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Preface

Early on in my computer science studies at Darmstadt University of Technology, I
became fascinated by the αβ algorithm. I considered it impressive how quickly this
elegant search algorithm, expressed in very few lines of code, allowed me to produce
a program that beat me at a game seemingly requiring intelligence. As a hobby, I
started reading the literature on Chess programming, and wrote a program to play
Connect-4. Later, this program would evolve into the focus of my Bachelor’s thesis on
αβ and its enhancements.

During my time in Darmstadt I also first came into contact with the game of
Go. At first, I was interested in the rich culture and tradition surrounding it; then,
I was surprised by the profound depth and complexity arising from its simple rules.
Finally, I learned that writing a program to play Go on the level of human experts still
stands as one of the grand challenges of AI. While I was studying cognitive science
at Osnabrück University, I delved more deeply into the field, intrigued by recent
successes of Monte-Carlo search techniques. Eventually I wrote my Master’s thesis
on the topic of adaptive rollouts in Monte-Carlo Tree Search—a technique that does
not only exploit expert knowledge or information learned offline, but learns how to
improve itself while the search process is running.

My PhD position at the Department of Knowledge Engineering of Maastricht
University has allowed me to dedicate four years of full-time work to my longtime
fascination with search and games AI, touching on Connect-4 and Go, Monte-Carlo
Tree Search and αβ, and many more topics along the way. I have grown in many ways
throughout these exciting years, both professionally and personally. However, this
thesis is the result of an effort I could not have undertaken alone. Therefore, I would
like to use this opportunity to thank the people who have made this journey possible,
who have accompanied and supported it, and who have made it so much fun.

First of all, I would like to thank my daily supervisor Mark Winands. His
inexhaustible knowledge on search in games and his thorough and systematic approach
to scientific writing were of great help in my work. In addition, he always knew
how to keep me on my PhD track, without interfering with the research directions I
had chosen. I would also like to thank Ralf Peeters for agreeing to be my promotor.
Furthermore, my thanks go to Johannes Fürnkranz and Kai-Uwe Kühnberger, the
supervisors of my Bachelor’s and Master’s theses, who gave me the chance to follow
my interests long before I knew how far they would lead me one day.

I would like to thank the people who have been part of the games group over



ii

the past years: Maarten Schadd, Marc Lanctot, Pim Nijssen, Mandy Tak, and Jahn-
Takeshi Saito. It was a pleasure to work with you, learn with you, discuss with you, and
have the occasional after-work beer with you. The whole Department of Knowledge
Engineering has felt like home to me, and I will always remember our birthday cakes,
department trips, sandwiches on the city wall, football bets, and our brilliant lunch
discussions on scientific and less-than-scientific level with a smile. Thanks for that
to my friends and colleagues Steven de Jong, Nela Lekic, Michael Clerx, Michael
Kaisers, Frederik Schadd, Daniel Hennes, Pietro Bonizzi, Nasser Davarzani, Bijan
Ranjbar-Sahraei, Siqi Chen, Nyree Lemmens, Daniel Claes, Joscha Fossel, You Li,
Libo He, Philippe Uyttendaele, Haitham Bou Ammar, and Ignacia Arcaya. Moreover,
many thanks to Peter Geurtz for the technical support, and Marie-Lou Mestrini for
the administrative support—both were invaluable.

But life in Maastricht does not consist of work alone! I would therefore like to
express my gratitude to all my friends who have made these past years such an amazing
and rewarding experience—from the first days of confusion to the last days of nostalgia.
Thank you to everyone I have met through the parties, movie nights, dance courses,
sports trips and other events of PhD Academy; thank you to everyone I have met
through my new hobby of Salsa dancing, which has brought so much joy to my life;
thank you to the “crazy bunch”, to the jazz night crew, to the expats and socialites;
thank you to my UNU-MERIT friends, my FHML friends, and even my SBE friends;
thank you to the great people I have met through courses and on conferences; and
thank you to many, many others that have crossed my path either in the winding
streets of Maastricht or during my travels. Special thanks to my paranymphs Daan
Bloembergen and Mare Oehlen for the friendship we share. Meeting all of you has
delayed my PhD for at least one fantastic year, and I am sure the Maastricht family
will stay in contact with each other and with this cute town that brought us together.

Last but not least, I would like to give my deepest thanks to my parents, Peter
and Jutta, whose unconditional love has supported me throughout this adventure as
well as countless others. Danke euch für alles.

Hendrik Baier, 2015

Acknowledgements
The research reported in this thesis has been carried out under the auspices of SIKS,
the Dutch Research School for Information and Knowledge Systems. This research
has been funded by the Netherlands Organisation for Scientific Research (NWO) in
the framework of the project Go4Nature, grant number 612.000.938.



Contents

Preface � i

Contents � iii

List of Figures � vii

List of Tables � xiii

List of Algorithms � xv

1 Introduction � 1
1.1 Games and AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Search Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Problem Statement and Research Questions . . . . . . . . . . . . . . . 6
1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Search Methods � 11
2.1 Search in Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Minimax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Monte-Carlo Tree Search . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 MCTS Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 A Learning View on MCTS . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Test Domains � 43
3.1 One-Player Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Two-Player Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Part I: MCTS in One-Player Domains � 55

4 Nested Monte-Carlo Tree Search � 57
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Nested Monte-Carlo Tree Search . . . . . . . . . . . . . . . . . . . . . 60
4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Conclusion and Future Research . . . . . . . . . . . . . . . . . . . . . 77



iv Contents

5 Beam Monte-Carlo Tree Search � 79
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Beam Monte-Carlo Tree Search . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Conclusion and Future Research . . . . . . . . . . . . . . . . . . . . . 100

Part II: MCTS in Two-Player Domains � 105

6 Time Management for Monte-Carlo Tree Search � 107
6.1 Time Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2 Time-Management Strategies . . . . . . . . . . . . . . . . . . . . . . . 110
6.3 Experimental Results in Go . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4 Experimental Results in Other Domains . . . . . . . . . . . . . . . . . 121
6.5 Conclusion and Future Research . . . . . . . . . . . . . . . . . . . . . 140

7 MCTS and Minimax Hybrids � 141
7.1 MCTS-Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.3 Hybrid Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.5 Conclusion and Future Research . . . . . . . . . . . . . . . . . . . . . 176

8 MCTS and Minimax Hybrids with Heuristic Evaluation Functions
� 179
8.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
8.2 Hybrid Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.3 Experimental Results with Unenhanced αβ . . . . . . . . . . . . . . . 186
8.4 Experimental Results with Move Ordering and k-best Pruning . . . . 207
8.5 Conclusion and Future Research . . . . . . . . . . . . . . . . . . . . . 229

9 Conclusions and Future Work � 233
9.1 Answers to the Research Questions . . . . . . . . . . . . . . . . . . . . 233
9.2 Answer to the Problem Statement . . . . . . . . . . . . . . . . . . . . 239
9.3 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . 240

References � 245

Index � 263



Contents v

Summary � 267

Samenvatting � 273

Curriculum Vitae � 279

SIKS Dissertation Series � 281





List of Figures

2.1 A game tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 A search tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 A minimax tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 An αβ tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 An αβ tree with suboptimal move ordering. . . . . . . . . . . . . . . . 22
2.6 An αβ tree with pessimal move ordering. . . . . . . . . . . . . . . . . 22
2.7 An αβ tree with k-best pruning. . . . . . . . . . . . . . . . . . . . . . 24
2.8 MCTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.9 Two-player MCTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Moving in the SameGame family of games. . . . . . . . . . . . . . . . 45
3.2 Go. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Connect-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Breakthrough. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Othello. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6 Catch the Lion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 NMCTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Performance of MCTS in SameGame with random rollouts. . . . . . . 66
4.3 Performance of MCTS in SameGame with informed rollouts. . . . . . 67
4.4 Performance of MCTS in Bubble Breaker. . . . . . . . . . . . . . . . . 67
4.5 Performance of MCTS in Clickomania. . . . . . . . . . . . . . . . . . . 68
4.6 Performance of NMCTS in SameGame with random rollout policy. . . 73
4.7 Performance of NMCTS in SameGame with informed rollout policy. . 73
4.8 Performance of NMCTS in Bubble Breaker. . . . . . . . . . . . . . . . 74
4.9 Performance of NMCTS in Clickomania. . . . . . . . . . . . . . . . . . 74
4.10 Performance of NMCS and level-2 NMCTS in SameGame with random

rollout policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.11 Performance of NMCS and level-2 NMCTS in SameGame with informed

rollout policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.12 Performance of NMCS and level-2 NMCTS in Bubble Breaker. . . . . 76
4.13 Performance of NMCS and level-2 NMCTS in Clickomania. . . . . . . 77

5.1 Tree pruning in BMCTS. . . . . . . . . . . . . . . . . . . . . . . . . . 84



viii List of Figures

5.2 Performance of BMCTS at 4 seconds per position in SameGame with
random rollouts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Performance of BMCTS at 4 seconds per position in SameGame with
informed rollouts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Performance of BMCTS at 4 seconds per position in Bubble Breaker. . 87
5.5 Performance of BMCTS at 4 seconds per position in Clickomania. . . 88
5.6 Performance of BMCTS at 0.25 seconds per position in Clickomania. . 89
5.7 Performance of BMCTS at 1 second per position in Clickomania. . . . 90
5.8 Performance of BMCTS at 16 seconds per position in Clickomania. . . 90
5.9 Performance of BMCTS at 64 seconds per position in Clickomania. . . 91
5.10 Performance of BMCTS in SameGame with random rollouts. . . . . . 92
5.11 Performance of BMCTS in SameGame with informed rollouts. . . . . 93
5.12 Performance of BMCTS in Bubble Breaker. . . . . . . . . . . . . . . . 93
5.13 Performance of BMCTS in Clickomania. . . . . . . . . . . . . . . . . . 94
5.14 Performance of multi-start BMCTS at 0.25 seconds per run in Clickomania. 97
5.15 Performance of multi-start BMCTS in SameGame with random rollouts. 97
5.16 Performance of multi-start BMCTS in SameGame with informed rollouts. 98
5.17 Performance of multi-start BMCTS in Bubble Breaker. . . . . . . . . . 98
5.18 Performance of multi-start BMCTS in Clickomania. . . . . . . . . . . 99
5.19 Performance of NBMCTS in SameGame with random rollout policy. . 101
5.20 Performance of NBMCTS in SameGame with informed rollout policy. 101
5.21 Performance of NBMCTS in Bubble Breaker. . . . . . . . . . . . . . . 102
5.22 Performance of NBMCTS in Clickomania. . . . . . . . . . . . . . . . . 102

6.1 Average time distribution over a game of Connect-4 with the MID and
OPEN strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2 Average time distribution over a game of Othello with the MID strategy.131
6.3 Average time distribution over a game of 13×13 Go with the MID strategy.131
6.4 Average time distribution over a game of Connect-4 with the OPEN

and BEHIND strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.5 Average time distribution over a game of 13×13 Go with the UNST

strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.6 Average time distribution over a game of Connect-4 with the UNST

strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.7 Average time distribution over a game of Connect-4 with the STOPA

and STOPB strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.8 Average time distribution over a game of 13×13 Go with the STOPA

and STOPB strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



List of Figures ix

6.9 Average time distribution over a game of Breakthrough with the STOPA

and STOPB strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.1 The MCTS-MR hybrid. . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.2 The MCTS-MS hybrid. . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.3 The MCTS-MB hybrid. . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.4 Density of level-3 search traps in Connect-4. . . . . . . . . . . . . . . . 151
7.5 Density of level-3 search traps in Breakthrough. . . . . . . . . . . . . . 151
7.6 Density of level-3 search traps in Othello. . . . . . . . . . . . . . . . . 152
7.7 Density of level-3 search traps in Catch the Lion. . . . . . . . . . . . . 152
7.8 Comparison of trap density in Catch the Lion, Breakthrough, Connect-4,

and Othello. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.9 Comparison of trap difficulty in Catch the Lion, Breakthrough, Connect-

4, and Othello. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.10 A problematic situation for MCTS-MR-1 rollouts. . . . . . . . . . . . 156
7.11 Performance of MCTS-MR in Connect-4. . . . . . . . . . . . . . . . . 157
7.12 Performance of MCTS-MS in Connect-4. . . . . . . . . . . . . . . . . . 158
7.13 Performance of MCTS-MB in Connect-4. . . . . . . . . . . . . . . . . 159
7.14 Performance of MCTS-MR in Breakthrough. . . . . . . . . . . . . . . 160
7.15 Performance of MCTS-MS in Breakthrough. . . . . . . . . . . . . . . . 161
7.16 Performance of MCTS-MB in Breakthrough. . . . . . . . . . . . . . . 161
7.17 Performance of MCTS-MR in Othello. . . . . . . . . . . . . . . . . . . 163
7.18 Performance of MCTS-MS in Othello. . . . . . . . . . . . . . . . . . . 163
7.19 Performance of MCTS-MB in Othello. . . . . . . . . . . . . . . . . . . 164
7.20 Performance of MCTS-MR in Catch the Lion. . . . . . . . . . . . . . . 165
7.21 Performance of MCTS-MS in Catch the Lion. . . . . . . . . . . . . . . 166
7.22 Performance of MCTS-MB in Catch the Lion. . . . . . . . . . . . . . . 166
7.23 Performance of MCTS-MR, MCTS-MS, and MCTS-MB against each

other in Connect-4, Breakthrough, Othello, and Catch the Lion. . . . 167
7.24 Comparison of MCTS-MS performance in Catch the Lion, Breakthrough,

Connect-4, and Othello. . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.25 Comparison of MCTS-MB performance in Catch the Lion, Break-

through, Connect-4, and Othello. . . . . . . . . . . . . . . . . . . . . . 169
7.26 Comparison of MCTS-MR performance in Catch the Lion, Break-

through, Connect-4, and Othello. . . . . . . . . . . . . . . . . . . . . . 169
7.27 Performance of MCTS-MR-2, MCTS-MS-2-Visit-1, and MCTS-MB-1

at different time settings in Connect-4. . . . . . . . . . . . . . . . . . . 170
7.28 Performance of MCTS-MR-1, MCTS-MS-2-Visit-2, and MCTS-MB-2

at different time settings in Breakthrough. . . . . . . . . . . . . . . . . 171



x List of Figures

7.29 Performance of MCTS-MR-1, MCTS-MS-2-Visit-50, and MCTS-MB-2
at different time settings in Othello. . . . . . . . . . . . . . . . . . . . 171

7.30 Performance of MCTS-MR-1, MCTS-MS-4-Visit-2, and MCTS-MB-4
at different time settings in Catch the Lion. . . . . . . . . . . . . . . . 172

7.31 Performance of MCTS-minimax hybrids across different board widths
in Breakthrough. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.1 The MCTS-IR-M hybrid. . . . . . . . . . . . . . . . . . . . . . . . . . 183
8.2 The MCTS-IC-M hybrid. . . . . . . . . . . . . . . . . . . . . . . . . . 185
8.3 The MCTS-IP-M hybrid. . . . . . . . . . . . . . . . . . . . . . . . . . 187
8.4 Performance of MCTS-IR-E in Othello. . . . . . . . . . . . . . . . . . 190
8.5 Performance of MCTS-IR-E in Breakthrough. . . . . . . . . . . . . . . 190
8.6 Performance of MCTS-IR-E in Catch the Lion. . . . . . . . . . . . . . 191
8.7 Performance of MCTS-IR-M in Othello. . . . . . . . . . . . . . . . . . 191
8.8 Performance of MCTS-IR-M in Breakthrough. . . . . . . . . . . . . . 192
8.9 Performance of MCTS-IR-M in Catch the Lion. . . . . . . . . . . . . . 192
8.10 Performance of MCTS-IC-E in Othello. . . . . . . . . . . . . . . . . . 194
8.11 Performance of MCTS-IC-E in Breakthrough. . . . . . . . . . . . . . . 194
8.12 Performance of MCTS-IC-E in Catch the Lion. . . . . . . . . . . . . . 195
8.13 Performance of MCTS-IC-M in Othello. . . . . . . . . . . . . . . . . . 195
8.14 Performance of MCTS-IC-M in Breakthrough. . . . . . . . . . . . . . 196
8.15 Performance of MCTS-IC-M in Catch the Lion. . . . . . . . . . . . . . 196
8.16 Performance of MCTS-IP-E in Othello. . . . . . . . . . . . . . . . . . 198
8.17 Performance of MCTS-IP-E in Breakthrough. . . . . . . . . . . . . . . 199
8.18 Performance of MCTS-IP-E in Catch the Lion. . . . . . . . . . . . . . 199
8.19 Performance of MCTS-IP-M in Othello. . . . . . . . . . . . . . . . . . 200
8.20 Performance of MCTS-IP-M in Breakthrough. . . . . . . . . . . . . . . 200
8.21 Performance of MCTS-IP-M in Catch the Lion. . . . . . . . . . . . . . 201
8.22 Performance of MCTS-IP-M against the other algorithms in Othello. . 202
8.23 Performance of MCTS-IP-E against the other algorithms in Breakthrough.202
8.24 Performance of MCTS-IC-E against the other algorithms in Catch the

Lion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.25 Comparison of MCTS-IR-M performance in Catch the Lion, Othello,

and Breakthrough. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.26 Comparison of MCTS-IC-M performance in Catch the Lion, Othello,

and Breakthrough. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
8.27 Comparison of MCTS-IP-M performance in Catch the Lion, Othello,

and Breakthrough. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
8.28 Performance of MCTS-IP-M combined with MCTS-IR-E in Othello. . 206



List of Figures xi

8.29 Performance of MCTS-IP-E combined with MCTS-IR-E in Breakthrough.206
8.30 Performance of MCTS-IP-M combined with MCTS-IR-E in Catch the

Lion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
8.31 The move ordering for Othello. . . . . . . . . . . . . . . . . . . . . . . 209
8.32 Performance of MCTS-IR-M-k in Othello. . . . . . . . . . . . . . . . . 212
8.33 Performance of MCTS-IR-M-k in Catch the Lion. . . . . . . . . . . . . 212
8.34 Performance of MCTS-IR-M-k with the weaker move ordering in Break-

through. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
8.35 Performance of MCTS-IR-M-k with the stronger move ordering in

Breakthrough. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
8.36 Performance of MCTS-IC-M-k in Othello. . . . . . . . . . . . . . . . . 214
8.37 Performance of MCTS-IC-M-k in Catch the Lion. . . . . . . . . . . . . 214
8.38 Performance of MCTS-IC-M-k with the weaker move ordering in Break-

through. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
8.39 Performance of MCTS-IC-M-k with the stronger move ordering in

Breakthrough. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.40 Performance of MCTS-IP-M-k in Othello. . . . . . . . . . . . . . . . . 216
8.41 Performance of MCTS-IP-M-k in Catch the Lion. . . . . . . . . . . . . 216
8.42 Performance of MCTS-IP-M-k with the weaker move ordering in Break-

through. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
8.43 Performance of MCTS-IP-M-k with the stronger move ordering in

Breakthrough. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
8.44 Performance of MCTS-IP-M-k against the other algorithms in Othello. 218
8.45 Performance of MCTS-IP-M-k against the other algorithms in Catch

the Lion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
8.46 Performance of MCTS-IP-M-k against the other algorithms with the

weaker move ordering in Breakthrough. . . . . . . . . . . . . . . . . . 219
8.47 Performance of MCTS-IP-M-k against the other algorithms with the

stronger move ordering in Breakthrough. . . . . . . . . . . . . . . . . . 219
8.48 Comparison of MCTS-IR-M-k performance in Catch the Lion, Othello,

and Breakthrough. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
8.49 Comparison of MCTS-IC-M-k performance in Catch the Lion, Othello,

and Breakthrough. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
8.50 Comparison of MCTS-IP-M-k performance in Catch the Lion, Othello,

and Breakthrough. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
8.51 Performance of MCTS-IR-M-k, MCTS-IC-M-k, and MCTS-IP-M-k at

different time settings in Breakthrough. . . . . . . . . . . . . . . . . . 222
8.52 Performance of MCTS-IR-M-k, MCTS-IC-M-k, and MCTS-IP-M-k at

different time settings in Othello. . . . . . . . . . . . . . . . . . . . . . 223



xii List of Figures

8.53 Performance of MCTS-IR-M-k, MCTS-IC-M-k, and MCTS-IP-M-k at
different time settings in Catch the Lion. . . . . . . . . . . . . . . . . . 223

8.54 Performance of MCTS-IR-M-k in 18×6 Breakthrough. . . . . . . . . . 224
8.55 Performance of MCTS-IC-M-k in 18×6 Breakthrough. . . . . . . . . . 225
8.56 Performance of MCTS-IP-M-k in 18×6 Breakthrough. . . . . . . . . . 225
8.57 Performance of MCTS-IP-M-k combined with MCTS-IR-M-k in Othello.227
8.58 Performance of MCTS-IP-M-k combined with MCTS-IR-M-k in Catch

the Lion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
8.59 Performance of MCTS-IP-M-k combined with MCTS-IR-M-k in Break-

through with the stronger move ordering. . . . . . . . . . . . . . . . . 228



List of Tables

4.1 Best-performing exploration factors C for MCTS in SameGame with
random rollouts, SameGame with informed rollouts, and Bubble Breaker. 68

4.2 Best-performing exploration factors C for MCTS in Clickomania. . . . 69
4.3 Best-performing exploration factors C and numbers of moves z for move-

by-move MCTS in SameGame with random rollouts and SameGame
with informed rollouts. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Best-performing exploration factors C and numbers of moves z for
move-by-move MCTS in Bubble Breaker and Clickomania. . . . . . . . 70

5.1 Best-performing simulation limits L and beam widths W for BMCTS
in SameGame with random rollouts, SameGame with informed rollouts,
and Bubble Breaker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Best-performing simulation limits L and beam widths W for BMCTS
in Clickomania. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Simulation limits L and beam widths W for multi-start BMCTS in
SameGame with random rollouts, SameGame with informed rollouts,
and Bubble Breaker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Simulation limits L and beam widths W for multi-start BMCTS in
Clickomania. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1 Performance of Erica’s time management in 13×13 Go. . . . . . . . . 117
6.2 Performance of the investigated semi-dynamic strategies in 13×13 Go. 118
6.3 Performance of the investigated dynamic strategies in 13×13 Go. . . . 120
6.4 Performance of EXP-STONES with STOP vs. ERICA-BASELINE in

13×13 Go. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.5 Performance of EXP-STONES with STOP vs. ERICA-BASELINE in

19×19 Go. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.6 Performance of the investigated time-management strategies in Connect-4.123
6.7 Performance of the investigated time-management strategies in Break-

through. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.8 Performance of the investigated time-management strategies in Othello. 126
6.9 Performance of the investigated time-management strategies in Catch

the Lion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.10 Time management summary – simple strategies. . . . . . . . . . . . . 128



xiv List of Tables

6.11 Time management summary – loop strategies. . . . . . . . . . . . . . . 128
6.12 Performance of the DISTRIBUTION players in Connect-4, Break-

through, Othello, and Catch the Lion. 5000 games per player were
played against the EXP-MOVES baseline. . . . . . . . . . . . . . . . . 134

6.13 Performance of the DISTRIBUTION players in 13×13 Go. 5000 games
per player were played against GNU Go. . . . . . . . . . . . . . . . . 135

6.14 Game length and branching factor in Connect-4, Breakthrough, Othello,
Catch the Lion, and 13×13 Go. . . . . . . . . . . . . . . . . . . . . . . 139

7.1 Solving performance of the MCTS-minimax hybrids in Othello. . . . . 174
7.2 Solving performance of the MCTS-minimax hybrids in Connect-4. . . 175
7.3 Solving performance of the MCTS-minimax hybrids in Breakthrough. 175
7.4 Solving performance of the MCTS-minimax hybrids in Catch the Lion. 175
7.5 Solving performance of MCTS-MB-2 in Connect-4. . . . . . . . . . . . 176

8.1 Effectiveness of the move orderings in Breakthrough, Othello, and Catch
the Lion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

8.2 Best-performing parameter settings for MCTS-IP-M-k-IR-M-k. . . . . 226
8.3 Best-performing parameter settings for MCTS-IC-M-k-IR-M-k. . . . . 226



List of Algorithms

2.1 Minimax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Negamax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 αβ search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Depth-limited αβ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Two-player MCTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 One-player MCTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1 NMCS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 NMCTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1 BMCTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Tree pruning in BMCTS. . . . . . . . . . . . . . . . . . . . . . . . . . 83





C
ha

pt
er

11
Introduction

The topic of this thesis is Monte-Carlo Tree Search (MCTS), a technique for making
decisions in a given problem or domain by constructing an internal representation
of possible actions, their effects, and the possible next actions that result. This
representation takes the form of a tree, and it is grown and improved over time
so as to find the best action to take. During the construction of the tree, MCTS
focuses on the actions that currently seem most promising, where promising actions
are identified through the so-called Monte-Carlo simulations. The basic idea behind
these simulations is estimating the quality of an action by repeatedly sampling its
possible consequences, the possible futures resulting from it.

In order to enhance MCTS, this thesis uses games as test domains. Games have
two advantages for the study of searching, planning and decision-making. On the
one hand, they provide ideal abstractions from real-world problems thanks to their
clear rules—there is for example no uncertainty as to which moves are legal in any
given situation, and no external factors can add noise to the results of playing those
moves. Because games are closed systems, they are relatively easy to handle as
testbeds for search algorithms. On the other hand, games still pose considerably
complex and challenging problems both for humans and computers, which makes their
study interesting and fruitful for the field of Artificial Intelligence (AI). This thesis is
concerned with games of two different types: one-player games and two-player games.

This chapter is structured as follows. Section 1.1 provides an introduction to
games and their connection to AI. A number of game properties is used to classify
the games used as test domains in this thesis. Section 1.2 briefly outlines the search
techniques relevant for this work, with emphasis on MCTS. Section 1.3 states the
problem statement guiding the research, and four research questions are defined to
specify the approach taken. Section 1.4 finally presents an overview of this thesis.
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1.1 Games and AI

Games have been a cornerstone of AI research ever since the early pioneering days.
Only four years after the construction of ENIAC, the world’s first general-purpose
electronic computer, Claude Shannon published a paper on computer Chess (Shannon,
1950). Alan Turing started writing a Chess-playing program around the same time
and published its description three years later (Turing, 1953). An early Checkers
program was written by Christopher Strachey at the University of Manchester in
1951-52. The first Checkers program able to defeat human amateur players, also one
of the first AI programs capable of learning, was completed in 1955 and demonstrated
on television in 1956 (Samuel, 1959). Classic board games like Chess and Checkers
do not only provide well-defined abstractions from real-world problems. They also
have an intuitive appeal to the general population, and their mastery is considered
the epitome of intelligence and rational thought by many. Before the term AI was
even coined in 1956, researchers had been fascinated by the idea of challenging human
intellectual supremacy by teaching a computer how to play.

With the optimism of the “golden years” of AI, Herbert A. Simon predicted in
1957 that “within ten years a digital computer will be the world’s Chess champion”
(Simon and Newell, 1957). It turned out to take three more decades to reach that level.
But throughout these years and beyond, Chess and other games have proved excellent
test-beds for new ideas, architectures and algorithms, illustrating many important
problems and leading to successful generalizations for work in other fields. Chess
became, with the words of the Russian mathematician Alexander Kronrod in 1965, the
“drosophila of artificial intelligence” (cf. McCarthy 1990). Raj Reddy called the game
an “AI problem par excellence” in his presidential address to AAAI in 1988, listing
computer Chess together with natural language, speech, vision, robotics and expert
systems (Reddy, 1988). In 1997 finally, the world Chess champion Garry Kasparov
was defeated by IBM’s Chess supercomputer Deep Blue with 3.5 to 2.5 (Hsu, 2002).

However, many challenges remain: In the ancient Asian board game of Go for
example, human masters are still stronger than any program written to date. In
Poker, programs have to deal with hidden information as well as opponent modelling
for multiple players (Billings et al., 2002; Bowling et al., 2015). Work has begun on
new board games such as Hex (Anshelevich, 2002), Amazons (Lieberum, 2005), or
Havannah (Teytaud and Teytaud, 2009)—some of them such as Arimaa explicitly
designed to be difficult for traditional game-playing algorithms (Syed and Syed, 2003),
encouraging new approaches e.g. for large action spaces (Fotland, 2004). Researchers
have started to tackle General Game Playing (GGP), the quest for a program that
is able to play not only one specific game, but all games whose rules can be defined
in a Game Description Language (Genesereth et al., 2005; Thielscher, 2010; Schaul,
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2014). Supported by a growing industry, video games call for more intelligent and
convincing artificial opponents and allies (Laird and van Lent, 2001; Ontañón et al.,
2013; Schrum et al., 2011). And RoboCup fosters research into AI and robotics for
team games in real-time settings (Kitano et al., 1997).

Games can be categorized into several different classes according to their properties.
These properties often help to determine the optimal choice of AI technique for the
game at hand. In the following, six different game properties are listed that are
relevant to characterize the games investigated in this thesis.

Number of players. Games can require one, two, or more players. One-player games
resemble optimization problems in which the player tries to achieve the best possible
outcome without having to take other players into account. A well-known example
of a one-player game is Solitaire. In two-player games, two players interact, either in
a cooperative or in an adversarial way. A prominent example is Chess. Games with
more than two players are called multi-player games. Multi-player games can pose
additional challenges due to the possibility of coalition formation among the players.
Chinese Checkers, Monopoly and Risk are well-known games of this type. The games
used as test domains in this thesis are one-player games (in Part I) and two-player
games (in Part II).

Competition and Cooperation. If for a given two-player game, the outcomes for both
players always add up to zero—i.e. if gains and losses of both players always balance
each other out—the game is called a zero-sum game. This is for example the case in
any game where a win of the first player (represented by the value +1) is necessarily a
loss for the second player (represented by the value -1) and vice versa. These games
are strictly competitive. In contrast, non-zero-sum games can sometimes be non-
competitive, if the sum of the players’ outcomes can be increased through cooperation.
All two-player games in this thesis are zero-sum.

Determinism. If every legal move in every legal position in a given game leads to
a uniquely defined next position, the game is called deterministic. The course of
such games is fully specified by the moves of the players. Checkers for instance is a
deterministic game. If a game features chance events such as the roll of a die or the
drawing of a card however, it is non-deterministic. Backgammon is a game of this
category. This thesis considers only deterministic games.

Observability. If all players have access to all information defining a game’s current
state at all times throughout the game, the game is called a perfect information game.
An example is Connect-4, as well as most classic board games. If any information
about the current state is hidden from any player at any point during a game, the
game has imperfect information. Poker for example belongs in this category, together
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with most card games. All games investigated in this thesis are perfect-information
games.

Cardinality of state and action spaces. Some games, in particular video games, fea-
ture a continuous (uncountable) set of possible game states and/or player actions.
Ignoring a necessary fine discretization of the controller input and graphical output,
for example, the player of a typical first-person shooter is free to move to and shoot at
any reachable point in a given level. In contrast, card and board games usually have
discrete (countable), and in most cases finite, state and action spaces. The number
of legal moves in any given Chess position for example is finite, and the number of
possible Chess positions is large but finite as well. This is the case for all games
studied in this thesis.

Game flow. If the players can perform actions at any point in time during a game, i.e.
if the game flow is continuous, we speak of a real-time game. Again apart from a fine
discretization due to technical constraints, many video games fall into this category. In
other games time is structured into turns in which players can move. Such turn-based
games fall into one of two categories. In the category of simultaneous move games,
more than one player can move at the same time. Some modern board games such
as 7 Wonders or Diplomacy fall into this group. In the category of sequential move
games (also called turn-taking games) such as Chess and Go, players move one at a
time. This thesis is concerned with sequential move games.

In Part I of this thesis, the one-player games SameGame, Clickomania, and Bubble
Breaker are used as test domains. In Part II, the two-player games Go, Connect-4,
Breakthrough, Othello, and Catch the Lion are used. All these games are deterministic
perfect-information turn-taking games with discrete action spaces and state spaces.
See Chapter 3 for their detailed descriptions.

1.2 Search Techniques
For decades, much work of AI researchers in the field of games has been done on
deterministic perfect-information discrete turn-taking two-player games, with Chess
as the prime example. A high level of play in the domains of Chess and many
similar games was achieved by programs based on minimax search (von Neumann
and Morgenstern, 1944) and its enhancement αβ pruning (Knuth and Moore, 1975).
Minimax search decides on the next move to play by computing all possible future
states of the game that can be reached in a prespecified number of moves. It compares
the desirability of those future states with the help of a heuristic evaluation function.
Finally, it chooses the move that leads to the most desirable future state, under the
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assumption that the opponent makes no mistakes. αβ pruning speeds up this process
by excluding future states from the search if they provably cannot influence the final
result. A number of extensions have been developed based on the minimax framework
over the years, such as expectimax for non-deterministic two-player games (Michie,
1966), or maxn for multi-player games (Luckhardt and Irani, 1986).

However, these traditional minimax-based search techniques have not been success-
ful in all games. Computing all relevant future states of a game, even looking only a
few moves ahead, poses a computational problem in games with large numbers of legal
moves per position. More importantly, minimax requires a game-specific heuristic
evaluation function to assign meaningful estimates of desirability to any given game
state. In some games, Go being the most prominent example, the construction of such
an evaluation function has turned out to be difficult.

For finding solutions to one-player games (puzzles), one of the classic approaches
is the A* search algorithm (Hart et al., 1968). A* starts with a queue containing the
current state of the game. It then repeatedly removes the first element of the queue
and adds its possible successor states, keeping the entire list sorted with the help of a
heuristic evaluation function. The search stops when a goal state appears at the start
of the list. Various enhancements of A* have been proposed as well, e.g. a combination
with iterative-deepening depth-first search in order to achieve a lower memory usage
(IDA*, Korf 1985). A*-based techniques are mainly applied to pathfinding (Sturtevant
and Buro, 2005), but have also been successful in problems such as the 20-puzzle
(Sadikov and Bratko, 2007) or Sokoban (Junghanns and Schaeffer, 2001).

But similarly to minimax search in the case of two-player games, A*-based methods
require domain knowledge in the form of a heuristic evaluation function. Moreover, only
when this function meets the requirement of admissibility—in minimal-cost problems,
the requirement of never overestimating the remaining cost of an optimal solution
leading through the evaluated state—is A* guaranteed to find the optimal solution.
For some games, for example SameGame (Schadd et al., 2008b), it is unknown how to
design an effective admissible heuristic.

These problems with heuristic evaluation functions in both one- and two-player
games have led researchers to consider the domain-independent method of Monte-
Carlo evaluation—a method that evaluates a given state not with the help of heuristic
knowledge provided by the programmer, but with the average outcome of random
games starting from that state (Abramson, 1990). The combination of Monte-Carlo
evaluation and best-first tree search finally resulted in the development of Monte-Carlo
Tree Search (MCTS) (Kocsis and Szepesvári, 2006; Coulom, 2007b). The algorithm
consists of four phases: the selection phase, the expansion phase, the rollout phase,
and the backpropagation phase. The selection phase picks an interesting region of
the search tree to examine, trading off spending search effort on moves which we are
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most uncertain about (exploration) versus spending effort on moves which currently
look best (exploitation). The expansion phase grows the search tree in the direction
of the chosen moves. The rollout phase randomly simulates the rest of the game, and
the backpropagation phase uses the result of that simulation to update an estimate
of the quality of the chosen moves. One of the advantages of MCTS is that it is
aheuristic—in its basic form, it does not require any understanding of the game beyond
its rules. Further advantages are its selectivity, making it well-suited to games with
large branching factors, and its anytime property, allowing it to return a current best
estimate of optimal play whenever it is interrupted.

The MCTS approach has quickly become the dominating paradigm in the challeng-
ing field of computer Go (Lee et al., 2009). Beyond Go, MCTS and its enhancements
have considerable success in domains as diverse as deterministic, perfect-information
two-player games (Lorentz, 2008; Winands et al., 2010; Arneson et al., 2010), non-
deterministic two-player games (Lorentz, 2012), imperfect-information two-player
games (Ciancarini and Favini, 2010; Whitehouse et al., 2011), non-deterministic
imperfect-information two-player games (Cowling et al., 2012), deterministic one-
player games (Schadd et al., 2008b; Cazenave, 2009), non-deterministic one-player
games (Bjarnason et al., 2009), multi-player games (Sturtevant, 2008; Nijssen and
Winands, 2013), simultaneous move games (Perick et al., 2012; Tak et al., 2014),
real-time video games (Balla and Fern, 2009; Pepels et al., 2014), and General (Video)
Game Playing (Björnsson and Finnsson, 2009; Perez et al., 2014b). Beyond the field of
games, MCTS has also been successful in various planning and optimization domains
such as partially observable MDPs (Silver and Veness, 2010; Müller et al., 2012), mixed
integer programming (Sabharwal et al., 2012), expression simplification (Ruijl et al.,
2014), boolean satisfiability (Previti et al., 2011), variants of the travelling salesman
problem (Rimmel et al., 2011; Perez et al., 2014a), hospital planning (van Eyck et al.,
2013), and interplanetary trajectory planning (Hennes and Izzo, 2015). See Browne
et al. (2012) for a recent survey of the field.

1.3 Problem Statement and Research Questions
The previous sections reflected on games in the field of AI, as well as the technique of
MCTS and its application in different areas. MCTS is now an active and promising
research topic with room for improvements in various directions. For example, there
are still a number of two-player games in which the traditional approach to adversarial
search, minimax with αβ pruning, remains superior. This has been related to certain
properties of these games (Ramanujan et al., 2010a) and motivates research into
improving the ability of MCTS to deal with these properties. Furthermore, while
MCTS can be implemented in a way that guarantees convergence to optimal play in
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one- and two-player domains (Kocsis and Szepesvári, 2006; Kocsis et al., 2006), its
performance in settings with limited time can still be improved. Possible approaches
for this are enhancements of the rollout phase or the selection phase of MCTS. This
thesis focuses on enhancing MCTS in one-player and two-player domains. The research
is guided by the following problem statement.

Problem Statement: How can the performance of Monte-Carlo Tree Search in a given
one- or two-player domain be improved?

Four research questions have been formulated in order to approach this problem
statement. They are divided into two groups. Two questions are concerned with one-
player domains, while two questions are dealing with adversarial two-player domains.
The four research questions address (1) the rollout phase of MCTS in one-player
domains, (2) the selectivity of MCTS in one-player domains, (3) time management for
MCTS in two-player tournament play, and (4) combining the strengths of minimax
and MCTS in two-player domains.

Research Question 1: How can the rollout quality of MCTS in one-player domains be
improved?

In the rollout phase of MCTS, moves are usually chosen randomly or selected by
an inexpensive, domain-dependent heuristic. In some domains, this can lead to quickly
diminishing returns as search times get longer, caused by the relatively low quality of
the rollout policy (see e.g. Robilliard et al. 2014). In order to approach this problem,
Nested Monte-Carlo Tree Search (NMCTS) is proposed in this thesis, replacing simple
rollouts with nested MCTS searches. Without requiring any domain knowledge, the
recursive use of MCTS can improve the quality of rollouts, making MCTS stronger
especially when longer search times are available. NMCTS is a generalization of regular
MCTS, which is equivalent to level-1 NMCTS. Additionally, NMCTS can be seen as a
generalization of Nested Monte-Carlo Search (NMCS) (Cazenave, 2009), allowing for
an exploration-exploitation tradeoff by nesting MCTS instead of naive Monte-Carlo
search. The approach is tested in the puzzles SameGame, Clickomania, and Bubble
Breaker.

Research Question 2: How can the selectivity of MCTS in one-player domains be
improved?

In Upper Confidence bounds applied to Trees or UCT (Kocsis and Szepesvári, 2006),
the most widely used variant of MCTS (Browne et al., 2012; Domshlak and Feldman,
2013), the selectivity of the search can be controlled with a single parameter: the
exploration factor. In domains with long solution lengths or when searching with a
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short time limit however, MCTS might not be able to grow a search tree deep enough
even when exploration is completely turned off. The result is a search process that
spends too much time on optimizing the first steps of the solution, but not enough time
on optimizing the last steps. This problem is approached in this thesis by proposing
Beam Monte-Carlo Tree Search (BMCTS), a combination of MCTS with the idea
of beam search (Lowerre, 1976). BMCTS expands a tree whose size is linear in the
search depth, making MCTS more effective especially in domains with long solution
lengths or short time limits. Test domains are again SameGame, Clickomania, and
Bubble Breaker.

Research Question 3: How can the time management of MCTS in two-player domains
be improved?

In competitive gameplay, time is typically limited—for example by a fixed time
budget per player for the entire game (sudden-death time control). Exceeding this time
budget means an instant loss for the respective player. Since longer thinking times,
especially for an anytime algorithm like MCTS, usually result in better moves, the
question arises how to distribute the time budget wisely among all moves in the game.
A number of time management strategies are investigated in this thesis, both taken
from the literature (Baudiš, 2011; Huang et al., 2010b) as well as newly proposed and
improved ones. These strategies are tested and analyzed in the two-player games Go,
Connect-4, Breakthrough, Othello, and Catch the Lion.

Research Question 4: How can the tactical strength of MCTS in two-player domains
be improved?

One of the characteristics of MCTS is Monte-Carlo simulation, taking distant
consequences of moves into account and therefore providing a strategic advantage in
many domains over traditional depth-limited minimax search. However, minimax with
αβ pruning considers every relevant move within the search horizon and can therefore
have a tactical advantage over the highly selective MCTS approach, which might
miss an important move when precise short-term play is required (Ramanujan et al.,
2010a). This is especially a problem in games with a high number of terminal states
throughout the search space, where weak short-term play can lead to a sudden loss.
Therefore, MCTS-minimax hybrids are proposed in this thesis, integrating shallow
minimax searches into the MCTS framework and thus taking a first step towards
combining the strengths of MCTS and minimax.

These hybrids can be divided into approaches that require domain knowledge,
and approaches that are knowledge-free. For the knowledge-free case, three different
hybrids are studied using minimax in the selection/expansion phase, the rollout phase,
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and the backpropagation phase of MCTS. Test domains are Connect-4, Breakthrough,
Othello, and Catch the Lion. For the case where domain knowledge is available,
three more hybrids are investigated employing minimax to choose rollout moves, to
terminate rollouts early, or to bias the selection of moves in the MCTS tree. Test
domains are Breakthrough, Othello, and Catch the Lion. Go is not studied in these
chapters because it has a high number of terminal states only at the very end of the
game, and because an effective heuristic evaluation function is unknown.

1.4 Structure of the Thesis
This thesis is divided into nine chapters. Chapters 1 to 3 introduce the necessary
background. Afterwards, Chapters 4 to 8 answer the research questions posed in
the previous section. These are grouped into two parts—Part I on one-player games
consists of Chapters 4 and 5, and Part II on two-player games comprises Chapters 6
to 8. Finally, the conclusions of the thesis are presented in Chapter 9.

Chapter 1 provides a brief introduction to the field. It then presents the problem
statement and the four research questions that have been posed to approach it.

Chapter 2 describes the basic terms and concepts of search in games. It also
introduces the two classes of search methods used in Chapters 4 to 8: minimax-based
search techniques for two-player games, and MCTS techniques for both one- and
two-player games. Enhancements for both minimax and MCTS are explained as far
as relevant for our research. Additionally, the topic of this thesis is related to the
field of reinforcement learning. This learning perspective is not necessary background
for the chapters that follow, but can provide a deeper understanding of MCTS for
the interested reader—in particular with regard to the multi-armed bandit algorithms
which are applied recursively within MCTS.

Chapter 3 introduces the test domains used in the following chapters. These
include the one-player games SameGame, Clickomania, and Bubble Breaker, which
are used in Part I; and the two-player games Go, Connect-4, Breakthrough, Othello,
and Catch the Lion, which are used in Part II. For each game, its origin is described,
its rules are outlined, and its complexity is analyzed.

