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Abstract

The subjects of perfect information games, machine learning and computational intelligence

combine in an experiment that investigates a method to build the skill of a game-playing agent

from zero game knowledge. The skill of a playing agent is determined by two aspects, the

first is the quantity and quality of the knowledge it uses and the second aspect is its search

capacity. This thesis introduces a novel representation language that combines symbols and

numeric elements to capture game knowledge. Insofar search is concerned, an extension to an

existing knowledge-based search method is developed. Empirical tests show an improvement

over alpha-beta, especially in learning conditions where the knowledge may be weak. Current

machine learning techniques as applied to game agents is reviewed. From these techniques a

learning framework is established. The data-mining algorithm, ID3, and the computational in-

telligence technique, Particle Swarm Optimisation (PSO), form the key learning components

of this framework. The classification trees produced by ID3 is subjected to new post-pruning

processes specifically defined for the mentioned representation language. Different combina-

tions of these pruning processes are tested and a dominant combination is chosen for use in the

learning framework. As an extension to PSO, tournaments are introduced as a relative fitness

function. A variety of alternative tournament methods are described and some experiments are

conducted to evaluate these. The final design decisions are incorporated into the learning frame-

work configuration, and learning experiments are conducted on Checkers and some variations

of Checkers. These experiments show that learning has occurred, but also highlights the need

for further development and experimentation. Some ideas in this regard concludes the thesis.

Keywords: Machine Learning, Games, Knowledge Representation, Knowledge Discovery, Par-

ticle Swarm Optimisation, Checkers, Coevolution, Computational Intelligence, Classification,

Game Tree Searching.
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Chapter 1

Introduction

1.1 Problem statement

One of the earliest game learning research endeavours is the work started by Arthur Samuel in

1953. His first paper [53], published in 1959, introduces a program that learns the weights of

a linear evaluation function. Samuel’s research objective was to demonstrate to his contempo-

raries that it is possible to write a program that has the ability to learn. Minsky’s paper of 1963

[43] shows that Samuel did achieve his objective. In the decades that followed, this work of

Samuel formed the foundation of many machine learning efforts. This thesis is no exception.

The key influence of Samuel’s paper on the current work is a challenge it submits. Samuel

insisted that more research effort should be expended on the problem of constructing the terms

of the evaluation function. The function terms used by Samuel’s learner were based on Checkers

literature and hand-coded using the method of trial-and-error.

The automatic construction of the terms of a function like Samuel’s, has not been an ob-

jective shared by many researchers in the game learning arena. Here, the focus turned towards

the construction of a world-class player, and search techniques proved to be an effective attack

on that problem. Neural networks has also become a popular structure for evaluation functions,

eliminating the need for linear terms. An exception is the work conducted by Michael Buro [10]

that examines the construction of complex terms from simpler ones.

This thesis describes the research conducted that considers Samuel’s challenge as a research

objective. The fundamental idea was to identify and work with elements that are more elemen-

tary than those developed by Buro. This approach necessitates the definition of a representation

that facilitates the construction of complex terms. This representation is the backbone on which

2

 
 
 



1.2. Objectives 3

a learning framework is developed. This framework embodies an approach that discovers the

terms of the evaluation function using as input a program that implements little more than the

rules of the game. In addition, this framework also takes on the task of optimising the weights

associated to the newly discovered terms. This task is not new, but the current research ex-

plores the use of Particle Swarm Optimisation and tournaments as an alternative approach to

find optimal values for those weights.

1.2 Objectives

The research approach followed to address the chosen problem is one that ensures an adequate

review of the game playing and game learning concepts, as well as the specialised learning

techniques chosen for the current study. The problem was divided into smaller objectives, and

each objective became a task in the research plan. These objectives are:

1. To provide an overview of game concepts and identify a particular class of games for

which the game framework needs to be developed. This class must be general enough to

ensure that the framework is widely applicable and complex enough to demonstrate the

effectiveness of the learning framework.

2. To provide an overview of the techniques employed by automated game players as well

as the information these players use. These insights describe the substance that must be

learned as well as the environment in which the framework would operate.

3. To introduce a knowledge representation mechanism in which game knowledge can be

captured. Clearly, this method must be able to capture the mentioned substance and be

conducive to automated learning.

4. To review the methods employed previously to discover knowledge and optimise weights

for game playing agents. The scope of this review should generally be restricted to meth-

ods related to the identified game class.

5. To define a method that induces the terms of an evaluation function. This method should

produce a structure that corresponds with the previously defined representation.

6. To apply PSO to the weight optimisation problem, giving specific consideration to the use

of tournament methods for this purpose.

 
 
 



1.3. Contributions 4

7. To define a learning framework that combines the developed methods into a coherent

learning process. This framework must be tested on game types that are included in the

class previously identified.

1.3 Contributions

In addition to describing a learning framework as it set out to do, this research has contributed

to each of the subjects it encountered.

The key contributions to the subject area of perfect information game playing agents include:

• The definition of a knowledge representation language that combines symbolic and nu-

meric elements. This language can be used to describe the knowledge of a large subset of

perfect information games.

• A new game tree search algorithm, called best-first shallow search that can search game

trees selectively. It produces better results than its forerunners, especially when the avail-

able knowledge is weak.

Contributions to machine learning:

• A set of algorithms that use ID3 to induce game knowledge from a large set of example

positions.

• Two post-pruning techniques that simplify the decision trees obtained from ID3. Experi-

ments are used to compare alternative combinations of these two techniques.

Contributions to computational intelligence:

• A new PSO algorithm, called tournament PSO, which uses tournaments to determine the

best particle in the neighbourhood and in the swarm.

• A review of the most popular tournament methods, and an experimental comparison of

the performance of these methods.

At the time of this writing, the contribution mentioned first in this list is the only contribution

published as a peer reviewed paper in an accredited journal. See [16] for the reference details

on this article. It describes the knowledge representation language.

 
 
 



1.4. Thesis outline 5

1.4 Thesis outline

The thesis consists of three distinct parts. The first part consists of chapters 2, 3 and 4 which

predominantly focus on the automation of a game-player. In these chapters the problem of

game playing is described and techniques that affect the playing of games are considered. In

the second part, chapter 5, 6 and 7 describe the learning problem and introduce techniques that

pertain to the learning process. In the final section, chapter 8 and 9, some experiments are

conducted with the learning framework as a whole and the conclusions derived from this study

are summarised. The subsequent paragraphs provide a brief summary the rest of the chapters.

Chapter 2 reviews fundamental two-player definitions and concepts used in chapters that

follow. Furthermore, the reasons for using games in research and the properties that are typically

used to classify two-player games are explored.

Chapter 3 provides a review of the knowledge types and the knowledge representation

schemes used by successful learning- and playing agents. It also proposes a new representa-

tion language for game knowledge that includes symbols and numbers. A precise definition of

this language is provided.

Chapter 4 considers the manner in which the agent applies knowledge during the search

of the game tree. A new search method called the best-first shallow search is presented and

evaluated.

Chapter 5 reviews machine learning methods applicable to the game learning domain. It

also introduces the learning framework. This framework has a cycle (called the macro learning

cycle) that consists of four stages.

Chapter 6 covers the discovery stage of the macro learning cycle. It provides an overview

ID3 and describes how this data-mining method is employed to discover game knowledge. Al-

ternative pruning methods are introduced and evaluated to identify the discovery strategy that is

most suitable for the learning framework.

Chapter 7 considers the optimising stage of the macro learning cycle. The particle swarm

optimisation (PSO) algorithm is described. A new form of PSO that uses tournaments is intro-

duced. Experiments in this chapter select the most viable option amongst alternative configura-

tions of the new PSO.

Chapter 8 is an empirical analysis of the performance of the learning framework. The game

of C is used as the subject for this investigation. The effect of some framework param-

eters on the learning performance is measured.

 
 
 



1.4. Thesis outline 6

Chapter 9 summarises the most important conclusions and contemplates opportunities for

research that would extend the work originated from this study.

 
 
 



Chapter 2

Two-player games

This chapter reviews fundamental two-player definitions and concepts used in chapters that follow. Fur-

thermore, the reasons for using games in research and the properties that are typically used to classify

two-player games are explored. Game convergence is such a property, and a new, more general defini-

tion of this property extends work done previously in this regard. Throughout the chapter, the perspective

remains on the influence the presented material might have on the definition of a learning framework.

2.1 Introduction

For centuries, two-player games continued to be a source of amusement to the human race. This

lasting interest can surely by attributed, at least in part, to the variety of games available. From

this variety many diverse strategies arise, such that a strategy that often wins any particular

game is seldom transferable to another game. Because every game is a different kind of puzzle,

many researchers found it best to choose a specific game as subject. Others, like David Fogel

[21, 22, 23] started with simpler games and turned their attention to more complex games as the

research progressed.

An automated learning process that can be applied to all two-player games has not yet been

discovered, and it is likely to remain unattainable for some time. This general problem can

be divided into smaller steps by considering layers of knowledge. Each layer builds on the

knowledge obtained by the previous layer. At the bottom layer, there is theplaying agentthat

has the knowledge of how to play the game. The next layer is thelearning agent; it needs to

know how to play, but also has knowledge on how to learn to play better. The third layer is

the learning framework; it extends the knowledge of how to learn a particular game to define

7
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a process by which other games of the same class can be learned.Finally, at the top of the

stack, thetwo-player game agentautomates the improvement of learning frameworks and the

development of new learning frameworks for other classes of two-player games. The current

work contributes to the research conducted at the second and third layers.

At the start of this chapter, Section 2.2 provides background on the terminology and the

concepts pertaining to automated game-playing. Then, Section 2.3 reviews the most important

drivers that motivate researchers to spend their time on the subject of games. Game playing

cannot be automated without search, and Section 2.4 highlights this important facet and consid-

ers the influence of search on the learning framework. Section 2.5 addresses the classification

problem by considering a few critical properties of two-player games. The final section of this

chapter provides a summary of the notable conclusions.

2.2 Game playing terminology and concepts

Fundamentally, a game is a set of rules. In atwo-player game, two participants compete in a

contest determined by the game rules. These rules define how the game starts, what the legal

moves are, when the game ends and who the winner is. In an abstract sense, game rules describe

allowable changes to thegame state. For board games, the game state is usually referred to as a

position. A legal positionis one that can be constructed by playing the game according to the

rules. Thestate-spaceis the set of all legal positions.

Three mutually exclusive sets cover the set of legal positions: the set ofinitial positions; the

set ofmiddle positionsand the set ofend positions. A game starts with an initial position and

it ends with an end position. Any legal position not in the initial- or end position set belongs

to the set of middle positions. Many popular games have only one initial position, but there

are exceptions. For instance, in T C the initial position is determined from a

balloted sequence of three moves [57] – and the set of initial positions has 144 elements. A

starts with each player in turn arranging 16 game pieces on the nearest two ranks on a C

board. In this game there are thousands of initial positions∗.

The outcome of a match is determined from the end position. A game in which the outcome

is either a win, a lose or a draw for each player is said to have arestricted outcome[14]. The

player’s goal is to make moves that force the outcome towards an end-game position in which

he wins. With respect to a player, the symbolL signifies the lose outcome,D signifies the draw,

∗See http://www.arimaa.com for the A game rules
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andW signifies the win of a match.

Using a position centric view, the rules of the game can be regarded as the input to a produc-

tion system that starts from an initial position and produces all the legal positions that follow.

Repeating the production, level by level, results in a tree structure with the initial position as the

root and end positions as leaf nodes. This tree structure is called agame treeand each level in

the tree is called aply [53]. Thebranching factoris a measure of the average number of child

nodes. The set of all game trees with an initial position as root is called thegame forest.

During the game, the nodes of the game tree is traversed and a path is constructed. This path

is called aplay-lineand it starts at the root of a game tree and extends towards the leaves of the

tree as the game progresses. Theactive game treeis the tree in which the play-line is found. The

active positionis the last node in the play line. Thepast positionsare the nodes that precede the

active position, and thefuture linesare all the paths in the game tree with the active position as

root.

For any given position, theactive playeris the player that must choose the next node in the

play line. The other player is called thepassive player. The player that is active at the first node

in the play line is called thefirst playerand the passive player for that node is referred to as the

second player.

2.3 Motivations for using games in research

The domain of two-player games presents a scientist in the field of artificial intelligence (A.I.)

with an artificial problem that has well defined rules and a definite goal. Even though the goal

and the rules are elementary, devising a strategy to win a non-trivial game is a complex task

that demands the use of intelligence. These qualities of game domains has been recognised as

beneficial to A.I. research since the late 1950’s [53].

The primary motivations for using games as a research tool support three different research

objectives. One objective aims to win tournaments and focus on creating the best player for a

particular game. Another objective aims to solve the game by producing an infallible strategy.

The third objective regards games as ideal learning domains, and aims to investigate machine

learning methods.

When compared to research projects conducted to create winning computer players, projects

that apply games to the problem of investigating learning methods are less prevalent. There is

reason to expect that a solution to the latter coincides with progress made to the former; and
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notable contributions have been made in this regard. However, it is also possible for compe-

tition matches, especially public exhibitions, to stifle research progress. In Section 2.3.1 the

contributive as well as the prohibitive aspects of these matches are explored. The objective to

solve a game is discussed in Section 2.3.2. Section 2.3.3 considers the factors that make game

domains ideal for automated learning.

2.3.1 Winning public tournaments

Artificial intelligence is convincingly demonstrated when the behaviour of the artificial agent is

understood by the audience. Therefore a game playing program that beats a human opponent

is ideal for such displays. Annual tournament matches against C playing agents have been

held since 1970 [15]. In 1992, the American Checkers Foundation and the English Draughts

Association even established a Man-Machine World Championship title for C [57]. The

computer C match of 1997 that played off Deep Blue against Gary Kasparov (the world

C champion since 1985) is arguably the most celebrated achievement in A.I. history.

The desire to perform well in the spotlight is a strong motivation: potential returns include

monetary gains, publicity and prestige. However, the famous Deep Blue vs. Kasparov match

and other like-minded efforts had a less than expected impact on the science of A.I. This is

partly because exhibition programs implement techniques that many A.I. researchers regard as

uninteresting. Public exhibitions encourage small, short-term projects that focus on the player’s

performance, while A.I. research attempts to find solutions to problems that require a longer

term commitment. Some specific issues have been highlighted with regard to C program-

ming endeavours [15]:

∗ While they were chasing deadlines, the neglect of C programmers to sell their ideas

contributed to the diminution of the esteem once enjoyed by the game of C in A.I.

research.

∗ Experiments conducted solely to test the strength of the player lead to a reliance on results

of which the underlying theory was not always understood. Even though a lot of research

was conducted, there is little theory of C knowledge and its interactions with search.

∗ High pay-off to the winner eradicates incentives for the dissemination of research results.

The tendency is to hold back on ideas to maintain a competitive edge, leaving each team to

discover principles that are already known to other teams.
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Nonetheless, the exploration and definition of methods to create champion game software

has become an established field with many research challenges. Even in C, human master

players currently beat the best C programs more often than not [62]; and the next frontier

is the game G. Research endeavours typically focus on high performance implementations

that take advantage of specific hardware architectures and multiprocessor platforms. This com-

mendable approach is likely to reassert itself as the most important factor in the next generation

of champion game playing agents.

2.3.2 Solving the game

A game is solved if a playing agent is available that is guaranteed to win from a position where

a win can be forced. In other words, the puzzle of winning the game against any opponent is

solved. After a game is solved, it is possible to determine whether the game is fair. For example,

T-- is trivial to solve, and it is not fair. Except for the uninitiated, everybody knows the

strategy that makes it impossible for the second player to win a game of T--.

A precise definition of what it means to solve a game is based on an irrefutable property of

a game position, called thegame-theoretic value. This value is computed in a retrograde search

that starts with the end positions in the game tree. A precise definition of the game-theoretic

value follows.

In restricted outcome games, every end position determines the outcome of the game. For

end positions this outcome is the game theoretic value. The value is an element from theout-

come setO ≡ {W,L,D} that designates a win (W), lose (L) or a draw (D) for the active

player. For an initial and middle position the game theoretic value isW if it is in a play line in

which the active player can force a win. Conversely, if the passive player can force a win from

a position, the game-theoretic value of that position isL. If neither player is able to secure a

winning outcome, the position leads to a draw, and has the game-theoretic value ofD.

Formally, let the domainSg be the state-space of gameg andCg : Sg → {e | e ∈ Sg} be

a set function that determines the positions that may legally follow from another. Then, the

game-theoretic valuefor the active player can be defined as the recursive functionθg : Sg→ O:
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θg(s) =






For the base step (s is an end position):





L if the active player ofs loses

W if the active player ofswins

D if s is a draw position

For the recursive step (s is not an end position):





L if ∃e ∈ Cg(s) | θg(e) =W

W if ∀e ∈ Cg(s) , θg(e) = L

D if (@e ∈ Cg(s) | θg(e) =W) ∧

(∃e ∈ Cg(s) | θg(e) = D)

(2.1)

Although the computation is simple, the size of the state space for non-trivial games makes

it impossible to compute the game-theoretic value for all positions. However, as the availability

of faster hardware and larger memory sizes increases it becomes slightly easier to compute these

values.

From the game-theoretic value follows a definition in Allis [1]: A game isstrongly solved

when the game-theoretic value for both players can be determined for any legal position using

reasonable computing resources. Without the reference to “reasonable resources”, any two-

player game is strongly solved, because the game-theoretic value can simply be determined

using Equation 2.1. A number of games have been strongly solved: these include C-

, Q, NM’M, G-M and A [72]. Because of the end-game database,

Chinook strongly solved the end-game of C [55].

The termperfect playis used to describe a move decision that ensures an outcome that is

no less than the game theoretic value. The weakness of perfect play is that once it has been

determined that a position has been reached with an outcome of a draw, there is no reason to

continue playing. But, humans are not perfect players, and under draw conditions, the playing

agent would do well to select a move that maximises the likelihood that the opponent makes

an error. Schaeffer [57] highlights this situation by introducing a stronger definition: A game is

ultra strongly solvedwhen it is strongly solved and a strategy is known that improves the chance

of achieving more than the game-theoretic value against a fallible opponent.

This aim to solve a game ultra strongly is interesting, but in practice the playing agent needs
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a fallible opponent that plays very close to perfection before this ability can be tested. Even

amongst master players, these individuals are extremely rare.

2.3.3 Investigating methods in machine learning

Arthur Samuel was the first to use game playing to investigate machine learning methods. He felt

compelled to win over his contemporaries to the notion that a computer program can learn [53].

With this end in mind, he set out to develop a C program that uses previous experience

to make a move decision. As attested by the praise of another prominent A.I. researcher of the

time, Marvin Minsky, Samuel’s program proved to be a convincing demonstration of machine

learning [43].

There are four aspects of game playing that make them suitable for game learning: 1)

game playing is non-deterministic in the sense that a practical algorithm that always wins is

not known; 2) there is a definite goal - that is to win the game, and 3) the learning process

is confined to a countable set of known rules; 4) it is easy to measure the performance of the

learner.

Many real-world activities can be related to game playing; such as making business deci-

sions in a competitive environment, deciding which shares to buy at the stock exchange, and

so on. It is then reasonable to suggest that learning methods obtained from game based re-

search could be applied to many real-world problems. However, there is another perspective:

automating the learning process in the simplified game-world is a prerequisite to the automation

of learning processes to real-world problems.

Even the strongest playing agents can benefit from, and contribute to machine learning re-

search. In lieu of the fact that game knowledge is difficult to obtain, Jonathan Schaeffer [55]

focussed on the development of a large C position database. This database stored an

extensive set of end-game positions with their evaluation values. These values were obtained

through a retrograde search that starts from the end positions. This decision proved to be well

founded – his program, called Chinook, became a world-champion player. Essentially, this

database strongly solves the final end-game of C. The next frontier for Chinook is to

solve that part of the end-game ultra strongly; that is to maximise the chance of winning against

a fallible opponent from a losing or draw position [57]. A solution to this problem is likely

to require some form of machine learning because the playing agent has to obtain and employ

knowledge regarding the current opponent’s strengths and weaknesses during play.
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2.4 Knowledge and search

Given a set of positions that follows from the active position, the playing agent uses game

knowledge and look-ahead to identify the most promising move. Look- ahead involves agame

tree searchto find a position that is likely to lead to a win. In order to play a game within

reasonable time constraints, it is impractical to use search exclusively. But, because of the

longer term tactics required to win, knowledge exploitation on its own is also an insufficient

winning strategy. For these reasons, modern playing agents apply both knowledge and search.

The general relationship between knowledge level and search effort is illustrated in Figure

2.1. The vertical axis shows an increase in knowledge (K), and the horisontal an increase in

search (S). Three performance levels are in order of increasing performance:p1, p2 and p3.

A playing agent at levelp1 can improve its playing performance to levelp2 by increasing its

knowledge or by spending more time on search. Better knowledge requires less searching, and

more search makes up for weak knowledge.

K

S

p1
p2

p3

Figure 2.1: Knowledge and Search

The curve drawn in Figure 2.1 is a generalisation that suggests the power of knowledge is

roughly equal to the power of search. However, this suggestion is imprecise. Deciding on the

correct balance between the time spent to exploit knowledge and the time spent on searching is

arguably the most critical decision when implementing a game playing agent.

Deeper search is achieved by optimisation and improving the search algorithm. Optimal

search performance is achievable by architecture dependent implementations of algorithms that

take advantage of specific multi-processor systems. However, the amount of search conducted

during game play remains a function of time. This function is unfortunately not linear because

the number of nodes grow exponentially as the search depth increases. In addition, experimental

results [55] suggest that the incremental improvement brought about by searching one more ply
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declines as the search goes deeper. When the point of diminishing return is reached, or the

exponential growth becomes too great, the only way to gain playing performance is to improve

the knowledge level of the agent.

The level of knowledge is improved by increasing the volume of the knowledge or by in-

troducing more complex knowledge structures. Large volumes and complicated structures slow

down the knowledge driven evaluation process. Another pragmatic hindrance to the use of

knowledge is the difficulty of acquiring the knowledge that the agent should use.

Clearly, a learning framework should improve the accuracy as well as quantity of the knowl-

edge used by the playing agent. Such a framework should be able to collect and represent com-

plex knowledge. Ideally, the framework should build knowledge that remain useful when deeper

searches are conducted by the playing agent.

2.5 Classification properties of games

Two-player games are available in many forms. There are two reasons to consider these forms

as part of the current research. The first is to help with the selection of a subject domain; and

the other is to assess the learning framework using games that are not too similar to the subject

domain. This section introduces three properties that can be used to classify two-player games.

The focus of the first property is the information available to the active player. The second

property is called convergence, and it considers the changes to the game tree structure as the

game progresses. The third property is the playing complexity of the game.

2.5.1 Information

In a game of pure chance, the active player has no control over the outcome of the game, and no

skill is required to win†. As the level of control available to the active player increases, the ability

of the player has more influence on the game outcome. There are two factors that determine the

level of control: the freedom of choice, and state visibility. From these two factors, Schaeffer

[56] distinguishes three classes of games: those with elements of chance, those with hidden

information, and those without chance or hidden elements.

Games with an element of chance are calledstochastic games. Chance influences the free-

dom of choice of the active player in two ways. In the first case, chance places constraints on

the states that may follow the active state. The active player does not have at his disposal the

†An example of a board game of chance is the game snakes-and-ladders
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information that describe the future options available to him or to his opponent. Examples of

these games include M, L and B. The second way in which chance in-

fluences the freedom of choice is when it determines the final state of the move after the player

made a decision. In this case, the active player lacks the information regarding the result of his

move decision. A good example of this type of chance, is found in the gameRisk. Regardless

of the way in which chance introduces uncertainty into the game; it always places a constraint

on the information available to the active player.

In hidden information games, the information is deliberately withheld by keeping some

part of the active game state from the active player. In this case the active player is unable to

determine the complete game state that follows the current state; rather, he decides how the

visible part of the game state changes.

Many games have hidden as well as stochastic elements, and one can add another classifi-

cation calledhidden-stochastic gamesif the need arises. In the literature, games with hidden

information, stochastic elements, or both, are calledimperfect-information games. Most card

games fall in this category. For example, in R, the order of the cards in the closed pile

provides the element of chance, and the cards held by his opponent is hidden from the active

player. However, the active player can decide which card to dispose from his hand, and in so

doing, he decides how the part of the game state that is known to him will change.

In perfect-information games, the active player has access to the full game state and there

is no element of chance to consider. Examples of perfect-information games include C,

C and O.

Strategies that win perfect-information games are unlikely to be transferable to imperfect-

information games, andvice versa. To achieve optimal play in a perfect information game, a

pure strategymust be followed. In such a strategy, the aim is to select a move that is guarenteed

to lead to a win. For optimal play in an imperfect information game it is best to follow amixed

strategy. In a mixed strategy the aim is to choose a move from a set of moves, where every

element in the set has a non-zero probability of leading to a win [2].

Two reasons support the assertion that pure strategies should be preferred when defining

a knowledge based learning framework. The first reason is that a pure strategy demonstrates

skill with more conviction than a mixed strategy. It is less likely that the winner in a perfect

information game is considered lucky; therefore a pure strategy learner shows improvement in

skill levels with greater accuracy. The second reason is that it is easier to acquire knowledge
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when a pure strategy is sought. In a stochastic game, a good move followed by bad luck, could

be classified by the learner as a bad move. In hidden information games, the move decision is

based on an assessment of what the hidden elements contain. A good move may be overlooked

because of an incorrect appraisal of the hidden state information. In perfect information games

the consequence of a good move (or a bad move) is more predictable.

2.5.2 Convergence

Another property that can be used to classify games is that of convergence. This property, intro-

duced by Allis [2] identifies three classes: converging games, diverging games and unchange-

able games. The three classes depend on the frequency at which a particular type of move,

called a converging move, occurs; and how that frequency changes as the game progresses.

A conversionis a move from positionp to positionq such that no position in the play-line

leading top can occur in any of the future lines ofq. In other words, a conversion changes

the game state such that the active state cannot be obtained later in the game. For most games,

the main conversions involve adding or removing pieces from play, and Allis [2] provides a

definition that takes these moves into account. However, many games have conversions that

do not alter the number of pieces in play; such as moving a pawn in C and a checker

in C. Therefore, a new definition of a converging game is introduced. Because this

definition includes all conversions, it can be applied to more games and as such, it is more

general than the definition supplied by Allis.

Definition 2.1: Conversion space. The conversion-spaceof position p is the set of all

conversions available in the future lines ofp. Theconversion potentialof p is the cardinality

of its conversion space. Note that every conversion decreases the conversion potential of

the game. That means, every game with conversions has a gradual decrease in convergence

potential as the game progresses.

Definition 2.2: Converging game.A converging gameis one in which the average branch-

ing factor of the positions with the same conversion potential decreases as the conversion poten-

tial decreases. If the average branching factor for a game increases as the potential decreases,

it is a diverging game. A game that does not diverge or converge is anunchanging game. In

C all moves are conversions, except for the moves of kings at the end-game. Generally,

the branching factor decreases, andCheckersis a converging game. O and G are diverg-

ing because every piece placement is a conversion that increases the future options available to
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the players.

For automated learning, there is no general reason to prefer either diverging or converging

games. However, it is more practical to implement an end-game database for converging games.

Thus, if a learner is expected to learn open or middle game strategies, it would be more reason-

able to choose a converging game as the subject domain. End-game databases are available for

C, whereas the number of end positions in Gmakes it close to impossible to create an

end-game database of any practical use.

2.5.3 Complexity

Perfect-information games are similar in many respects, but these games cover a wide range of

complexity. One of the simplest games to master is T--, and one of the most challenging

games is the game of G. On the complexity scale, somewhere between these two extremes lie

the popular games of O, C and C. The advent of world class playing agents

brought about innovative new games that are purposefully developed to be difficult for present-

day approaches to automate game playing. Examples of these game are O and A.

Complexity, especially the complexity of a game, can be a subjective measurement. Many

may think of C as a simple game, but to play this game at grandmaster level requires

remarkable skill and talent. One of the best players of our time, Dr. Marion Tinsley, was able

to play at a level of 99.6% perfection [55]. This means he would make a less than perfect move

only four times out of a thousand.

An objective measurement of complexity seems to require an assessment from the perspec-

tive of a grandmaster: that is to consider the complexity of achieving perfect play. Given two

games,A andB, one can consider gameA to be less complex than gameB if it takes less effort

to learn how to play gameA perfectly than it would to learn how to play gameB perfectly. This

does not remove the notion of subjectivity from the definition, but a clear line can be drawn

between those games that are played perfectly by a computer and those that are not (see Section

2.3.2). Games that are played perfectly could be considered less complex than those that are not

solved.

In an attempt to obtain a more precise and more objective measurement, the assumption that

complexity is simply a function of the number of positions in the state-space seems reasonable.

This suggests that a larger state-space is evidence of a more complex game. Surprisingly, Allis

et. al. [3] show that this assumption is incorrect using a trivial variant of G. This variant is
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played on a 19× 19 board, each player moves by placing a stone on an empty square, and it

assigns the first person to fill 181 squares as the winner. In this game there are 10170 positions

in the state-space, but the game is trivial to solve.

Later, Allis [2] identifies two dimensions that contribute to a complete definition of com-

plexity: space complexity and decision complexity:

∗ Space complexity: This is the total number of legal game positions reachable from any

initial position of the game (i.e. the cardinality of the state-space). The space complexity of

a game can be approximated by obtaining an upper bound and then sharpening that upper

bound through the elimination of illegal positions.

∗ Decision complexity: This is the number of nodes in the game forest. The decision com-

plexity is typically much larger than the space complexity because of the duplicate positions

in the game tree. The decision complexity can be approximated using the average branching

factor and the average game length. This branching factor can either be constant or a func-

tion of the depth of the game tree. Allis suggests using tournament games from which the

averages can be observed. This approach provides a method in which the decision complex-

ity of games that have tournaments can be compared.

Measuring the complexity of the game to which an automated learner is subjected is an

important factor when the learning ability of dissimilar learning agents are compared. As a

perfect-information game, the game of C is a moderate choice. It has not been solved,

and therefore it cannot be considered simple. On the other hand, a world-class computer player

has been developed, indicating that it is one of the less complicated games from the unsolved

set.

2.6 Conclusion

The three drivers for using games in research,i.e. the creation of a winning agent, the solving of

a game and the investigation of machine learning methods, provide a platform for cooperation

amongst researchers. However, endeavours that compete to create a winning playing agent can

lead to the opposite. The driver of the current research falls in the third category: it investigates

the plausibility of establishing a learning framework for two-player games.

A learning framework that aims to obtain the knowledge required to improve the playing

performance of an automated agent cannot discard the importance of game tree search during
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play. Search serves not only to amend shortcomings in knowledge, but it is also needed to

develop (and to counter) longer term tactics during play.

Perfect-information games are more predictable than imperfect information games; and

therefore are more suitable for a knowledge based learning agent. Games that converge has

fewer moves in the end-game and are therefore more prone to have end-game databases. This

leaves the possibility of incorporating such a database to develop opening and middle game

knowledge.

The complexity of a game is another important consideration when choosing a subject do-

main. The game of C is neither too simple, nor is it an example of the most complex

games available; and it is a converging game. Consequently, it has been chosen as the initial

domain for which the learning framework will be developed.

