difference heuristic using co-evolution (Hughes 2003).

Hughes used the same experiment as Fogel to show the importance of a

piece difference. This was done by playing 1000 games against a simple

piece difference player. The evolved piece difference player managed to win

68% of the games, drew 30% and lost 2% (Table 7.3).

Also, to measure the success of the evolved piece difference player,

Hughes played 1000 games against xcheckers, which is free software

available from http://arton.cunst.net/xcheckers. The evolved piece difference

player won 22% of the games, drew 66% and lost 12% (Table 7.4).

It is worth to mention that the evolved piece count player is constructed

by giving each board location a weight. The evolved piece count player is also

called a weighted piece count player.

Table 7.3 Results of Playing 1000 Games between the Evolved Piece

Count player and Piece-count player.

Table 7.4 Results of Playing 1000 Games between the Evolved Piece

Count player and xcheckers.

 Piece-count
Win Draw Lose

Evolved Piece Count 680 300 20

 Xcheckers
Win Draw Lose

Evolved Piece Count 220 660 120

http://arton.cunst.net/xcheckers

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

146

The results in Table 7.3 show that the evolved piece count player is better

than the piece count player and by using a standard rating formula, the

results suggest that the evolved piece difference player is about 528 points

better than piece difference player. While applying the standard rating

formula to the results in Table 7.4 shows that the evolved piece difference

player is about 80 points better than xcheckers. These results, like Fogel‟s,

also show that a piece difference feature is important.

7.3 EXPERIMENTAL SETUP FOR PIECE DIFFERENCE

Our hypothesis is that the piece difference feature is important to

evolutionary checkers and this can be done by evolving two players, one with

the piece difference feature and the other without the piece difference

feature. The work carried out here is differs to the work of Fogel and Hughes

in that they used a piece count player and evolve a player with piece

difference feature. Two evolutionary checkers players were implemented;

one with a piece difference feature, which is called C0, while the other is

without a piece difference feature and is called C0-NPD. The implementation

for both players is based on algorithm 3.1.

Our previous efforts to enhance evolutionary checkers introduced a round

robin tournament (see chapter four). We decided to use the resultant player

(Blondie24-RR) to show the importance of the piece difference feature. This

is done by implementing a player which is the same as Blondie24-RR, but,

does not include a piece difference feature. This player is called Blondie24-

RRNPD.

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

147

Also, we decided to show the importance of the piece difference feature in

evolutionary checkers with individual and social learning and with n-tuple

systems.

In this case C10, the resultant player from introducing individual and social

learning (chapter five), will be used to show the importance of the piece

difference feature. This is done by implementing a player which is the same

as C10, but, does not include a piece difference feature. This player is called

C10-NPD.

Also C5-N0.001, the resultant player from introducing n-tuple systems

(chapter six), will be used to show the importance of the piece difference

feature. This is done by implementing a player which is the same as C5-

N0.001, but, does not include a piece difference feature. This player is called

C5-N0.001-NPD.

7.4 RESULTS FOR PIECE DIFFERENCE

To measure the effect of a piece difference feature in evolutionary

checkers, C0 was played against C0-NPD by using the idea of a two-move

ballot. We play all of the 43 possible games, both as red and white. This

gives a total of 86 games. The games were played until either one side wins

or a draw is declared after 100 moves for each player. The same procedure

was also used to play Blondie24-RR against Blondie24-RRNPD, C10 against

C10-NPD and C5-N0.001against C5-N0.001-NPD. The results are shown in

Tables 7.5 through 7.8 and in Figure 7.1.

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

148

Table 7.5 Results when Playing C0 against C0-NPD using the Two-

Move Ballot.

Table 7.6 Results when Playing Blondie24-RR against Blondie24-

RRNPD using the Two-Move Ballot.

Table 7.7 Results when Playing C10 against C10-NPD using the Two-

Move Ballot.

Table 7.8 Results when Playing C5-N0.001 against C5-N0.001-NPD

using the Two-Move Ballot.

Figure 7.1 C0 against C0-NPD, Blondie24-RR against Blondie24-

RRNPD, C10 against C10-NPD and C5-N0.001against C5-

N0.001-NPD.

 Opponent:C0-NPD
Win Draw Lose

C0 59 14 13

 Opponent: Blondie24-RRNPD
Win Draw Lose

Blondie24-RR 61 16 9

 Opponent:C10-NPD
Win Draw Lose

C10 55 16 15

 Opponent:C5-N0.001-NPD
Win Draw Lose

C5-N0.001 60 12 14

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

149

Table 6.9 summarises the results when the players playing using a starting

position where all pieces are in their original positions (i.e. no two-move

ballot), while table 6.10 shows the mean and the standard deviation of the

players‟ ratings after 5000 different ordering for the 86 played games.

 C0-NPD Blondie24-
RRNPD

C10-NPD C5-N0.001-
NPD

C0

Red Won - - -

White Won - - -

Blondie24-RR Red - Won - -

White - Won - -

C10 Red - - Won -

White - - Won -

C5-N0.001 Red - - - Won

White - - - Won

Table 7.9 Summary of Wins/Loses When not Using Two-Move Ballot.

Table 7.10 Standard rating formula for C0 against C0-NPD, Blondie24-

RR against Blondie24-RRNPD, C10 against C10-NPD and C5-

N0.001against C5-N0.001-NPD.after 5000 ordering.

The results in tables 7.5 and 7.10 show that C0 is statistically better than

C0-NPD as the results (when playing C0 against C0-NPD) put C0 in class C

(rating = 1481) and put C0-NPD in class D (rating = 1267), and by using

student t-test (assuming unequal variances, g = 0.05, and one-tail test), the

 Mean SD Class
C0

C0-NPD
1481.25 27.40 C
1267.42 26.73 D

Blondie24-RR
Blondie24-RRNPD

1466.79 25.05 C
1217.84 24.60 D

C10

C10-NPD
1431.34 27.27 C
1251.00 26.51 D

C5-N0.001
C5-N0.001NPD

1512.50 28.08 C
1301.35 27.36 D

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

150

results show that C0 and C0-NPD are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha.

The results in tables 7.6 and 7.10 also show that Blondie24-RR is

statistically better than Blondie24-RRNPD as the results (when playing

Blondie24-RR against Blondie24-RRNPD) put Blondie24-RR in class C (rating

= 1466) and put Blondie24-RRNPD in class D (rating = 1217), and by using

student t-test (assuming unequal variances, g = 0.05, and one-tail test), the

results show that Blondie24-RR and Blondie24-RRNPD are statistically

different as the P value (P-value=0) for the one tail t-test is less than alpha.

The results in tables 7.7 and 7.10 also show that C10 is statistically better

than C10-NPD as the results (when playing C10 against C10-NPD) put C10 in

class C (rating = 1431) and put C10-NPD in class D (rating = 1251), and by

using student t-test (assuming unequal variances, g = 0.05, and one-tail

test), the results show that C10 and C10-NPD are statistically different as the P

value (P-value=0) for the one tail t-test is less than alpha.

Finally the results in tables 7.8 and 7.10 show that C5-N0.001 is

statistically better than C5-N0.001-NPD as the results (when playing C5-

N0.001 against C5-N0.001-NPD) put C5-N0.001 in class C (rating = 1512)

and put C5-N0.001-NPD in class D (rating = 1301), and by using student t-

test (assuming unequal variances, g = 0.05, and one-tail test), the results

show that C5-N0.001 and C5-N0.001-NPD are statistically different as the P

value (P-value=0) for the one tail t-test is less than alpha.

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

151

Using the results from our experiments and those of Fogel‟s and Hughes‟,

we can conclude that a piece difference feature is important to the design of

the evolutionary checkers. Of course, the neural network is also an important

element of the whole design but the results presented here demonstrate a

simple feature is able to significantly improve the overall playing strength.

Now that the importance of piece difference has been shown in the

design of the evolutionary checkers, the next sections will investigate

if the depth of the search is also an important element. We suspect

that it is, but we would like to investigate this aspect of the

framework.

7.5 LOOK-AHEAD

There has been a lot of discussion about the importance of the look-ahead

depth level used in Fogel‟s work: There is little work that has rigorously

investigated its importance. Fogel, in his work on evolving Blondie24 (Fogel

2002), showed the importance of using a four ply search in Blondie24 by

stating that “At four ply, there really isn’t any “deep” search beyond what a

novice could do with a paper and pencil if he or she wanted to”. In fact we

don‟t believe that this is the case as generating all the possible moves from a

four ply search is not an easy task for novices, and would also be time

consuming. Of course, it might be done at some subconscious level, where

pruning is taking place, but this (as far as we are aware) has not been

reported in the scientific literature.