Part I on one-player games begins with Chapter 4. This chapter answers the
first research question by introducing Nested Monte-Carlo Tree Search. NMCTS is
presented as a generalization of both MCTS and NMCS. After parameter tuning, it is
tested against regular MCTS with randomized restarts in order to show the effect of
introducing nested searches. Furthermore, NMCTS is directly compared to its special
case of NMCS in order to show the effect of introducing selective tree search. The
experiments are performed in SameGame with both random and informed rollout
policies, and in Clickomania and Bubble Breaker with random rollouts.
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Chapter 5 answers the second research question by proposing Beam Monte-Carlo
Tree Search. BMCTS can be understood as a generalization of move-by-move search,
allowing to keep any chosen number of alternative moves instead of committing to
one of them when moving on to the next tree depth. After examining the parameter
landscape of the algorithm, BMCTS is tested against regular MCTS both with a single
search run per test position and with multiple search runs per test position. Results
on combining NMCTS and BMCTS are presented as well. These experiments are
again performed in SameGame with both random and informed rollout policies, and
in Clickomania and Bubble Breaker with random rollouts.

Part II on two-player games begins with Chapter 6. This chapter answers the third
research question. It outlines a number of time-management strategies for MCTS,
organized along two dimensions: whether they make timing decisions before the start
of a search or during the search, and whether they are domain-independent or specific
to the game of Go. The strategies are then tested in Go, Connect-4, Breakthrough,
Othello, and Catch the Lion. Afterwards, their performance is analyzed and compared
across domains, in particular with regard to shifting available time to the opening,
midgame, or endgame.

Chapter 7 answers the fourth research question for the case where domain knowledge
is not available. It investigates three MCTS-minimax hybrids, using shallow minimax
searches without a heuristic evaluation function in different phases of the MCTS
framework. The baseline MCTS-Solver is described, and the hybrids are tested against
the baseline and against each other in the domains of Connect-4, Breakthrough, Othello,
and Catch the Lion. The performance of the hybrids is then analyzed across domains,
relating it to the density and difficulty of search traps. In additional experiments, we
study the influence of different time settings and different branching factors on hybrid
performance, and test their effectiveness for solving endgame positions as well.

Chapter 8 answers the fourth research question for the case where domain knowl-
edge is available. It studies three more MCTS-minimax hybrids, embedding shallow
minimax searches with an evaluation function into MCTS. The evaluation functions
are explained, and the hybrids are tested against MCTS-Solver and against each other
in Breakthrough, Othello, and Catch the Lion. Additionally, their performance is
compared across domains. After identifying the branching factor of a domain as a
limiting factor for the hybrids’ performance, move ordering and k-best pruning are
introduced. The move ordering functions are explained, and the hybrids are again
tuned and tested against the baseline and against each other. Further experiments
compare the hybrids across domains, study the effects of different time settings and
branching factors, combine the hybrids with each other, and test them against basic
αβ search.

Chapter 9 finally summarizes the answers to the four research questions, and
addresses the problem statement. It also gives possible directions for future work.
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Parts of this chapter are based on:
Baier, H. and Winands, M. H. M. (2012). Nested Monte-Carlo Tree Search for

Online Planning in Large MDPs. In L. De Raedt, C. Bessière, D. Dubois, P. Doherty,
P. Frasconi, F. Heintz, and P. J. F. Lucas, editors, 20th European Conference on
Artificial Intelligence, ECAI 2012, volume 242 of Frontiers in Artificial Intelligence
and Applications, pages 109–114.

Baier, H. and Drake, P. (2010). The Power of Forgetting: Improving the Last-Good-
Reply Policy in Monte Carlo Go. IEEE Transactions on Computational Intelligence
and AI in Games, volume 2, number 4, pages 303–309.

This chapter describes the search methods used in this thesis for playing one-player
and two-player games. After explaining their basic frameworks, it also outlines some
of their commonly used enhancements as far as necessary to understand the chapters
that follow. Two families of search methods are considered: Monte-Carlo Tree Search
(MCTS) techniques for both one- and two-player games as the focus of this thesis, and
minimax-based search techniques for two-player games as an additional prerequisite
for the MCTS-minimax hybrids of Chapters 7 and 8.

This chapter is organized as follows. Section 2.1 introduces the basic terms and
concepts of search in games that are used throughout this thesis. Section 2.2 describes
minimax-based search techniques. Section 2.3 gives an introduction to MCTS, and
Section 2.4 discusses a number of MCTS enhancements. In Section 2.5 finally, an
alternative introduction to MCTS is given in order to connect this thesis to wider
areas of work in AI. This introduction presents MCTS as a reinforcement learning
method.
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2.1 Search in Games
A game of the type considered in this thesis can be modeled with the help of the
following components, resulting from its rules:

• A set of possible states of the game S, also called positions. A state of a board
game like Chess, for example, consists of the arrangement of pieces on the board,
the player to move, as well as all further relevant information for the future of
the game, such as the castling and en passant options, the positions which have
already occurred for following the threefold repetition rule, etc.

• An initial state I ∈ S, for example the starting arrangement of pieces with the
information who is the first player to move.

• A set of players P . Part I of this thesis is concerned with one-player games, for
which we set P = {MAX}. Part II is dealing with two-player games where we
set P = {MAX,MIN}, with MAX representing the player moving first.

• A function tomove: S → P which indicates for any given state the current player
to move.

• A set of actions A, also called moves. For any state s ∈ S, the subset of legal
actions in that state is denoted by As ⊆ A. Selecting and carrying out an action
a ∈ As brings the game to a new state s′ as determined by the rules of the game:
s
a→ s′. The set of all states that can be reached from s with a single action is

denoted by Cs ⊆ S. Any state s with As = {}, i.e. any state where the game
has ended, is called a terminal state. We call the set of all terminal states Z.

• A function R: S×A→ R|P | which returns for any given state and action a vector
containing the rewards received by all players. In the case of the one-player games
discussed in Part I of this thesis, this function just returns a scalar reward value.
In the case of the two-player games covered in Part II, their zero-sum property
allows simplifying the reward vector to a scalar value as well, representing the
reward received by MAX. MIN’s reward is the negation of that value.

Knowing the initial state I of a game and the possible actions As in any given
state s allows us to represent all possible ways this game can be played in the form of
its game tree. Figure 2.1 shows a part of the game tree for the well-known game of
Tic-Tac-Toe. Each node in this tree represents a possible state of the game. Each edge
represents a possible action. The tree starts at the root, marked I in the figure, as the
node representing the initial state. This root is expanded by adding an edge for each
legal action a ∈ AI , and a node for each next state s′ with I a→ s′. The game tree
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is created by recursively expanding all added nodes in the same way. Note that this
means one state can potentially be represented by more than one node, if that state
can be reached from the initial state through different action sequences. If a node X
represents a state x and a node Y represents a state y such that y ∈ Cx, Y is called a
child (immediate successor) of X, and X is a called the parent (immediate predecessor)
of Y . In Figure 2.1 for example, C is A’s child, and A is C’s parent. Nodes A and B
are called siblings because they share the same parent. Nodes can have zero, one, or
more children, but each node has exactly one parent—except for the root which does
not have a parent. Every node X on the path from the root node to the parent of a
given node Y is called an ancestor of Y , whereas Y is called a descendant of X. In
Figure 2.1 for example, I and A are the ancestors of C, and C is a descendant of I
and of A. A node X together with all its descendants is called a subtree rooted in X.
For example, C is in A’s subtree, while I and B are not. Nodes that have at least
one child are called internal or interior nodes, whereas nodes without any children
are called leaf nodes. Nodes representing terminal states are terminal nodes. In a
game tree, all leaf nodes are terminal nodes. In these leaves the game is over and its
outcome, the sum of all rewards received during the game, is known for all players.

I

A B

C

Figure 2.1: A part of a game tree. The figure shows all legal first actions and a few legal
second actions from the initial state of Tic-Tac-Toe.

Representing a game as a game tree allows us to view the task of playing the game
as a search problem. In a one-player game as discussed in Part I, the player is searching
for a sequence of actions, starting from the initial state and leading to a terminal
state, with optimal outcome. In a two-player game as used in Part II, the player is
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searching for a sequence maximizing her1 outcome as well. However, the opponent
can interfere with such a sequence as soon as it is her turn. Each player is therefore
searching for a strategy leading to the best possible outcome for herself without having
certainty regarding the opponent’s actions in the future. This is achieved by exploring
and analyzing the game tree, for example with the search methods described in the
following sections.

It is usually impossible to investigate the complete game tree for a game of
non-trivial complexity. The game tree of Chess for example is estimated to have
approximately 10123 nodes (Shannon, 1950)—for comparison, the number of atoms in
the observable universe is estimated to be roughly 1080. Therefore, computer programs
typically analyze only a part of the game tree in practice, called the search tree. The
nodes of a search tree are gradually generated by a search process, starting at the
root. Figure 2.2 presents an example search tree from a game of Tic-Tac-Toe. The
search tree is rooted in the current state the player is in (node A in Figure 2.2) instead
of the initial state of the entire game (node I in Figure 2.1). Furthermore, not all
descendants of this root are usually considered. Instead, the search tree is constructed
and examined until a predefined limit has been reached—for example until a given
search time has passed, or until the search tree has been analyzed to a given depth.
The depth of a tree is measured in plies (Samuel, 1959). In Figure 2.2 for example, a
two-ply search tree is shown, meaning that the tree looks two turns ahead from the
root state. Not all nodes in a search tree have to be expanded—node B for example is
expanded, whereas node C is not. Search trees, in contrast to complete game trees,
can have non-terminal leaf nodes. These are leaf nodes that do not have children (yet),
but do not represent terminal states. Nodes C, D, F , and H are non-terminal leaves,
while nodes E and G are terminal leaves.

The following Sections 2.2 and 2.3 outline two frameworks for the construction
and analysis of such search trees, and explain how they can lead to effective action
decisions for the game-playing program.

2.2 Minimax

This section introduces the first basic method for making action decisions in games—
minimax search. Minimax is used in Chapters 7 and 8 of this thesis. It is a search
technique for finite two-player zero-sum games.

1Where gendered forms cannot elegantly be avoided, the generic feminine is used throughout this
thesis in order to avoid cumbersome forms such as “he or she”, “(s)he”, or “her/his”.
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B

I

C D E F G H

Figure 2.2: A search tree. The figure shows the first two ply of a search starting from the
Tic-Tac-Toe position shown at the root.

2.2.1 The Minimax Value

Recall that we call the two players of a two-player game MAX and MIN. In the
two-player games used in this thesis, the reward received when reaching a terminal
state only depends on that state and is independent of the sequence of actions which
was taken to reach it. The players only collect rewards when transitioning to the
terminal state. All other actions in the game give a reward of 0 to both players.
Therefore we can define a utility function utility: Z → R, returning for any given
terminal state the outcome of the game when reaching that state, from the point
of view of MAX. Due to the zero-sum property of the games studied here, this also
specifies the outcomes from the point of view of MIN. The game of Chess for example
has the possible outcomes win, loss, and draw, represented by a utility of 1 for a win
for MAX (a loss for MIN), −1 for a loss for MAX (a win for MIN), and 0 for a draw.
MAX tries to reach a terminal state with maximal utility, and MIN tries to reach one
with minimal utility.

Without loss of generality, assume that MAX is the player to move. Given the
current state and the rules of the game, and thus given the ability to construct and
analyze a search tree, MAX is trying to find an optimal strategy. A strategy is defined
by the next action to take, and an action to take in every possible future state of the
game depending on the opponent’s actions. Informally speaking, an optimal strategy
guarantees the best possible outcome for MAX assuming MIN will not make any
mistakes.

However, the utility function only assigns values to terminal states. If MAX’s
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possible next actions do not all lead to terminal states, she needs a way to choose
between non-terminal states as well. This can be done by computing the minimax
value of these states, representing the utility for MAX of being in that state assuming
that both players play optimally throughout the rest of the game.

By definition, the minimax value of a terminal state is given by the utility function.
The minimax value of a non-terminal state is determined by the fact that MAX will
choose actions maximizing the minimax value, and MIN will choose actions minimizing
the minimax value. Putting it all together, the minimax value Vm(s) of a state s ∈ S
is recursively defined by

Vm(s) =


utility(s) if s ∈ Z
max
s′∈Cs

Vm(s′) if tomove(s) = MAX

min
s′∈Cs

Vm(s′) if tomove(s) = MIN

(2.1)

Consider the search tree in Figure 2.3. Six moves have already been played in this
game of Tic-Tac-Toe, leading to the current root of the search tree. MAX (the player
using the × symbol) is analyzing the search tree to find an optimal action at the root
node. The search tree is fully expanded from the root to the terminal nodes. In the
figure, each layer of the tree is marked MAX or MIN depending on the player to move
in the nodes on that layer.

The minimax value of each state is written in the lower right corner of the
corresponding node. For any terminal node, the minimax value is the value returned
by the utility function for that state—0 for the two states in which the game is drawn,
and 1 for the two states in which MAX has won. For any internal node with MAX to
move, the minimax value is the highest minimax value among its children, since this
corresponds to the optimal action choice for MAX. For any internal node with MIN
to move, the minimax value is the lowest minimax value among its children. We can
see that the root has a minimax value of 0, and that the optimal action choice (the
minimax decision) for MAX at the root is the action labeled “1”. This action leads
to the only child guaranteeing an outcome of at least 0 for MAX even if MIN plays
optimally.

2.2.2 The Minimax Algorithm

The minimax algorithm (von Neumann and Morgenstern, 1944), or minimax for
short, is the classic search technique for turn-taking two-player games. It computes
the minimax decision at the root state by directly implementing Equation 2.1. The
minimax algorithm does this by starting at the root and recursively expanding all



C
ha

pt
er

2

2.2. Minimax 17

1 6 10

2 4 7 8 11 12

3 5 9 13

MAX

MAX

MIN

MIN

0

0

1 1 01 0

0110 -1 -1

-1 -10

Figure 2.3: A minimax tree in Tic-Tac-Toe.

nodes of the tree in a depth-first manner. In Figure 2.3, the numbers next to the
edges indicate the order in which the nodes are expanded. When a leaf of the tree
is reached, the utility function is called to assign a value to that state. After values
for all children of a node have been returned, the value of this node is computed as
either the maximum (at MAX nodes) or minimum (at MIN nodes) of the children’s
values. After the entire tree has been traversed, the minimax values of all nodes are
known. We can then return the minimax decision by picking an action at the root
which leads to a child of maximal value (if MAX is to move) or minimal value (if MIN
is to move). In Figure 2.3, this is the × player’s move in the left column of the middle
row. Algorithm 2.1 shows pseudocode for minimax. The initial call e.g. by MAX is
MINIMAX(rootstate,1).

This implementation uses separate code for MAX and MIN nodes, and needs two
different recursive calls for them. In practice, it is often simplified to the negamax
formulation (Knuth and Moore, 1975), which treats MAX and MIN nodes uniformly.
The basic idea of negamax is that min(a, b) = −max(−a,−b). It does not compute
minimax values, but negamax values Vn(s) as defined by
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1 MINIMAX (state , currentPlayer ) {
2 if(state. isTerminal ()) {
3 return utility (state)
4 } else if( currentPlayer =MAX) {
5 return m a x

s∈children(state)
MINIMAX (s,-1)

6 } else if( currentPlayer =MIN) {
7 return m i n

s∈children(state)
MINIMAX (s,1)

8 }
9 }

Algorithm 2.1: Minimax.

Vn(s) =

currentPlayer× utility(s) if s ∈ Z
max
s′∈Cs

−Vn(s′) otherwise
(2.2)

where the variable currentPlayer takes the value of 1 in MAX nodes, and -1 in
MIN nodes. Negamax values are identical to minimax values in MAX nodes, and
their negation in MIN nodes. The pseudocode of negamax is shown in Algorithm 2.2.
Negamax thus replaces alternating maximization and minimization when traversing
the tree with maximization throughout. It does so by returning utility values of
terminal nodes from the point of view of the player to move instead of MAX, and by
negating backpropagated values from layer to layer. The initial call e.g. by MAX is
NEGAMAX(rootstate,1).

Both the minimax and the negamax algorithms explore the complete game tree

1 NEGAMAX (state , currentPlayer ) {
2 if(state. isTerminal ()) {
3 return currentPlayer × utility (state)
4 } else {
5 return m a x

s∈children(state)
-NEGAMAX (s,-currentPlayer )

6 }
7 }

Algorithm 2.2: Negamax.
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rooted in the current state. If the maximum depth of the tree is d, and if there are
b legal moves in every state (the branching factor), then the time complexity of the
minimax algorithm is O(bd). As minimax investigates the game tree in a depth-first
manner, the space complexity is O(bd) (assuming that all legal actions have to be
generated at once in each node). Its time complexity makes naive minimax infeasible
for non-trivial games, but it serves as the foundation for more practically useful
algorithms such as those presented in the following.

2.2.3 αβ Search

Minimax needs to visit every node in the game tree in order to find the best action at
the root node. However, closer analysis of the search process shows that in most cases,
there are many nodes or entire subtrees whose values are irrelevant for finding the
minimax decision. These subtrees can therefore safely be ignored without affecting the
result of minimax, speeding up the search significantly. The technique of excluding
subtrees from the search is called pruning. The most-used pruning technique for
minimax is αβ pruning (Knuth and Moore, 1975).

Consider the search tree in Figure 2.4, starting from the same initial state as Figure
2.3. After traversing the first six nodes, the root A and the subtree of node B, we
know that the minimax value of B is 0. This means that MAX is guaranteed a value
of at least 0 in the root node. MAX is not interested in actions leading to values
≤ 0 anymore, since they are no improvement to action 1. Next, the search process
generates nodes C and E, where MIN wins the game. It is now clear that if MAX
chose action 6, MIN could play action 7 and get a result of −1. The value of C is thus
no greater than −1, and action 6 cannot improve on action 1 anymore. The subtree
below action 6 does not have to be explored any further, as max(0,min(−1, x)) = 0
independently of the value of x. With the same reasoning, action 8 is proven to be no
improvement to action 1 as well. Two subtrees can thus be pruned from the search
without influencing the final decision. αβ pruning reduces the number of visited nodes
in this example from 14 to 10.

The name αβ comes from the two parameters α and β of the algorithm, representing
in any node throughout the search the value that is already guaranteed for MAX, and
the value that is already guaranteed for MIN. α and β form a lower bound and an
upper bound on the unknown minimax value of the root, the αβ window. If any node
returns a value outside of this interval, we know that we are currently exploring a
suboptimal subtree that either MAX or MIN would avoid under optimal play. We can
then safely prune the remaining children of the current node (αβ cutoff ).

Algorithm 2.3 shows pseudocode for minimax search with αβ pruning, or αβ for
short. It is written in the negamax formulation, so the αβ window is inversed between
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Figure 2.4: An αβ tree in Tic-Tac-Toe.

recursive calls. The initial call e.g. by MAX is ALPHABETA(rootstate,1,−∞,∞).
In practice, minimax without the αβ enhancement is only used for teaching

purposes. All minimax implementations in this thesis use αβ pruning.

2.2.4 Move Ordering and k-best Pruning

Move Ordering

The effectiveness of αβ strongly depends on the order in which child nodes are
generated and recursively analyzed in line 6 of Algorithm 2.3. As an example, compare
Figure 2.4 to Figures 2.5 and 2.6. All three figures present the search tree of an αβ
search from the same initial state, leading to the same result of node B being the
optimal child of the root. However, the nodes are visited in different order. In Figure
2.4, all nodes are analyzed in optimal order. At the root for example, the best child
node B is traversed first. This allows αβ to establish the guaranteed value of 0 for
MAX early in the search, leading to two cutoffs and a total number of only 10 visited
nodes. In Figure 2.5, B is examined second at the root—with the result that only one
αβ cutoff is possible, increasing the total number of visited nodes to 12. In Figure 2.6
finally, node B is chosen last at the root. In this case, no cutoffs are possible at all,
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1 ALPHABETA (state , currentPlayer ,α,β) {
2 if(state. isTerminal ()) {
3 return currentPlayer × utility (state)
4 }
5 forall (c ∈ children (state )) {
6 α = max(α,-ALPHABETA (c,- currentPlayer ,-β,-α))
7 if(α ≥ β) {
8 return β

9 }
10 }
11 return α

12 }

Algorithm 2.3: αβ search.

and αβ has to traverse the same full tree of 14 nodes that minimax without αβ would
generate.

In the much larger trees examined in non-trivial games, these differences are much
more significant. In the best case of searching all nodes in the optimal order, αβ has a
time complexity of only O(bd/2) compared to the O(bd) of minimax (Knuth and Moore,
1975). This best case reduces the effective branching factor from b to

√
b, which in

Chess for example means looking at only about 6 actions per state instead of about
35 actions on average. As a result, αβ can search trees twice as deep as minimax in
the same amount of time.

In practice, the optimal order of nodes is of course unknown before the search has
ended. A program that could perfectly order nodes would not have to perform any
search at all, but could simply execute the action leading to the best node at the root.
However, the strong effect of the order in which nodes are visited—or equivalently,
the order in which moves are generated and examined—has led to the development of
various move ordering techniques. These techniques can be divided into two classes.
Static move ordering techniques use domain knowledge independent of the current
search process. In Chess for example, capturing moves tend to be more promising
than other moves, so it improves move ordering to search them first. Dynamic move
ordering techniques use information acquired from the search currently running. The
killer heuristic (Akl and Newborn, 1977) for example is based on the idea that a move
which was good (produced an αβ cutoff) in one state might also be good in other,
similar states. Static move ordering is used in Chapter 8 of this thesis.
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Figure 2.5: An αβ tree with suboptimal move ordering in Tic-Tac-Toe.
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Figure 2.6: An αβ tree with pessimal move ordering in Tic-Tac-Toe.
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k-best Pruning

Move ordering as discussed so far affects the performance of αβ, but not the result.
The only moves that are pruned from the search tree are the ones that provably do not
influence the minimax decision at the root. In some cases, it is effective to go further
than that and to use move ordering techniques not only to search moves in the order
that appears most promising, but to exclude the least promising moves entirely from
the search. When the search is restricted to the k actions in each state that are ranked
most highly by a move ordering method, this technique is called k-best pruning. It is
a type-B strategy according to Shannon (1950). Such selective strategies considering
only a subset of moves were popular in early research on Chess, when computational
power was limited. k-best pruning does not guarantee the same result as a regular
minimax or αβ search anymore. But while there is a risk of occasionally making
mistakes and pruning good moves, the advantage of a smaller effective branching
factor—and thus deeper searches in the same time—can be substantial.

Figure 2.7 shows an example of k-best pruning on the Tic-Tac-Toe search tree
we have seen before. The moves are here searched according to the following static
move ordering: first any move that blocks the opponent from making three-in-a-row is
tried, then all other moves in random order. In this example k = 2, meaning that no
more children than 2 are searched for any node in the tree. This is why the search
stops after examining the root children B and D, instead of looking at C as well.
Below node D, there is an additional cut due to αβ pruning. In this case, the search
determines the correct minimax value (0) and optimal decision (action 1) at the root,
after visiting only 8 nodes. Note though that the k-best cut is not always correct—its
success depends on the quality of the move ordering in the game at hand. Move
ordering and k-best pruning are used in Chapter 8.

2.2.5 Depth-Limited Search

αβ pruning provides a strong improvement to minimax search, allowing it in the best
case to search twice as deep in the same time. However, even αβ as presented so
far still has to expand the tree all the way to some terminal states where the utility
function can be applied. In non-trivial games, this is usually impossible for all but the
latest moves in the game.

In order to make minimax search useful in practice, Shannon (1950) therefore
proposed to expand the minimax tree only to a given depth, whether this is deep
enough to reach terminal states or not. Since the recursive minimax calls need a base
case, this requires the search process to assign values to non-terminal leaves as well.
Unfortunately, their exact minimax values are not known. For this purpose, the utility
function returning the exact utilities of terminal states is replaced with a function
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Figure 2.7: An αβ tree with k-best pruning (k = 2) in Tic-Tac-Toe.

returning an estimated utility for any given leaf state. This function is called a static
heuristic evaluation function and allows for depth-limited search.

Similar to a static move ordering, a heuristic evaluation function encapsulates the
domain knowledge of the programmer. The quality of an evaluation function strongly
influences the success of the search—since the search process does not look beyond the
leaves of the tree, it depends on their accurate evaluation. Russell and Norvig (2002)
list three requirements for a good evaluation function. First, it should assign the same
values to terminal states as the utility function does. Second, it should be fast, which
is why it is static and not conducting a search itself. Third, it should return values for
non-terminal leaves that are strongly correlated with the actual minimax value, with
the chances of winning the game, or the profitability of a state for the player (Donkers,
2003). In many games evaluation functions are constructed by linearly combining
several domain-dependent features, such as material balance or mobility of pieces in
Chess, or territorial balance in Amazons. We define and use evaluation functions for
several games in in Chapter 8.

Algorithm 2.4 shows pseudocode for depth-limited αβ search. The following lines
have changed compared to Algorithm 2.3. In line 1, αβ receives a new parameter
indicating the remaining search depth. In line 2, αβ stops searching not only when
a state is terminal, but also when the depth parameter has reached 0. In line 3, the
value returned at such a leaf state is computed by the evaluation function, not the
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utility function. In line 6 finally, the recursive call decrements the depth parameter.
The initial call e.g. by MAX is ALPHABETA(rootstate,1,−∞,∞,d) where d is the
desired search depth. All αβ implementations in this thesis are of this type.

1 ALPHABETA (state , currentPlayer ,α,β,depth) {
2 if(state. isTerminal () or depth≤ 0) {
3 return currentPlayer × evaluation (state)
4 }
5 forall (c ∈ children (state )) {
6 α = max(α,-ALPHABETA (c,- currentPlayer ,-β,-α,depth -1))
7 if(α ≥ β) {
8 return β

9 }
10 }
11 return α

12 }

Algorithm 2.4: Depth-limited αβ.

2.3 Monte-Carlo Tree Search
This section introduces the second basic method for making action decisions in games—
the Monte-Carlo Tree Search (MCTS) family of algorithms. MCTS is the main focus
of this thesis and used in all chapters. We apply it both to one-player games (see
Chapters 4 and 5) and to two-player games (see Chapters 6 to 8).

2.3.1 Monte-Carlo Evaluation

In some games it is difficult to find a suitable static heuristic evaluation function
of the type discussed in Subsection 2.2.5. One alternative technique for evaluating
non-terminal states is Monte-Carlo evaluation (Abramson, 1990). For this evaluation
technique, the state at hand is not statically analyzed and evaluated according to
domain-specific features. Instead, the state is evaluated by the expected value of
the game’s result from this state on, estimated by random sampling. In order to do
this, several rollouts are started from the state. A rollout is a fast, (semi-)random
continuation of the game from the state to be evaluated all the way to the end of the
game. In the simplest case, actions are simply chosen uniformly random among all
legal actions until a terminal state is reached. The utility of this terminal state is
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then returned and stored as rollout result, and the evaluation of the state at hand
is formed by the average of several such rollout results. In a two-player game with
the only outcomes win and loss for example, this average can be interpreted as the
probability of winning the game from that state under (semi-)random play.

A disadvantage of Monte-Carlo evaluation is that it is often time-consuming
compared to static evaluation. The main advantage of Monte-Carlo evaluation is its
domain independence—no evaluation function or other domain knowledge beyond
the rules of the game is required. Researchers have applied it to e.g. Backgammon
(Tesauro and Galperin, 1997), Poker (Billings et al., 1999), Bridge (Ginsberg, 2001),
Scrabble (Sheppard, 2002), and Go (Brügmann, 1993; Bouzy and Helmstetter, 2004).

2.3.2 The MCTS Framework
Because Monte-Carlo evaluation is computationally expensive, it typically cannot be
applied to every leaf node of a large tree such as those traversed by αβ. In order to be
able to evaluate all leaf nodes, Bouzy and Helmstetter (2004) for example restricted
their tree search in the game of Go to one ply. However, this means that the search
process cannot find the minimax decision at the root, even when assuming infinite
time. Optimal play beyond the first ply cannot be discovered. Bouzy (2006) iteratively
expanded search trees to greater depths, but pruned less promising nodes after each
expansion step in order to control the size of the tree. As this pruning was irreversible,
convergence to optimal play was again not guaranteed.

The breakthrough for combining Monte-Carlo evaluation with tree search came
with the development of Monte-Carlo Tree Search (MCTS) (Coulom, 2007b; Kocsis
and Szepesvári, 2006). MCTS constructs a search tree for each move decision in a
best-first manner. This tree starts from the current state, represented by the root node,
and is selectively deepened into the direction of the most promising actions. Promising
actions are chosen according to the results of Monte-Carlo rollouts starting with these
actions. Unlike the αβ tree which is traversed depth-first, the best-first MCTS tree is
kept in memory. Each node added to the tree stores the current value estimate for
the state it represents, which is continuously updated and improved throughout the
search.

MCTS works by repeating the following four-phase loop until computation time
runs out (Chaslot et al., 2008). Each loop represents one simulated game. The phases
are visualized in Figure 2.8.

1: Selection phase (see Subfigure 2.8(a)). The tree is traversed, starting from the
root node and using a selection policy at each node to choose the next action to sample.
The selection policy tries to balance exploitation of nodes with high value estimates
and exploration of nodes with uncertain value estimates. Exploitation means that the
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tree is deepened into the direction of the child that currently seems best. Exploration
means that more samples for other children are collected in order to increase certainty
on which child is the best. In this thesis, the selection policy used is UCB1-TUNED
(Auer et al., 2002).

2: Expansion phase (see Subfigure 2.8(b)). When the traversal reaches a state that
is not yet represented in the tree, a decision is made on how to grow the tree into this
direction. A common expansion policy is the addition of one newly sampled node per
simulation (Coulom, 2007b), representing the newly encountered state. This policy is
used in this thesis. If the amount of available memory is limited, it is possible to add
nodes only after the corresponding states have been visited a given number of times.

3: Rollout phase (see Subfigure 2.8(c)). Actions are played, starting from the state
corresponding to the newly added node until the end of the game. Every action
is chosen by a rollout policy. In the literature, rollouts are sometimes also called
playouts, samples or simulations—in this thesis however, the term simulation refers
to an entire loop through the four phases of MCTS. While uniformly random action
choices are sufficient to achieve convergence of MCTS to the optimal move in the limit,
more sophisticated rollout policies have been found to improve convergence speed.
These can make use of domain knowledge or of domain-independent enhancements. In
Part I of this thesis, one of the rollout policies used for SameGame employs domain-
specific knowledge, while all other games use uniformly random rollouts. Nested
MCTS searches are proposed as domain-independent improved rollout strategies for
higher-level searches. In Chapter 6 of Part II, Go uses an informed rollout policy with
both domain-dependent and domain-independent enhancements, whereas the rollouts
in all other games are uniformly random. Chapters 7 and 8 propose and compare
various improvements to MCTS rollouts.

4: Backpropagation phase (see Subfigure 2.8(d)). Once the end of the rollout has
been reached and the winner of the simulated game has been determined, the result
is used to update the value estimates stored in all nodes that were traversed during
the simulation. The most popular and effective backpropagation strategy stores the
average result of all rollouts through the respective node (Coulom, 2007b). It is also
used in this thesis. Note that the UCB1-TUNED selection policy requires rollout
results to be in the interval [0, 1]. In two-player games, wins are therefore represented
by 1, losses by 0, and draws by 0.5 in this thesis. In one-player games, the range of
possible game outcomes is mapped to [0, 1] before backpropagation.

For the case of a two-player zero-sum game, Figure 2.9 shows in more detail how
value estimates are stored and used in a typical MCTS implementation such as used in
this thesis. Each node contains a visit counter v and a win counter w. These counters
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(a) The selection phase. The selection
policy is applied recursively until an
unsampled action is reached.

(b) The expansion phase. The newly
sampled action is executed and the
resulting state is added to the tree.

(c) The rollout phase. One simulated
game is played by the rollout policy.

(d) The backpropagation phase. The
result of the rollout is used to update
value estimates in the tree.

Figure 2.8: MCTS.
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are used by the selection policy to compute a value for each child of the current node.
The child with the maximal value is chosen for sampling. After each rollout, the visit
counters of the traversed nodes are incremented, and the rollout result (1 for a win, 0
for a loss, or 0.5 for a draw) is added to the win counters from the point of view of
the player to move in the corresponding state (MAX or MIN). The flipping of rollout
results from layer to layer is similar to the negation between layers in the negamax
algorithm (see Subsection 2.2.2). In one-player games, rollout results do not have to
be flipped from level to level, as the search always takes the point of view of the MAX
player.

MCTS can be interrupted after any number of iterations to return the current
decision on the best child of the root. Several final move selection strategies are
possible, notably returning the child with the currently highest value estimate, or
the child with the currently highest number of rollouts. At long time settings, the
performance difference between the two strategies tends to be negligible, while at short
time settings, the latter strategy can be more robust (Chaslot et al., 2008). Choosing
the most-sampled move is popular in Go research, and was chosen for all games in
this thesis.

Since MCTS is based on sampling, it does not require a heuristic evaluation function,
but only the ability to generate simulated game trajectories in the domain at hand.
Because it grows a highly selective, best-first search tree guided by its simulations, it
can handle search spaces with large branching factors. By using Monte-Carlo rollouts,
MCTS can take long-term effects of actions into account better than a depth-limited
search. Combined with appropriate selection policies to trade off exploration and
exploitation (for example with the UCB1 policy in Kocsis and Szepesvári 2006), the
search tree spans the entire game tree in the limit, and the state value estimates
converge to the game-theoretic values in one- and two-player games (Kocsis and
Szepesvári, 2006; Kocsis et al., 2006)—in the case of two-player zero-sum games, to
the minimax values. In addition, MCTS can be stopped after every rollout and return
a move choice that makes use of the complete search time so far, while αβ searchers
can only make use of completely explored root moves of a deepening iteration.

Algorithm 2.5 shows pseudocode of MCTS for two-player domains, and Algorithm
2.6 represents MCTS for one-player domains. The only difference is additional book-
keeping in the one-player version for the current high score and the simulation that
achieved it. The reason is that in a two-player domain, the decisions of the opponent
make the future uncertain. MCTS tries to find a next action that maximizes the
expected outcome of the player under the assumption that the opponent tries the
same for herself. In one-player domains however, all actions are under the player’s
control. MCTS can therefore search not only for the next action to take, but for an
entire outcome-maximizing action sequence until a terminal position is reached.
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Figure 2.9: An example two-player MCTS tree. Each node is labeled with its visit counter v
and win counter w. The numbers on the edges represent the values assigned by the selection
policy UCB1-TUNED to the respective moves.
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1 MCTS( startState ) {
2 for( numberOfIterations ) {
3 currentState ← startState
4 simulation ← {}
5 # selection
6 while( currentState ∈ Tree) {
7 currentState ← takeSelectionPolicyAction ( currentState )
8 simulation ← simulation + currentState
9 }

10 # expansion
11 addToTree ( currentState )
12 # rollout
13 while( currentState . notTerminalPosition ) {
14 currentState ← takeRolloutPolicyAction ( currentState )
15 simulation ← simulation + currentState
16 }
17 # backpropagation
18 score ← cumulativeReward ( simulation )
19 forall (state ∈ { simulation ∩ Tree }) {
20 state.value ← backPropagate (state.value , score)
21 }
22 }
23 return finalMoveChoice (Tree)
24 }

Algorithm 2.5: Two-player MCTS.
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1 MCTS( startState ) {
2 bestScore ← -Infinity
3 bestSimulation ← {}
4 for( numberOfIterations ) {
5 currentState ← startState
6 simulation ← {}
7 # selection
8 while( currentState ∈ Tree) {
9 currentState ← takeSelectionPolicyAction ( currentState )

10 simulation ← simulation + currentState
11 }
12 # expansion
13 addToTree ( currentState )
14 # rollout
15 while( currentState . notTerminalPosition ) {
16 currentState ← takeRolloutPolicyAction ( currentState )
17 simulation ← simulation + currentState
18 }
19 # backpropagation
20 score ← cumulativeReward ( simulation )
21 forall (state ∈ { simulation ∩ Tree }) {
22 state.value ← backPropagate (state.value , score)
23 }
24 if(score > bestScore ) {
25 bestScore ← score
26 bestSimulation ← simulation
27 }
28 }
29 return (bestScore , bestSimulation )
30 }

Algorithm 2.6: One-player MCTS.
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2.4 MCTS Enhancements

The name MCTS represents a family of search algorithms which modify, adapt, or
improve the basic MCTS framework presented above in a variety of ways. There has
been research on enhancements for every phase of MCTS. This section briefly discusses
the enhancements used by the MCTS implementations in this thesis. Where more
detailed explanations are necessary, these can be found in the relevant chapters.

Three enhancements of the selection phase are used in this thesis. TheMCTS-Solver
(Winands et al., 2008) improves selection by allowing MCTS to prove the minimax
value of nodes. It is used in Chapters 7 and 8; see Section 7.1 for details. Node priors
(Gelly and Silver, 2007) improve selection by taking prior domain knowledge into
account. They are used in Chapter 8; see Subsection 8.2.3 for an in-depth explanation.
Rapid Action Value Estimation (RAVE) (Gelly and Silver, 2007) improves selection
by combining regular MCTS value estimates with a second type of value estimate in
every node. This second estimate is based on the assumption that the order in which
rollout actions were visited from the current node onwards is irrelevant—all of them
are updated as if they had been the first action. This allows many updates per rollout,
and in domains such as Go where the assumption is true to at least some degree it
can help guide search when only few rollout returns are available. RAVE is used for
Go in Chapter 6.

Three types of enhancements of the rollout phase are used in the following chapters.
The first type are informed rollout policies, depending on knowledge acquired offline
before the start of the search. This can be hand-coded domain knowledge, or knowledge
gained through machine learning techniques. The rollout policy used for Go in Chapter
6 and the TabuColorRandomPolicy (Schadd et al., 2008b) used for SameGame in
Chapters 4 and 5 are such informed rollout policies. In Chapter 8, informed rollout
policies are constructed from heuristic evaluation functions for several two-player
games. See the respective chapters for details. The second type are adaptive rollout
policies which learn from knowledge acquired online during the search. This includes
the Last-Good-Reply policy with forgetting (Baier and Drake, 2010) which stores
and re-uses moves that have been successful answers to opponent moves in previous
rollouts. It is used for Go in Chapter 6. The third type are rollout cutoffs (Lorentz,
2008; Winands et al., 2010), a technique where the rollout is stopped before reaching
a terminal state, and an evaluation of the reached state is used to compute the rollout
result. This is used in Chapter 8 and explained in more detail in Subsection 8.2.2.

Another enhancement used by the Go program in Chapter 6 is a transposition
table (Childs et al., 2008; Greenblatt et al., 1967). This is not an MCTS enhancement
alone, but can be applied to other search algorithms such as αβ as well. It is based
on the fact that in many games, identical states can be reached through different
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sequences of actions. These states are called transpositions. In a search tree, this leads
to the same state being represented by different tree nodes. If the history of the game
leading to this state is irrelevant for the search process, these nodes can be replaced
by one, which can reduce search effort. The state then does not have to be explored
several times, but search results can be reused. The game tree is thus changed into a
game graph in which every state is represented by exactly one node. All other MCTS
implementations in this thesis do not take transpositions into account.

2.5 A Learning View on MCTS
Section 2.3 introduced MCTS from a game-tree search point of view. In order to form
a connection to other fields of research in computer science and AI, this section gives
an alternative introduction to MCTS from a learning point of view. Additionally, it
puts some of the enhancements discussed in Section 2.4 into a common framework of
learning.

2.5.1 MCTS in the Framework of Learning
Reinforcement learning (see Sutton and Barto (1998) for an introduction) is the study
of learning from interaction how to achieve a goal. It deals with the problem of learning
optimal behavior, without being given descriptions or examples of such, solely from
acting and observing the consequences of actions. The classic reinforcement learning
task consists of an interactive loop between a learning agent and its environment:
The agent repeatedly observes its situation—the state of the environment—, chooses
an action to perform, and receives a response in form of a numerical reward signal,
indicating success or failure. In many cases, the agent’s actions can also affect the
next state. Trying to maximize its cumulative reward in the long run, the agent
therefore has to learn by trial-and-error how his action choices influence not only
immediate, but also delayed rewards. This subsection briefly outlines some of the
basic concepts of reinforcement learning, with emphasis on the class of Monte-Carlo
methods. This forms a foundation for the presentation of MCTS as a reinforcement
learning algorithm.

The Multi-Armed Bandit Problem

An agent faced with the reinforcement learning problem has to learn from its own
experience, without explicit guidance or supervision. One typical challenge of this task
is the tradeoff between exploration and exploitation. Exploration means trying out
new behaviors, choosing actions that have not been tried before, in order to determine
their effects and returns. Exploitation denotes the choice of actions that are known to
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be successful, the application of learned knowledge, in order to generate the maximal
reward.

The simplest setting in which this task can be studied is the case of the one-
state environment. In the so-called multi-armed bandit problem (Robbins, 1952), an
analogy is drawn to slot machines, casino gambling machines also known as “one-armed
bandits” because they are operated by a single lever. The multi-armed bandit problem
confronts the gambler with a machine with a number of arms instead, each of which
provides a reward drawn from its own probability distribution. The gambler, initially
without knowledge about the expected values of the arms, tries to maximize his total
reward by repeatedly trying arms, updating his estimates of the reward distributions,
and gradually focusing on the most successful arms. Exploitation in this scenario
corresponds to choosing the arm with currently highest estimated value. Exploration
corresponds to choosing one of the seemingly suboptimal arms in order to improve its
value estimate, which may lead to greater accumulated reward in the long run.

Formally, the multi-armed bandit problem is defined by a finite set of arms or
actions A = {1, . . . , amax}, each arm a ∈ A corresponding to an independent random
variable Xa with unknown distribution and unknown expectation µa. At each time
step t ∈ {1, 2, . . .}, the gambler chooses the next arm at to play depending on the past
sequence of selected arms and obtained rewards, and the bandit returns a reward rt as
a realization of Xat . Let na(t) be the number of times arm a has been played during
the first t time steps. Then the objective of the gambler is to minimize the cumulative
regret defined by

µ∗n−
amax∑
a=1

µaE [na(t)] (2.3)

where µ∗ = max1≤i≤A µi and E [na(t)] denotes the expected value of na(t).

Many algorithms have been developed for choosing arms in the multi-armed
bandit problem. Lai and Robbins (1985) showed that the best regret obtainable
grows logarithmically with the number of time steps t. Auer et al. (2002) achieved
logarithmical regret not only in the limit, but uniformly over time. Their UCB1-
TUNED algorithm chooses at each time step the arm that maximizes a formula
combining an exploitation term and an exploration term. The exploitation term
represents the current estimate for the expected reward of the arm, and the exploration
term represents an upper confidence bound for the expected reward. UCB1-TUNED
is used by MCTS in this thesis. It is defined in Formula 2.7 below.
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Markov Decision Processes

In the full reinforcement learning problem, the agent has to learn how to act in more
than one situation, and explores the consequences of its actions both with regard
to immediate rewards received, and to changing states of the environment. Markov
decision processes (MDPs) represent a classic framework for modeling this problem. A
deterministic MDP is defined as a 4-tuple (S,A, T (·, ·), R·(·, ·)), where S is the set of
states of the environment, A is the set of actions available to the agent (with A(s) ⊆ A
being the set of actions available in state s ∈ S), T is the transition function with
T (s, a) = s′ iff choosing action a in state s at time t will lead to state s′ at time t+ 1,
and R is the reward function with R(s, a) being the direct reward given to the agent
after choosing action a in state s. Note that this is similar to the one-player case of a
game as described in Section 2.1, where for all states s and s′ there exists an action a
with T (s, a) = s′ iff s a→ s′. MDPs with finite sets S and A are called finite MDPs.

In this thesis, we are dealing with episodic tasks (Sutton and Barto, 1998). In
episodic tasks, the agent’s experience can naturally be divided into independent
sequences of interactions (independent games) leading from a start state to one of a
number of terminal states. The agent chooses an action at ∈ A based on the current
state st ∈ S of the environment at each discrete time step t ∈ {1, 2, 3, . . . , tmax}, where
tmax is the final time step of the episode. The environment then returns a new state
st+1 and a reward rt+1. The agent chooses its actions according to a policy, a mapping
π(s, a) = Pr(at = a|st = s) from states of the environment to probabilities of selecting
each possible action when in those states.