In the next chapter, the problem of representing the knowledge for two-player board games

is explored in detail, and a new representation language is developed. C is used to

demonstrate how the new language can be used to express game knowledge.

 
 
 



Chapter 3

Representing game knowledge

In the previous chapter, an introduction to the broader concepts of two-player games were provided. This

chapter builds on those concepts by providing a review of the knowledge types and the knowledge repre-

sentation schemes used by successful learning- and playing agents. It also proposes a new representation

language for game knowledge that includes symbols and numbers. A precise definition of this language

is provided.

3.1 Introduction

Arthur Samuel’s C player [53] uses hand-crafted heuristics to decide on the next move,

but he considered it a reasonable research objective to construct a program that could attain

useful knowledge automatically. Since then, it became clear that a world-class playing agent

could be created by improving the search techniques, and the quest for knowledge become

a secondary concern in the field (see Section 2.3.1). However, a close interaction between

knowledge exploitation and tree search is required during game play (Section 2.4). Before the

knowledge can be exploited it must be acquired and presented to the playing agent in a usable

format. If this format, or representation scheme used by the playing agent is also employed by

the learning agent, a seamless transfer of knowledge from learner to player is guaranteed. This

chapter explores the aspects of representing game knowledge in this way, and defines a new

representation scheme that combines symbolic components with numeric elements.

Section 3.2 starts this chapter by considering the aspects that influence the choice of knowl-

edge representation. In order to improve its ability, a playing agent could employ different types

of knowledge. These types are described in Section 3.3; and one of these types are selected
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for the game learning framework. A question closely related to representation considers the

foundation from which the learning agent should gain its knowledge. Section 3.4 identifies the

smallest components of representable knowledge. Using these components, this section also

introduces the zero-knowledge concept.

Section 3.5 defines an evaluation function and describes precisely how this function will be

used by the playing agent. A term in this function encapsulates a knowledge component, and

Section 3.6 describes a novel feature language used to express these terms. Finally, Section

3.7 provides a discussion on the new language, and reviews the most important findings of this

chapter.

3.2 Representation considerations

In order to choose a representation language for learning, three important aspects must be care-

fully considered: the definition of the learning problem, the expected quality of the solution and

the learning method. In the subsequent paragraphs, these aspects are addressed.

The learning problem

The task of a learning agent (defined in Section 2.1) is to gain the knowledge for the playing

agent. In order to gain this knowledge and to make it usable to the playing agent, a clear

description is required of the composition of this knowledge. The usefulness of this composition

is determined by the number of games to which it can be applied. As a starting point, perfect

information games represent the superset of games to which the knowledge must be applied (see

Section 2.6). This superset is refined by placing two more constraints on the games. The first is

that the game world consists of a countable number of game pieces, and the second constraint is

that each piece in play could find itself in no more than one of a countable number of squares∗.

The subset of perfect information games that satisfies these constraints is referred to astwo-

player board games. This subset forms the subject domain on which the learning framework is

founded; and for which the representation scheme is required.

The problem of learning is to improve the skill by which a playing agent makes move de-

cisions through the acquisition of knowledge. Established methods to automate move decisions

presuppose some function that obtains a numeric evaluation of a game position. Using this func-

∗Actually, the wordplaceswould be more precise. But most known games have squares; and this association to
squares simplifies the discussion a little.
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tion, the problem of the playing agent is conceptually reduced to choosing the game position

with the highest evaluation; and the problem of the learning agent is to obtain such an evaluation

function. The conclusion is that the representation method should incorporate the notion of a

function that facilitates the numeric comparison of game positions.

The quality of the solution

The quality of the solution is a measure against an expected outcome. The expected outcome of

the envisaged learning process is a player that has shown an increase in winning performance.

In addition, there is also an expectation that the knowledge should be comprehensible. The

comprehensibility of knowledge relates directly to the chosen representation method. Alterna-

tives fall into two broad categories: black box methods and knowledge oriented methods [37].

Theblack boxmethods are difficult to interpret and are less comprehensible. The use of neural

networks falls in this category. Theknowledge orientedmethods are easier to comprehend, and

symbolic representations such as PROLOG clauses fall within this category. Some researchers

from both of these categories aim to improve the comprehensibility of learned knowledge. In

1988, Michie [42] identified three broad criteria that can be used to classify the comprehensibil-

ity of the representation method used by a system:

∗Weak criterion.The system uses sample data for improved performance of subsequent data.

This criterion is met by all approaches to machine learning, including the black box ap-

proaches.

∗ Strong criterion.The weak criterion is satisfied and the system can communicate its updates

in explicit symbolic form. In this case, the machine is able to present new information in a

form that makes use of symbols.

∗ Ultra-strong criterion.The strong criterion is satisfied and the system can communicate its

updates in an operationally effective form. The information presented by the machine must

be usable by a person without the aid of a computer.

Note that Michie’s definition of the strong criterion does not exclude the use of numbers,

but it excludes a representation that has no symbols. If the ultra-strong criterion is met for game

knowledge, humans will be able to learn how to improve their play by inspecting the knowledge

produced by the program.
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The current work aims to produce a learning solution that satisfies the strong criterion. Con-

sequently, the learning agent should use a representation that includes symbols; and it should be

able to communicate updates to its knowledge explicitly.

Learning method

The third consideration when choosing a representation is the learning method. For the current

study, this learning method is a learning frame that is introduced in chapters that follow this

one. However, it would not be practical to define a representation without (at least) a conceptual

view on the application of this framework. Conceptually, the learning framework consists of

two learning steps. The first step discovers the symbolic knowledge from which a function is

composed. The second step obtains optimal values for the numeric weights that is contained

by this function. These two steps form part of the greater four stage iterative process of the

framework (described in Chapter 5).

The framework places an important constraint on the representation: it specifies that the

representation should contain symbolic as well as numeric elements. However, as the current

chapter unfolds, it quickly becomes clear that such a representation is ideal for game knowledge.

One could therefore conclude that the method is defined for the language, and that the language

does not follow from the method. This assessment is not entirely accurate. It is entirely possi-

ble to define other representation schemes that employ both symbols and numerics but use the

same conceptual framework for learning. Also, an alternative learning framework that uses the

representation scheme provided in this chapter could be developed by another researcher in the

field. But without the concept of method, the concept of language would have no application;

and without the concept of language, the concept of method would have no purpose. In other

words, theconceptsare related; but the realisation of these concepts requires the language to be

fully developed first, then the learning method can be detailed and implemented.

In this case, the conceptual framework requires the representation scheme to provide a sep-

aration between the symbolic and the numeric elements. This separation should allow symbolic

elements to be obtained with little regard to the value of the numeric elements. Furthermore, the

alteration of the values of the numeric elements should not change the semantics of the symbolic

elements; allowing weight adjustments during optimisation with little regard to the meaning of

the symbolic elements.
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3.3 Types of game knowledge

The learning process can be regarded as a process of gaining knowledge. In this section a brief

overview of the types of knowledge available to two-player game programmers is provided.

It is necessary to select from the available types because each type has a different application

and is likely to lead to a different representation. In this section, a commitment is made to the

knowledge type that is considered to be more fundamental.

To demonstrate what is meant bymore fundamental, consider the activity of learning how

to multiply. If the learner knows how to add, multiplication is easier to grasp - this is because

multiplication can be regarded as a sequence of additions. One can consider the knowledge of

addition as a component of the knowledge of multiplication. In this sense, addition is more

fundamental than multiplication.

The source of the knowledge used during the game play provides a primary classification.

Knowledge that was available when the game started is calledstatic knowledge, and knowledge

gained during game play isdynamic knowledge. Dynamic knowledge cannot replace static

knowledge. The role of dynamic knowledge is to augment static knowledge: it provides addi-

tional information that influence a largely static knowledge driven decision process. Of these

two, dynamic is regarded as less fundamental, and is therefore not chosen.

An example of dynamic knowledge is a set of rules that is used to represent the computa-

tional model of the opponent. Each time the opponent makes a move these rules are updated.

Schaeffer [55] suggested the use of such an opponent model to improve the outcome of a drawn

or lost game against a fallible opponent. For instance, a game can be changed from a draw to a

win, by employing a tactic that is likely to be more difficult for a particular opponent to counter.

Static knowledge is based on facts that do not change during the game. However, the exclu-

sive use of this knowledge does not imply that the computer player will make the same move in

the same situation because the selection algorithm could be non-deterministic. However, with

static knowledge, the performance (i.e. the average number of wins) against the same opponent

will remain constant.

It is notoriously difficult to gather static knowledge from human experts. A solution to

this knowledge acquisition bottleneckis to provide a mechanism for the program to learn this

knowledge for itself. In general, this goal is elusive, but there are notable successes in the

gaming domain. For instance, Logistello, an O program that plays better than any human,

used self-play to obtain values for parameters that choose which one of 11 play-patterns to apply.
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The patterns themselves were supplied to the program. Another program, developed by Gerald

Tesauro, called TD-Gammon, combined self-play and temporal difference learning to train a

neural net. The result was a backgammon game comparable to human champions [67].

Static knowledge is further divisible into two subtypes:database knowledgeandheuristic

knowledge.

3.3.1 Database knowledge

An advantage the machine has over its human opponent is the ability to use vast amounts of

information in a database. The size of the available memory has grown considerably in recent

years, enabling game playing programmers to use larger databases. The reigning C

champion, Chinook [57], is a playing agent that employs database knowledge extensively. It

uses three different databases: an opening book, an antibook and an endgame database. Each

one solves a different problem.

Theopening booksolves the problem of strategic planning. Strategic planning is a natural

ability of human players, but it is not easy to automate. A weak opening is bound to end in a

lose, especially when the program plays against a master player. The opening book is a library

of known opening lines, and the planning problem is reduced to making the best choice from

this library. Chinook has a large opening book that contains opening lines collected from the

C literature. These opening lines have been subjected to automatic verification which

resulted in hundreds of corrections and also in some refutations of major lines of play.

The antibook is needed when the opening book is automatically extended. Through self

play, Chinook searches for new opening lines and it extends the opening book. It often finds

interesting opening innovations, but from the C literature, some of these new opening

lines are known by human players to be losing. The opening lines that should be avoided are

part of the antibook. Using the antibook, Chinook can play its own openings while avoiding

play-lines known to be losing.

The largest database Chinook uses is theendgame database. This database contains the

game-theoretic valueof every position with eight or fewer pieces on the board (about 4× 1011

entries). The game-theoretic value is the result of an exhaustive search that marks a position as

either won, lost or drawn. When perfect players compete, it is not possible to do better than the

game-theoretic value in any future play-line that follows from the computed position. Using the

endgame database, Chinook is able to announce the result of a game within 15 moves of the
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start [54].

Database knowledge effectively shrinks the problem space. At the start of the game, the

program selects only from positions in the stored opening lines, not from all possible moves.

Although the problem of selecting the opening line is significant, it is arguably easier than

implementing a program with the ability to do strategic planning. The endgame database prunes

the game tree: the outcome of the game is determined when a position in the endgame database

is reached, and not when an end position is reached. If the opponent is fallible, the program

could attempt to improve the outcome from a lost or drawn play-line. But, when it finds a

winning play-line, the opponent cannot change the outcome.

Extending the database, especially the opening book is a form of learning. This extension

process requires external knowledge because it is impossible to verify the final outcome of an

opening line. In order to decide which opening line is better, the last position in the candidate

lines can be compared. This comparison requires an evaluation that employs knowledge that is

more fundamental than database knowledge. This type of knowledge is discussed next.

3.3.2 Heuristic knowledge

Theheuristic knowledgeemployed during game play is based on the premise that characteristic

features of a position can be used to choose the position that is more likely to lead to a win than

the other positions in a set. In the sections that follow features are explored in more depth, but

for now it suffices to consider a feature as a function that divides the state-space into two parts:

those positions on which the feature is present, and those that do not exhibit the feature. For

two-player perfect information games, there are two dominant approaches to represent and use

heuristic knowledge: artificial neural networks and static evaluation functions.

Artificial Neural Networks

The development of training procedures for multi-layer neural networks has been the most im-

portant step on the road leading to automatic feature discovery. In a network, the nodes in the

hidden layers represent features. Typically, the training of hidden layers is completely uncon-

strained and it is unclear what concepts will evolve. Three primary design problems influence

the knowledge representation scheme of the neural network: encoding the input, the network

topology and the meaning of the output.

In game playing programs, the input is the position and the network is provided with an
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encoding of the position to evaluate. In many cases, the position is translated directly using

trivial encoding methods, such as a bit-string representation for each square. In the C

domain, a program called Anaconda is a representative example [12, 11], and it does not use a

trivial encoding. Anaconda uses a neural network with 5046 weights, and provides as input, the

position presented in a variety of spatial forms [14]. This program achieved expert play levels,

and it was trained from no game knowledge other than the game rules.

The topology is defined by the hidden layers and the connections in the network. The num-

ber of nodes and the number of layers has a direct influence on the number of inter-dependencies

that can be represented by the network. However, the optimal configuration for a particular

problem is not known, and usually a commitment to a topology is made after a number of

experiments.

It is also possible to discover the configuration of the network automatically. Fogel [21]

developed a learning agent that discovers the number of nodes in the hidden layer of a neu-

ral network used by a T-- player. In his program that learned O, Moriarty [45]

evolved the entire network topology using a genetic algorithm. His learning agent played tour-

naments against a number of fixed playing agents during training and it discovered the concept

of mobility†. After this discovery, the evolved player was able to win 70% of the games played

against a 3-ply search program that used an evaluation function without mobility features.

The third design problem is a decision of how the output should be represented. A direct

approach to use the output of the network is to output a single value that is compared with the

output of another position to decide which position is more likely to lead to a win. This has been

used by Franken and Engelbrecht in their C program [25]. Anaconda uses this output in

a minimax search [14]. In an alternative approach, Moriarty’s Othello program used a network

that has 64 output units, one for each square on the board. The unit value indicates the strength

of the suggestion to move into that square. The neural network of Fogel’s T-- player

selects the target square that is most likely to lead to a win.

The training of neural networks has been the focus of many machine learning research en-

deavours. A flagship contribution in this respect was temporal difference learning [67]. TD-

Gammon combined self-play and temporal difference learning to train a neural network. The

result was a B player that could challenge human champions [54, 67]. The appli-

cation of evolutionary methods to train neural networks is also an active research area. For

†A tactic that aims to limit the opponent’s choices
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instance, Anaconda uses co-evolution as a learning mechanism.

The primary reason for not using neural networks in the current research has been explained

in Section 3.2. However, for typical game playing programs, the comprehensibility of the knowl-

edge is far less important than the ability to play well. For this reason, neural networks will

continue to be an integral part of many future computer game players.

Static Evaluation Functions

A static evaluation function is used to compare positions. It has the set of legal positions as

domain, and it calculates a floating-point number called the position’sscore. Usually, evaluation

functions are linear and have the form
∑

wi × fi where eachfi quantifies some feature of the

position, and eachwi is the weight assigned to the feature. The value ofwi indicates the relative

importance of the featurefi. The feature with the highest weight is considered to be the most

important.Evaluation function tuningis the process of determining weight values that produce

an optimal function and it is the most extensively studied learning problem in game playing

programs [27]. For evaluation functions, the knowledge representation scheme is affected by

two design considerations: feature design and the evaluation model.

Samuel [53] explicitly coded his features and based them on a study of C literature.

In addition to the literature, Chinook incorporates knowledge acquired from Martin Bryant, a

C expert [55]. Existing source code is another source of heuristic knowledge. The hand-

crafted knowledge for Fogel’s C player was obtained from an inspection of open source

C programs [23].

Instead of hand-coding all the details explicitly, Buro used first-order predicate calculus to

express the features of the evaluation function he used in GLEM (generalised linear evaluation

model) [10]. Compositional representations, such as Buro’s are more suitable for knowledge

discovery because new features can be constructed by abstraction, regression or specialisation

of existing features [27].

Two perspectives on the mathematical model implemented by the evaluation function (i.e.

the meaning of the score) lead to two different optimisation strategies: move adaptation and

value adaptation [9]. Themove adaptationstrategy aims to mimic moves made by experts. In

this case the actual score is not important, as long as a move that is more likely to be chosen by

the expert has a better score than a move less likely to be chosen. Thevalue adaptationstrategy

aims to accurately measure how well a position fits a specific model. For instance, in a model
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where the evaluation function is defined to predict the outcome, a higher score could indicate

that a position has a greater chance of winning.

As a game progresses from its opening and middle game to the endgame phase, the required

set of features to make an optimal decision does not remain constant. Therefore, the ideal

evaluation function cannot remain the same throughout the game’s phases. One way to achieve

this goal, is to create a different function for each game phase. This was done for C

and for Othello [57, 9]. Chinook’s evaluation function has 25 heuristic features and four phases.

Each phase has its own set of weights. For O, the disc count‡ was found to be an adequate

measure for the game phase, so the number of phases is the same as the number of moves in an

Othello game.

Phased functions introduce a problem of their own. During search, the scores from different

evaluation functions are compared to find the optimal move. For the comparison to work, a

normalisation method is needed to ensure that a score from one function has precisely the same

winning chance as the same score from another function. For example, in C, a small

advantage in the opening should outweigh larger advantages in the endgame. This normalisation

problem arises only when the search is deep enough to transcend phase boundaries. In Chess

programs, the search depths are such that the search does not easily cross phase boundaries, and

the issue of game phases and normalisation is less apparent [55].

A function optimised for move adaptation is less suited for phase dependent evaluation than

one based on value adaptation. This is because functions optimised by move adaptation have no

global interpretation. The scores of value adapted functions can be used as long as the model is

chosen such that the position score has a phase independent meaning [9].

3.4 Feature granularity

Michael Buro presented an approach to automate the construction of the evaluation function for

Othello [10]. According to Buro, an evaluation function is built in two steps: first the features are

selected and then they are combined to form complex expressions. The process of combination

includes the merging of selected features and the assignment of floating-point weights that occur

in the resulting expression. The first step is difficult for the machine, whereas the processes of

combining features and fitting weights are computationally feasible.

When selecting features by hand, the compositional nature of features is soon realised. A

‡The total number of pieces on the board
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feature consists of smaller, probably less significant ones.Buro exploits this notion and consid-

ersatomic featuresas those features that cannot be expressed in terms of other features. Instead

of selecting a single complicated feature, a small number of atomic features are selected. The

selection of features to be used as building blocks is simpler than selecting the complicated

terms of the evaluation function. Buro stresses that ideal building blocks require domain knowl-

edge and although atomic, these features may be complex. In Buro’s approach, the process to

select features is not automated. Buro’s Generalised Linear Evaluation Model (GLEM) employs

a representation that is suitable for learning. A brief overview of the evaluation function used in

GLEM follows.

In GLEM, the evaluation functione for the positionp has the following form,

e(p) = g(
n∑

i=1

wi × fi(p))

As a statistical approach, the value ofe in GLEM estimates the probability that a position leads

to a win, and as such this value must be between zero and one. Becausewi is in R, e cannot

be guaranteed to be in [0, 1]. The purpose of the link functions,g is to ensure that the value

e falls within the required range§. Least-squares optimisation on the error of applyinge to a

set of labelled training positions is used to find values for the weights,wi for (1 ≤ i ≤ n).

Each fi is a combination of atomic features, called aconfiguration. A configuration is a binary

function that has a value of either 0 or 1. Each weight,wi indicates the relative significance of

the configurationfi .

A configuration is composed from atomic features that range overZ. For each atomic feature

ai and positionp, there is one and only one integerki such thatai(p) = ki . Let A be the set of

atomic features, then define relationRA asRA ≡ {ai(p) = ki | ai ∈ A, ki ∈ Z}. In other words,RA

contains the feature-to-value mapping for a position, andRA ⊂ A× Z. In the context of position

p, the triple (p, ai , k), denoted asr i(p), takes the valuetrue if r i(p) ∈ RA, otherwise it isfalse.

A configuration is a conjunction of these elements. In particular, a configurationc coveringn

atomic features is denoted asc = r1 ∧ r2 ∧ . . . ∧ rn. The function associated with this feature,

fc takes a value 1 for a positionp if and only if ∀i≤nr i(p) = true. It takes value 0 otherwise.

In order to define a suitable learning framework, a clear commitment needs to be made

regarding the level of granularity of the acquired knowledge. Buro left the choice of granularity

to the programmer. Before the learning process starts, the program is provided with established

§An example of a suitable function forg is 1
1+exp−x
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features, already known to be influential in the outcome of thegame. From the perspective that

these features are further decomposable, it can be reasoned that Buro’s features are not atomic.

Conceptually, the idea is to start the learner from zero knowledge. However, the term zero

knowledge is not absolute. For instance, if a program has learned the rules of a game, it had less

knowledge to start with than a program that employs a neural network trained through self play.

The latter is currently regarded as a program that learnt from zero knowledge. Maybe in the

future, the program that uses zero knowledge is the one that first identifies a particular activity

as a game, then learns the rules, and then devises some way to improve its own ability to play.

A sensible choice for a granularity level is to consider the knowledge that can be obtained

from visual inspection as atomic. Consider a program that possesses the sense of sight and

contains an implementation of the game rules. Using the game rules, visual observations can be

transformed into facts that have some relevance to the game. For example, compare a program

that sees a red puck on a chequered board to another program that looks at the same thing, but

sees the opponent’s man on the seventh rank. The first program does not interpret the meaning of

what is seen. The second program demonstrates a basic understanding of the rules of C

and it is a plausible subject for machine leaning research. Using this idea, a definition of a zero

knowledge agent is formulated:

Definition 3.1: Zero Knowledge agent.

A zero knowledge agentis a game playing program that is provided with game rules and the

ability to describe a game state in terms of those rules. This description does not go beyond that

which is observable by the human sense of sight. In particular, zero knowledge does not contain

any deductions, estimations or conclusions.

Angeline and Pollack [4] trains a T-- player without giving it the rules for T--

. If an invalid move is made, the player’s move is forfeited – giving significant advantage to

its opponent. However, this approach is not an example of zero knowledge learning. The agent

effectively learns an alternative version of T--T.

Clearly, an implementation of the GLEM features would not result in a zero knowledge

agent, the basic building blocks must be observable. Having smaller building blocks is a natural

progression towards the goal of automatic evaluation function construction. It is in fact far

simpler to define observable features than GLEM features, but the construction task left to the

machine is much more complicated.
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3.5 The evaluation function

This section introduces the evaluation functionF as the function used by a game playing agent

that employs knowledge expressed inF to make move decisions.F is a static evaluation func-

tion (see Section 3.3.2), and as such it compares game positions by mapping these positions

onto floating-point numbers. The function is based on the GLEM function (see Section 3.4),

and is similar to that function in form. However, unlike GLEM, the value ofF does not estimate

the probability of winning.

The evaluation functionF ranges from 0 to 1, such that 0 is the value of a losing position,

1 the value of a winning position, and for draw positions,F is 0.5. For positions that are not

end positions, the range ofF is further constrained using a small positive constant,δ ∈ (0, 0.05).

For non end positions, the value ofF is in [δ, 1− δ]. Generally, a higher value forF indicates a

better position.

Theδ constant is introduced to differentiate between an immediate win (or lose) and a high

likelihood to lead to a win (or lose). Consider a choice between then positions,{p1, p2, . . . , pn},

and two elements from this set,pw and ph. Let pw be a winning position; thusF(pw) = 1. Let

ph be the best non end position possible, implyingF(ph) = 1 − δ. With a value of 0 forδ (or

omitting δ from the definition ofF), the agent is unable to distinguish between thepw and ph.

With δ set to some small positive constant the desired effect is achieved:pw is regarded as a

better position thanph.

In addition to some arithmetic involvingδ, the functionF is defined using another function

h. The functionh is composed from features,fi , and weights,wi . Although features are complex

structures (fully defined in Section 3.6), it is sufficient for the purpose of this discussion to regard

each feature,fi , as a function that takes a legal position as argument. The range of a feature is

[0, 1]. Roughly, a value of 1 indicates that the feature is present on the position, and 0 means

that the feature is absent from the position. A higher value signifies a better fit of the position

to the feature. The weightwi is a positive floating-point value associated with a featurefi that

indicates the relative importance offi. Because the weights have a relative meaning, the weights

can be normalised to have a sum of 1 without information loss. Thus, the following equation

always holds for the functionh with k features:

k∑

i=1

wi = 1 (3.1)
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Let Pm denote the set of all legal positions that are not end positions. Consider the function

h : Pm→ [0, 1] that usesk features, such that each feature is denoted byfi and associated with

a weight,wi (0 ≤ i ≤ k). Then,h is defined for positionp as follows:

h(p) ≡
k∑

i=1

wi × fi(p) (3.2)

Note that equation 3.1 restricts the range ofh to [0, 1]. One way to read the value ofh is to

regard it as an indication of how well the position fits into the mould defined by the features: a

higher value would be a closer fit to the weighted features than a lower value.

The functionF provides an abstraction of a position that is used to compare the position to

other positions. This abstraction is called the model ofF. For example, the function in GLEM

models the probability that a position will lead to a win. Like GLEM’s function, the model of

F must be able to compare any two positions from any of the future play-lines of the current

position. As explained in section 3.3.2, the dissimilarity between these positions encourages the

use of a value adaptation strategy. Also, the need to have separate functions for different game

phases implies that the chosen model has to be phase independent.

The functionh manifests a model that measures “feature fitness”, where a better fit to the

most important features, produces a higher evaluation. For example, if the most important

feature is to have many game pieces, the feature counting the number of pieces will have a

relatively large weight. Thus, a position with more pieces will be valued higher than a position

with fewer pieces.

If the positions from the same ply in the game tree are compared,h would be a suitable

evaluation function [27]. However, even with the normalisation constraint of equation 3.1, the

model of h is inadequate when sufficiently dissimilar positions are compared. For example,

in C the opening positions have no kings, while closing positions typically have only

kings. However, it is always better to have kings than to be without kings. The problem is

to define a model for the function that allows a meaningful comparison between the opening

position on one play-line and a closing game position on a different play-line, even when both

these positions have the same number of kings.

The solution to this problem lies in the observation that position strength is a measurement

relative to the opposing player. Functionh can be evaluated from each player’s perspective, and

the player with the higher value has the upper hand. If positiona in the opening sequence fits
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the features from the agent’s perspective better, and position b is a better fit from the opponent’s

perspective,a belongs to a play-line that is better thanb’s play-line¶ .

This idea can be incorporated into the evaluation function by introducing a new concept: a

flip feature. The flip feature of the featurefi, denoted asf i , is fi expressed from the perspective

of the opponent. For example, letf1 indicate “the opponent has kings”. If the active player is

red, this feature translates to “there are white kings”, and the corresponding flip feature,f1 is

“there are red kings”. Flip features are used to compose theflip function h:

h(p) ≡
k∑

i=1

wi × f i(p) (3.3)

The expression to determine values that can be used to compare two dissimilar positions,

combinesh andh: for a positionp, the value is (h(p)/(h(p) + h(p)). If viewed from the active

perspective, a value higher than 0.5 indicates the active player has the upper hand, and a value

of lower than 0.5 indicates the passive player has the upper hand.

Finally, these concepts are combined to form the evaluation functionF. The maximum

value of the expression, (h(p)/(h(p) + h(p)) is 1, and it occurs when the flip function evaluates

to 0. In order to keepF within the bounds, [δ, 1 − δ], the value of this term is offset byδ after

deflating it with (1− 2δ). Let P denote the set of all legal positions, thenF : P → [0, 1] for

positionp is defined as follows:

F(p) ≡






0 if p is a losing position

0.5 if p is a draw position

1 if p is a winning position

δ +
(

h(p)
h(p)+h(p)

)

× (1− 2δ) otherwise

(3.4)

3.6 The feature language

In the section above, the functionF has been introduced as a method to compare board positions

in order to select the next move in a play-line. In this section the building blocks ofF are

described as expressions in a formal language, denoted byF . All features are expressed and

evaluated according to the rules ofF . The language can be applied to most perfect information,

two-player board games. The game C is used to provide a concrete example of such an

application.

¶assumingh is accurate
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As a formal language,F consists of symbols and operators. These symbols and operators

are combined to formwell-formed formulas. These formulas, orwffs conform to strict syntax

rules and have precise semantics. The semantics define the meaning of thewff. A feature is

in itself awff, and like all otherwffs, the meaning of a feature is the value thewff takes in the

context of a given position. This value is called thevaluationof the wff and is defined by the

functionV : P×wff→ [0, 1]. For positionp ∈ P and awff A, the valuation is given byV(p,A).

In this section the syntax and the valuation for all the formulas inF is provided. Section

3.6.1 defines the symbols that are used to refer to squares, pieces and the relationship between

the two. The two ground features ofF are defined in section 3.6.2, namely the atomic occupa-

tion feature and the fuzzy occupation feature. These ground features are combined to construct

more complex features using the operators defined in section 3.6.3.

3.6.1 Symbols

Theoccupation stateof a square is the most specific observation on the board. The symbols in

F identify and describe these states. The set of occupation states is determined from the game

pieces and the game rules, and it is therefore different for every board game. For the language

F the set of occupation states is denoted asO.

The setO has a finite number of elements.F places two constraints on the elements inO: 1)

Every playable square (i.e. squares that can be occupied during the game) on a position must be

occupied with one and only one state. 2) No state is impossible – that is; for every stateo ∈ O,

a legal position exists that contains one or more squares occupied witho. These constraints

ensure that a functional mapping is possible from every square in any position to an element in

the occupation set.

The method used to determine the occupation states for a particular game starts with the

composition of a list of the simplest Boolean properties that describe a square on a position.

When this list is ordered, any square in a position can be described by a binary string of values,

where each character corresponds to the value of this square for the Boolean property. This

binary string is an occupation state. However, the Boolean properties are not disjoint, and

consequently the number of occupation states forn Boolean properties is typically much smaller

than 2n. The final set is obtained by eliminating combinations that are impossible.

For the game of C, 10 Boolean properties are identified and listed in table 3.1.

From the rules of C, the dependencies amongst these properties are quite clear. For
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Table 3.1: C properties a for squares

b1 s is occupied
b2 An active piece can jump tos
b3 An active piece can move tos
b4 A passive piece can jump tos
b5 A passive piece can move tos
b6 The piece ons is active
b7 The piece ons is a king
b8 The piece onscan be jumped
b9 The piece onscan move
b10 The piece onscan jump

example, ifb7 is true, b1 must betrue. Also, b2, b3, b4 andb5 must be false. After eliminating

all impossible combinations, only 44 occupation states are found in the setO for C.

Instead of using clumsy binary strings as symbols for these occupation states, a short mnemonic

string is employed. Table 3.2 shows the 44 combinations. The mnemonic identifier is shown

in the last column. In other columns ‘T’ indicates the property istrue and ’F’ indicatesfalse.

The ‘-’ indicates the value of the property is not relevant in this combination. In table 3.3 the

meaning of the mnemonics is supplied. As a shorthand notation, the suffix ‘*’ is used to refer to

a mnemonic group of occupation states.

The 44 symbols are the finest (i.e. least granular) selection of occupation states that can

be derived from the given Boolean properties. Another valid, but more granular choice is to

use the 7 mnemonic prefixes as occupation types. An inspection of the hand-coded features of

Samuel’s C program [53] indicates that the mnemonic table may be adequate. However,

Samuel’s features are defined from expert knowledge, while the 44 occupation states are derived

directly from the game rules. Thus, from the definition of a zero knowledge agent (Section 3.4)

it follows that the set of 44 elements inO is correct for C.