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

152

Many researchers have shown the importance of the look-ahead depth for

computer games, but none of them was related to checkers. Most of the

findings are related to chess (Bettadapur and Marsland 1988, Levene and

Fenner 2001, Nau et.al. 2001 and Smet et. al. 2003), where it was shown

that increasing the depth level will produce superior chess players. However,

(Runarsson and Jonsson 2007) showed that this was not the case for

Othello, as they found that better playing strategies are found when TD

learning with i–greedy is applied with a lower look-ahead search depth and a

deeper look-ahead search during game play. Given that chess appears to

benefit from a deeper look-ahead, but this is not true for Othello, this

chapter will establish if checkers benefits from a deeper look-ahead.

7.6 EXPERIMENTAL SETUP FOR LOOK-AHEAD DEPTH

Our hypothesis is that the look-ahead depth feature is important to

evolutionary checkers and this can be done by evolving evolutionary checkers

player, based on the same algorithm that was used to construct Blondie24.

Our implementation has the same structure and architecture that Fogel

utilised in Blondie24.

Four implementations were made; those players are listed below:-

1- C1Ply trained using one ply depth.

2- C2Ply trained using two ply depth.

3- C3Ply trained using three ply depth.

4- C4Ply trained using four ply depth.

http://portal.acm.org/author_page.cfm?id=81100642982&coll=GUIDE&dl=GUIDE&trk=0&CFID=105310612&CFTOKEN=15688160

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

153

Each player played against all other players but was now allowed to search

to a depth of 6-ply. The reason to choose 6-ply is to allow each program to

search in a level that is greater than the level trained with, which is the case

that Fogel used in Blondie24 (trained at 4-ply and played at a higher level).

Our previous efforts to enhance evolutionary checkers introduced a round

robin tournament (Chapter Four). We also use this player (Blondie24-RR) to

investigate the importance of the look-ahead depth. This is done by

implementing three other players, which are the same as Blondie24-RR, but,

trained on different ply depths, those players are called:-

1- Blondie24-RR1Ply.

2- Blondie24-RR2Ply.

3- Blondie24-RR3Ply

It is worth mentioning that Blondie24-RR is constructed using a four ply

depth. Each player was set to play against all the other three players but now

using a six ply depth.

7.7 RESULTS FOR LOOK-AHEAD DEPTH

In order to provide a fair comparison, all the experiments were run using

same computer (1.86 GHz Intel core2 processor and 2GB Ram). All the

experiments to evolve the players were run for the same number of

generations (840 and 126,000 played games). The following subsections

show the results for all the constructed players.

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

154

7.7.1 Results for C1Ply, C2Ply, C3Ply and C4Ply

To measure the effect of increasing the ply depth in the game of checkers,

each player trained at a given ply was matched with all of the other players

trained with on different ply. A league is held between C1Ply, C2Ply, C3Ply

and C4Ply; each match in the league was played using the idea of a two-

move ballot. For each match we play all of the 43 possible games, both as

red and white. This gives a total of 86 games. The total number of games

played is 258. Each game is played using a fixed ply depth of six. The games

were played until either one side wins or a draw is declared after 100 moves

for each player. The results are shown in tables 7.11 through 7.13 and in

figure 7.2.

Table 7.11 Number of wins (for the row player) out of 258 games.

Table 7.12 Number of draws (for the row player) out of 258 games.

Table 7.13 Number of losses (for the row player) out of 258 games.

 C1Ply C2Ply C3Ply C4Ply ぇwins
C1Ply - 28 17 13 58

C2Ply 33 - 24 19 76

C3Ply 45 31 - 27 103

C4Ply 59 40 35 - 134

 C1Ply C2Ply C3Ply C4Ply ぇdraws
C1Ply - 25 24 14 63

C2Ply 25 - 31 27 83

C3Ply 24 31 - 26 91

C4Ply 14 27 26 - 67

 C1Ply C2Ply C3Ply C4Ply ぇlosses
C1Ply - 33 45 59 137

C2Ply 28 - 31 40 99

C3Ply 17 24 - 33 74

C4Ply 13 19 27 - 59

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

155

Figure 7.2 Results of playing a league between C1Ply, C2Ply, C3Ply

and C4Ply.

It is clear from tables 7.11 and 7.13 that the total number of wins

increases and the total number of losses decreases when the evolved ply

depth increases. Therefore, increasing the ply depth leads to a superior

player. Table 7.14 shows the mean and the standard deviation of the

players‟ ratings after 5000 different orderings for the 86 played games, while

table 7.15 summarises the results when playing the league between players

using a starting position where all pieces are in their original positions (i.e.

no two-move ballot).

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

156

Table 7.14 Standard rating formula for all players after 5000

different orderings of the 86 games played.

 C1Ply C2Ply C3Ply C4Ply
C1Ply Red - Lost Lost Lost

White - Drawn Lost Lost

C2Ply Red - Lost Lost

White - Drawn Lost

C3Ply Red - Lost

White - Lost

Table 7.15 Summary of Wins/Loses for C1Ply, C2Ply, C3Ply and C4Ply

When not Using Two-Move Ballot.

The results in table 7.14, obtained using 5000 different orderings for the

86 games (obtained using the two-move ballot) show that increasing ply

depth by one increases the performance of the checkers player as C2Ply is

better (using our definition given earlier with respect to players having a

different rating class) than C1Ply, C3Ply is better than C2Ply and C4 is better

than C3Ply, and by using the average value for the standard rating formula

the results (when playing C2Ply against C1Ply) put C2Ply in class D (rating =

1206) and put C1Ply in Class E (rating = 1189), and by using student t-test

(assuming unequal variances, g = 0.05, and one-tail test), the results show

 Mean SD Class
C1Ply
C2Ply

1188.94 28.94 E
1206.24 27.62 D

C1Ply
C3Ply

1146.58 27.40 E
1266.18 26.14 D

C1Ply
C4Ply

1264.11 27.21 D
1474.99 26.14 C

C2Ply
C3Ply

1179.47 26.85 E
1205.10 25.60 D

C2Ply
C4Ply

1114.61 27.17 E
1200.21 25.88 D

C3Ply
C4Ply

1176.02 28.26 E
1205.26 26.98 D

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

157

that C1Ply and C2Ply are statistically different as the P value (P-value=0)

for the one tail t-test is less than alpha.

Also the results (when playing C3Ply against C2Ply) in table 7.14 put C3Ply

in class D (rating = 1205) and put C2Ply in class E (rating = 1179), and by

using student t-test (assuming unequal variances, g = 0.05, and one-tail

test), the results show that C2Ply and C3Ply are statistically different as the P

value (P-value=0) for the one tail t-test is less than alpha and finally (when

playing C4Ply against C3Ply) put C4Ply in class D (rating = 1205) and put

C3Ply in class E (rating = 1176), and by using student t-test (assuming

unequal variances, g = 0.05, and one-tail test), the results show that C3Ply

and C4Ply are statistically different as the P value (P-value=0) for the one

tail t-test is less than alpha.

The results shown in table 7.14 also show that increasing ply depth by two

increases the performance of the checkers player as C3Ply and C4Ply are

significantly better than the C1Ply and C2Ply respectively, and by using the

average value for the standard rating formula, the results (when playing

C3Ply against C1Ply) put C3Ply in class D (rating = 1266) and C1Ply in Class

E (rating = 1147), and by using student t-test (assuming unequal variances,

g = 0.05, and one-tail test), the results show that C1Ply and C3Ply are

statistically different as the P value (P-value=0) for the one tail t-test is less

than alpha, while (when playing C4Ply against C2Ply), C4Ply is in Class D

(rating = 1200) and C2Ply is in class E (rating = 1115), and by using student

t-test (assuming unequal variances, g = 0.05, and one-tail test), the results

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

158

show that C2Ply and C4Ply are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha.

Finally the results in table 7.14 show that C4Ply is significantly better than

the C1Ply, and by using the average value for the standard rating formula,

the results (when playing C4Ply against C1Ply) puts C4Ply in class C (rating =

1475) and C1Ply in class D (rating = 1264), and by using student t-test

(assuming unequal variances, g = 0.05, and one-tail test), the results show

that C1Ply and C4Ply are statistically different as the P value (P-value=0)

for the one tail t-test is less than alpha.

7.7.2 Results Using Round Robin Players

The same procedure in section 7.6.1 was also used to play a league

between Blondie24-RR, Blondie24-RR1Ply, Blondie24-RR2Ply and Blondie24-

RR3Ply. The results are shown in tables 7.16 through 7.18 and figure 7.3.

Table 7.16 Number of wins (for the row player) out of 258 games for

the round robin players.