The goal of the agent is to find a policy that at any point in time t maximizes
the expected return, the expected cumulative reward Rt =

∑tmax
k=t+1 rk. In value-based

reinforcement learning, this is accomplished by learning a value function V π(s) =
Eπ [Rt|st = s] representing the expected return when starting in a given state s and
following policy π thereafter. For every finite MDP, there is a unique optimal value
function V ∗ defined by ∀s ∈ S. V ∗(s) = maxπ V π(s), and at least one optimal policy
π∗ achieving V ∗.

Value-based RL algorithms typically find an optimal policy via policy iteration.
This process alternatingly computes the value function V π of the current policy π
(policy evaluation), and uses the newfound V π to derive a better policy π′ (policy
improvement).

Monte-Carlo Planning and Search in MDPs

Model-based reinforcement learning methods assume that the transition and reward
functions of the environment are known to the learning agent. Model-free methods
require only experience and no prior knowledge of the environment’s dynamics. Monte-
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Carlo methods are a class of model-free policy evaluation algorithms specifically tailored
to episodic tasks. Since episodic tasks provide well-defined returns for all visited states
at the end of each episode, the return of a given state can be estimated by averaging
the returns received after visiting that state in a number of episodes. According to
the law of large numbers, such Monte-Carlo estimates converge to the true value
function of the current policy as the agent collects more and more experience in its
environment.

Monte-Carlo approaches have several advantages. First, they require no prior
understanding of the environment’s dynamics. Second, they naturally focus learning
on the states and actions that are actually relevant to the agent, which is often a
small subset of the entire state and action spaces. Third, given a generative model of
the environment—a model that is able to draw samples from the transition function—
Monte-Carlo methods can be applied to simulated experience (rollouts), without
actually interacting with the environment. This process is called planning.

As opposed to learning, planning produces or improves an agent policy solely
through internal computation. Through a sample model or forward model, an agent
can select hypothetical actions, sample their hypothetical consequences, and collect
hypothetical experience about their values. If the model approximates reality closely
enough, the policy learnt through internal policy iteration will succeed when applied
to the real environment of the agent. In game programs, the sample model is typically
constructed by modelling the opponent’s behavior with a policy similar to that of
the agent, but with the opposite goal. This can be understood as an extension of the
reinforcement learning problem to two agents, taking turns in executing their actions.

If planning is focused on improving an agent policy only for the current state, it
is called search (Sutton and Barto, 1998). Other than general planning algorithms
which aim at finding optimal actions for all states in the state space, or at least for
states likely to be visited by the current policy as in Monte-Carlo planning, search is
only concerned with finding the agent’s optimal next action or action sequence.

Monte-Carlo Tree Search

As mentioned above, the task of playing a game can be described as a reinforcement
learning problem by viewing the game’s positions as states of the environment, the
game’s moves as actions of the agent, the game’s rules as defining the transition
function, and the results of the game as rewards for the agent. In this light, MCTS is a
value-based reinforcement learning technique, which in combination with a generative
model becomes a search technique. For each action decision of the agent, MCTS
constructs a search tree T ⊆ S, starting from the current state as root. This tree
is selectively deepened into the direction of the most promising actions, which are



38 Chapter 2. Search Methods

determined by the success of Monte-Carlo rollouts starting with these actions. After
n rollouts, the tree contains nodes for n+ 1 states, for which distinct estimates of V π

are maintained. For states outside of the tree, values are not explicitly estimated, and
moves are chosen randomly or according to an informed rollout policy.

In a variety of applications, a variant of MCTS called Upper Confidence Bounds
for Trees (UCT) (Kocsis and Szepesvári, 2006) has shown excellent performance
(Browne et al., 2012). UCT uses the UCB1 formula, originally developed for the
multi-armed bandit problem (Auer et al., 2002), to select states in the tree and to
trade off exploration and exploitation. In this thesis, a variant of UCT with the
selection policy UCB1-TUNED is used. This policy takes the empirical variance of
actions into account and has been shown to be empirically superior to UCB1 in several
multi-armed bandit scenarios (Auer et al., 2002) as well as within MCTS e.g. in the
game of Tron (Perick et al., 2012; Lanctot et al., 2013).

Described in the framework of policy iteration, there are two interacting processes
within MCTS.

Policy evaluation: In the backpropagation phase after each episode of experience,
the return (cumulative reward) from that episode is used to update the value estimates
of each visited state s ∈ T .

ns ←− ns + 1 (2.4a)

V̂ π(s)←− V̂ π(s) + r − V̂ π(s)
ns

(2.4b)

where ns is the number of times state s has been traversed in all episodes so far, and
r is the return received at the end of the current episode.

Policy improvement: During each episode, the policy adapts to the current value
estimates. In case of a deterministic MDP and MCTS using UCB1-TUNED in the
selection phase, and a uniformly random policy in the rollout phase, let

UVar(s, a) =
(

1
ns,a

ns,a∑
t=1

r2
s,a,t

)
−

(
1
ns,a

ns,a∑
t=1

rs,a,t

)2

+

√
2 lnns
ns,a

(2.5)

be an upper confidence bound for the variance of action a in state s, where ns,a is the
number of times action a has been chosen in state s in all episodes so far, and rs,a,t is
the reward received when action a was chosen in state s for the t-th time. Let
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UVal(s, a) =

√
ln(ns)
ns,a

min
(

1
4 , U

Var(s, a)
)

(2.6)

be an upper confidence bound for the value of action a in state s. Then, the policy of
the MCTS agent is

π(s) =


argmax
a∈A(s)

(
V̂ π
(
Pa(s)

)
+ C × UVal(s, a)

)
if s ∈ T

random
a∈A(s)

(s) otherwise
(2.7)

where Pa(s) is the state reached from position s with action a, random
a∈A(s)

(s) chooses one

of the actions available in s with uniform probability, and C is an exploration factor
whose optimal value is domain- and implementation-dependent.

An alternative implementation focuses on the estimation of state-action values
instead of state values. The core ideas of the algorithm remain unchanged, but the
nodes of the tree maintain an estimate of Qπ(s, a) for every legal move a ∈ A(s)
instead of just one estimate of V π(s). In this case, the policy evaluation step for each
visited state-action pair (s, a) is:

ns,a ←− ns,a + 1 (2.8a)

Q̂π(s, a)←− Q̂π(s, a) + r − Q̂π(s, a)
ns,a

(2.8b)

where ns,a is the total number of times action a has been chosen from state s; and the
policy improvement step is

π(s) =


argmax
a∈A(s)

(
Q̂π(s, a) + C × UVal(s, a)

)
if s ∈ T

random
a∈A(s)

(s) otherwise
(2.9)

if UCB1-TUNED is used for the selection phase and uniformly random actions are
chosen in the rollout phase. The UCT implementation used in this thesis is of the
state-action value estimation type.

When playing two-player games, two different implementations are possible, similar
to the minimax and negamax algorithms described in Subsection 2.2.2. Rewards can
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either be represented from the point of view of alternating players, which allows for
maximization at all levels of the tree, or from the point of view of the same player
throughout the tree, which has to be combined with alternating maximization and
minimization. The first solution is more typical and used in this thesis as well.

2.5.2 MCTS Enhancements in the Framework of Learning

Basic MCTS as outlined above does not generalize between states—values are estimated
separately for each state or state-action pair represented in the tree. In games with
large numbers of states and actions, starting to learn from scratch for every single
newly added state is time-consuming. Generalization techniques allow to kick start
this learning by transferring some of the acquired knowledge from similar states as
well. The definition of similarity used here determines whether this transfer is rather
accurate, but rarely applicable (small number of similar states), or widely applicable,
but rather noisy (large number of similar states).

In the following, s is the state reached by the sequence of actions as1as2as3 . . . asl(s)
of length l(s), and r is the state reached by the sequence of actions ar1ar2ar3 . . . arl(r) of
length l(r). N(s) is the neighborhood of s, that is the set of states considered similar
enough to s to allow for generalization. Knowledge is transferred from N(s) to s.

The selection phase of basic MCTS uses the narrowest definition of similarity, with
exactly one state in each neighborhood. No generalization is possible, but the learnt
values are always accurate for the state at hand.

N(s) = {s} (2.10)

The other extreme is the widest possible neighborhood, containing all states. Value
estimates for each legal action are then maintained regardless of the context in which
they are played, an approach called all-moves-as-first (AMAF) that was used in some
early work on Monte-Carlo Go (Brügmann, 1993).

N(s) = S (2.11)

The Go program Orego used in this thesis (Drake et al., 2011) maintains two
different value estimates for each state-action pair—the regular MCTS estimate and
the RAVE estimate (see 2.4). Both estimates use a form of generalization. The regular
MCTS estimate uses a transposition table, identifying each state s with any other
state r which has the same configuration of stones on the board c(r), the same simple



C
ha

pt
er

2

2.5. A Learning View on MCTS 41

ko point2 k(r), and the same player to move l(r)mod 2:

N(s) =
{
r ∈ S : c(r) = c(s) ∧ k(r) = k(s) ∧ l(s) mod 2≡ l(r)

}
(2.12)

The RAVE estimate (Gelly and Silver, 2007) uses a neighborhood where all
previously seen successors of a state are considered similar. When determining the
action to sample, past actions chosen in the current state and in any subsequent
state of previous rollouts are taken into account. Data from subsequent states are
accumulating quickly during sampling, but are typically discounted due to the noise
of such large neighborhoods. In computer Go, this neighborhood is so effective that
in combination with other enhancements such as domain knowledge for biasing the
search, it makes the exploration term of selection policies superfluous in some engines
such as MoGo (Lee et al., 2009).

N(s) = {r ∈ S : l(r) ≥ l(s) ∧ ∀t ≤ l(s), ast = art} (2.13)

Learning in the rollout phase of MCTS has become a promising research topic as
well (Rimmel and Teytaud, 2010; Finnsson and Björnsson, 2010; Tak et al., 2012).
Only one learning technique is used in the rollout phase in this thesis: the LGRF-2
rollout policy in Go (Baier and Drake, 2010). LGRF-2 considers each rollout move a
reply to the context of the two immediately preceding moves, and maintains a reply
table for each player. Replies are considered successful if the player making the reply
eventually wins the simulated game. Successful replies are stored in the winning
player’s reply table after each rollout, and unsuccessful replies are deleted from the
losing player’s reply table again. In the rollout phase, replies to the last two moves
are played whenever they can be found in the reply table of the current player and
are legal in the state at hand. Otherwise, the default rollout policy is used as backup.
For the LGRF-2 policy, the state neighborhood includes all states where the last two
moves are the same3.

N(s) =
{
r ∈ S : asl(s) = arl(r) ∧ a

s
l(s)−1 = arl(r)−1 ∧ l(s)

mod 2≡ l(r)
}

(2.14)

2The term ko refers to a Go-specific rule that forbids infinite loops of capturing and re-capturing.
3This simplified explanation ignores that during the rollout phase, LGRF-2 can back up to LGRF-1

when no reply is found. LGRF-1 uses one-move contexts, which are more frequent but less specific
than two-move contexts. Analogously to LGRF-2, the neighborhood of LGRF-1 includes all states
where the last move is identical.
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3
Test Domains

This chapter describes the test domains used in this thesis: the one-player games
SameGame, Clickomania, and Bubble Breaker, which are used in Part I; and the
two-player games Go, Connect-4, Breakthrough, Othello, and Catch the Lion, which are
used in Part II. The one-player games are discussed in Section 3.1, while the two-player
games are described in Section 3.2. All games are deterministic perfect-information
turn-taking games with discrete action spaces and state spaces.

For each game, we describe the origin, outline the rules, and provide references to
previous scientific work. Furthermore, we indicate the size of the domains with the help
of their state-space complexity and game-tree complexity (Allis, 1994). The state-space
complexity is the number of legal positions reachable from the start position of the
game. Upper bounds are often provided as an approximation due to the difficulty of
determining the exact number. The game-tree complexity is the number of leaf nodes
in the smallest full-width minimax search tree needed to solve the start position of the
game. If no more accurate number is known from the literature, this is approximated
using bd, where b is the average branching factor and d the average length of a game in
the domain at hand. These numbers are determined by self-play of our MCTS engine.

3.1 One-Player Domains
The one-player game SameGame was invented by Kuniaki Moribe and published under
the name Chain Shot! in 1985 (Moribe, 1985). Eiji Fukomoto ported it to Unix in
1992 and gave it the name SameGame. It has since been ported to multiple platforms
and enjoys popularity especially on mobile devices. Clickomania and Bubble Breaker
are names of SameGame variants. As the rules of these games are not always defined
consistently in the literature as well as in commercial products, this thesis assumes
the rules given in this section.
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At the beginning of the game, a two-dimensional board or grid is filled with M ×N
tiles of C different colors, usually randomly distributed (see Figure 3.1(a)). Each
move consists of selecting a group of two or more vertically or horizontally connected,
identically-colored tiles. When the move is executed, the tiles of this group are removed
from the board. If there are tiles above the deleted group, they fall down. If an entire
column of the board is emptied of tiles, the columns to the right shift to the left to
close the gap (Figures 3.1(b) to 3.1(d) show the effects of three moves). The game
ends when no moves are left to the player. The score the player receives depends on
the specific variant of the puzzle:

Clickomania. The goal of Clickomania is to clear the board of tiles as far as possible.
At the end of each game, the player receives a score equivalent to the number of tiles
removed.

Bubble Breaker. The goal of Bubble Breaker is to create and then remove the largest
possible groups of tiles. After each move removing a group of size groupSize, the
player receives a score of groupSize×(groupSize−1) points.

SameGame. In SameGame, both the removal of large groups and the clearing of the
board are rewarded. Each move removing a group of size groupSize results in a
score of (groupSize−2)2 points. Additionally, ending the game by clearing the board
completely is rewarded with an extra 1000 points. If the game ends without clearing
the board, the player receives a negative score. It is computed by assuming that all
remaining tiles of the same color are connected into virtual groups, and subtracting
points for all colors according to the formula (groupSize−2)2.

SameGame, Clickomania, and Bubble Breaker are popular test domains for Monte-
Carlo search approaches (Cazenave, 2009; Matsumoto et al., 2010; Schadd et al.,
2008a,b, 2012; Takes and Kosters, 2009). The three variants have identical move rules,
but different scoring rules, resulting in different distributions of high-scoring solutions.
The decision problem associated with these optimization problems is NP-complete
(Biedl et al., 2002; Schadd et al., 2012).

The state-space complexity for all SameGame variants can be computed as follows.
The board is either empty or contains a number of non-empty columns from 1 to
the width of the board w. Each non-empty column contains a number of non-empty
tiles from 1 to the height of the board h. Each non-empty tile can have any of the
c available colors. This leads to the following formula for computing the number of
legal SameGame positions:
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(a) A random start position on a
5×5 board with 3 colors.
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(b) Result after playing A in the
leftmost column as first move.
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(c) Result after playing C in the
leftmost column as second move.
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(d) Result after playing B in the
leftmost column as third move.

Figure 3.1: Moving in the SameGame family of games.
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1 +
w∑
i=1

 h∑
j=1

cj

i

(3.1)

For the parameters used in this thesis—15×15 boards with 5 colors for SameGame
and Bubble Breaker, and 20×20 boards with 10 colors for Clickomania—this results
in 5.27× 10158 and 8.23× 10400 states, respectively.

For a fixed initial position a conservative upper bound for the number of reachable
states can be given as follows. We assume that for every move, the number of legal
moves is equal to the maximal number of legal moves on any board with the current
number of tiles. This maximal number is the number of remaining tiles, divided by
two (the minimum size of a group) and rounded down. This leads to the following
formula:

⌊
(w × h)

2

⌋
! (3.2)

For 20×20 boards this results in 7.89× 10374 states. For 15×15 boards it results in
1.97× 10182 and does therefore not improve on the bound of 5.27× 10158 given above.

According to Schadd (2011), the game-tree complexity of SameGame is 1085,
based on empirically determined values of b = 20.7 and d = 64.4. Similarly, we can
approximate the game-tree complexity of the other game variants using bd, determining
b and d through simulations. In 100ms MCTS runs on 1000 randomly generated start
positions, the average length and branching factor of the best solutions found was
determined. The results were b = 19.4 and d = 50.0 for Bubble Breaker, and b = 24.8
and d = 119.1 for Clickomania. This leads to game-tree complexities of 2.46× 1064 for
Bubble Breaker, and 1.20× 10166 for Clickomania.

3.2 Two-Player Domains

In this section, we introduce the two-player games used as test domains for this thesis.
In addition to being discrete deterministic perfect-information turn-taking games, all
of them are zero-sum games. They differ, however, in their themes, i.e. in the goals
for their players. Go and Othello are territory games, Connect-4 is a connection game,
Breakthrough is a race game, and Catch the Lion is a capture game.
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3.2.1 Go
Go is an ancient board game originating from China thousands of years ago. It
is believed to be played by 25–100 million people. China, Japan, and Korea have
associations for professional, full-time Go players.

Go is played on a grid board of typically 19×19 intersections, although smaller
board sizes of 9×9 and 13×13 intersections are popular for quicker, informal games
and for educational purposes. Starting with an empty board, two players alternatingly
place white and black stones on an empty intersection of their choice (Figure 3.2(a)
shows a possible beginning of a game). If a player can surround any enemy stones
completely with her own, the surrounded stones are removed (“captured”). Passing is
allowed and typical if a player considers the outcome of the match sufficiently clear.
At the end of the game—after both players have passed—the player who occupies
or surrounds more intersections on the board (“territory”) than her opponent wins
(Figure 3.2(b) shows a possible final position).

There are several variations of the precise rules of Go in existence and in use. The
differences between these do not change the outcome of a game in the vast majority
of cases, but can occasionally have some influence on playing strategy. The Chinese
rules are assumed in this thesis.

(a) The first moves of a 13×13 game. (b) The end of a 9×9 game.

Figure 3.2: The game of Go.

The game of Go is the most well-known success story of MCTS. Due to the
introduction of the technique in 2006, the strength of computer Go programs has
been increased considerably (Lee et al., 2009). However, the world’s best human Go
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players are still superior to the best computer programs, and writing a master strength
Go program stands as a grand challenge of AI (Cai and Wunsch, II, 2007; Müller,
2002). In order to measure the progress made regarding this challenge, competitions
between high-ranking human professional players and strong Go programs are organized
regularly. In the last two Densei-sen competitions1, organized in 2013 and 2014 by
the University of Electro-Communications Tokyo and the Nihon Ki-in (Japanese Go
Association), the professionals Yoshio Ishida 9p and Norimoto Yoda 9p both achieved
a result of one win and one loss in these human-computer matches2. Their computer
opponents however still used four handicap stones, i.e. they were allowed to begin
the game with four stones of their color already on the board to compensate for the
difference in playing strength. This illustrates both the progress of computer Go in
the past years as well as the challenge still remaining until computers are on a par
with human professionals.

According to Tromp and Farnebäck (2007), the state-space complexity of 13×13
Go is 3.72 × 1079, and the complexity of 19×19 Go is approximately 2.08 × 10170.
The game-tree complexity can be approximated by determining the average branching
factor b and game length d of test games. Note that many computer programs play
a game of Go until the very end, when only one-intersection territories remain and
the determination of the winner is trivial. Human players tend to resign much earlier
in the game, as soon as both players agree on the owner of larger territories and the
overall winner of the game. In Orego (Drake et al., 2011), the Go program used
in this thesis, such behavior can be simulated by resigning as soon as the win rate
at the root of the search tree falls below a given threshold (set to 0.1 per default).
Both for programs and human players, the average game length (and thus also the
branching factor) therefore strongly depends on the player strength—the stronger the
players, the sooner they will agree on the outcome of a game on average. Allis (1994)
estimates b = 250 and d = 150 for 19×19 Go, indicating a game-tree complexity of
approximately 10360. Based on these numbers and other estimates for human play,
a realistic estimate for 13×13 Go is b = 120 and d = 80, leading to bd ≈ 2.2× 10166.
In 1000 games of self-play at 1 second per move with Orego, we determined b = 90
and d = 150 (bd = 1.37 × 10293). This shows the large differences due to the more
conservative behavior of computer programs when it comes to resigning.

3.2.2 Connect-4
Connect-4 was developed by Howard Wexler and published by Milton Bradley under
the name Connect Four in 1974, although its concept is claimed to be centuries old.

1See http://entcog.c.ooco.jp/entcog/densei/eng/index.html
2The abbreviation “9p” stands for “9 dan”, the highest possible ranking for a professional Go

player.
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In this thesis, the standard variant played on a 7× 6 board is used.
At the start of the game, the board is empty. The two players alternatingly place

white and black discs in one of the seven columns, always filling the lowest available
space of the chosen column. Columns with six discs are full and cannot be played
anymore. The game is won by the player who succeeds first at connecting four tokens
of her own color either vertically, horizontally, or diagonally. A possible winning
position for White is shown in Figure 3.3. If the board is filled completely without
any player reaching this goal, the game ends in a draw.

Figure 3.3: Connect-4. White won the game by playing the marked move.

The game of Connect-4 has been weakly solved by Allis (1988) and strongly solved
by Tromp (2008). It is a win for the first player (White). Connect-4 has also been
used in the MCTS framework in the context of General Game Playing (Finnsson and
Björnsson, 2008; Kirci et al., 2009; Sharma et al., 2008), and for solving positions
(Cazenave and Saffidine, 2011). Connect-4 was chosen as a test domain for this thesis
due to its simple rules and bounded game length, while still providing a search space
of non-trivial size and complexity.

The state-space complexity of Connect-4 is 4.53× 1012 (Edelkamp and Kissmann,
2008). Allis (1994) estimates b = 4 and d = 36, indicating a game-tree complexity of
approximately 1021.

3.2.3 Breakthrough
Breakthrough was invented by Dan Troyka in 2000 for a game design competition. The
variant of Breakthrough used in this thesis is played on a 6× 6 board. The game was
originally described as being played on a 7× 7 board, but other sizes such as 8× 8 are
popular as well, and the 6× 6 board preserves an interesting search space.

At the beginning of the game, the first two rows of the board are occupied by
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twelve white pieces, and the last two rows are occupied by twelve black pieces (see
Figure 3.4(a)). The two players alternatingly move one of their pieces straight or
diagonally forward, onto an empty square of the board. Two pieces cannot occupy
the same square. However, players can capture the opponent’s pieces by moving onto
their square in diagonal direction only. The game is won by the player who succeeds
first at reaching the home row of her opponent, i.e. reaching the first row as Black or
reaching the last row as White, with one piece (see Figure 3.4(b)).

(a) The start position. (b) A possible terminal position. Black
won by advancing one piece to White’s
home row.

Figure 3.4: Breakthrough.

The application of MCTS to (8×8) Breakthrough has been investigated by Lorentz
and Horey (2014). Breakthrough is also a popular domain in the General Game
Playing community (Finnsson and Björnsson, 2008; Gudmundsson and Björnsson,
2013; Kirci et al., 2009; Sharma et al., 2008; Tak et al., 2012). The game has been
solved on the smaller 6× 5 board—it is a second player win (Saffidine et al., 2012).

An upper bound for the state-space complexity of Breakthrough can be estimated
as follows. A simple approach is based on the fact that every square of the board can
be either empty or contain either a white or black piece, which leads to an estimate of
336 = 1.5 × 1017 for the 6 × 6 board. A more refined estimate is based on the idea
that either player can have between 0 and 12 pieces on the board in any legal position.
Ignoring the fact that no more than 1 piece can ever be on the opponent’s home row,
the number of different distributions of x pieces on 36 squares is

(36
x

)
, and the number

of different distributions of y opponent pieces is
(36−x

y

)
for each of these. This leads

to the following upper bound for the number of legal states:



C
ha

pt
er

3

3.2. Two-Player Domains 51

12∑
x=0

(36
x

) 12∑
y=0,(x,y)6=(0,0)

(
36− x
y

) ≈ 3.78× 1016 (3.3)

The game-tree complexity was estimated by sampling. In 1000 self-play games, we
found b = 15.5 and 29, indicating a game-tree complexity of 3.31× 1034.

3.2.4 Othello

Othello is closely related to the game Reversi, invented by either Lewis Waterman
or John W. Mollett in 1883. Othello’s modern rules were developed in Japan in the
1970s. The game is played on an 8× 8 board.

The game starts with four discs on the board, as shown in Figure 3.5(a). Each disc
has a black side and a white side, with the side facing up indicating the player the
disc currently belongs to. The two players alternatingly place a disc on the board, in
such a way that between the newly placed disc and another disc of the moving player
there is an uninterrupted horizontal, vertical or diagonal line of one or more discs of
the opponent. All these discs are then turned over, changing their color to the moving
player’s side, and the turn goes to the other player. If there is no legal move for a
player, she has to pass. If both players have to pass or if the board is filled, the game
ends. The game is won by the player who owns the most discs at the end (see Figure
3.5(b)).

(a) The start position. (b) A possible terminal position. White
won by owning 38 of the 64 discs on the
final board.

Figure 3.5: Othello.
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The game of Othello has been the subject of research in the minimax framework
(Rosenbloom, 1982; Buro, 2000), but is also used as a test domain for MCTS in
General Game Playing (Finnsson and Björnsson, 2008; Tak et al., 2012). Its three- and
four-player variant Rolit has been used for investigating multi-player search algorithms
(Schadd and Winands, 2011; Nijssen and Winands, 2013).

Allis (1994) estimates the state-space complexity of Othello to be roughly 1028,
and the game-tree complexity to be roughly 1058.

3.2.5 Catch the Lion
Catch the Lion—or doubutsu shogi, “animal Chess" in Japanese—was developed by
professional Shogi (Japanese Chess) players Madoka Kitao and Maiko Fujita in 2008
in order to attract children to Shogi. It attempts to reflect all essential characteristics
of Shogi in the simplest possible form (see Sato et al. (2010) for an MCTS approach
to the full game of Shogi). Catch the Lion is played on a 3× 4 board.

At the beginning of the game, each player has four pieces: a Lion, a Giraffe, an
Elephant, and a Chick. The pieces are marked with the directions in which they can
move—the Chick can move one square forward, the Giraffe can move one square in the
vertical and horizontal directions, the Elephant can move one square in the diagonal
directions, and the Lion can move one square in any direction (see Figure 3.6(a)).
In the commercial version, the pieces are additionally marked with animal pictures.
During the game, the players alternatingly move one of their pieces. Pieces of the
opponent can be captured. As in Shogi, they are removed from the board, but not
from the game. Instead, they switch sides, and the player who captured them can
later on drop them on any square of the board instead of moving one of her pieces. If
the Chick reaches the home row of the opponent, it is promoted to a Chicken, now
being able to move one square in any direction except for diagonally backwards. A
captured Chicken, however, is demoted to a Chick again when dropped. The game is
won by either capturing the opponent’s Lion, or moving your own Lion to the home
row of the opponent (see Figure 3.6(b)).

The game of Catch the Lion has been strongly solved (Tanaka, 2009). It is a win
for the first player (White). Catch the Lion is used in this thesis because it represents
a simple instance of Chess-like games, which tend to be particularly difficult for MCTS
(Ramanujan et al., 2010a).

The state-space complexity of Catch the Lion is 1.57× 109 (Tanaka, 2009). From
1000 self-play experiments, we estimated b = 10 and d = 35, which indicates a
game-tree complexity of 1035. The game length depends strongly on the player.
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(a) The start position. (b) A possible terminal po-
sition. White won by ad-
vancing her Lion to Black’s
home row. Black has two
prisoners, a Chick and an
Elephant.

Figure 3.6: Catch the Lion.
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Nested Monte-Carlo Tree Search

This chapter is based on:
Baier, H. and Winands, M. H. M. (2012). Nested Monte-Carlo Tree Search for

Online Planning in Large MDPs. In L. De Raedt, C. Bessière, D. Dubois, P. Doherty,
P. Frasconi, F. Heintz, and P. J. F. Lucas, editors, 20th European Conference on
Artificial Intelligence, ECAI 2012, volume 242 of Frontiers in Artificial Intelligence
and Applications, pages 109–114.

Baier, H. and Winands, M. H. M. (2012). Nested Monte-Carlo Tree Search for
Online Planning in Large MDPs. In J. W. H. M. Uiterwijk, N. Roos, and M. H. M.
Winands, editors, 24th Benelux Conference on Artificial Intelligence, BNAIC 2012,
pages 273–274. Extended abstract.

In MCTS, every state in the search tree is evaluated by the average outcome of
Monte-Carlo rollouts from that state. For the consistency of MCTS, i.e. for the
convergence to the optimal policy, uniformly random rollouts beyond the tree are
sufficient. However, stronger rollout strategies typically greatly speed up convergence.
The strength of Monte-Carlo rollouts can be improved for example by hand-coded
heuristics (Gelly et al., 2006). A more principled approach is the automated tuning of
rollout policies through supervised learning (Coulom, 2007a) or reinforcement learning
(Bouzy and Chaslot, 2006; Silver and Tesauro, 2009). In recent years, the topic of
online learning of rollout policies has received more and more attention, i.e. improving
the rollout policy while the search is running (Finnsson and Björnsson, 2008; Baier
and Drake, 2010; Rimmel and Teytaud, 2010; Tak et al., 2012).

In this chapter, we answer the first research question by proposing Nested Monte-
Carlo Tree Search (NMCTS), using the results of lower-level searches recursively to
provide rollout policies for searches on higher levels. Instead of improving a given
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set of rollout policy parameters either offline or online, we replace calls to the rollout
policy with calls to MCTS itself. We compare the performance of NMCTS to that of
regular (multi-start) MCTS as well as Nested Monte-Carlo Search (NMCS), at equal
time controls, in the deterministic one-player domains SameGame, Clickomania, and
Bubble Breaker.

The structure of this chapter is as follows. Section 4.1 provides an overview of
related work on nested or meta-search in a Monte-Carlo framework, and presents the
competing approach of NMCS. Section 4.2 proposes NMCTS as a generalization of
NMCS, and Section 4.3 shows experimental results in three test domains. Conclusions
and future research follow in Section 4.4.

4.1 Background
This section describes related work on nested search or meta-search. Furthermore,
Nested-Monte Carlo Search (NMCS) is introduced as the main competing approach
to which we are comparing NMCTS in Section 4.3.

4.1.1 Related Work

Tesauro and Galperin (1997) were the first to use Monte-Carlo rollouts for improving
an agent’s policy online. For each possible move (action) m in the current position
(state) of the agent, they generated several rollouts starting with m and then following
the policy as given by a “base controller” (an arbitrary heuristic). After estimating
the expected reward of each move by averaging rollout results, they improved the
heuristic by choosing and executing the move with the best estimated value. This
resembles one cycle of policy iteration, focused on the current state.

Yan et al. (2004) introduced the idea of online improvement of a base policy through
nested search. The first level of nesting corresponds to a rollout policy as proposed in
Tesauro and Galperin (1997), estimating the value of each move by starting with this
move and then following the base policy. The second level estimates the value of each
move by starting with this move and then executing a first-level search; higher levels
are defined analogously. Bjarnason et al. (2007) improved this approach for Solitaire
by using different heuristics and nesting levels for every phase of the game.

Cazenave (2007, 2009) proposed similar search methods to Yan’s iterated rollouts
under the names of Reflexive Monte-Carlo Search (RMCS) and Nested Monte-Carlo
Search (NMCS). The main difference to preceding approaches is that RMCS and
NMCS assume a uniformly random base policy instead of an informed search heuristic,
and the best sequence found so far is kept in memory. NMCS has since been applied
to a variety of problems, such as bus network regulation (Cazenave et al., 2009),
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expression discovery (Cazenave, 2010), the snake-in-the-box problem (Kinny, 2012),
and General Game Playing (Méhat and Cazenave, 2010). It has been improved for
certain types of domains by adding the AMAF technique (Akiyama et al., 2010) and
by re-introducing and optimizing base search heuristics (Rimmel et al., 2011). We
describe NMCS in detail in the next subsection.

Rosin (2011) developed Nested Rollout Policy Adaptation (NRPA), a variant of
NMCS that adapts the rollout policy during search using gradient ascent. At each
level of the nested search, NRPA shifts the rollout policy towards the best solution
found so far, instead of advancing towards this solution directly on the search tree.
The algorithm depends on a domain-specific representation of moves that allows for
the generalization of move values across different positions. Variants of NRPA have
been applied to logistics problems (Edelkamp et al., 2013; Edelkamp and Gath, 2014).

Outside of the Monte-Carlo framework, the concept of nested searches has been
applied to Proof-Number Search (Allis et al., 1994). The PN2 algorithm (Allis, 1994)
uses a nested, lower-level PN search at the leaves of the original, higher-level PN
search, improving the performance of PNS in solving games and endgame positions of
games (Breuker et al., 2001). The main improvement of PN2 over PNS is a strong
reduction of its memory requirements, an advantage that also applies to the nested
MCTS approach proposed in this chapter.

In the context of MCTS, nested search has so far only been used for the preparation
of opening books for the deterministic two-player game of Go (Audouard et al., 2009;
Chaslot et al., 2009; Chou et al., 2012). In these applications, nested search was
performed offline to provide opening databases for the underlying online game playing
agent. The different levels of search therefore used different tree search algorithms
adapted to their respective purpose, and nested and regular MCTS have not been
compared on the same task.

So far, no nested search algorithm has made use of the selectivity and exploration-
exploitation control that MCTS provides. In this chapter, we propose Nested Monte-
Carlo Tree Search (NMCTS) as a general online planning algorithm. We expect it to
outperform MCTS in a similar way to how NMCS outperforms naive Monte-Carlo
search—through nesting. Furthermore, we expect it to outperform NMCS in a similar
way to how MCTS outperforms naive Monte-Carlo search—through selective tree
search.

4.1.2 Nested Monte-Carlo Search

NMCS (Cazenave, 2009) is a popular approach to nested search in a one-player Monte-
Carlo framework. Algorithm 4.1 shows pseudocode for it. NMCS chooses and executes
actions step by step until a terminal position is reached (lines 4–32). It then returns
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the best score found together with the simulation that lead to this score (line 33).
The way actions are chosen in each step depends on the level of the search. At level 1,
NMCS conducts one uniformly random rollout to complete one simulation for each
legal action (lines 12–16). At level n for n ≥ 2, NMCS recursively conducts one
level-(n− 1) NMCS run for each legal action (line 18), returning the best simulation
found in that run. At all levels, NMCS keeps track of the globally highest-scoring
simulation found so far (lines 26–29). This simulation can be a result of the current
search step (lines 20–23), as well as any previous search step at equal or lower level.
NMCS then chooses the next action of the simulation with the globally highest score
so far for execution (lines 30–31).

NMCS does not make use of a tree or similar data structure as MCTS does, and
can therefore not balance exploration and exploitation through continuously improved
value estimates. In the next section, NMCS is characterized as a special case of
the newly proposed NMCTS algorithm. In Subsection 4.3.3, the two approaches are
compared experimentally.

4.2 Nested Monte-Carlo Tree Search
We define a level-0 Nested Monte-Carlo Tree Search (NMCTS) as a single rollout with
the base rollout policy—either uniformly random, or guided by a simple heuristic. Level-
1 NMCTS corresponds to MCTS, employing level-0 searches as position evaluations.
A level-n NMCTS run for n ≥ 2 recursively utilizes the results of level-(n− 1) searches
as evaluation returns. Level-2 NMCTS is illustrated in Figure 4.1. The only difference
to the illustration of regular MCTS in Figure 2.3 is the rollout phase, where a level-1
NMCTS run (an MCTS run) replaces the rollout.

Algorithm 4.2 shows pseudocode of NMCTS for deterministic domains. There
are only three differences between the NMCTS pseudocode in Algorithm 4.2 and the
pseudocode of regular MCTS in Algorithm 2.6. First, NMCTS is called on the highest
nesting level with the desired number of search levels and an empty simulation as an
additional argument (see code line 1). Second, a regular MCTS rollout with the base
rollout policy is only performed in the rollout phase on level 1 (see lines 12-18). On
higher levels, a lower-level NMCTS run is called as replacement for the rollout phase
(see lines 19-20). Third, the number of iterations is defined separately for each level
(see line 4). Finding the most effective trade-off between the numbers of iterations at
each level is subject to empirical optimization.

As the selection, expansion and backpropagation phases of MCTS are preserved in
NMCTS, many successful techniques from MCTS research such as the UCB1-TUNED
selection policy can be applied in NMCTS as well. Parameters can be tuned for each
level of search independently.
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1 NMCS(startState , level ) {
2 globalBestScore ← -Infinity
3 globalBestSimulation ← {}
4 while( startState . notTerminalPosition ) {
5 currentBestScore ← -Infinity
6 currentBestSimulation ← {}
7 currentState ← startState
8 for( numberOfLegalActions ( currentState )) {
9 untriedAction ← findUntriedAction ( currentState )

10 currentState ← takeAction ( untriedAction , currentState )
11 if(level = 1) {
12 while ( simulationNotEnded ) {
13 currentState ← takeRandomAction ( currentState )
14 simulation ← simulation + currentState
15 }
16 score ← cumulativeReward ( simulation )
17 } else {
18 (score , simulation ) ← NMCS( currentState , level -1)
19 }
20 if(score > currentBestScore ) {
21 currentBestScore ← score
22 currentBestSimulation ← simulation
23 }
24 currentState ← startState
25 }
26 if( currentBestScore > globalBestScore ) {
27 globalBestScore ← currentBestScore
28 globalBestSimulation ← currentBestSimulation
29 }
30 startState ← takeAction ( globalBestSimulation .nextAction ,
31 startState )
32 }
33 return ( globalBestScore , globalBestSimulation )
34 }

Algorithm 4.1: NMCS.
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(a) The selection phase. The selec-
tion policy is applied recursively un-
til an unsampled action is reached.

(b) The expansion phase. The newly
sampled action is executed and the
resulting state is added to the tree.

(c) The “rollout” phase. Instead of
one rollout, an entire level-1 NMCTS
run (i.e. an MCTS run) is conducted.

(d) The backpropagation phase. The
best solution found by the level-1
search is returned to level 2 and back-
propagated.

Figure 4.1: NMCTS.
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1 NMCTS(startState , simulation , level ) {
2 bestScore ← -Infinity
3 bestSimulation ← {}
4 for( numberOfIterationsForLevel (level )) {
5 currentState ← startState
6 while( currentState ∈ Tree) {
7 currentState ← takeSelectionPolicyAction ( currentState )
8 simulation ← simulation + currentState
9 }

10 addToTree ( currentState )
11 if(level = 1) {
12 while( currentState . notTerminalPosition ) {
13 currentState ← takeRolloutPolicyAction ( currentState )
14 simulation ← simulation + currentState
15 }
16 score ← cumulativeReward ( simulation )
17 } else {
18 (score , simulation ) ←
19 NMCTS ( currentState , simulation , level -1)
20 }
21 forall ( state ∈ { simulation ∩ Tree }) {
22 state. value ← backPropagate (state.value , result )
23 }
24 if(score > bestScore ) {
25 bestScore ← score
26 bestSimulation ← simulation
27 }
28 }
29 return (bestScore , bestSimulation )
30 }

Algorithm 4.2: NMCTS.
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Note that the tree nodes used by a lower-level search do not have to be kept in
memory after that search has finished. NMCTS can free them for future lower-level
searches. Moreover, a higher-level tree is typically much smaller when using the more
time-consuming nested searches than when using the base rollout policy. These factors
together result in NMCTS using far less memory than a global MCTS run with the
same time limits, giving NMCTS an additional advantage over MCTS similar to the
advantage of PN2 over PNS (Breuker, 1998).

In Schadd et al. (2012), it was found to be effective in SameGame not to spend
the entire search time on the initial position of a game, but to distribute it over all
moves (or the first z moves). We call this technique move-by-move search as opposed
to global search, and it is applicable at all levels of NMCTS, distributing time over zi
moves on level i. If it is used on level 1 for example, the rollouts of the level-2 search
are not replaced by one MCTS search anymore, but by several MCTS searches that
are performed in sequence. If it is used on level 2, the higher-level search itself is split
into a sequence of several MCTS searches. In case move-by-move search is used, a
decision has to be made which move to choose and execute between two such searches.
Two possible options are a) choosing the most-sampled next move (as traditionally
done in MCTS), or b) choosing the next move in the overall best solution found so far.

NMCTS is a generalization of MCTS, which is equivalent to level-1 NMCTS.
Furthermore, NMCTS can be seen as a generalization of NMCS. NMCTS behaves like
NMCS if move-by-move search is applied at all levels, only one rollout per legal move
is used in each move search, and the next move of the best known solution is chosen
for execution after each move search. This special case of NMCTS does not provide
for an exploration-exploitation tradeoff, nor does it build a tree going deeper than the
number of nesting levels used, but it can allow relatively deep nesting due to the low
number of rollouts per search level.

4.3 Experimental Results
We have tested NMCTS on three different deterministic, fully observable domains:
the puzzles SameGame, Clickomania and Bubble Breaker. A random rollout policy
was used in all three domains. For SameGame, we additionally employed an informed
rollout policy. It consists of the TabuColorRandomPolicy (Schadd et al., 2008b;
Cazenave, 2009), setting a “tabu color” at the start of each rollout which is not chosen
as long as groups of other colors are available. We improved this policy further by
adding a multi-armed bandit (based on UCB1-TUNED) for globally learning the
best-performing tabu color in each search. The speed of our engine was 9500 rollouts
per second in SameGame with random rollouts, 9100 rollouts per second in SameGame
with informed rollouts, 9900 rollouts per second in Bubble Breaker (the domain with
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the shortest games on average, compare Section 3.1), and 8200 rollouts per second in
Clickomania (the domain with the longest games on average). These numbers were
averaged over 10-second runs from the start position of 10 randomly generated boards
per domain.

For all domains, rollout outcomes were normalized to the interval [0, 1]. This was
done by determining a lower bound l and upper bound u for the possible scores in
each domain, and linearly mapping the resulting interval [l, u] to [0, 1]. The upper
bound for SameGame assumes that the entire board is filled with tiles of only one
color in the start position. This allows to clear the board with a single move, leading
to a score of

((15× 15)− 2)2 + 1000 = 50749 (4.1)

for a board size of 15×15. The lower bound for SameGame assumes that the starting
board is filled with a checkerboard pattern of two colors such that no move is possible.
This leads to a score of

−
(⌊

15× 15
2

⌋
− 2
)2
−
(⌈

15× 15
2

⌉
− 2
)2

= −24421 (4.2)

In Bubble Breaker, the same starting boards lead to an upper bound of (15× 15)×
(15× 15− 1) = 50400 for clearing the board in one move, and a lower bound of 0 for
having no legal move. The upper bound for Clickomania is a score of 400 for clearing
a 20×20 board, and the lower bound is a score of 0 for having no legal move.

In Subsection 4.3.1, we explain the tuning of the MCTS parameters. The optimal
settings found are used in Subsection 4.3.2 to compare the performance of level-2
NMCTS and (multi-start) MCTS, and in Subsection 4.3.3 to compare the performance
of level-2 NMCTS and NMCS.

4.3.1 Parameter Optimization

As mentioned in Section 4.2, the optimal numbers of samples at each level of NMCTS
are subject to empirical optimization. A level-2 NMCTS run with a total time of
9120 seconds can for example consist of 152 level-1 (MCTS) searches of 60 seconds
each, or 2280 level-1 (MCTS) searches of 4 seconds each, and so on. MCTS runs of
different lengths can be used. In the first series of experiments, we therefore tuned the
exploration factor C for regular MCTS runs of various time settings. For each time
setting and domain, 10-20 values of C at different orders of magnitude between 0 and
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0.1 were tested. Figures 4.2 to 4.5 present the performance of MCTS with different
exploration factors at 15 s, 60 s, and 240 s (in Clickomania at 4 s, 16 s, and 64 s) in
order to give an idea of the parameter landscapes in the four test domains. Tables 4.1
and 4.2 show the values of C found to perform optimally at all time settings. These
values are used in Subsection 4.3.2. Additionally, we activated move-by-move search
and tuned C as well as the number of moves z over which to distribute the total
search time. For each time setting and domain, 6-12 values of z between 1 and 160
were tried. The optimal values found are shown in Tables 4.3 and 4.4. These values
are used in Subsection 4.3.3. All tuning experiments employed independent sets of
randomly generated training positions.
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Figure 4.2: Performance of MCTS in SameGame with random rollouts.