The agent uses states to refine its “perception” of a game position. Board diagram 6.1

(page 39) shows how the occupation states are used to view one of the moves available from

the initial position. As indicated in the diagram, a position is always viewed from the passive

player’s perspective. This is because the evaluation of the position occurs after the move under

evaluation is applied. For example, if the agent plays red, the red pieces will be perceived as

the passive pieces on the position provided as argument to the evaluation function. The diagram

shows that the occupation states facilitate observations that provide rich and useful information.
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Table 3.2: C occupation states

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 Id
F F F F F - - - - - n
F F T F F - - - - - a1
F T F F F - - - - - a2
F T T F F - - - - - a3
F F F F T - - - - - p1
F F F T F - - - - - p2
F F F T T - - - - - p3
F F T F T - - - - - b1
F F T T F - - - - - b2
F F T T T - - - - - b3
F T F F T - - - - - b4
F T F T F - - - - - b5
F T F T T - - - - - b6
F T T F T - - - - - b7
F T T T F - - - - - b8
F T T T T - - - - - b9
T - - - - T F F F F x0
T - - - - T F F F T x1
T - - - - T F F T F x2
T - - - - T F F T T x3
T - - - - T F T F F x4
T - - - - T F T F T x5
T - - - - T F T T F x6
T - - - - T F T T T x7
T - - - - T T F F F X0
T - - - - T T F F T X1
T - - - - T T F T F X2
T - - - - T T F T T X3
T - - - - T T T F F X4
T - - - - T T T F T X5
T - - - - T T T T F X6
T - - - - T T T T T X7
T - - - - F F F F F o0
T - - - - F F F F T o1
T - - - - F F F T F o2
T - - - - F F F T T o3
T - - - - F F T F F o4
T - - - - F F T F T o5
T - - - - F F T T F o6
T - - - - F F T T T o7
T - - - - F T F F F O0
T - - - - F T F F T O1
T - - - - F T F T F O2
T - - - - F T F T T O3
T - - - - F T T F F O4
T - - - - F T T F T O5
T - - - - F T T T F O6
T - - - - F T T T T O7
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Table 3.3: Mnemonic meanings for C symbols

Symbol(s) Meaning
n Noman’s land
a* Active field
p* Passive field
x* Active man
X* Active king
O* Opponent’s man
o* Opponent’s king

Active (o)

8 o0 o0 o0 o0

7 o0 o0 o0 o0

6 o2 o2 o2 o2

5 b5 b5 a2 a2

4 x2 p2 p2 p2

3 x2 p2 x2 x2

2 x2 x2 x0 x0

1 x0 x0 x0 x0

1 2 3 4 5 6 7 8

Passive (x)

Board diagram 6.1

Clearly, there is a need to address a square and therefore a notation to represent squares is

required. InF a square is represented by an ordered pair (f , r) where f denotes thefile andr

the rankof the square. At the bottom-left corner of the board the square (1, 1) is found, the file

increases to the right and rank increases upwards. In many games some squares, callednon-

playablesquares can never be occupied (such as C and Arimaa). The symbolS is used

to denote the set ofplayablesquares.

In F , the symbol functionS : P × S → O maps the square in a position to an occupation

state. For any positionp ∈ P and squares ∈ S, and foro ∈ O, whereO(p, s) = o, there is no

element in{O − o} that also describes the state ofs in p.
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3.6.2 Features

A feature is a floating-point valued function with the set of legal positions,P, as domain and

a range of [0, 1]. A value of 1 indicates that the feature is present on the position, and a value

of 0 indicates an absence of the feature. For two featuresA andB, the valuation with respect

to positionp is represented asV(p,A) andV(p,B) respectively. IfV(p,A) > V(p,B) then p

is a closer fittoA than it is toB. In this section the two ground features, namely the atomic

occupation feature and the fuzzy occupation feature are introduced.

Definition 3.2: Atomic Occupation Feature.Theatomic occupation featureepitomises a

square in terms of its occupation state. An atomic occupation feature is awff with the following

form,

(o⊕ s)

whereo ∈ O ands∈ S.

For a position,p, V(p, (o⊕ s)) is 1 if O(p, s) = t. If O(p, s) , t, V(p, (o⊕ s)) is 0.

As an example, consider the atomic feature (x⊕ (1, 1)). On Board diagram 6.1, this feature

evaluates to 1.

The atomic occupation feature is binary - either the square is occupied as specified or not.

However, some knowledge requires fuzzy definitions. For example, consider the representation

for this knowledge:the first rank is occupied by active pieces. The value of this feature ranges

from 0 to 1, adding 0.25 for each square in the first rank occupied with anx or anX.

From the example, one may conclude that the value of this feature must be computed as
(
count of matching squares

count of squares

)

, however, this is not accurate. When the number of squares ex-

ceeds the maximum possible matches, the value may never be able to get close to 1. For exam-

ple, there can be at most 12 red pieces on a C position, and if all squares are included,

the highest value of the feature is12
32 ≈ 0.38. According to this value, the feature is not present

on the position. The fuzzy occupation feature considers the fact that there are at most 12 red

pieces, and concludes that the value for this position is12
12 = 1.

Before defining the fuzzy feature, a few new concepts must be introduced. These are cardi-

nality, size dependence, cardinality sets and maximum cardinality. These concepts relate to the

occupation states and are derived directly from the game rules.

Thecardinalityof an occupation state is the number of squares on the board that is occupied
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with that state. For positionp, the cardinality ofo ∈ O, denoted as|o| is defined as follows:

|o| ≡
∑

s∈S
V(p, o⊕ s)

Themaximum cardinalityof an occupation state is an upper bound on the cardinality of the

occupation state. It is the maximum number of squares that can be occupied with that state on

a non endgame position. Foro ∈ O with maximum cardinality, denoted as|o|m, the following

holds:

∀p∈P(|o| ≤ |o|m)

In table 3.4, the maximum cardinality for each C occupation state is shown. Mo-

tivation for the first entry in the left column is provided. The others have a similar derivation

method.

Two occupation states,o1 ando2 aresize dependentwhen there is some integerk such that

0 < k < |o1|m + |o2|m and|o1| + |o2| ≤ k always hold. In general, a set of occupation states,O, is

size dependent if the following holds:

∃k∈Z(0 < k <
∑

o∈O
|o|m), (

∑

o∈O
|o|) ≤ k

In the expression above,k is an upper bound on the maximum cardinality of the set. Ideally,

the smallest possible value fork must be chosen as the maximum cardinality value. Using

a value closer to the smallest upper bound results in a more accurate evaluation of the fuzzy

feature.

A cardinality setis a set of size dependent occupation states. The collection of cardinality

sets, denoted asC must be disjoint. To keep to the zero knowledge principle, these sets must

follow directly from the game rules. Furthermore, the union of these sets must cover the set of

occupation states (i.e.∪C∈CC = O). The maximum cardinality of a cardinality set is an upper

bound on the number of squares that can be occupied by any occupation state in the set on a

non end-game position. ForC ∈ C, the maximum cardinality is denoted as|C|m. Note that the

maximum cardinality of a set is less than the sum of the maximum cardinalities of the elements

in the set:

∀C∈C(|C|m <
∑

o∈c
|o|m)

For example, consider two simple occupation states of a C position:ok indicatesthe
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Table 3.4: Maximum cardinality of C occupation states

Occupation states Maximum Cardinality
n 28. There are 32 squares. At least 2

pieces on non end positions,
30. These two take up at 1 square
of field, leaving a maximum of 28.

a1, p1 26. Consider a configuration
with a king in the middle and 4 open
squares around it. This configuration
takes up 5 squares and has 4 a1’s.
There are 32 squares, so no more
than 6 such configurations are possible
giving 24 a1’s. Assuming that the 2
remaining squares end up as a1,
the value of 26 is obtained.

a2, p2 17. Using the same idea as
above, but this time the size
of the configuration that has
4 a2’s is 9. Three of these
fits in 32 squares with 5 spares.

a3, p3 14. Expanding on the configuration
above, adding 4 squares makes 13
for 4 configurations. Two of these make
26, leaving 6 squares.

b1 12.Requires a configuration of 3
squares for one b1, using 30 for
10 b1s and a remainder of 2

b2, b4,x3,x5,X3,X5, 8. Requires 4 squares in a configuration
o3,o5,O3,O5 that yields 1
b3, b8,x7,X7,o7,O7 7. Requires 6 squares in a configuration

that yields 1 b3
b6, b5 ,b7 7. Requires 5 squares in a configuration

that yields 1 b6
b9 8. Requires 7 squares in a configuration

that provides 1 b9.
x0,x1,x2,x4,x6, 12. The maximum number of pieces
X0,X1,X2,X4,X6, on a side is 12.
o0,o1,o2,o4,o6,
O0,O1,O2,X4,O6
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square is occupied by an active kingandom that the square is occupied by an active man. The

maximum cardinality of these occupation states is 12. However, no position can contain more

than 12 active pieces, so|om| + |ok| ≤ 12 holds for any C position. This means the two

occupation states are size dependent. The set{om, ok} is a cardinality set of C and it has

a maximum cardinality of 12.

The cardinality sets for C, along with the maximum cardinality for each set are

shown in table 3.5. The maximum cardinality values of the cardinality sets are used to determine

Table 3.5: C cardinality sets, together with their respective maximum cardinalities

Set Elements Maximum Cardinality
C1 n,a*,p*,b* 30. At least two

squares must be occupied
C2 x*,X* 12. There are at most

12 active pieces
C3 o*,O* 12. There are at most

12 passive pieces

the maximum number of squares that can be occupied by any element from an arbitrary set,

O | O ⊆ O. This maximum number is referred to as theupper limitof the set, and it is denoted

as|O|u. A recursive function is used to determine this upper limit, for a setO:

|O|u ≡






0 if O = ∅

|O/C|u+ where

min{|C|m,
∑

o∈T |o|m} C ∈ C,T = O ∩C,T , ∅

As an example consider the set of occupation statesO = {a3, b1, x3,X7}. In order to determine

|O|u, a cardinality set from table 3.5 must be chosen such that the elements inO are also in the

cardinality sets. There are two valid selections:C1 andC2. The order is not important, and
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below,C1 is chosen first:

|O|u = |O/C1|u +min{|C1|m,
∑

o∈O∩C1
|o|m}

= |{x3,X7}|u + {30, 14+ 12}

= |{x3,X7}|u + 26

= |{x3,X7}/C2|u+

min{|C2|m,
∑

o∈{x3,X7}∩C2
|o|m} + 26

= |∅|u +min{12, 8+ 7} + 26

= 0+ 12+ 26

= 38

As this example illustrates, the upper limit can be larger than the cardinality of the set of

playable squares,|S|. The definition of the fuzzy occupation feature given below takes this into

account:

Definition 3.3: Fuzzy Occupation Feature.Consider a set of squares,S (S⊆ S) and a set of

occupation states,O (O ⊆ O). A fuzzy occupation featureprovides a measure of the fraction of

squares inS, that is occupied with an occupation state found inO. A fuzzy occupation feature

is awff with the form,

({t1, t1, . . . , tk} ⊗ {s1, s2, . . . , sn})

where∀1≤i≤kti ∈ O and∀1≤i≤nsi ∈ S.

LetO = {t1, t1, . . . , tk} andS= {s1, s2, . . . , sn}. Then for positionp the value forV(p, (O⊗S))

is calculated as follows: ∑k
i=1
∑n

j=1(oi ⊕ sj)

min{|S|, |O|u}

Consider the feature,the first rank is occupied by active pieces. This feature is expressed

in F as ({o∗,O∗} ⊗ {(1, 1), (3, 1), (5, 1), (7, 1)}) and it has value of 1 with respect to the board in

Board diagram 6.1.

3.6.3 Fuzzy Operators

A feature is seldom considered in isolation. The utility of one observation often depends on the

availability of another feature. The following strategy demonstrates this idea:if the opponent

has no kings, keep as many men in the first rank as you can. This strategy cannot be expressed
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if the feature language is unable to indicate an association between the occupation feature in

the first rank and the occupation feature regarding the opponent’s kings. To solve this problem,

disjunction and conjunction operators are introduced. The negation operator facilitates the use

of negative features. This operator is used in expressions that indicate the absence of some

aspect of a position.

Definition 3.4: Disjunction. A disjunction, denoted by∨ combines twowffs to form

anotherwff, and it has the following form,

(A∨ B)

whereA andB arewffs.

If V(p,A) = a andV(p,B) = b for a positionp, thenV(p, (A ∨ B)) evaluates to max{a, b}.

The disjunction operator,∨ combines twowffs,A andB, such that the value of (A ∨ B) is 1 if

eitherA orB has a value of 1.

Definition 3.5: Conjunction. A conjunction, denoted by∧ combines twowffs to form

anotherwff, and it has the following form,

(A ∧ B)

whereA andB arewffs.

If V(p,A) = a andV(p,B) = b for a positionp, thenV(p, (A ∧ B)) evaluates to min{a, b}.

The conjunction operator,∧ combineswffs,A andB, such that the value of (A ∧ B) is 0 if

eitherA orB has a value of 0. It evaluates to 1 if and only ifA andB has a value of 1.

Definition 3.6: Negation. A negation, denoted by¬ inverts the value of awff to form

anotherwff, and it is used in following form,

(¬A)

whereA is awff. For a positionp, V(p, (¬A)) evaluates to 1−V(p,A) The negation operator,

¬ is a unary operator, and the value of¬A is 1 if A has a value 0 and it has the value of 0 ifA

is 1.

Instead of operator precedence rules,F employs parentheses to eliminate ambiguity. Here

follows the syntax of all the operators inF written in Backus-Naur form,
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<formula> → ( ¬ <formula> )

| ( <formula> ∨ <formula> )

| ( <formula> ∧ <formula> )

| ( <ground> )

<ground> → <square> ⊕ <state>

| <square set> ⊗ <state set>

3.7 Conclusion

F is an evaluation function that provides an effective and a simple method to capture heuristic

knowledge in terms of significant features. Each feature is associated with a weight that indi-

cates its relative importance.F is used to map game positions to floating-point numbers, so that

these numbers can be used to identify the best amongst various alternative moves. An useful

characteristic of the function is that it can be used to compare positions that are very different.

Central to the definition of the evaluation function is the languageF devised to be used in a

learning framework. This language is able to represent knowledge to a game playing agent, such

that the knowledge can be used in the evaluation function,F. The flexibility of the language

F stems from the level of granularity chosen for the basic building blocks of the expressions,

and also from the notion that the operators of the language allow for arbitrarily complex ex-

pressions. The classification of feature forms that cannot be expressed inF could lead to a

more complete language definition. However, a more intricate language could complicate the

knowledge discovery process.

The use of Boolean operators ensures that known techniques can be used to construct, ma-

nipulate and evaluate expressions. For instance, it is possible to translateF expressions to a

disjunctive normal form, and to use and-or tree structures to store these expressions. In addi-

tion, the weights in the evaluation functionF are easy to separate from the function expression.

This allows the use of numerical optimisation methods like Particle Swarm Optimisation (PSO)

[33] (the PSO method is detailed in Chapter 7).

An important notion is the fit-to-features model used byF. This model provides an oppor-

tunity to exploit and to further develop selective game tree search algorithms that do not assume

the compared positions are on the same ply. In the next chapter, the search activity is explored
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in more detail; and these concepts and the benefit of this modelbecomes clearer.

 
 
 



Chapter 4

Exploring the game tree

The previous chapter focussed on how knowledge can be presented and used by the playing agent to

make a move decision. In this chapter, the manner in which the agent applies that knowledge to search

the game tree is discussed. A new search method called the best-first shallow search is presented and

evaluated.

4.1 Introduction

Chapter 2 described the game tree structure and discussed the interaction between the knowl-

edge exploitation process and the search process when a playing agent makes a move decision.

In the previous chapter, different types of knowledge were introduced and a knowledge repre-

sentation language was developed. In this chapter the search process is defined in detail, and the

possibility of using knowledge to guide the search path is explored.

Search algorithms can be classified intofixed-depth searchandselective searchalgorithms.

Fixed-depth algorithms explore the game tree to a specified depth. When the depth increases, the

time to make a move decision increases dramatically, especially for games with high branching

factors. Selective search algorithms avoid this problem by searching some branches in the tree

deeper than others. The difficulty faced by these algorithms lies in the decision to abort a

particular branch and selecting another branch in the tree to explore further.

Many variations of fixed-depth and selective algorithms exist. In practise the two classes

of search algorithms are often mixed; for instance switching over to a selective search when a

node on the last ply of a fixed-depth search meets certain conditions. This chapter discusses two

48
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fundamental methods from which many of the other approaches were developed∗ . The reason

for not exploring the available variety of search techniques is that the focus of this work is on

knowledge discovery, and the application of a complicated search method could dissipate the

conclusions of this study.

Section 4.2 introduces the minimax algorithm and its companion, alpha-beta pruning. This

popular algorithm searches the tree to a fixed depth and it does not employ knowledge to decide

how the search through the tree must be conducted. A search method that does employ knowl-

edge to direct the search, the best-first minimax algorithm is described in Section 4.3, together

with the outline of a recursive algorithm that implements this approach. Shortcomings of best-

first minimax is discussed in Section 4.4, and an improvement developed by other researchers

is described. Section 4.5 introduces a new search algorithm called best-first shallow search.

The first experiment of this chapter is described in Section 4.6. This experiment establishes

baseline values that describe the behaviour of alpha-beta at various search depths. These base-

lines are used in Section 4.7 to interpret the outcome of an experiment conducted to compare

alpha-beta with best-first minimax and best-first shallow search. Section 4.8 describes the last

experiment in this chapter that compares best-first shallow search with best-first minimax. Fi-

nally, Section 4.9 highlights the important remarks and conclusions of this chapter.

4.2 The minimax approach to tree searching

Searching is the key to many artificial intelligence problems. The typical approach involves

representing the solution domain as a (possibly infinite) set of vertices and a set of edges that

connects these vertices to each other [49, 46]. These edges and vertices form agraph, and the

search process involves walking through this graph until a satisfying solution is found.

Even though the game tree is also a graph, general graph search methods do not apply to the

game tree. The game tree is constructed ply by ply, where each alternating ply represents the

moves available to a different player. A general search method might find a ‘winning’ position

for the active player in this graph; and the agent could choose to move to the first position in

the play-line that leads to the chosen vertex. However, that play-line is likely to present move

opportunities to the opponent such that the ‘winning’ position is never reached.

Theminimaxalgorithm† takes advantage of the alternating layers in the game tree to define

∗Refer to [27] for an overview of significant innovations in game tree search algorithms
†Minimax is a well known algorithm, but it is difficult to trace its origin. It is described in many A.I. text books.

See [52] for an example.
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a simple, but effective, playing strategy. This strategy assumes that the positions in the game

tree can be evaluated. The value of a position is called thestatic value, and it is a floating-point

value such that a position with a greater advtantage to the active player has a greater value. The

evaluation function described in Section 3.5 provides some insight into how such a value can be

obtained.

The minimax algorithm searches the game tree to a fixed depth. At a depth of one ply, only

the first position of all future play-lines are considered. At this ply, the active player chooses

the position with the maximum score. When the search depth is two, consideration is given to

the next ply, and it might become apparent that a counter move is available to the opponent that

would eliminate the advantage implied by the score of the first move. The opponent’s best move

is to choose the future play-line that starts with the lowest scoring position,i.e. the position that

has the lowest advantage to the active player. Generally, the passive player always minimises

the score and the active player maximises the score.

The terminal nodes of the minimax search tree are the positions in the last ply and the

end positions that were encountered during the search. A node in the minimax search tree

is a minimising nodeif it is on a position from which the opponent must make a move. A

maximising nodeis a node on a position from which the active player must make a move.

Therefore, all the nodes in an even ply are maximising nodes, and those in an odd ply are

minimising nodes.

The key to the minimax algorithm is the manner in which the score is propagated upward

from the last ply to the first position in the future play-line. Every node in the minimax search

tree has aminimax value. The minimax value of a terminal node is equal to the score of the

associated position. The minimax value of a minimising node is the smallest minimax value

found in its child nodes. Likewise, the minimax value of a maximising node is the greatest

value found in its child nodes. The active player chooses the node with the highest minimax

value in the first ply as the next move.

Interestingly, there is no need to visit every node in the minimax tree to determine the

correct minimax value of every node in the first ply. Hart and Edwards [29] developed the

alpha-betaheuristic that prunes the branches from the minimax search tree that will not effect

the outcome of the move decision. The reasoning for alpha-beta is as follows: if a child of a

maximising node has a minimax value less than the value of the child of a minimising node with

a smaller ply, the maximising node must not be explored further. There is no need to continue
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the exploration because the minimising player would have taken the move at the higher level.

The same reasoning is also extended to the minimising nodes - if a child of a minimising node

has a minimax value that is greater than the value of the child of a maximising node higher up

in the tree, the exploration of the minimising node is discontinued.

Alpha-beta obtains the same results that a full minimax tree traversal would obtain, but it

requires much less effort. Therefore, applications for minimax and research activities that in-

volves minimax tree searching typically use an implementation that employs alpha-beta pruning

as the reference minimax algorithm.

4.3 Best-first minimax search

The best-first minimaxalgorithm formulated by Korf and Chickering [35] is a selective algo-

rithm that selects the best play-line discovered so far to explore further. Best-first minimax has

been shown to outperform alpha-beta on the game of O. Korf and Chickering concludes

that best-first minimax performs best when only relatively shallow searches are feasible, and in

games with accurate evaluation functions. It is likely to be most valuable in games with large

branching factors and/or expensive evaluations. These games (such as G) are those in which

computers have been least successful against humans.

Best-first minimax has much in common with minimax. It starts with the current position as

root node, and expands the tree as the search continues. With every expansion, the static value

of a new node is determined by passing the position it represents as argument to the evaluation

function. This value is then propagated towards the root node using the minimax method. If the

parent is in a maximising ply, its value is set to the greatest value found in its children. If it is in

a minimising ply, the value is set to the smallest found in the child nodes. The root node is in a

maximising ply, and plies beneath it alternate between minimising and maximising. At the end

of the search, a child of the root node with the highest value is selected as the next position in

the play-line.

The difference between minimax and best-first minimax is in the way the next node is se-

lected to expand. Minimax does a breadth-first scan through the game tree. In contrast, best-first

minimax applies the knowledge encapsulated in the evaluation function to decide which node

in the search tree must be expanded next. The strategy is a simple one: always explore the most

promising path in the search tree, further.

Theprincipal variationis the path from the root node to a leaf where every node in the path
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has the same value. Theprincipal leafis the leaf node of a principal variation and its static value

is propagated to the root node. Best-first minimax always selects the current principal leaf node

for expansion. Using this approach, the search can stop at any time, and the best move found

thus far can be chosen by the playing agent.

Because the principal leaf is always expanded, it is possible that best-first minimax could

explore a single path to the exclusion of all others. Korf and Chickering note that this does

not occur in practise because of thetempo effect. The tempo effect comes from the notion that

the static value of a position tends to be an overestimate. Each move strengthens the position

of the player moving, and when a child node expands, it becomes weaker from the parent’s

perspective. Thus, if the principal leaf is expanded, its value tends to decrease, and it is likely

that another play-line would become the principal variation.

The simplest implementation of best-first minimax maintains the search tree in memory.

When a node is expanded, its children are evaluated and its value is updated. This value is then

propagated up the tree until it reaches the root or a node that does not need a value update.

The algorithm moves down the tree until it reaches a new principal leaf. This implementation

requires exponential memory.

The recursive best-first minimax search algorithm (RBFMS) is an implementation of best-

first minimax that does not require exponential memory. RBFMS (also developed by Korf and

Chickering [35]) associates with each node on the principal variation a lower boundα and an

upper boundβ, similar to the branches of alpha-beta pruning. A node remains on the principal

variation as long as its backed-up value stays within these bounds. The root is bounded by−∞

and∞. RBFMS has two symmetric functions: one for MAX and the other for MIN. Pseudo

code listings for these functions are available in Figure 4.1. Each takes a node and the two

bounds as arguments. These functions perform a best-first minimax search on the sub-tree of

a node as long as the backed-up minimax value remains within theα andβ bounds. A value

that falls outside these bounds is returned as the new value of the node. On a MAX node, the

lower bound is the same as that of the parent. The upper bound is the least of the parent’s upper

bound and the smallest value among its siblings. On a MIN value the upper bound is from the

parent and the lower bound is the maximum of the parent’s lower bound and the largest value

amongst its siblings. If the value of a MAX node’s child exceeds its upper bound or the value of

a MIN node’s child is less than its lower bound, the child value is immediately returned without

evaluating the other children.
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Algorithm Recursive best-first minimax
Input A game positionp from which the search must be conducted, and

an evaluation functionF
Output A child of p that must be selected as the next move

RBFMS(p)
MAX(p,−∞,∞)
return a child of p in the principal variation

MAX(n, α, β)
for each c in child nodes of n

c.value = F(c)
if (c.value > β)

return c.value;
do

best = max valued node in siblings of n;
if n has more than 1 sibling

near-val = max valued node in (siblings without best)
else

near-val = −∞
best.value = MIN(best,maximum(α,near-val), β);

while (α <= best.value <= β)
return best.value;

MIN (n, α, β)
for each c in child nodes of n

c.value = F(c)
if (c.value < α)

return c.value;
do

best = min valued node in siblings of n;
if (n has more than 1 siblings)

near-val = min valued node in (siblings without best)
else

near-val = ∞
best.value = MAX(best, α, minimum(β,near-val));

while (α <= best.value <= β)
return best.value;

Figure 4.1: An outline of the RBFMS algorithm

Syntactically, RBFMS appears similar to alpha-beta, but it behaves differently. The primary

difference is that alpha-beta makes decisions based on nodes on the same ply, while RBFMS

relies on node values on different levels. Also, alpha-beta does not use the evaluation function

to decide which nodes to expand, whereas RBFMS does.
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4.4 Shortcomings of best-first minimax

Korf and Chickering explored the performance of RBFMS when it is applied to O. Cer-

tain peculiarities of Omakes this game more ideal for RBFMS than it might be for other

games. In particular, a move in O alters the state of many squares on the board. This

influences the game tree in two significant ways: a) The tempo effect is more pronounced, and

b) the children of the current position are likely to have significant variations in static values.

Also, all the moves in O are conversions - this means any given position cannot re-occur

in any of its future play-lines. This property of O makes it less likely that nodes on the

tree will have the same static value. The third peculiarity is that the number of moves in an

O game is limited to the number of squares on the board and every decision will lead

to an end position. At the endgame phase, all future play-lines will reach an end position at

approximately the same depth. The final aspect of importance is that draws in O are rare.

These properties can be contrasted with other games such as C and C. (In the

discussion that follows, reference is made to C, but the argument also applies to C.)

Most moves in C make small alterations to the game state, and the static value of a

position tends to change gradually as the game progresses. Although the tempo effect exists, it is

far less intrusive on the search of a C game tree. The children of a node in the C

tree have more or less the same static value, and if there are variations, groups of moves can

be identified, not individual moves. Conversions in C are found in the opening game,

but become rarer as the number of kings increases. This means, at some depth in the tree, there

are many children that have the same backed-up value because they share a descendant. In

C, if no limit is placed on the number of moves, a game can potentially have an infinite

number of moves. Searching such a play-line is fruitless. In practice, the number of moves are

limited and consequently, many C games end in a draw.

RBFMS does not state what happens when an end position is reached. Korf and Chickering

decided to terminate the search when a winning position is found in the O game tree.

The rarity of equal values in O implies that the expanded tree will mostly contain a single

principal variation, and the variation leading to a winning position is likely to be a good decision.

However, this strategy is not effective in C. In the partially expanded C game

tree, there is likely to be more than one principal variation. If one leads to a win, search must

continue, because another principal variation may also lead to a win, but in less moves. In

general (for O and C), it is better to aim for the shorter win, because the decision
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is imperfect, and a longer strategy is less likely to materialise. Also, in C, many endgame

positions are draws - termination of search when a draw is reached on a principal variation will

exclude the possibility that another principal variation may lead to a win.

Shoham and Toledo [61] postulate that the defect with best-first minimax is that it never

attempts to raise the scores of the non-best children of a node. Their solution to this problem

is to choose amongst child nodes where the probability of choosing is higher for greater valued

children than it is for smaller valued children. This approach mitigates the problem of having

more than one principal variation, but it weakens the best-first tactic of the algorithm.

The next problem of RBFMS is one of efficiency. RBFMS preserves memory at the cost

of losing the value of previous calculations and re-expanding nodes that were explored before.

The call stack of RBFMS represents the current principal variation, and when the procedure

backtracks, nodes and calculations are lost. This problem becomes more prevalent when there

are two (or more) branches with the same values. In this case, one branch can be aborted for

another, only to be re-explored when the other branch has reached a weaker position.

It is reasonable to expect that an algorithm that works better for C will also work

better for O. A solution to any one of the problems discussed above would not be damag-

ing to the O game strategy. Shoham and Toledo have shown that their algorithm, called

theParallel Randomized Best-first Minimax Search, performs better than RBFMS for the O-

 game. The reason why the Shoham and Toledo algorithm is not chosen for the current

research is because it chooses the next move stochastically. This non-deterministic selection is

not ideal when the focus is on finding and refining knowledge. When the choice is stochastic,

weaker knowledge may win against stronger knowledge, complicating the knowledge evaluation

procedure.

4.5 Best-first shallow search

The shortcomings described in the previous section lead to the development of a novel game tree

search algorithm calledbest-first shallow search(BFSS). Essentially, BFSS is a specialisation

of best-first minimax that allows a knowledge based search on a game tree in which multiple

principal variations occur frequently during the search. In addition, the BFSS implementation

is a non-recursive procedure that eliminates the need to recalculate node values.

Best-first shallow search selects the next node to expand from a set of nodes called the

search frontier. This frontier is the unexplored ‘edge’ of the search tree. The search starts with
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the active position, referred to as thesearch root, as the only node in the frontier. The search

procedure selects a node in the search frontier to expand, and removes it from the frontier. When

the node expands, its children are added to the frontier. If the node is an end position, it will not

be replaced, and the frontier will shrink. In general, non terminal nodes are encountered and the

frontier grows as the search continues.

Deciding which node in the frontier to expand is a key aspect of BFSS. The idea to select

a node on the principal variation is kept; and if only one variation is available the choice will

be no different from best-first minimax. If more than one principal variation is available, the

node with the smallest ply is selected. The move decision is based on the value of the positions

in the first ply. A deeper search tree below one of these positions improves the accuracy of its

value assessment. By expanding the principal variation with the smallest ply first, the tree below

the least accurate first-ply position is expanded, and its value becomes more accurate. Also, if

the evaluation function is unable to distinguish between the nodes close to the root of the search

tree, this smallest ply first strategy ensures that BFSS does a breadth-first walk through the game

tree until a promising node is identified by the function.