 Blondie24-
RR1Ply

Blondie24-
RR2Ply

Blondie24-
RR3Ply

Blondie24-
RR

ぇ wins

Blondie24-
RR1Ply

- 28 20 14 62

Blondie24-
RR2Ply

32 - 29 21 82

Blondie24-
RR3Ply

42 34 - 27 103

Blondie24-
RR

57 46 39 - 142

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

159

Table 7.17 Number of draws (for the row player) out of 258 games

for the round robin players.

Table 7.18 Number of losses (for the row player) out of 258 games

for the round robin players.

Figure 7.3 Results of playing a league between Blondie24-RR1Ply,

Blondie24-RR2Ply, Blondie24-RR3Ply and Blondie24-

RR.

 Blondie24-
RR1Ply

Blondie24-
RR2Ply

Blondie24-
RR3Ply

Blondie24-
RR

ぇ
draws

Blondie24-
RR1Ply

- 26 24 15 65

Blondie24-
RR2Ply

26 - 23 19 68

Blondie24-
RR3Ply

24 23 - 20 67

Blondie24-
RR

15 19 20 - 54

 Blondie24-
RR1Ply

Blondie24-
RR2Ply

Blondie24-
RR3Ply

Blondie24-
RR

ぇ
losses

Blondie24-
RR1Ply

- 32 42 57 131

Blondie24-
RR2Ply

28 - 34 46 108

Blondie24-
RR3Ply

20 29 - 39 88

Blondie24-
RR

14 21 27 - 62

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

160

It is clear from tables 7.16 and 7.18 that the total number of wins

increases and the total number of losses decreases when the ply depth

increases. Therefore, increasing the ply depth leads to a superior player.

Table 7.19 shows the mean and the standard deviation of the players‟

ratings after 5000 different orderings for the 86 played games, while table

7.20 summarises the results when playing the league between players using

a starting position where all pieces are in their original positions (i.e. no two-

move ballot).

Table 7.19 Standard rating formula for all players after 5000

different orderings of the 86 games played.

 Blondie24-
RR1Ply

Blondie24-
RR2Ply

Blondie24-
RR3Ply

Blondie24-
RR

Blondie24-
RR1Ply

Red - Lost Lost Lost

White - Lost Lost Lost

Blondie24-
RR2Ply

Red - Lost Lost

White - Lost Lost

Blondie24-
RR3Ply

Red - Lost

White - Lost

Table 7.20 Summary of Wins/Loses for Blondie24-RR1Ply,

Blondie24-RR2Ply, Blondie24-RR3Ply and Blondie24-

RR When not Using Two-Move Ballot.

 Mean SD Class
Blondie24-RR1Ply
Blondie24-RR 2Ply

1187.79 28.86 E
1200.74 27.55 D

Blondie24-RR 1Ply
Blondie24-RR 3Ply

1160.17 28.15 E
1252.67 26.84 D

Blondie24-RR 1Ply
Blondie24-RR

1256.00 27.71 D
1450.51 26.58 C

Blondie24-RR 2Ply
Blondie24-RR 3Ply

1194.62 29.30 E
1212.04 27.98 D

Blondie24-RR 2Ply
Blondie24-RR

1335.38 28.72 D
1440.84 27.43 C

Blondie24-RR 3Ply
Blondie24-RR

1348.31 29.24 D
1495.93 27.91 C

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

161

The results in table 7.19, obtained using 5000 different orderings for the

86 games (obtained using the two-move ballot) show that increasing depth

by one increases the performance of the checkers player as Blondie24-

RR2Ply is better than the Blondie24-RR1Ply, Blondie24-RR3Ply is better than

Blondie24-RR2Ply and Blondie24-RR is better than Blondie24-RR3Ply. By

using the average value for the standard rating formula the results (when

playing Blondie24-RR2Ply against Blondie24-RR1Ply) put Blondie24-RR2Ply in

class D (rating = 1201) and Blondie24-RR1Ply in Class E (rating = 1188), and

by using student t-test (assuming unequal variances, g = 0.05, and one-tail

test), the results show that Blondie24-RR1Ply and Blondie24-RR2Ply are

statistically different as the P value (P-value=0) for the one tail t-test is less

than alpha. Playing Blondie24-RR3Ply against Blondie24-RR2Ply puts

Blondie24-RR3Ply in class D (rating = 1212) and Blondie24-RR2Ply in class E

(rating = 1195), and by using student t-test (assuming unequal variances, g

= 0.05, and one-tail test), the results show that Blondie24-RR2Ply and

Blondie24-RR3Ply are statistically different as the P value (P-value=0) for

the one tail t-test is less than alpha. Finally, when playing Blondie24-RR

against Blondie24-RR3Ply, puts Blondie24-RR in class C (rating = 1496) and

Blondie24-RR3Ply in class D (rating = 1348), and by using student t-test

(assuming unequal variances, g = 0.05, and one-tail test), the results show

that Blondie24-RR3Ply and Blondie24-RR are statistically different as the P

value (P-value=0) for the one tail t-test is less than alpha..

The results shown in table 7.19 also show that increasing depth by two

increases the performance of the checkers player as Blondie24-RR3Ply and

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

162

Blondie24-RR are significantly better than the Blondie24-RR1Ply and

Blondie24-RR2Ply respectively, and by using the average value for the

standard rating formula, the results (when playing Blondie24-RR3Ply against

Blondie24-RR1Ply) put Blondie24-RR3Ply in class D (rating = 1253) and

Blondie24-RR1Ply in class E (rating = 1160), and by using student t-test

(assuming unequal variances, g = 0.05, and one-tail test), the results show

that Blondie24-RR1Ply and Blondie24-RR3Ply are statistically different as the

P value (P-value=0) for the one tail t-test is less than alpha, while (when

playing Blondie24-RR against Blondie24-RR2Ply) puts Blondie24-RR in Class

C (rating = 1441) and Blondie24-RR2Ply in class D (rating = 1335), and by

using student t-test (assuming unequal variances, g = 0.05, and one-tail

test), the results show that Blondie24-RR2Ply and Blondie24-RR are

statistically different as the P value (P-value=0) for the one tail t-test is less

than alpha.

Finally the results in table 7.19 show that Blondie24-RR is significantly

better than the Blondie24-RR1Ply, and by using the average value for the

standard rating formula, the results (when playing Blondie24-RR against

Blondie24-RR1Ply) puts Blondie24-RR in class C (rating = 1450) and

Blondie24-RR1Ply in class D (rating = 1256), and by using student t-test

(assuming unequal variances, g = 0.05, and one-tail test), the results show

that Blondie24-RR1Ply and Blondie24-RR are statistically different as the P

value (P-value=0) for the one tail t-test is less than alpha.

Using the results from our experiments, we can conclude that a look-

ahead depth is important to the design of the evolutionary checkers. Also

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

163

additional experiments are done to check if this is the case for evolutionary

checkers with individual and social learning and n-tuple systems. Section

7.7.3 shows the results.

7.7.3 Results Using Individual and Social Learning Players and N-

tuple Players

Two individual and social learning players were constructed; C10-4Ply,

which is trained with four ply depth and C10-1Ply, which is trained using only

one ply depth. Those players will play against each other using two-move

ballot. Two n-tuples players were also constructed; C5-N0.001-4Ply, which is

trained with four ply depth and C5-N0.001-1Ply, which is trained using only

one ply depth. Those players will play against each other using two-move

ballot. Tables 7.21 and 7.22 and figure 7.4 show the results.

Table 7.21 Results when Playing C10-4Ply against C10-1Ply using the

Two-Move Ballot.

Table 7.22 Results when Playing C5-N0.001-4Ply against C5-N0.001-

1Ply using the Two-Move Ballot.

 Opponent:C10-1Ply
Win Draw Lose

C10-4Ply 56 16 14

 Opponent:C5-N0.001-1Ply
Win Draw Lose

C5-N0.001-4Ply 51 20 15

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

164

Figure 7.4 C10-4Ply against C10-1Ply and C5-0.001-4Ply against C5-

0.001-1Ply.

Table 7.23 shows the mean and the standard deviation of the players‟

ratings after 5000 different orderings for the 86 played games, while table

7.24 summarises the results when playing the league between players using

a starting position where all pieces are in their original positions (i.e. no two-

move ballot).

Table 7.23 Standard rating formula for all players after 5000

different orderings of the 86 games played.

 Mean SD Class
C10-4Ply
C10-1Ply

1437.24 27.20 C
1245.47 26.48 D

C5-0.001-4Ply
C5-0.001-1Ply

1354.60 27.43 D
1196.35 26.63 E

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

165

Table 7.24 Summary of Wins/Loses for C10-1Ply, C10-4Ply, C5-

N0.001-1Ply and C5-N0.001-4Ply When not Using Two-

Move Ballot.