A general observation is that the less search time MCTS has, the lower its explo-
ration factor has to be in order to build a deep enough tree. If C is too high, the last
moves of the game stay beyond the tree and may therefore remain suboptimal—chosen
by the rollout policy instead of optimized by the selection policy of MCTS. A second
observation is that the optimal exploration factors for the one-player domains are
much smaller than for the two-player domains used in Part II of this thesis. One
reason for this is that a player in a one-player game wants to find a good solution to
the entire game, consisting of many moves, which potentially requires a very deep
search. Missing some good moves in the next few plies is often less problematic on
average than having a too shallow tree and not optimizing the end of the game at all.
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Figure 4.3: Performance of MCTS in SameGame with informed rollouts.
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Figure 4.4: Performance of MCTS in Bubble Breaker.
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Figure 4.5: Performance of MCTS in Clickomania.

Table 4.1: Best-performing exploration factors C for MCTS in SameGame with random
rollouts, SameGame with informed rollouts, and Bubble Breaker.

Time in s Best-performing value of C in

SameGame random SameGame informed Bubble Breaker

0.25 0 0 0
1 0 0.0002 0.0004
4 0.0002 0.0005 0.008
15 0.0005 0.0012 0.016
60 0.0013 0.0025 0.0275
240 0.0028 0.005 0.055
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Table 4.2: Best-performing exploration factors C for MCTS in Clickomania.

Time in s C

0.016 0
0.05 0
0.25 0
1 0
4 0
16 0.0025
64 0.012
1280 0.032

Table 4.3: Best-performing exploration factors C and numbers of moves z for move-by-move
MCTS in SameGame with random rollouts and SameGame with informed rollouts.

Time in s SameGame random SameGame informed

C z C z

0.05 0.0001 50 0.0002 10
0.1 0.0001 50 0.0001 5
0.2 0.0001 50 0.00005 5
0.4 0.00005 40 0.00005 1
0.8 0.0001 40 0.00005 1
1.6 0.00003 30 0.0001 1
3.2 0.00001 30 0.0003 30
6.4 0.0001 25 0.0003 30
12.8 0.0002 25 0.0004 30
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Table 4.4: Best-performing exploration factors C and numbers of moves z for move-by-move
MCTS in Bubble Breaker and Clickomania.

Time in s Bubble Breaker Clickomania

C z C z

0.05 0.0002 50 0 100
0.1 0.0002 50 0 100
0.2 0.0002 40 0.0001 100
0.4 0.0002 40 0.0001 100
0.8 0.0002 40 0.0001 100
1.6 0.0003 30 0.0005 100
3.2 0.0008 30 0.0005 100
6.4 0.004 30 0.001 100
12.8 0.02 30 0.003 100

A player in a two-player game however wants to find a good next move only. The
future of the game depends on her adversary as well, so optimizing a possible game
ending that might never be reached is often less useful on average than exploring more
strongly and avoiding mistakes in the next few plies.

When move-by-move search is activated, we can observe two different trends. The
first trend, observed in SameGame and Bubble Breaker, is that the optimal values for
z are lower for longer total search times. The longer the total search time, the fewer
moves counting from the start of the game it should be distributed over, resulting in
a longer search time per move. The reason seems to be that with a relatively low z,
more effort is spent on the optimization of the beginning of the game. This is crucial
in the game variants where large groups have to be formed in order to achieve high
scores. At the end of these games, after the high-scoring move or moves have been
made, all further moves are less relevant to the total score on average. The longer
time per move search resulting from a lower z is sufficient at long time settings for
the last move search to grow its tree deep enough, and optimize the last moves of the
game well enough. Clickomania seems to behave differently since the optimization of
all moves from the beginning to the end of the game appears to be similarly important
in this domain. The optimal z therefore stays constant with larger total search times.

The second trend is observed only in SameGame with informed rollouts. Here, the
optimal value for z increases again with the longest total search times tested (3.2 to
12.8 seconds). This may be due to the TabuColorRandomPolicy being restarted in
every move and requiring a certain time to learn the best “tabu color” effectively. On
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average, this reduces the optimal values of z. Only with relatively long search times is it
optimal to distribute the total time over many moves, as the TabuColorRandomPolicy
then has enough time in each move search to find a suitable tabu color. It is unclear
why this effect comes into play so suddenly when increasing search time from 1.6
seconds to 3.2 seconds, but the performance differences are rather small so noise could
play a role.

4.3.2 Comparison to MCTS

As it has been shown for SameGame that restarting several short MCTS runs on
the same problem can lead to better performance than a single, long run (Schadd
et al., 2008b), we compared NMCTS against multi-start MCTS. The settings for C
found to be optimal for MCTS in the previous subsection (see Tables 4.1 and 4.2)
were used as level-1 exploration factor C1 for NMCTS and as C for multi-start MCTS.
NMCTS and multi-start MCTS had the same total time per position, and the number
of nested level-1 NMCTS runs was equal to the number of restarts for multi-start
MCTS. The exploration factor C2 of level 2 was set to 0 in all NMCTS conditions.
Since NMCTS did not use move-by-move search here, and restarting searches results
in similar memory savings as nesting them, the results purely reflect the advantage
of nesting the level-1 searches into a tree (NMCTS) instead of performing them
sequentially (multi-start MCTS).

The experiments for Bubble Breaker and SameGame were conducted on the first
100 test positions used in Schadd et al. (2008b)1. These positions consist of 15×15
boards with randomly distributed tiles of 5 different colors. Algorithms were allocated
9120 seconds (about 2.5 hours) of computation time per position. The experiments on
Clickomania were conducted using a test set of 100 randomly generated 20×20 boards
with 10 different tile colors, to provide a greater challenge. For the same reason, each
algorithm only ran for 1280 seconds per position in Clickomania.

Figures 4.6, 4.7, and 4.8 show the results for Bubble Breaker and SameGame with
both random and informed rollouts. In these three domains, the effectiveness and
behavior of multi-start MCTS confirms the findings of Schadd et al. (2008b). The
TabuColorRandomPolicy also performed well compared to the random rollout policy in
SameGame. Furthermore, we observe that level-2 NMCTS significantly outperformed
multi-start MCTS in all experimental conditions (p<0.001 in a paired-samples, two-
tailed t-test). The figures show both the performance of NMCTS and multi-start
MCTS as well as the average difference in performance and the corresponding 95%
confidence interval. The best results in SameGame for example were achieved building
a level-2 tree out of 9120 level-1 searches of 1 second duration each, with informed

1Available online at http://project.dke.maastrichtuniversity/games/SameGame/TestSet.txt
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base-level rollouts. In comparison to the best performance of multi-start MCTS,
achieved with 2280 restarts of 4-second searches, the use of a nested tree increased the
average best solution per position from 3409.1 to 3487.7. As a comparison, a doubling
of the multi-start MCTS search time to 4560 restarts only resulted in an increase
to 3432.5. The best results in SameGame with random rollouts were achieved with
9120 level-1 searches of 1 s each, increasing the average best solution per position
from 2650.1 to 2861.7 compared to multi-start MCTS. In Bubble Breaker, 9120 level-1
searches of 1 second duration increase the average best outcome from 2335.0 to 2661.7.
Also note how the advantage of NMCTS over multi-start MCTS is the largest with
short level-1 searches, especially in SameGame. Longer and therefore fewer level-1
searches do not seem to allow for large enough level-2 trees, so that most level-1
searches are started relatively close to the root position where they are also started in
multi-start MCTS. In SameGame and Bubble Breaker, the numbers of restarts/level-1
searches tested ranged between 38 and 36480, i.e. the time per restart/level-1 search
ranged between 240 seconds and 250 milliseconds. Longer and shorter searches were
far off the observed maximum performance; additionally, longer searches resulted in
memory problems, and shorter searches resulted in problems with precise timing.

In Clickomania, level-2 NMCTS also achieved the highest score (see Figure 4.9).
25600 level-1 searches of 50 ms each score an average of 360.3 for NMCTS, while the
best result for multi-start MCTS is 351.2. This difference is statistically significant
(p<0.0001). Because the observed performance curve was not concave in Clickomania,
we extended the tested range to 1280 seconds per restart/level-1 search on the longer
end and to 16 milliseconds per restart/level-1 search on the lower end. The results
for long durations of restarts/level-1 searches suggest that a single, global MCTS run
could perform best in Clickomania—but memory limitations reduced the effectivity
of this approach, leading to the dip in performance visible at 1 restart in Figure 4.9.
NMCTS however is able to make better use of many short searches due to nesting
them into a tree instead of conducting them sequentially. This is probably why the
performance of NMCTS, other than that of multi-start MCTS, increases again for high
numbers of restarts/level-1 searches. We observed that the best-performing NMCTS
setting tested used less than 15% memory of what a single, global MCTS run would
have required for optimal performance.

4.3.3 Comparison to NMCS

The last series of experiments was concerned with a comparison of level-2 NMCTS
to NMCS. Here, NMCTS was tuned using move-by-move search on both level 1 and
2, and advancing from move to move by choosing the next move of the best solution
found so far—with the exception of Clickomania, where move-by-move search did not
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Figure 4.6: Performance of level-2 NMCTS in SameGame with random rollout policy. Bars
show the average performance increase over multi-start MCTS with a 95% confidence interval.
The search time was 9120 seconds per position.
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Figure 4.7: Performance of level-2 NMCTS in SameGame with informed rollout policy. Bars
show the average performance increase over multi-start MCTS with a 95% confidence interval.
The search time was 9120 seconds per position.
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Figure 4.8: Performance of level-2 NMCTS in Bubble Breaker. Bars show the average
performance increase over multi-start MCTS with a 95% confidence interval. The search
time was 9120 seconds per position.
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Figure 4.9: Performance of level-2 NMCTS in Clickomania. Bars show the average perfor-
mance increase over multi-start MCTS with a 95% confidence interval. The search time was
1280 seconds per position.
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improve performance in our experiments. The settings for C1 and z1 of NMCTS were
taken from Tables 4.3 and 4.4. Only in Bubble Breaker a lower z1 (20 instead of 40)
was more effective, possibly because this setting wastes less time when the level-2 tree
is already relatively deep and level 1 cannot add another 40 plies anymore. z2 was
individually tuned for each domain, and C2 was 0 throughout. Games were played
on the same test positions and with the same total time as in Subsection 4.3.2, i.e.
9120 seconds in SameGame and Bubble Breaker, and 1280 seconds in Clickomania.
NMCS was not able to complete a level-3 search in the given time; consequently, the
best solutions found when time ran out were used for the comparisons. Level-2 NMCS
however was repeated several times until time ran out, with the best values of all
repetitions used for the comparisons.

Figures 4.10 to 4.13 include both the average results of the three algorithms as
well as the average performance increase of NMCTS over the best-performing NMCS
version, and the corresponding 95% confidence interval. They also show the best
performance of NMCTS without move-by-move search in order to demonstrate the
effect of this option, except for Clickomania where move-by-move in ineffective. These
performance data are taken from Section 4.3.2.

2,800 2,900 3,000 3,100 3,200 3,300

level-2 NMCTS without move-by-move

level-2 NMCTS

level-3 NMCS

level-2 NMCS

average best solution over 100 test positions

0 100 200 300 400 500

improvement of NMCTS over NMCS

average improvement over 100 test positions

Figure 4.10: Performance of NMCS and level-2 NMCTS in SameGame with random rollout
policy. NMCTS employs 142 level-1 searches, each 1600 ms long, for each of the first z2 = 40
moves of a game. The 1600 ms are distributed over z1 = 30 moves. C1 = 0.00003.

In conclusion, NMCTS outperforms NMCS in SameGame with random rollouts
(p<0.0001), SameGame with informed rollouts (p<0.0001), Bubble Breaker (p<0.05),
and Clickomania (p<0.05).
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Figure 4.11: Performance of NMCS and level-2 NMCTS in SameGame with informed rollout
policy. NMCTS employs 285 level-1 searches, each 3200 ms long, for each of the first z2 = 10
moves of a game. The 3200 ms are distributed over z1 = 30 moves. C1 = 0.0003.
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Figure 4.12: Performance of NMCS and level-2 NMCTS in Bubble Breaker. NMCTS employs
570 level-1 searches, each 400 ms long, for each of the first z2 = 40 moves of a game. The 400
ms are distributed over z1 = 20 moves. C1 = 0.0002.
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Figure 4.13: Performance of NMCS and level-2 NMCTS in Clickomania. NMCTS employs
25600 level-1 searches of 50 ms each. Move-by-move search is not used. C1 = 0.

4.4 Conclusion and Future Research

In this chapter, we proposed Nested Monte-Carlo Tree Search (NMCTS) as an online
planning algorithm for large sequential decision problems. It replaces calls to the
rollout policy with calls to MCTS itself, recursively creating higher-quality rollouts
for the higher levels of the search. Empirical results in the test domains of SameGame
(with random and with informed rollouts), Bubble Breaker and Clickomania show
that NMCTS significantly outperforms multi-start Monte-Carlo Tree Search (MCTS).
Experiments also indicate performance superior to Nested Monte-Carlo Search (NMCS)
in all test domains. Since both MCTS and NMCS represent specific parameter settings
of NMCTS, correct tuning of NMCTS has to lead to greater or equal success in
any domain. In conclusion, NMCTS is a promising approach to one-player search,
especially for longer time settings.

When move-by-move search is applied at level 1 of a level-2 NMCTS search, the
resulting algorithm is an MCTS variant using shallow MCTS searches to determine the
rollout moves. A similar idea, using shallow minimax searches to determine the rollout
moves of a higher-level MCTS search, is explored for two-player games in Chapters 7
and 8 of this thesis.

Three promising directions remain for future research on NMCTS. First, in the
experiments so far we have only used an exploration factor of 0 for level 2. This
means that the second level of tree search proceeded greedily in all experiments—it
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only made use of the selectivity of MCTS, but not of the exploration-exploitation
tradeoff. Careful tuning of exploration at all search levels could lead to performance
improvements. Second, it appears that NMCTS is most effective in domains where
multi-start MCTS outperforms a single, long MCTS run (like SameGame and Bubble
Breaker), although its lower memory requirements can still represent an advantage in
domains where multi-start MCTS is ineffective (like Clickomania). The differences
between these classes of tasks remain to be characterized. Third, NMCTS could be
extended to non-deterministic and partially observable domains, for example in the
form of a nested version of POMCP (Silver and Veness, 2010).
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Beam Monte-Carlo Tree Search

This chapter is based on:
Baier, H. and Winands, M. H. M. (2012). Beam Monte-Carlo Tree Search. In

2012 IEEE Conference on Computational Intelligence and Games, CIG 2012, pages
227–233.

In the most widely used variants of MCTS, employing UCB1 or UCB1-TUNED
(Auer et al., 2002) as selection strategies, the selectivity of the search is controlled by
a single parameter: the exploration factor C. In some cases however, MCTS is not
able to grow a search tree deep enough even when exploration is completely turned
off—in one-player domains with long solution lengths for example, or when searching
with a short time limit. Because the search effort potentially grows exponentially
in the tree depth, the search process then spends too much time on optimizing the
first moves of the solution, and not enough time on optimizing the last moves. One
option to approach this problem is move-by-move search (Schadd et al., 2012) as used
in the previous chapter, distributing the total search time over several or all moves
in the game instead of conducting only one global search from the initial position.
However, move-by-move search has to commit to a single move choice at each tree
depth d before it starts a new search at d+ 1. New results from simulations deeper in
the tree cannot influence these early move decisions anymore.

Another option is beam search. This classic search method reduces the number
of nodes at each tree level to a constant number, allowing for search effort linear in
the tree depth. Since its first application in speech recognition (Lowerre, 1976), it has
been used in a multitude of fields, such as machine translation (Tillmann and Ney,
2003), planning (Zhou and Hansen, 2006), and scheduling (Sabuncuoglu and Bayiz,
1999).
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In this chapter, we answer the second research question by proposing Beam Monte-
Carlo Tree Search (BMCTS), combining the MCTS framework with the idea of beam
search. Like MCTS, BMCTS builds a search tree using Monte-Carlo simulations as
state evaluations. When a predetermined number of simulations has traversed the
nodes of a given tree depth, these nodes are sorted by a heuristic value, and only
a fixed number of them is selected for further exploration. BMCTS is reduced to a
variant of move-by-move MCTS if this number, the beam width, is set to one. However,
it generalizes from move-by-move search as it allows to keep any chosen number of
alternative moves when moving on to the next tree depth. BMCTS expands a tree
whose size is linear in the search depth, improving on MCTS especially in domains with
long solution lengths or short time limits. We compare the performance of BMCTS to
that of regular MCTS, at a variety of time controls, in the one-player test domains
SameGame, Clickomania, and Bubble Breaker.

This chapter is organized as follows. Section 5.1 provides an overview of related
work on beam search. After Section 5.2 proposes BMCTS, Section 5.3 shows the
behavior of the algorithm with respect to its parameters, and experimental results of
testing it against MCTS. A combination of NMCTS (see the previous chapter) and
BMCTS is considered as well. Conclusions and future work follow in Section 5.4.

5.1 Related Work
Beam search (Lowerre, 1976) is a technique that reduces the memory requirements of
breadth-first or best-first search at the cost of completeness and optimality. Its basic
idea is using heuristic value estimates to determine the most promising states at each
level of the search tree. Only these states are then selected for further expansion, while
all others are permanently pruned. Consequently, time and memory complexity of the
search are linear in the beam width and the tree depth. By increasing or decreasing
the beam width, memory can be traded off against solution quality, with a width of 1
resulting in a greedy search, and an infinite width resulting in a complete search.

Beam search has also been extended by combining it with depth-first search (Zhou
and Hansen, 2005) as well as with limited discrepancy search (Furcy and Koenig, 2005).
These variants turn beam search into a complete search algorithm, i.e. an algorithm
guaranteed to find a solution when there is one.

In the Monte-Carlo framework, Monte-Carlo Beam Search (MCBM, Cazenave
2012) combines beam search with Nested Monte-Carlo Search (NMCS), a special case
of NMCTS (see Chapter 4) that has shown good results in various one-player games
(Cazenave, 2009). Beam search has so far not been applied to MCTS. A similar idea to
beam search, however, has been applied per node instead of per tree level. Progressive
widening or unpruning (Chaslot et al., 2008; Coulom, 2007a) reduces the number of



C
ha

pt
er

5
C
ha

pt
er

5

5.2. Beam Monte-Carlo Tree Search 81

children of rarely visited nodes. Heuristics are used to choose the most promising
children. As the number of rollouts passing through the node increases, i.e. as the
node is found to be more and more important by the search, the pruned children are
progressively added again. This way, search effort for most nodes can be reduced,
while retaining convergence to the optimal moves in the limit. A disadvantage of this
technique, especially for one-player games, is that the search effort per tree level cannot
be controlled, and therefore exponential growth in the tree depth still potentially poses
a problem.

In the next section, we describe an application of the beam search idea in MCTS,
reducing the time and space complexity of MCTS to linear in the tree depth. Our
algorithm does not require heuristic knowledge.

5.2 Beam Monte-Carlo Tree Search
In this section, we propose Beam Monte-Carlo Tree Search (BMCTS), our approach
for combining beam search with MCTS. In addition to the MCTS tree, BMCTS
maintains a counter for each tree depth, counting the number of simulated games
that have passed through any tree node at this depth in the search so far. During
backpropagation, these counters are compared with the first parameter of BMCTS:
the simulation limit L. If any tree depth d reaches this limit, the tree is pruned at
level d.

Pruning restricts the number of tree nodes at depth d to the maximum number
given by the second parameter of BMCTS: the beam width W . In order to do this,
all tree nodes of depth d are first sorted by their heuristic values. Due to the large
variance of Monte-Carlo value estimates at low simulation counts, we use the number
of visits of a tree node instead of its estimated value as our heuristic—nodes that have
seen the highest numbers of simulations are judged to be most promising by the search
algorithm (similar to the final move selection mechanism “robust child”, Chaslot et al.
2008). Then, the best W nodes at level d together with all of their ancestor nodes are
retained, while all of their descendants as well as the less promising nodes of depth d
are discarded. Deleting the descendants might not be optimal in every domain, but
helped avoid getting stuck in local optima in preliminary experiments.

When the search continues, no new nodes up to depth d will be created anymore.
The selection policy takes only those moves into account that lead to the retained
nodes. Beyond depth d, the tree grows as usual.

Note that with W = 1, BMCTS is reduced to a variant of move-by-move search
as described in Schadd et al. (2012). This time-management technique distributes
search time over several or all moves in the game instead of conducting only one
global search from the initial position (see Chapter 4). If W = 1, the L parameter of
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BMCTS determines the timings when move-by-move MCTS proceeds from move to
move, and therefore the total number of move searches the search time is distributed
over. However, BMCTS generalizes from move-by-move MCTS to larger beam widths
than 1, examining a number of alternative moves instead of focusing on just one when
proceeding with the next move of the game.

Algorithms 5.1 and 5.2 show pseudocode of BMCTS for deterministic one-player
games, using a uniformly random rollout policy. There are only two differences between
the BMCTS pseudocode in Algorithm 5.1 and the pseudocode of regular MCTS in
Algorithm 2.6. In line 8, the rollout counter for the depth currently traversed in the
selection phase is incremented. In lines 20 to 22, the tree pruning method pruneTree
is called in case any traversed depth has reached the simulation limit L. This three-
step tree pruning method is outlined in Algorithm 5.2 and visualized in Figure 5.1.
Lines 2, 3, and 4 of Algorithm 5.2 correspond to Subfigures 5.1(b), 5.1(c), and 5.1(d),
respectively.

5.3 Experimental Results
In this section, we compare regular MCTS and BMCTS in the domains SameGame,
Clickomania, and Bubble Breaker, using a random rollout policy. For SameGame,
we also employ the TabuColorRandomPolicy as rollout policy (see Section 4.3). In
Subsection 5.3.1, we start by showing the parameter landscape of BMCTS in the test
domains, explaining how optimal settings for C, L, and W were found. Afterwards,
these settings are used in Subsection 5.3.2 to compare the performance of BMCTS
and regular MCTS. The performance of genuine beam search with W > 1 is compared
to that of move-by-move search with W = 1 as well. In Subsection 5.3.3, BMCTS
and regular MCTS are compared again, this time using the maximum over multiple
runs instead of the result of a single search run for comparison. These results are
finally used in Subsection 5.3.4 to explore the combination of BMCTS with NMCTS
as proposed in Chapter 4.

5.3.1 Parameter Optimization

In the first set of experiments, we examine the influence of the BMCTS parameters
C, L, and W in each test domain. These tuning experiments are conducted on a
training set of 500 randomly generated 20×20 boards with 10 different tile colors in
Clickomania, and 500 randomly generated 15×15 boards with 5 different tile colors in
SameGame and Bubble Breaker.

The time settings at which we compare BMCTS to regular MCTS in Subsections
5.3.2 to 5.3.4 are 0.05, 0.25, 1, 4, 15, 60, and 240 seconds in SameGame and Bubble
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1 BMCTS( startState ) {
2 bestResult ← -Infinity
3 bestSimulation ← {}
4 for( numberOfIterations ) {
5 currentState ← startState
6 simulation ← {}
7 while( currentState ∈ Tree) {
8 numberOfRolloutsThrough [ currentState .depth ]++
9 currentState ← takeSelectionPolicyAction ( currentState )

10 simulation ← simulation + currentState
11 }
12 addToTree ( currentState )
13 while( currentState . notTerminalPosition ) {
14 currentState ← takeRolloutPolicyAction ( currentState )
15 simulation ← simulation + currentState
16 }
17 result ← cumulativeReward ( simulation )
18 forall ( state ∈ { simulation ∩ Tree }) {
19 state. value ← backPropagate (state.value , result )
20 if( numberOfRolloutsThrough [state.depth] = SIMLIMIT ) {
21 pruneTree ( state.depth , Tree)
22 }
23 }
24 if( result > bestResult ) {
25 bestResult ← result
26 bestSimulation ← simulation
27 }
28 }
29 return (bestResult , bestSimulation )
30 }

Algorithm 5.1: BMCTS.

1 pruneTree (depth , Tree) {
2 nodeSet ← treeNodesAtDepth (Tree , depth)
3 nodeSet ← mostVisitedTreeNodes (nodeSet , BEAMWIDTH )
4 Tree ← nodeSet + ancestorNodes ( nodeSet )
5 }

Algorithm 5.2: Tree pruning in BMCTS.
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F

1

G

1

E

2

H

3

I

1visits = 

J

2
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Figure 5.1: Tree pruning in BMCTS. Depth d = 2, beam width W = 3, simulation limit
L = 10.
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Table 5.1: Best-performing simulation limits L and beam widthsW for BMCTS in SameGame
with random rollouts, SameGame with informed rollouts, and Bubble Breaker.

Time in s SameGame random SameGame informed Bubble Breaker

L W L W L W

0.25 100 5 75 5 20 2
1 250 5 250 10 150 15
4 2500 10 1000 100 2500 5
15 20000 2 20000 50 20000 5
60 50000 5 100000 100 100000 5
240 250000 25 250000 250 500000 25

Breaker, and 0.016, 0.05, 0.25, 1, 4, 16, and 64 seconds in Clickomania. Optimal
MCTS exploration factors C for these time settings have already been determined
in Subsection 4.3.1, and are also used for BMCTS in this chapter. Although slightly
larger exploration factors were found to improve the performance of BMCTS in some
cases, increasing its advantage over MCTS by up to 50%, a systematic optimization for
all time settings and test domains was not possible due to computational limitations.

BMCTS was optimized with regard to its parameters W and L, using the explo-
ration factor that was found to be optimal for regular MCTS at the same time setting
and in the same domain. We tested about 10 different W values between 1 and 1000,
and about 15 different L values from 10 to 106. The optimal W and L settings for
all games and search times are listed in Tables 5.1 and 5.2. As illustrative examples,
Figures 5.2 to 5.5 show the performance of BMCTS with different values of L and W
for the case of 4-second searches in all four test domains. Each data point represents
the average result over 500 test positions.

Qualitatively, all domains show the same behavior, although the effects appear
to be strongest in Clickomania and weakest in SameGame with informed rollouts. If
the simulation limit L is very high, the tree pruning of BMCTS is never triggered,
and if the beam width W is very high, it is triggered but has no effect. BMCTS
therefore reaches a plateau with very high values of L and/or W , corresponding to
the performance of regular MCTS with the same time setting. If W is small enough
for the tree pruning to have an effect, the performance depends strongly on L, i.e. on
the frequency of the pruning. Very high values of L, as mentioned above, result in
no pruning and BMCTS is equivalent to MCTS. Somewhat smaller values of L result
in a drop in performance—pruning hurts performance by prematurely excluding a
number of moves at the root or close to the root now, but there is not enough pruning
yet to push the search deep in the tree and reap the benefits of beam search. With
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Table 5.2: Best-performing simulation limits L and beam widths W for BMCTS in Clickoma-
nia.

Time in s L W

0.016 10 3
0.05 10 3
0.25 10 3
1 10 3
4 100 15
16 1000 25
64 10000 500
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Figure 5.2: Performance of BMCTS at 4 seconds per position in SameGame with random
rollouts. C = 0.0002.
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Figure 5.3: Performance of BMCTS at 4 seconds per position in SameGame with informed
rollouts. C = 0.0005.
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Figure 5.4: Performance of BMCTS at 4 seconds per position in Bubble Breaker. C = 0.008.
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Figure 5.5: Performance of BMCTS at 4 seconds per position in Clickomania. C = 0.

decreasing values of L, pruning is triggered more and more often. The search explores
deeper and deeper moves in the tree, and performance increases until it reaches a
maximum. If even smaller values of L are chosen, performance drops again as the
search reaches the leaves of the tree too quickly and cannot fully exploit the 4 seconds
of search time anymore.

Comparing the domains, Clickomania is the longest game variant on average
(compare Section 3.1), which is part of the reason why pruning works best at low
values of L in this domain. Clickomania needs to prune more frequently to get deep
enough in the tree. Moreover, it is relatively more important to optimize late moves
in Clickomania. While the other domains reward large groups so strongly that the
effects of moves after deleting the largest group are often negligible, Clickomania only
rewards emptying the board as far as possible in the end. Therefore, it is important
to optimize all moves of the game in Clickomania, while it is more useful to spend
time on the first part of the game and the forming of the largest group in the other
domains. This is probably another factor leading to relatively low optimal L values
in Clickomania, and also to beam search overall having the strongest effect in this
game variant. Finally, Clickomania is different from the other domains in that its
parameter landscape in Figure 5.5 appears smoother. The reason is that Clickomania
rewards are linear in the number of tiles cleared from the board, which means that
good solutions have similar rewards—clearing 1 tile more only results in 1 more point.
SameGame and Bubble Breaker give rewards quadratic in the group size—this can
lead to two good solutions having drastically different total rewards if their largest
groups are just 1 tile different in size.
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Another factor influencing the performance of BMCTS is the total search time.
Whereas the previous paragraphs discussed the parameter landscape of BMCTS at
4 seconds per search in all test domains, Figures 5.6 to 5.9 show the algorithm’s
behavior at 0.25, 1, 16, and 64 seconds in Clickomania.
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Figure 5.6: Performance of BMCTS at 0.25 seconds per position in Clickomania. C = 0.

The results of these experiments are again qualitatively similar to the other domains,
although the strengths of the effects and the exact time settings at which they occur
vary. One can observe that the shorter 1 second time setting shows similar behavior to
4 seconds, except that the difference between MCTS performance (the plateau at high
L values) and the optimal BMCTS performance (the highest peak) is smaller in both
absolute and relative terms. A more detailed comparison of BMCTS to MCTS follows
in the next subsection. At the even shorter time setting of 0.25 seconds per position,
the parameter landscape is essentially random. Beam search has no measurable effect
anymore at this low number of samples. At the higher time setting of 16 seconds,
we find the same landscape as at 4 seconds again—but the difference between the
MCTS plateau and the maximum is smaller here as well. At the highest tested
setting of 64 seconds finally, there is virtually no difference anymore and BMCTS
is similarly ineffective as at extremely short time settings. The reason for the drop
in BMCTS performance at long time settings is possibly the fact that with a small
enough exploration factor and enough time, regular MCTS already searches sufficiently
deep in the tree. Pruning is not beneficial since the MCTS selection policy is able
to decide on most moves of the game. Using higher exploration factors for BMCTS
than for MCTS might give BMCTS an additional edge at such long time settings,
depending on pruning instead of low exploration to get deeper in the tree.
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Figure 5.7: Performance of BMCTS at 1 second per position in Clickomania. C = 0.
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Figure 5.8: Performance of BMCTS at 16 seconds per position in Clickomania. C = 0.0025.
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Figure 5.9: Performance of BMCTS at 64 seconds per position in Clickomania. C = 0.012.

5.3.2 Comparison to MCTS

After finding the optimal values for simulation limit L and beam width W for each
time setting and domain, independent test sets of 1000 positions for each domain were
used to compare BMCTS to regular MCTS. Clickomania again used 20×20 boards
with 10 different tile colors, while for all other test domains 15×15 boards with 5
different tile colors were created. The time limits were 0.016, 0.05, 0.25, 1, 4, 16, and
64 seconds in Clickomania, and 0.05, 0.25, 1, 4, 15, 60, and 240 seconds in the other
domains. At each of these settings, the average performance of regular MCTS was
determined, the average performance of BMCTS with the optimal L and W > 1 found
in the last subsection, and also the performance of move-by-move search—implemented
in our framework as the special case of BMCTS search with W = 1—with the optimal
L. W > 1 is required for BMCTS in this comparison in order to test the effect of
genuine beam search.

Figures 5.10 to 5.13 present the results. They show that at the shortest tested
time settings, up to 0.25 seconds per search, the performance of a global MCTS
search cannot be improved by splitting up the already short search time into several
consecutive move searches. At 1 second per search, BMCTS begins to provide an
improvement to MCTS (significant at p<0.05 in SameGame with random rollouts,
p<0.01 in Bubble Breaker, p<0.0001 in Clickomania—not significant with p<0.08
in SameGame with informed rollouts). Move-by-move search is not able to improve
on MCTS at this time setting yet, except for the domain of Clickomania, where it is
still weaker than BMCTS (p<0.0001). At 4 seconds per search, BMCTS significantly



92 Chapter 5. Beam Monte-Carlo Tree Search

improves on MCTS in all domains (at p<0.01 in SameGame with random rollouts,
p<0.05 in SameGame with informed rollouts, p<0.01 in Bubble Breaker, p<0.0001
in Clickomania). Move-by-move search however has now caught up with BMCTS in
all domains but Clickomania, where BMCTS is still stronger at p<0.0001. The same
relationships hold at longer time controls (15, 60, and 240 seconds in SameGame and
Bubble Breaker, 16 seconds in Clickomania)—BMCTS is significantly better than
MCTS, but W > 1 is only significantly different from W = 1 in Clickomania. At the
longest times tested in Clickomania, 64 seconds per search, BMCTS is not stronger
than MCTS anymore. In the other domains, we can also see a trend of the BMCTS
performance approaching the MCTS performance. However, MCTS runs into memory
problems at longer time settings, which gives BMCTS an additional advantage.
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Figure 5.10: Performance of BMCTS in SameGame with random rollouts.

In conclusion, one can observe a relatively wide timing window in which BMCTS
is superior to MCTS. This windows starts somewhere between 0.25 and 1 second
per search in our experiments, and ends somewhere between 16 and 64 seconds in
Clickomania. In the other domains, the upper limit of the timing window could not
definitely be determined due to memory limitations that gave BMCTS an additional
advantage over MCTS. Furthermore, there is another timing window in which BMCTS
with W > 1 (called BMCTS in the preceding paragraph) is superior to BMCTS with
W = 1 (called move-by-move search in the preceding paragraph). In SameGame and
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Figure 5.11: Performance of BMCTS in SameGame with informed rollouts.
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Figure 5.12: Performance of BMCTS in Bubble Breaker.
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Figure 5.13: Performance of BMCTS in Clickomania.

Bubble Breaker, this window was found to lie somewhere between 0.25 and 4 seconds
per search. In Clickomania, W > 1 is stronger than W = 1 whenever BMCTS is
stronger than MCTS. This illustrates once more that among the tested game variants,
deep search and therefore beam search is most relevant in Clickomania.

5.3.3 Multi-Start Comparison to MCTS

An interesting observation about BMCTS is that its behavior does not necessarily
stay the same when one moves from single-start to multi-start experiments, i.e. from
measuring the average result of a single search run on each test position to considering
the maximum result of several search runs on each test position. As an example,
compare Figures 5.6 and 5.14. Each data point in Figure 5.6 represents the average
performance of a single BMCTS run of 0.25 seconds length in Clickomania, and each
point in Figure 5.14 represents the average maximum of 50 search runs of 0.25 seconds
length each per position. For computational reasons, only 100 instead of 500 training
positions were used here.

While the parameter landscape of BMCTS with regard to L and W shows only
noise in the single-start scenario—BMCTS cannot improve on the average result of
a single MCTS run at 0.25 seconds in Clickomania—the results of the multi-start
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experiment look similar to the single-start results at 1 second or more per position (see
e.g. Figure 5.7). The plateau at high values of L and W represents the performance
of multi-start MCTS in Figure 5.6, and the optimal multi-start BMCTS performance
is significantly better. It seems that whereas the solutions found by BMCTS do not
have a higher mean than the solutions found by MCTS, they have a higher variance.
The very low number of rollouts on each level of the tree, and therefore the essentially
random pruning decisions, seem to lead to different search runs exploring different
parts of the search space. This leads to more exploration and higher maxima over
multiple search runs. The other test domains showed similar results.

This effect seems to be stronger at short time settings than at long time settings.
Experiments were consequently conducted in all domains in order to determine whether
testing with 50 runs leads to different optimal L and W values than testing with a
single run. The first 100 training positions of the sets described in Subsection 5.3.1
were used. In particular at short time settings, the multi-start effect described in the
previous paragraph leads to different optimal parameter settings. The tests therefore
started at the shortest time setting in each domain (e.g. 0.25 seconds) and continued
tuning with longer time settings (1 second, 4 seconds etc.) until no difference to the
optimal single-start L and W was found anymore. This made it unnecessary to retune
at the longest time settings, which would have been computationally expensive.

But even at longer time settings and with unchanged parameters, an additional
advantage of BMCTS over MCTS can be observed in the multi-start scenario. The
optimal W and L settings for all games and search times are listed in Tables 5.3
and 5.4. Figures 5.15 to 5.18 show the performance of these settings analogously to
Figures 5.10 to 5.13, replacing single-run results with maxima over 50 search runs.
The positions are the first 100 test positions of the sets used in Subsection 5.3.2.
Multi-start BMCTS is significantly stronger than multi-start MCTS at all search times
from 0.05 to 60 seconds in SameGame with random rollouts, from 0.05 to 15 seconds
in SameGame with informed rollouts, from 0.05 to 60 seconds in Bubble Breaker, and
from 0.25 to 16 seconds in Clickomania.

5.3.4 Combination of BMCTS and NMCTS

The previous subsection demonstrated that BMCTS can have an additional advantage
over MCTS when the algorithms are run multiple times on the same test position,
especially at short search times. This led to the idea of examining how BMCTS
would perform in a nested setting, i.e. replacing MCTS as the basic search algorithm
in Nested Monte-Carlo Tree Search (see Chapter 4). We call the resulting search
algorithm NBMCTS for Nested Beam Monte-Carlo Tree Search. In principle, BMCTS
could be applied at all levels of NBMCTS. In this subsection however, we only report
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Table 5.3: Simulation limits L and beam widths W for multi-start BMCTS in SameGame
with random rollouts, SameGame with informed rollouts, and Bubble Breaker.

Time in s SameGame random SameGame informed Bubble Breaker

L W L W L W

0.25 75 2 25 5 75 3
1 500 2 250 7 1000 7
4 10000 2 1000 100 5000 5
15 20000 2 20000 50 20000 5
60 50000 5 100000 100 100000 5
240 250000 25 250000 250 500000 25

Table 5.4: Simulation limits L and beam widths W for multi-start BMCTS in Clickomania.

Time in s L W

0.016 10 3
0.05 10 3
0.25 10 3
1 25 2
4 100 15
16 1000 25
64 10000 500
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Figure 5.14: Performance of multi-start BMCTS at 0.25 seconds per run in Clickomania.
C = 0, 100 test positions, 50 search runs per position.
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Figure 5.15: Performance of multi-start BMCTS in SameGame with random rollouts. 100
test positions, 50 search runs per position.
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Figure 5.16: Performance of multi-start BMCTS in SameGame with informed rollouts. 100
test positions, 50 search runs per position.
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Figure 5.17: Performance of multi-start BMCTS in Bubble Breaker. 100 test positions, 50
search runs per position.
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Figure 5.18: Performance of multi-start BMCTS in Clickomania. 100 test positions, 50 search
runs per position.

preliminary results for applying it at level 1, while level 2 remains regular MCTS. The
main reason is the computational cost of optimizing the parameters L and W for level
2.

The previous subsection showed that the optimal parameter settings for multi-start
BMCTS can be different from those of single-start BMCTS. This suggests the number
of restarts is likely to have an influence as well, e.g. the optima for 50 runs could
be different from the optima for 500 or 5000 runs. In order to properly optimize
multi-start BMCTS or NBMCTS, we would therefore have to use the same number
of restarts or level-1 searches during tuning and testing. Using the same total search
time as multi-start MCTS and NMCTS in Chapter 4—9120 seconds in SameGame
and Bubble Breaker, and 1280 seconds in Clickomania—this would require tuning for
608 searches of 15 seconds duration for example, tuning for 2280 searches of 4 seconds
duration etc. Since this would have been prohibitively computationally expensive, the
settings found for 50 restarts in Subsection 5.3.3 were used as an approximation in all
domains and time settings.

Figures 5.19 to 5.22 present the performance of multi-start BMCTS and NBMCTS.
The multi-start MCTS and NMCTS results of Chapter 4 are added for comparison.
Just as level-2 NMCTS significantly outperformed multi-start MCTS, level-2 NBMCTS
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was significantly (p<0.05) stronger than multi-start BMCTS at all numbers of restarts
in SameGame with both random and informed rollouts, and in Bubble Breaker. It was
also stronger in Clickomania with 1280 and more restarts, while performing equally
with fewer restarts. Moreover, multi-start BMCTS performed significantly better
than multi-start MCTS at all numbers of restarts in SameGame with random rollouts,
all numbers but 608 in SameGame with informed rollouts, all numbers but 2280
in Bubble Breaker, and with 1280 and 320 restarts in Clickomania, while showing
no significant difference otherwise. NBMCTS finally outperformed NMCTS at all
numbers of restarts but 36480 in SameGame with random rollouts and in Bubble
Breaker, and again with 1280 and 320 restarts in Clickomania. In SameGame with
informed rollouts, the generally higher level of performance might make more thorough
parameter tuning necessary than was possible for this chapter (see the previous two
paragraphs)—here NBMCTS could only be shown to be stronger than NMCTS with
38 and with 9120 restarts. At all other numbers of restarts, there was no significant
difference to NMCTS.

Note that whereas NMCTS has the largest advantage over multi-start MCTS at
the highest tested number of restarts in both SameGame variants and in Bubble
Breaker (cf. Subsection 4.3.2), probably because only a level-2 tree with this many
level-1 searches grows to a sufficient size to have a large impact on performance, this
is not the case when comparing NBMCTS to multi-start BMCTS. The improvement
of adding beam search to multi-start MCTS is much larger than the improvement of
adding beam search to NMCTS. This could indicate that both multiple nested searches
and multiple beam searches improve on MCTS partly in a similar way, namely by
improving exploration. This could be investigated further in future work. However,
NBMCTS either outperforms NMCTS or performs comparatively to it in all domains
and at all time settings. In conclusion, NBMCTS can therefore be considered a
successful combination of the NMCTS and BMCTS approaches, and is the overall
strongest one-player algorithm proposed in this thesis.

5.4 Conclusion and Future Research
In this chapter, we proposed Beam Monte-Carlo Tree Search (BMCTS), integrating
the concept of beam search into an MCTS framework. Its time and space complexity
are linear in the search depth. Therefore, it can improve on the selectivity of regular
MCTS especially in domains whose solutions are relatively long for the available search
time. Experimental results show BMCTS to significantly outperform regular MCTS
at a wide range of time settings in the test domains of Bubble Breaker, Clickomania,
and SameGame. Outside of this domain-dependent range, BMCTS is equally strong
as MCTS at the shortest and the longest tested search times—although the lower
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Figure 5.19: Performance of level-2 NBMCTS in SameGame with random rollout policy.
Bars show the average performance increase over multi-start BMCTS with a 95% confidence
interval. The search time was 9120 seconds per position.
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Figure 5.20: Performance of level-2 NBMCTS in SameGame with informed rollout policy.
Bars show the average performance increase over multi-start BMCTS with a 95% confidence
interval. The search time was 9120 seconds per position.
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Figure 5.21: Performance of level-2 NBMCTS in Bubble Breaker. Bars show the average
performance increase over multi-start BMCTS with a 95% confidence interval. The search
time was 9120 seconds per position.
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Figure 5.22: Performance of level-2 NBMCTS in Clickomania. Bars show the average
performance increase over multi-start BMCTS with a 95% confidence interval. The search
time was 1280 seconds per position.
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memory requirements of BMCTS can give it an additional advantage over MCTS
at long search times. In the experiments described here, the improved performance
of beam search was achieved even without systematically optimizing the exploration
factor C for BMCTS. Depending on the domain and time setting, optimal parameter
settings can either result in a move-by-move time management scheme (W = 1), or
in a genuine beam search using several states per tree level (W > 1). Move-by-move
search is in this sense a special case of beam search. BMCTS with W > 1 was found to
significantly outperform move-by-move search at a domain-dependent range of search
times. Overall, BMCTS was most successful in Clickomania as this domain seems to
profit most from deep searches.