BFSS uses a constant called thesearch spanas a termination criterion. This approach was

also used by Shoham and Toledo [61]. Except for the search root, the expansion of all nodes in

the frontier count towards the termination condition. When the number of expansions reaches

the search span, BFSS terminates. It is possible (especially during the end-game) that the game

tree is completely traversed before the search span is reached. In this case the search frontier

would be empty and BFSS would terminate. The third condition for termination is when a

principal variation that leads to a win for the active player is found. Because the smallest ply

first strategy is applied when more than one principal variation is available, it is likely that the

first winning variation encountered will also be the one with the fewest moves.

Like best-first minimax, BFSS also makes use of the minimax value of a node. However,

instead of alternating the minimum and maximum operation, the minimax value of the min-

imising nodes are negative. These values, callednegamax values[27], are calculated the same

way for all nodes. The negamax value of a node is the negation of the minimum value of the

node’s children. The value of a terminal node in the search tree is calculated from the evaluation

function. The evaluation function values are negated for nodes in a ply from which the passive

player makes a move. An outline of the BFSS algorithm is shown in Figure 4.2.

The algorithm consists of two functions, SELECT and BEST, and one procedure EVALU-

 
 
 



4.5. Best-first shallow search 57

Algorithm Best-first shallow search
Input A search rootr from which the search must be conducted, an evalu-

ation functionF, and a search spansmax

Output A child of p that must be selected as the next move

SELECT(r, smax)
frontier = r
nodesExpanded = 0
while (frontier has nodes and nodesExpanded <= smax and principal is not an end-game)

bestNode = BEST(frontier, r)
remove bestNode from frontier
if (bestNode is not an endgame node)

append children of bestNode to frontier
for (each node n in the children of bestNode)

EVALUATE(n,r)
bestNode.value = − (max value from bestNode’s children)
parent = best

do
parent = parent.parent
parent.value = − (max value from best.childs)

while (parent is not r)
nodeExpanded = nodesExpanded + 1

return the first node in the current principal variation

EVALUATE(n, r)
if (node is a negative node with respect to r)

n.value = - F(n)
else

n.value = F(n)

BEST( f , r)
1: Sort nodes in f in ascending ply depth order

selected = first node in f
while (selected is not a principal leaf of r)

selected = next node in f
return selected

Figure 4.2: Outline of Best-first shallow search

ATE. SELECT returns the node chosen as the next move of the playing agent. BEST returns

the next node to be searched in the frontier and EVALUATE calculates and stores the negamax

value of a node.

EVALUATE takes two parameters, the node to evaluate,n, and the search root,r. The

search root is required to determine whether a node is in a negative ply or not. If the result of

subtracting the ply ofn from the ply ofr is even, the node is in a positive ply. If not, the node is

in a negative ply. The evaluation function value is negated for nodes in a negative ply.

BEST also has two parameters, the frontierf and the search rootr. In this function, the
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search root is used to determine whether a node inf is a principal leaf. A nodep is a principal

leaf if its absolute value is equal to the absolute value ofr, and a path exists fromp to r such that

the absolute value of all the negamax values in that path are equal. Because the frontier is sorted

in descending ply depth, the principal leaf closest to the root will be found first and returned.

SELECT takes as argument the search rootr and the search spansmax. After initialising the

frontier to contain onlyr, the nodes in the frontier are expanded until the required number of

expand operations are reached or one of the other termination criteria is met.

If line 1 in the outline of BFSS is changed to sort the frontier in ascending order, the al-

gorithm would behave exactly like best-first minimax described by Korf and Chickering. This

frontier based implementation of best-first minimax will be referred to as best-first deep search,

or BFDS.

4.6 Experiment: The search span of alpha-beta

Objective

The aim of this experiment is to determine the search span of alpha-beta. Alpha-beta is a fixed

depth search algorithm, and as such the search span of this algorithm cannot be finely tuned. In

order to establish a common ground for comparison with selective algorithms, the number of

node expansions done by alpha-beta at various ply depths are determined. Only ply depths of 1,

2 and 3 are considered. Deeper ply depths are too expensive to use in learning experiments.

Method

In this experiment C playing agents use a simple but effective evaluation function called

Fa. The function is hand-crafted, and is defined as a feature language expression in Equation
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4.1.

Fa ≡





30× {O∗}@{(∗, ∗)}

+ 20× {o∗}@{(∗, ∗)}

+ 20× ¬{O4,O6}@{(∗, ∗)}

+ 10× ¬{o4, o6}@{(∗, ∗)}

+ 7× {o∗}@{(∗, 7)}

+ 6× {o∗}@{(∗, 6)}

+ 5× {o∗}@{(∗, 5)}

+ 4× {o∗}@{(∗, 4)}

+ 3× {o∗}@{(∗, 3)}

+ 2× {o∗}@{(∗, 2)}

+ 8× {o∗}@{(∗, 1)}

+ 1× {X4,X6}@{(∗, ∗)}

+ 1× {x4, x6}@{(∗, ∗)}





(4.1)

The precise meaning of the symbols used in this expression is described in Section 3.6 (a table

is available on page 38). The intention of the formulaFa can be described by interpreting each

term. The first term asserts that it is good to own kings anywhere on the board. The second term

indicates that it is also good to own checkers anywhere on the board. The third and fourth term

says that owning a king or a checker that can be jumped is not so good. The next six terms bring

across the idea that a checker gains value when it moves towards the 7th rank. The term with a

weight of 8 indicates that it is valuable to keep your checkers in the 1st rank. The last two terms

imply that it is advantageous to place the opponent’s kings and the opponent’s checkers under

threat.

UsingFa as the evaluation function, a playing agent using alpha-beta at ply 1, ply 2 and ply

3 has been set to play against a playing agent that selects moves at random. If the next move is

a win, the playing agent chooses it. If not, the move decision is made according to the agent’s

selection procedure. At each level, 1000 games were played, each agent taking alternating turns

to be the first player. In total, 3000 games were played.

For each game, the number of expand operations requested by alpha-beta was counted.

These measurements were aggregated to obtain a sample mean and a sample variance for each

ply. Using the aggregates, the population mean can be estimated with a confidence of 95% to

fall within the following interval [71]:

(X − 1.96× σ
√

1000
,X + 1.96× σ

√
1000

) (4.2)
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whereX is the observed sample mean,σ is the standard deviation, andn is the number of

measurements in the sample.

Results

Table 4.1 shows the results of the measurements. As expected, the number of expansion opera-

tions conducted by alpha-beta increases dramatically as the ply depth increases.

Table 4.1: The search span of Alpha-beta at different ply depths
Depth Mean span (95% conf.) Variance Minimum Maximum
1 ply 7.14355± 0.0237925 0.147356 5.9243 8.1421
2 ply 22.32709± 0.0501393 0.654403 20.0000 25.0625
3 ply 91.29213± 0.3507121 32.01764 75.4468 111.544

4.7 Experiment: Best-firstvs. Alpha-beta

Objective

The aim of this experiment is to measure how well the best-first search algorithms (BFSS and

BFDS) perform when these are set against minimax with alpha-beta pruning.

Method

All the playing agents used in this experiment employ the formulaFa (Equation 4.1). The

alpha-beta agent always searches to the third ply. In the previous experiment, the search span of

alpha-beta at ply 3 was estimated to be approximately 91, and the minimum span encountered

was 75. In this experiment alpha-beta is set against best-first where the search span of best-first

increases. The search span ranges from 2 to 70. First BFSS is matched with alpha-beta at each

search span interval, then the sequence is repeated for BFDS. In total, 138 matches (or 276

games) where played.

The alpha-beta and best-first playing agents are deterministic; there are no stochastic ele-

ments that influence the move decision. The strength of moves selected by a deterministic agent

could depend on playing order – some strategies might work better when used by the first player.

For this reason, two games are required to determine whether one deterministic agent is better

than another. Each agent gets a turn to be the first player in a C game. At the end of each

game, match points are awarded: the winner gains 2 match points and 1 match point is allocated

 
 
 



4.7. Experiment: Best-firstvs. Alpha-beta 61

to each player when there is a draw. In total, there are four match points awarded during the

match.

The score of an agent is that total of the match points it collected. Only the scores for the

best-first agent are recorded. These scores provide some insight into how large the BFSS search

span should be to beat alpha-beta with the same knowledge. In addition, it is possible to observe

for each search span, whether BFSS or BFDS fares better against alpha-beta.

Results

The recorded scores are shown in Table 4.2. The maximum score an agent can achieve against

alpha-beta is 4 (2 points per game). The span associated to each result is the number of nodes

the best-first was allowed to expand. For alpha-beta the search span was set to 3 ply. The totals

at the end of this table is the sum of all match points, out of a possible score of 276.

Table 4.2: Best-first against alpha-beta at various search spans

Span BFSS BFDS Span BFSS BFDS Span BFSS BFDS
2 2 2 25 3 3 48 3 2
3 1 1 26 2 2 49 3 2
4 3 2 27 3 2 50 3 2
5 2 1 28 2 2 51 3 3
6 1 0 29 2 3 52 3 4
7 1 1 30 2 3 53 2 3
8 2 2 31 2 2 54 3 3
9 2 2 32 3 4 55 1 2

10 1 3 33 3 3 56 2 2
11 3 2 34 3 3 57 3 2
12 3 3 35 3 3 58 2 3
13 3 3 36 3 2 59 3 3
14 3 3 37 2 2 60 4 3
15 2 3 38 3 2 61 4 4
16 2 2 39 2 2 62 3 3
17 2 2 40 2 2 63 4 3
18 2 2 41 3 1 64 4 4
19 2 2 42 3 3 65 4 3
20 2 3 43 3 3 66 4 4
21 2 3 44 3 3 67 4 4
22 3 4 45 3 3 68 4 4
23 4 4 46 3 4 69 4 3
24 3 4 47 2 2 70 4 3

Total 185 182

These results do not show a gradual, or even a consistent increase in performance as the

search span increases. This is because the two strategies that are used in this experiment are

very specific. For instance, searching BFSS to a span of 10 with the given evaluation function
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provides the alpha-beta with an opportunity to win, while a search span of 9 does not. Albeit

not consistent, the increase in performance is clear when observing that the frequency of 4-point

scores increases as the span increases. The score of BFSS stabilises at 4 when the search span

exceeds 62.

It is surprising that alpha-beta does not consistently beat best-first for the spans less than 10,

and that it rarely beats (only exception at BFDS, span 41) best-first for spans greater than 10.

The totals for BFSS and BFDS are very close (185 and 183), and as such these totals do

not clearly indicate a superior strategy. Table 4.3 shows the average performance of these two

strategies in intervals of ten. From these values, it is clear that BFSS performed better in the last

interval (61-70).

Table 4.3: Best-first against alpha-beta at search span intervals

Span BFSS BFDS
2 to 10 1.6667 1.5556

11 to 20 2.4000 2.5000
21 to 30 2.6000 3.0000
31 to 40 2.6000 2.5000
41 to 50 2.9000 2.5000
51 to 60 2.6000 2.8000
61 to 70 3.9000 3.5000

4.8 Experiment: Deep firstvs. shallow first

Objective

The aim of this experiment is to determine which method is best to select the next node to ex-

pand during best-first search. The two alternatives are: select the shallowest principal variation

(BFSS) or select the deepest principal variation (BFDS). Essentially, best-first shallow search is

compared with best-first minimax search.

Method

For this experiment the best-first agents play C against a random moving agent. As

before the random agent selects the next move at random when no immediate winning move is

available. For this experiment a match consists of 10 games. Allocating 2 points for a win and

1 point for a draw leads to a maximum score of 20 points per match.
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The primary difference between BFSS and BFDS is that BFSS searches the lowest ply first

when more than one principal variation is available. Multiple variations occur when an evalua-

tion function is unable to distinguish clearly between different positions. Thus, when comparing

the two best-first searches, the evaluation function is likely to influence the outcome of the com-

parison. For this reason, two evaluation functions are used: the first is the functionFa from page

59 and the second function,Fb, is adapted fromFa:

Fb ≡





1× {O∗}@{(∗, ∗)}

+ 1× {o∗}@{(∗, ∗)}

+ 1× ¬{O4,O6}@{(∗, ∗)}

+ 1× ¬{o4, o6}@{(∗, ∗)}

+ 1× {o∗}@{(∗, 7)}

+ 1× {o∗}@{(∗, 6)}

+ 1× {o∗}@{(∗, 5)}

+ 1× {o∗}@{(∗, 4)}

+ 1× {o∗}@{(∗, 3)}

+ 1× {o∗}@{(∗, 2)}

+ 1× {o∗}@{(∗, 1)}

+ 1× {X4,X6}@{(∗, ∗)}

+ 1× {x4, x6}@{(∗, ∗)}





(4.3)

Fb is Fa with all the feature weights set to 1. Making all the weights equal produces a function

that is more likely to find multiple principal variations during search, because this function

would assign the same value to many positions. Also, because the weights ofFa was tuned (by

hand), setting all terms to a weight of 1 will produce a weaker evaluation function.

This experiment was conducted for search spans ranging from 2 to 25. For each search span,

100 matches (1000 games) were played where the best-first agent competes with the random

agent. The mean match points for 100 matches can be determined at a 95% confidence to be:

(X − 1.96× σ
√

100
,X + 1.96× σ

√
100

) (4.4)

whereX is the mean of the observed match points,σ is the standard deviation, andn is the

number of measurements in the sample.

Measurements were taken for BFSS and BFDS for the different search spans. One set of

measurements was collected forFa and another forFb.
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Results

The match points with 95% confidence intervals achieved by the different configurations are

listed in Table 4.4. As expected theFa evaluation function clearly outperformsFb. An increase

in search span coincides with a decrease in variance, showing that the outcome becomes more

predicable as the best-first agent searches further.

Table 4.4: The performance of BFSS and BFDS against random
Span BFSSFa BFDS Fa BFSSFb BFDS Fb

2 18.5700±0.2617 18.0714±0.4312 17.4800±0.3337 17.4300±0.3516
3 18.4500±0.2544 18.4400±0.2450 17.0200±0.3225 16.5800±0.3981
4 18.7200±0.2282 18.4900±0.2322 16.9400±0.3294 16.7000±0.3616
5 18.2900±0.2199 18.5600±0.2497 17.3400±0.3802 17.1300±0.3397
6 18.9400±0.2005 18.9700±0.1815 17.2600±0.3047 17.2400±0.3015
7 19.0800±0.1777 19.2600±0.1819 17.5900±0.3344 17.3800±0.2945
8 19.5000±0.1461 19.2500±0.1535 17.9800±0.2868 17.1500±0.2979
9 19.4400±0.1256 19.3600±0.1613 18.0200±0.2974 17.3700±0.2739

10 19.7200±0.1045 19.6600±0.1221 18.2100±0.2558 17.6000±0.3139
11 19.5900±0.1185 19.5600±0.1345 18.0700±0.2449 17.5000±0.2765
12 19.5300±0.1406 19.5500±0.1347 17.9500±0.2777 17.5700±0.2761
13 19.6100±0.1273 19.4300±0.1607 18.0500±0.2678 18.0400±0.2743
14 19.6400±0.1097 19.6700±0.1216 18.2700±0.2328 17.6800±0.2867
15 19.6700±0.1184 19.7000±0.1165 18.5000±0.2272 18.0700±0.2647
16 19.6400±0.1166 19.7600±0.0929 18.3300±0.2461 17.7600±0.2976
17 19.5700±0.1284 19.6100±0.1178 18.2800±0.2446 17.9200±0.2609
18 19.7100±0.1090 19.6700±0.1007 18.7300±0.2044 18.2300±0.2489
19 19.7600±0.1047 19.6300±0.1296 18.7600±0.2178 18.3200±0.2261
20 19.7000±0.1097 19.6900±0.1068 18.7300±0.2226 18.2700±0.2442
21 19.7700±0.09592 19.7700±0.09178 18.9900±0.1816 18.1200±0.2858
22 19.7300±0.1074 19.7500±0.1019 19.0200±0.2047 18.3700±0.2358
23 19.7700±0.09178 19.6900±0.1205 18.7800±0.1901 18.2778±0.2837
24 19.8000±0.0924 19.5600±0.1429 18.8300±0.2029 18.1300±0.2407
25 19.8300±0.07907 19.7100±0.1016 18.9700±0.1899 17.9900±0.2591

Although BFSS performs better for both functions, the results for Fb is more conclusive. As

expected, the weaker function performed better with a greater margin than the stronger function.

The line diagram in Figure 4.3 highlights this observation.

4.9 Conclusion

Minimax search with alpha-beta pruning is a popular method used by game playing agents to

search through the game tree. This is a fixed-depth method, and as such it has two problems.

The first is that it is not possible to fine tune the amount of time used for the search, and the

second is that it does not use knowledge during the search process.
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Figure 4.3: The performance of BFSS and BFDS against random

Best-first minimax is a selective search technique developed by Korf and Chickering that

uses the knowledge encapsulated in the evaluation function to decide which branch in the game

tree to explore further. As a selective algorithm, the time it uses can be limited easily, and when

the search is terminated the most promising move found thus far can be selected by the playing

agent. A problem with best-first minimax is that it is more suited for games where the tempo

effect is more pronounced, and the evaluation function is able to separate good positions from

bad positions very accurately.

Best-first shallow search is a new game tree search algorithm proposed in this chapter that

is able to work with weaker knowledge and possibly with more game types. This new algorithm

expands the principal variation with a leaf that is closest to the root of search tree first. In this

way it handles game trees with duplicate positions better and it is more likely to find the shortest

winning play-line during the end-game phase.

In the second experiment alpha-beta competed against the selective algorithms. The results

show that it is better to employ knowledge during search. The last experiment compares best-

first minimax with best-first shallow search. For weaker knowledge it is clear that best-first

shallow search is better, but with stronger knowledge neither algorithm dominates.
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In the next chapter, the spotlight moves away from the playingagent and it provides a review

of the machine learning techniques used to optimise the weights of the evaluation function.

 
 
 



Chapter 5

Learning the evaluation function

The previous two chapters described the facets of the playing agent. In this chapter, the focus returns

to the learning agent. A review of the predominant learning methods is provided, and the learning

framework is introduced. This framework represents a key contribution of the current work, and the

details of the framework is presented in the two chapters that follow this one.

5.1 Introduction

The playing performance of an agent is improved by increasing the search capabilities, or by

strengthening the knowledge of the agent (see Section 2.4). This chapter provides a review of

the methods used to improve the game knowledge of the playing agent. This learning task is the

responsibility of the learning agent.

As a starting point for learning, the zero-knowledge agent defined on page 32 prescribes that

learner should not be equipped with any game knowledge other than the knowledge contained

in the game rules. In order to argue that learning has occurred, Minsky [43] suggests as the

minimum criterion that such an agent learns to play a better-than-chance game.

The definition of the zero-knowledge agent does not place any constraints on the learning

environment. Clearly, the environment in which the agent learns would have a marked influence

on its learning performance. In this environment, the agent could be provided with examples

obtained from related literature, it could be guided by the interactive feedback of an expert,

or it could learn on an on-line game server. The latter training environment was used to train

Baxter’s C program, Knightcap [5] and in Fogel’s Blondie [22]. It learned by playing on

an Internet chess server against human players. On this server, human players tend to compete

67

 
 
 



5.2. The phased evaluation function 68

against opponents of their own strength. Consequently, as Knightcap’s strength increased, so

did the strength of its opponents.

The variety of environments and different objectives of the researchers (as highlighted in

Section 2.3) lead to a large number of approaches to game learning. The collection of techniques

described in this chapter is not the result of a complete literature survey. Methods considered

to be generally important and those that are directly related to the techniques developed for the

current study are described.

The knowledge representation method described in Chapter 3 encapsulates knowledge in a

linear evaluation function. Section 5.2 discusses the problems introduced by this linearity and

the use of game phases as a remedy to these problems. In Section 5.3, the challenge of feature

discovery is discussed and the approach used by GLEM to identify features is reviewed. This

is followed by Section 5.4 that describes the application of machine learning techniques to the

training of the evaluation function’s weights.

An overview of the learning framework is provided by Section 5.5. Specific attention is

given to the macro-cycle of the framework. Section 5.6 describes a method that is used in

subsequent chapters to compare the performance of playing agents. Section 5.7 concludes with

a summary of this chapter.

5.2 The phased evaluation function

A reason for choosing non-linear representations such as neural networks for game learning is

that these techniques are able to approximate a much larger class of evaluation functions than

linear representations. Berliner [6] describes a problem with linear functions, calledsuicide

construction. Consider a simple term in a linear function,S = I ×D, whereS denotes suffering,

I pain intensity andD denotes pain duration. If the aim is to minimise suffering, this term seems

like reasonable advice: reduceI andD. If the program is able to manipulate the value ofD, and

an excruciating pain cannot be removed, it may well recommend suicide by drivingD to 0. This

advice would usually not be a valid solution. However, when this term appears amongst others

in a linear evaluation function in which other terms place a high value on staying alive, the value

of D = 0 might be taken. In other words, suicide construction occurs when the potential exists

for one of the weights to be adjusted in an undesirable direction.

Given a linear representation for the evaluation function, non-linearity can be introduced by

separating the game into phases, and assigning a different evaluation function to each phase.
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The result is a composite function called aphased evaluation function. Clearly, the possibility

remains to use neural networks instead of linear functions as the parts in this composition.

Boyan [7] explored this possibility using B as domain. His results indicate that

using a different network for each game phase is an improvement over learning the weights of a

single neural network for the entire game.

There are many ways to define the phases for a given game. Boyan identified 12 game

phases for B, and trained 12 networks. He determined the game phase from the

pip count∗ for each player. The player’s pip count for contact positions† is classified as small,

average or large. Pairing the pip count classification of the players gives rise to 9 game phases:

{(small,small),(small,average), . . . , (large,large)}. The remaining 3 phases categorises the non-

contact positions. A non contact position can be in one of 3 states: (a) the first player leads, (b)

the second player leads, or (c) the race is relatively close.

The phases used by Lee and Mahajan [38] for O is much simpler. They use the total

number of discs on the board to determine the game phase. Their learner focussed on the middle

game and 26 (out of 64) phases were used during training: from the 24th phase to the 49th phase.

The training problem was to find the weights for four hand-coded features. The results obtained

by Lee and Mahajan show an improvement in the performance of an O program that

already played at world championship level.

5.3 Discovering features

Nearly five decades before this writing, the challenge to automatically discover game features

was set by Arthur Samuel [53]. Samuel’s challenge implies the discovery of features that can

be used in place of the hand-crafted features used by his linear evaluation function. However,

the non-linear, neural network approach proved to be an effective knowledge representation

technique that is ideally suited for traning.

As an evaluation function, a neural network encapsulates knowledge in three ways: the net-

work topology, the weights and the encoding. Encoding refers to the process that translates the

game position into the floating-point values that are assigned to the input nodes of the network.

The encoding is usually a fixed procedure, and conceptually node weights correspond with the

∗The Pip Count is the total number of points that a player must move his pieces to bring them home and bear
them off. At the start of a game each player has a pip count of 167.

†A contact position is one in which one or more pieces of the players are (or can potentially be) on the same point
position.
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weights in a linear function. It is possible to ‘discover’ an optimal network topology. Conse-

quently, one may expect the problem of identifying the topology of a neural network and the

problem of finding features for a linear evaluation function to be related. However, the two prob-

lems are very distinct, and little synergy can found in the methods used. The main difference

is that linear feature discovery expects to find highly structured information while an optimal

neural network architecture represents an optimal structure for the non-linear function.

The problem of finding a neural network architecture revolves around the structure of the

hidden layers in the network. One approach is to have a single hidden layer and to determine the

number of nodes in this layer. This approach was used by Fogel for an agent that learns how to

play T-- [21]. Moriarty and Miikulainen [45] takes on the more complicated problem of

also determining the number of hidden layers in the architecture. Their program uses O

as learning domain.

The discovery of features for a linear evaluation function is closer to the aim of the current

work. In the subsection that follows, an approach developed by Michael Buro to learn such

features is described in detail. He also used O for his learning experiments.

5.3.1 GLEM configuration discovery

Micheal Buro introduced the Generalised Linear Evaluation Model (GLEM) to discover the

terms of a linear evaluation function [10]. The GLEM representation scheme and GLEM con-

figurations have already been described in Section 3.4. A GLEM configuration is a combination

of GLEM atomic features, and can (in a more general sense) be regarded as a feature in a linear

evaluation function. Consequently, the approach used by GLEM to identify a set of configura-

tions is essentially an approach to discover evaluation function features.

The number of possible configurations for a set of GLEM atomic features{ f1, f2, . . . , fk}

grows exponentially with the size of the set. If all the atomic features are binary, there are 2k

possible configurations. However, the possibilities are typically much more than 2k because a

GLEM atomic feature is likely to have more than two possible values, and a valid configuration

does not need to contain all the atomic features. Hence, it is impractical to enumerate all the

possible configurations in an evaluation function and then to find optimal weights for them.

Also, most of these combinations that will not be useful in an evaluation function. There are

certain combinations describe positions that are impossible to attain: for example, having all 8

your pawns in the 7th rank during a C game.
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Buro’s deduction process [10] decides on a set ofactive configurationsbased on a large set

of example positions,E, and a cut-off valuen. The algorithm includes a configuration in the

active set if and only if there aren or more instances inE that match the configuration. A higher

value ofn reduces the risk of overfitting. Figure 5.1 outlines the most basic implementation of

this algorithm.

Algorithm GLEM Discovery
Input A set of examplesE, a set of featuresF and a cut-off valuen.

Output A set of configurationsC

GlemDiscover(E,F,n)
1: Set R to the most general values in F

C = R
N = R
while (|N| > 0)

M = {}
for each c j in N

for each rk in R
e= c j ∪ rk

if (e is found no less than n times in E)
M = M ∪ {e}

N = M
C = C ∪ N

2: Remove all general configurations from C
return C

Figure 5.1: An outline of the GLEM discovery algorithm

In line 1 of the outline, the setC is initialised to the set of most general elements,R. An ele-

ment in this set is a feature combined with an element from the feature’s domain. For example,

an atomic feature calledcolor with domain{red,green,blue} would contribute 3 most general el-

ements to the set.R is also used in the inner loop of the algorithm. Here, every configuration in

N (initially set toR) is combined with an element inR and if the new combination is supported

by more thann examples, it eventually becomes an element inC. This process is repeated with

all the new elements identified in thewhile loop until no new configurations are found.

A combinationa is more specific than a combinationb if an only if a contains all the el-

ements inb anda has more elements thanb. For every combination inC, created during the

collection cycle that has a length greater than one, the same combination with the last atomic

feature removed is also inC. Thus, most of the combinations collected are generalisations of

other combinations that are also collected. The final step of the procedure (line 2) returnsC

after all the general configurations are removed from this set.
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Buro’s contribution [10] includes novel techniques to improve the computational efficiency

of the algorithm itself and also the efficiency of the access to, and the storage of the resulting

data structure.

Essentially GLEM expressions are two levels deep - the first level contains the configuration,

and the second contains the atomic features. The feature language,F , introduced in Section 3.6

is a much richer representation method, that allows complex expressions of arbitrary length. In

addition, the atomic features used inF are less coarse than GLEM’s atomic features. These two

differences make the number of possible expressions inF much more that the possibilities in

GLEM. It is therefore not practical to use GLEM to findF expressions from a set of example

positions.

5.4 Learning weights

The automatic optimisation of the weights of an evaluation function is the most extensively

studied learning problem in game playing [27]. Like the feature discovery problem, the problem

of finding optimal weights for game playing agents has also been more visible in the neural

network arena. In contrast to the feature discovery problem, the problem of finding optimal

weights for a linear function and for a neural network that plays a game are very alike. In both

problems, the aim is to find a solution in a multi-dimensional space of floating-point values. In

addition, the problems share the same input (albeit encoded differently), and learns the same

activity. A variety of different approaches to solve this problem has been proposed.

Samuel [53] provides his C learning agent with a linear evaluation function com-

posed from hand-crafted terms based on C literature. The sign of the weights was also

part of the input. Samuel remarks that the program could already play a ‘fairly interesting game’,

even before learning started.

Pollacket. al. [48] trains a fixed neural network to play B. The network’s input

nodes encode only visible features and a flag that indicates whether the game is in the endgame

phase.

Kotnik and Kalita [36] trains the weights of a fixed neural network to play G R. In

this case, the network does not encode visible features of the game state. The input nodes accept

an encoding of the accessibility of the playing cards. More accessible cards have a higher value,

i.e. a card that can potentially be accessed by the player has more value than a card known to be

in an opponent’s hand.
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Franken and Engelbrecht [25] developed a C learning agent that finds optimal weights

for a neural network. As input, this network takes a value for each square, such that a higher

value indicates the contribution the square makes to the strength of the active player. For in-

stance, a square occupied by an opponent king has less value than an empty square or one that

is occupied by the active player’s king.

Another recent example is the neural networks trained by Fogelet. al. [23] for a C

player. In addition to the trained neural networks, the player was also equipped with an advanced

tree search that extends when a position at the edge of the search meets certain criteria, as well

as opening- and closing books. The research problem addressed here is to improve the skill of

a very strong player. In this case the input nodes accepted the material value of the piece on the

square of the C board.

Although the specific learning problems and the representations are diverse, a relatively

small number of different learning methods are employed by most of the researchers. These

methods are general approaches to the class of learning problems associated with weight train-

ing for games. In the subsections that follow, supervised- and reinforcement learning are de-

scribed as fundamental learning methods. Temporal difference learning is a method that has

been devised specifically for game learning. In the last subsection, strategies to use coevolution

as a game learning method are explored.

5.4.1 Supervised learning

The supervised learningprocess typically uses a large collection of rated example game po-

sitions as input. The rating of an example is an expert’s estimate of the value the evaluation

function should assign to the position [27]. Successful training produces weights for the evalu-

ation function such that the function correctly predicts the value of new positions encountered

during play. Essentially, the evaluation function generalises the specific information supplied in

the form of rated examples.

The challenge of supervised learning is to acquire accurate ratings for examples. The value

assigned by an expert to a particular example is a subjective value; and there is no absolute

standard to measure the correctness of his assessment. Incorrectly rated examples complicate

the generalisation process and lead to ineffective training. Consistency is more important than

absolute accuracy. As long as the ratings provide the learner with enough information to decide

the direction in which to adjust the weights, the examples are adequate.
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The success of the achievements of Tesauro has to be partly dueto the knowledge he has of

B. As an expert player, Tesauro himself provided the ratings for the initial work he

conducted on this game [27, 69]. However, for the typical research endeavour, experts are not

readily available and the rating process is a time-intensive and costly ordeal [27].

A common method used for supervised training adjusts the weights such that the mean

squared error is minimised. This error measure is calculated as follows for a set of weights,~x:

E(~x) =

∑N
i=1(F(~x, ei) − R(ei))2

N

whereF(~x, ei) is the evaluation function value for exampleei , andR(ei) is the rating for example

ei . This equation was used by Buro [9, 10] and Mitchell [44] to train O players.

Comparison trainingis an approach introduced by Tesauro [68] that does not use quantita-

tive ratings. Instead of rating each individual example separately, the expert is given a set of

examples, and he decides which of the examples in the set is the best, and which example is

the worst. The training objective for comparison training is to maximise the number of correct

choices made by the evaluation function when it is presented with the same example sets.

If the research aim is to train a playing agent that is able to beat top human players, super-

vised learning is not a practical option. Even if enough correctly rated (or compared) examples

are available, the learner still generalises over the examples. As a generalisation, the learner

may achieve very high levels of playing performance, but it will not discover a novel strategy

that will surprise an expert player. In effect, such a learner will be unable to beat the expert(s)

that provided the ratings for the examples from which it obtained the generalisation.