The results in table 7.23 show that C10-4Ply is significantly better than C10-

1Ply, and by using the average value for the standard rating formula, the

results (when playing C10-4Ply against C10-1Ply) puts C10-4Ply in class C

(rating = 1437) and C10-1Ply in class D (rating = 1245), and by using student

t-test (assuming unequal variances, g = 0.05, and one-tail test), the results

show that C10-1Ply and C10-4Ply are statistically different as the P value (P-

value=0) for the one tail t-test is less than alpha. The results in table 7.23

also show that C5-0.001-4Ply is significantly better than C5-0.001-1Ply, and

by using the average value for the standard rating formula, the results (when

playing C5-0.001-4Ply against C5-0.001-1Ply) puts C5-0.001-4Ply in class D

(rating = 1354) and C5-0.001-1Ply in class E (rating = 1196), and by using

student t-test (assuming unequal variances, g = 0.05, and one-tail test), the

results show that C5-0.001-1Ply and C5-0.001-4Ply are statistically different

as the P value (P-value=0) for the one tail t-test is less than alpha.

7.8 SUMMARY

This chapter showed the importance of both the piece difference feature

and the look-ahead depth to the game of checkers. Two main experiments

 C10-4Ply C5-N0.001-4Ply
C10-1Ply Red Lost -

White Lost -

C5-N0.001-1Ply Red - Lost
White - Lost

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

166

were carried out. The first one was to show the importance of the piece

difference feature to evolutionary checkers by constructing many players.

Sections 7.3 and 7.4 showed the experimental setup and the results.

The results showed that the piece difference is an important feature to the

design of the evolutionary checkers based on Blondie24 and also to the

design of the evolutionary checkers with round robin, individual and social

learning and n-tuple systems.

The second experiment was intended to show the importance of a look-

ahead depth to the evolutionary checkers. Sections 7.6 and 7.7 showed the

experimental setup and the results. The results in sections 7.7.1, 7.7.2, 7.7.3

and 7.7.4 showed that the look-ahead depth is important to the design of the

evolutionary checkers, also to the evolutionary checkers with round robin,

individual and social learning and n-tuple.

An interesting point to note from the results is that increasing the depth

level by one will give different performances depending on the level number,

as the results indicates that increasing the level number from two to three

gives a better performance than the performance gained when increasing the

level number from one to two. The same occurs when increasing the depth

level from three to four, which is better than increasing the depth from one

to two and from two to three. According to this one can predict that the

performance will increase when training at a level of five, six and so on. Also

according to this increasing in the performance, there is no point of playing

at a level that is lower than the trained level.

The Importance of Piece Difference Feature and Look-ahead Depth to
Evolutionary Checkers

167

The results suggest that starting with a depth of four ply is the best value

function to start with during learning phase for checkers. That is, train at four

ply and then play at the highest ply possible.

In summary, the combination of piece difference feature with look-ahead

depth seems a very important to the design of evolutionary checkers which

worth applying to other computer games.

The next chapter will present the conclusions for all the work done in this

thesis, together with some ideas for future work.

Conclusions and Future Work

168

Chapter Eight

Conclusions and Future Work

8.1 CONCLUSIONS

The main focus of this thesis is in using evolution strategies to evolve

neural networks to play checkers. As mentioned before, our objective was to

propose a structure of learning methodologies for the game of checkers and

also to produce a better player. We started by studying the background of

evolution in game playing. Our work was inspired from Fogel‟s success in

checkers in which his program, Blondie24 (Chellapilla and Fogel 2001; Fogel

and Chellapilla 2002) was able to play a game of checkers at the human

expert level, injecting as little expert knowledge as possible into the

algorithm. We implemented a baseline player, C0, which was based on the

same architecture that Fogel used in the implementation of Blondie24. The

objective was to investigate the performance of the evolved neural network

player and also to obtain a baseline player that can be used to test the outcome

of our proposed methods.

The objective of the first experiment was to eliminate the randomness in

the choice of the opponents to play against during the evolution of C0. We

Conclusions and Future Work

169

implemented a round robin tournament, calling the resultant player

Blondie24-RR. This player used exactly the same architecture that was used

to evolve C0, the only difference being the use of a round robin tournament,

instead of randomly choosing opponents to play against. The results show

that this small modification enhanced the player‟s ability to learn and hence

produce a better player.

Our next experiment combined the ideas in (Kendall and Su 2003 and Su

2005). We evolved an individual and social checkers player in which a social

pool was used to maintain the best player(s) at certain generations. Many

experiments were carried out in order to test the outcome of increasing the

number of best players in the social pool. The results were promising and

encouraged us to also incorporate a round robin tournament within the

individual and social learning framework. The resultant player, C10-RR was

the best evolved player in this thesis.

The success of n-tuple systems in many applications including optical

character recognition, and evolving game playing strategies for the game of

Othello provided the inspiration for us to investigate the n-tuple systems.

Many sampling were considered and two main methods were used. The first

method did not work well, suggesting that using just n-tuples with C0 is not

recommended. The second method showed that using n-tuples with TDL

produced a good player using less computation time that required to evolve

C0. The experiments showed that using 5-tuples with random walk is the best

sampling, among the selected samplings.

Conclusions and Future Work

170

Finally all the experiments carried out in this thesis showed that the piece

difference feature and the look-ahead depth were essential in evolving

various checkers player.

With respect to further developing the methods used in this thesis, we

recommend starting with an individual and social learning player that

incorporates a round robin tournament together with a piece difference

feature and which searches to a depth of at least four ply.

The research presented in this thesis has contributed in terms of learning

techniques for evolutionary computer checkers. The main contributions are

as follows.

1- In chapter three, we implemented an evolutionary checkers player, C0.

This player is based on the same architecture and structure that were

used to construct Blondie24.

2- The results in chapter four demonstrated that it is possible to eliminate

the randomness in choosing the opponents to play against during the

evolution of C0. The resultant player, Blondie24-RR was able to beat an

online program and played well against two other strong programs,

WinCheck3D and SXcheckers. The various players were compared to

each other using the two-move ballot and the standard rating formula,

which also confirmed that Blondie24-RR was superior to C0.

3- The results in chapter five showed that introducing an individual and

social learning method enhanced the learning process for the

evolutionary checkers player and produced a superior player. The

Conclusions and Future Work

171

resultant player, C10, was better than C0 and Blondie24-RR, shown

using the two-move ballot and the standard rating formula.

4- The results in chapter five showed that increasing the number of

players in the social pool will increase the performance for the evolved

player. In this case values of 5 and 10 were the best values for

determining when individual and social learning should occur. We

implemented many players, where each player was constructed using

a pair of values and all the players were played against each other to

determine the best one.

5- The results in chapter five also showed that using a round robin

tournament together with individual and social learning eliminated the

randomness in the evolutionary phase of the resultant player, C10-RR.

We produced a superior player, which was better than C0, Blondie24-

RR and C10, shown by the use of the two-move ballot and the standard

rating formula.

6- The results in chapter six showed that using an n-tuples (with 5-tuple,

constructed randomly, and with a 1-tuple) system, based on a

Blondie24 architecture, produced a player that was worse than C0.

Therefore, it is not recommended to use only n-tuple systems for

evolutionary checkers.

7- The results in chapter six also showed that using n-tuples (with 5-tuple

constructed randomly) together with Temporal Difference Learning

produced a player that was better than C0 and Blondie24-RR. Evolving

Conclusions and Future Work

172

an n-tuples player took only two days, which is much faster than the

time required for C0 and Blondie24-RR (19 days). This is because an n-

tuples system is very fast and in TDL we only update the weights that

are actually used. The evolved n-tuples player cannot beat C10 and C10-

RR but it was not our intention to produce a best player, rather we

aimed to evolve a good player in a faster time than that required to

evolve C0, Blondie24-RR, C10 and C10-RR. The n-tuples player,

constructed using 5-tuple with random walks, was better than the n-

tuples player constructed with 1-tuple. The experiments in chapter six

also showed that the value of 0.001 is the best value for among

those tested values.

8- Considering all the players evolved in this thesis, C10-RR (this player is

based on the Blondie24 architecture and incorporates a round robin

tournament and individual and social learning) was found to be the

best overall player; with C10 being the second best and C5-N0.001

being the third best. Blondie24-RR came forth and C0 was the least

successful. Table 8.1 summarises the results for all players.

Conclusions and Future Work

173

Table 8.1 Summary of Wins/Loses for C10-RR, C10, C5-N0.001,

Blondie24-RR and C0 when not Using the Standard

Rating Formula.

9- The results in chapter seven showed that both the piece difference

feature and look-ahead depth are very important in the design of an

evolutionary checkers program, and is also important in the

evolutionary checkers programs that used round robin, individual and

social learning and n-tuple systems.

10- Using the results from the experiments in chapter seven we can

conclude that a piece difference feature is important in the design of

Blondie24. Of course, the neural network is also an important element

of the whole design but the results presented here demonstrate that a

simple feature is able to significantly improve the overall playing

strength.