Further experiments demonstrated BMCTS to have a larger advantage over MCTS
in multi-start scenarios where maxima over several runs per position are considered
instead of results of a single run per position. This suggests that the performance of
BMCTS tends to have a higher variance than the performance of regular MCTS, even
in some cases where the two algorithms perform equally well on average. In all test
domains, multi-start BMCTS is superior to multi-start MCTS at a wider range of
time settings than single-start BMCTS to single-start MCTS.

This observation led to the idea of combining the NMCTS and BMCTS approaches
into the Nested Beam Monte-Carlo Tree Search (NBMCTS) algorithm. Experiments
have shown NBMCTS to be the overall strongest one-player algorithm proposed in
this thesis, performing better than or equal to NMCTS in all domains and at all search
times. In conclusion, BMCTS is a promising approach to one-player search, especially
for shorter time settings. At longer time settings, it combines well with NMCTS as
proposed in the previous chapter.

Three directions appear promising for future work. First, BMCTS as presented in
this chapter does not retain the asymptotic properties of MCTS—due to the permanent
pruning of nodes, optimal behavior in the limit cannot be guaranteed. The addition
of e.g. gradually increasing beam widths, similar to progressive widening (Chaslot
et al., 2008; Coulom, 2007a) but on a per-depth instead of per-node basis, could
restore this important completeness property. Second, the basic BMCTS algorithm
could be refined in various ways, for instance by using different simulation limits and
beam widths for different tree depths, or by experimenting with different heuristics
for selecting the beam nodes. Techniques such as stratified search (Lelis et al., 2013)
could potentially increase the diversity of nodes in the beam and therefore improve
the results. Any such refinements should ideally go along with characterizations of
the classes of tasks for which they are most effective. Third, it would be interesting
to further compare the effects of multiple nested searches, and the effects of multiple
beam searches on MCTS exploration, as mentioned in the previous section.
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Time Management for

Monte-Carlo Tree Search

This chapter is based on:
Baier, H. and Winands, M. H. M. (2015). Time Management for Monte Carlo Tree

Search. IEEE Transactions on Computational Intelligence and AI in Games. In press.
Baier, H. and Winands, M. H. M. (2012). Time Management for Monte-Carlo

Tree Search in Go. In H. J. van den Herik and A. Plaat, editors, 13th International
Conference on Advances in Computer Games, ACG 2011, volume 7168 of Lecture
Notes in Computer Science, pages 39–51.

In tournament gameplay, time is a limited resource. Sudden death, the simplest
form of time control, allocates to each player a fixed time budget for the whole game.
If a player exceeds this time budget, she loses the game immediately. Since longer
thinking times typically result in stronger moves, the player’s task is to distribute her
time budget wisely among all moves in the game. This is a challenging task both for
human and computer players. Previous research on this topic (Althöfer et al., 1994;
Donninger, 1994; Hyatt, 1984; Markovitch and Sella, 1996; Šolak and Vučković, 2009)
has mainly focused on the framework of αβ search with iterative deepening. In a
number of game domains however, this algorithm is more and more losing its appeal.

Compared to αβ search, less has been published on time management for MCTS
(Baudiš, 2011; Huang et al., 2010b). MCTS however allows for much more fine-grained
time-management strategies due to its anytime property. It can be stopped after
every rollout and return a move choice that makes use of the complete search time
so far, while αβ searchers can only make use of completely explored root moves of a
deepening iteration.
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This chapter answers the third research question by investigating and comparing a
variety of time-management strategies for MCTS. We include newly proposed strategies
as well as strategies described in Huang et al. (2010b) or independently proposed in
Baudiš (2011), partly in enhanced form. These strategies are tested in the domains
of 13×13 and 19×19 Go, and as far as possible in Connect-4, Breakthrough, Othello,
and Catch the Lion.

The structure of this chapter is as follows. Section 6.1 gives an overview of
related work on time management for game-playing programs. Section 6.2 outlines
the approaches to time management studied in this work—both domain-independent
techniques and techniques specific to Go. Section 6.3 presents experimental results of
all strategies in Go, while Section 6.4 gives the results of testing and analyzing the
domain-independent strategies in the games of Connect-4, Breakthrough, Othello, and
Catch the Lion. Conclusions and future research follow in Section 6.5.

6.1 Time Management
The first publication to address the topic of time management in computer games
was Hyatt (1984). He observed that human Chess grandmasters do not use an equal
amount of time per move, but play standard openings quickly, think longest directly
after coming out of the opening, and then play increasingly fast towards the end of
the game. He also suggested a technique that lets αβ search explore a position longer
to find a better move if the best move of the last deepening iteration turns out to lose
material.

Donninger (1994) gave four “golden rules” for the use of time during a Chess game,
both for human and computer players: “a) Do not waste time in easy positions with
only one obvious move. b) Use the opponent’s thinking time effectively. c) Spend
considerable time before playing a crucial move. d) Try to upset the opponent’s timing.”
He considered rule c) to be the most important one by far, but also the hardest. In this
chapter, we try to approach rules a) and c) simultaneously by attempting to estimate
the importance or difficulty of a position and adjusting search time accordingly. Rule
b) can be addressed by MCTS engines with pondering, thinking during the opponent’s
turn, which allows to transfer a part of the search tree into the next move search. If
the opponent makes an expected move, the relevant part of the search tree can be
large enough to make a move without much further thinking on your own time, which
takes away the opponent’s opportunity to ponder (an example for rule d). Pondering
is not considered in this chapter.

Althöfer et al. (1994) published the first systematic evaluation of time-management
algorithms for Chess. Amongst others, strategies were proposed to identify trivial
moves that can be made quickly, as well as troublesome positions that require more
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thinking. The time controls considered, typical for Chess, specify a given amount of
time for a given number of moves. They are insofar different from sudden death as
used in this chapter as it here does not refer to the number of moves by the player,
but only to the total amount of time per game.

Markovitch and Sella (1996) used the domain of Checkers to automatically acquire
a simple time-allocation strategy, distributing a fixed number of deep searches among
the moves of a game. The authors divided time-management strategies into three
categories. (1) Static strategies decide about time allocation to all future moves before
the start of the game. (2) Semi-dynamic strategies determine the computation time
for each move before the start of the respective move search. (3) Dynamic strategies
make “live” timing decisions while the search process is running. This categorization
is used in the remainder of this chapter.

Šolak and Vučković (2009) devised and tested a number of time-management
models for modern Chess engines. Their model M2a involved the idea of estimating
the remaining number of moves, given the number of moves already played, from
a database of master games. We use a similar approach as the basis for our time-
management strategies (called EXP). In more sophisticated models, Šolak and Vučković
developed definitions for the complexity of a position—based on the number of legal
moves—and allocated time accordingly.

Kocsis et al. (2001) compared temporal difference learning and genetic algorithms
for training a neural network to make semi-dynamic timing decisions in the game
Lines of Action. The network could set the underlying αβ program to one of three
predefined search depths.

For the framework of MCTS, only two publications exist so far. Huang et al.
(2010b) evaluated a number of both dynamic and semi-dynamic time-management
heuristics for 19×19 Go, assuming sudden-death time controls. We implemented and
optimized their heuristics as a baseline for our approaches. The ideas of the “unstable
evaluation” heuristic (UNST) and the “think longer when behind” heuristic (BEHIND)
were first described and tested in Huang et al. (2010b). UNST continues searching if
after the regular search time, the most-visited move is not the highest-valued move as
well. BEHIND searches longer when the player’s win rate at the root is low. Enhanced
versions are described under the names UNST-L and BEHIND-L in the next Section.

During the preparation of our experiments, Baudiš published brief descriptions
of the dynamic and semi-dynamic time management of the state-of-the-art MCTS
Go program Pachi (Baudiš, 2011). Variants similar to our “close second” heuristic
(CLOSE) and a special case of our “early stop” heuristic (STOPA) were here formulated
independently. CLOSE searches longer if the best and second best move are too close
to each other. STOPA stops searching if the currently best move cannot change
anymore in the rest of the planned search time. We evaluate these strategies and
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propose generalized versions with the names CLOSE-L and STOP as well.
Independent from time management considerations, Huang et al. (2010a) proposed

two pruning conditions for MCTS: the absolute pruning condition and the relative
pruning condition. These techniques are related to the STOP strategy and are discussed
in Section 6.2.2.

6.2 Time-Management Strategies
In this section, we describe first the semi-dynamic (6.2.1), and then the dynamic
time-management strategies (6.2.2) for the MCTS framework which were investigated
in this chapter.

6.2.1 Semi-Dynamic Strategies
The following five strategies determine the search time for each move before the search
for this move is started. EXP, OPEN and MID are domain-independent strategies,
while KAPPA-EXP and KAPPA-LM are specific to the game of Go.

EXP. The simple EXP strategy for time allocation, used as the basis of all further
enhancements in this chapter, divides the remaining thinking time for the entire game
(tremaining) by the expected number of remaining moves for the player (mexpected) and
uses the result as the search time for the next move (tnextmove). The formula is as
follows:

tnextmove = tremaining

mexpected
(6.1)

mexpected can be estimated in various ways. Three heuristics are investigated in this
chapter, two of them game-independent and one game-specific to the game of Go. The
first game-independent heuristic (EXP-MOVES) estimates the number of remaining
moves given the number of moves already played. An example would be an expectation
of 71 remaining moves for the player at the first turn, or an expectation of 27 remaining
moves at turn 90. The second game-independent heuristic (EXP-SIM) estimates the
number of remaining moves given the length of simulated games in the preceding
search. As an example, 63 more moves could be expected if the average simulated game
in the search for the preceding move was 200 moves long, or an average simulation
length of 60 moves could lead to an expectation of 28 more moves in the actual game.
The third heuristic (EXP-STONES) is specific to Go and uses the number of stones on
the board as an estimator of remaining game length. 40 stones on the board could be
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mapped to an expected 50 more moves, while 140 stones on the board could map to
an expectation of 12 more moves for the player. Other games may or may not provide
other indicators. The parameters for all three heuristics, e.g. the precise mapping
from played moves to remaining moves for EXP-MOVES, are determined from a set
of 1000 games played in self-play.

OPEN. The OPEN strategy puts emphasis on the opening phase of the game. Formula
6.2 modifies the search time for every move in the game by multiplying it with a
constant “opening factor” fopening > 1.

tnextmove = fopening ·
tremaining

mexpected
(6.2)

This results in more time per move being used in the beginning of the game than
at the end. As opposed to the implicit assumption of Formula 6.1 that equal time
resources should be allocated to every expected move, here it is assumed that the first
moves of a game have greater influence on the final outcome than the last moves and
thus deserve longer search times.

MID. Instead of moves in the opening phase, the MID strategy increases search times
for moves in the middle game, which can be argued to have the highest decision
complexity of all game phases (Huang et al., 2010b). For this purpose, the time as
given by Formula 6.1 is increased by a percentage determined by a Gaussian function
over the set of move numbers, using three parameters a, b, and c for height, position
and width of the “bell curve”. The formula for the bell curve is

fGaussian(x) = ae−
(x−b)2

2c2 (6.3)

tnextmove = (1 + fGaussian(current move number)) · tremaining

mexpected
(6.4)

KAPPA-EXP. In Coulom (2009), the concept of criticality was suggested for Go—as
some intersections on the board are more important for winning the game than others,
these should be recognized as “critical” or “hot”, and receive special attention or search
effort. To identify critical points, statistics are collected during rollouts on which
player owns which intersections at the end of each simulation, and on how strongly this
ownership is correlated with winning the simulated game (Coulom, 2009; Pellegrino
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et al., 2009). In the KAPPA-EXP strategy, we use a related concept for identifying
not only critical intersections from the set of all intersections of a board, but also
critical move choices from the set of all move choices in a game. A highly critical
move choice is here understood as a choice that involves highly critical intersections.
The KAPPA-EXP strategy distributes time proportional to the expected maximum
point criticality given the current move number, as estimated from a database of 1000
games played by the program itself. The idea is that the maximum point criticality,
taken over the set of all intersections I on the board, indicates how crucial the current
move choice is. We chose Formula 6.5 to represent the criticality of an intersection i
in move m of game g—the kappa statistic, a chance-corrected measure of agreement
typically used to quantify inter-rater reliability (Cohen, 1960). Here, it is employed to
quantify agreement between the variables “intersection i is owned by the player at the
end of a rollout during m’s move search” and “the player wins a rollout during m’s
move search”.

κmg (i) =
agreementmobserved − agreementmexpected

1− agreementmexpected

=
om

winner(i)
n − (omwhite(i)omblack(i) + wmwhitew

m
black)

1− (omwhite(i)omblack(i) + wmwhitew
m
black)

(6.5)

where n is the total number of rollouts, omwinner(i) is the number of rollouts in which
point i ends up being owned by the rollout winner, omwhite(i) and omblack(i) are the
numbers of rollouts in which point i ends up being owned by White and Black,
respectively, and wmwhite and wmblack are the numbers of rollouts won by White and
Black, respectively. All numbers refer to the search for move m.

For application at move number m during a given game, the average maximum point
criticality κmavg = 1

y

∑y
g=1 maxi∈I κmg (i) is precomputed from a database of y games,

linearly transformed using parameters for slope and intercept sκavg and iκavg , and
finally multiplied with the search time resulting in Formula 6.6.

tnextmove = (κmavg · sκavg + iκavg) · tremaining

mexpected
(6.6)

KAPPA-LM. Instead of using the expected criticality for the current move number as
defined above, the KAPPA-LM strategy uses the observed criticality as computed
during the search for the player’s previous move in the game. This value κlastmove =
maxi∈I κm−2

current game(i) is again linearly transformed using parameters sκlastmove and
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iκlastmove , and multiplied with the base search time. The formula is as follows:

tnextmove = (κlastmove · sκlastmove + iκlastmove) · tremaining

mexpected
(6.7)

For both KAPPA-EXP and KAPPA-LM, lower and upper bounds for the κ factor
ensure lower and upper bounds for the total search time even in extreme positions.
The algorithms are not very sensitive to these parameters, but without them games
can be lost (in particular in the online version KAPPA-LM) due to occasional searches
receiving too much or almost no time (extreme f values).

6.2.2 Dynamic Strategies
The following five strategies make time-allocation decisions for a move search while
the respective search process is being carried out. BEHIND, UNST, CLOSE, and
STOP are domain-independent strategies, while KAPPA-CM is specific to the game
of Go. Note that our implementations of CLOSE and STOP are only valid if MCTS
plays the most-visited move after each move search, which is the case for all MCTS
players in this chapter. Other approaches to CLOSE and STOP are imaginable if
MCTS chooses for example the move with the highest estimated value.

BEHIND. As suggested in Huang et al. (2010b) as the “think longer when behind”
heuristic, the BEHIND strategy prolongs the search if the player is falling behind. It
triggers if after the regular search time—as computed by the semi-dynamic strategies
described above—the win rate of the best move at the root is lower than a threshold
vbehind. If this is the case, the search is continued for a time interval determined
by multiplying the previously used search time with a factor fbehind. The rationale
is that by using more time resources, the player could still find a way to turn the
game around, while saving time for later moves is less important in a losing position.
We have also modified this heuristic to check its condition for search continuation
repeatedly in a loop. The maximum number of loops until the search is terminated
is bound by a parameter lbehind. The single-check heuristic is called BEHIND, the
multiple-check heuristic BEHIND-L (for “loop”) in the following.

UNST. The UNST strategy, called “unstable evaluation” heuristic in Huang et al.
(2010b), prolongs the search if after the regular search time the most-visited move at
the root is not the highest-valued move as well. In this case, the search is continued for
the previously used search time multiplied with a factor funstable. The idea is that by
searching longer, the highest-valued move could soon become the most-visited and thus
change the final move choice. Analogously to the BEHIND-L technique, UNST-L was
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introduced as an enhancement of UNST that repeatedly checks its trigger condition in
a loop. The parameter specifying the maximum number of loops is lunstable.

CLOSE. The proposed CLOSE strategy prolongs the search if after the regular search
time the most-visited move and the second-most-visited move at the root are “too
close”, defined by having a relative visit difference lower than a threshold dclose. A
similar strategy was developed independently in Baudiš (2011). The search is then
continued for the previously used search time multiplied with a factor fclose. Like the
UNST strategy, CLOSE aims to identify difficult decisions that can make efficient use
of an increase in search time. We propose two variants of this strategy. It can either
be triggered only once (CLOSE) or repeatedly (CLOSE-L) after the regular search
time is over. For CLOSE-L, a parameter lclose defines the maximum number of loops.

KAPPA-CM. Unlike the three dynamic strategies described above, the KAPPA-CM
strategy does not wait for the regular search time to end. Instead, it uses the first
e.g. 100 milliseconds of the search process to collect criticality data. Then it uses the
maximum point criticality of the current move κcurrentmove = maxi∈I κmcurrent game(i)
to modify the remaining search time. The formula is as follows:

tcurrentmove = (κcurrentmove · sκcurrentmove + iκcurrentmove) · tremaining

mexpected
(6.8)

The remaining search time can be either reduced or increased by this strategy. Upper
and lower limits to the total search time apply.

STOP. The proposed “early stop” (STOP) strategy is based on the idea of terminating
the search process as early as possible in case the best move cannot change anymore.
For STOP, the search speed in simulations per second is measured, and in regular
intervals (e.g. 50 rollouts) it is checked how many rollouts are still expected in the
remainder of the total planned search time. If the number of simulations required for
the second-most-visited move at the root to catch up to the most-visited one exceeds
this expected number of remaining simulations, the search can safely be terminated
without changing the final outcome.

However, not all of the remaining simulations in a search generally start with the second-
most-visited move. Therefore, we introduce a parameter pearlystop ≤ 1 representing
an estimate of the proportion of remaining rollouts that actually sample the second-
most-visited move. The search is terminated if the number of rollouts needed for the
second-most-visited move at the root to catch up to the most-visited one exceeds
the expected number of remaining rollouts multiplied with pearlystop. When setting
this parameter to a value smaller than 1, an unchanged final outcome is no longer
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guaranteed. Optimal values of pearlystop have to be determined empirically. The
termination criterion of STOP is:

n · timeleftn
timespentn

· pearlystop < visitsbestn
− visitssecondbestn

(6.9)

where n is the number of rollouts so far, timeleftn is the rest of the planned search time,
timespentn is the search time already spent, visitsbestn is the currently highest number
of visits of any move at the root, and visitssecondbestn

is the currently second-highest
number of visits of any move at the root. All numbers refer to the state of the search
after n rollouts.

If the expected time savings by the STOP strategy are not considered when computing
planned search times, savings will accumulate throughout the game and early moves
cannot benefit from them. In order to achieve a different distribution of the resulting
time savings among all searches in the game, planned search times are multiplied with
a parameter fearlystop ≥ 1 that is also determined empirically.

In order to test the effects of the two parameters pearlystop and fearlystop independently
of each other, we introduce the name STOPB for the special case of STOP with
pearlystop = 1 and free parameter fearlystop. This variant can redistribute search time,
but never stops a search before the final outcome is definitely known (it uses “safe”
stopping). If pearlystop = 1 and fearlystop = 1 (stopping is “safe”, and the redistribution
of search time is deactivated as well), STOP is identical to a strategy mentioned
independently—but not evaluated—in Baudiš (2011). In the following, we call this
special case STOPA.

The absolute pruning condition proposed by Huang et al. in Huang et al. (2010a) can
be seen as a weaker form of STOPA, only stopping if one move has more than half
the simulations planned for the entire search. This does not take the visit difference
between the most-visited and second-most-visited move into account. The authors also
proposed an “unsafe” criterion for pruning: Their relative pruning condition excludes
individual moves from the search as soon as they are not expected to catch up with
another move anymore. This expectation is based on a formula for the upper bound
of the remaining simulations for a given move. However, the authors state that their
condition is strict and rarely triggers, making a relaxed condition desirable. STOP
allows to relax its stopping condition through the pearlystop parameter.
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6.3 Experimental Results in Go

All time-management strategies were implemented in Orego (Drake et al., 2011)
version 7.08. Orego is a Go program using a number of MCTS enhancements like a
transposition table (Childs et al., 2008; Greenblatt et al., 1967), RAVE (Gelly and
Silver, 2007), a rollout policy similar to that proposed in Gelly et al. (2006), and
LGRF-2 (Baier and Drake, 2010). The rollout policy takes domain-specific knowledge
into account by trying to save groups under attack (atari), attacking opponent groups,
and giving preference to moves that match a prespecified set of 3×3 intersection
patterns on the board. After each search, the most-sampled move at the root is played.
Orego resigns if its win rate at the root falls below 10%. The program ran on a
CentOS Linux server consisting of four AMD Twelve-Core OpteronT 6174 processors
(2.2 GHz). Unless specified otherwise, each experimental run involved 5000 games
(2500 as Black and 2500 as White) of Orego against the classic (non-MCTS-based)
program GNU Go 3.8 (Free Software Foundation, 2009), played on the 13×13 board,
using Chinese rules (area scoring), positional superko, and 7.5 komi. The playing
strength of a non-MCTS program like GNU Go is difficult to measure since it has
weaknesses that can be relatively easily exploited by human players, but it is estimated
to play at amateur level (8-12 kyu on the 19×19 board to 5-7 kyu on the 9×9 board).
Orego plays at around 5-6 kyu with 30 minutes per game on the 19×19 board,
and probably stronger on the 13×13 board. For testing against GNU Go, Orego’s
strength was reduced here by lowering the time to 30 seconds per game unless specified
otherwise. GNU Go ran at its default level of 10, with the capture-all-dead option
turned on. It had no time limit. Orego used a single thread and no pondering. The
speed of Orego was about 1850 simulations per second when searching from the
initial position. Optimal parameter settings for the time management strategies were
found by manually testing a wide range of parameter values, from around 10-20 for
strategies with a single parameter to hundreds of settings for strategies with three
parameters, with 500 or 1000 games each against GNU Go.

The remainder of this section is structured as follows. In 6.3.1, the strategies
in Huang et al. (2010b) are tested as a baseline. Next, 6.3.2 presents results of
experiments with semi-dynamic strategies. Dynamic strategies are tested in 6.3.3.
Finally, in 6.3.4 the best-performing strategy is compared to the baseline in self-play,
as well as to Orego with fixed time per move.

6.3.1 ERICA-BASELINE

In order to compare the results to a state-of-the-art baseline, the strategies described
in Huang et al. (2010b) were implemented and evaluated. The thinking time per move
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Table 6.1: Performance of Erica’s time management according to Huang et al. (2010b) in
13×13 Go.

Player Win rate against GNU Go 95% conf. int.

Basic formula 28.6% 27.3%–29.9%
Enhanced formula 31.4% 30.1%–32.7%
ERICA-BASELINE 35.3% 34.0%–36.7%

was computed according to the “basic formula”

tnextmove = tremaining

C
(6.10)

where C = 30 was found to be optimal for Orego, as well as the “enhanced formula”

tnextmove = tremaining

C + max(MaxPly−MoveNumber, 0) (6.11)

with C = 20 and MaxPly = 40. The UNST heuristic, using a single loop as proposed
in Huang et al. (2010b), worked best with funstable = 0.5. The BEHIND heuristic was
most successful in Orego with vbehind = 0.6 and fbehind = 0.75. Note that BEHIND
had not been found to be effective at first in Baier and Winands (2012). This is
because only win rate thresholds up to 0.5 had been tested originally—a player with a
win rate of more than 0.5 cannot be called “behind” after all. See subsection 6.4.5 for
a discussion of the effect of higher thresholds.

Erica’s time-management strategies were tested against GNU Go using the basic
formula, using the enhanced formula, and using the enhanced formula plus UNST
and BEHIND heuristic (called ERICA-BASELINE from now on). Table 6.1 presents
the results—the enhanced formula is significantly stronger than the basic formula
(p<0.01), and ERICA-BASELINE is significantly stronger than the enhanced formula
(p<0.001).

6.3.2 Semi-Dynamic Strategies

This subsection presents the results for the EXP, OPEN, MID, KAPPA-EXP, and
KAPPA-LM strategies in Go.

EXP-MOVES, EXP-SIM and EXP-STONES. As our basic time-management ap-
proach, EXP-MOVES, EXP-SIM and EXP-STONES were tested. The first three rows
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Table 6.2: Performance of the investigated semi-dynamic strategies in 13×13 Go.

Player Win rate against GNU Go 95% conf. int.

EXP-MOVES 24.0% 22.9%–25.2%
EXP-SIM 23.5% 22.3%–24.7%
EXP-STONES 25.5% 24.3%–26.7%
EXP-STONES with OPEN 32.0% 30.8%–33.4%
EXP-STONES with MID 30.6% 29.3%–31.9%
EXP-STONES with KAPPA-EXP 31.7% 30.5%–33.0%
EXP-STONES with KAPPA-LM 31.1% 29.8%–32.4%

ERICA-BASELINE 35.3% 34.0%–36.7%

of Table 6.2 show the results. As EXP-STONES appeared to perform best, it was
used as the basis for all further experiments with the game of Go. Note however that
the differences were not statistically significant. The average error in predicting the
remaining number of moves was 14.16 for EXP-STONES, 13.95 for EXP-MOVES,
and 14.23 for EXP-SIM.

OPEN. According to preliminary experiments with OPEN, the “opening factor”
fopening = 2.5 seemed most promising. It was subsequently tested with 5000 ad-
ditional games against GNU Go. Table 6.2 shows the result: EXP-STONES with
OPEN is significantly stronger than plain EXP-STONES (p<0.001).

MID. Initial experiments with MID showed Formula 6.3 to perform best with a = 2,
b = 40 and c = 20. It was then tested with 5000 additional games. As Table 6.2
reveals, EXP-STONES with MID is significantly stronger than plain EXP-STONES
(p<0.001).

KAPPA-EXP. The best parameter setting for KAPPA-EXP found in preliminary
experiments was sκavg = 8.33 and iκavg = −0.67. Lower and upper bounds for the
kappa factor were set to 0.5 and 10, respectively. Table 6.2 presents the result of
testing this setting. EXP-STONES with KAPPA-EXP is significantly stronger than
plain EXP-STONES (p<0.001).

KAPPA-LM. Here, sκlastmove = 8.33 and iκlastmove = −0.67 were chosen for further
testing against GNU Go as well. Lower and upper bounds for the kappa factor
were set to 0.25 and 10. The test result is shown in Table 6.2. EXP-STONES with
KAPPA-LM is significantly stronger than plain EXP-STONES (p<0.001).
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6.3.3 Dynamic Strategies
In this subsection the results for the BEHIND, UNST, CLOSE, STOP, and KAPPA-
CM strategies in the game of Go are given.

BEHIND. Just like the “enhanced formula” of Huang et al. (2010b), EXP-STONES was
found to be significantly improved by BEHIND in Orego only with a threshold vbehind

of higher than 0.5. This is also true after the introduction of BEHIND-L, and will be
discussed in subsection 6.4.5. The best parameter settings in preliminary experiments
were fbehind = 0.5 and vbehind = 0.6 for BEHIND, and fbehind = 0.25, vbehind = 0.6,
and lbehind = 2 for BEHIND-L. Detailed results of an additional 5000 games with these
settings are given in Table 6.3. EXP-STONES with BEHIND is significantly stronger
than plain EXP-STONES (p<0.001). EXP-STONES with BEHIND-L, however, could
not be shown to be significantly stronger than EXP-STONES with BEHIND.

UNST. The best results in initial experiments with UNST were achieved with funstable =
1.5. For UNST-L, funstable = 0.75 and lunstable = 2 turned out to be promising values.
These settings were tested in 5000 further games. Table 6.3 shows the results. EXP-
STONES with UNST is significantly stronger than plain EXP-STONES (p<0.001).
EXP-STONES with UNST-L, in turn, is significantly stronger than EXP-STONES
with UNST (p<0.05).

CLOSE. The best-performing parameter settings in initial experiments with CLOSE were
fclose = 1.5 and dclose = 0.4. When we introduced CLOSE-L, fclose = 0.5, dclose = 0.5
and lclose = 4 appeared to be most successful. Table 6.3 presents the results of
testing both variants in 5000 more games. EXP-STONES with CLOSE is significantly
stronger than plain EXP-STONES (p<0.001). EXP-STONES with CLOSE-L, in turn,
is significantly stronger than EXP-STONES with CLOSE (p<0.001).

KAPPA-CM. The best parameter setting for KAPPA-CM found in preliminary ex-
periments was sκcurrentmove = 8.33 and iκcurrentmove = −1.33. Lower and upper bounds
for the kappa factor were set to 0.6 and 10. Table 6.3 reveals the result of testing
this setting. EXP-STONES with KAPPA-CM is significantly stronger than plain
EXP-STONES (p<0.05). However, it is surprisingly weaker than both EXP-STONES
using KAPPA-EXP and EXP-STONES with KAPPA-LM (p<0.001). The time of
100 msec used to collect current criticality information might be too short, such that
noise is too high. Preliminary tests with longer collection times (keeping the other
parameters equal) did not show significantly better results. A retuning of the other
parameters with longer collection times remains as future work.

STOP. The best settings found for STOP were fearlystop = 2.5 and pearlystop = 0.4. This
variant significantly outperformed (p<0.001) plain EXP-STONES as well as ERICA-
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Table 6.3: Performance of the investigated dynamic strategies in 13×13 Go.

Player Win rate against GNU Go 95% conf. int.

EXP-STONES with BEHIND 29.9% 28.7%–31.2%
EXP-STONES with BEHIND-L 30.5% 29.2%–31.8%
EXP-STONES with UNST 33.6% 32.3%–34.9%
EXP-STONES with UNST-L 35.8% 34.4%–37.1%
EXP-STONES with CLOSE 32.6% 31.3%–33.9%
EXP-STONES with CLOSE-L 36.5% 35.2%–37.9%
EXP-STONES with KAPPA-CM 27.3% 26.1%–28.6%
EXP-STONES with STOPA 25.3% 24.1%–26.5%
EXP-STONES with STOPB 36.7% 35.4%–38.0%
EXP-STONES with STOP 39.1% 38.0%–40.8%

EXP-STONES 25.5% 24.3%–26.7%
ERICA-BASELINE 35.3% 34.0%–36.7%

BASELINE in 5000 games each against GNU Go. It is also significantly stronger
(p<0.01) than the best-performing setting of STOPB with fearlystop = 2. STOPB in
turn is significantly stronger than plain EXP-STONES as well as STOPA (p<0.001).
The STOPA strategy did not show a significant improvement to the EXP-STONES
baseline. Table 6.3 presents the results.

6.3.4 Strength Comparisons
This subsection focuses on the time-management strategy that proved most successful
in Go, the STOP strategy. It attempts to answer the question whether STOP’s
effectiveness generalizes to longer search times (60 seconds, 120 seconds per game)
and to the larger 19×19 board size. Furthermore, an indication is given of how strong
the effect of time management is as compared to fixed time per move.

Comparison with ERICA-BASELINE on 13×13. Our strongest time-
management strategy on the 13×13 board, EXP-STONES with STOP, was
tested in self-play against Orego with ERICA-BASELINE. Time settings of 30, 60,
and 120 seconds per game were used with 2000 games per data point. Table 6.4
presents the results. For all time settings, EXP-STONES with STOP was significantly
stronger (p<0.001).

Comparison with ERICA-BASELINE on 19×19. In this experiment, we pitted
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Table 6.4: Performance of EXP-STONES with STOP vs. ERICA-BASELINE in 13×13 Go.

Time setting Win rate against ERICA-BASELINE 95% conf. int.

30 sec sudden death 63.7% 61.5%–65.8%
60 sec sudden death 59.4% 57.2%–61.5%
120 sec sudden death 60.7% 58.5%–62.8%

Table 6.5: Performance of EXP-STONES with STOP vs. ERICA-BASELINE in 19×19 Go.

Time setting Win rate against ERICA-BASELINE 95% conf. int.

300 sec sudden death 62.7% 60.6%–64.9%
900 sec sudden death 60.2% 58.0%–62.4%

EXP-STONES with STOP against ERICA-BASELINE on the 19×19 board. The
best parameter settings found were C = 60, MaxPly = 110 and funstable = 1 for
ERICA-BASELINE, and fearlystop = 2.2 and pearlystop = 0.45 for STOP. Time settings
of 300 and 900 seconds per game were used with 2000 games per data point. Orego
played about 960 simulations per second when searching from the empty 19×19 board.
The results are shown in Table 6.5—for both time settings, EXP-STONES with STOP
was significantly stronger (p<0.001).

Comparison with fixed time per move. To illustrate the effect of successful time
management, two additional experiments were conducted with Orego using fixed
time per move in 13×13 Go. In the first experiment, the time per move (650 msec)
was set so that approximately the same win rate against GNU Go was achieved as
with EXP-STONES and STOP at 30 seconds per game. The result of 2500 games
demonstrated that the average time needed per game was 49.0 seconds—63% more
than needed by our time-management strategy. In the second experiment, the time
per move (425 msec) was set so that the average time per game was approximately
equal to 30 seconds. In 2500 games under these conditions, Orego could only achieve
a 27.6% win rate, 11.5% less than with EXP-STONES and STOP.

6.4 Experimental Results in Other Domains
The goal of this section is to investigate the generality of the domain-independent
strategies described above: the semi-dynamic strategies OPEN and MID, and the
dynamic strategies BEHIND, UNST, CLOSE, and STOP. All time-management
strategies were therefore tested in Connect-4, Breakthrough, Othello, and Catch the
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Lion. Unless specified otherwise, each experimental run again involved 5000 games
(2500 as Black and 2500 as White) against the baseline player.

We used our own engine with EXP-MOVES as the baseline. EXP-MOVES was
chosen because EXP-STONES is domain-specific to Go, and EXP-SIM could be
problematic in domains such as Catch the Lion which do not naturally progress in
every move towards the end of the game (progression property, Finnsson and Björnsson
2011). ERICA-BASELINE was not used as a baseline in other domains than Go
since it was proposed specifically for Go and not as a domain-independent technique.
The engine uses MCTS with UCB1-TUNED (Auer et al., 2002) as selection policy
and uniformly random rollouts in all conditions. The exploration factor C of UCB1-
TUNED was optimized for each domain at time controls of 1 second per move and set
to 1.3 in Connect-4, 0.8 in Breakthrough, 0.7 in Othello, and 0.7 in Catch the Lion.
After each search, the most-sampled move at the root is played. Draws, which are
possible in Connect-4 and Othello, were counted as half a win for both players.

6.4.1 Connect-4
In Connect-4, a time limit of 20 seconds per player and game was used. A draw was
counted as half a win for both players. The baseline player’s speed was about 64500
simulations per second when searching from the initial position. Table 6.6 shows the
results of all investigated time-management strategies in Connect-4. Each strategy is
listed together with the parameter setting that was found to perform best in initial
systematic testing. The win rate given in the table was found by using this parameter
setting in an additional 5000 games against the baseline.

As Table 6.6 reveals, EXP-MOVES enhanced with the OPEN, MID, BEHIND,
UNST, or CLOSE strategies played significantly stronger (p<0.001) than plain EXP-
MOVES. BEHIND-L, UNST-L, and CLOSE-L could not be shown to significantly
improve on BEHIND, UNST, and CLOSE, respectively. STOP improved significantly
on EXP-MOVES alone (p<0.001) as well as STOPB (p<0.05). EXP-MOVES with
STOPB was still significantly stronger than EXP-MOVES alone (p<0.001). As in Go,
STOPA did not have a significant effect.

6.4.2 Breakthrough
In Breakthrough, a time limit of 20 seconds per player and game was used. Searching
from the initial board position, the baseline player reached about 24800 simulations per
second. Table 6.7 displays the results of all investigated time-management strategies
in Breakthrough.

As Table 6.7 shows, EXP-MOVES enhanced with the UNST or CLOSE strategies
played significantly stronger (p<0.001 and p<0.05, respectively) than regular EXP-
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Table 6.6: Performance of the investigated time-management strategies in Connect-4.

Player Win rate against EXP-MOVES 95% conf. int.

EXP-MOVES with OPEN
fopening = 2.25 55.8% 54.4%–57.1%

EXP-MOVES with MID
a = 2.5, b = 30, c = 20 57.0% 55.6%–58.4%

EXP-MOVES with BEHIND
fbehind = 1.5, vbehind = 0.6 55.8% 54.4%–57.1%

EXP-MOVES with BEHIND-L
fbehind = 0.75, vbehind = 0.6, lbehind = 3 57.0% 55.6%–58.4%

EXP-MOVES with UNST
funstable = 0.75 54.9% 53.6%–56.3%

EXP-MOVES with UNST-L
funstable = 1.0, lunstable = 2 55.8% 54.4%–57.2%

EXP-MOVES with CLOSE
fclose = 1.5, dclose = 0.8 58.7% 57.3%–60.0%

EXP-MOVES with CLOSE-L
fclose = 0.75, dclose = 0.8, lclose = 3 59.7% 58.3%–61.1%

EXP-MOVES with STOPA 50.8% 49.4%–52.2%

EXP-MOVES with STOPB
fearlystop = 5 63.0% 61.6%–64.3%

EXP-MOVES with STOP
fearlystop = 5, pearlystop = 0.9 65.0% 63.7%–66.3%
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MOVES. Neither OPEN nor MID or BEHIND had a significant effect. BEHIND-L,
UNST-L, and CLOSE-L could also not be shown to significantly improve on BEHIND,
UNST, and CLOSE. STOP played significantly stronger than the baseline (p<0.001).
It could not be shown to improve on STOPB however. STOP (p<0.001) as well as
STOPB (p<0.05) improved significantly on STOPA. In contrast to Go and Connect-4,
STOPA already played significantly stronger than the baseline (p<0.001).

6.4.3 Othello

In Othello, a time limit of 30 seconds per player and game was used. The longer time
setting partly compensates for the longer average game length of Othello compared to
Connect-4, Breakthrough, and Catch the Lion. The baseline player’s speed was about
4400 simulations per second during a search from the initial position. Table 6.8 shows
the results of all investigated time-management strategies in Othello.

Table 6.8 reveals that EXP-MOVES enhanced with the UNST or MID strategies
played significantly stronger (p<0.05) than the EXP-MOVES baseline. Neither
OPEN nor CLOSE or BEHIND had a significant effect. BEHIND-L, UNST-L, and
CLOSE-L could again not be shown to significantly improve on BEHIND, UNST, and
CLOSE. STOP played significantly stronger than the baseline (p<0.05). Similar to
Breakthrough, this was already true for STOPA. The more general variants of STOP
could not be demonstrated to significantly improve on STOPA in Othello.

6.4.4 Catch the Lion

In Catch the Lion, a time limit of 20 seconds per player and game was used. From the
initial board, the baseline had a speed of about 18500 simulations per second. Table
6.9 shows the results of all investigated time-management strategies in Catch the Lion.

As Table 6.9 shows, EXP-MOVES enhanced with the UNST or CLOSE strategies
played significantly stronger (p<0.001) than regular EXP-MOVES. Neither OPEN,
MID, nor BEHIND had a significant effect. BEHIND-L, UNST-L, and CLOSE-L
could not be shown to significantly improve on their simpler versions BEHIND, UNST,
and CLOSE. STOP was significantly stronger (p<0.001) than both the EXP-MOVES
baseline and STOPB. STOPB improved on STOPA (p<0.001). As in Connect-4,
STOPA did not have a significant advantage over the baseline.

6.4.5 Discussion of the Results

In the previous subsections, experimental data were ordered by domain. This subsection
summarizes and discusses the results ordered by the type of time-management technique
instead, in order to allow for comparisons across different domains. Tables 6.10 and
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Table 6.7: Performance of the investigated time-management strategies in Breakthrough.

Player Win rate against EXP-MOVES 95% conf. int.

EXP-MOVES with OPEN
fopening = 1 50.6% 49.2%–52.0%

EXP-MOVES with MID
a = 1.5, b = 50, c = 20 49.7% 48.3%–51.1%

EXP-MOVES with BEHIND
fbehind = 1, vbehind = 0.5 50.2% 48.8%–51.6%

EXP-MOVES with BEHIND-L
fbehind = 0.25, vbehind = 0.5, lbehind = 3 50.9% 49.5%–52.3%

EXP-MOVES with UNST
funstable = 0.75 54.2% 52.8%–55.6%

EXP-MOVES with UNST-L
funstable = 1.0, lunstable = 3 55.2% 53.8%–56.6%

EXP-MOVES with CLOSE
fclose = 0.5, dclose = 0.3 53.1% 51.7%–54.5%

EXP-MOVES with CLOSE-L
fclose = 0.5, dclose = 0.3, lclose = 2 53.9% 52.5%–55.3%

EXP-MOVES with STOPA 54.5% 53.1%–55.9%

EXP-MOVES with STOPB
fearlystop = 1.25 56.9% 55.5%–58.2%

EXP-MOVES with STOP
fearlystop = 1.67, pearlystop = 0.3 58.2% 56.8%–59.5%
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Table 6.8: Performance of the investigated time-management strategies in Othello.

Player Win rate against EXP-MOVES 95% conf. int.

EXP-MOVES with OPEN
fopening = 1 50.1% 48.7%–51.5%

EXP-MOVES with MID
a = 2.5, b = 50, c = 10 53.2% 51.8%–54.6%

EXP-MOVES with BEHIND
fbehind = 0.5, vbehind = 0.5 49.2% 47.9%–50.6%

EXP-MOVES with BEHIND-L
fbehind = 0.5, vbehind = 0.4, lbehind = 4 51.3% 49.9%–52.7%

EXP-MOVES with UNST
funstable = 0.5 53.1% 51.7%–54.5%

EXP-MOVES with UNST-L
funstable = 0.5, lunstable = 4 52.2% 50.8%–53.6%

EXP-MOVES with CLOSE
fclose = 1.0, dclose = 0.2 50.0% 48.6%–51.4%

EXP-MOVES with CLOSE-L
fclose = 0.25, dclose = 0.5, lclose = 4 51.4% 50.0%–52.8%

EXP-MOVES with STOPA 52.9% 51.5%–54.3%

EXP-MOVES with STOPB
fearlystop = 1.25 54.2% 52.8%–55.6%

EXP-MOVES with STOP
fearlystop = 1.25, pearlystop = 0.9 54.8% 53.4%–56.2%
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Table 6.9: Performance of the investigated time-management strategies in Catch the Lion.

Player Win rate against EXP-MOVES 95% conf. int.

EXP-MOVES with OPEN
fopening = 1.5 50.7% 49.3%–52.1%

EXP-MOVES with MID
a = 1.0, b = 20, c = 10 51.2% 49.8%–52.6%

EXP-MOVES with BEHIND
fbehind = 0.75, vbehind = 0.4 51.6% 50.2%–53.0%

EXP-MOVES with BEHIND-L
fbehind = 0.25, vbehind = 0.3, lbehind = 3 50.5% 49.0%–51.9%

EXP-MOVES with UNST
funstable = 0.5 56.4% 55.0%–57.8%

EXP-MOVES with UNST-L
funstable = 0.75, lunstable = 2 56.0% 54.6%–57.4%

EXP-MOVES with CLOSE
fclose = 1.0, dclose = 0.7 57.4% 56.0%–58.8%

EXP-MOVES with CLOSE-L
fclose = 0.5, dclose = 0.7, lclose = 3 55.9% 54.5%–57.2%

EXP-MOVES with STOPA 50.0% 48.6%–51.4%

EXP-MOVES with STOPB
fearlystop = 1.67 56.9% 55.5%–58.2%

EXP-MOVES with STOP
fearlystop = 5, pearlystop = 0.2 60.4% 59.1%–61.8%
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Table 6.10: Time management summary – simple strategies. Checkmarks identify strategies
that were shown to significantly improve on their respective baseline (EXP-MOVES in the
column game). Strategies that showed no significant improvement are left blank.