5.4.2 Reinforcement learning

Reinforcement learning[65] is a learning process whereby an agent learns which action to take

from feedback information it receives from the environment. This information, calledreward,

is received after the learner takes one or more actions. If the reward for an action is positive,

the action is reinforced, and the tendency of the learner to take that action again in the future is

increased. A negative reward decreases the tendency to repeat the action that was taken.

The learning rate, θ, is a positive floating-point parameter to the reinforcement learning

process (θ < 1). This parameter controls the rate at which the agent adjusts its behaviour based

on each reward. A high value forθ increases the learning rate and the agent adapts quicker when

a reward is received. A low value slows down the learning progress, but it is more reliable in
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the uncertainty caused by the noise that is typically presentin the feedback process.

As an example, consider an agent that must choose between two actions: turn left or turn

right. The learning exercise is to teach the agent that it must always turn right. Internally, the

agent keeps a probability value by which it chooses to turn right. The initial value for this

probability is 0.5. Let the sequencep1, p2, p3, . . . represent this internal probability value as it

changes over time (pt is the probability before thetth action is taken). At timei, the agent turns

right and it receives a positive reward. In this casepi is adjusted as follows:

pi = pi−1 × (1− θ) + θ

Conversely, if the agent turns left it receives a negative reward andpi is adjusted as follows:

pi = pi−1 × (1− θ) − θ

This example clearly demonstrates the role of the learning rate. A low rate elevates the impor-

tance of the experience gained thus far, whereas a high value forθ considers the last feedback

as more important. After a number of attempts, the probability by which the agent chooses to

turn right will increase and eventually the agent will always turn right.

The termdelayed reinforcementis used to describe a reinforcement learning process where

more than one action is taken before a reward is received. The delayed feedback is typical of

the games of interest to the current study; only after an entire sequence of moves are made, the

outcome of the game becomes available. The actions available to the game learning agent are

presented as the list of available moves at each decision point in the game. Typically, the actions

are reinforced or penalised by increasing or decreasing a score associated to the position on the

play-line. The score adjustment for a draw is somewhere between the positive adjustment for a

winning position and the negative adjustment for a losing position.

It is possible that a lost game is caused by one bad move, and the other moves in that game

are good moves. In such a case, only the culprit move should receive a negative reward. Un-

fortunately, the learning agent is usually unable to distinguish the bad moves from the good

moves in the play-line. This leads to thecredit assignment problem[43]. This problem con-

cerns the method by which the reward is distributed to the individual actions responsible for it.

Two simple approaches are practical [41]: the first is to distribute the reward equally amongst

all the moves that contributed, and the second option is to increase the proportional assignment
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for positions that occur later in the game. This proportionalassignment is based on the premise

that initial moves have a lesser impact on the outcome of the game than moves in the endgame.

Clearly, these approaches do not solve the assignment problem for a specific game line. How-

ever, after applying a consistent approach over a multitude of training games, the score of a

position becomes more accurate.

During the initial training of reinforcement learning it is possible that some properties are

mistakenly chosen to be important. The problem of “unlearning” this knowledge can hinder

learning progress at a later stage [43]. This problem can be mitigated by choosing the training

sequences well.

The basic process of reinforcement learning is problematic for non-trivial games. In these

games, the likelihood of coming across the same middle game position is very low. During

play many positions are encountered that have not yet been scored. For these games some kind

of generalisation over positions is required. One method is to assign the reward to a class of

positions, and not to an instance. A related problem is that training on the outcome of games is

a slow process because many games are needed before the scores converge to accurate values

[9].

5.4.3 Temporal Difference learning

Temporal difference learning (TD) is a reinforcement learning process that mitigates the prob-

lems associated with delayed reinforcement. When the reward is immediate, the behaviour of

TD is no different than the reinforcement learning process described in the previous section.

However, when amulti-step activityis learnt, TD converges faster and produces better predic-

tions than the basic reinforcement approach [64].

The key to understanding TD is to consider the sequence of observations,~x1, ~x2, ~x3, . . . , ~xm

that leads to the outcomez. Each vector~xt describes the state of the environment at timet; and

z is the outcome at timem. The aim of the TD learner is to produce a corresponding sequence

of predictions of the outcome (z), sayP1,P2,P3, . . . ,Pm. At time t, the prediction forz is Pt. If

these predictions are accurate, the player is able to determine at timet which move would lead

to a winning outcome because the prediction,Pt+1 for the resulting position,~xt+1 will be a win.

Each prediction is based on a vector of modifiable weights,~w. Thus,Pt can be denoted as

P(~xt, ~w). During learning, the values of~w is updated.

Consider an approach to determine the value of~w after the sequence (ofmsteps) is complete
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and the outcome is known to bez. The supervised learning process would use the position-

outcome pairs (~x1, z), (~x2, z), (~x3, z), . . . , (~xm, z) as rated examples. An assignment can be made

to ~w that satisfies the equationP(~xm, ~w) = z. Now, for each observation leading to~xm an

increment as∆~w, is determined and~w is the sum of these increments:

~w =
m∑

t=1

∆~wt (5.1)

The increment,∆~wt, depends on the difference betweenPt andz, and how a change in~w will

affect the value ofPt. For supervised learning a learning rate,θ and a gradient,∇~wPt can be

used to determine the increment:

∆~wt = θ(z− Pt)∇~wPt (5.2)

The gradient,∇~wPt is the vector of partial derivatives ofPt with respect to each component of

~w. For the special case where a linear function,Pt is learnt:

Pt = ~w
T~xt =

∑

i

~w(i)~xt(i) (5.3)

where~w(i) and~xt(i) are thei-th components of~w and~xt respectively. In this case,∇~wPt = ~xt (it

is the derivative of Equation 5.3 with respect to~w), and Equation 5.2 is reduced to the Widrow-

Hoff rule [75]:

∆~wt = θ(z− ~wT~xt)~xt (5.4)

The differencez− ~wT~xt represents the scalar error between the prediction and what it should

have been. This error is multiplied by the vector~xt because~xt indicates how each weight must

be adjusted to reduce the error. For example, if the error is positive,~xt[i]‡ is positive and~w[i]

will be increased - resulting in an increase of~wT~xt and reducing the error.

The equation to determinePt is dependant onz, andPt cannot be computed beforez is

known. In other words, Equation 5.4 cannot be calculated incrementally. There is a temporal

difference learning procedure, called TD(1) that produces the same result as Equation 5.4 such

that the value can be computed incrementally. LetPm+1 ≡ z, then the error atPt is the sum of

‡~a[b] refers to thebth element of~a
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the changes in the predictions afterPt:

z− Pt =

m∑

k=t

(Pk+1 − Pk)

From Equation 5.1, the linear weights are determined as follows:

~w = ~w+
m∑

t=1

θ(z− Pt)~xt

= ~w+ θ
m∑

t=1

m∑

k=t

(Pk+1 − Pk)~xt

Because
∑n

i=1
∑n

j=i aib j =
∑n

j=1
∑ j

i=1 aib j :

~w = ~w+ θ
m∑

k=1

k∑

t=1

(Pk+1 − Pk)~xt

= ~w+
m∑

t=1

θ(Pt+1 − Pt)
t∑

k=1

~xk

The increment can now be expressed as:

∆~wt = θ(Pt+1 − Pt)
t∑

k=1

~xk (5.5)

The value of∆~wt can be computed incrementally because it depends on the value of the two

successive predictions and the sum of all preceding increments. In response to a new prediction,

Pt+1, ∆~wt can be determined and used to update the predictions,P1,P2, . . . ,Pt. The TD(1)

procedure alters all these to an equal extent. TD(λ) is a class of procedures that make greater

alterations to more recent predictions: the prediction for an observationk steps in the past are

weighted byλk whereλ ∈ [0, 1]:

∆~wt = θ(Pt+1 − Pt)
t∑

k=1

λt−k~xk (5.6)

A larger value forλ increases the number of preceding observations that has an influence on the

value of∆~wt. For TD(1), all the preceding observations are considered, and for TD(0) none of

the preceding observations have an influence on the weight increment.

The advantage of using the exponential form to alter the weights is that it can be computed
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incrementally: that is, the value∆~wt+1 can be computed using the values obtained from the

computation of∆~wt. The way this is done is shown in the following derivation:

∆~wt+1 = θ(Pt+2 − Pt−1)
t+1∑

k=1

λt+1−k~xk

= θ(Pt+2 − Pt−1)(~xt+1 +

t∑

k=1

λt−k~xk

︸     ︷︷     ︸

from Equation 5.6

)

In order to gain an intuitive understanding of how TD learning works, consider a particular

game positionq. From experience, the probability of winning fromq is estimated at 0.10. In

a particular game line that leads to a win, another position,p, precedes positionq. What is

the estimated probability of winning associated top? Assumingp was encountered only once

during training and it lead to a win, a supervised learning method would conclude thatp is a

good move. The TD method would useq’s estimate to determinep’s value becauseq precedes

p. The low estimate of 0.10 for q would lead TD to the conclusion thatp is more likely to lead

to a loss. Ifq is correctly rated, the TD method is more correct. Given infinite experience, both

methods would converge to the same value forp, but when the experience is limited, TD learns

a better evaluation.

Samuel’s [53] C learner also adjusts the weights in accordance with the immediate

successors in a game line. The difference is that Samuel’s program does not utilise ana priori

rating of the positions, while TD requires that every training sequence ends with a definite,

externally supplied outcome. Samuel’s decision to fix the weight of the most prominent feature

(piece advantage), prevents his training procedure from finding useless evaluation functions.

Tesauro [66, 67] presented the first results of temporal difference learning on the training

of an evaluation function for B. The trained playing agent, named TD-Gammon,

achieved expert level play. Other research attempts failed to achieve this level of performance,

and TD’s success has been attributed to the characteristics peculiar to B that makes

it an ideal game for learning from self-play [27, 48, 36]. The primary characteristics cited is

that the game does not require a large amount of search and that the dice-rolls guarantee the

exploration of a sufficient variety of positions to identify all regions of the feature space.

 
 
 



5.4. Learning weights 80

5.4.4 Coevolution

In the context of game learning coevolution is a learning process that involves adaptation of

the environment in which the learner finds itself. As the environment changes, the learner must

adapt. Coevolution also requires that the changes in the environment are largely a consequence

of the changes in the learning agents.

The simplest example of coevolution is two agents that learn by competing against each

other. In this case, one agent is the learning environment of the other. After each competition,

the evaluation function of at least one of the agents are adjusted. This approach has been used by

Pollacket. el. [48] and Kotnik [36] to train B and G R players, respectively.

They compared their results with the TD approach and concluded coevolution works better than

TD.

This simple coevolution approach works well for B and G R because

these games are stochastic. The stochastic element ensures that a variety of match conditions

are tested, even if the strategies of the competitors remain unchanged. Thus, the accuracy of

the assessment of stochastic competitors can be improved by increasing the number of matches

played during a competition.

For perfect information games, this simple strategy would not be effective. In perfect infor-

mation games, the outcome of the game is always the same when two players compete. A win

against a single opponent does not imply the winning player’s strategy is better in general. For

this reason, coevolution learning for perfect information games typically involves a population

of learning agents.

Two approaches toward the coevolution of a population are popular. The first is the use of

agenetic algorithm(GA) in which the population evolves using natural selection and mutation.

The second approach is calledparticle swarm optimisation(PSO), where the population is mod-

elled as a swarm that finds solutions by exploring the multi-dimensional problem space. These

approaches have a common challenge: the separation of the better individuals in the popula-

tion from those individuals that do not perform well. The strategy to rate the individuals in the

swarm is encapsulated in a function called thefitness function.

The use of a GA or a PSO does not always imply coevolution. Coevolution is not present

when the environment used to rate individuals is entirely static. For instance, the fitness function

of a GA used by Tunstall-Pedoe [70] uses a set of example moves. The fitness of an individual

depends on the number of moves chosen correctly when presented with these examples. The
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training environment consists of a static example set, and thus Tunstall-Pedoe does not employ

coevolution. Another example is the O learning agent of Moriarty and Miikulainen [45].

It initially plays against random moving players, and later against an advanced alpha-beta agent

to determine the fitness of an individual.

A simple mechanism to introduce coevolution into the fitness function is to measure the

fitness of an individual using the other individuals in the population. In game learning this

mechanism is readily available due to the competitive nature of the activity that is learnt. This

approach has been used to train a T-- player by Fogel [21], Franken and Engelbrecht

[26] and Messerschmidt and Engelbrecht [40]. The same approach was also applied to the

more difficult games, C [25, 11, 22] and C [23]. In these endeavours, the train-

ing involved the finding of optimal weights for neural networks. Davis and Kendall [14] used

coevolution to find weights for a hand-crafted linear evaluation function that is used to play a

perfect-information game called A.

In the GA approach, the population evolves in cycles called generations. The fitness function

determines the probability that an individual will become a parent of the new generation. A new

generation of individuals are built from the previous generation using the information of their

parents. Across-overoperator determines how the information from the parents are combined

to form the individual for the new generation. At a given probability, called themutation rate, a

mutationoperator is applied to the offspring. The purpose of this operator is to introduce new

material into the population.

Fogel’s T-- learner [21] avoids the cross-over operator by using a single parent. He

uses a mutation operator that makes random adjustments to the weights and adjusts the number

of nodes in the hidden layer of the neural network. The C learner of Fogelet. al. [23] also

used a single parent and weight adjustment for mutation. Davis and Kendall [14] used the same

approach for their GA.

The PSO algorithm uses the fitness function to identify individuals in the population to

which other individuals are attracted. Using the same fitness function, PSO has been shown to

be an improvement on GA [25, 26, 40]. For this reason, PSO is selected as the method to be

used by the current research. The detail of the PSO algorithm and how it is used in the game

learning domain is discussed in a later chapter.
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Figure 5.2: The learning framework process

5.5 The learning framework

The learning framework introduced in this section presents a general approach to automate

the process of game learning. The framework is built from the premise that game knowledge

consists of two distinct components. The first component is a set of heuristics, calledfeatures,

that can be expressed in a symbolic form. The second component is a set of floating-point

values, calledweights. The features and weights are combined to form a mechanism by which

game states can be evaluated, and consequently this mechanism can be used by game playing

agents. The objective of the learning agent is to find the features, and to optimise the weights.

The framework consists of amacro cyclethat has four general stages. The cycle is shown

in Figure 5.2. During the play stage, example positions are produced and provided as input to

the discover stage. The discover stage addresses the first knowledge component by deducing

relevant features from the given examples. These features are used in the optimise stage where

ideal values for the weights are sought. The evaluate stage considers the value of the new

knowledge, and creates new individual agents. These new agents are input to the play stage

where they are used to create new examples.

The macro cycle learning method employs coevolution. The manner in which the knowledge

coevolve in the cycle is not same as the coevolution described in Section 5.4.4. In competitive

coevolution, also calledpredator-preycoevolution, the interaction between the individuals is

such that the dominance of one leads to the extinction of the other – if one wins the other loses

[19]. The macro cycle is an example of another coevolution type, calledcooperative coevolution.

In this case, disparate ‘species’ cooperate to improve the ability of the learner. As the learning

progresses, the individuals improve and better examples are produced. Better examples lead to

better features that are optimised to produce better individuals.

In the subsections that follow, each stage of the macro cycle is described in more detail.
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The play stage

The individuals that evolve in the play stage are thestage playersthat produce the examples.

For the initial cycle, two random moving players are used to generate the first set of examples.

In subsequent cycles, one or more new players are provided to the play stage. The new players

are then used to generate the new examples.

The examples produced by this stage is simply a set of play-lines. Each play-line is the

sequence of moves of a game between a stage player and a random moving player. The examples

are written to aplay-file.

The discovery stage

At the start of thediscovery stage, the play-lines in the play file are rated. The rating procedure

classifies a position as a win position, lose or draw position. Also, the game phase of the position

is determined. These rated positions are written to aposition-filethat is read by the knowledge

discovery algorithm. The output of this algorithm is a phased evaluation function represented

in the feature languageF (Section 3.6). The detail of the discovery algorithm is introduced in a

later chapter.

The current study defines a total of 23 game phases for C, and consequently the

phased function generated contains 23 evaluation functions. Every time a checker is captured

the game phase increments. In other words, the phase of the game is a count of the number of

pieces removed from the game.

The optimise stage

The new phased evaluation function is input to theoptimise stage. During this stage optimal

values for the weights associated with newly discovered features are sought. For this, the PSO

algorithm is used. Like the previous stage, a subsequent chapter is dedicated to describe the

detail of the techniques developed for the framework.

The evaluate stage

During the evaluate stage, the new knowledge (i.e. an optimised phased evaluation function) is

incorporated into achampion list. The champion list is kept in order of descending strength,

and a new champion competes with the functions in this list (starting from the top) to determine

its placement in this list.
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5.6 The performance of a function

In this section, a method to evaluate a player’s performance is described. It is not possible

to measure the progress of the learner if the method to evaluate the resulting playing agent is

undecided. Letf be a phased evaluation function, andN be the number of games played in a

competition between an agent that usesf and random moving player. IfL( f ) denotes the number

of games lost andW( f ) denotes the number of games won, then the performance measure off

is determined as follows:

F(N, p) =
N +W( f ) − L( f )

2× N
× 100 (5.7)

During the measurement, the number of games played as first player and second player are

equal (that isN/2). The measurement ranges from 0 to 100, and a greater value indicates a

better performance.

This measurement is equivalent to the Franken and Engelbrecht [25] function called theF-

measure. Like the F-measure, this function also accounts for the large number of draws that

often arises in C matches. Clearly, a larger value forN would increase the accuracy of

the measurement. Franken and Engelbrecht [25] used a value of 200 000 and Messerschmidt

and Engelbrecht [40] used 20 000 for T-- as a value forN. This is a ten-fold increase in

the computational resources required to measure the performance of an agent. The value chosen

for N depends on the required accuracy, and also on the available computing resources. The

need for computing resources is determined by the game chosen as domain - for example, a

single T-- match requires much less computation than a single Cmatch.

In order to determine a reasonable value forN for the C game, an illustrative ex-

periment was conducted using five different phased evaluation functions{A,B,C,D,E}§. A total

of 20 000 games were played using each of the functions. The value of Equation 5.7 was mea-

sured using an increasing value forN at intervals of 1000. Then, using the final measurement

(that isF(20000, p) as a yardstick, the ‘error’ of the preceding measurements was calculated as

absolute value of the difference the measurement and the yardstick. Thus, a high error value at

interval I indicates thatF(I , p) is an inaccurate prediction forF(20000, p). The result of these

calculations can be seen in Figure 5.3. AtN = 15000, the error is well below 0.5 (the horisontal

line). In effect, this is an error of 0.5%, and therefore a value of 15000 forN is considered

adequate.

§The idea was to use a few arbitrary functions for this experiment. The five functions used here were taken from
initial work conducted on the discovery process. The detail of this process is described in the next chapter.
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5.7 Conclusion

The use of a phased evaluation function instead of a single linear evaluation function introduces

non-linearity into the evaluation process. Research endeavours using phased functions indi-

cate that these function do indeed contribute to an improvement in the performance of learning

agents. As a research problem, the discovery of features for linear functions is not as active

as the problem of weight optimisation. The approach Buro used for GLEM finds the specific

features that were found in a representative number of instances of a given example set.

Reinforcement is a general learning technique founded on the principles of supervised learn-

ing to find optimal values for weights. TD-learning is an important innovation on reinforcement

learning specifically developed for multi-step tasks that impose a delayed reward. Although TD-

learning has been shown to be an excellent learning method for B, other researchers

failed to achieved comparable successes.

As a learning method, the macro-cycle of the learning framework uses coevolution. Ex-

amples are used to deduce features, the weights of the features are optimised to produce new

players that in turn, creates new examples. In the next chapter, the discovery stage of the macro-

cycle is introduced. The chapter after that describes the PSO algorithm in detail and introduces

a new method to determine the fitness of individuals in the population.

 
 
 



Chapter 6

Knowledge discovery with ID3

The previous chapter introduced the macro cycle of the learning framework. This chapter covers the tech-

niques used during the Discovery Stage of the macro learning cycle. The aim is to provide background

knowledge of ID3 and describe how it is employed to discover game knowledge. Also, a novel method

that utilises the ID3 decision tree induction algorithm to deduce an evaluation function, is introduced. In

addition, an empirical analysis of variations in the deduction method is conducted to identify the strategy

that is most suitable for the learning framework.

6.1 Introduction

Chapter 3, introduced the feature language,F , as a set of symbols and operators that can be

used to compose an evaluation function. The value of an expression inF can be determined

from features that are directly observable on a game position. It has also been concluded that the

evaluation of a game position is dependent on the game phase; mostly because the significance

of a feature changes as the game progresses. The need for a function that adapts as the game

goes through various stages lead to the definition of the phased evaluation function concept (see

Section 5.2).

The focus of this chapter is on the first active step of the macro cycle described in Section

5.5: the Discovery Stage. It is during this stage, that the significant features of game positions

are discovered and converted into phased evaluation functions that containF -expressions. The

discovery process has as input the set of example positions produced by the Play Stage of the

macro cycle. Using ID3, the significant features of these examples are identified, and the phased

evaluation functions are composed from these features.

86
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The process of discovery involves the induction of decision trees from a large set of example

game positions. As background, a description of decision trees and their relation to and-or trees

is provided in Section 6.2. The ID3 algorithm, described in Section 6.3, is used to induce the de-

cision trees. This section also contains the details of entropy based attribute selection methods.

Section 6.4 introduces a method by which the example game positions are encoded to become

useful as input to ID3. New algorithms and strategies to deduce an evaluation function from a

decision tree is introduced in Section 6.5. This section also contains specific details regarding

the use of C4.5. Two experiments conclude this chapter: in Section 6.6 the performance of func-

tions produced by the deduction strategies are compared, and the complexity of the functions

produced by the stronger strategies are compared in Section 6.7.

6.2 Decision trees

Many artificial intelligence problems can be viewed as classification problems [73]. For ex-

ample, the ideal C player is one that can faultlessly identify the subset of the available

moves that leads to a win. The ability to classify can be described as the ability to predict a

particular attribute value of an entity based on the values of the other attributes of that entity.

The attribute to predict is called thetarget attribute, and its value is referred to as theclassof

the entity. Adecision treeis a structure that contains rules that are used to predict the class of

a given entity. A leaf node of a tree indicates the class, and a non-leaf node, called adecision

node, specifies a condition to test. Each branch leading from a decision node signifies a possible

outcome for the test. The classification process starts at the root of the tree, tests the value of

the attribute specified in the condition and follows the applicable branch to the next node. This

process continues until a leaf node that defines the class for the entity, is reached [31].

When compared to other classifiers such as neural networks and genetic algorithms, the

distinguishing characteristic of decision trees is thereadabilityof the knowledge that drives

the classification process. The readability of the rules represented by a decision tree facilitates

the discernment, analysis and evaluation of the classification process. Another advantage of

decision trees is that the structure is easy to manipulate. In particular, the ability to transform

decision trees into and-or trees, and logical expressions makes them very useful for the current

research.

A disadvantage of decision trees is that the decision structures can become quite complex.

Two primary motives drive the need to simplify decision trees. The first is to make it easier for
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humans to interpret the tree, and the second is to rid the tree of inaccurate branches and to avoid

overfitting [37]. Inaccuracies are introduced by noisy data and by induction with an inadequate

example set. The typical approach, calledpruning, involves the removal of the lower branches

in the tree. When the pruning occurs during the induction process, it is calledon-line pruning.

In post pruning, the tree is simplified after the induction process. Post-pruning methods can

be used to improve over-fitted trees.Minimal object pruningis an on-line pruning method that

prevents the exploration of a node that has less than three branches that classify a specified

minimum number of entities [51].

Arguably the most important quality criterion of a decision tree is theclassification accuracy

of the tree. A straight forward measurement of accuracy is simply the fraction of examples that

are correctly classified. However, sometimes the identification of a specific class is more impor-

tant than the identification of other classes. In such cases two types of errors can be identified:

the error of omissionconsiders the examples that should have been positively classified - but

were not (i.e. false negatives); and theerror of commissionconsiders the examples that should

not have been positively classified - but were (i.e. false positives). Omissions indicate over-

specialisation, while over-generalisation is the cause of commissions. The aim is to develop

concepts that areconsistentandcomplete. A consistent concept does not produce an error of

commission and a complete concept does not produce an error of omission [37].

An example serves best to demonstrate the utility of a decision tree. Consider a set of enti-

ties, {~e1, . . . , ~e8} with attributesa1, a2 anda3 and values as listed in Table 6.1(a). The decision

tree shown in Figure 6.1(b) can be used to determine the class of entity~e. From the root node,

the patha2 = z leads to a predicted classification ofY for ~e.

Entity a1 a2 a3 Class
e1 a x n Y
e2 b x n Y
e3 a y n N
e4 a z n N
e5 a y m Y
e6 b y n N
e7 b y m Y
e8 a y m Y
e b z m ?

(a)

a2

Y

x

a3

y

Y

m

N

n

N

z

(b)

Figure 6.1: A set of entities and attribute values

To demonstrate the transformation of decision trees into and-or trees, consider the conver-
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Y

a2 = x a2 = y

a3 = m
(a) The Y tree

N

a2 = y

a3 = n

a2 = z

(b) The N tree

Figure 6.2: And-or trees derived from Figure 6.1(b)

sion of the decision tree in Figure 6.1(b) into the twoand-or treesin Figure 6.2(a) and Figure

6.2(b). In an and-or tree, the branches leading from a node signify the ORs and the path from

the root to a node signifies ANDs. The tree in Figure 6.2(a) can be read asIF a2 = x OR (a2 = y

AND a3 = m) THEN the classification is Y.

6.3 The ID3 algorithm

The purpose of the ID3 algorithm [50] is to induce a decision tree from a set of examples. It is

also known as the Top Down Induction of Decision Trees algorithm, or TDIDT. The algorithm is

based on the a divide and conquer principle: the initial example set is split into smaller subsets,

which are then further divided in subsequent iterations of the macro cycle. It is also a greedy

algorithm because a decision to split a set is final – there is no backtracking. An outline of the

ID3 algorithm is given in Figure 6.3.

Note that the selected attribute is removed from the set before the recursive invocation of

the algorithm. It is therefore conceivable that the algorithm is invoked withA as an empty

set - however such an invocation is possible only if the example set contains entities with the

same value for every attribute but with different classifications [8]. It is for this reason that the

precondition of the input specifies that at least one attribute value must be different for every

pair of examples that have different classes.

The criterion used to select the split attribute,a, on line 1 is the primary influence on the

quality of the decision tree that is induced [37]. Theinformation gaincriterion aims to choose

the attribute that maximises the amount of new information that become available after the split

is made.

The classification problem will be solved when an attribute is chosen that dividesE into

homogeneous subsets; if it exists, the selection of such an attribute would have the maximum
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Algorithm ID3
Input A set of attributesA = {a1 . . .an} and a set of examplesE =

{~e1 . . .~em}. Each example contains an array ofn values such that
there is a value for every attribute inA (for some classification prob-
lems a predefined ‘null’ value can be used to specify missing val-
ues). Every example has a classification. As a constraint, all el-
ements in the example set with the same values for the attributes
must have the same classification.

Output A decision treeT

ID3(A,E,T)
1: Given E, select the best attribute a;

Create T as a tree with a as root;
Use a to split the examples in E into a collection

of sets S = {S1, . . . ,Sk}, such that all examples
in Si ∈ S has the same value for the attribute a;

for each Si in S
if all examples in Si have the same classification

Create a leaf node labelled with the
classification value and attach it to the root of T;

else
ID3({a}, Si , Ti);
Attach Ti to the root of T;

Figure 6.3: An outline of the ID3 algorithm

information gain as consequence. Conversely, an attribute that creates subsets that have an

equal distribution between classifications does not aid in solving the classification problem.

If selected, this attribute would contribute the minimum amount of new information. These

two extremes demonstrate the ideas that lead to a concept calledentropy[58], borrowed from

information theory and used as the attribute selection criterion in ID3.

One way to understand theentropy selection heuristicis to consider the use of binary digits

to distinguish elements. A single binary digit is able to distinguish between two elements; three

binary digits can distinguish between 23 elements and in general,b binary digits can distinguish

between 2b different elements. By encoding every element into a string ofb binary digits a

sequence ofk elements can be represented as a binary digit string of lengthb× k. This encoded

string is said to containb× k bits of information.

This simple binary encoding may seem close to optimal, however, the probability distribu-

tion of the occurrence of the classes can be used to encode the same information in less bits. A

shorter average bit count per element is ensured by using the shortest binary string to encode the

element that occurs most frequently. For example, consider an experiment that observes pass-

ing cars with a colour from the set{white, red, blue, silver}. For these four elements, the simple
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encoding would require log2 4 = 2 bits for each element in the observed sequence. However,

previous observations determined that there is a 0.5 probability that the next car is white, that is

Pr(white)= 1
2, and for Pr(red)= 1

4, Pr(blue)= 1
8 and Pr(silver)= 1

8. Using these probabilities,

the following binary encodings would deliver an optimal binary string: white= 0, red= 10,

blue= 110, silver= 111. For the cars experiment, the average bit count has been reduced to:

Pr(white)× 1+ Pr(red)× 2+ (Pr(blue)+ Pr(silver))× 3 = 1.75 bits

Entropy is a measure of the information content of a distribution of discrete values. This

measurement is based on the number of bits required to encode each value in the distribution: a

higher bit count signifies a larger disarray of the information, and also a higher entropy. Using

the method described in the previous paragraph, it follows that the number of bits required to

encode an element,e, is− log2 Pr(e) (e.g. a white car needs− log2
1
8 bits). The entropy of a set

of elementsS in which every element is from a finite set of classes{c1, . . . , ct}, is calculated as

follows:

H(S) = −
t∑

i=1

Pr(ci) × log2 Pr(ci) (6.1)

Here Pr(ci) is the probability of finding an instance ofci in S.

In ID3, the selected attribute is used to create a new configuration from the set. The new

configuration contains a number of smaller subsets such that all elements in each subset has

the same value for the selected attribute. The entropy of each subset can be determined using

Equation 6.1. The entropy of the new configuration is determined by the weighted sum of the

subset entropy values. For an attributea that splits a setS into k subsets,Si , . . .Sk, the entropy

of the new configuration is calculated as follows:

H(S, a) =
k∑

i=1

Pr(Si) × H(Si) (6.2)

The weight used in the sum, Pr(Si), is the probability that an element inS is also inSi. This

probability can be estimated from the size of the subset:

Pr(Si) =
|Si |
|S| (6.3)

In order to choose the attribute that maximises the amount of new information, the attribute

that brings more order to the configuration must be chosen. That is, the attribute that brings
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about the greatest decrease in entropy. For a setS, the entropy of the configuration before the

split is H(S), and the entropy after splitting into the subsets sired by attributea is H(S, a). Thus,

the information gain for attributea, is calculated as follows:

I (S, a) = H(S) − H(S, a) (6.4)

The information gain heuristic selects the attribute with the highest information gain value.