11- The experiments for showing the importance of a look-ahead depth

that we have carried out in chapter seven produced many

evolutionary checkers players, using different ply depths. Our

expectations were that better value functions would be learned when

training with deeper look-ahead search. This was found to be the

case. The main results are that, during training and game playing,

 C10-RR C10 C5-N0.001 Blondie24-RR C0
C10-RR Red - Won Won Won Won

White - Won Won Won Won

C10 Red - Won Won Won
White - Drawn Won Won

C5-
N0.001

Red - Won Won
White - Won Won

Blondie
24-RR

Red - Won
White - Drawn

Conclusions and Future Work

174

better decisions are made when a deeper look-ahead is used. An

interesting point to note is that increasing the depth level by one will

give different performance depending on the level number. The

results suggest that starting with a depth of four ply is the best value

function to start with during learning phase for checkers. That is,

train at four ply and then play at the highest ply possible.

8.2 FUTURE WORK

Based on the empirical investigations in this thesis, possible future works

are as follows:

1- Apply the proposed methods that were developed in this thesis to

other computer games such as Connect4. It will be interesting to see

the outcome for the proposed methods in Connect4 since there are

only two pieces in the game and there is no taking of the opponent‟s

pieces, so there is no point of applying the methods with a piece

difference feature. The Connect4 board consists of 42 squares, which

means we need to find suitable neural network architecture for

evolving the player and also to win the game. Since we need four

pieces either in a row, column or diagonal to win the game, it is

suitable to start the subsections of the Connect4 board from 4X4,

and gradually increasing until the entire board is covered. This will

change the number of weights of the input layer in the neural

network architecture. This change in the number of weights

may/may not require changing the number of hidden nodes in the

Conclusions and Future Work

175

architecture; so many experiments are required to arrive at the best

architecture for an evolved Connect4 player.

For an individual and social approach to Connect4, we need to test

which values are suitable in deciding when the individual and social

learning phases occur (i.e. test if increasing the number of players in

the social pool helps evolve a better player or not).

When applying n-tuples to Connect4, since we have two values for

the pieces then when using 5-tuples with a random walk, we only

need (25=32) tuples, similarly for using 1-tuple, we only need (21=2)

tuples, which means that evolving a Connect4 player using an n-

tuple systems will much faster than evolving a checkers player using

the same n-tuple system.

Finally, as we showed that the look-ahead depth is very important

feature for the game of checkers, and this is not the case for many

other games, it is really suggested to investigate if this feature is

important for the game of Connect4 (or not). Our belief is that it is

important because of the nature of the game, as to win the game we

need four pieces in a row, column or in a diagonal and this requires

look-ahead. We think that Connect4 needs to search for at least four

ply depth but we want to make sure by actually evolve different

Connect4 players, each one with different ply depths and testing the

outcome for them, possibly by playing one another.

Conclusions and Future Work

176

2- Investigate using individual and social learning for solving the

problem of Blondie24 being an end product. This will bring about a

continuous learning paradigm. One possible way to do this is by

keeping the best player from each generation in the social pool and,

in the case of an evolved player losing a match against a stronger

player (human or computer), then we either use the second best

player from the pool or randomly select one and test it (if possible)

against the same player. This procedure will continue to run every

time the evolved player loses against human or computer players.

This will not guarantee a win for the evolved player, but at least we

will have a player that is able to continuously change its strategy

when losing, in a hope of a win.

3- When we carried out research into the n-tuple systems, we found

that a key aspect is the right choice of the sampling and this is

problem dependent. There are too many ways to sample a checkers

board and testing all of them is a time consuming. Although we only

test two of them and the results were promising; it is recommended

to use many other n-tuple samples, for example using all the 3X3

subsections, 4x4 subsections, 3-tuple sampling or 4-tuple sampling,

in order to arrive at a best n-tuple sample for the game of checkers.

4- Since most of the experiments in the thesis were constrained by run-

time. We suggest enhancing the run-time by using the evolutionary

enhancement aspects. Things like the parallel technology, which is

used by (Franco et. al. 2010), could be useful to apply.

References

177

References

Al-Khateeb B. and Kendall G., Introducing a Round Robin Tournament into

Blondie24, In Proceedings of the IEEE 2009 Symposium on

Computational Intelligence and Games (CIG09), Milan, Italy, 2009, 112-

116.

Al-Khateeb B. and Kendall G., The Importance of a Piece Difference Feature

to Blondie24, In Proceedings of the the 10th Annual Workshop on

Computational Intelligence (UK2010), Essex, UK, 2010, 1-6.

Al-Khateeb B. and Kendall G., Introducing Individual and Social Learning

into Evolutionary Checkers, Transactions on Computational Intelligence

and AI in Games (TCIAIG), (Under Review), 2011a.

Al-Khateeb B., Kendall G. and Lucas S., Introducing N-Tuple Systems into

Evolutionary Checkers, Transactions on Computational Intelligence and AI

in Games (TCIAIG), (Under Review), 2011b.

Al-Khateeb B. and Kendall G., The Importance of look ahead Depth in

Evolutionary Checkers, In Proceeding of the 2011 IEEE Congress on

Evolutionary Computation (CEC 2011), 2011c.

Anderson J. A. and Rosenfeld, E., Neurocomputing: Foundations of research,

MA: MIT Press, 1988.

Axelrod R., The evolution of strategies in the iterated prisoner‟s dilemma, in

L. Davis, ed, Genetic algorithms and simulated annealing, 1987, 32-41.

Bäck T. and Schwefel H. P., An overview of evolutionary algorithms for

parameter optimisation, Evolutionary Computation, Vol. 1, 1993, 1-23.

Barto A.G., Sutton R.S. and Anderson C.W., Neuron like elements that can

solve difficult learning control problems. IEEE Transactions on Systems,

Man, and Cybernetics, Vol. 13, 1983, 834–846.

Baxter J., The evolution of learning algorithms for artificial neural networks,

in D. Green and T. Bossomaier, eds., Complex Systems, Amsterdam:

IOS, 1992, 313-326.

Baxter J., Tridgell A and Weaver L., Learning to play chess using temporal

differences, Netherlands: Kluwer Academic Publishers, 2001.

Bettadapur P., and Marsland T.A., Accuracy and savings in depth-limited

capture search, International Journal of Man-Machine Studies, Vol. 29,

1988, 497 – 502.

Bledsoe W. W., and Browning I., Pattern recognition and reading by

machine, In Proceedings of the Eastern Joint Computer Conference, 1959,

225–232.

http://portal.acm.org/author_page.cfm?id=81100642982&coll=GUIDE&dl=GUIDE&trk=0&CFID=105310612&CFTOKEN=15688160

References

178

Burrow P. and Lucas S. M., Evolution versus temporal difference learning for

learning to play Ms. Pac-Man, In Proceedings of the IEEE 2009

Symposium on Computational Intelligence and Games (CIG‟09), Milan,
Italy, 2009, 53-60.

Callan R. The essence of neural networks. Prentice Hall, 1999.

Campbell M., Joseph A., Hoane Jr. and Hsu F.-h., Deep Blue, Elsevier

Science, 2002.

Campbell M., Knowledge discovery in Deep Blue, Communications of the

ACM, Vol. 42, 1999, 65–67.

Carter M., Minds and computers: An introduction to the philosophy of

artificial intelligence, Edinburgh University Press Ltd, 2007.

Caudell T. P. and Dolan C. P., Parametric connectivity: Training of

constrained networks using genetic algorithms, in J. D. Schaffer, ed,

proceedings of the 3rd internal conference on genetic algorithms and their

applications, CA: Morgan Kaufmann, 1989, 370-374.

Chalmers D. J., The evolution of learning: An experiment in genetic

connectionism, in proceedings of connectionist models summer school,

1990, 81-90.

Chellapilla K. and Fogel D. B., Evolving neural networks to play checkers

without relying on expert knowledge. IEEE Transactions on Neural

Networks, Vol. 10, 1999, 1382-1391.

Clark D., Deep thoughts on deep blue, IEEE Expert, Vol. 12, 1997, 31.

Coppin B., Artificial intelligence illuminated, MA: Jones and Bartlett

Publishers, Inc., 2004.

Coulom R., Efficient selectivity and backup operators in monte-carlo tree

search, In P. Ciancarini and H. J. van den Herik, editors, 5th International

Conference on Computers and Games, Turin, Italy, 2006, 72-83.

Darwin C., On the Origin of Species by Means of Natural Selection, or the

Preservation of Favoured Races in the Struggle for Life (5th ed.), London:

John Murray, 1869.

Elman J. L., Finding structure in time, Cognitive Science, Vol. 14, 1990, 179-

211.