EXP-MOVES with Co
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OPEN 3 3

MID 3 3 3

BEHIND 3 3

UNST 3 3 3 3 3

CLOSE 3 3 3 3

STOPA 3 3

STOPB 3 3 3 3 3

STOP 3 3 3 3 3

Table 6.11: Time management summary – loop strategies. Checkmarks identify loop strategies
that were shown to significantly improve on their respective simple versions (e.g. CLOSE-L
on CLOSE). Strategies that showed no significant improvement are left blank.
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BEHIND-L
UNST-L 3

CLOSE-L 3

6.11 give an overview by recapitulating which strategies were shown to result in a
significant increase of playing strength in which game. Table 6.10 illustrates the
improvements of simple strategies—the ones not involving repeated checks in loops,
such as UNST—compared to the baseline player. Table 6.11 shows the improvements
of the loop strategies compared to their simple counterparts, such as UNST-L to UNST.
In the following, these results are discussed ordered by time-management strategy.

OPEN and MID. Some domains, e.g. Connect-4, Othello, and Go, profit from shifting
available time from the endgame to the midgame or early game. Intuitively, this is
the case in games that allow players to build up a positional advantage, essentially
deciding the game result many moves before an actual terminal state is reached. Less
effort is therefore required in the endgame for the leading player to keep the lead and
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execute the win. Search effort is also largely futile for a player who has fallen behind
in the endgame, and is more effectively spent in the early or midgame to avoid falling
behind in the first place.

Other games, for example Catch the Lion and Breakthrough, are more tactical in
nature and require a higher search effort even in the endgame. One of the reasons
is that with sufficient effort, it can be possible throughout the entire game for both
players to lure their opponent into traps (Ramanujan et al., 2010a). The player falling
behind can therefore still make effective use of additional time in the endgame, while
the leading player still needs to spend time to avoid losing her positional gains in
this way. See Chapter 7 for a discussion of tacticality and traps and a more in-depth
comparison of the test domains in this respect.

The following experiment was conducted in order to compare the test domains with
respect to the usefulness of spending search time in the endgame. Player A used 1
second thinking time per move. Player B used 1 second until 10 turns before the
average game length of the respective domain, and then switched to 100ms per move.
1000 games were played in each domain, with players A and B both moving first
in half of the games. In this setting, player B won 49.1% (95% confidence interval:
46.0%− 52.3%) of games in Connect-4 and 49.0% (45.9%− 52.2%) in Othello—the
loss of time in the endgame could not be shown to significantly weaken the player. In
Breakthrough however, player B won only 36.6% (33.6%− 39.7%) of games, and in
Catch the Lion only 31.4% (28.6%− 34.4%). This explains why shifting large amounts
of time from the endgame to the opening or midgame is not effective in these domains.

In Go, switching from 1000ms to 100ms in the described way does result in decreased
performance as well (38.4% win rate for player B). Even though endgame time does
not seem to be wasted time in Go however, moving a part of it towards the opening
or midgame is still effective. Note that Orego resigns whenever its win rate at the
root falls below 10%, which cuts off most of the late endgame of Go as human players
typically would. This feature is meant to restrict the game to the moves that actually
matter. Deactivating resigning makes games much longer on average (231 moves
instead of 118 in self-play at 1 second per move), and creates even more opportunity
to shift time away from the endgame.

Furthermore, it is interesting to note that the optimal parameter settings of the MID
strategy in Connect-4 largely turn it into a variant of OPEN by shifting time far to
the beginning of the game. In for example Othello and 13×13 Go this is not the
case. Figures 6.1, 6.2, and 6.3 show the average time distribution over a game of
Connect-4, Othello, and Go, respectively, using the optimized settings of the MID
strategy in each game. The figures demonstrate how the peak of the average time
spent by MID per move appears at a later stage of the game in Othello and Go than
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in Connect-4. This is probably explained by the fact that Othello and Go games take
much longer than Connect-4 games on average (compare Table 6.14). In Othello and
Go it is therefore prudent not to spend too much time on the first moves of a game,
as potential consequences of actions are not yet visible to MCTS. Connect-4 however
requires more search effort in the opening, as games are often decided early. One could
say that opening and midgame fall into one phase in a short game such as Connect-4.
In conclusion, OPEN and MID can be useful not only to improve performance in
a given game, but also to gain insight into the relative importance of early game,
midgame and endgame decisions in the game at hand. Note that this importance
is always dependent on the search engine and search timing used—an engine with
opening or endgame databases for example might optimally distribute search time
differently, and the use of long search times can make the consequences of moves
visible somewhat earlier in the game compared to short search times.

0 5 10 15 20 25 30 35 40 45

0

500

1,000

1,500

2,000

2,500

turn

av
er
ag
e
tim

e
pe

r
m
ov
e
in

m
s

EXP-MOVES baseline
EXP-MOVES with MID
EXP-MOVES with OPEN

Figure 6.1: Average time distribution over a game of Connect-4 with the MID and OPEN
strategies.

BEHIND. Among the tested domains, the BEHIND strategy is improving performance
in Connect-4 and 13×13 Go. Looking at the optimal parameter values for these two
games however, we can see that search times are prolonged whenever the player’s win
rate falls below 0.6. This means they are essentially always prolonged in the opening
and midgame, when win rates tend to be close to 0.5. The strategy largely turns from
a method to come back from a disadvantageous position into a method to shift more
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Figure 6.2: Average time distribution over a game of Othello with the MID strategy.
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Figure 6.3: Average time distribution over a game of 13×13 Go with the MID strategy.
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search time to the earlier phase of the game. For Connect-4, Figure 6.4 shows the
similar effects of OPEN and BEHIND at optimal parameter settings when considering
the average time distribution over the turns of the game. Since we already know the
OPEN strategy to be effective in Connect-4, and OPEN and BEHIND are equally
strong according to Table 6.6, it is an interesting question whether BEHIND provides
any additional positive effect beyond this similar time shift.
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Figure 6.4: Average time distribution over a game of Connect-4 with the OPEN and BEHIND
strategies.

In order to investigate this question, we determined the average time spent on each
turn of the game when using the BEHIND strategy—as presented for Connect-4 in
Figure 6.4—and created a regular MCTS player BEHIND-DISTRIBUTION which
directly uses these search times depending on the current turn. Thus, it achieves
the same time distribution over the game as BEHIND, while not using the BEHIND
method itself. As an example, if BEHIND on average uses 673ms in turn 17 of a game,
this is a result of win rates being compared to the threshold parameter vbehind and
some proportion of searches being prolonged by a factor of fbehind in all turns up to
17. BEHIND-DISTRIBUTION just uses 673ms every time it reaches turn 17 in this
example, regardless of the win rates observed. By comparing the playing strength
of BEHIND-DISTRIBUTION to that of BEHIND we can determine whether the
BEHIND method has a significant effect in addition to the time distribution over
turns that it causes. BEHIND-DISTRIBUTION was also implemented for 13×13 Go.
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Since the baseline in Go was EXP-STONES instead of EXP-MOVES, it used the same
search times as BEHIND depending on the current number of stones on the board,
not depending on the current turn. The results are comparable since the turn and the
number of stones on the board correlate strongly.
As Table 6.12 shows, the win rate of BEHIND-DISTRIBUTION in Connect-4 is not
significantly different from that of BEHIND. The same is true in Go, as indicated
in Table 6.13. BEHIND only appears to improve playing strength in Connect-4 and
13×13 Go due to its time shift to the opening phase. It can be concluded that the
BEHIND strategy is not effective in any of the tested domains except for Connect-4
and 13×13 Go, where it can be replaced by a strategy directly manipulating the time
distribution over turns (or stones) such as OPEN.

UNST. The UNST strategy is significantly stronger than the baseline in all tested
domains. Figure 6.5 demonstrates that in Go, UNST at optimal parameter settings
has the effect of shifting time to the opening, similar to BEHIND. Figure 6.6 however
shows that this is not the case for UNST at optimal parameter settings in Connect-
4. The time distribution of UNST appears nearly identical to that of the EXP-
MOVES baseline. In order to test for an effect of the UNST method beyond potential
influences on the time distribution over the turns of the game, we constructed a UNST-
DISTRIBUTION player for each test domain according to the procedure described
for BEHIND-DISTRIBUTION above. The Go player was again based on the time
distribution over the number of stones on the board.
Tables 6.12 and 6.13 show that UNST-DISTRIBUTION is not significantly better
than the baseline in any domain but Go, where it is not significantly different from
UNST. We can therefore conclude that UNST is useful in Connect-4, Breakthrough,
Othello, and Catch the Lion, independently of the time distribution over turns that
results from it. In 13×13 Go however, the success of UNST largely depends on a time
shift to the opening, similar to BEHIND.

CLOSE. The CLOSE strategy is improving the performance of the baseline in all tested
domains except for Othello. As for BEHIND and UNST, a CLOSE-DISTRIBUTION
player was created for each domain in order to test the influence of a shifted time
distribution over turns of the game that is caused by applying CLOSE. Tables 6.12 and
6.13 demonstrate that in Breakthrough and Catch the Lion, CLOSE-DISTRIBUTION
does not achieve win rates significantly higher than 50%, meaning that CLOSE is
playing stronger independently of the time distribution over the game that it causes.
In Connect-4, CLOSE-DISTRIBUTION does perform better than EXP-MOVES—but
still significantly worse than CLOSE itself, which means that the CLOSE strategy has
a positive effect in addition to the time shift. In Go, this additional effect could not
be shown to be statistically significant.
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Table 6.12: Performance of the DISTRIBUTION players in Connect-4, Breakthrough, Othello,
and Catch the Lion. 5000 games per player were played against the EXP-MOVES baseline.

Player Win rate 95% conf. int. Derived from Win rate

In Connect-4:
BEHIND-DISTR. 55.3% 53.9%-56.7% BEHIND 55.8%
UNST-DISTR. 50.8% 49.4%-52.2% UNST 54.9%
CLOSE-DISTR. 54.9% 53.5%-56.3% CLOSE 58.7%
STOPA-DISTR. 46.1% 44.7%-47.5% STOPA 50.8%
STOPB-DISTR. 52.9% 51.5%-54.3% STOPB 63.0%
STOP-DISTR. 55.1% 53.7%-56.5% STOP 65.0%
In Breakthrough:
UNST-DISTR. 48.7% 47.3%-50.1% UNST 54.2%
CLOSE-DISTR. 49.6% 48.2%-51.0% CLOSE 53.1%
STOPA-DISTR. 47.6% 46.2%-49.0% STOPA 54.5%
STOPB-DISTR. 47.3% 45.9%-48.7% STOPB 56.9%
STOP-DISTR. 47.2% 45.8%-48.6% STOP 58.2%
In Othello:
UNST-DISTR. 48.9% 47.5%-50.3% UNST 53.1%
CLOSE-DISTR. 49.3% 47.9%-50.7% CLOSE 50.0%
STOPA-DISTR. 49.1% 47.7%-50.5% STOPA 52.9%
STOPB-DISTR. 49.6% 48.2%-51.0% STOPB 54.2%
STOP-DISTR. 50.4% 49.0%-51.8% STOP 54.8%
In Catch the Lion:
UNST-DISTR. 51.3% 49.9%-52.7% UNST 56.4%
CLOSE-DISTR. 50.1% 48.7%-51.5% CLOSE 57.4%
STOPA-DISTR. 47.7% 46.3%-49.1% STOPA 50.0%
STOPB-DISTR. 51.8% 50.4%-53.2% STOPB 56.9%
STOP-DISTR. 49.3% 47.9%-50.7% STOP 60.4%
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Table 6.13: Performance of the DISTRIBUTION players in 13×13 Go. 5000 games per player
were played against GNU Go.

Player Win rate 95% conf. int. Derived from Win rate

BEHIND-DISTR. 31.3% 30.0%-32.6% BEHIND 29.9%
UNST-DISTR. 32.6% 31.3%-33.9% UNST 33.6%
CLOSE-DISTR. 31.0% 29.7%-32.3% CLOSE 32.6%
STOPA-DISTR. 18.7% 17.6%-19.8% STOPA 25.3%
STOPB-DISTR. 29.8% 28.5%-31.1% STOPB 36.7%
STOP-DISTR. 32.8% 31.5%-34.1% STOP 39.1%
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Figure 6.5: Average time distribution over a game of 13×13 Go with the UNST strategy.
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Figure 6.6: Average time distribution over a game of Connect-4 with the UNST strategy.

It remains to be shown why CLOSE does not perform well in Othello. It could be the
case that there are too many situations in which two moves have relatively high and
close visit counts, but investing additional search effort does not lead to a better move
decision—either because the moves are equally valid, or because the consequences
of the two moves cannot be reliably distinguished even with the help of a limited
additional amount of time.

STOP. The STOP strategy—as well as the special case STOPB—significantly improves
on the baseline in all tested domains. Furthermore, STOP consistently achieved
the highest win rate of all investigated time-management techniques across the five
domains and is thus the most successful strategy tested in this chapter.

We determined the average percentage of the regular search time that was saved per
move when STOP, STOPA or STOPB were active. For STOPA/STOPB, this per-
centage was 31.1%/32.1% in Connect-4, 24.7%/25.0% in Breakthrough, 23.1%/23.1%
in Othello, and 32.4%/33.7% in Catch the Lion. Note that more than 50% cannot
be saved with STOPB, because the rest of the search time would then still be long
enough to turn a completely unsampled move into the most-sampled one. In the
most general STOP variant, more than 50% can theoretically be saved, as it gives
up the guarantee of never stopping a search whose outcome could still change. The
saved percentages of the search time for STOP were 34.5% in Connect-4, 47.7% in
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Breakthrough, 25.2% in Othello, and 68.5% in Catch the Lion. The increase in saved
time is related to the parameter pearlystop—domains with high optimal pearlystop (0.9
in Connect-4 and Othello) only relax the guarantee to a small degree, domains with
low optimal pearlystop (0.3 in Breakthrough and 0.2 in Catch the Lion) relax it further.

For all STOP variants, the performance of a player imitating their time distribution
over the game was tested as well (named STOPA-DISTRIBUTION etc.). According to
Tables 6.12 and 6.13, the distribution over turns (or stones) of STOP and STOPB alone
has no significant positive effect on playing strength in all games except for Connect-4
and Go. In Connect-4 and Go, STOP-DISTRIBUTION does have a positive effect, but
is still significantly weaker than STOP. The same holds for STOPB-DISTRIBUTION.
In conclusion, STOP and STOPB are effective in all tested domains, independently of
(or in addition to) their time distribution over turns.

The basic strategy STOPA works in some domains (Breakthrough, Othello) but not in
others (Connect-4, Catch the Lion, Go). As the success of STOPB shows—a strategy
that works just like STOPA but simultaneously shifts time to the opening of the
game—this is largely due to STOPA’s adverse effect of shifting time to the endgame.
The fact that such time shifts can potentially occur with any given strategy makes
studying and comparing these two STOP variants worthwhile. As illustrative examples,
see Figures 6.7, 6.8, and for a visualization of the effects of STOPA and STOPB in
Connect-4, Go, and Breakthrough, respectively. The time distribution of the most
general STOP variant—not shown here for clarity—looks very similar to the STOPB

distribution in these games. An additional argument for the hypothesis that a time
shift to the endgame hurts the performance of STOPA comes from the performance of
STOPA-DISTRIBUTION (see Tables 6.12 and 6.13). In all tested domains except
for Othello, also representing the only domain where STOPB does not improve on
STOPA, the time distribution over turns (or stones) of STOPA hurts performance
significantly.

BEHIND-L, UNST-L, and CLOSE-L. As Table 6.11 shows, the repeated check for
the termination conditions in UNST-L and CLOSE-L only resulted in significantly
stronger play in the domain of Go. None of the other games profited from it. BEHIND-
L was not significantly more effective than BEHIND in any tested domain. (Note
that UNST, CLOSE, and BEHIND are special cases of UNST-L, CLOSE-L, and
BEHIND-L, respectively. Therefore, the looping versions cannot perform worse than
the simple versions if tuned optimally.) It is possible that in the set of domains used,
only Go is sufficiently complex with regard to branching factor and game length to
make such fine-grained timing decisions worthwhile. See Table 6.14 for a comparison
of average game lengths and average branching factors of all five domains investigated.
All values are averages from 1000 self-play games of regular MCTS, 1 second per move.



138 Chapter 6. Time Management for Monte-Carlo Tree Search

0 5 10 15 20 25 30 35 40 45

0

1,000

2,000

3,000

4,000

turn

av
er
ag
e
tim

e
pe

r
m
ov
e
in

m
s

EXP-MOVES baseline
EXP-MOVES with STOPA

EXP-MOVES with STOPB

Figure 6.7: Average time distribution over a game of Connect-4 with the STOPA and STOPB
strategies. While STOPA shifts time to the endgame when compared to the baseline, STOPB
shifts time to the opening phase of the game.
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Figure 6.8: Average time distribution over a game of 13×13 Go with the STOPA and STOPB
strategies.
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Figure 6.9: Average time distribution over a game of Breakthrough with the STOPA and
STOPB strategies.

In Go, we took the average against GNU Go at 30 seconds per game.

All time-management strategies that prolong search times when certain criteria
are met, such as BEHIND, UNST, and CLOSE, take available time from the later
phases and shift it to the earlier phases of the game. Strategies that shorten search
times based on certain criteria, such as STOPA, move time from the opening towards
the endgame instead. When analyzing the effect of time-management approaches, it is
therefore worth testing whether these shifts have a positive or negative effect. Should
the effect be negative, STOPB provides an example of how to possibly counteract it
by introducing an explicit shift in the opposite direction.

Table 6.14: Game length and branching factor in Connect-4, Breakthrough, Othello, Catch
the Lion, and 13×13 Go.
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Game length 37 29 61 35 150
Branching factor 5.8 15.5 8 10.5 90
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6.5 Conclusion and Future Research
In this chapter, we investigated a variety of time-management strategies for Monte-
Carlo Tree Search, using the games of Go, Connect-4, Breakthrough, Othello, and
Catch the Lion as a testbed. This included newly proposed strategies (called OPEN,
MID, KAPPA-EXP, KAPPA-LM, and KAPPA-CM) as well as strategies described in
Huang et al. (2010b) (UNST and BEHIND) or independently proposed in Baudiš (2011)
(CLOSE and STOPA), partly in enhanced form (UNST-L, BEHIND-L, CLOSE-L,
STOPB, and STOP). Empirical results show that the proposed strategy EXP-STONES
with STOP provides a significant improvement over the state of the art as represented
by ERICA-BASELINE in 13×13 Go. For sudden-death time controls of 30 seconds
per game, EXP-STONES with STOP increased Orego’s win rate against GNU
Go from 25.5% (using a simple baseline) or from 35.3% (using the state-of-the-art
ERICA-BASELINE) to 39.1%. In self-play, this strategy won approximately 60% of
games against ERICA-BASELINE, both in 13×13 and 19×19 Go under various time
controls.

Based on a comparison across different games we conclude that the domain-
independent strategy STOP is the strongest of all tested time-management strategies.
It won 65.0% of self-play games in Connect-4, 58.2% in Breakthrough, 54.8% in
Othello, and 60.4% in Catch the Lion. With the exception of CLOSE in Othello,
UNST and CLOSE also prove effective in all domains. Since many time-management
strategies result in a shift of available time towards either the opening or the endgame,
a methodology was developed to isolate the effect of this shift and judge the effect of a
given strategy independently of it. In conclusion, STOP is a promising sudden-death
time management strategy for MCTS.

The following directions appear promising for future research. First, a natural
next step is the combined testing of all above strategies—in order to determine to
which degree their positive effects on playing strength can complement each other, or
to which degree they could be redundant (such as OPEN and BEHIND in Connect-
4), or possibly interfere. ERICA-BASELINE demonstrates that some combinations
can be effective at least in Go. Second, a non-linear classifier like a neural network
could be trained to decide about continuing or aborting the search in short intervals,
using all relevant information used by above strategies as input. A third direction is
the development of improved strategies to measure the complexity and importance
of a position and thus to effectively use time where it is most needed. In Go for
example, counting the number of independent fights on the board could be one possible,
domain-dependent approach. Furthermore, possible interactions of time management
strategies with other MCTS enhancements could be studied, such as for instance the
sufficiency-based selection strategy by Gudmundsson and Björnsson (2013).
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MCTS and Minimax Hybrids

This chapter is based on:
Baier, H. and Winands, M. H. M. (2015). MCTS-Minimax Hybrids. IEEE

Transactions on Computational Intelligence and AI in Games, volume 7, number 2,
pages 167–179.

Baier, H. and Winands, M. H. M. (2013). Monte-Carlo Tree Search and Minimax
Hybrids. In 2013 IEEE Conference on Computational Intelligence and Games, CIG
2013, pages 129–136.

Although MCTS has shown considerable success in a variety of domains, there
are still a number of games such as Chess and Checkers in which the traditional
approach to adversarial planning, minimax search with αβ pruning (Knuth and Moore,
1975), remains superior. The comparatively better performance of αβ cannot always
be explained by the existence of effective evaluation functions for these games, as
evaluation functions have been successfully combined with MCTS to produce strong
players in games such as Amazons and Lines of Action (Lorentz, 2008; Winands et al.,
2010).

Since MCTS builds a highly selective search tree, focusing on the most promising
lines of play, it has been conjectured that it could be less appropriate than traditional,
non-selective minimax search in domains containing a large number of terminal states
and shallow traps (Ramanujan et al., 2010a). In trap situations such as those frequent
in Chess, precise tactical play is required to avoid immediate loss. MCTS, which is
based on sampling, could easily miss a crucial move or underestimate the significance
of an encountered terminal state due to averaging value backups. Conversely, MCTS
could be more effective in domains such as Go, where terminal states and potential
traps do not occur until the latest stage of the game. MCTS can here fully play out
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its strategic and positional understanding resulting from Monte-Carlo simulations of
entire games.

This chapter and the next one answer the fourth research question by exploring
ways of combining the strategic strength of MCTS and the tactical strength of minimax
in order to produce more universally useful hybrid search algorithms. In this chapter
we do not assume the existence of heuristic evaluation functions, allowing the MCTS-
minimax hybrids to be applied in any domain where MCTS is used without such
heuristics (e.g. General Game Playing). The three proposed approaches use minimax
search in the selection/expansion phase, the rollout phase, and the backpropagation
phase of MCTS. We investigate their effectiveness in the test domains of Connect-4,
Breakthrough, Othello, and Catch the Lion.

This chapter is structured as follows. Section 7.1 provides some background on
MCTS-Solver as the baseline algorithm. Section 7.2 gives a brief overview of related
work on the relative strengths of minimax and MCTS, as well as results with combining
or nesting tree search algorithms. Section 7.3 describes different ways of incorporating
shallow-depth minimax searches into the different parts of the MCTS framework, and
Section 7.4 shows experimental results of these knowledge-free MCTS-minimax hybrids
in the four test domains. Conclusions and future research follow in Section 7.5.

7.1 MCTS-Solver
In this chapter, we do not assume the availability of heuristic evaluation functions.
Therefore, minimax search can only distinguish terminal and non-terminal game states,
potentially producing search results such as proven win or proven loss through minimax
backup. In order to be able to handle these proven values, we use MCTS with the
MCTS-Solver extension (Winands et al., 2008) as the baseline algorithm.

The basic idea of MCTS-Solver is allowing for the backpropagation of not only
regular simulation outcomes such as 0 (loss) or 1 (win), but also game-theoretic values
such as proven losses and proven wins whenever terminal states are encountered by
the search tree. First, whenever a move from a given game state s has been marked as
a proven win for player A, the move leading to s can be marked as a proven loss for
the opposing player B. Second, whenever all moves from a given state s have been
marked as proven losses for A, the move leading to s can be marked as a proven win
for B. If at least one move from s has not been proven to be a loss yet, the move
leading to s is only updated with a regular rollout win in this backpropagation phase.
We do not prove draws in this thesis. Draws are backpropagated with the value 0.5.

Whenever the selection policy encounters a node with a child marked as a proven
win, a win can be returned for this simulation without performing any rollout. Similarly,
proven losses can be avoided without having to re-sample them.
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This solving extension to plain MCTS has been successfully used e.g. in Lines
of Action (Winands et al., 2008), Hex (Arneson et al., 2010; Cazenave and Saffidine,
2009), Havannah (Lorentz, 2011), Shogi (Sato et al., 2010), Tron (Den Teuling and
Winands, 2012), Focus (Nijssen and Winands, 2011), and Breakthrough (Lorentz and
Horey, 2014). It has been generalized to Score-bounded MCTS, which handles more
than two game outcomes in a way that allows for pruning (Cazenave and Saffidine,
2011), and to simultaneous move games in the concept of General Game Playing
(Finnsson, 2012).

MCTS-Solver handles game-theoretic values better than MCTS without the ex-
tension because it avoids spending time on the re-sampling of proven game states.
However, it suffers from the weakness that such game-theoretic values often propagate
slowly up the tree before they can influence the move decision at the root. MCTS-
Solver may have to keep sampling a state many times until it has proved all moves from
this state to be losses, such that it can backpropagate a proven win to the next-higher
level of the tree. In Subsection 7.3.3 we describe how we use shallow-depth, exhaustive
minimax searches to speed up this process and guide MCTS more effectively.

7.2 Related Work
The research of Ramanujan et al. (2010a), Ramanujan and Selman (2011), and Ra-
manujan et al. (2011) has repeatedly dealt with characterizing search space properties
that influence the performance of MCTS relative to minimax search. Shallow traps
were identified in Ramanujan et al. (2010a) as a feature of domains that are problematic
for MCTS, in particular Chess. Informally, the authors define a level-k search trap as
the possibility of a player to choose an unfortunate move such that after executing the
move, the opponent has a guaranteed winning strategy at most k plies deep. While
such traps at shallow depths of 3 to 7 are not found in Go until the latest part of
the endgame, they are relatively frequent in Chess games even at grandmaster level
(Ramanujan et al., 2010a), partly explaining the problems of MCTS in this domain.
A resulting hypothesis is that in regions of a search space containing no or very few
terminal positions, shallow traps should be rare and MCTS variants should make
comparatively better decisions, which was confirmed in Ramanujan and Selman (2011)
for the game of Kalah (called Mancala by the authors). In Ramanujan et al. (2011)
finally, an artificial game tree model was used to explore the dependence of MCTS
performance on the density of traps in the search space. A similar problem to shallow
traps was presented by Finnsson and Björnsson (2011) under the name of optimistic
moves—seemingly strong moves that can be refuted right away by the opponent,
but take MCTS prohibitively many simulations to find the refutation. One of the
motivations of the work in this chapter was to employ shallow-depth minimax searches
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within MCTS to increase the visibility of shallow traps and allow MCTS to avoid
them more effectively.

In the context of General Game Playing, Clune (2008) compared the performance
of minimax with αβ pruning and MCTS. Restricted to the class of turn-taking, two-
player, zero-sum games we are addressing here, the author identified a stable and
accurate evaluation function as well as a relatively low branching factor as advantages
for minimax over MCTS. In this chapter, we explore the use of minimax within the
MCTS framework even when no evaluation function is available.

One method of combining different tree search algorithms that was proposed in the
literature is the use of shallow minimax searches in every step of the MCTS rollout
phase. This was typically restricted to checking for decisive and anti-decisive moves,
as in Teytaud and Teytaud (2010) and Lorentz (2011) for the game of Havannah.
2-ply searches have been applied to the rollout phase in Lines of Action (Winands and
Björnsson, 2011), Chess (Ramanujan et al., 2010b), as well as various multi-player
games (Nijssen and Winands, 2012). However, the existence of a heuristic evaluation
function was assumed here. For MCTS-Solver, a 1-ply lookahead for winning moves in
the selection phase at leaf nodes has already been proposed in Winands et al. (2008),
but was not independently evaluated. A different hybrid algorithm UCTMAXH was
proposed in Ramanujan and Selman (2011), employing minimax backups in an MCTS
framework. However, again a strong heuristic evaluator was assumed as a prerequisite.
In our work, we explore the use of minimax searches of various depths without any
domain knowledge beyond the recognition of terminal states. Minimax in the rollout
phase is covered in Subsection 7.3.1.

In the framework of proof-number search (PNS, see Allis et al. 1994), 1- and 3-ply
minimax searches have been applied in the expansion phase of PNS (Kaneko et al.,
2005). In Winands et al. (2001), nodes proven by PNS in a first search phase were
stored and reused by αβ search in a second search phase. In Saito et al. (2007),
Monte-Carlo rollouts were used to initialize the proof and disproof numbers at newly
expanded nodes.

Furthermore, the idea of nesting search algorithms has been used in Cazenave
(2009) and Chapter 4 of this thesis to create Nested Monte-Carlo Search and Nested
Monte-Carlo Tree Search, respectively. In this chapter, we are not using search
algorithms recursively, but nesting two different algorithms in order to combine their
strengths: MCTS and minimax.

7.3 Hybrid Algorithms
In this section, we describe three different approaches for applying minimax with αβ
pruning within the MCTS framework.
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7.3.1 Minimax in the Rollout Phase

While uniformly random move choices in the rollout are sufficient to guarantee the
convergence of MCTS to the optimal policy, more informed rollout strategies typically
greatly improve performance (Gelly et al., 2006). For this reason, it seems natural
to use fixed-depth minimax searches for choosing rollout moves. Since we do not use
evaluation functions in this chapter, minimax can only find forced wins and avoid
forced losses, if possible, within its search horizon. If minimax does not find a win or
loss, we return a random move. The algorithm is illustrated in Figure 7.1.

This strategy thus improves the quality of play in the rollouts by avoiding certain
types of blunders. It informs tree growth by providing more accurate rollout returns.
We call this strategy MCTS-MR for MCTS with Minimax Rollouts.

7.3.2 Minimax in the Selection and Expansion Phases

Minimax searches can also be embedded in the phases of MCTS that are concerned
with traversing the tree from root to leaf: the selection and expansion phases. This
strategy can use a variety of possible criteria to choose whether or not to trigger a
minimax search at any state encountered during the traversal. In the work described
in this chapter, we experimented with starting a minimax search as soon as a state
has reached a given number of visits (for 0 visits, this would include the expansion
phase). Figure 7.2 illustrates the process. Other possible criteria include e.g. starting a
minimax search for a loss as soon as a given number of moves from a state have already
been proven to be losses, or starting a minimax search for a loss as soon as average
returns from a node fall below a given threshold (or searching for a win as soon as
returns exceed a given threshold, conversely), or starting a minimax search whenever
average rollout lengths from a node are short, suggesting proximity of terminal states.
According to preliminary experiments, the simple criterion of visit count seemed most
promising, which is why it was used in the remainder of this chapter. Furthermore,
we start independent minimax searches for each legal move from the node in question,
which allows to store found losses for individual moves even if the node itself cannot
be proven to be a loss.

This strategy improves MCTS by performing shallow-depth, full-width checks of
the immediate descendants of a subset of tree nodes. It guides tree growth by avoiding
shallow losses, as well as detecting shallow wins, within or close to the MCTS tree.
We call this strategy MCTS-MS for MCTS with Minimax Selection.
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(a) The selection phase. (b) The expansion phase.

a b

w
in

(c) A minimax search is started to find
the first rollout move. Since the oppo-
nent has a winning answer to move a,
move b is chosen instead in this exam-
ple.

b

(d) Another minimax search is con-
ducted for the second rollout move.
In this case, no terminal states are
found and a random move choice will
be made.

Figure 7.1: The MCTS-MR hybrid. The minimax depth is 2.
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(a) Selection and expansion phases. The tree
is traversed in the usual fashion until a node
satisfying the minimax trigger criterion is
found.

(b) In this case, the marked node has reached
a prespecified number of visits.

(c) A minimax search is started from the node
in question.

if p
ro

ve
d

if n
ot p

ro
ve

d

(d) If the minimax search has proved the
node’s value, this value can be backpropa-
gated. Otherwise, the selection phase contin-
ues as normal.

Figure 7.2: The MCTS-MS hybrid. The minimax depth is 2.
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7.3.3 Minimax in the Backpropagation Phase

As mentioned in Section 7.1, MCTS-Solver tries to propagate game-theoretic values
(proven win and proven loss) as far up the tree as possible, starting from the terminal
state visited in the current simulation. It has to switch to regular rollout returns
(win and loss) as soon as at least one sibling of a proven loss move is not marked
as proven loss itself. Therefore, we employ shallow minimax searches whenever this
happens, actively searching for proven losses instead of hoping for MCTS-Solver to
find them in future simulations. If minimax succeeds at proving all moves from a
given state s to be losses, we can backpropagate a proven loss instead of just a loss to
the next-highest tree level—i.e. a proven win for the opponent player’s move leading
to s (see a negamax formulation of this algorithm in Figure 7.3).

This strategy improves MCTS-Solver by providing the backpropagation step with
helpful information whenever possible, which allows for quicker proving and exclusion
of moves from further MCTS sampling. Other than the strategies described in 7.3.1
and 7.3.2, it only triggers when a terminal position has been found in the tree and
the MCTS-Solver extension applies. For this reason, it avoids spending computation
time on minimax searches in regions of the search space with no or very few terminal
positions. Minimax can also search deeper each time it is triggered, because it
is triggered less often. We call this strategy MCTS-MB for MCTS with Minimax
Backpropagation.

7.4 Experimental Results
We tested the MCTS-minimax hybrids in four different domains: the two-player,
zero-sum games of Connect-4, 6×6 Breakthrough, Othello, and Catch the Lion. In
all experimental conditions, we compared the hybrids against regular MCTS-Solver
as the baseline. UCB1-TUNED (Auer et al., 2002) is used as selection policy. The
exploration factor C of UCB1-TUNED was optimized once for MCTS-Solver in all
games and then kept constant for both MCTS-Solver and the MCTS-minimax hybrids
during testing. Optimal values were 1.3 in Connect-4, 0.8 in Breakthrough, 0.7 in
Othello, and 0.7 in Catch the Lion. Draws, which are possible in Connect-4 and
Othello, were counted as half a win for both players. We used minimax with αβ

pruning, but no other search enhancements—both in order to keep the experiments
simple, and because the overhead of many search enhancements is too high for shallow
searches. Unless stated otherwise, computation time was 1 second per move.

To ensure a minimal standard of play, the MCTS-Solver baseline was tested against
a random player. MCTS-Solver won 100% of 1000 games in all four domains.

Note that Figures 7.11 to 7.22 show the results of parameter tuning experiments.
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w
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(a) Selection and expansion phases. The ex-
panded move wins the game.

w
in

los
s

(b) This implies the opponent’s previous
move was proven to be a loss.

w
in

los
s

?

wi
n

loss

(c) A minimax search is triggered in order to
check whether the move marked by “?” can
be proven to be a win. In this example, all
opponent answers are proven losses, so it can.

w
in

los
s

wi
n

loss

(d) This also implies the opponent’s previous
move was proven to be a loss. The root state’s
value is now proven.

Figure 7.3: The MCTS-MB hybrid. The minimax search is 2.
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The best-performing parameter values found during tuning were tested with an
additional 5000 games after each tuning experiment. The results of these replications
are reported in the text.

This section is organized as follows. In 7.4.1, the density and difficulty of shallow
traps in the four domains is measured. This gives an indication of how tactical each
game is and how well we therefore expect the hybrids to perform in relation to the
other games. Next, 7.4.2 to 7.4.5 present experimental results for all three hybrids in
Connect-4, Breakthrough, Othello, and Catch the Lion. In 7.4.6, the relative strength
of the hybrids is confirmed by testing them against each other instead of the baseline.
The expectations of relative algorithm performance across domains from Subsection
7.4.1 are then confirmed in 7.4.7. Afterwards, the effects of different time settings
and different branching factors are studied in 7.4.8 and 7.4.9, respectively. Subsection
7.4.10 finally provides results on the solving performance of the three hybrids.

7.4.1 Density and Difficulty of Shallow Traps

In order to measure an effect of employing shallow minimax searches without an
evaluation function within MCTS, terminal states have to be present in sufficient
density throughout the search space, in particular the part of the search space relevant
at our level of play. We played 1000 self-play games of MCTS-Solver in all domains to
test this property, using 1 second per move. At each turn, we determined whether
there exists at least one trap at depth (up to) 3 for the player to move. The same
methodology was used in Ramanujan et al. (2010a).

Figures 7.4, 7.5, 7.6, and 7.7 show that shallow traps are indeed found throughout
most domains, which suggests improving the ability of MCTS to identify and avoid
such traps is worthwhile. Traps appear most frequently in Catch the Lion—making
it a highly tactical domain—followed by Breakthrough and Connect-4. A game of
Othello usually only ends when the board is completely filled however, which explains
why traps only appear when the game is nearly over. Furthermore, we note that in
contrast to Breakthrough and Othello the density of traps for both players differs
significantly in Connect-4 and in the early phase of Catch the Lion. Finally, we see
that Breakthrough games longer than 40 turns, Othello games longer than 60 turns
and Catch the Lion games longer than 50–60 moves are rare, which explains why the
data become more noisy.

In order to provide a more condensed view of the data, Figure 7.8 compares the
average number of level-3 to level-7 search traps over all positions encountered in
the test games. These were 34,187 positions in Catch the Lion, 28,344 positions in
Breakthrough, 36,633 positions in Connect-4, and 60,723 positions in Othello. Note
that a level-k trap requires a winning strategy at most k plies deep, which means every
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Figure 7.4: Density of level-3 search traps in Connect-4.
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Figure 7.5: Density of level-3 search traps in Breakthrough.
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Figure 7.6: Density of level-3 search traps in Othello.
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Figure 7.7: Density of level-3 search traps in Catch the Lion.
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level-k trap is a level-(k+ 1) trap as well. As Figure 7.8 shows, Catch the Lion is again
leading in trap density, followed by Breakthrough, Connect-4, and finally Othello with
a negligible average number of traps.

0 1 2 3 4 5

Othello

Connect-4

Breakthrough

Catch the Lion

Average number of search traps per position

level-1 traps
level-3 traps
level-5 traps
level-7 traps

Figure 7.8: Comparison of trap density in Catch the Lion, Breakthrough, Connect-4, and
Othello.

In an additional experiment, we tried to quantify the average difficulty of traps for
MCTS. MCTS is more likely to “fall into” a trap, i.e. waste much effort on exploring
a trap move, if rollouts starting with this move frequently return a misleading winning
result instead of the correct losing result. Depending on the search space, trap moves
might be relatively frequent but still easy to avoid for MCTS because they get resolved
correctly in the rollouts—or less frequent but more problematic due to systematic
errors in rollout returns. Therefore, 1000 random rollouts were played starting with
every level-3 to level-7 trap move found in the test games. No tree was built during
sampling. Any rollout return other than a loss was counted as incorrect. Figure 7.9
shows the proportion of rollouts that returned the incorrect result, averaged over all
traps.

We observe that in the set of four test domains, the domains with the highest



154 Chapter 7. MCTS and Minimax Hybrids

0 0.1 0.2 0.3 0.4 0.5

Othello

Connect-4

Breakthrough

Catch the Lion

Average proportion of random rollouts with incorrect result

level-1 traps
level-3 traps
level-5 traps
level-7 traps

Figure 7.9: Comparison of trap difficulty in Catch the Lion, Breakthrough, Connect-4, and
Othello.
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average number of traps are also the domains with the highest expected difficulty of
traps. Catch the Lion is again followed by Breakthrough, Connect-4, and Othello in
last place with near-perfect random evaluation of traps. This property of Othello can
be explained with the fact that almost all traps appear at the end of the game when
the board is filled, and the last filling move has no alternatives. Thus, the opponent
can make one mistake less than in other games when executing the trap, and in many
situations executing the trap is the only legal path.

In conclusion, due to both the difference in trap density as well as trap difficulty,
we expect MCTS-minimax hybrids to work relatively better in domains like Catch
the Lion than in domains like Othello. In Subsection 7.4.7, the observations of this
section are related to the performance of the MCTS-minimax hybrids presented in the
following, and this expectation is confirmed.

7.4.2 Connect-4
In this subsection, we summarize the experimental results in the game of Connect-4.
The baseline MCTS-Solver implementation performs about 91000 simulations per
second when averaged over an entire game.

Minimax in the Rollout Phase

We tested minimax at search depths 1 ply to 4 plies in the rollout phase of a Connect-4
MCTS-Solver player. Each resulting player, abbreviated as MCTS-MR-1 to MCTS-
MR-4, played 1000 games against regular MCTS-Solver with uniformly random rollouts.
Figure 7.11 presents the results.

Minimax is computationally more costly than a random rollout policy. MCTS-MR-1
finishes about 69% as many simulations per second as the baseline, MCTS-MR-2 about
31% as many, MCTS-MR-3 about 11% as many, MCTS-MR-4 about 7% as many when
averaged over one game of Connect-4. This typical speed-knowledge trade-off explains
the decreasing performance of MCTS-MR for higher minimax search depths, although
the quality of rollouts increases. Remarkably, MCTS-MR-1 performs significantly
worse than the baseline. This also held when we performed the comparison using
equal numbers of MCTS iterations (100000) per move instead of equal time (1 second)
per move for both players. In this scenario, we found MCTS-MR-1 to achieve a win
rate of 36.3% in 1000 games against the baseline. We suspect this is due to some
specific imbalance in Connect-4 rollouts with depth-1 minimax—it has been repeatedly
found that the strength of a rollout policy as a standalone player is not always a good
predictor of its strength when used within a Monte-Carlo search algorithm (see Bouzy
and Chaslot (2006) and Gelly and Silver (2007) for similar observations in the game
of Go using naive Monte-Carlo and Monte-Carlo Tree Search, respectively).
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In order to illustrate this phenomenon, Figure 7.10 gives an intuition for situations
in which depth-1 minimax rollouts can be less effective for state evaluation than
uniformly random rollouts. The figure shows the partial game tree (not the search
tree) of a position that is a game-theoretic win for the root player. Only if the root
player does not choose move a at the root state can her opponent prevent the win.
The building of a search tree is omitted for simplification in the following. If we start
a uniformly random rollout from the root state, we will get the correct result with a
probability of 1

4 · 1 + 3
4 ·

2
3 = 0.75. If we use a depth-1 minimax rollout however, the

root player’s opponent will always be able to make the correct move choice at states
A, B, and C, leading to an immediate loss for the root player. As a result, the correct
result will only be found with a probability of 1

4 · 1 + 3
4 · 0 = 0.25. If similar situations

appear in sufficient frequency in Connect-4, they could provide an explanation for
systematic evaluation errors of MCTS-MR-1.

A B C

LL L

W W W W WW W W

a

Figure 7.10: A problematic situation for MCTS-MR-1 rollouts. The figure represents a partial
game tree. “L” and “W” mark losing and winning states from the point of view of the root
player.

In the Connect-4 experiments, MCTS-MR-2 outperformed all other variants. Over
an entire game, it completed about 28000 simulations per second on average. In an
additional 5000 games against the baseline, it won 72.1% (95% confidence interval:
70.8%− 73.3%) of games, which is a significant improvement (p<0.001).

Minimax in the Selection and Expansion Phases

The variant of MCTS-MS we tested starts a minimax search from a state in the tree
if that state has reached a fixed number of visits when encountered by the selection
policy. We call this variant, using a minimax search of depth d when reaching v visits,
MCTS-MS-d-Visit-v. If the visit limit is set to 0, this means every tree node is searched
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Figure 7.11: Performance of MCTS-MR in Connect-4.

immediately in the expansion phase even before it is added to the tree.

We tested MCTS-MS-d-Visit-v for d ∈ {2, 4} and v ∈ {0, 1, 2, 5, 10, 20, 50, 100}.
We found it to be most effective to set the αβ search window such that minimax was
only used to detect forced losses (traps). Since suicide is impossible in Connect-4, we
only searched for even depths. Each condition consisted of 1000 games against the
baseline player. The results are shown in Figure 7.12. Low values of v result in too
many minimax searches being triggered, which slows down MCTS. High values of v
mean that the tree below the node in question has already been expanded to a certain
degree, and minimax might not be able to gain much new information. Additionally,
high values of v result in too few minimax searches, such that they have little effect.

MCTS-MS-2-Visit-1 was the most successful condition. It played about 83700
simulations per second on average over an entire game. There were 5000 additional
games played against the baseline and a total win rate of 53.6% (95% confidence
interval: 52.2%− 55.0%) was achieved, which is a significantly stronger performance
(p<0.001).
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Figure 7.12: Performance of MCTS-MS in Connect-4.