When used in colligation with Equation 6.3, the information gain measure prefers attributes

with many values [37, 31]. Such attributes would have a large number of subsets, each with a

very small occurrence probability, resulting in a high information gain measure. As an example

consider thepatient’s full nameas the attributea in databaseS that classifies illnesses ofm

patients. Assumingm is relatively large, the number of subsets for this attribute will be close to

m - and the value ifP(Si) for each subsetSi will be close to zero. Consequently,H(S, a) will be

a very small number andI (S, a) would be close toH(S), making attributea a likely candidate.

However, this attribute has nothing to do with the illness classification, and selecting it as an

important decision factor would be disastrous.

An alternative measure addresses this problem by penalising attributes with many values

[73]. This measure, called thegain ratio, uses a term called thesplit informationmeasure.

For an attributea that splitsS into the subsets{S1,S2, . . . ,Sk}, the split information measure is

calculated as follows:

S(S, a) = −
k∑

i=1

Pr(Si) × log2 Pr(Si) (6.5)

Comparing this equation to Equation 6.1 reveals that the split information measures the

entropy ofS with respect toa, whereH(S) measures the entropy ofS with respect to the target

attribute. A higher split information measure indicates a more disorganised attribute – and, if

possible, the selection of such attributes should be avoided. The gain ratio measure is an attribute

selection heuristic that introduces this desired effect. It is calculated as follows:

R(S, a) =
I (S, a)
S(S, a

(6.6)

6.4 Encoding position examples for ID3

Armed with the background of decision trees and the ID3 algorithm described in the sections

above, the focus in this section returns to the discovery of the knowledge used by game playing
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agents. These agents use the knowledge to compare game positions. In order to uphold the

zero-knowledge principle, only features that are directly observable from the game position can

be used in this assessment. Of all the observable features, only a small subset have a significant

influence on the game outcome. The task of learning agent is to identify the features that belong

to this significant subset.

The identification of the significant features can be regarded as a classification problem.

The observable features are classified into two groups, those that are significant and those that

are not. Consequently, it seems reasonable to explore the possibility of using ID3 to induce

significant features from example game positions. In the paragraphs that follow, an approach is

proposed whereby a game position is encoded into a structure that can be used as input to the

ID3 algorithm. This ID3 structure has two requirements: it needs an ID3 classification and it

needs a set of ID3 attributes.

6.4.1 Position classification

Insofar the game player is concerned, the most interesting aspect of any position is whether or

not this position leads to a win (W), a lose (L) or a draw (D). It therefore makes sense to use

the game outcome to classify the ID3 examples – i.e. a game position is classified as an element

from {W,L,D}.

The classification of a position is determined from the game lines generated during the

preceding stage of the macro cycle (see Section 5.5). The positions in each game line are

credited for their contribution (or their lack of contribution) to the outcome of the game. For

example, if the outcome of the game is a win for the first player, positions chosen by the first

player is ascribed with a higher likelihood to lead to a win than the positions chosen by the

second player. Thus, a tally of the outcomes of the game-lines in which it appears determines

the position’s classification.

Essentially, the outcome with the greatest count dictates the classification of the position.

But, special cases arise when more than one outcome has the same count. An equal count for

W andL classifies the position asD. In the case where theD count shares the maximum

with another outcome, the latter is chosen as the classification of the position in question. For

example, when the number of losses is 23, the number of wins is 24 and the number of draws is

24, the position is classified asW. This allocation is made because the knowledge value of the

“not lose” classification is higher than the knowledge value of a “draw” classification; and the
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example position is more likely to lead to aW than aL.

6.4.2 Position attributes

The feature languageF , described in Section 3.6, is adequate toexpressan attribute, but it

does notdefinethe set of attributes. An attribute used to encode a position consists of anF -

expression that is interpreted as a boolean expression. Because ID3 requires an enumerated

attribute set, and because of the practical limitations on time and space, the feature language

expressions must be chosen carefully. The constraint imposed by ID3 is that the attribute set

must be able to distinguish between any two positions with dissimilar classifications. It is also

possible to select attributes based on game knowledge, but such an approach would spurn the

zero knowledge principle introduced in Section 3.4.

For the current research, the attributes are created from easily identifiable regions on the

chequerboard. One region is the entire board, the other regions are the set of ranks (rows), the

set of files (columns) and the set of diagonal lines. The set of concentric squares starting from

the four squares in the centre of the board and ending with the squares on the border are also

included as regions. Selecting regions in this way is arbitrary enough to be considered free of

game knowledge, and organised enough to be quickly recognisable by observation. The list of

regions are listed in Table 6.1 (see Section 3.6.1 for the notation used for squares).

These regions are used in Fuzzy Occupation Feature expressions to define attributes. Recall

from Section 3.6.2 that the Fuzzy Occupation Feature takes the formT ⊗R, whereT is a subset

of the set of occupation states,O. There is a very large number of expressions that is of this form;

and it is from a subset called the Attribute Expression Set,E, that the attributes are defined. One

attribute is declared for everyF -expression inE:

Definition 6.1: Attribute Expression Set.Consider a set of identified regions,R and the set

of occupation states,O. Then the set of attribute expressions,E, are all the expressions of the

form {t} ⊗ Ri such thatt ∈ O andRi ∈ R.

For a position, the value of an Attribute Expression is determined by the number of squares

in the region that are of the given occupation type. The value of an ID3 attribute is eitherY for

yes, or N for no. For position,p, the attribute defined by the expressione = {t} ⊗ R1 takes a

value ofY if and only if V(p, e) > 0, otherwise it takes the valueN (V is defined on page 40).

Thus, if the position contains any squares in the region of the specified occupation type, it has a

value ofY.
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Region Description Squares in region
all All (∗, ∗)
r1 1st Rank (∗, 1)
r2 2nd Rank (∗, 2)
r3 3rd Rank (∗, 3)
r4 4th Rank (∗, 4)
r5 5th Rank (∗, 5)
r6 6th Rank (∗, 6)
r7 7th Rank (∗, 7)
r8 8th Rank (∗, 8)

f1 1st File (1, ∗)
f2 2nd File (2, ∗)
f3 3rd File (3, ∗)
f4 4th File (4, ∗)
f5 5th File (5, ∗)
f6 6th File (6, ∗)
f7 7th File (7, ∗)
f8 8th File (8, ∗)

bd1 1st Back Diag (1, 1)
bd2 2nd Back Diag (3, 1), (2, 2), (1, 3)
bd3 3rd Back Diag (5, 1), (4, 2), (3, 3), (2,4), (1, 5)
bd4 4th Back Diag (7, 1), (6, 2), (5, 3), (4,4), (3, 5), (2,6), (1, 7)
bd5 5th Back Diag (8, 2), (7, 3), (6, 4), (5,5), (4, 6), (3,7), (2, 8)
bd6 6th Back Diag (8, 4), (7, 5), (6, 6), (5,7), (4, 8)
bd7 7th Back Diag (8, 6), (7, 7), (6, 8)
bd8 8th Back Diag (8, 8)

fd1 1st Forw. Diag (1, 7), (2, 8)
fd2 2nd Forw. Diag (1, 5), (2, 6), (3, 7), (4,8)
fd3 3rd Forw. Diag (1, 3), (2, 4), (3, 5), (4,6), (5, 7), (6,8)
fd4 4th Forw. Diag (1, 1), (2, 2), (3, 3), (4,4), (5, 5), (6,6), (7, 7), (8,8)
fd5 5th Forw. Diag (3, 1), (4, 2), (5, 3), (6,4), (7, 5), (8,6)
fd6 6th Forw. Diag (5, 1), (6, 2), (7, 3), (8,4)
fd7 7th Forw. Diag (7, 1), (8, 2)

cc1 1st Square (4, 4)(5, 5)
cc2 2nd Square (3, 5), (3, 3), (5, 3), (6,4), (6, 6), (4,6)
cc3 3rd Square (2, 6), (2, 4), (2, 2), (4,2), (6, 2), (7,3), (7, 5), (7,7), (5, 7)
cc4 4th Square (1, 7), (1, 5), (1, 3), (1,1), (3, 1), (5,1), (7, 1), (8,2), (8, 4),

(8, 6), (8, 8), (6, 8), (4,8), (2, 8),

Table 6.1: Regions used for attributes

6.5 The discovery algorithm

The discovery algorithm is introduced in this section. The purpose of this new algorithm is to

build a phased evaluation function. As input the discovery algorithm is given a set of example

positions. These positions are encoded and classified for ID3 using the method described in

Section 6.4. Before ID3 is applied, the example positions are divided intophased example sets,
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such that all positions in the set are from the same game phase.ID3 induces a decision tree for

each game phase from the example set of that phase.

The decision rules in each tree are manipulated and transformed by the function deduction

algorithm. This algorithm produces a function with terms weighted with 1.0. These functions

are then combined to form the phased evaluation function used by the agent during game play.

The outline of the algorithm is listed in Figure 6.4.

Algorithm Function discovery algorithm
Input A set of positionsA encoded for ID3 usage and labelled with

”phases”.
Output A phased evaluation functionF

Discover(A,F)
For each phase

Create a phased example set Ai = {e | e ∈ A ∧ e has phase i}
For each phased example set, Ai

Induce a decision tree Ti

Deduce an evaluation function Fi

Combine all Fi to form F

Figure 6.4: An outline of the Function Discovery algorithm

For the induction of the decision trees, a well known program called C4.5 is used [51]. In

section Section 6.5.1 the C4.5 parameter settings and the output of C4.5 is described. The func-

tion deduction algorithm is described in Section 6.5.2. This section concludes with a discussion

on strategies to simplify the resulting evaluation function in Section 6.5.3.

6.5.1 Using C4.5

The C4.5 software [51], developed by Quinlan, implements the basic ID3 algorithm together

with a variety of more advanced features that can be used to improve and streamline the decision

tree. Quinlan has decided to discontinue the maintenance and support for C4.5, but improve-

ments to the software (e.g. C5.0) can be purchased. Fortunately, at the time of this writing the

source was still available from Quinlan’s web site (http://www.rulequest.com/Personal)∗ .

For the deduction algorithm, the quality of the nodes in the decision tree is important. C4.5

measures the classification accuracy for each decision as the fraction of the examples from a

test set that are correctly classified. For this purpose,1
3 of the examples are removed from

the original phased example set and made available to C4.5 as ‘unseen’ examples. The other

∗In order to compile the code using the latest version of GCC, it was necessary to make a few minor modifications.
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Algorithm Function deduction
Input An ID3 tree,T

Output An evaluation function

DEDUCE(T)
1: Let TW be theW and-or tree extracted from T
2: Let TL be the L and-or extracted from T

Initialise empty function, F
For each sub-tree, N of the root TW

3: Append the positive term from N to F
For each sub-tree, N of the root TL

4: Append the negation of the term from N to F
return F

Figure 6.5: The function deduction algorithm

66% of the examples are used to induce the decision tree. After the induction, the accuracy

of the decision nodes are estimated by counting the number of the unseen examples classified

correctly.

The information gain ratio is the default split attribute heuristic used by C4.5, and conse-

quently it was chosen as the method to use. In order to avoid inaccurate decision rules, minimal

object pruning was employed with a minimum value of 32. Although C4.5 implements post-

pruning, the post-pruned tree was not used.

6.5.2 The function deduction algorithm

In the decision tree, the branches that lead toW describe attributes that were found on winning

positions, and these are the attributes the player should strive to obtain. Conversely, the attributes

described on the branches that lead toL should be avoided. From this premise, a new algorithm

is introduced here, and it is called the function deduction algorithm.

A sub-tree of the decision tree can be obtained by eliminating all branches that do not lead to

W. Transforming this sub-tree into an and-or tree (as described in Section 6.2) produces theW

and-or tree. Likewise, theL and-or tree can be constructed. For the evaluation function, feature

expressions derived from theW and-or tree are combined with the negation of expressions

derived from theL and-or tree. The outline of the procedure to derive functions terms from the

decision tree is listed in Figure 6.5.

The ‘append’ operation used in line 3 and line 4 completes the term ofF by adding a weight

of 1.0 to the expression derived from the nodeN. This derived expression is simply the and-or
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expression ofN, where theands are substituted with∧ and theors are substituted with∨. The

rules of association (e.g.A ∧ (B∨C)) are maintained in the resulting feature expression.

The details of the algorithm is best illustrated by an example. The decision tree depicted

in Figure 6.6 is generated by C4.5. Instead of labelling the branches a simple convention is

used: a branch that moves from the decision node towards the left signifies ayesdecision and a

branch to the right signifies ano decision. Each node in the C4.5 decision tree has three useful

f6x3 L 51%

L 70% f5nn L 50%

D 37% cc4b4 L 51%

L 66% bd1x0 W 50%

bd5o4 W 49%

W 50% f7x0 W 49%

f4x1 W 50%

W 51% cc4o2 W 49%

r4p1 W 49%

W 48% f1a1 L 49%

L 36% fd5x3 L 52%

L 62% fd5b1 W 50%

W 51% L 48%

L 53%

W 46%

L 62%

Figure 6.6: A decision tree generated by C4.5

properties: thedecision, thedominant classand theaccuracy. These properties are shown as the

label of the nodes in the figure. The first part of the label represents the decision, the letter in

the middle indicates the dominant class, and the accuracy is expressed as the percentage at the

end of the label.

The decisionof the root node is encoded asf6x3, and translates to the shorthand feature

expression{x3} ⊗ {f6}. The meaning ofx3 in this expression is explained in Section 3.6.1; it

refers to a square occupied by an active piece that is able to jump or to move away from its

current position. The region keyf6 refers to the 6th file of the chequerboard (see Table 6.1).

Thus, the decision at the root node reads as the following question:are there active pieces on file

6 that are able to move or able to jump?. If, for a given position, the answer isyesthe decision

flows to the left, and the tree concludes that the position is likely to lead to a losing outcome.
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The dominant classis the class most frequently encountered during testing. For the root

node, the label specifies anL indicating that the example set used for testing has moreL posi-

tions than any of the other classes.

The accuracyof the node is based on the number of classification errors accumulated for

the node. For a leaf node, a classification error occurs when an example has an attribute set that

corresponds with every decision that lead to the node, but it has a classification that disagrees

with the node. Thecertainty percentageis a measure of the accuracy calculated as the ratio

of the number of correct classifications over the total number of examples that agreed with the

node’s decision. For example, if 20 examples from the test set had attributes that coincided

with the decisions that lead to a leaf node labelled withW, and 14 of those turns out not to

beW positions, the certainty of that node is 70%. For a decision node (i.e. non-leaf node),

the certainty percentage is the sum of the correct classifications over the total example count,

accumulated for all the descending leaf nodes. For the root node of the tree, the certainty

percentage is therefore an indication of the accuracy by which the decision tree as a whole

classifies the test examples.

The first steps of the function deduction algorithm (line 1 and line 2 in Figure 6.5) construct

and-or trees from the decision tree. AW and-or tree constructed from the example decision tree

is given in Figure 6.7. Notice that the 5 leaf nodes labelled withW in Figure 6.6 are transformed

into the leaf nodes of the and-or tree. The label of all non-root nodes of the and-or tree contains a

feature expression and an expected evaluation. For example, the node below the root is labelled

asf6x3 n – a game position for which{x3} ⊗ {f6} > 0 is not considered by this and-or tree to

be aW position.

In line 3 of the function deduction algorithm, the terms of the evaluation function is con-

structed from the and-or tree. The and-or tree in Figure 6.7 has only one sub-tree, and only one
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W

f6x3 n

f5nn n

cc4b4 n

bd1x0 y

bd5o4 y bd5o4 n

f7x0 y

f4x1 y f4x1 n

cc4o2 y

r4p1 n

f1a1 n

fd5x3 n

fd5b1 y

r4p1 y

f7x0 n

Figure 6.7: AW and-or tree derived from the decision tree in Figure 6.6

term would be added to the evaluation function. In shorthand form, this term would look like:

1.0× (¬{f6} ⊗ {x3} ∧ ¬{f5} ⊗ {nn} ∧ ¬{cc4} ⊗ {b4} ∧ {bd1} ⊗ {x0}

∧ ({bd5} ⊗ {o4}

∨(¬{bd5} ⊗ {o4}

∧ (({f7} ⊗ {x0} ∧ ({f4} ⊗ {x1})

∨(¬{f4} ⊗ {x1}

∧ ({cc4} ⊗ {o2} ∧ ¬{r4} ⊗ {p1} ∧ ¬{f1} ⊗ {a1} ∧

¬{fd5} ⊗ {x3} ∧ {fd5} ⊗ {b1})

∨{r4} ⊗ {p1})))

∨¬{f7} ⊗ {x0})))

From a decision tree, manyW and-or trees can be derived. Although all the trees will be

logically equivalent, they are different in structure. And-or trees represent logical expressions,

and as such, these trees can be normalised. Every logical expression captured in an and-or tree

can be converted to the conjunctive normal form (CNF) [28]. ACNF-treeis an and-or tree that

is in the conjunctive normal form. A sub-tree is attached to the root of a CNF-tree for every leaf

node in the decision tree that has the same class as the root of the and-or from which the CNF

tree is constructed. As a result, the CNF tree contains more evaluation function terms than the

and-or tree. More terms in the evaluation function provide finer control of the weights during
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W

f6x3 n

f5nn n

cc4b4 n

bd1x0 y

bd5o4 y

f6x3 n

f5nn n

cc4b4 n

bd1x0 y

bd5o4 n

f7x0 y

f4x1 y

f6x3 n

f5nn n

cc4b4 n

bd1x0 y

bd5o4 n

f7x0 y

f4x1 n

cc4o2 y

r4p1 n

f1a1 n

fd5x3 n

fd5b1 y

f6x3 n

f5nn n

cc4b4 n

bd1x0 y

bd5o4 n

f4x1 n

cc4o2 y

r4p1 y

f6x3 n

f5nn n

cc4b4 n

bd1x0 y

bd5o4 n

f7x0 n

Figure 6.8: A 5 termW and-or tree derived from the decision tree in Figure 6.6

optimisation, but creates more complex functions. The CNF-tree of the tree in Figure 6.7 is

given in Figure 6.8. This and-or tree has 5 sub-trees connected to the root and would produce 5

terms in the evaluation function.

The number of terms in an and-or tree should ideally be more than the minimal tree in Figure

6.7, and should be less than the number of terms in the CNF tree. It is possible to construct a tree

closer to this ideal by using the dominant class of the nodes to create sub-trees called dominant

clusters. Adominant clustercontains at least one leaf node; and it is a set of connected nodes

that have the same dominant class. The and-or tree that contains one term for each dominant

cluster creates a more balanced number of terms. One method to construct such an and-or tree

is to construct the CNF-tree first, and then branches that have the same dominant classifications

at the bottom are combined to form a smaller tree.

The dominant clusters for theW nodes are shown in Figure 6.9. This example has 2 clusters

and theW and-or tree would add 2 terms to the function. The resulting and-or tree can be seen

in Figure 6.10 (page 102) .

6.5.3 Simplification strategies

This subsection introduces new simplification techniques that were specifically developed as

part of the current research. These simplification techniques eliminates branches from the deci-

sion trees using the dominant class and the certainty percentage values determined by the C4.5

program. The aim of the simplification techniques is to produce simpler feature expressions. An
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f6x3 L 51%

L 70% f5nn L 50%

D 37% cc4b4 L 51%

L 66% bd1x0 W 50%

bd5o4 W 49%

W 50% f7x0 W 49%

f4x1 W 50%

W 51% cc4o2 W 49%

r4p1 W 49%

W 48% f1a1 L 49%

L 36% fd5x3 L 52%

L 62% fd5b1 W 50%

W 51% L 48%

L 53%

W 46%

L 62%

Figure 6.9: A decision tree withW dominant clusters

evaluation function is easier to understand and it consumes less computational resources when

it has less complex expressions.

Term exclusion

The elimination of leaf nodes in the decision tree would result in less terms in the evaluation

function. A reasonable strategy is to exclude all leaf nodes with a certainty less than 50%. In

order to simplify discussions, this rule is referred to as theexclude dubious rule (EDR). EDR

W

f6x3 n

f5nn n

cc4b4 n

bd1x0 y

bd5o4 n

f7x0 y

f4x1 n

cc4o2 y

r4p1 n

f1a1 n

fd5x3 n

fd5b1 y

f6x3 n

f5nn n

cc4b4 n

bd1x0 y

bd5o4 y bd5o4 n

f7x0 y

f4x1 y f4x1 n

cc4o2 y

r4p1 y

f7x0 n

Figure 6.10: TheW and-or tree derived from the decision tree in Figure 6.6 using dominant
clusters
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assumes that a decision is weak if it could not classify at least 50% of the test cases correctly.

The dominant class of a leaf node’s parent could be different than the leaf node. In such an

arrangement, the parent node had more instances of another class during testing, consequently

a more accurate estimate of the performance of that parent’s dominant class can be expected.

The rule which will be referred to as theexclude spurious rule (ESR)eliminates a leaf node that

has a parent with a disagreeing dominant class. This rule eliminates all dominant clusters that

contains one node.

The effect of the term exclusion rules on the tree in Figure 6.6 is as follows: EDR will

eliminate 2W nodes and 3L nodes. ESR will eliminate noW nodes, but it will eliminate 3L

nodes. In Figure 6.11, all the nodes affected are lined with dashes. Only the nodes with solid

lines will remain after the application of both rules. In total, these rules eliminate 5 terms from

the CNF-tree.

f6x3 L 51%

L 70% f5nn L 50%

D 37% cc4b4 L 51%

L 66% bd1x0 W 50%

bd5o4 W 49%

W 50% f7x0 W 49%

f4x1 W 50%

W 51% cc4o2 W 49%

r4p1 W 49%

W 48% f1a1 L 49%

L 36% fd5x3 L 52%

L 62% fd5b1 W 50%

W 51% L 48%

L 53%

W 46%

L 62%

Figure 6.11: A decision tree with excluded leafs marked

Term cutting

Another method to simplify the evaluation function is to make the terms shorter. A term in the

CNF-tree can be shortened by selecting acut nodein the term and removing the cut node along

with all nodes between it and the root node. Because the term has less nodes, it is simpler; but

this cutting process could increase the number of terms. The cut node is chosen by ‘walking’

from leaf to root. The first node encountered in this walk that matches the cut criterion becomes

the cut node.
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The cut spurious rule (CSR)chooses the first node with a dominant class that disagrees

with the leaf node. When CSR is applied, every dominant cluster becomes a term; nodes not

in a dominant cluster are eliminated. Thecut dubious rule (CDR)cuts on the first node with a

certainty less than 50%.

The effect these rules have on theW and-or tree can be seen in Figure 6.12 and Figure 6.13.

Note that the CDR tree has less nodes, but more terms.

W

fd5x3 n

fd5b1 y

bd1x0 y

bd5o4 y bd5o4 n

f7x0 y

f4x1 y f4x1 n

cc4o2 y

r4p1 y

f7x0 n

Figure 6.12: TheW and-or tree derived from the decision tree in Figure 6.6 using the Cut
Spurious Rule

W

r4p1 n

f1a1 n

fd5x3 n

fd5b1 y

r4p1 y f7x0 y

f4x1 y

f7x0 n bd5o4 y

Figure 6.13: TheW and-or tree derived from the decision tree in Figure 6.6 using the Cut
Dubious Rule

Combinations

A simplification strategy can be obtained by choosing an exclusion rule and a cut rule to use.

This choice provides a total of 9 different simplification strategies. A two letter acronym is

assigned to each strategy - as listed in Table 6.2. For exampleDS identifies the strategy that

chooses the exclude dubious rule and the cut spurious rule. In other words, only accurate leaf

nodes and non-leaf nodes within a dominant cluster will be used to construct the terms for the

evaluation function.
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Exclude rule
Cut rule None Spurious Dubious
None NN SN DN
Spurious NS SS DS
Dubious ND SD DD

Table 6.2: Simplification strategies

6.6 Experiment: Performance comparison

Objective

The objective of the experiment is to investigate whether some of the simplification strategies

defined in Section 6.5.3 provide stronger evaluation functions than others. In particular, the 9

strategies listed in Table 6.2 are used to construct evaluation functions; and the performance of

these functions are compared.

Method

The quality of ID3 is dependent on the quality of the set of examples provided as input to the

algorithm. In order to provide a good variety of this input, 30 example sets have been generated

for the experiment. Each set contains all the unique positions encountered from 1000 play-lines

that were randomly generated. The number of unique examples in each example set varied

between 58 824 and 60 023.

Using a simplification strategy, one phased evaluation function is deduced for every input

example set. That is 30 phased evaluation functions for each strategy.

The performance of a phased evaluation function was measured using the method described

in Section 5.6. This is the same method used by Franken and Engelbrecht (in [25]), a value

greater than 50 indicates more games are won than lost. For the measurement 15000 games

were played against a random moving agent. The agent chose a move by selecting the move

on the first ply that leads the best evaluation function score. If more than one move results in

the same score, the decision is based on a uniform random selection amongst the best scoring

candidates.

Results

The aggregation of the 30 performance measurements taken for each simplification strategy is

given in Table 6.3. In this table, the best outcome for each measurement is highlighted using an
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Table 6.3: The performance statistics of the strategies

Strategy (S) Mean (XS) Variance (s2
S) Maximum Minimum

NN 59.91990 10.70934 65.3900 51.6567
SN 53.36689 19.92879 62.7067 45.3133
DN 59.89477 14.91340 68.7667 49.5867
NS *60.84433 11.37601 67.2067 54.2900
SS 54.88689 19.63245 64.3733 45.1667
DS 60.08711 12.65979 67.6767 *54.8267
ND 59.39389 *10.40487 65.8500 53.3133
SD 53.05411 19.67373 61.8933 45.7567
DD 59.74778 14.72119 *68.8600 52.5133

asterisk (‘*’).

A performance greater than 50 indicates more wins than losses, and the mean values ob-

tained indicate that the strategies are reasonable. TheNS strategy has the best mean value;

approximately 0.8 higher than the second best.

The randomly generated example sets is likely to produce good and bad input sets to ID3;

and consequently high variance values should be expected. However, it is interesting to note the

stronger strategies have lower variances. The correlation between mean and variance reinforces

the interpretation of the mean results: it is reasonable to expect a stronger strategy to be more

resilient to fluctuations in input quality.

The greatest maximum- and the greatest minimum performances were also obtained from

the strategies that had a higher mean.

More detail of the results are presented in the box-and-whisker diagram in Figure 6.14. In

the diagram the dotted line shows the mean of all the evaluation functions; and the crosses mark

the mean of each strategy.

The 3 weak strategies (SN, SS, SD) are clearly isolated from the strong strategies: the

lower quartiles of the stronger strategies are roughly aligned with the upper quartiles of the

weak strategies. Apart fromDN, only the weak strategies had performances of less than 50. The

weak strategies all used the exclude spurious rule. This rule eliminates the leaf node if its parent

has a dominant class that differs from the class of the leaf node. Clearly, the evidence shows

that this strategy is not very effective.

From the obtained results, the distinction between the strong and the weak strategies are

clear, but discerning the best strategy from the strong set is less obvious.

Consider the two strategies with the greatest sample mean values:XNS = 60.84433 and

XDS = 60.08711. The statistical inference to determine whether the difference between these

 
 
 



6.6. Experiment: Performance comparison 107

NN SN DN NS SS DS ND SD DD

45
50

55
60

65

Strategy

P
er

fo
rm

an
ce

Figure 6.14: A box-and-whisker diagram of the simplificationstrategy performance

value are significant follows in the paragraphs below. First, theF-distribution is used to show

that the sample variances are equal; and then thet-distribution is used to test the significance of

the difference.

The hypotheses,H0 : σ2
DS = σ

2
NS can be tested using theF-distribution. A sample size of 30

provides 29 degrees of freedom for both samples; and at a significance level of 5%, the critical

value isF(0.025)
29,29 = 2.1010. The observedF-value is:

s2
DS

s2
NS
= 12.65979

11.37601

= 1.11284

The observed value is lower than the critical value (1.11284 < 2.1010), andH0 is accepted.

Thus, the variances are equal.

Because the population variance of the 2 samples are equal, thet-distribution can be used

to test whether the population mean ofNS is greater than the population mean ofDS. Let µn

denote the population mean ofNS andµd for the population mean ofDS. The null hypotheses:

H0 : µn − µd = 0 states that the population means are equal. The alternative hypotheses is that

µn > µd, or H1 : µn−µd > 0. For a significance of 5%, and 58 degrees of freedom, the one-sided

critical t-value is 1.6716.

The pooled variances2 is used to calculate the pooled standard deviations for the two
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samples:

s2 =
29×(12.65979+11.37601)

56

= 12.44711

s = 3.52804

The observedt-value is calculated as follows:

t56 =
XNS−XND

s
√

2
29

= 60.84433−60.08711

s
√

2
29

= 0.81732

Because 0.81732< 1.6716,H0 cannot be rejected and with the results obtained from the

experiment, it cannot be concluded thatNS is a better strategy thanND.

6.7 Experiment: Complexity comparison

Objective

The objective of this experiment is to compare the complexity of the phased evaluation functions

produced by the stronger strategies. A function that is more complex would not only be more

difficult to understand but it would take longer to evaluate; and as such would negatively impact

the learning rate of an agent.

Method

The method to produce the evaluation functions for this experiment is the same method as

described in Section 6.6.

As an estimate of the complexity of the function, the size of the file to which the function

was written is used. Two factors contributes to the complexity of the function: the number of

terms in the function, and the length of the terms. A measure of these factors is proportional to

the size of the file. Also, the implementation of the evaluation algorithm has a time-complexity

linear with the file size.
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Table 6.4: The file size (in kb) statistics of the strategies

Strategy (S) Mean (XS) Variance (s2
S) Maximum Minimum

DD 65.34323 24.941943 75.10547 54.64844
DN 69.42389 23.384363 78.85742 59.40137
DS *20.59616 *0.918905 *22.10352 *18.26074
ND 82.13887 35.069803 91.55859 68.47266
NN 93.20179 24.622274 100.66504 80.09277
NS 23.45993 1.039401 24.90918 20.66699

Results

The measurements obtained for the simplification strategies that proved to be stronger in the

previous experiment is given in Table 6.4. In contrast with the results obtained from the previous

experiment, the better values of every measured statistic belongs toDS. This makesDS the prime

candidate strategy.

The box-and-whisker diagram in Figure 6.15 shows the results graphically. In a sense, the
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Figure 6.15: A box-and-whisker diagram of the simplificationstrategy file size

results are predictable: the strategy that does not simplify the function (NN) has the highest value;

and the strategies that apply cutting and exclusions (DD and DS) produce simpler evaluation

functions than most. However, the effect of cutting terms at a spurious node on the function

complexity is very high. This indicates that spurious nodes are more frequently found than

dubious nodes; an expected result that confirms ID3’s ability to produce effective decision trees.

Curiously,NS andDS also had the best mean performance; suggesting the possibility that simpler
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evaluation functions perform better.

6.8 Conclusion

This chapter described the concept of decision trees and the details of the ID3 algorithm. A

method to encode game positions in such a way that it can be used in ID3 was described. This

method used the expected game outcome of a position as the class and feature expressions as

the attributes. The need to identify a set of regions has been highlighted; and an example of

the region set useful for games like C has been provided. Furthermore, the discovery

algorithm has been described in detail; including the method used to deduce evaluation functions

from decision trees. This method is based on and-or trees. Two simplification approaches were

introduced that eliminates needless complexity from the evaluation function terms. The first

approach is to exclude some terms and the second is to make the terms shorter. This gave rise

to nine different simplification strategies.