Fang J. and Xi Y. G., Neural network design based on evolutionary

programming, Artificial Intelligence in Engineering, Vol. 11, 1997, 155-

161.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chellapilla:Kumar.html
http://www.informatik.uni-trier.de/~ley/db/journals/tnn/tnn10.html#ChellapillaF99
http://www.informatik.uni-trier.de/~ley/db/journals/tnn/tnn10.html#ChellapillaF99
http://darwin-online.org.uk/content/frameset?itemID=F387&viewtype=text&pageseq=1
http://darwin-online.org.uk/content/frameset?itemID=F387&viewtype=text&pageseq=1

References

179

Fausett L., Fundamental of neural network: architectures, algorithms, and

applications, NJ: Prentice-Hall International, Inc, 1994.

Fogel D. B., Evolving artificial intelligence, Ph. D. Thesis, UCSD, 1992.

Fogel D. B. and Chellapilla K., Verifying anaconda's expert rating by

competing against Chinook: experiments in co-evolving a neural checkers

player. Neurocomputing, Vol. 42, 2002, 69-86.

Fogel D. B., Blondie24 Playing at the Edge of AI, United States of

America: Academic Press, 2002.

Fogel D. B., Hays T. J., Hahn S. L. and Quon J., A Self-Learning evolutionary

chess program, in Proceeding of IEEE, IEEE Press, Vol. 92, 2004, 1947-

1954.

Fogel D. B., Hays T. J., Hahn S. L. and Quon J., Further evolution of a

self-learning chess program, In Proceedings of the IEEE 2005

Symposium on Computational Intelligence and Games (CIG05), Essex,

UK, 2005, 73-77.

Fogel D. B., Hays T. J., Hahn S. L. and Quon J.: The Blondie25 Chess

Program Competes Against Fritz 8.0 and a Human Chess Master. In

Proceedings of the IEEE 2006 Symposium on Computational

Intelligence and Games (CIG06), Reno, USA, 2006, 230-235.

Fogel D. B., Evolutionary Computation: Toward a new philosophy of machine

intelligence (third edition), A John Wily & Sons, Inc., Publication, 2006.

Fogel D. B., Evolving a checkers player without relying on human

experience. Intelligence, Vol. 11, 2000, 20-27.

Fogel D. B., An introduction to simulated evolutionary optimisation, IEEE

Transactions on Neural Networks, Vol. 5, 1994, 3-14.

Fogel D. B., Using evolutionary programming to create neural networks that

are capable of playing Tic-Tac-Toe, IEEE International Conference on

Neural Networks. NJ: IEEE Press, 1993, 875-880.

Fogel D. B., An introduction to evolutionary computation, Australian Journal

of Intelligent Information Processing Systems, Vol. 1, 1994, 34-42.

Fogel D. B., Evolutionary Computation: Toward a new philosophy of machine

intelligence (Second edition). NJ: IEEE Press, 2000.

Fogel D. B., Wasson E. C. And Boughton E. M., Evolving neural networks for

detecting breast cancer, Cancer Letters, Vol. 96, 1995, 49-53.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chellapilla:Kumar.html
http://www.informatik.uni-trier.de/~ley/db/journals/ijon/ijon42.html#FogelC02
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hays:Timothy_J=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hahn:Sarah_L=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/q/Quon:James.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hays:Timothy_J=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hahn:Sarah_L=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/q/Quon:James.html
http://www.informatik.uni-trier.de/~ley/db/journals/sigart/sigart11.html#Fogel00

References

180

Fogel L. J., Owens A. J. and Walsh M. J., Artificial intelligence through

simulated evolution, NY: John Wiley, 1966.

Franco M. A., Krasnogor N., and Bacardit J., Speeding up the evaluation of

evolutionary learning systems using gpgpus. In the proceedings of the

12th annual conference on Genetic and evolutionary computation (GECCO

'10), ACM, New York, USA, 2010, 1039-1046.

Galushkin A. I., Neural networks theory, Berlin Heidelberg: Springer-Verlag,

2007.

Garis, H., GenNets: Genetically programmed neural nets using the genetic

algorithm to train neural nets whose inputs and/or output vary in time,

IEEE International Conference on Neural Networks, 1991, 1391-1396.

Gelly S., Wang Y., Exploration exploitation in Go: UCT for Monte-Carlo Go,

In: On-line Trading of Exploration and Exploitation, Whistler, BC, Canada,

2006.

Gelly S., Wang Y., Munos R. and Teytaud O., Modification of UCT with

patterns in Monte-Carlo Go, 2006.

Goetsch G. and Campbell M.S., Experiments with the null-move heuristic, in

T.A. Marsland, J. Schaeffer (Eds.), Computers, Chess, and Cognition,

Berlin: Springer, 1990, 159–168.

Greenwood G. W., Training partially recurrent neural networks using

evolution strategies, IEEE Transactions on Speech Audio Processing,

Vol.5, 1997, 192-194.

Grönroos M., Whitley D. and Pyeatt L., A comparison of some methods for

evolving neural networks, Genetic and Evolutionary Computation

Conference, 1999, 1442-144.

Gruau F., Automatic definition of modular neural networks, Adaptive

Behaviour, Vol.3, 1994, 151-183.

Hancock P. J. B., Genetic algorithms and permutation problems: A

comparison of recombination operators for neural net structure

specification, in D. Whitley and J. D. Schaffer, eds., International

Workshop Combinations of Genetic Algorithms and Neural Networks, CA:

IEEE Computer Society, 1992, 108-122.

Harley E., Book Review: Blondie 24, playing at the edge of AI, The IEEE

Computational Intelligence Bulletin, Vol. 1, 2002, 25-27.

Harp S. A., Samad T. and Guha A., Designing application-specific neural

networks using the genetic algorithm, in D. S. Tourezky, ed., Advances in

neural information processing systems 2, CA: Morgan Kaufmann, 1990,

447-454.

References

181

Hart P.E., Nilsson N.J. and Raphael B., A Formal Basis for the Heuristic

Determination of Minimum Cost Paths, IEEE Transactions on Systems

Science and Cybernetics, Vol. 4, 1968, 100-107.

Haykin S., Neural networks: A comprehensive foundation (Second Edition),

Pearson Education, Inc., 1999.

Heimes F., Zalesski G. Z., Land W. and Oshima M., Traditional and evolved

dynamic neural networks for aircraft simulation, IEEE International

Conference on Systems, Man and Cybernetics, 1997, 1995-2000.

Heinz E.A., Scalable search in computer chess, Friedrick Vieweg & Son,

2000.

Hopfield J. J., Neural networks and physical systems with emergent

collective computational abilities, National Academy of Sciences, Vol. 79,

1982, 2554-2558.

Hoque S., Sirlantzis K., and Fairhurst M. C., “Bit plane decomposition and
the scanning n-tuple classifier,” In Proceedings of International Workshop

on Frontiers in Handwriting Recognition (IWFHR-8), 2002, 207–212.

Hsu F.-h, Anantharman T., Campbell M. and Nowatzyk A., A grandmaster

chess machine, Scientific American, 1990, 44–50.

Hsu F.-h., Anantharman T.S., Campbell M.S. and Nowatzyk A., Deep

thought, in: T.A. Marsland, J. Schaeffer (Eds.), Computers, Chess, and

Cognition, Springer, Berlin, 1990, 55–78.

Hsu F.-h., Behind deep blue, NJ: Princeton University Press, Princeton,

2002.

Hsu F. h., IBM‟s deep blue chess grandmaster chips, IEEE Micro, Vol. 19,

1999, 70–81.

Hsu, F.-h., Large-scale parallelization of alpha-beta search: An algorithmic

and architectural study, Ph.D. Thesis, Carnegie Mellon, Pittsburgh, PA,

1990.

Hughes E., Piece Difference: Simple to Evolve, The 2003 Congress on

Evolutionary Computation (CEC 2003), Vol. 4, 2003, 2470–2473.

Igel C. and Stagge P., Graph isomorphisms affect structure optimization of

neural networks, In International Joint Conference on Neural Networks,

2002, 142-147.

Junghanns A., Are there practical alternatives to alpha-beta in computer

chess?, ICCA Journal. Vol. 21, 1998, 14–32.

Kaelbling L. P., Littman M. L. and Moore A.W., Reinforcement Learning: A

Survey, Journal of Artificial Intelligence Research, Vol. 4, 1996, 237-285.

http://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers

References

182

Kaindl H., Tree searching algorithms, in T. A. Marsland and J. Schaeffer,

eds., Computers, Chess, and Cognition, NY: Springer-Verlag, 1990, 133-

158.

Kanerva P., Sparse Distributed Memory, Cambridge, Mass.: MIT Press,

1988.

Kendall G. and Hingston P., Learning versus evolution in iterated prisoner's

dilemma, Congress on Evolutionary Computation, 2004.