Minimax in the Backpropagation Phase

MCTS-Solver with minimax in the backpropagation phase was tested with minimax
search depths 1 ply to 6 plies. Contrary to MCTS-MS as described in 7.4.2, we
experimentally determined it to be most effective to use MCTS-MB with a full
minimax search window in order to detect both wins and losses. We therefore included
odd search depths. Again, all moves from a given node were searched independently in
order to be able to prove their individual game-theoretic values. The resulting players
were abbreviated as MCTS-MB-1 to MCTS-MB-6 and played 1000 games each against
the regular MCTS-Solver baseline. The results are shown in Figure 7.13.

MCTS-MB-1 as the best-performing variant played 5000 additional games against
the baseline and won 49.9% (95% confidence interval: 48.5%− 51.3%) of them, which
shows no significant difference in performance. It played about 88500 simulations per
second when averaged over the whole game.

7.4.3 Breakthrough
The experimental results in the 6×6 Breakthrough domain are described in this
subsection. Our baseline MCTS-Solver implementation plays about 45100 simulations
per second on average.



C
ha

pt
er

7
C
ha

pt
er

7
C
ha

pt
er

7

7.4. Experimental Results 159

1 2 3 4 5 630%

40%

50%

60%

minimax depth

w
in

ra
te

ag
ai
ns
t
th
e
ba

se
lin

e

Figure 7.13: Performance of MCTS-MB in Connect-4.

Minimax in the Rollout Phase

As in Connect-4, we tested 1-ply to 4-ply minimax searches in the rollout phase of
a Breakthrough MCTS-Solver player. The resulting players MCTS-MR-1 to MCTS-
MR-4 played 1000 games each against regular MCTS-Solver with uniformly random
rollouts. The results are presented in Figure 7.14.

Interestingly, all MCTS-MR players were significantly weaker than the baseline
(p<0.001). The advantage of a 1- to 4-ply lookahead in rollouts does not seem to
outweigh the computational cost in Breakthrough, possibly due to the larger branching
factor, longer rollouts, and more time-consuming move generation than in Connect-4.
MCTS-MR-1 searches only about 15.8% as fast as the baseline, MCTS-MR-2 about
2.3% as fast, MCTS-MR-3 about 0.5% as fast, MCTS-MR-4 about 0.15% as fast when
measured in simulations completed in a one-second search of the empty Connect-4
board. When comparing with equal numbers of MCTS iterations (10000) per move
instead of equal time (1 second) per move for both players, MCTS-MR-1 achieved a
win rate of 67.6% in 1000 games against the baseline. MCTS-MR-2 won 83.2% of 1000
games under the same conditions. It may be possible to optimize our Breakthrough
implementation. However, as the following subsections indicate, application of minimax
in other phases of MCTS seems to be the more promising approach in this game.
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Figure 7.14: Performance of MCTS-MR in Breakthrough.

Minimax in the Selection and Expansion Phases

We tested the same variants of MCTS-MS for Breakthrough as for Connect-4: MCTS-
MS-d-Visit-v for d ∈ {2, 4} and v ∈ {0, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}. 1000
games against the baseline player were played for each experimental condition. Figure
7.15 shows the results.

MCTS-MS-2-Visit-2 appeared to be the most effective variant. When averaged over
the whole game, it performed about 33000 simulations per second. 5000 additional
games against the baseline confirmed a significant increase in strength (p<0.001) with
a win rate of 67.3% (95% confidence interval: 66.0%− 68.6%).

Minimax in the Backpropagation Phase

MCTS-MB-1 to MCTS-MB-6 were tested analogously to Connect-4, playing 1000
games each against the regular MCTS-Solver baseline. Figure 7.16 presents the results.

The best-performing setting MCTS-MB-2 played 5000 additional games against
the baseline and won 60.6% (95% confidence interval: 59.2%− 62.0%) of them, which
shows a significant improvement (p<0.001). It played about 46800 simulations per
second on average.
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Figure 7.15: Performance of MCTS-MS in Breakthrough.
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Figure 7.16: Performance of MCTS-MB in Breakthrough.
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7.4.4 Othello
This subsection describes the experimental results in Othello. Our baseline MCTS-
Solver implementation plays about 8700 simulations per second on average in this
domain.

Minimax in the Rollout Phase

Figure 7.17 presents the results of MCTS-MR-1 to MCTS-MR-4 playing 1000 games
each against the MCTS-Solver baseline. None of the MCTS-MR conditions tested had
a positive effect on playing strength. The best-performing setting MCTS-MR-1 played
5000 additional games against the baseline and won 43.7% (95% confidence interval:
42.3% − 45.1%) of them, which is significantly weaker than the baseline (p<0.001).
MCTS-MR-1 simulated about 6400 games per second on average.

When playing with equal numbers of MCTS iterations per move, MCTS-MR-1 won
47.9% of 1000 games against the baseline (at 5000 rollouts per move), MCTS-MR-2
won 54.3% (at 1000 rollouts per move), MCTS-MR-3 won 58.2% (at 250 rollouts per
move), and MCTS-MR-4 won 59.6% (at 100 rollouts per move). This shows that there
is a positive effect—ignoring the time overhead—of minimax searches in the rollouts,
even though these searches can only return useful information in the very last moves
of an Othello game. It could be worthwhile in Othello and similar games to restrict
MCTS-MR to minimax searches only in these last moves.

Minimax in the Selection and Expansion Phases

Again, MCTS-MS-d-Visit-v was tested for d ∈ {2, 4} and v ∈ {0, 1, 2, 5, 10, 20, 50,
100, 200, 500, 1000}. Each condition played 1000 games against the baseline player.
Figure 7.18 presents the results.

The best-performing version, MCTS-MS-2-Visits-50, won 50.8% (95% confidence
interval: 49.4% − 52.2%) of 5000 additional games against the baseline. Thus, no
significant difference in performance was found. The speed was about 8200 rollouts
per second.

Minimax in the Backpropagation Phase

MCTS-MB-1 to MCTS-MB-6 played 1000 games each against the regular MCTS-Solver
baseline. The results are shown in Figure 7.19.

MCTS-MB-2, the most promising setting, achieved a result of 49.2% (95% con-
fidence interval: 47.8%− 50.6%) in 5000 additional games against the baseline. No
significant performance difference to the baseline could be shown. The hybrid played
about 8600 rollouts per second on average.
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Figure 7.17: Performance of MCTS-MR in Othello.
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Figure 7.18: Performance of MCTS-MS in Othello.
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Figure 7.19: Performance of MCTS-MB in Othello.

In conclusion, no effect of the three tested MCTS-minimax hybrids can be shown
in Othello, the domain with the lowest number of traps examined in this chapter.

7.4.5 Catch the Lion

In this subsection, the results of testing in the domain of Catch the Lion are presented.
In this game, the baseline MCTS-Solver plays approximately 34700 simulations per
second on average.

Minimax in the Rollout Phase

Figure 7.20 presents the results of MCTS-MR-1 to MCTS-MR-4 playing 1000 games
each against the MCTS-Solver baseline.

There is an interesting even-odd effect, with MCTS-MR seemingly playing stronger
at odd minimax search depths. Catch the Lion is the only domain of the four where
MCTS-MR-3 was found to perform better than MCTS-MR-2. MCTS-MR-1 played
best in these initial experiments and was tested in an additional 5000 games against
the baseline. The hybrid won 94.8% (95% confidence interval: 94.1%−95.4%) of these,
which is significantly stronger (p<0.001). It reached about 28700 rollouts per second.
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Figure 7.20: Performance of MCTS-MR in Catch the Lion.

Minimax in the Selection and Expansion Phases

MCTS-MS-d-Visit-v was tested for d ∈ {2, 4, 6} and v ∈ {0, 1, 2, 5, 10, 20, 50, 100}.
With each parameter setting, 1000 games were played against the baseline player.
Figure 7.21 shows the results.

MCTS-MS-4-Visits-2 performed best of all tested settings. Of an additional 5000
games against the baseline, it won 76.8% (95% confidence interval: 75.6%− 78.0%).
This is a significant improvement (p<0.001). It played about 14500 games per second
on average.

Minimax in the Backpropagation Phase

MCTS-MB-1 to MCTS-MB-6 were tested against the baseline in 1000 games per
condition. Figure 7.22 presents the results.

MCTS-MB-4 performed best and played 5000 more games against the baseline. It
won 73.1% (95% confidence interval: 71.8%− 74.3%) of them, which is a significant
improvement (p<0.001). The speed was about 20000 rollouts per second.

In conclusion, the domain with the highest number of traps examined in this chapter,
Catch the Lion, also showed the strongest performance of all three MCTS-minimax
hybrids.
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Figure 7.21: Performance of MCTS-MS in Catch the Lion.
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Figure 7.22: Performance of MCTS-MB in Catch the Lion.
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7.4.6 Comparison of Algorithms

Sections 7.4.2 to 7.4.5 showed the performance of MCTS-MR, MCTS-MS, and MCTS-
MB against the baseline player in the four test domains. In order to facilitate
comparison, we also tested the best-performing variants of these MCTS-minimax
hybrids against each other. In Connect-4, MCTS-MR-2, MCTS-MS-2-Visit-1, and
MCTS-MB-1 played in each possible pairing; in Breakthrough, MCTS-MR-1, MCTS-
MS-2-Visit-2, and MCTS-MB-2 were chosen; in Othello, MCTS-MR-1, MCTS-MS-2-
Visit-50, and MCTS-MB-2; and in Catch the Lion, MCTS-MR-1, MCTS-MS-4-Visits-2,
and MCTS-MB-4. 2000 games were played in each condition. Figure 7.23 presents
the results.

0% 20% 40% 60% 80% 100%

MCTS-MR vs. MCTS-MS

MCTS-MR vs. MCTS-MB

MCTS-MS vs. MCTS-MB

win rate

Connect-4
Breakthrough
Othello
Catch the Lion

Figure 7.23: Performance of MCTS-MR, MCTS-MS, and MCTS-MB against each other in
Connect-4, Breakthrough, Othello, and Catch the Lion.

Consistent with the results from the previous sections, MCTS-MS outperformed
MCTS-MB in Breakthrough and Connect-4, while no significant difference could be
shown in Othello and Catch the Lion. MCTS-MR was significantly stronger than
the two other algorithms in Connect-4 and Catch the Lion, but weaker than both in
Breakthrough and Othello.
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7.4.7 Comparison of Domains

In Subsections 7.4.2 to 7.4.5, the experimental results were ordered by domain. In this
subsection, the data on the best-performing hybrid variants are presented again, ordered
by the type of hybrid instead. Figures 7.24, 7.25, and 7.26 show the performance of
MCTS-MS, MCTS-MB, and MCTS-MR, respectively.

0% 20% 40% 60% 80% 100%

Othello

Connect-4

Breakthrough

Catch the Lion

win rate against the baseline

Figure 7.24: Comparison of MCTS-MS performance in Catch the Lion, Breakthrough,
Connect-4, and Othello. The best-performing parameter settings are compared for each
domain.

Both MCTS-MS and MCTS-MB are most effective in Catch the Lion, followed
by Breakthrough, Connect-4, and finally Othello, where no positive effect could be
observed. The parallels to the ordering of domains with respect to tacticality, i.e.
trap density (Figure 7.8) and trap difficulty (Figure 7.9), are striking. As expected,
these factors seem to strongly influence the relative effectivity of MCTS-minimax
hybrids in a given domain. This order is different in MCTS-MR only due to the poor
performance in Breakthrough, which may be explained by this domain having a higher
average branching factor than the other three (see Table 6.14).

7.4.8 Effect of Time Settings

The results presented in the previous subsections of this chapter were all based on
a time setting of 1000ms per move. In this set of experiments, the best-performing
MCTS-minimax hybrids played against the baseline at different time settings from
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Figure 7.25: Comparison of MCTS-MB performance in Catch the Lion, Breakthrough,
Connect-4, and Othello. The best-performing parameter settings are compared for each
domain.
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Figure 7.26: Comparison of MCTS-MR performance in Catch the Lion, Breakthrough,
Connect-4, and Othello. The best-performing parameter settings are compared for each
domain.
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250 ms per move to 5000 ms per move. 2000 games were played in each condition.
The results are shown in Figure 7.27 for Connect-4, Figure 7.28 for Breakthrough,
Figure 7.29 for Othello, and Figure 7.30 for Catch the Lion.
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Figure 7.27: Performance of MCTS-MR-2, MCTS-MS-2-Visit-1, and MCTS-MB-1 at different
time settings in Connect-4.

We can observe that at least up to 5 seconds per move, additional time makes
the significant performance differences between algorithms more pronounced in most
domains. While in Connect-4, it is MCTS-MR that profits most from additional time,
we can see the same effect for MCTS-MS and MCTS-MB in Breakthrough. The time
per move does not change the ineffectiveness of hybrid search in Othello. Interestingly
however, MCTS-MR does not profit from longer search times in Catch the Lion. It is
possible that in this highly tactical domain, the baseline MCTS-Solver scales better
due to being faster and building larger trees. The larger trees could help avoid deeper
traps than the MCTS-MR rollouts can detect.

7.4.9 Effect of Branching Factor

In order to shed more light on the influence of the average branching factor mentioned
above, the hybrids were also tested on Breakthrough boards of larger widths. In
addition to the 6×6 board used in the previous experiments (average branching
factor 15.5), we included the sizes 9×6 (average branching factor 24.0), 12×6 (average
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Figure 7.28: Performance of MCTS-MR-1, MCTS-MS-2-Visit-2, and MCTS-MB-2 at different
time settings in Breakthrough.
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Figure 7.29: Performance of MCTS-MR-1, MCTS-MS-2-Visit-50, and MCTS-MB-2 at different
time settings in Othello.
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Figure 7.30: Performance of MCTS-MR-1, MCTS-MS-4-Visit-2, and MCTS-MB-4 at different
time settings in Catch the Lion.

branching factor 37.5), 15×6 (average branching factor 43.7), and 18×6 (average
branching factor 54.2) in this series of experiments. While the average game length
also increases with the board width—from about 30 moves on the 6×6 board to about
70 moves on the 18×6 board—this setup served as an approximation to varying the
branching factor while keeping other game properties as equal as possible (without using
artificial game trees). Figure 7.31 presents the results, comparing the best-performing
settings of MCTS-MS, MCTS-MB, and MCTS-MR across the five board sizes. The
hybrids were tuned for each board size separately. Each data point represents 2000
games.

The branching factor has a strong effect on MCTS-MR, reducing the win rate of
MCTS-MR-1 from 30.8% (on 6×6) to 10.2% (on 18×6). Deeper minimax searches in
MCTS rollouts scale even worse: The performance of MCTS-MR-2 for example drops
from 20.2% to 0.1% (not shown in the Figure). The MCTS-minimax hybrids newly
proposed in this chapter, however, do not seem to be strongly affected by the range of
branching factors examined. Both MCTS-MS and MCTS-MB are effective up to a
branching factor of at least 50.
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Figure 7.31: Performance of MCTS-minimax hybrids across different board widths in Break-
through.

7.4.10 Solving Performance

The previous subsections analyzed the playing performance of the MCTS-minimax
hybrids. This subsection presents results on their solving performance in order to
determine whether their playing strength is related to more effective solving of game
positions.

For each domain, we collected 1000 test positions suitable for solving by playing
1000 self-play games with MCTS-Solver. We stored the first endgame position of each
game whose game-theoretic value could be determined by the player to move—500
times the first solved position for the first player, and 500 times the first solved position
for the second player. The time setting was 5 seconds per move.

Next, the solving performance of the best-performing hybrids in each domain
was tested by giving them 5 seconds to solve each of these 1000 test positions. The
MCTS-Solver baseline completed the same task. In addition to the number of test
positions successfully solved by each player, we determined for each domain the average
number of nodes and the average time in milliseconds needed to solve the subset
of positions that was solved by all players. Tables 7.1 to 7.4 show the results. In
the following, we relate the solving performance to the playing performance of the
MCTS-minimax hybrids.
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Table 7.1: Solving performance of the MCTS-minimax hybrids in Othello.

Player Solved positions For the 822 positions solved by all players

Average nodes Average time in ms

MCTS-Solver 900 41158 1881
MCTS-MR 883 41404 2155
MCTS-MS 890 41426 1928
MCTS-MB 921 38202 1879

In Othello, only MCTS-MB appears to be more effective in solving than the baseline.
MCTS-MB does not play better than MCTS-Solver, but its improved backpropagation
of game-theoretic values is helpful in endgame positions such as those tested here. The
other hybrids are not improving on the baseline in either playing or solving.

In Connect-4, all of the hybrids are inferior to the MCTS-Solver baseline in solving.
On the one hand, MCTS-MS and MCTS-MR, the two hybrids found to outperform
the baseline in playing, need fewer nodes to solve the positions solved by all players.
On the other hand, they cannot solve as many positions as the baseline. In the case of
MCTS-MR this can be explained by slower tree growth. MCTS-MS may grow the tree
in a way that avoids terminal positions as long as possible, making it more difficult to
backpropagate them in the tree.

In Breakthrough, all hybrids are much stronger than the baseline in solving endgame
positions. They solve more positions and do so with fewer nodes and in less time.
Whereas the expensive rollout policy of MCTS-MR makes it an inferior player, it
does not pose as much of a problem in solving since endgame positions require only
relatively short rollouts.

In Catch the Lion, all hybrids are much more effective than the baseline not only
in playing, but also in solving. As in Breakthrough, they solve more positions than
the baseline, and need fewer nodes and less time to do so.

In conclusion, it seems that the MCTS-minimax hybrids are most likely to improve
both solving strength and playing strength in the more tactical domains such as Catch
the Lion and Breakthrough. Solving and playing do not necessarily favor the same
type of hybrid however, due to differences such as much shorter rollouts in the case of
endgame positions.

Note that for all solving experiments presented so far, the hybrids were not tuned
for optimal solving performance, but the settings previously found to be optimal
for playing were used instead. This helped us understand whether performance
improvements in playing can be explained by or related to performance improvements



C
ha

pt
er

7
C
ha

pt
er

7
C
ha

pt
er

7

7.4. Experimental Results 175

Table 7.2: Solving performance of the MCTS-minimax hybrids in Connect-4.

Player Solved positions For the 433 positions solved by all players

Average nodes Average time in ms

MCTS-Solver 897 65675 2130
MCTS-MR 677 46464 2189
MCTS-MS 597 43890 3586
MCTS-MB 888 65999 2270

Table 7.3: Solving performance of the MCTS-minimax hybrids in Breakthrough.

Player Solved positions For the 717 positions solved by all players

Average nodes Average time in ms

MCTS-Solver 812 47400 1645
MCTS-MR 913 7426 1210
MCTS-MS 922 7418 842
MCTS-MB 921 12890 962

Table 7.4: Solving performance of the MCTS-minimax hybrids in Catch the Lion.

Player Solved positions For the 599 positions solved by all players

Average nodes Average time in ms

MCTS-Solver 678 10227 1445
MCTS-MR 912 1086 537
MCTS-MS 932 410 500
MCTS-MB 891 1049 654
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Table 7.5: Solving performance of MCTS-MB-2 in Connect-4.

Player Solved positions For the 865 positions solved by both players

Average nodes Average time in ms

MCTS-Solver 889 84939 2705
MCTS-MB-2 919 72832 2536

in proving. However, the optimal parameter settings for playing are not always
identical to the optimal parameter settings for solving. The reason that MCTS-MB
improves solving in Othello, but not in Connect-4, for instance, might simply be due
to the fact that the best-playing Othello setting MCTS-MB-2 solves better than the
best-playing Connect-4 setting MCTS-MB-1 in all domains. A preliminary experiment
was conducted with MCTS-MB in Connect-4 to demonstrate this difference between
correct tuning for playing and for solving. Comparing Tables 7.2 and 7.5 shows how
much more effective MCTS-MB-2 is than MCTS-MB-1 for the solving of Connect-4
positions, while it is no stronger at playing (see Figure 7.13).

7.5 Conclusion and Future Research

The strategic strength of MCTS lies to a great extent in the Monte-Carlo simulations,
allowing the search to observe even distant consequences of actions, if only through
the observation of probabilities. The tactical strength of minimax lies largely in its
exhaustive approach, guaranteeing to never miss a consequence of an action that lies
within the search horizon, and backing up game-theoretic values from leaves with
certainty and efficiency.

In this chapter, we examined three knowledge-free approaches of integrating
minimax into MCTS: the application of minimax in the rollout phase with MCTS-MR,
the selection and expansion phases with MCTS-MS, and the backpropagation phase
with MCTS-MB. The newly proposed variant MCTS-MS significantly outperformed
regular MCTS with the MCTS-Solver extension in Catch the Lion, Breakthrough, and
Connect-4. The same holds for the proposed MCTS-MB variant in Catch the Lion
and Breakthrough, while the effect in Connect-4 is neither significantly positive nor
negative. The only way of integrating minimax search into MCTS known from the
literature (although typically used with an evaluation function), MCTS-MR, was quite
strong in Catch the Lion and Connect-4 but significantly weaker than the baseline in
Breakthrough, suggesting it might be less robust with regard to differences between
domains such as the average branching factor. As expected, none of the MCTS-
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minimax hybrids had a positive effect in Othello. The game of Go would be another
domain where we do not expect any success with knowledge-free MCTS-minimax
hybrids, because it has no trap states until the latest game phase.

With the exception of the weak performance of MCTS-MR in Breakthrough,
probably mainly caused by its larger branching factor, we observed that all MCTS-
minimax hybrids tend to be most effective in Catch the Lion, followed by Breakthrough,
Connect-4, and finally Othello. The density and difficulty of traps, as discussed in
Subsection 7.4.1, thus seem to predict the relative performance of MCTS-minimax
hybrids across domains well. Additional experiments showed that the hybrids are also
overall most effective in Catch the Lion and Breakthrough when considering the task
of solving endgame positions—a task that e.g. alleviates the problems of MCTS-MR
in Breakthrough. In conclusion, MCTS-minimax hybrids can strongly improve the
performance of MCTS in tactical domains, with MCTS-MR working best in domains
with low branching factors (up to roughly 10 moves on average), and MCTS-MS and
MCTS-MB being more robust against higher branching factors. This was tested for
branching factors of up to roughly 50 in Breakthrough on different boards.

According to our observations, problematic domains for MCTS-minimax hybrids
seem to feature a low density of traps in the search space, as in Othello, or in the
case of MCTS-MR a relatively high branching factor, as in Breakthrough. In the next
chapter, these problems will be addressed with the help of domain knowledge. On the
one hand, domain knowledge can be incorporated into the hybrid algorithms in the
form of evaluation functions. This can make minimax potentially much more useful in
search spaces with few terminal nodes before the latest game phase, such as that of
Othello. On the other hand, domain knowledge can be incorporated in the form of a
move ordering function. This can be effective in games such as Breakthrough, where
traps are relatively frequent, but the branching factor seems to be too high for some
hybrids such as MCTS-MR. Here, the overhead of embedded minimax searches can be
reduced by only taking the highest-ranked moves into account (Nijssen and Winands,
2012; Winands and Björnsson, 2011).

Preliminary experiments with combinations of the three knowledge-free hybrids
seem to indicate that their effects are overlapping to a large degree. Combinations do
not seem to perform significantly better than the best-performing individual hybrids
in the domain at hand. This could still be examined in more detail.

Note that in all experiments except those concerning MCTS-MR, we used fast,
uniformly random rollout policies. On the one hand, the overhead of our techniques
would be proportionally lower for any slower, informed rollout policies such as typically
used in state-of-the-art programs. On the other hand, improvement on already strong
policies might prove to be more difficult. Examining the influence of such MCTS
enhancements is a possible second direction of future research.
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Finally, while we have focused primarily on the game tree properties of trap density
and difficulty as well as the average branching factor in this chapter, the impact of
other properties such as the game length or the distribution of terminal values also
deserve further study. Artificial game trees could be used to study these properties in
isolation—the large number of differences between “real” games potentially confounds
many effects, such as Breakthrough featuring more traps throughout the search space
than Othello, but also having a larger branching factor. Eventually, it might be
possible to learn from the success of MCTS-minimax hybrids in Catch the Lion, and
transfer some ideas to larger games of similar type such as Shogi and Chess.
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MCTS and Minimax Hybrids with

Heuristic Evaluation Functions

This chapter is based on:
Baier, H. and Winands, M. H. M. (2014). Monte-Carlo Tree Search and Minimax

Hybrids with Heuristic Evaluation Functions. In T. Cazenave, M. H. M. Winands,
and Y. Björnsson, editors, Computer Games Workshop at 21st European Conference
on Artificial Intelligence, ECAI 2014, volume 504 of Communications in Computer
and Information Science, pages 45–63.

In the previous chapter, MCTS-minimax hybrids have been introduced, embedding
shallow minimax searches into the MCTS framework. This was a first step towards
combining the strategic strength of MCTS with the tactical strength of minimax,
especially for highly tactical domains where the selective search of MCTS can lead to
missing important moves and falling into traps. The results of the hybrid algorithms
MCTS-MR, MCTS-MS, and MCTS-MB have been promising even without making use
of domain knowledge such as heuristic evaluation functions. However, their inability
to evaluate non-terminal states makes them ineffective in games with very few or no
terminal states throughout the search space, such as the game of Othello. Furthermore,
some form of domain knowledge is often available in practice, and it is an interesting
question how to use it to maximal effect. This chapter continues to answer the fourth
research question by addressing the case where domain knowledge is available.

The enhancements discussed in this chapter make use of state evaluations. These
state evaluations can either be the result of simple evaluation function calls, or the
result of minimax searches using the same evaluation function at the leaves. Three
different approaches for integrating state evaluations into MCTS are considered. The
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first approach uses state evaluations to choose rollout moves (MCTS-IR for informed
rollouts). The second approach uses state evaluations to terminate rollouts early
(MCTS-IC for informed cutoffs). The third approach uses state evaluations to bias the
selection of moves in the MCTS tree (MCTS-IP for informed priors). Using minimax
with αβ to compute state evaluations means accepting longer computation times in
favor of typically more accurate evaluations as compared to simple evaluation function
calls. Only in the case of MCTS-IR, minimax has been applied before; the use of
minimax for the other two approaches is newly proposed in the form described here.
The MCTS-minimax hybrids are tested and compared to their counterparts using
evaluation functions without minimax in the domains of Othello, Breakthrough, and
Catch the Lion.

Since the branching factor of a domain is identified as a limiting factor of the
hybrids’ performance, further experiments are conducted using domain knowledge
not only for state evaluation, but also for move ordering. Move ordering reduces the
average size of αβ trees, and furthermore allows to restrict the effective branching
factor of αβ to only the k most promising moves in any given state (see Chapter
2). Again, this has only been done for MCTS with minimax rollouts before. The
enhanced MCTS-minimax hybrids with move ordering and k-best pruning are tested
and compared to the unenhanced hybrids as well as the equivalent algorithms using
static evaluations in all three domains.

This chapter is structured as follows. Section 8.1 provides a brief overview of related
work on algorithms combining features of MCTS and minimax, and on using MCTS
with heuristics. Section 8.2 outlines three different methods for incorporating heuristic
evaluations into the MCTS framework, and presents variants using shallow-depth
minimax searches for each of these. Two of these MCTS-minimax hybrids are newly
proposed in this chapter. Section 8.3 shows experimental results of the MCTS-minimax
hybrids without move ordering and k-best pruning in the test domains of Othello,
Breakthrough, and Catch the Lion. Section 8.4 adds results of introducing move
ordering and k-best pruning to each hybrid in each domain. Section 8.5 concludes and
suggests future research.

8.1 Related Work
Previous work on developing algorithms influenced by both MCTS and minimax has
taken two principal approaches. On the one hand, one can extract individual features
of minimax such as minimax-style backups and integrate them into MCTS. This
approach was chosen e.g. in Ramanujan and Selman (2011), where the algorithm
UCTMAXH replaces MCTS rollouts with heuristic evaluations and classic averaging
MCTS backups with minimaxing backups. In implicit minimax backups (Lanctot et al.,
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2014), both minimaxing backups of heuristic evaluations and averaging backups of
rollout returns are managed simultaneously. On the other hand, one can nest minimax
searches into MCTS searches. This is the approach taken in this and the previous
chapter.

The idea of improving Monte-Carlo rollouts with the help of heuristic domain
knowledge has first been applied to games by Bouzy (2005). It is now used by state-
of-the-art programs in virtually all domains. Shallow minimax in every step of the
rollout phase has been proposed as well, e.g. a 1-ply search in Lorentz (2011) for the
game of Havannah, or a 2-ply search for Lines of Action (Winands and Björnsson,
2011), Chess (Ramanujan et al., 2010b), and multi-player games (Nijssen and Winands,
2012). Similar techniques are considered in Subsection 8.2.1.

The idea of stopping rollouts before the end of the game and backpropagating
results on the basis of heuristic knowledge has been explored in Amazons (Lorentz,
2008), Lines of Action (Winands et al., 2010), and Breakthrough (Lorentz and Horey,
2014). To the best of our knowledge, it was first described in a naive Monte Carlo
context (without tree search) by Sheppard (2002). A similar method is considered in
Subsection 8.2.2, where we also introduce a hybrid algorithm replacing the evaluation
function with a minimax call. Our methods are different from Lorentz (2008) and
Winands et al. (2010) as we backpropagate the actual heuristic values instead of
rounding them to losses or wins. They are also different from Winands et al. (2010)
as we backpropagate heuristic values after a fixed number of rollout moves, regardless
of whether they reach a threshold of certainty.

The idea of biasing the selection policy with heuristic knowledge has been introduced
in Gelly and Silver (2007) and Chaslot et al. (2008) for the game of Go. Our
implementation is similar to Gelly and Silver (2007) as we initialize tree nodes with
knowledge in the form of virtual wins and losses. We also propose a hybrid using
minimax returns instead of simple evaluation returns in Subsection 8.2.3.

8.2 Hybrid Algorithms

As in the previous chapter, MCTS-Solver is used as the baseline. This section describes
the three different approaches for employing heuristic knowledge within MCTS that we
explore in this chapter. For each approach, a variant using simple evaluation function
calls and a hybrid variant using shallow minimax searches is considered. Two of the
three hybrids are newly proposed in the form described here.
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8.2.1 MCTS with Informed Rollouts (MCTS-IR)
The convergence of MCTS to the optimal policy is guaranteed even with uniformly
random move choices in the rollouts. However, more informed rollout policies can
greatly improve performance (Gelly et al., 2006). When a heuristic evaluation function
is available, it can be used in every rollout step to compare the states each legal move
would lead to, and choose the most promising one. Instead of choosing this greedy
move, it is effective in some domains to choose a uniformly random move with a low
probability ε, so as to avoid determinism and preserve diversity in the rollouts. Our
implementation additionally ensures non-deterministic behavior even for ε = 0 by
picking moves with equal values at random both in the selection and in the rollout
phase of MCTS. The resulting rollout policy is typically called ε-greedy (Sturtevant,
2008). In the context of this work, we call this approach MCTS-IR-E (MCTS with
informed rollouts using an evaluation function).

The depth-one lookahead of an ε-greedy policy can be extended in a natural way
to a depth-d minimax search for every rollout move (Winands and Björnsson, 2011;
Nijssen and Winands, 2012). We use a random move ordering in minimax as well
in order to preserve non-determinism. In contrast to Winands and Björnsson (2011)
and Nijssen and Winands (2012) where several enhancements such as move ordering,
k-best pruning, and killer moves were added to αβ, we first test unenhanced αβ search
in Subsection 8.3.2. We are interested in its performance before introducing additional
improvements, especially since our test domains have smaller branching factors than
e.g. the games Lines of Action (around 30) or Chinese Checkers (around 25-30) used
in Winands and Björnsson (2011) and Nijssen and Winands (2012), respectively. Move
ordering and k-best pruning are then added in Subsection 8.4.2. Using a depth-d
minimax search for every rollout move aims at stronger move choices in the rollouts,
which make rollout returns more accurate and can therefore help to guide the growth
of the MCTS tree. We call this approach MCTS-IR-M (MCTS with informed rollouts
using minimax). An example is visualized in Figure 8.1.

8.2.2 MCTS with Informed Cutoffs (MCTS-IC)
The idea of rollout cutoffs is an early termination of the rollout in case the rollout
winner, or the player who is at an advantage, can be reasonably well predicted with
the help of an evaluation function. The statistical noise introduced by further rollout
moves can then be avoided by stopping the rollout, evaluating the current state of the
simulation, and backpropagating the evaluation result instead of the result of a full
rollout to the end of the game (Lorentz, 2008; Winands et al., 2010). If on average, the
evaluation function is computationally cheaper than playing out the rest of the rollout,
this method can also result in an increased sampling speed as measured in rollouts
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(a) The selection phase. (b) The expansion phase.
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(c) A d = 2 minimax search is started to find
the first rollout move. The maximizing player
chooses move b with a heuristic value of 0.6.
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(d) Another d = 2 minimax search is con-
ducted for the second rollout move. In this
case, the maximizing player chooses move c
with a heuristic value of 0.3.

Figure 8.1: The MCTS-IR-M hybrid. ε = 0 and d = 2.
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per second. A fixed number m of rollout moves can be played before evaluating in
order to introduce more non-determinism and get more diverse rollout returns. If
m = 0, the evaluation function is called directly at the newly expanded node of the
tree. As in MCTS-IR, our MCTS-IC implementation avoids deterministic gameplay
through randomly choosing among equally valued moves in the selection policy. We
scale all evaluation values to [0, 1]. We do not round the evaluation function values
to wins or losses as proposed in Lorentz (2008), nor do we consider the variant with
dynamic m and evaluation function thresholds proposed in Winands et al. (2010). In
the following, we call this approach MCTS-IC-E (MCTS with informed cutoffs using
an evaluation function).

We propose an extension of this method using a depth-d minimax search at cutoff
time in order to determine the value to be backpropagated. In contrast to the integrated
approach taken in Winands and Björnsson (2011), we do not assume MCTS-IR-M
as rollout policy and backpropagate a win or a loss whenever the searches of this
policy return a value above or below two given thresholds. Instead, we play rollout
moves with an arbitrary policy (uniformly random unless specified otherwise), call
minimax when a fixed number of rollout moves has been reached, and backpropagate
the heuristic value returned by this search. Like MCTS-IR-M, this strategy tries to
backpropagate more accurate rollout returns, but by computing them directly instead
of playing out the rollout. We call this approach MCTS-IC-M (MCTS with informed
cutoffs using minimax). An example is shown in Figure 8.2. Subsections 8.3.3 and
8.4.3 present results on the performance of this strategy using αβ in unenhanced form
and with αβ using move ordering and k-best pruning, respectively.

8.2.3 MCTS with Informed Priors (MCTS-IP)

Node priors (Gelly and Silver, 2007) represent one method for supporting the selection
policy of MCTS with heuristic information. When a new node is added to the tree,
or after it has been visited n times, the heuristic evaluation h of the corresponding
state is stored in this node. This is done in the form of virtual wins and virtual losses,
weighted by a prior weight parameter γ, according to the following formulas.

v ←− v + γ (8.1a)
w ←− w + γh (8.1b)

We assume h ∈ [0, 1]. If the evaluation value h is 0.6 and the weight γ is 100, for
example, 60 wins and 100 visits are added to the w and v counters of the node at hand.
This is equivalent to 60 virtual wins and 100− 60 = 40 virtual losses. Since heuristic
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(a) The selection and expansion
phases.

(b) m = 1 move is played by the roll-
out policy.
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(c) The resulting position is evaluated
with a d = 2 minimax search. The
heuristic evaluation is 0.7 for the max-
imizing player.

V=V+1
W=W+0.3

V=V+1
W=W+0.7

V=V+1
W=W+0.3

V=V+1
W=W+0.7

V=V+1
W=W+0.3

(d) This value is backpropagated as
rollout return. Each traversed node
increments its visit count by 1, and
its win count by 0.7 or 1 − 0.7 = 0.3
depending on the player to move.

Figure 8.2: The MCTS-IC-M hybrid. m = 1 and d = 2.
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evaluations are typically more reliable than the MCTS value estimates resulting from
only a few samples, this prior helps to guide tree growth into a promising direction. If
the node is visited frequently however, the influence of the prior progressively decreases
over time, as the virtual rollout returns represent a smaller and smaller percentage
of the total rollout returns stored in the node. Thus, MCTS rollouts progressively
override the heuristic evaluation. We call this approach MCTS-IP-E (MCTS with
informed priors using an evaluation function) in this chapter.

We propose to extend MCTS-IP with a depth-d minimax search in order to
compute the prior value to be stored. This approach aims at guiding the selection
policy through more accurate prior information in the nodes of the MCTS tree. We
call this approach MCTS-IP-M (MCTS with informed priors using minimax). See
Figure 8.3 for an illustration. Just like the other hybrids, we first test MCTS-IP-M
with αβ in unenhanced form (Subsection 8.3.4), and then introduce move ordering
and k-best pruning (Subsection 8.4.4).

8.3 Experimental Results with Unenhanced αβ
We tested the MCTS-minimax hybrids with heuristic evaluation functions in three
different domains: Othello, Catch the Lion, and 6×6 Breakthrough. In all experimental
conditions, we compared the hybrids as well as their counterparts using heuristics
without minimax against regular MCTS-Solver as the baseline. Rollouts were uniformly
random unless specified otherwise. Optimal MCTS parameters such as the exploration
factor C were determined once for MCTS-Solver in each game and then kept constant
for both MCTS-Solver and the MCTS-minimax hybrids during testing. C was 0.7
in Othello and Catch the Lion, and 0.8 in Breakthrough. Draws, which are possible
in Othello, were counted as half a win for both players. We used minimax with αβ
pruning, but no other search enhancements. Computation time was 1 second per
move.

This section is organized as follows. Subsection 8.3.1 outlines the evaluation
functions used for each domain. Next, 8.3.2 to 8.3.4 present experimental results for
MCTS-IR, MCTS-IC, and MCTS-IP in all games. In 8.3.5, the relative strength of
the best-performing hybrids is confirmed by testing them against each other instead
of the baseline. In parallel to 7.4.7, Subsection 8.3.6 compares the performance of the
hybrids across domains. Finally, combinations of two hybrids are studied in 8.3.7.

8.3.1 Evaluation Functions

This subsection outlines the heuristic board evaluation functions used for each of the
three test domains. The evaluation function from the point of view of the current
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(a) The selection phase.

V: 3
W: 2

(b) A tree node with v = n = 3 visits is
encountered.
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0.50.6

0.6 0.50.5 0.80.7
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(c) This triggers a d = 2 minimax search. The
heuristic evaluation is h = 0.6 for the maximizing
player.

V: 103
W: 62

(d) This value is stored in the node in
the form of γ = 100 virtual visits and
γ ∗ 0.6 = 60 virtual wins.

Figure 8.3: The MCTS-IP-M hybrid. n = 3, d = 2, and γ = 100.
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player is always her total score minus her opponent’s total score, normalized to [0, 1]
as a final step.

Othello

The evaluation function we use for Othello is adapted from the Rolit evaluation
function described in Nijssen (2013). It first determines the number of stable discs for
the player, i.e. discs that cannot change color anymore for the rest of the game. For
each stable disc of her color, the player receives 10 points. Afterwards, the number of
legal moves for the player is added to the score in order to reward mobility.

Catch the Lion

The evaluation function we use for Catch the Lion represents a weighted material sum
for each player, where a Chick counts as 3 points, a Giraffe or Elephant as 5 points,
and a Chicken as 6 points, regardless of whether they are on the board or captured by
the player.

Breakthrough

The evaluation score we use for 6×6 Breakthrough gives the player 3 points for each
piece of her color. Additionally, each piece receives a location value depending on its
row on the board. From the player’s home row to the opponent’s home row, these
values are 10, 3, 6, 10, 15, and 21 points, respectively. This evaluation function is a
simplified version of the one used in Lorentz and Horey (2014).

8.3.2 Experiments with MCTS-IR

MCTS-IR-E was tested for ε ∈ {0, 0.05, 0.1, 0.2, 0.5}. Each parameter setting played
1000 games in each domain against the baseline MCTS-Solver with uniformly random
rollouts. Figures 8.4 to 8.6 show the results. The best-performing conditions used
ε = 0.05 in Othello and Catch the Lion, and ε = 0 in Breakthrough. They were each
tested in 2000 additional games against the baseline. The results were win rates of
79.9% in Othello, 75.4% in Breakthrough, and 96.8% in Catch the Lion. All of these
are significantly stronger than the baseline (p<0.001).

MCTS-IR-M was tested for d ∈ {1, . . . , 4} with the optimal value of ε found for
each domain in the MCTS-IR-E experiments. Each condition played 1000 games per
domain against the baseline player. The results are presented in Figures 8.7 to 8.9.
The most promising setting in all domains was d = 1. In an additional 2000 games
against the baseline per domain, this setting achieved win rates of 73.9% in Othello,
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65.7% in Breakthrough, and 96.5% in Catch the Lion. The difference to the baseline
is significant in all domains (p<0.001).

In each domain, the best settings for MCTS-IR-E and MCTS-IR-M were then
tested against each other in 2000 further games. The results for MCTS-IR-M were
win rates of 37.1% in Othello, 35.3% in Breakthrough, and 47.9% in Catch the Lion.
MCTS-IR-M is weaker than MCTS-IR-E in Othello and Breakthrough (p<0.001),
while no significant difference could be shown in Catch the Lion. This shows that the
incorporation of shallow αβ searches into rollouts did not improve MCTS-IR in any
of the domains at hand. Depth-1 minimax searches in MCTS-IR-M are functionally
equivalent to MCTS-IR-E, but have some overhead in our implementation due to
the recursive calls to a separate αβ search algorithm. This results in the inferior
performance.

Higher settings of d were not successful because deeper minimax searches in every
rollout step require too much computational effort. In an additional set of 1000 games
per domain, we compared MCTS-IR-E to MCTS-IR-M at 1000 rollouts per move,
ignoring the time overhead of minimax. Here, MCTS-IR-M won 78.6% of games with
d = 2 in Othello, 63.4% of games with d = 2 in Breakthrough, and 89.3% of games
with d = 3 in Catch the Lion. All of these conditions are significantly stronger than
MCTS-IR-E (p<0.001). This confirms MCTS-IR-M is suffering from its time overhead.

Interestingly, deeper minimax searches do not always guarantee better performance
in MCTS-IR-M, even when ignoring time. While MCTS-IR-M with d = 1 won 50.4%
(47.3%-53.5%) of 1000 games against MCTS-IR-E in Catch the Lion, d = 2 won only
38.0%—both at 1000 rollouts per move. In direct play against each other, MCTS-IR-M
with d = 2 won 38.8% of 1000 games against MCTS-IR-M with d = 1. As standalone
players however, a depth-2 minimax beat a depth-1 minimax in 95.8% of 1000 games.
Such cases where policies that are stronger as standalone players do not result in
stronger play when integrated in MCTS rollouts have been observed before (compare
Chapter 7; Gelly and Silver 2007; Silver and Tesauro 2009).

8.3.3 Experiments with MCTS-IC

MCTS-IC-E was tested for m ∈ {0, . . . , 5}. 1000 games were played against the
baseline MCTS-Solver per parameter setting in each domain. Figures 8.10 to 8.12
present the results. The most promising condition was m = 0 in all three domains. It
was tested in 2000 additional games against the baseline. The results were win rates
of 61.1% in Othello, 41.9% in Breakthrough, and 98.1% in Catch the Lion. This is
significantly stronger than the baseline in Othello and Catch the Lion (p<0.001), but
weaker in Breakthrough (p<0.001). The evaluation function in Breakthrough may not
be accurate enough for MCTS to fully rely on it instead of rollouts. Testing higher
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Figure 8.4: Performance of MCTS-IR-E in Othello.
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Figure 8.5: Performance of MCTS-IR-E in Breakthrough.
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Figure 8.6: Performance of MCTS-IR-E in Catch the Lion.