The results of the experiment to compare the performance of the simplification strategies

lead to the conclusion that the exclude spurious rule produces weak evaluation functions. An-

other experiment to compare the complexity of the evaluation functions produced by the stronger

strategies concluded thatDS andNS produce the least complex functions. However,DS could

safely be isolated as the strategy that produced the simplest functions. Thus,DS is a reasonable

choice for a simplification strategy to use in the learning framework.

In the next chapter, the Particle Swarm Optimisation (PSO) method is introduced. PSO is

the optimisation algorithm that will be used to optimise the weights of the phased evaluation

function produced by the discovery algorithm described in this chapter.

 
 
 



Chapter 7

Weight optimisation with PSO

The previous chapter described the method used by the learning framework to discover the terms of the

evaluation function. This chapter considers the next stage of the learning framework: the problem of

optimising the weights for these terms. The aim is to describe the Particle Swarm Optimisation (PSO)

algorithm, and alterations made to the algorithm to optimise playing agents. A new form of PSO that

uses tournament is described, along with options for tournament methods. Experiments in this chapter

select the most viable option amongst alternative configurations of the new PSO.

7.1 Introduction

Chapter 5 provided a review of the various methods currently employed to optimise the weights

for game playing agents. In this chapter, the practicalities of optimising the weights of the eval-

uation function described in Chapter 3 are considered. The optimisation of weights is a general

problem that is independent of the representation scheme in which the weights are found; there-

fore the methods described in this chapter can also be applied to neural networks (see page

27). However, the optimisation for game playing agents is different from many other optimi-

sation problems because playing agents need opponents. This difference leads to the need for

innovative optimisation methods geared forcompetitiveoptimisation problems.

As explained in Section 5.5, the optimisation method chosen for the learning framework is

Particle Swarm Optimisation (PSO). It was first introduced in 1995 by Kennedy and Eberhart

[33]. Like genetic algorithms, PSO also emulates a concept from nature (see Section 5.4.4).

The metaphor employed by PSO is not genetic, it is the social behaviour of a collection of

individuals. Consider a single bird flying in a large flock: if it keeps an eye on its neighbours

111
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while looking for food on the ground below, its chances of finding something to eat is better.

The downside of flocking, is that it has to share the food it finds with those neighbours. As

attested by many bird species, this is a good survival tactic. It is in this behaviour of flocking

birds that the origin of the PSO algorithm is found.

This chapter starts with Section 7.2 that provides an overview of PSO; focussing on neigh-

bourhood topologies and the trajectory of a particle. In Section 7.3, the influence of competition

based learning on the PSO algorithm is discussed. It introduces the Competitive PSO that is

used as the basis for a new PSO, called the Tournament PSO algorithm.

The last three sections describe experiments conducted to identify suitable configurations for

the learning framework. In these experiments, the Tournament PSO is applied to find optimal

weights for the evaluation function defined in Section 3.5. Section 7.4 determines whether it

is best to include a particle in its own neighbourhood. Section 7.5 measures the performance

of various tournament methods, and Section 7.6 considers the behaviour of these tournament

methods when the PSO search is extended. Section 7.7 closes the chapter with a brief review

and important conclusions.

7.2 Particle Swarm Optimisation

Kennedy and Eberhart [33] introduceParticle Swarm Optimisation(PSO) as an algorithm that

searches through a multi-dimensional problem space for an optimal solution. An optimal so-

lution is a vector in this search space that maximises (or minimises) a given function. This

function, called afitness function, maps a real-valued vector to a real value. During the search,

a constant number of search locations, calledparticlesare kept current. The search is conducted

by changing the velocity of every particle at each iteration. An iteration is referred to as an

epoch, and the collection of particles form aswarm. PSO is distinguished from other searches

that keep multiple locations current by the dynamic influence other locations have on the trajec-

tory of a particle [34].

A particle, identified by a search location, has a few key properties. At the start of every

epoch, a particle is assigned a new velocity. This velocity vector is added to the current location

of the particle to determine the new location. More detail regarding the movement of a particle

is provided in Section 7.2.2. Thefitness valueof a particle is the value of the fitness function at

the current location of the particle. Thepersonal bestis a location on the path of a particle at

which the best fitness value was achieved. Theneighbourhoodis a static property of a particle; it
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is the subset of all the particles that exert an influence on thevelocity of a particle. Section 7.2.1

discusses different neighbourhood structures. Thelocal bestis the personal best of a particle in

the neighbourhood, such that no other neighbour have a better personal best.

In addition to parameters that influence the neighbourhood structure and the particle trajec-

tory (discussed in the subsections that follow), two general parameters apply to PSO. The first

is theswarm sizethat determines the number of particles in the swarm, and the other is the

termination rulethat specifies when the PSO must stop its search. A typical termination rule is

to specify anepoch limit. Alternatively, anevaluation limitcan specify the maximum number

of fitness function evaluations allowed. For some fitness functions, it is possible to search until

the particle locations converge at some optimal location.

The outline of the PSO algorithm is shown in Figure 7.1. The notation for the location

vector of particlep is ~p. The personal best ofp is pbest(p). The ith component of~p is denoted

asp[i]. The velocity ofp is denoted asv(p), with the ith component of the velocity, denoted as

v(p)[i].

Algorithm Particle Swarm Optimisation
Input The fitness function,f that takesm arguments and the size of the

swarmn
Output A vector ~p encountered during the search wheref (~p) had the best

value.

PSO(f,n)
Create a swarm S such that S= {~p1, ~p2, . . . , ~pn}.
For each ~p in S

For 1 ≤ i ≤ m
p[i] = r | r is a random value
v(p)[i] = 0

pbest(p) = p

1: While not end of search
For each ~p in S

2: Update v(p)
For 1 ≤ i ≤ m

p[i] = p[i] + v(p)[i]
3: If f (~p) > f (pbest(p))

pbest(p) = ~p

Figure 7.1: Outline of the PSO algorithm
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7.2.1 Neighbourhood topologies

A neighbourhood strategydescribes how the particles that belong to a neighbourhood are cho-

sen. The owner of the neighbourhood is called thesubject particle. The neighbourhood strategy

constructs a neighbourhood network in which every subject particle is connected to its neigh-

bours. The general structure (or pattern) used to construct this network is called theneighbour-

hood topology.

Kennedy and Mendes [34] identify three topologies: global best, local best and Von Neu-

mann. Theglobal best topologyincludes as the neighbour of a particle every other particle in the

swarm. Thelocal best topologyforms a regular ring lattice by arranging all particles in a ring

and selecting thek closest particles on either side of the subject particle as neighbours. The third

is theVon Neumann topologythat places particles in a matrix configuration. A two-dimensional

lattice is formed by connecting each element in the first row to the aligning element in the last

row; and connecting each element in the first column to the aligning element in the last column.

From this lattice, thek particles above and below, as well as thek particles to the left and to the

right of the subject particle, are included in the neighbourhood.

The topology effects the performance of the swarm because it determines which particles

have an influence on the trajectory of the subject particle. The magnitude of this influence

depends on the fitness function [32]; therefore, a topology that is superior in general cannot be

isolated. However, an empirical study conducted across a variety of fitness functions indicates

that the Von Neumann topology is best for most functions [34]. Using a fitness function that

relate closely to the current work, Franken and Engelbrecht [25, 26] apply PSO to optimise the

weights of a neural network; and also concludes that the Von Neumann topology is superior

when compared with the local- and global best topologies.

The function of the neighbourhood network is to propagate information regarding the best

locations found, to the other particles in the swarm. Watts [74] postulates that the ability of

a network to propagate information is influenced by the number of edges in the network, the

clustering (or cliquishness) of the network and the average shortest path length between nodes

in the network. Kennedy and Mendes [34] note that the number of edges in the neighbourhood

topology is directly proportional to the number of particles in the neighbourhood, and that the

cliquishness can be measured as the average number of shared particles in the neighbourhood

of a node. A particle~q in the neighbourhood of~p is counted as ashared particleif and only if ~p

is also in the neighbourhood of~q.
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A Von Neumann topology with the same neighbourhood size as a local best topology have

the same number of edges. The difference is that the particle in the Von Neumann topology is

shared in twice as many neighbourhoods as the particle in local best topology with the same

size. Also, the average shortest path between Von Neumann particles is far less than the average

shortest path of the local best configuration. Thus, the measurements suggested by Watts [74]

predicts the empirical results accurately.

As an option, Kennedy and Mendes [34] include the subject particle in its own neighbour-

hood. A neighbourhood strategy that excludes the subject particle is called aself-excluding

strategy. In aself-including strategy, the subject particle is included in its own neighbourhood.

In a self-excluding strategy, the best particle in the neighbourhood also contributes to the space

exploration, because it is pulled towards the second best particle. A self-including strategy pulls

the best particle towards its own personal best, and consequently this particle contributes little

to the exploratory search. Therefore, there is reason to expect a self-excluding strategy to do

better.

For the fitness functions used in the Kennedy and Mendes comparative study [34], it is

only for the local best topology that the self-excluding strategy performed better than the self-

including strategy. For global best and Von Neumann the performance of self-including strategy

outperformed the self-excluding strategy. For the global best, and the local best topologies, these

results are predictable. In the global best case, the behaviour of only one particle will be affected

by the inclusion (i.e. the global best particle). For local best, more particles are constrained, and

self-excluding is expected to perform better. However, it is not clear why Von Neumann would

show better results for the self-including strategy. For this reason, Section 7.4 presents the

results of an experiment conducted to decide whether or not a self-including strategy must be

employed for the game learning framework instead of a self-excluding strategy.

7.2.2 Particle trajectory

A particle’s trajectory is influenced by its personal best (orpbest()) and the best of the personal

bests of the particles in itsneighbourhood. The latter is called thelocal best(or lbest()) [17].

These two poles, local best and personal best, to which a particle is attracted are fundamental

to the hypothesis from which PSO originates. According to this hypothesis, the ability of a

species to survive lies with its ability to share information by social interaction [33]. During this

interaction, individuals in the species share information gained by personal experience. This
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experience based information is sometimes referred to as cognitive information. In PSO, the

cognitive information is represented by the personal best, and the social information is repre-

sented by the local best. The strong relationship between the personal best and the local best is

highlighted by the following definition:

Definition 7.1: Local Best. For particlep with neighbourhoodN(p), and maximising

fitness functionf , lbest(p) is an arbitrary selection from the local best setL (p), where

L (p) = {pbest(q) | q ∈ N(p) ∧ ∀x∈N(p) f (pbest(x)) ≤ f (pbest(q))

The movement of a particle is controlled by thevelocity update function( line 2 of the PSO

outline on page 113). This function calculates the new velocity by adjusting each component

of the velocity vector separately. Two constants regulate the magnitude of the velocity change:

thecognitive acceleration constant, c1, constrains the change towards the personal best, and the

social acceleration constant, c2, constrains the change towards the local best. In addition, Shi

and Eberhart [59] introduced aninertia weight, w, that restricts the influence the current velocity

has on the new velocity. Choosing different values forc1, c2 andw has a measurable effect on

the performance of PSO [63, 18, 60].

Stochastic elements,r ands, are introduced to the velocity update function. These elements

facilitate an uncontrolled exploration of the search space. The values are from the uniform

distribution,U(0, 1). The values ofr ands influence the rate of change toward personal best and

local best, respectively. Thus, the acceleration constants,c1 andc2, essentially provide upper

bounds for the change in the velocity.

The state of particlep at epocht can be denoted aspt. Using this notation the velocity at

epocht + 1 is v(pt+1). This value is determined from the state of the particle at the preceding

epoch:

v(pt+1)[i] = w× v(pt)[i]+

rt × c1(pbest(pt)[i] − pt[i])+

st × c2(lbest(pt)[i] − pt[i])

(7.1)

wherert, st ∼ U(0, 1). Note that these random values are also time-dependent.

After the velocity has been determined,velocity clampingcan be applied. For a domain,

a maximum velocity value,vmax is determined. The velocity is restricted, component by com-

ponent to the values in the range [−vmax, vmax]. The value ofvmax is dependent on the domain,

usually chosen as a fraction of the maximum vector in the search spacexmax. That is, for

0.1 ≤ k ≤ 1.0, vmax= k× xmax. Note that this restriction is not placed on the value of~p, only on
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the distance a particle can move in one iterationv(p).

Clerc and Kennedy [13] define constraint equations that improve the probability of conver-

gence. These equations are combined with Equation 7.1 to derive theconstricted function.

Using this function for the PSO also has the advantage that the population converges without

placing avmax limit on the velocity. The constricted function uses aconstriction factor, χ:

v(pt+1)[i] = χ × (v(pt)[i]+

rt × c1(pbest(pt)[i] − pt[i])+

st × c2(lbest(pt)[i] − pt[i]))

(7.2)

The value ofχ is determined as follows:

χ =
2

|2− φ −
√

φ2 − 4φ|
(7.3)

whereφ = c1 + c2. Clerc and Kennedy [13] found thatφ must be greater than 4.0 to promote

convergence.

A domain specific enhancement is required for the PSO that optimises the evaluation func-

tion. The weights of the evaluation function (described in Section 3.5) indicates the importance

of the weight relative to the other terms in the function. The consequence of this is that there

are an infinite number of functions that are equivalent. PSO currently searches an infinite space;

and it is possible that many particles with equivalent functions could find themselves in vastly

different locations in the search space. In an attempt to mitigate this problem,value clamp-

ing has been introduced to make the search space smaller. Two constants, valmin and valmax,

specifies the minimum and the maximum value of particle components, respectively. After the

velocity has been applied to a component, the value of that component is adjusted to ensure

conformance to these limits. If the value is less than valmin, it is set to valmin. Likewise, if it is

greater than valmax, it is set to valmax. For the current domain, valmin must be greater or equal to

0. A negative weight would lead to a a negative value for the evaluation function. As explained

in Section 3.5, the evaluation function has a value 0 to indicate losing positions, and a value of 1

to indicate winning positions. Also, the weights estimate the importance of a term relative to the

other terms in the function. From this vantage point, a zero indicates that a term is unimportant,

and a negative value is meaningless.
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7.3 Competitive Environments

In a competitive environment, the fitness function evaluates the learning agent’s performance

against a set of opponents. The opponents for a learning agent can be drawn from two sources.

The first source is a set of random players. As described in Section 5.6, these players can form

the foundation for an objective performance measurement. However, this objective measure-

ment requires extensive computing resources and can therefore not be applied as a PSO fitness

function. The second source of opponents is the population of the agents created during the

learning process. In the case of PSO, this population is the swarm of particles. The use of other

particles in the swarm as opponents encourages an evolutionary development that increases the

ability of each participant until a near optimal configuration is achieved [4].

A competitive fitness functionis any calculation that is dependent on the current population

to some degree [4]. In a PSO swarm that uses a fixed fitness function, the learning environment

is static; but when it uses a competitive fitness function that depends on the fitness of the other

particles in the swarm, the learning environment becomes dynamic. In a dynamic environment,

PSO is stable and efficient; and in many cases, such an environment helps to avoid local optima

and locate a global one [47].

Coevolution is a learning process in which the learning environment changes as the process

continues [48]. More specifically,competitive coevolutionrequires that the fitness of an indi-

vidual is determined by the fitness of other individuals in the environment [76]. Therefore, a

PSO that employs a competitive fitness function is an example of competitive coevolution.

Competitive coevolution is a variation of self-play learning, and as such it suffers from two

problems that are common to all training methods that employ self-play. Firstly, self-play is

very likely to get stuck on a self-consistent but a non-optimal strategy [66]. Secondly, there is

no guarantee that the portions of the strategy space searched are the most significant ones [20].

These problems lead to strategies that perform poorly.

The problems related to self-play learning are addressed by ensuring that the population

diversity is adequate to avoid local minima and to cover a larger search space. A method to in-

crease diversity is simply to increase the population size. However, Tesauro [66] illustrates that

the learning of does not require a large population size. In the case of-

, and with stochastic games in general, the source of the diversity is the stochastic element

present in the game rules. This diversity is a primary contributor to the success of Tesauro’s

 player [48].
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Angeline [4] observes that the stochastic elements present in the GA population, such as

the application of the mutation operator and the probabilistic selection of parents, bring about a

level of non-determinism that can be exploited to create a population that is diverse enough for

learning through self-play. A similar argument can be put forward for PSO: it also has stochastic

elements, and as such it has the potential to maintain a level of diversity that is adequate for self-

play learning. It follows that PSO provides a training environment that is likely to mitigate the

problems associated with training methods that employ a competitive fitness function.

7.3.1 The Competitive PSO algorithm

Thecompetitive PSO algorithmoptimises a competitive fitness function using the particles in

the PSO swarm as opponents. The first application of competitive PSO, described in Messer-

schmidt and Engelbrecht [40], is an analysis that compares PSO to the Evolutionary Program

(EP) described in Fogel [22]. This analysis indicates that competitive PSO obtains better T-

- players than those obtained by competitive EP. Franken and Engelbrecht [24] extended

the work of Messerschmidt and Engelbrecht on T-T- by analysing the effect of different

PSO structures and neural network topologies on the learning performance. This work was also

extended to C [25, 26].

The competitive PSO extends the original PSO outlined in Figure 7.1 (page 113) by intro-

ducing acompetition stageat the start of each epoch. During this competition stage, the fitness

of the particles are determined using the competitive fitness function.

The competitive fitness function used by Messerschmidt and Engelbrecht selects a constant

number of opponents randomly from the swarm for each participant. The participants include

all the current locations as well as the personal best of each particle. For each participant a score

is kept. At the start of the competition stage, all the scores are initialised to zero. During the

competition, the score increments when the participant beats an opponent, and decrements when

the participant loses. In the same manner, the opponent’s score is also adjusted. The number of

matches played depends on the swarm size,n and the number of opponents,k. The number of

matches played during the competition stage is 2× n× k.

The Messerschmidt competitive function implements an evaluation method that is not fair

and it could result in fitness values that are too coarse. The evaluation is not fair because,

depending on the quality of the selected opponents, a good participant could be assigned a bad

fitness value, andvice versa. The coarseness comes from the limited range of the fitness function
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and it produces the situation that many participants share the same fitness value. Consequently,

the local best of a particle becomes more often than not, an arbitrary choice between seemingly

equal candidates in the neighbourhood.

A solution to this problem (of fairness and coarseness) is to allow the personal bests to

compete in a tournament that aims to be a fair assessment of the participant’s ability. In such a

tournament, the fitness value is not a tally of match outcomes; it is a ranking. By using the results

obtained by previously matched participants, the number of new matches conducted during the

competition step to determine the ranking, is kept to an absolute minimum.

When ranking is used, particlep is considered better than particleq if and only if p has a

higher rank thanq. This comparison does not imply that there was a match betweenp andq.

Indeed, it is possible thatq will beat p, even if p is ranked higher. The fairness of the ranking

depends on the tournament structure and the elimination strategy used during the competition.

The next section provides some alternatives to consider in this regard.

7.3.2 Tournaments

In a tournament, a number of participants compete to decide which participant is the best. A

tournament is one of three types: anelimination tournament, a scoring tournamentor a hy-

brid tournament. In an elimination tournament, participants are removed from the tournament

until the winner remains. In a scoring tournament a score is given to each competitor after a

match, and the winner is the participant with the highest score. A hybrid tournament contains

elimination and scoring stages.

Different types of scoring tournaments are available. The tournament used in Messerschmidt

and Engelbrecht [40] and in Fogel [22] is arandom subset tournament. In a fixed subset tour-

nament, the set of competitors for a participant does not change every epoch. In around robin

tournament, every participant is matched against every other participant. Because of the high

likelihood that more than one participant will have the same score, atie breaking procedureis

required to identify the winner. During this procedure, criteria derived from the tournament can

be considered, such as: the results of the matches between winning participants; the ratio of

number of wins against the number of losses; the difference between the number of wins and

number of losses; and simply the number of wins.

Two types of elimination tournaments are common. In aknockout tournament, the loser

of a match is eliminated, and the winner continues to the next round. This elimination process
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continues until one participant remains. In adouble-elimination tournament, the participant is

eliminated after he loses a second time. This second chance is implemented by creating two

brackets: a winners bracket, and a losers bracket. The process followed in the winners bracket

is the same as the knockout tournament. However, when a participant in this bracket loses a

match; the participant is moved to the losers bracket. The losers bracket has two stages to every

round: firstly the winners of the previous losers bracket round (or the losers of the very first

winners bracket round) compete. In the second stage, the winners of the first stage compete

against the losers of the same round in the winners bracket. The losers of the second stage are

eliminated from the tournament, and the winners remain in the losers bracket. This process

continues until both brackets have only one remaining participant. The champion of the losers

bracket would have lost one match, and the champion of the winners bracket is undefeated.

These two champions then compete to determine the winner of the tournament.

In the elimination tournaments, thepairing proceduredecides which participants should

compete. If unlucky, the second best participant can be paired with the best participant and

eliminated at the first round of the tournament. Although the double-elimination tournament

mitigates the problem, unfair pairing remains an issue. The simplest pairing procedure is to se-

lect the opponents at random. However, if the ability of the participants are known, the pairs can

be organised such that the best players are likely to compete in the final rounds. A process called

seedingorders the participants according to previous performance from best to worst. From this

sequence, pairs are formed by repeatedly removing the first and the last seeded participant. If

the number of participants in a round is not even, one participant receives abye, and moves to

the next round without competing.

7.3.3 The Tournament PSO algorithm

A characteristic of PSO that is not available to standard GA optimisation algorithms is that PSO

has memory. Every PSO particle ‘remembers’ its own personal best location. Typically, an

individual in a standard GA population is replaced in every generation with a new individual.

Therefore, every new individual must be re-evaluated for every GA generation. However PSO

does not need to follow suit: using the personal best, it is possible to avoid the re-evaluation

of every particle in the swarm at the start of each epoch. If the re-evaluation does not apply to

each particle, it becomes feasible to use the more resource intensive, but more fair tournament

methods described in the previous section. It is from this idea that theTournament PSOis
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developed in this thesis.

The key difference betweenTournament PSOand the competitive PSO described in Section

7.3.1, is that the particles in tournament PSO compete against their own personal best. Tour-

nament PSO elaborates on competitive PSO by splitting the competition stage into two smaller

stages: thepersonal competition stageand thetournament competition stage. In the personal

competition stage each particle’s current location competes against its own personal best. If the

personal best is beaten, it is replaced with the current location. During the tournament com-

petition stage, the personal bests of all the particles compete in a tournament. The tournament

establishes a partial order ranking that is used to determine the local best particle in the neigh-

bourhood.

The first stage of Tournament PSO requires a constant number of matches: for a swarm size

of n, n matches are held during the personal competition stage. If, for a given epoch, no new

personal bests are identified, the results of competition phase for the previous epoch is used

again to determine the fitness of the particles in the swarm. The number of matches held during

the tournament competition stage depends on the tournament method.

Tournament PSO also makes use of amatch cache. The match cache is a memory structure

used during the tournament competition phase. Although this memory structure increases the

memory requirement of the PSO, it does not affect the trajectory of any particle. Its purpose

is to avoid needless matches between particles. The match cache keeps the result of the match

between the pairs of personal best locations. When the tournament demands a match between

two locations that have already been matched, the result is retrieved from match cache. If the

result is not available in the cache, the particles compete, and the result of the competition is

added to the cache. Whenever a new personal best is identified, all matches in which the personal

personal best participates are removed from the match cache. The number of new personal bests

are likely to become fewer as the particles approach optimal configurations, and more matches

will be replaced by cached results. The net effect is that more computing resources are spent on

search space exploration, and less on the evaluation of personal bests.

The self-excluding Von Neumann neighbourhood topology is chosen to identify neighbours.

If more than one neighbour has the same ranking, either the neighbours are chosen randomly, or

a knockout tournament is used to select the local best. These two approaches are calledrandom

bestandknockout bestrespectively.

A tournament match between two participants consists of two games; each participant gets
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a turn as the first player. For these games, 2 points are awardedto the winner, 1 point each for

a draw and 0 points to the loser. The participant with the most number of points after the two

games wins the match. If the score is equal, the winner is chosen at random.

The local match is more strict - in order to replace the personal best, the current particle

location must win as first and as second player. This sterner rule aims to prevent situations in

which a tested champion is replaced with a ‘lucky’ novice [48].

If a tournament requires pairing, eitherrandom pairingor rank seedingcan be employed. In

random pairing, opponents are paired by random selection. In rank seeding, the previous rank

of the particle is used to order the participants. For a particle that obtained a new personal best,

the rank obtained by the previous personal best is used for seeding. From this ordered list, pairs

are chosen such that the best seeds are likely to compete in the final rounds.

For the tie breaker procedure, a knockout tournament is held that includes all the winners as

competitors. If there are still ties, a winner is chosen randomly.

The tournaments (subset and elimination) can be combined with the random or knockout

local best. For elimination tournaments, either random pairing or seeding can be applied.

These choices lead to fourteen different permutations, each permutation is a differenttourna-

ment methodthat can be used in the Tournament PSO. These methods are summarised and

labelled in Table 7.1. and the constricted function (Equation 7.2 on page 117) is used to update

Tournament Random best Knockout best
Random subset RSR RSK
Fixed subset FSR FSK
Round robin RRR RRK

Random pairing Seeded Random pairing Seeded
Knockout KRR KSR KRK KSK
Double elimination DRR DSR DRK DSK

Table 7.1: The tournament method matrix

the velocity.

7.4 Experiment: Self in neighbourhood

Objective

For the learning framework, either a self-excluding or a self-including strategy must be used.

This experiment investigates the influence this choice has on the Tournament PSO. Every tour-

nament strategy defined in Section 7.3.3 is used to gain a general result.
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Method

Because of the decision made in the previous chapter, a phased evaluation function built from

theDS strategy (exclude dubious and cut spurious branches) is used for this experiment. From

the 30DS functions created by the experiment in Section 6.6, the best performing function has

been selected as the function to optimise for this experiment. Call this functionFb.

For the floating-point PSO parameters the following values were chosen:w = 1, c1 = 2.1,

c2 = 2.1, valmin = 1 and valmax= 99. The values forc1 andc2 were chosen to adhere to Equation

7.3. The swarm consisted of 25 particles arranged in a 5× 5 lattice. The smallest Von Neumann

topology was used, containing the 4 particles that surround the subject particle in the lattice.

The initial locations of the particles were set randomly. The level of consistency for the

experimental conditions was improved by keeping the initial particle locations the same for

every PSO run.

The PSO was terminated when 30 000 matches were played. During the tournament com-

petition phase, the match count is incremented only when a new match was added to the match

cache. The matches were played without searching the game tree. The move choice fell on

the next position in the play line with the highest evaluation. In the case where more than one

move with the best evaluation were encountered, the next move would be randomly chosen from

amongst these moves.

Using the Tournament PSO algorithm, each of the fourteen tournament methods were used

in twenty runs. Of these runs, ten included the subject particle in the neighbourhood, and ten

excluded the subject particle from the neighbourhood. At the end of each run, the performance

of the best particle in the swarm was measured. For this measurement Equation 5.7 on page 84

was used with a game count of 15 000.

In order to determine which of the two strategies is best, the mean performance of the

strategies are compared for every tournament method. Because of the small size of the sample, it

cannot be assumed that the sample variance is an adequate estimate of the population variance;

and consequently the usual approach to compare means using confidence intervals cannot be

applied. For such small sample sizes, the Student’st-distribution must be used to obtain a

reliable comparison [71].

More specifically, the comparison of two sample means can be done using thetwo-sample
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t-test. The formula for this test is:

tn1+n2−2 =
X1 − X2 − (µ1 − µ2)

s×
√

1
n1
+ 1

n2

(7.4)

wheren1 andn2 are the sample sizes,X1 and X2 are the sample means, the values ofµ1 andµ2

are determined by the test hypothesis, ands is the pooled standard deviation of the sample sizes.

The pooled variance is obtained from the following formula:

s2 =
s2
1 × (n1 − 1)+ s2

2 × (n2 − 1)

n1 + n2 − 2
(7.5)

wheres2
1 is the variance of the sample with sizen1 ands2

2 is the variance of the sample with size

n2.

The valuen1+n2−2 is called thedegrees of freedom. From this value, the cut-off t-value is

obtained from thet-distribution. If the observedt-value (that is Equation 7.4) falls in the reject

region (determined from the cut-off value) the test hypothesis is rejected.

Unfortunately, matters are complicated by the fact that the two-sample t-test assumes that

the variances of the two populations are equal. If they are not equal, it is necessary to use

theapproximate t-test. The approximate t-test does not use a pooled variance, and adjusts the

degrees of freedom. The approximate t-test is given by the following formula:

t∗ =
X1 − X2
√

s2
1

n1
+

s2
2

n2

(7.6)

The degrees of freedom used to get the cut-off value oft∗ from thet-distribution is given by:

n∗ =






(s2
1/n1 + s2

2/n2)2

(s2
1/n1)2

n1+1 +
(s2

2/n2)2

n2+1






− 2 (7.7)

In order to determine whether of not the two variances are equal, theF-distribution is used.

The formula to determine theF-value is simply:

F =
s2
1

s2
2

(7.8)

TheF-distribution has two degrees of freedom,n1−1 andn2−1. Like the t-test, these degrees of
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freedom are used to determine the cut-off value for the F-test. If the observedF-value (Equation

7.8) exceeds the cut-off value, the hypothesis that the two variances are equal is rejected. In

order for this one-sided test to work,s2
1 must be substituted with greatest variance, ands2

2 with

the other variance.

In order to use theF-distribution or thet-distribution it is assumed that the data is from the

normal distribution. Thecentral limit theorem[71] states that if a random variable is the sum

of a large number of random increments, then it has the normal distribution. The performance

measurement is an accumulation of 15 000 smaller measurements, and as such it adheres to this

theorem, and can therefore be assumed to be a variable with a normal distribution.

This concludes the overview of statistical theory, now the equations above can be simplified

given the circumstances of the current experiment. Clearly, the first problem is to determine the

F-values using Equation 7.8, and compare that to theF-distribution cut-off. For a 5% signifi-

cance level, this cut-off value for two variances obtained from 10 samples each is as follows:

F(0.025)
n1−1,n2−1 = F(0.025)

9,9 = 4.0260 (7.9)

If the observedF-value obtained from Equation 7.8 exceeds the value of Equation 7.9 the

variances are assumed to be different. In this case, the approximate degrees of freedom,n∗

must be calculated using Equation 7.7 and cut-off value must be compared with the observed

approximate t-value. Substituting the appropriate values in Equation 7.7 gives:

n∗ =






(s2
1/10+ s2

2/10)2

(s2
1/10)2

11 +
(s2

2/10)2

11






− 2 (7.10)

On the other hand, if the observedF-value does not exceed the cut-off value, the variances

are assumed to be equal, and thet-distribution can be applied. The interest is to show that the

two means are equal; that isµ1 = µ2, and consequentlyµ1 − µ2 in equation Equation 7.4 is 0.