Kendall G. and Su Y., The co-evolution of trading strategies in a multiagent

based simulated stock market through the integration of individual and

social learning. In Proceedings of IEEE 2003 Congress on Evolutionary

Computation, 2003, 2298–2305.

Kendall G. and Su Y. Learning with imperfections - a multi-agent neural

genetic trading systems with different levels of social learning. In

Proceedings of the IEEE Conference on Cybernetic and Intelligent

Systems, 2004, 47–52.

Kendall G. and Su Y. Imperfect evolutionary systems. IEEE Transactions on

Evolutionary Computation, Vol. 11, 2007, 294–307.

Kendall G. and Whitwell G., an evolutionary approach for the tuning of a

chess evaluation function using population dynamics, Congress on

Evolutionary Computation, 2001, 995-1002.

Kendall G., Yaakob R. and Hingston P., An investigation of an evolutionary

approach to the opening of Go, Congress on Evolutionary Computation,

2004.

King D., Kasparov vs Deeper Blue: The ultimate man vs machine challenge.

Badsford, 1997.

Kitano H., Designing neural networks using genetic algorithm with graph

generation system, Complex Systems, Vol. 4, 1990, 461-476.

Kocsis L. and Szepesvari C., Bandit based monte-carlo planning. In 15th

European Conference on Machine Learning (ECML), 2006, 282–293.

Kohonen T., Self-organizing maps, second edition. Berlin: Springer-Verlag,

1997.

Lee C., Wang M., Chaslot G., Hoock J., Rimmel A., Teytaud O., Tsai S.,

Hsu S. and Hong T., The Computational Intelligence of MoGo Revealed in

Taiwan's Computer Go Tournaments, IEEE Transactions on Computational

Intelligence and AI in Games (T-CIAIG), Vol. 1, 2009, 73-89.

References

183

Levene M., and Fenner T. I., “The effect of mobility on minimaxing of game

trees with random leaf values,” Artificial Intelligence, Vol. 130, 2001, 1-

26.

Likothanassis S. D., Georgopoulos E. and Fotakis D., Optimizing the

structure of neural networks using evolution techniques, 5th

International

Conference on Application of High-Performance Computers in Engineering,

1997, 157-168.

Louis S., Miles C., Playing to learn: Case-injected genetic algorithms for

learning to play computer games, IEEE Transactions on Evolutionary

Computation, Vol. 9, 2005, 669-681.

Lubberts A. and Miikkulainen R., Co-Evolving a Go-Playing neural network,

In Coevolution: Turning adaptive algorithms upon themselves, Birds-of-a-

Feather Workshop, Genetic and Evolutionary Computation Conference

2001.

Lucas S., The continuous n-tuple classifier and its application to real-time

face recognition, In IEEE Proceedings on Vision, Image and Signal

Processing, Vol. 145, 1998, 343–348.

Lucas S., Discriminative training of the scanning n-tuple classifier, in Lecture

Notes in Computer Science (2686): Computational Methods in

NeuralModelling. Berlin: Springer-Verlag, 2003, 222–229.

Lucas, S., Learning to Play Othello with N-Tuple Systems, Australian Journal

of Intelligent Information Processing, Vol. 4, 2008, 1-20.

Lucas S. and Amiri A., Statistical syntactic methods for high performance

OCR, In IEEE Proceedings on Vision, Image and Signal Processing, Vol.

143, 1996, 23–30.

Lucas S. and Cho K.T., Fast convolutional ocr with the scanning n-tuple grid,

in Proceedings of International Conference on Document Analysis and

Recognition (ICDAR), IEEE Computer Society, 2005, 799–805.

Lucas S. and Kendall G., Evolutionary Computation and Games, IEEE

Computational Intelligence Magazine, Vol. 1, 2006, 10-18.

Lucas S. and Runarsson T. P., Temporal difference learning versus

coevolution for acquiring Othello position evaluation, In Proceedings of the

IEEE 2006 Symposium on Computational Intelligence and Games

(CIG‟06), Reno Nevada, USA, 2006, 52-59.

Luger G. F., Artificial intelligence: Structures and strategies for complex

problem solving (Fifth edition), Addison-Wesley, 2008.

McDonnell J. R. and Waagen D., Evolving recurrent perceptrons for time

series modelling, IEEE Transactions on Neural Networks, Vol. 5, 1994, 24-

38.

References

184

McDonnell J. R., Page W. and Waggen D., Neural network construction using

evolutionary search, Third Annual Conference on Evolutionary

Programming, 1994, 9-16.

Miconi T., Why Coevolution Doesn't "Work": Superiority and Progress in

Coevolution, in L. Vanneschi, S. Gustafson, A. Moraglio, I De Falco, and

M. Ebner (Eds.): Proceedings of the 12th European Conference on Genetic

programming (EuroGP 2009), LNCS 5481, 2009, Springer.

Miikkulainen R, Evolving neural networks, GECCO (Companion) 2007, 3415-

3434.

Miles C., Louis S., Cole N. and McDonnell J., Learning to play like a human:

case injected genetic algorithms for strategic computer gaming, Congress

on Evolutionary Computation (CEC2004), Vol. 2, 2004, 1441 – 1448.

Minsky M. L. and Papert S., Perceptrons, MA: MIT Press, 1969.

Mitchell M., An introduction to genetic algorithms, MIT Press, 1999.

Mitchell T. M., Machine learning, McGraw-Hill, 1997.

Moriarty D. E. and Miikkulainen R., Discovering complex othello strategies

through evolutionary neural networks, Connection Science, Vol. 7, 1995,

195-209.

Moriarty D. E. and Miikkulainen R., Forming neural networks through

efficient and adaptive co-evolution, Evolutionary Computation 1998, Vol.

5, 373-399.

Nasreddine H., Poh H. S. and Kendall G, Using an evolutionary algorithm for

the tuning of a chess evaluation function based on a dynamic boundary

strategy, IEEE Cybernetics and Intelligent Systems 2006, 1–6.

Nau D. S., Lustrek M., Parker A., Bratko I. and Gams M., “When Is It Better

Not To Look Ahead?,” Artificial Intelligence, Vol. 174, 2001, 1323-1338.

Newborn M., Kasparov vs. Deep Blue, Computer Chess Comes of Age. New

York: Springer-Verlag, 1997.

Nilsson N. J., Artificial Intelligence, A new Synthesis. Morgan Kaufmann,

1998.

Norvig P., Paradigms of artificial intelligence programming, Morgan-

Kaufmann, 1992.

Park J. and Sandberg J. W., Universal approximation using radial basis

functions network, Neural Computation, Vol. 3, 1991, 246-257.

http://cerco.ups-tlse.fr/~miconi/eurogp09.pdf
http://cerco.ups-tlse.fr/~miconi/eurogp09.pdf
http://www.informatik.uni-trier.de/~ley/db/conf/gecco/gecco2007c.html#Miikkulainen07
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9256

References

185

Patterson D.W., Artificial Neural, Networks theory and applications,

Prentice Hall, 1996.

Pollack J. B. and Blair A. D., Co-evolution in the successful learning of

backgammon strategy, Machine Learning, Vol. 32, 1998, 225-240.

Porto V. W., Fogel D. B. And Fogel L. J., Alternative neural network training

methods, IEEE Expert, Vol. 10, 1995, 16-22.

Rechenberg I., Cybernetic solution path of an experimental problem, Royal

Aircraft Establishment, August, 1965.

Reynolds R. G., An Adaptive computer model of the evolution of agriculture

for hunter-gatherers in the Valley of Oaxaca, Ph.D. dissertation, Univ.

Michigan, Ann Arbor, MI, 1979.

Reynolds R. G, An introduction to cultural algorithms, in Proc. 3rd

Annu.Conf. Evol. Program. 1994, 131–139.

Reynolds R. G., Kobti Z., and Kohler T. A., The effects of generalized

reciprocal exchange on the resilience of social networks: An example from

the prehistoric Mesa Verde region, J. Comput. Math. Organ. Theory, Vol.

9, no. 3, 2003, 229–254.

Reynolds R. G., Kobti Z., Kohler T. A., and Yap L., Unravelling ancient

mysteries: Reimagining the past using evolutionary computation in a

complex gaming environment, IEEE Trans. Evol. Comput., Vol. 9, no. 6,

2005, 707–720.

Reynolds R. G. and Peng B., Cultural algorithms: Knowledge learning in

dynamic environments, in Proc. IEEE Int. Congr. Evol. Comput., 2004,

1751–1758.

Richards N., Moriarty D. E. and Miikkulainen R., Evolving Neural Networks to

Play Go, Applied Intelligence, Vol. 8, 1998, 85-96.

Robertie B., Carbon versus silicon: Matching wits with TD-Gammon, Inside

Backgammon, Vol. 2, 1992, 14–22.