Further substitution simplifies this equation to:

t10+10−2 = t18 =
X1 − X2

s×
√

0.2
(7.11)

wheres is the standard deviation. This value comes from the pooled variance calculated from

Equation 7.5:

s2 =
s2
1 × 9+ s2

2 × 9

18
=

9× (s2
1 + s2

2)

18
=

(s2
1 + s2

2)

2
(7.12)
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The final detail is the cut-off value used to determine the result of the two sample test. For a

significance level of 5%, the cut-off value is:

t(0.025)
10+10−2 = t(0.025)

18 = 2.101 (7.13)

Results

The performance statistics for the self-excluding and the self-including strategy are shown in

Table 7.3 and Table 7.2 respectively. These tables show the sample mean, sample variance,

minimum and maximum for each run.

S XS s2
S Max Min

DRK 65.5266 2.2152 67.0433 62.6933
DRR 64.9607 3.6231 67.8300 61.5700
DSK 65.1237 2.0082 69.0767 64.2767
DSR 64.9407 0.8509 65.8167 62.5000
FSK 66.1740 1.6380 67.8967 64.1333
FSR 65.7873 1.9372 67.5900 64.1133
KRK 65.5377 1.3065 67.6200 63.8800
KRR 66.1990 2.4128 68.4833 63.2367
KSK 64.9130 0.2899 65.5967 63.5433
KSR 65.3693 0.3255 66.4967 64.7000
RRK 65.6947 3.1974 68.9167 63.6767
RRR 65.6273 1.5950 67.4167 63.5500
RSK 65.9980 2.6762 68.0833 63.7233
RSR 65.4710 2.7587 67.4300 62.2733

Table 7.2: Statistics for self-including stategies forFb

S XS s2
S Max Min

DRK 65.4016 1.1772 66.9133 63.3167
DRR 65.0917 2.6561 67.4033 62.2300
DSK 66.7290 2.5015 69.3867 64.5700
DSR 65.4183 1.7178 67.6000 63.0700
FSK 65.9664 1.4284 68.1233 64.0267
FSR 65.2980 2.7477 68.2867 63.4667
KRK 65.7903 3.4113 68.9633 62.7800
KRR 66.0460 1.5852 68.5467 64.5333
KSK 64.9390 0.6566 66.9633 64.2367
KSR 66.2663 2.9189 68.4400 63.4600
RRK 65.5190 3.5560 68.4367 63.3900
RRR 66.1187 3.7925 68.7533 63.7033
RSK 65.9110 2.3872 67.6500 62.5667
RSR 65.5840 1.5597 67.8100 63.5333

Table 7.3: Statistics for self-excluding strategies forFb

Of the 14 methods, 10 produced a maximum for the self-excluding strategy that is greater
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than the maximum for the corresponding self-including strategy. The mean of the maximums for

the self-excluding strategies is 68.09119, compared to a 67.5212 mean for the maximums of self-

including strategies. Thus, the maximum performance values indicate self-excluding is better.

Insofar the minimums are concerned, only 8 methods produced a greater minimum for the self-

excluding strategy than the minimum obtained for the corresponding self-including strategy.

The mean of the minimums for the self-excluding strategies and self-including strategies is

63.49167 and 63.41928, respectively. Although, the contest is much closer than the maximums,

the minimums also indicate that self-excluding is better.

The result of the calculations for the formal comparison of the observed measurements are

shown in Table 7.4. Except forKSR all the tournament methods produced anF-value well

below the cut-off value specified in Equation 7.9. Consequently, except forKSR, the two-sample

test applies to all tournament methods. For all these, thet-value have been computed using

Equation 7.12 and Equation 7.11. Almost all the calculatedt-values were in the acceptance

region,−2.101 < t18 < 2.101 and the conclusion is that most means are equal. The only

tournament method that shows a better mean for the self-excluding strategy isDSK.

Table 7.4: The computed values for the self-including and self-excluding mean comparison for
Fb

Self-including Self-excluding
Tourn. Mean Variance Mean Variance F-value t-value Comparison
DRK 65.5266 2.2152 65.4016 1.1772 1.8817 0.2146 Equal
DRR 64.9607 3.6231 65.0917 2.6561 1.3640 0.1653 Equal
DSK 65.1237 2.0082 66.7290 2.5015 1.2456 2.3905 Excluding is better
DSR 64.9407 0.8509 65.4183 1.7178 2.0188 0.9425 Equal
FSK 66.1740 1.6380 65.9664 1.4284 1.1467 0.3750 Equal
FSR 65.7873 1.9372 65.2980 2.7477 1.4184 0.7149 Equal
KRK 65.5377 1.3065 65.7903 3.4113 2.6110 0.3678 Equal
KRR 66.1990 2.4128 66.0460 1.5852 1.5221 0.2420 Equal
KSK 64.9130 0.2899 64.9390 0.6566 2.2652 0.08458 Equal
KSR 65.3693 0.3255 66.2663 2.9189 8.9671 NA Equal (viat∗-test)
RRK 65.6947 3.1974 65.5190 3.5560 1.1122 0.2138 Equal
RRR 65.6273 1.5950 66.1187 3.7925 2.3777 0.6694 Equal
RSK 65.9980 2.6762 65.9110 2.3872 1.1210 0.1223 Equal
RSR 65.4710 2.7587 65.5840 1.5597 1.7688 0.1720 Equal

For theKSR tournament methodn∗ = 11.42329 andt∗ = 1.57479774. Using the nearest

integer value gives the cut-off value for the approximate t-test at a significance level of 5% as:

t(0.025)
11 = 2.201 (7.14)
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The measured value, 1.57479774, is below the cut-off, and therefore the hypothesis that the two

means ofKSR are equal is accepted.

Although the minimum and maximum measurements hint toward the conclusion that self-

excluding strategies are better, this conclusion would not be statistically sound. A more accurate

general conclusion is that the performance of a specific Tournament PSO that uses the self-

excluding strategy is no worse than the performance of a PSO that is the same as the specified

PSO in other respects but uses a self-including strategy. However, a specific conclusion can be

stated for theDSK tournament method – for this method, the self-excluding strategy outperforms

the self-including strategy.

7.5 Experiment: Tournament method performance comparison

Objective

This experiment applies the self-excluding strategy to each of the tournament methods identified

in Section 7.3.3 and it compares the performance of the optimised playing agents.

Method

The method described in Section 7.4 is also used for this experiment. The subsection below

provides a comparative analysis of the statistics obtained from the self-excluding runs conducted

during the previous experiment.

Results

The results forFb is shown in Table 7.3, and depicted as a box-and-whisker diagram in Figure

7.2. Taken as a whole, the mean performance of all tournament methods is 65.71995. In the

experiment described in Section 6.6, the performance ofFb with all weights equal to 1.0 was

measured as 67.6767.

Only DSK, KSR, RRK and RRR have an upper quartile higher than 67.6767. Some of the

strategies were not able to reach this value even as a maximum. From the Figure 7.2, it is clear

that no single strategy can be isolated as the best strategy, but it seems very plausible thatKSK

is the worst tournament method for Tournament PSO.

In order to identify the better strategies accurately, the mean value of every strategy is tested

for equality against the mean value of the strategy that obtained the greatest mean value. The
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Figure 7.2: The performance of the tournament methods

best performer wasDSKwith a mean value of 66.7290. As before, theF-value and thet-value are

used (see page 125) to determine the equality of the two means. The results of these calculations

are shown in Table 7.5.

Table 7.5: Comparing other method means with the mean ofDSK

Mean (XS) Variance (s2
S) F-value t-value Result

DRK 65.4016 1.1772 2.1249 2.1885 Not equal
DRR 65.0917 2.6561 1.0618 2.2799 Not equal
DSK 66.7290 2.5015 1.0000 0.0000 Equal
DSR 65.4183 1.7178 1.4562 2.0178 Not equal
FSK 65.9664 1.4284 1.7512 1.2166 Equal
FSR 65.2980 2.7477 1.0984 1.9751 Not equal
KRK 65.7903 3.4113 1.3637 1.2207 Equal
KRR 66.0460 1.5852 1.5780 1.0684 Equal
KSK 64.9390 0.6566 3.8100 3.1852 Not equal
KSR 66.2663 2.9189 1.1669 0.6284 Equal
RRK 65.5190 3.5560 1.4216 1.5547 Equal
RRR 66.1187 3.7925 1.5161 0.7693 Equal
RSK 65.9110 2.3872 1.0479 1.1699 Equal
RSR 65.5840 1.5597 1.6038 1.7967 Not equal

Only six of the fourteen tournament methods were found to be less effective thanDSK.
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Table 7.6 emphasises the stronger tournament methods by marking the places of the six weaker

Table 7.6: The dominant tournament method matrix
Tournament Random best Knockout best
Random subset *** RSK
Fixed subset *** FSK
Round robin RRR RRK

Random pairing Seeded Random pairing Seeded
Knockout KRR KSR KRK ***
Double elimination *** *** *** DSK

methods with asterisks (‘***’).

The first deduction that can be made from these results is a predictable one: random best

is weaker than knockout best because the latter was used by only two of the six eliminated

methods. The second deduction is that double elimination is less effective than knockout tour-

naments. Double-elimination takes more rounds to determine the winner, and more epochs can

be achieved with the same number of games using the knockout tournaments. It is therefore rea-

sonable that knockout could be better. However,DSK is a double-elimination strategy that did

very well. The reason for this could be thatDSK also used the two other aspects that intuitively

introduce more fairness: that is the use of seeding for tournaments and the use of a knockout

tournament to determine the best of equal particles in the neighbourhood.

7.6 Experiment: Tournament method interval analysis

Objective

In the previous experiment, eight tournament methods where isolated according to their perfor-

mance. This experiment aims to identify the better methods among these by considering the

evaluation functions created at various intervals during the Tournament PSO runs.

Method

In this experiment, the Tournament PSO was run for ten times for the following tournament

methods: KSR, RRR, RRK, FSK, KRK, KRR andRSK. The parameters for these runs did not

deviate from the runs described in Section 7.4. During each run, 31 evaluation functions were

written to files: the initial function and 30 functions taken from the swarm at a 1 000 match

intervals. The initial function is taken right after the first tournament. Every time a function was

taken the current swarm champion was chosen. In total 2 400 interval evaluation functions were
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produced. For each one of these functions, a performance measurement was obtained using

15 000 matches. The performance function described in Section 5.6 was used to obtain the

measurements.

For the analysis the measurements were aggregated into interval means. The interval mean

is the mean of the ten measurements taken at an interval for a tournament method. Thus, for

each tournament 31 interval means were obtained.

A formal statistical analysis of the interval means is not done for this experiment. The reason

of this is that the previous experiment concluded that the performance of the final interval mean

is statistically equal. There is no reason to expect the sample variances of the other intervals

to be less than the variances of the final intervals. Therefore, a statistical analysis is likely to

conclude that all the interval means are equal. The results of this experiment undergoes a less

formal, but still a reasonable analysis with two steps.

The first analysis is simply a count of the number of interval means that is greater than the

initial interval mean for that method. If this count is thirty, it means that the method constantly

produces a function that performs better than the initial function. However, a count less than

15 indicates that the method is likely to produce functions that perform worse than the initial

function. In such case, the tournament method fails to identify and to promote better functions.

It could also indicate that the method is susceptible to local minima.

The second part of the analysis compares the interval means of each tournament at the

intervals. If one of the methods consistently produces a mean greater than the other methods, it

is likely that this method is better than the others.

Results

Figure 7.3 shows the number of interval means that are greater than the mean of the performance

of the initial evaluation function. OnlyDSK andKSR have the maximum count of thirty.KRK and

FSK have a count lower than fifteen. The conclusion is that these two methods fail to produce

functions that consistently preform better as the PSO search continues.

The second analysis excludesKRK andFSK. Figure 7.4 shows the interval means for each

of the six remaining tournament methods. The greatest values are amongst the means of the

following methods:KSR, DSK, KRR, RSK andRRR. The only tournament method that has no

interval with the greatest mean isRRK. The methods that has intervals with the smallest mean

are restricted toRRK, RSK andKRR.
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Figure 7.3: Tournament method interval performance

From Figure 7.4 the dominance ofDSK as the maximum mean for each interval is clear. Here

follows a the count of intervals for which each strategy achieved the maximum interval mean:

KRR = 1, RSK = 2, KSR = 6, RRR = 4 and finallyDSK had 17 of the maximum intervals.

For DSK all the intervals produced a better performing function than the initial function,

andDSK had the best performing function in more than half of the measured intervals. Thus

according to this experiment,DSK performs better than the other tournament methods.

7.7 Conclusion

PSO is an algorithm that finds optimal values of the arguments of real-valued functions using a

multi-location search. The velocity of a location, or particle, drives it through the search space.

This velocity is influenced by the neighbours of a particle. These neighbours are selected from

other particles in the swarm using one of three typical neighbourhood topologies. Of these, the

Von Neumann topology has been chosen as the topology to be used in the learning framework.

The constricted function has been chosen as the update function guarantees convergence, and

has been chosen as the function to update the velocities of the particles that optimise the weights
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Figure 7.4: Tournament method convergence

of the evaluation function.

In a competitive environment, a static fitness function is likely to prove impractical. A

competitive fitness function uses the other particles in the swarm to determine a particle’s fitness.

The use of this type of competition during the optimisation process creates a co-evolutionary

environment in which a particle gains strength by playing against the rest of the swarm. The

Competitive PSO selects opponents randomly from the swarm.

The Tournament PSO introduces the idea of ranking all particles according to a tournament

method, such that the fitness value of the particle is its ranking. In addition, this new PSO

redefines the personal best: if the current location beats the personal best in a match, it becomes

the new personal best.

The new PSO brings with it the question of which Tournament method is better. Experi-

mental results indicate that the most fair and least coarse method does perform better; and it is

less likely to converge early. This method, labelledDSK uses the double-elimination tournament

with seeding, and the knockout tournament to select the local best amongst equals.

In the next chapter, theDSK strategy is incorporated with the conclusions from the previous

chapter to create a C player that learns from zero knowledge. Additional aspects, such
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as game-tree search and increasing the swarm size are also considered.

 
 
 



Chapter 8

The automated learning of C

In the three chapters that precede this one, the learning framework and its detail has been described.

This chapter is an empirical investigation into some aspects of this framework. The game of Checkers is

used as the subject of this investigation. In addition, the learning performance of the framework when

applied to a simpler game is measured.

8.1 Introduction

This short chapter presents the findings of a few experiments conducted with the learning frame-

work. These experiments do not constitute a full experimental analysis of the framework.

Rather, the experiments were devised to investigate some aspects of the framework that were

deemed likely to effect the performance of the learning agent.

First, Section 8.2 describes the rules of C used for the learning experiments. Section

8.3 considers the idea of using examples in more than one phase when discovering new evalua-

tion functions. Section 8.4 explores the discovery process further by investigating whether more

complex evaluation functions lead to better learning. Section 8.5 assesses the influence of differ-

ent schemes to produce the example play-lines. Section 8.6 measures the learning performance

for a game that is less complex than C. Finally, Section 8.7 concludes this chapter.

8.2 The rules of C

This section lists the rules used by the playing agent. These rules are based on the standard rules

of C [39]:
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∗ Checkerboard. The board is a square that is divided into 64 small squares arranged on an

8× 8 grid. The squares alternate between a light and a dark colour. The game is played on

the dark squares. The board is placed such that each player has a light square on the far left.

∗ Initial position. The playing pieces are Red and White. Each player has 12 pieces of the

same colour placed on the 12 dark squares closest to his edge of the board. The player with

the Red pieces makes the first move.

∗ Moving pieces. A checkeris a piece placed on the board at the starting position. A checker

can move one square diagonally forward to a vacant square. When a man reaches the last

row, called theKing Row, it becomes aking. This process is calledcrowning. A king can

move forward as well as backward.

∗ Objective. The game is lost by the first player that cannot move, either because he has no

pieces or because all of his pieces are blocked. At any time a player can resign (and lose),

or both players can agree to end the game in a draw. For the current research, a limit of 100

moves were placed on every game. When the move count reaches 100, the game ends in a

draw.

∗ Capture. A opponent’s piece can be captured by diagonally jumping over it to an adjacent

vacant square. A checker captures forward only, while a king is allowed to capture back-

wards. Several pieces can be captured in one turn using the same piece. Captured pieces are

removed from play. When a checker is crowned the move ends - even if the new king can

continue a capture. When there is an opportunity to capture, the active player is forced to do

the capture.

8.3 Experiment: Overlapping game phases

Objective

The first step of the discovery stage (introduced on page 96) of the learning framework organises

example positions into phase sets. Every phase set contains all the board positions from the

examples that are in the given phase. In this approach, a position belongs to one and only one

phase set. The phase sets proposed by Lee and Mahajan [38] also include the examples from

positions in the phases that are adjacent to the phase that identifies the set. Lee and Mahajan

used this approach in which phases overlap to train an O player. However, they did not
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show empirically that phase overlapping is an improvement over non-overlapping game phases.

The purpose of this experiment is to ascertain whether such an overlap is advantageous for the

C learner.

Method

The cardinality of each phase set is determined by the total number of play-lines used to generate

the examples. More play-lines produce larger phase sets. Large phase sets may lead to a better

classification, but there is a trade-off. Larger sets produce larger decision trees that lead to

evaluation functions that contain more terms. A function with more terms is harder to optimise

because the number of dimensions is greater than the number of dimensions of a function with

less terms. Also, larger functions consume more computational resources to evaluated game

positions, ultimately leading to a slower learning rate.

During the discovery stage, an on-line pruning cut-off value is supplied to C4.5 to specify

the minimum number of examples the branches of a sub-tree should have. If a sub-tree with

less examples than this minimum is reached, the classification process terminates. Thus, when

fixing the cut-off value, this pruning strategy produces larger decision trees when it is provided

with a larger example set.

The experiments conducted in Chapter 6 used a C4.5 cut-off value of 32 for 1000 play-lines.

Using the same cut-off to play-line ratio, this experiment uses a cut-off value of 144 for 4500

example play-lines. As an alternative configuration, the experiment also uses a cut-off value 32

for 4500 play-lines to see whether more complex evaluation functions lead to better players. A

comparison of the performance at these two cut-off values provides some insight into the effect

of the evaluation function complexity on the learning performance.

In order to investigate the effect of phase overlapping, both configurations (144 and 32 cut-

off) are subjected to three different overlaps: 0, 1 and 2. The 0 overlap corresponds to the

original algorithm. An overlap of 1 places an example position in the phase sets next to the

phase of the position. In an overlap of 2, an example at phaseη is placed in the following phase

sets:{η − 2, η − 1, η, η + 1, η + 2}.

A play-line count that creates a phase set size ofn for an overlap value of 0, leads to a phase

set size of 3×n when the overlap count is 1, and to 5×n when the overlap count is 2. In order to

ensure that the same number of examples are available for classification, the experiment uses a

play-line count of 4500 for the 0 overlap, a 1500 play-line count for a 1 overlap and a 900 count
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for a 2 overlap.

For each overlap and cut-off combination, the learning process was run 30 times. Each run

started with a play stage that produced the number of play-lines associated with the overlap.

These play-lines and the cut-off value were used during the discover stage to deduce the eval-

uation function. TheDS pruning strategy was employed for this deduction. Then, this new

evaluation function was optimised with the Tournament PSO using theDSK tournament method.

The PSO was run until 10000 matches were held, and a swarm size of 49 was used. Other PSO

parameters werew = 1.0, c1 = c2 = 2.1 andvmax = ∞. No tree searching was used for this ex-

periment. The performance of the optimised functions were determined by Equation 5.7 (page

84) with 15000 games.

In order to compare the results, the 95% confidence interval is applied to an observed mean

value,X using the observed standard deviation,σ. This interval is calculated as follows,

(X − 1.96× σ
√

30
,X + 1.96× σ

√
30

) (8.1)

Results

Table 8.1 shows the results of the experiment. For both C4.5 cut-off values, the results show a

decrease in performance as the overlap increases. However, the high variance makes it impos-

sible to conclude that this trend is an accurate assessment. Nonetheless, the conclusion is that

phase overlapping does not improve the performance of the learning framework.

8.4 Experiment: Function complexity

Objective

The number of terms in an evaluation function determines its complexity. The ideal complexity

of a function balances classification accuracy with optimisation. A more complex function

improves the ability of a function to discern between winning and loosing positions. However,

Table 8.1: Learning with overlapped game phases

Overlap Cut-off = 32 Cut-off = 144
0 64.31774± 1.084966 59.40155± 1.498132
1 63.63928± 1.240780 59.29722± 1.672348
2 63.22548± 1.486220 57.93188± 1.702703
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more terms introduce more weights that are more complex to optimise. Simpler evaluation

functions are also easier to understand and faster to evaluate during play.

In the previous experiment, a notable performance increase was measured for the more

complex function. This experiment compares the learning performance of the following C4.5

cut-off values: 32, 64, 96 and 144.

Method

For each cut-off value 30 learning runs were executed. Each run started with a play-stage that

produced 4500 play-lines. Using no phase overlapping, the discovery algorithm was applied

to the play-lines. The discovered evaluation was optimised using a match count of 10000.

The PSO did not use game tree searching and a swarm size of 49 was used. Similar to the

previous experiment, theDS andDSK strategies were used, the PSO parameters werew = 1.0,

c1 = c2 = 2.1 andvmax= ∞, and Equation 5.7 (page 84) with 15000 games was used to measure

the performance.

The statistical parameters are the same as the previous experiment, therefore Equation 8.1

is also applied to the results obtained from this experiment.

Results

Table 8.2 shows the measurements taken for this experiment. A cut-off value of 64 produce

slightly better results than 32. Although the improvement is not statistically significant, a value

of 64 is preferred because it produces less complex evaluation functions that evaluate faster. A

value of 96 is significantly lower than 64 and 144 even more so.

Table 8.2: Learning with cut-off values

Cut-off = 32 Performance
32 64.31774± 1.084966
64 65.46011± 1.379469
96 61.31507± 1.612758
144 59.40155± 1.498132
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8.5 Experiment: Champion contribution

Objective

At the end of each cycle, the new optimised evaluation function is merged with the champion list.

During this merge process, the new evaluation function is ranked. The new function precedes

the first champion that it beats in a two-game match. In this way the champions are always kept

in rank order. This champion list is used to generate the next set of example play-lines. In this

experiment, the contribution of the top champions to produce the example set is varied, and the

effect of this variation on the learning performance is measured.

Method

For each learning cycle, 4500 play-lines are produced during the play phase. Starting with the

top champion, the contribution are varied by specifying how many of these play-lines must be

produced by each champion. Two per-champion values are considered: 4500 and 1500. In the

4500 case, only the first champion contributes to the play-lines. In the 1500 case, the first three

champions have an equal contribution to the play-lines.

The experiment is run using the same settings used in the previous experiment (for the cut-

off value of 64) with two exceptions. The first exception is that this experiment uses a search

span of 20, and the second is that it learns for 5 macro learning cycles. For each contribution

case, 30 5-cycles runs were executed.

Results

The resulting measurements are shown in Table 8.3. Although the 4500 contribution is slightly

better, the high variance makes it impossible to decide which option is better. The conclusion is

that the relative contribution of each champion has no effect on the learning performance.

Table 8.3: Learning with different contributions

Per champion contribution Performance
1500 72.78122± 1.587015
4500 72.89189± 1.463084
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8.6 Experiment: Game complexity

Objective

In this experiment, the learning framework is subjected to a simpler game to see whether the

framework is more effective at learning simpler games.

Method

A game, called R C is created by changing the objective of C. The objective

of R C is to get a king: the first player to crown a checker wins the game. This game

is simpler because it eliminates the complexity of learning how to corner the opponent’s kings

during the end-game of C.

This experiment employed the same method as the previous experiment with a champion

contribution of 4500. It uses a search span of 20 and a learning cycle count of 5. The perfor-

mance measurement was taken for 30 different runs.

Results

The measured performance for R C was 95.69423± 0.2978747. This is a consider-

able improvement over the performance of 72.89189 obtained for standard C during the

previous experiment. The conclusion is that the framework does indeed perform better when

subjected to simpler games. This experiment also shows that the learning framework is applica-

ble to more than just C.

8.7 Conclusion

The performance of the learning framework is largely unaffected by the use of overlapped phases

and the contribution of the reigning champions. However, the C4.5 cut-off value that affects

the function complexity has a definite effect on the learning performance. As expected, the

learning framework performs much better when presented with a game that is less complex than

C.

 
 
 



Chapter 9

Conclusion and future work

This chapter provides a summary of the findings of this work. It also provides a list of suggested research

topics that would extend the work presented in this thesis.

9.1 Conclusion

The aim of this study was to introduce a learning framework that improves the skill of an agent

equipped with zero knowledge. This framework must be applicable to a significant class of

games. As constituents of this aim, a number of objectives were identified. These objectives en-

tail reviews of game concepts as well as learning concepts. In addition, a representation scheme

had to be introduced that is suitable for the representation and the learning of game knowledge.

As a secondary aim, the current study also investigated the possibility of using tournament

methods for particle swarm optimisation (PSO). This secondary aim has been achieved by in-

corporating the Tournament PSO as a key stage in an iterative learning process. This process

embodies the learning framework. In the rest of this section, the manner in which the various

objectives were achieved is described.

The review of game concepts highlighted that the game playing agent requires a high level of

interaction between the components of game tree search and game knowledge. A game playing

agent needs both components to play effectively. However, typical approaches to game tree

search, such as alpha-beta, require a high quality evaluation function. Such a function is not

available to a learning agent that starts its learning from zero knowledge.

A selective search algorithm uses game knowledge to guide the game tree search. This

approach is more suitable for learning because the allows conceptually for the game tree search

143
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to improve as the knowledge becomes better. The selective search algorithm developed by Korf

and Chickering has been shown to be an improvement of alpha-beta, but this algorithm also

requires strong game knowledge. The best-first shallow search algorithm introduced in this

thesis performs better than best first minimax when knowledge is weak, and performs no worse

than best first minimax when strong knowledge is available. Therefore, this new algorithm is a

suitable game tree search algorithm to use when the intention is to learn from little or from zero

knowledge.

Armed with a selective search technique, the focus of a learning agent is purely to gain

knowledge. A structured representation for knowledge was preferred over neural networks be-

cause the aim is to obtain knowledge for use in a linear evaluation function, but also because

structured knowledge is more readable by humans. In order to establish a common starting

point for learning agents, a definition of zero-knowledge has been developed. According to this

definition, the learning should be provided only with the game rules and with an interpretor that

translates the observable elements in a game state to concepts described in the game rules.

A representation scheme for game knowledge is required that is flexible enough to represent

the observable units of knowledge as well as the complex knowledge that aids the decision

making process. The knowledge representation language developed as part of this has been

shown empirically to be able to represent complex knowledge, and to be a practical tool for

learning. In addition, this representation language can be applied to many different board games.

The process for deducing knowledge from example game positions has the C4.5 program as

a cornerstone. The method introduced by this thesis to derive knowledge expressions from ID3

decision trees demonstrates the utility of the representation language. As a refinement to this

process techniques to simplify the resulting knowledge expression has also been introduced.

Experiments show that a particular combination of these simplification techniques calledDS

produces the simplest evaluation functions with the highest playing performance.

The scheme chosen to optimise the floating-point elements of the evaluation function em-

ploys the Particle Swarm Optimisation (PSO) algorithm. A number of tournament methods

were introduced as alternative approaches to determine the relative fitness of a particle in the

swarm. These alternatives are applied to a new PSO, called the Tournament PSO that uses the

competition between a particle and its personal best to limit the number of competitions re-

quired at every epoch. Amongst the alternative methods, a tournament calledDSK is empirically

identified as the best method to use with Tournament PSO.
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The learning framework combines the knowledge deduction process that employsDS with

the Tournament PSO that usesDSK into an iterative learning cycle. This cycle starts with zero

knowledge and uses examples produced as part of the learning process to build new knowledge.

Experiments conducted with C show that this learning approach does lead to players

that have more knowledge than random players. It has also been shown that the framework is

more capable when it is subjected to a simpler game.

9.2 Future work

The learning framework introduced in this thesis presents many opportunities for further re-

search. One reason for this is that the framework is a multi-stage approach to learning that

allows the researcher to select alternative techniques within each stage. In particular, the dis-

covery stage and the optimisation stage are primary targets for this kind of exploration. Another

research avenue could be to discard the zero-knowledge constraint. Without this constraint many

opportunities arise, such as the development of new methods that exploit rich domain knowl-

edge within the learning framework. Such endeavours, as fruitful they may prove to be, have

the potential to digress significantly from the design of the proposed framework.

However, the current framework is far from perfect. The best C performance levels

obtained indicate that the framework could do much better (especially when compared with

the R C results). Many research opportunities lie within the scope of refining and

analysing the learning framework without affecting the design. The aim of such endeavours

could be to identify weaknesses in the framework as a whole (or in its parts), and to introduce

specific improvements. In the paragraphs below key ideas that provide direction for this kind of

work are suggested.

Define a symbol definition method

A game specific parameter for the knowledge representation language is a set of symbols ex-

pressed as square states. These square states are then grouped to form the occupation state

symbols that are used in the knowledge expressions. In this work, the process to derive the

occupation states for C is described, but a more general set of rules and procedures need

to be developed such that the occupation states for any given board game is deterministic. The

methodology should ensure that the zero-knowledge principle is upheld.
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Determine the effect of alternative regions

In addition to the symbols, the knowledge representation language also requires the demarcation

of regions on the game board. The current research used a crude set of regions. This has been

done to avoid breaching the zero-knowledge principle. It is possible that other general region

configurations produce better knowledge (for example regions that do not overlap). Also, it is

likely that important regions on the board can be identified as important from the game rules;

or from game literature. An investigation into the effect that these alternative regions have on

the learning performance could highlight the need to extend the framework to automatically

discover optimal region configurations.

Use random trees to evaluate best first shallow search

The random game tree evaluation technique is used by game tree algorithm researchers to deter-

mine the effectiveness of the game tree algorithm. The application of this technique to evaluate

the effectiveness of best first shallow search provides a domain independent assessment of the

algorithm. In order to do this comparison, the random game tree must be constructed such that

multiple nodes with the same value exists in the tree: in other words, these trees must be rep-

resentative of trees produced by low quality knowledge. This assessment could also lead to the

discovery of other circumstances in which this new method performs well.

Use logic to refine and simplify knowledge expressions

The knowledge expressions discovered by the induction process possibly contains rules that

are redundant or contradictory. A logic processor for these expressions is needed to eliminate

redundancies and find inconsistencies. This processor could also reduce the complexity of an

expression without changing the intent of the expressions (such as removing two consecutive

‘negate’ operations). These improvements could lead to simpler expressions, and also to ex-

pressions that lead to better decisions.

Apply Tournament PSO to the training of neural networks

The utility of Tournament PSO can be explored further by using this PSO to train the same neural

networks that have already been trained with other PSO algorithms. Such an investigation could

provide insight into whether Tournament PSO has value in a more general context. Facets of

Tournament PSO not covered by the experiments described in this thesis can be subjected to an
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experimental treatment. In particular, alternative valuesfor the PSO parameters,c1, c2 andvmax

can be explored.

Find aspects that effect a game’s learning potential

The question of whether or not the framework is generally applicable can be verified by using

the framework to learn other games. One approach can involve the definition of more C

variants, such that each variant modifies one or two of the game rules. The use of variants

eliminates the need to define new game symbols, and provides an opportunity to identify which

properties of a game make it more suitable as a learning subject for the framework.
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