Rohwer R., and Morciniec M., A theoretical and experimental account of n-

tuple classifier performance, Neural Computation, Vol. 8, 1996, 629 –

642.

Rohwer R., and Morciniec M., The Theoretical and Experimental Status of the

n-tuple Classifier, Neural Networks, Vol. 11(1), 1998, 1–14.

Rosin C.D. and Belew R.K., New methods for competitive coevolution.

Evolutionary Computation, Vol. 5, 1997, 1–29.

References

186

Rosenblatt F., The Perceptron: A Probabilistic model for information storage

and organization in the brain, Psychological Review, Vol.65, 1959, 386-

408.

Rosenblatt F., Principles of neurodynamics, NY: Spartan Books, 1962.

Runarsson T.P. and Jonsson E.O, Effect of look-ahead search depth in

learning position evaluation functions for Othello using i–greedy

exploration, In Proceedings of the IEEE 2007 Symposium on

Computational Intelligence and Games (CIG‟07), Honolulu, Hawaii, 2007,

210 - 215.

Runarsson T.P., and Lucas S.M., Coevolution versus self-play temporal

difference learning for acquiring position evaluation in small-board go,

IEEE Transactions on Evolutionary Computation, Vol. 9(6), 2005, 628–
640.

Russell S. and Norvig P., Artificial intelligence: a modern approach (Third

edition), Prentice Hall, 2010.

Samuel A. L., Some studies in machine learning using the game of checkers,

IBM Journal on Research and Development, 1959, 210-229. Reprinted in:

E. A. Feigenbaum and J. Feldman, eds., Computer and Thought, NY:

McGraw-Hill, 1963. Reprinted in: IBM Journal on Research and

Development, 2000, 207-226.

Samuel A. L., Some studies in machine learning using the game of checkers,

IBM Journal of Research and Development, 1959, 210-229.

Sarkar M. and Yegnanarayana B., Evolutionary programming-based

probabilistic neural networks construction technique, IEEE International

Conference of Neural Networks, 1997, 456-461.

Schaeffer J., One jump ahead: Computer Perfection at Checkers. New York:

Springer, 2009.

Schaeffer J., Burch N., Björnsson Y., Kishimoto A., Müller M., Lake R., Lu P

and Sutphen S., Checkers Is Solved, Science Express, Vol. 317, 2007,

1518 – 1522.

Schaeffer J., Joseph C. and Norman T. A., World championship caliber

checkers program, Artificial Intelligence, Vol. 53, 1992, 273-290.

Schaeffer J., Lake R. and Lu P., Chinook the world man-machine checkers

champion, AI Magazine, Vol. 17, 1996, 21-30.

Schaeffer J., Treloar N., Lu P. and Lake R., Man versus machine for the

world checkers championship, AI Magazine, Vol. 14, 1993, 28-35.

References

187

Schlang M., Poppe T. and Gramckow O., Neural networks for steel

manufacturing, IEEE Expert Intelligent Systems, Vol. 11, 1996, 8-10.

Schwefel H. P., Numerical optimization of computer models, Chichester,

U.K.: Wiley, 1981.

Simon H. A., Models of bounded rationality: Empirically grounded economic

reason, volume 3. MIT Press, Cambridge, MA, 1997.

Simon H. A., Administrative Behavior, Fourth Edition. New York, NY: The

Free Press, 1997.

Smet P., Calbert G., Scholz J., Gossink D., Kwok H-W, and Webb M., The

Effects of Material, Tempo and Search Depth on Win-Loss Ratios in Chess,

A1 2003: Advances in artificial intelligence, Lecture Notes in Computer

Science, Vol. 2903 , 2003, 501-510.

Specht D.F., Probabilistic neural networks, Neural Networks, Vol. 3, 1990,

110-118.

Stanley K., Exploiting Regularity Without Development, In Proceedings of

the AAAI Fall Symposium on Developmental Systems, Menlo Park, CA,

2006, AAAI Press.

Stanley K. and Miikkulainen R., Evolving neural networks through

augmenting topologies, IEEE Transactions on Evolutionary Computation,

Vol. 10, 2002, 99-127.

Stanley K., Cornelius R. and Miikkulainen R, Real-time learning in the NERO

video game, AIIDE 2005, 2005, 159-160.

Sternberg M. and Reynolds R. G., Using cultural algorithms to support re-

engineering of rule-based expert systems in dynamic environments: A

case study in fraud detection, IEEE Trans. Evol. Comput., Vol. 1, no. 4,

1997, 225–243.

Sutton R.S., Temporal Credit Assignment in Reinforcement Learning., PhD

thesis, Department of Computer and Information Science, University of

Massachusetts, Amherst, 1984.

Sutton R. S., Two problems with Backpropagation and other steepest-

descent learning procedures for networks, 8th

Annual Conference of

Cognitive Science Society. NJ: Hillsdale, 1986, 823-831.

Sutton R. S. Learning to predict by the methods of temporal differences.

Machine Learning, Vol.3, 1988, 9–44.

Tesauro G., Neurogammon wins computer olympiad, Neural Computation

Vol. 1, 1989, 321-323.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Stanley:Kenneth_O=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Cornelius:Ryan.html
http://www.informatik.uni-trier.de/~ley/db/conf/aiide/aiide2005.html#StanleyCM05

References

188

Tesauro G., Neurogammon: A Neural-Network Backgammon Program,

IJCNN International Joint Conference on Neural Networks, 1989, 33-39.

Tesauro G., Practical issues in temporal difference learning, Machine

Learning, Vol.8, 1992, 257–277.

Tesauro G., Temporal difference learning and TD-Gammon, Comm. ACM,

Vol. 38, 1995, 58–68.

Tesauro G., Programming backgammon using self-teaching neural nets,

Artificial Intelligence, Vol. 134, 2002, 181–199.

Tesauro G. and Sejnowski T. J., A parallel network that learns to play

backgammon, Artificial Intelligence, Vol. 39, 1989, 357-390.

Turing A. M., Computing machinery and intelligence, Mind, Vol.59, 1950,

433-460.

Ullman J., Experiments with the n-tuple method of pattern recognition, IEEE

Transactions on Computers, Vol. 18(12), 1969, 1135–1137.

Vriend N., An illustration of the essential difference between individual and

social learning, and its consequences for computational analysis, Journal

of Economic Dynamics and Control,Vol. 24,2000, 1-19.

Vrakas D., Vlahavas I. PL., Artificial intelligence for advanced problem

solving techniques, Hershey, New York, 2008.

Whitely G. and Ligomenides P., GANet: A genetic algorithm for optimizing

topology and weights in neural network design, International Workshop

on Artificial Neural Networks, 1993, 322-327.

Werbos P.J., The Roots of Backpropagation: From ordered derivatives to.

Neural Neworks and Political Forecasting, John Wiley and Sons, New York,

1994.

Whitley D., Starkweather T. and Bogart C., Genetic algorithms and neural

networks: Optimizing connections and connectivity, Parallel Computation,

Vol. 14, 1990, 347-361.

Whitley D., Ranaa S., Dzubera J. and Mathias K. E., Evaluating evolutionary

algorithms, Elsevier B.V., Artificial Intelligence, Vol. 85, 1996, 245-276.

Williams R. and Zipser D., Gradient-based learning algorithms for recurrent

networks and their computational complexity, in Y. Chauvin and D.

Rumelhart, eds., Backpropagation: Theory, architectures, and

applications. NJ: Lawrence Erlbaum Associates, 1995, 433-486.

Yao S., Wei C. J. and He Z. Y., Evolving wavelet neural networks for function

approximation, Electronic Letters, Vol. 32, 1996, 360-361.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=148
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=148

References

189

Yao X., Evolving artificial neural networks, in Proceedings of the IEEE, Vol.

87, September 1999a, 1423-1447.

Yao X., The importance of maintaining behavioural link between parents and

offspring, IEEE Conference on Evolutionary Computation, 1997, 629-633.

Yao X. and Liu Y., EPNet for chaotic time series prediction, in X., Yao; J. H.

Kim and T. Furuhashi, eds., Selected Papers of 1st

Asia-Pacific Conference

on Simulated Evolution and Learning, Lecture Notes in Artificial

Intelligence, Berlin: Springer-Verlag, 1997b, 146-156.

Yao X., Evolutionary computation – Theory and applications, World Scientific

Publishing, 1999b.

Yao X. and Islam Md. M., Evolving artificial neural network ensembles, IEEE

Computational Intelligence Magazine, Vol. 3, 2008, 31-42.

Zirilli J. S., Financial prediction using neural networks, MA: International

Thomson Publishing, 1996.

Zurada J. M., Introduction to artificial neural systems, JAICO publishing

House, 1996.