1 2 3 40%

20%

40%

60%

80%

100%

αβ depth d

w
in

ra
te

ag
ai
ns
t
th
e
ba

se
lin

e

Figure 8.7: Performance of MCTS-IR-M in Othello. For all conditions, ε = 0.05.
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Figure 8.8: Performance of MCTS-IR-M in Breakthrough. For all conditions, ε = 0.
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Figure 8.9: Performance of MCTS-IR-M in Catch the Lion. For all conditions, ε = 0.05.
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values of m showed that as fewer and fewer rollouts are long enough to be cut off,
MCTS-IC-E effectively turns into the baseline MCTS-Solver and also shows identical
performance. Note that the parameter m can sometimes be sensitive to the opponents
it is tuned against. In this subsection, we tuned against regular MCTS-Solver only,
and both MCTS-Solver and MCTS-IC used uniformly random rollouts.

MCTS-IC-M was tested for all combinations of m ∈ {0, . . . , 5} and d ∈ {1, 2, 3},
with 1000 games each per domain. The results are shown in Figures 8.13 to 8.15. The
best performance was achieved with m = 0 and d = 2 in Othello, m = 4 and d = 1
in Breakthrough, and m = 1 and d = 2 in Catch the Lion. Of an additional 2000
games against the baseline per domain, these settings won 62.4% in Othello, 32.4% in
Breakthrough, and 99.6% in Catch the Lion. This is again significantly stronger than
the baseline in Othello and Catch the Lion (p<0.001), but weaker in Breakthrough
(p<0.001).

The best settings for MCTS-IC-E and MCTS-IC-M were also tested against each
other in 2000 games per domain. Despite MCTS-IC-E and MCTS-IC-M not showing
significantly different performance against the regular MCTS-Solver baseline in Othello
and Catch the Lion, MCTS-IC-E won 73.1% of these games against MCTS-IC-M in
Othello, 58.3% in Breakthrough, and 66.1% in Catch the Lion. All conditions are
significantly superior to MCTS-IC-M (p<0.001). Thus, the integration of shallow αβ

searches into rollout cutoffs did not improve MCTS-IC in any of the tested domains
either.

Just as for MCTS-IR, this is a problem of computational cost for the αβ searches.
We compared MCTS-IC-E with optimal parameter settings to MCTS-IC-M at equal
rollouts per move instead of equal time in an additional set of experiments. Here,
MCTS-IC-M won 65.7% of games in Othello at 10000 rollouts per move, 69.8% of
games in Breakthrough at 6000 rollouts per move, and 86.8% of games in Catch the
Lion at 2000 rollouts per move (the rollout numbers were chosen so as to achieve
comparable times per move). The parameter settings were m = 0 and d = 1 in
Othello, m = 0 and d = 2 in Breakthrough, and m = 0 and d = 4 in Catch the
Lion. All conditions here are stronger than MCTS-IC-E (p<0.001). This confirms
that MCTS-IC-M is weaker than MCTS-IC-E due to its time overhead.

A seemingly paradoxical observation was made with MCTS-IC as well. In Catch
the Lion, the values returned by minimax searches are not always more effective for
MCTS-IC than the values of simple static heuristics, even when time is ignored. In
Catch the Lion for example, MCTS-IC-M with m = 0 and d = 1 won only 14.8% of
1000 test games against MCTS-IC-E with m = 0, at 10000 rollouts per move. With
d = 2, it won 38.2%. Even with d = 3, it won only 35.9% (all at 10000 rollouts per
move). Once more these results demonstrate that a stronger policy can lead to a
weaker search when embedded in MCTS.
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Figure 8.10: Performance of MCTS-IC-E in Othello.
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Figure 8.11: Performance of MCTS-IC-E in Breakthrough.
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Figure 8.12: Performance of MCTS-IC-E in Catch the Lion.
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Figure 8.13: Performance of MCTS-IC-M in Othello.
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Figure 8.14: Performance of MCTS-IC-M in Breakthrough.
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Figure 8.15: Performance of MCTS-IC-M in Catch the Lion.
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8.3.4 Experiments with MCTS-IP

MCTS-IP-E was tested for all combinations of n ∈ {0, 1, 2} and γ ∈ {50, 100, 250,
500, 1000, 2500, 5000}. Each condition played 1000 games per domain against the
baseline player. The results are shown in Figures 8.16 to 8.18. The best-performing
conditions were n = 1 and γ = 1000 in Othello, n = 1 and γ = 2500 in Breakthrough,
and n = 0 and γ = 100 in Catch the Lion. In 2000 additional games against the baseline,
these conditions achieved win rates of 56.8% in Othello, 86.6% in Breakthrough, and
71.6% in Catch the Lion (all significantly stronger than the baseline with p<0.001).

MCTS-IP-M was tested for all combinations of n ∈ {0, 1, 2, 5, 10, 25}, γ ∈
{50, 100, 250, 500, 1000, 2500, 5000}, and d ∈ {1, . . . , 5} with 1000 games per con-
dition in each domain. Figures 8.19 to 8.21 present the results, using the optimal
setting of d for all domains. The most promising parameter values found in Othello
were n = 2, γ = 5000, and d = 3. In Breakthrough they were n = 1, γ = 1000, and
d = 1, and in Catch the Lion they were n = 1, γ = 2500, and d = 5. Each of them
played 2000 additional games against the baseline, winning 81.7% in Othello, 87.8%
in Breakthrough, and 98.0% in Catch the Lion (all significantly stronger than the
baseline with p<0.001).

The best settings for MCTS-IP-E and MCTS-IP-M subsequently played 2000
games against each other in all domains. MCTS-IP-M won 76.2% of these games
in Othello, 97.6% in Catch the Lion, but only 36.4% in Breakthrough (all of the
differences are significant with p<0.001). We can conclude that using shallow αβ

searches to compute node priors strongly improves MCTS-IP in Othello and Catch
the Lion, but not in Breakthrough. This is once more a problem of time overhead due
to the larger branching factor of Breakthrough (see Table 6.14). At 1000 rollouts per
move, MCTS-IP-M with n = 1, γ = 1000, and d = 1 won 91.1% of 1000 games against
the best MCTS-IP-E setting in this domain.

An interesting observation is the high weight assigned to the node priors in all
domains. It seems that at least for uniformly random rollouts, best performance is
achieved when rollout returns never override priors for the vast majority of nodes.
They only differentiate between states that look equally promising for the evaluation
functions used. The exception is MCTS-IP-E in Catch the Lion, where the static
evaluations might be too unreliable to give them large weights due to the tactical
nature of the game. Exchanges of pieces can often lead to quick and drastic changes of
the evaluation values, or even to the end of the game by capturing a Lion (see 7.4.1 for
a comparison of the domains’ tacticality in terms of trap density and trap difficulty).
The quality of the priors in Catch the Lion improves drastically when minimax searches
are introduced, justifying deeper searches (d = 5) than in the other tested domains
despite the high computational cost. However, MCTS-IC still works better in this
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case, possibly because inaccurate evaluation results are only backpropagated once and
are not stored to influence the selection policy for a longer time as in MCTS-IP. In
Othello, minimax searches in combination with a seemingly less volatile evaluation
function lead to MCTS-IP-M being the strongest hybrid tested in this section.

The effect of stronger policies resulting in weaker performance when integrated into
MCTS can be found in MCTS-IP just as in MCTS-IR and MCTS-IC. In Breakthrough
for example, MCTS-IP-M with n = 1, γ = 1000, and d = 2 won only 83.4% of 1000
games against the strongest MCTS-IP-E setting, compared to 91.1% with n = 1,
γ = 1000, and d = 1—both at 1000 rollouts per move. The difference is significant
(p<0.001). As standalone players however, depth-2 minimax won 80.2% of 1000 games
against depth-1 minimax in our Breakthrough experiments.
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Figure 8.16: Performance of MCTS-IP-E in Othello.

8.3.5 Comparison of Algorithms
Subsections 8.3.2 to 8.3.4 showed the performance of MCTS-IR, MCTS-IC and MCTS-
IP against the baseline MCTS-Solver player. We also tested the best-performing
variants of these algorithms (MCTS-IP-M in Othello, MCTS-IP-E in Breakthrough, and
MCTS-IC-E in Catch the Lion) against all other tested algorithms. In each condition,
2000 games were played. Figures 8.22 to 8.24 present the results, which confirm that
MCTS-IP-M is strongest in Othello, MCTS-IP-E is strongest in Breakthrough, and
MCTS-IC-E is strongest in Catch the Lion.

The best individual players tested in Othello and Breakthrough thus make use
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Figure 8.17: Performance of MCTS-IP-E in Breakthrough.

0

1

2 1000 2500
5000

50%

60%

70%

visits n

prior weight γ

w
in

ra
te

Figure 8.18: Performance of MCTS-IP-E in Catch the Lion.
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Figure 8.19: Performance of MCTS-IP-M in Othello. For all conditions, d = 3.
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Figure 8.20: Performance of MCTS-IP-M in Breakthrough. For all conditions, d = 1.
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Figure 8.21: Performance of MCTS-IP-M in Catch the Lion. For all conditions, d = 5.

of priors in order to combine heuristic information with rollout returns. Because
of the different branching factors, computing these priors works best by embedding
shallow minimax searches in Othello, and by a simple evaluation function call in
Breakthrough. In Catch the Lion, random rollouts may too often return inaccurate
results due to the tacticality and possibly also due to the non-converging nature of
the domain. Replacing these rollouts with the evaluation function turned out to be
the most successful of the individually tested approaches.

8.3.6 Comparison of Domains

In Subsection 7.4.7, the performance of the knowledge-free MCTS-minimax hybrids
MCTS-MR, MCTS-MB, and MCTS-MS was related to the tacticality of the test
domains. It turned out that integrating minimax into the MCTS framework without
using an evaluation function is most effective in the most tactical domains, as defined
by their density of shallow traps (Ramanujan et al., 2010a).

In this subsection, we compare the best-performing variants of the MCTS-minimax
hybrids MCTS-IR-M, MCTS-IC-M, and MCTS-IP-M in the same manner across
domains. Figures 8.25 to 8.27 summarize the relevant results from the previous
subsections.

As in the case of knowledge-free hybrids presented in the last chapter, all hybrids
are most effective in Catch the Lion. This is expected due to this domain having
the highest density and difficulty of shallow traps (compare Figures 7.8 and 7.9).
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Figure 8.22: Performance of MCTS-IP-M against the other algorithms in Othello.
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Figure 8.23: Performance of MCTS-IP-E against the other algorithms in Breakthrough.
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Figure 8.24: Performance of MCTS-IC-E against the other algorithms in Catch the Lion.
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Figure 8.25: Comparison of MCTS-IR-M performance in Catch the Lion, Othello, and
Breakthrough. The best-performing parameter settings are compared for each domain.



204 Chapter 8. MCTS and Minimax Hybrids with Heuristic Evaluation Functions

0% 20% 40% 60% 80% 100%

Breakthrough

Othello

Catch the Lion

win rate against the baseline

Figure 8.26: Comparison of MCTS-IC-M performance in Catch the Lion, Othello, and
Breakthrough. The best-performing parameter settings are compared for each domain.
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Figure 8.27: Comparison of MCTS-IP-M performance in Catch the Lion, Othello, and
Breakthrough. The best-performing parameter settings are compared for each domain.
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However, MCTS-IR-M and MCTS-IC-M perform worse in Breakthrough than in
Othello, although the former has a higher trap density than the latter. As in the case
of MCTS-MR in the last chapter, this can probably be explained by the comparatively
larger branching factor of 6×6 Breakthrough, which makes embedding minimax more
expensive. MCTS-IR-M and MCTS-IC-M typically require more minimax calls than
MCTS-IP-M. Further research is required to investigate the influence of the used
evaluation function as well. The use of heuristic knowledge could make it possible for
MCTS-minimax hybrids to not only detect the type of traps studied in the previous
chapter—traps that lead to a lost game—but also soft traps that only lead to a
disadvantageous position (Ramanujan et al., 2010b).

8.3.7 Combination of Algorithms

Subsections 8.3.2 to 8.3.5 showed the performance of MCTS-IR, MCTS-IC and MCTS-
IP in isolation. In order to get an indication whether the different methods of
applying heuristic knowledge can successfully be combined, we conducted the following
experiments. In Othello, the best-performing algorithm MCTS-IP-M was combined
with MCTS-IR-E. In Breakthrough, the best-performing algorithm MCTS-IP-E was
combined with MCTS-IR-E. In Catch the Lion, it is not possible to combine the
best-performing algorithm MCTS-IC-E with MCTS-IR-E, because with the optimal
setting m = 0 MCTS-IC-E leaves no rollout moves to be chosen by an informed rollout
policy. Therefore, MCTS-IP-M was combined with MCTS-IR-E instead. 2000 games
were played in each condition. The results are shown in Figures 8.28 to 8.30. The
performance against the MCTS-Solver baseline is given as reference as well.

Applying the same domain knowledge both in the form of node priors and in
the form of ε-greedy rollouts leads to stronger play in all three domains than using
priors alone. In fact, such combinations are the overall strongest players tested in
this section even without being systematically optimized. In Othello, the combination
MCTS-IP-M-IR-E won 55.2% of 2000 games against the strongest individual algorithm
MCTS-IP-M (stronger with p=0.001). In Breakthrough, the combination MCTS-IP-
E-IR-E won 53.9% against the best-performing algorithm MCTS-IP-E (stronger with
p<0.05). In Catch the Lion, the combination MCTS-IP-M-IR-E with n = 1, w = 2500,
and d = 4 won 61.1% of 2000 games against the strongest algorithm MCTS-IC-E
(stronger with p<0.001). This means that in Catch the Lion, two algorithm variants
that are weaker than MCTS-IC-E can be combined into a hybrid that is stronger.
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Figure 8.28: Performance of MCTS-IP-M combined with MCTS-IR-E in Othello.
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Figure 8.29: Performance of MCTS-IP-E combined with MCTS-IR-E in Breakthrough.
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Figure 8.30: Performance of MCTS-IP-M combined with MCTS-IR-E in Catch the Lion.
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8.4 Experimental Results with
Move Ordering and k-best Pruning

In the previous section, αβ search was used in its basic, unenhanced form. This was
sufficient to improve MCTS-IP in Othello and Catch the Lion, but too computationally
expensive for MCTS-IR and MCTS-IC in these two domains, as well as for all hybrids
in Breakthrough. The performance difference between the hybrids on the one hand can
be explained by the fact that MCTS-IP allows to control the frequency of minimax calls
with the parameter n, while MCTS-IC needs to call minimax once in every rollout, and
MCTS-IR even for every single rollout move. This makes it easier for MCTS-IP to trade
off the computational cost of embedded minimax searches against their advantages over
static evaluation function calls. In previous work on a combination of MCTS-IR and
MCTS-IC (Winands and Björnsson, 2011), the computational cost seemed to be have
less impact due to the longer time settings of up to 30 seconds per move. A reduction
of the number of rollouts is less problematic at long time settings because rollouts bring
diminishing returns. The performance difference between the domains on the other
hand can be explained by the larger branching factor of 6×6 Breakthrough compared
to Othello and Catch the Lion, which affects full-width minimax more strongly than
for example the sampling-based MCTS. The main problem of MCTS-minimax hybrids
seems to be their sensitivity to the branching factor of the domain.

In this section, we therefore conduct further experiments applying limited domain
knowledge not only for state evaluation, but also for move ordering. The application
of move ordering is known to strongly improve the performance of αβ through a
reduction of the average size of search trees (see Subsection 2.2.4). Additionally, with
a good move ordering heuristic one can restrict αβ to only searching the k moves in
each state that seem most promising to the heuristic (k-best pruning). The number of
promising moves k is subject to empirical optimization. This technique, together with
other enhancements such as killer moves, has been successfully used for MCTS-IR-M
before even in Lines of Action, a domain with an average branching factor twice
as high as 6×6 Breakthrough (Winands et al., 2010). Move ordering and k-best
pruning could make all MCTS-minimax hybrids viable in domains with much higher
branching factors, including the newly proposed MCTS-IC-M and MCTS-IP-M. We
call the hybrids with activated move ordering and k-best pruning enhanced hybrids or
MCTS-IR-M-k, MCTS-IC-M-k, and MCTS-IP-M-k, respectively.

In contrast to the previous section, we only report on the performance of the
strongest parameter settings per hybrid and domain in this section. Parameter
landscapes are not provided. The reason is that all tuning for this section was
conducted with the help of a bandit-based optimizer, distributing test games to
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parameter settings via the UCB1-TUNED formula. This method speeds up the tuning
process as it does not waste samples on clearly inferior settings, but does not result in
comparable win rates for different settings due to the different number of samples for
each setting.

Another difference to Section 8.3 is that we observed overfitting in some cases.
Especially MCTS-IP-M-k turned out to be sensitive to the opponent it is tuned
against—possibly because it has four parameters as opposed to the three of the other
hybrids. Instead of tuning against the comparatively weak baseline MCTS-Solver, all
hybrids in this section were therefore tuned against a mix of opponents. The mix
consists of the best-performing MCTS-IR, MCTS-IC, and MCTS-IP variants (with or
without embedded minimax searches) found in Section 8.3 for the domain at hand.
The reported win rates are results of testing the tuned hybrid in 2000 additional
games against a single opponent. The chosen opponent is the overall best-performing
player found in Section 8.3 for the respective domain, namely MCTS-IP-M in Othello,
MCTS-IC-E in Catch the Lion, and MCTS-IP-E in Breakthrough, each with their
best-performing settings.

Results are provided for MCTS-IR-M-k, MCTS-IC-M-k, and MCTS-IP-M-k. The
techniques MCTS-IR-E, MCTS-IC-E, and MCTS-IP-E are unaffected by the introduc-
tion of move ordering and k-best pruning, so their performance remains unchanged
from Section 8.3.

This section is organized as follows. Subsection 8.4.1 explains the move ordering
functions used for each game and tests their effectiveness. Next, 8.4.2 to 8.4.4 present
experimental results for MCTS-IR-M-k, MCTS-IC-M-k, and MCTS-IP-M-k in all
domains. Subsection 8.4.5 tests the hybrids against each other instead of the baseline,
confirming the relative strength of MCTS-IP-M-k. Similarly to 7.4.7 and 8.3.6, the
hybrids are then compared across domains in 8.4.6. Afterwards, the effects of different
time settings are studied in 8.4.7 and the effects of different branching factors in 8.4.8.
In parallel to 8.3.7, combinations are two hybrids are tested in 8.4.9. Subsection 8.4.10
finally compares the best-performing hybrids to αβ instead of our MCTS baseline.

8.4.1 Move Ordering Functions

This subsection outlines the heuristic move ordering functions used for each of the
three test domains. All move orderings are applied lazily by αβ, meaning that first
the highest-ranked move is found and searched, then the second-highest-ranked move
is found and searched, etc.—instead of first ranking all available moves and then
searching them in that order. When two moves are equally promising to the move
ordering function, they are searched in random order.
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Othello

The move ordering we use for Othello is adapted from the Rolit move ordering described
in Nijssen (2013). Moves are ordered according to their location on the board. The
heuristic value of a move on each square of the board is shown in Figure 8.31. Corners,
for instance, have the highest heuristic values because discs in the corner are always
stable and can provide an anchor for more discs to become stable as well.
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Figure 8.31: The move ordering for Othello.

Catch the Lion

The move ordering we use for Catch the Lion ranks winning moves first. After winning
moves it ranks capturing moves, ordered by the value difference between the capturing
and the captured piece. Capturing a more valuable piece with a less valuable piece is
preferred (see 8.3.1 for the piece values). This is an idea related to MVV-LVA (Most
Valuable Victim—Least Valuable Aggressor) capture sorting in computer Chess. After
capturing moves, it ranks promotions, and after that all other moves in random order.

Breakthrough

For 6×6 Breakthrough, we consider two different move orderings: a weaker one and a
stronger one. This allows us to demonstrate the effect that the quality of the move
ordering has on the performance of the MCTS-minimax hybrids. The weaker move
ordering ranks moves according to how close they are to the opponent’s home row—the
closer, the better. The stronger move ordering ranks winning moves first. Second, it
ranks saving moves (captures of an opponent piece that is only one move away from
winning). Third, it ranks captures, and fourth, all other moves. Within all four groups
of moves, moves that are closer to the opponent’s home row are preferred as well.
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Table 8.1: Effectiveness of the move orderings (m.o.) in Breakthrough, Othello, and Catch
the Lion. The table shows the average size of αβ trees of depth d ∈ {1 . . . 5}.

domain αβ depth d

1 2 3 4 5

Breakthrough
without m.o. 17.0 90.9 657.4 2847.9 28835.5
weaker m.o. 16.5 60.4 365.2 1025.0 4522.6
stronger m.o. 16.6 46.9 258.6 751.3 3278.6
Othello
without m.o. 8.9 41.3 180.8 555.6 1605.3
with m.o. 9.1 35.6 147.9 466.1 1139.0
Catch the Lion
without m.o. 10.9 48.5 279.9 1183.8 5912.9
with m.o. 10.9 30.0 128.8 427.0 1663.6

Effectiveness of the move ordering functions

The following experiment was conducted in order to test whether the proposed move
ordering functions are valid, i.e. whether they rank moves more effectively than a
random ordering. Effective move orderings on average lead to quicker cutoffs in αβ
and thus to smaller αβ trees for a given search depth. For each domain, move ordering,
and αβ search depth from 1 to 5, we therefore played 50 fast games (250ms per move)
between two MCTS-IC-M players, logging the average sizes of αβ trees for each player.
Since MCTS-IC-M uses αβ in each rollout, these 50 games provided us with a large
number of αβ searches close to typical game trajectories. Table 8.1 presents the
results. All move orderings are successful at reducing the average size of αβ trees in
their respective domains. As expected, the stronger move ordering for Breakthrough
results in smaller trees than the weaker move ordering. Depth-1 trees are unaffected
because no αβ cutoffs are possible. The deeper the searches, the greater the potential
benefit from move ordering. When comparing the move orderings across domains, it
seems that the stronger move ordering in Breakthrough is most effective (88.6% tree
size reduction at depth 5), while the Othello move ordering is least effective (29.0%
tree size reduction at depth 5). Note that these data do not show whether the gains
from move ordering outweigh the overhead, nor whether they allow effective k-best
pruning—this is tested in the following subsections. We return to time settings of 1
second per move.
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8.4.2 Experiments with MCTS-IR-M-k
The best-performing settings of MCTS-IR-M-k in the tuning experiments were d = 1,
ε = 0, and k = 2 in Othello and Catch the Lion, d = 1, ε = 0, and k = 20 in
Breakthrough with the weaker move ordering, and d = 1, ε = 0.1, and k = 1 in
Breakthrough with the stronger move ordering. In all domains, no search deeper
than one ply proved to be worthwhile (d = 1). In Breakthrough with the stronger
move ordering, the optimal strategy is playing the highest-ordered move in each
state without using the evaluation function to differentiate between moves (k = 1).
Such move ordering rollouts (compare Nijssen 2013) are faster than rollouts that rely
on the state evaluation function in our Breakthrough implementation. Each of the
best-performing settings played 2000 games against the best player with unenhanced
αβ in the respective domain: MCTS-IP-M in Othello, MCTS-IC-E in Catch the Lion,
and MCTS-IP-E in Breakthrough, using the settings found to be optimal in Section
8.3. Figures 8.32 to 8.35 show the results.

The introduction of move ordering and k-best pruning significantly improved the
performance of MCTS-IR-M in all domains (p<0.0002) except for Breakthrough with
the weaker move ordering. This move ordering turned out not to be effective enough
to allow for much pruning, so the problem of the branching factor remained. With the
stronger move ordering however, the best-performing setting of MCTS-IR-M-k only
considers the highest-ranking move in each rollout step, increasing the win rate against
MCTS-IP-E from 49.6% to 77.8%. The stronger move ordering is therefore performing
significantly better than the weaker move ordering in MCTS-IR-M-k (p<0.0002).

As in Subsection 8.3.2, MCTS-IR-M-k was also tested in 2000 games per domain
against the non-hybrid, static evaluation version MCTS-IR-E. In this comparison, the
enhancements improved the win rate of MCTS-IR-M from 37.1% to 62.8% in Othello,
from 35.3% to 80.3% in Breakthrough (strong ordering), and from 47.9% to 65.3%
in Catch the Lion. The hybrid version is now significantly stronger than its static
equivalent in all three domains. However, the best-performing hybrids do not perform
deeper search than MCTS-IR-E—their strength comes from move ordering and k-best
pruning alone, not from embedded minimax searches. Similar rollout strategies have
been successful in Lines of Action before (Winands and Björnsson, 2010).

8.4.3 Experiments with MCTS-IC-M-k
The most promising settings of MCTS-IC-M-k in the tuning experiments were d = 100,
m = 1, and k = 1 in Othello, d = 2, m = 1, and k = 3 in Catch the Lion, d = 20,
m = 5, and k = 1 in Breakthrough with the weaker move ordering, and d = 15,
m = 0, and k = 1 in Breakthrough with the stronger move ordering. Note that the
settings in Othello and Breakthrough correspond to playing out a large number of
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Figure 8.32: Performance of MCTS-IR-M-k in Othello.
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Figure 8.33: Performance of MCTS-IR-M-k in Catch the Lion.
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Figure 8.34: Performance of MCTS-IR-M-k with the weaker move ordering in Breakthrough.
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Figure 8.35: Performance of MCTS-IR-M-k with the stronger move ordering in Breakthrough.

moves from the current position, using the best move ordering move in each step,
and evaluating the final position. In Othello with d = 100, games are played out
all the way to terminal positions in this fashion. This makes the best-performing
MCTS-IC-M-k players in Othello and Breakthrough similar to the move ordering
rollouts discussed in the previous subsection. Only in Catch the Lion, we achieve
better play by choosing a small value for d and k > 1, leading to an actual embedded
minimax search. As speculated in Subsection 8.3.5 for the case of random rollouts,
move ordering rollouts might still return too unreliable rollout results in this highly
tactical and non-converging domain. Replacing the largest part of rollouts with an
evaluation, here through pruned minimax, could be more successful for this reason.

Each of the best-performing settings played 2000 games against MCTS-IP-M in
Othello, MCTS-IC-E in Catch the Lion, and MCTS-IP-E in Breakthrough. The results
are presented by Figures 8.36 to 8.39. Move ordering and k-best pruning significantly
improved the performance of MCTS-IC-M in all domains (p<0.0002 in Othello and
Breakthrough, p=0.001 in Catch the Lion). The strength difference between the weaker
and the stronger move ordering in Breakthrough is again significant (p<0.0002).

For comparison to Subsection 8.3.3, MCTS-IC-M-k played 2000 games in each
domain against MCTS-IC-E. The enhancements improved the win rate of MCTS-IC-
M from 26.9% to 66.3% in Othello, from 41.7% to 89.8% in Breakthrough (strong
ordering), and from 33.9% to 38.9% in Catch the Lion. The hybrid version is now
significantly stronger than its static equivalent in Othello and Breakthrough. However,
similar to the case of MCTS-IR-M-k in the previous subsection, the best-performing
MCTS-IC-M-k players do not perform true embedded minimax searches with a
branching factor of k > 1 in these domains. The strength of MCTS-IC-M-k comes
from move ordering and k-best pruning alone, not from minimax. Only in Catch the
Lion, minimax with k > 1 is used—but here the simple evaluation function call of
MCTS-IC-E still works better.
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Figure 8.36: Performance of MCTS-IC-M-k in Othello.
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Figure 8.37: Performance of MCTS-IC-M-k in Catch the Lion.
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Figure 8.38: Performance of MCTS-IC-M-k with the weaker move ordering in Breakthrough.
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Figure 8.39: Performance of MCTS-IC-M-k with the stronger move ordering in Breakthrough.

8.4.4 Experiments with MCTS-IP-M-k

The tuning results for MCTS-IP-M-k were n = 6, γ = 15000, d = 5, and k = 10 in
Othello, n = 4, γ = 1000, d = 7, and k = 50 in Catch the Lion, n = 3, γ = 30000,
d = 5, and k = 50 in Breakthrough with the weaker move ordering, and n = 2,
γ = 20000, d = 8, and k = 7 in Breakthrough with the stronger move ordering. We
can observe that move ordering and k-best pruning make it possible to search deeper
than in plain MCTS-IP-M. The depth parameter d increases from 3 to 5 in Othello,
from 5 to 7 in Catch the Lion, and from 1 to 5 or even 8 in Breakthrough, depending
on the strength of the move ordering used. The cost of these deeper searches is further
reduced by calling them less often: The visits parameter n increases from 2 to 6
in Othello, from 1 to 4 in Catch the Lion, and from 1 to 2 or 3 in Breakthrough.
Thanks to their greater depth, these improved αβ searches get a stronger weight in all
domains except for Catch the Lion. The weight parameter γ increases from 5000 to
15000 in Othello, and from 1000 to 20000 or 30000 in Breakthrough. In Catch the
Lion, it decreases from 2500 to 1000—a significant strength difference could however
not be observed. Each of the settings listed above played 2000 additional games
against the best unenhanced player in the respective domain. The results are shown
in Figures 8.40 to 8.43. Move ordering and k-best pruning significantly improved the
performance of MCTS-IP-M in all domains (p<0.0002). Just like with MCTS-IR-M-k
and MCTS-IC-M-k, the performance difference between the two Breakthrough move
orderings is significant (p<0.0002). For comparison to Subsection 8.3.4, MCTS-IP-M-k
was tested in 2000 games per domain against MCTS-IP-E. Move ordering and k-best
pruning improved the win rate of MCTS-IP-M from 76.2% to 92.4% in Othello, from
36.4% to 80.3% in Breakthrough (strong ordering), and from 97.6% to 98.9% in Catch
the Lion. The hybrid version is now significantly stronger than its static equivalent in
all three domains.
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Figure 8.40: Performance of MCTS-IP-M-k in Othello.
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Figure 8.41: Performance of MCTS-IP-M-k in Catch the Lion.
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Figure 8.42: Performance of MCTS-IP-M-k with the weaker move ordering in Breakthrough.
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Figure 8.43: Performance of MCTS-IP-M-k with the stronger move ordering in Breakthrough.

In conclusion, we can say that introducing move ordering and k-best pruning
has a strong positive effect on all hybrids in all domains. As demonstrated with the
example of Breakthrough, the quality of the move ordering used is crucial; but even
relatively weak move orderings such as that used in Othello (compare Table 8.1) are
quite effective in improving the MCTS-minimax hybrids. In particular, MCTS-IP-M-k
is significantly stronger than the best player found with unenhanced αβ in all domains
(p<0.0002). MCTS-IP-M-k is also the only hybrid that truly profits from embedded
minimax searches in all domains, whereas the best-performing variants of MCTS-IR-
M-k do not search deeper than one ply, and the strongest versions of MCTS-IC-M-k
do not perform real searches in two out of three domains (they reduce the branching
factor to 1 and effectively perform move ordering rollouts instead).

8.4.5 Comparison of Algorithms

The previous subsections show the performance of MCTS-IR-M-k, MCTS-IC-M-k,
and MCTS-IP-M-k against a single opponent: the best-performing player without
using move ordering and k-best pruning. Analogously to Subsection 8.3.5 for the case
of unenhanced αβ, we also tested the best-performing variant of the enhanced hybrids
(MCTS-IP-M-k in all domains) against all other discussed algorithms. Each condition
consisted of 2000 games. Figures 8.44 to 8.47 show the results.

These results confirm that MCTS-IP-M-k is the strongest standalone MCTS-
minimax hybrid tested in this chapter. It is significantly stronger than MCTS-IR-
E, MCTS-IC-E, MCTS-IP-E, MCTS-IR-M-k, and MCTS-IC-M-k in all domains
(p<0.0002), with the exception of Breakthrough with the stronger move ordering. In
this domain it is stronger than MCTS-IC-M-k only with p<0.05, and could not be
shown to be significantly different in performance from MCTS-IR-M-k. No tested
algorithm played significantly better than MCTS-IP-M-k in any domain.
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Figure 8.44: Performance of MCTS-IP-M-k against the other algorithms in Othello.
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Figure 8.45: Performance of MCTS-IP-M-k against the other algorithms in Catch the Lion.
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Figure 8.46: Performance of MCTS-IP-M-k against the other algorithms with the weaker
move ordering in Breakthrough.
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Figure 8.47: Performance of MCTS-IP-M-k against the other algorithms with the stronger
move ordering in Breakthrough.
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In the rest of this chapter, we are always using Breakthrough with the stronger
move ordering.

8.4.6 Comparison of Domains

In analogy to Subsection 8.3.6, we also compare the best-performing variants of the
enhanced MCTS-minimax hybrids MCTS-IR-M-k, MCTS-IC-M-k, and MCTS-IP-M-k
across domains. This could help us understand in which games each hybrid might
be expected to be most successful. Since Subsections 8.4.2 to 8.4.4 have tested the
performance of these hybrids against different opponents—the strongest unenhanced
players in each domain—we are testing them against the regular MCTS-Solver baseline
here to allow for this cross-domain comparison. Because of the large disparity in
playing strength, each condition gave 1000 ms per move to the tested hybrid, and
3000 ms per move to MCTS-Solver. The results are presented in Figures 8.48 to 8.50.

0% 20% 40% 60% 80% 100%

Breakthrough

Othello

Catch the Lion

win rate against the baseline

Figure 8.48: Comparison of MCTS-IR-M-k performance in Catch the Lion, Othello, and
Breakthrough. The best-performing parameter settings are compared for each domain.
Breakthrough uses the stronger move ordering. The baseline uses 300% search time.

Just like their counterparts without move ordering and k-best pruning, as well as
the knowledge-free hybrids presented in the previous chapter, all hybrids are most
successful in Catch the Lion. It seems that the high number of shallow hard traps in
this Chess-like domain makes any kind of embedded minimax searches an effective tool
for MCTS, with or without evaluation functions. The hybrids are comparatively least
successful in Breakthrough. It remains to be determined by future research whether
this is caused by the quality of the evaluation function or move ordering used, or
whether the higher branching factor of Breakthrough compared to Othello remains an
influential factor even when pruning is activated.
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Figure 8.49: Comparison of MCTS-IC-M-k performance in Catch the Lion, Othello, and
Breakthrough. The best-performing parameter settings are compared for each domain.
Breakthrough uses the stronger move ordering. The baseline uses 300% search time.
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Figure 8.50: Comparison of MCTS-IP-M-k performance in Catch the Lion, Othello, and
Breakthrough. The best-performing parameter settings are compared for each domain.
Breakthrough uses the stronger move ordering. The baseline uses 300% search time.
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8.4.7 Effect of Time Settings

The results presented in the previous subsections of this chapter were all based on
a time setting of 1000ms per move. In this set of experiments, the best-performing
variants of MCTS-IR-M-k, MCTS-IC-M-k, and MCTS-IP-M-k played at different time
settings from 250 ms per move to 5000 ms per move. The opponent in all conditions
was the regular MCTS-Solver baseline at equal time settings, in order to determine
how well the hybrids scale with search time. Each condition consisted of 2000 games.
Figure 8.51 shows the results for Breakthrough, Figure 8.52 for Othello, and Figure
8.53 for Catch the Lion.
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Figure 8.51: Performance of MCTS-IR-M-k, MCTS-IC-M-k, and MCTS-IP-M-k at different
time settings in Breakthrough. The stronger move ordering and the best-performing parameter
settings at 1000 ms are used.

The results indicate that in the range of time settings investigated, it is easier to
transfer parameter settings to longer search times than to shorter search times (see
in particular Figure 8.53). MCTS-IP-M-k seems the most likely algorithm to overfit
to the specific time setting it was optimized for (see in particular Figure 8.51). As
mentioned before, MCTS-IP-M-k is also most likely to overfit to the algorithm it is
tuned against—the flexibility of its four parameters might be the reason. In case
playing strength at different time settings is of importance, these time settings could
be included in the tuning, just as different opponents were included in the tuning for
this chapter.
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Figure 8.52: Performance of MCTS-IR-M-k, MCTS-IC-M-k, and MCTS-IP-M-k at different
time settings in Othello. The best-performing parameter settings at 1000 ms are used.
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Figure 8.53: Performance of MCTS-IR-M-k, MCTS-IC-M-k, and MCTS-IP-M-k at different
time settings in Catch the Lion. The best-performing parameter settings at 1000 ms are used.
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Note that these results do not mean the hybrids are ineffective at low time settings.
We retuned MCTS-IP-M-k for 250 ms in Breakthrough and Catch the Lion, finding
the parameter settings n = 8, γ = 30000, d = 8, and k = 5 for Breakthrough, and
n = 10, γ = 10000, d = 5, and k = 50 for Catch the Lion. Switching to these variants
increased the win rate against the baseline from 76.3% to 96.7% in Breakthrough, and
from 73.0% to 90.0% in Catch the Lion. The parameter settings for low time limits
are characterized by shortening the embedded minimax searches, either by decreasing
k as in Breakthrough or by decreasing d as in Catch the Lion. Increased values of n
also mean that the embedded searches are called less often, although from our tuning
experience, it seems that the parameter landscape of n and γ is fairly flat compared
to that of k and d for MCTS-IP-M-k.

8.4.8 Effect of Branching Factor
In order to give an indication how well move ordering and k-best pruning can help deal
with larger branching factors, the enhanced hybrids were also tuned for Breakthrough
on an 18×6 board. Increasing the board width from 6 to 18 increases the average
branching factor of Breakthrough from 15.5 to 54.2. As mentioned in Subsection
7.4.9, this setup served as an approximation to varying the branching factor while
keeping other game properties as equal as possible (without using artificial game trees).
The best parameter settings found for 18×6 Breakthrough were d = 1, ε = 0.05, and
k = 1 for MCTS-IR-M-k, d = 4, m = 0, and k = 25 for MCTS-IC-M-k, and n = 2,
γ = 20000, d = 3, and k = 30 for MCTS-IP-M-k. Figures 8.54 to 8.56 compare the
best-performing settings of the three hybrids on the two board sizes. Each data point
represents 2000 games.

0% 20% 40% 60% 80% 100%

18×6 Breakthrough

6×6 Breakthrough

win rate against the baseline

Figure 8.54: Performance of MCTS-IR-M-k in 18×6 Breakthrough. The MCTS-Solver
baseline uses 300% search time.

As observed in Subsection 7.4.9, the branching factor has a strong effect on hybrids
that use minimax in each rollout step. The win rate of MCTS-IR-M-k is reduced from
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18×6 Breakthrough
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win rate against the baseline

Figure 8.55: Performance of MCTS-IC-M-k in 18×6 Breakthrough. The MCTS-Solver
baseline uses 300% search time.

0% 20% 40% 60% 80% 100%

18×6 Breakthrough

6×6 Breakthrough

win rate against the baseline

Figure 8.56: Performance of MCTS-IP-M-k in 18×6 Breakthrough. The MCTS-Solver
baseline uses 300% search time.
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Table 8.2: Best-performing parameter settings for MCTS-IP-M-k-IR-M-k.

Domain MCTS-IP-M-k parameters MCTS-IR-M-k parameters

n γ d k d ε k

Othello 6 5000 5 12 6 0 1
Breakthrough 1 500 4 2 1 0.05 1
Catch the Lion 10 20000 7 100 3 0 8

Table 8.3: Best-performing parameter settings for MCTS-IC-M-k-IR-M-k.

Domain MCTS-IC-M-k parameters MCTS-IR-M-k parameters

d m k d ε k

Othello 100 0 1 4 0 1
Breakthrough 20 1 1 3 0 2
Catch the Lion 7 0 100 2 0 2

78.5% (on 6×6) to 37.9% (on 18×6). The MCTS-minimax hybrids newly proposed in
this chapter, however, show the opposite effect. Both MCTS-IC-M-k and MCTS-IP-
M-k become considerably more effective as we increase the branching factor—probably
because more legal moves mean fewer simulations per move, and domain knowledge
becomes increasingly more important to obtain useful value estimates.

8.4.9 Combination of Hybrids

Subsections 8.4.2 to 8.4.5 show the performance of MCTS-IR-M-k, MCTS-IC-M-k and
MCTS-IP-M-k in isolation. Analogously to Subsection 8.3.7 for the case of unenhanced
αβ, this subsection provides some initial results on combinations of different enhanced
hybrids. In all three domains, the best-performing hybrid MCTS-IP-M-k as well as
MCTS-IC-M-k were combined with MCTS-IR-M-k. The resulting hybrids were named
MCTS-IP-M-k-IR-M-k and MCTS-IC-M-k-IR-M-k, respectively. They were tuned
against a mix of opponents consisting of the best-performing MCTS-IR, MCTS-IC,
and MCTS-IP variants (with or without embedded minimax searches) found in Section
8.3, as well as the best-performing MCTS-IR-M-k, MCTS-IC-M-k, and MCTS-IP-M-k
variants found in this section, for the domain at hand.

The parameter values found to work best for MCTS-IP-M-k-IR-M-k are presented
in Table 8.2. Tuning of MCTS-IC-M-k-IR-M-k resulted in values of m = 0 for Othello
and Catch the Lion, and m = 1 for Breakthrough—meaning that the informed rollout
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policies are used for at most one move per simulation and have little to no effect on
MCTS-IC-M-k. MCTS-IC-M-k-IR-M-k does therefore not seem to be a promising
combination of hybrids.

The tuned MCTS-IP-M-k-IR-M-k then played an additional 2000 test games
against three opponents: the best unenhanced player in the respective domain in order
to have results comparable to Subsections 8.4.2 to 8.4.4, and the two hybrids that the
combination consists of (MCTS-IR-M-k and MCTS-IP-M-k). The results are shown
in Figures 8.57 to 8.59.
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MCTS-IP-M
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Figure 8.57: Performance of MCTS-IP-M-k combined with MCTS-IR-M-k in Othello.
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Figure 8.58: Performance of MCTS-IP-M-k combined with MCTS-IR-M-k in Catch the Lion.

MCTS-IP-M-k-IR-M-k leads to stronger play than the individual hybrids in all
three domains, with one exception. In Othello, the combination MCTS-IP-M-k-IR-M-k
does perform better than MCTS-IR-M-k, but worse than the stronger component
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Figure 8.59: Performance of MCTS-IP-M-k combined with MCTS-IR-M-k in Breakthrough
with the stronger move ordering.

MCTS-IP-M-k. It seems that the slowness of the minimax rollouts outweighs their
added strength in this domain.

We may conclude it is potentially useful to combine different ways of integrating
identical domain knowledge into MCTS-minimax hybrids. Other than MCTS-IC-M-
k, MCTS-IP-M-k profits from the combination with MCTS-IR-M-k. When testing
MCTS-IP-M-k-IR-M-k and MCTS-IC-M-k-IR-M-k in 2000 games against each other,
MCTS-IP-M-k-IR-M-k achieves a win rate of 63.6% in Othello, 74.7% in Breakthrough,
and 67.0% in Catch the Lion. This means MCTS-IP-M-k-IR-M-k is significantly
stronger than MCTS-IC-M-k-IR-M-k in all domains (p<0.0002).

8.4.10 Comparison to αβ
Subsections 8.4.2 to 8.4.9 showed the performance of the MCTS-minimax hybrids
against various MCTS-based baseline opponents. MCTS-IP-M-k-IR-M-k turned out to
be the strongest player tested in Breakthrough and Catch the Lion, and MCTS-IP-M-k
with a simple uniformly random rollout policy was the best player tested in Othello.
This proves that combining MCTS with minimax can improve on regular MCTS.
However, it does not show whether such combinations can also outperform minimax.
If the MCTS-minimax hybrids improve on their MCTS component, but not on their
minimax component, one could conclude that the test domains are more well-suited to
minimax than to MCTS, and that the integration of minimax into MCTS only worked
because it resulted in algorithms more similar to minimax. If the MCTS-minimax
hybrids can improve on both their MCTS and their minimax component however,
they represent a successful combination of the strengths of these two different search
methods.
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In the last set of experiments in this chapter, we therefore preliminarily examined
the performance of the strongest hybrid players against minimax. The strongest
hybrid players were MCTS-IP-M-k-IR-M-k in Breakthrough and Catch the Lion, and
MCTS-IP-M-k in Othello, with the optimal parameter settings found above. As
the minimax baseline we used the same basic αβ implementation that is also used
within the hybrids. It used move ordering and k-best pruning as well, with parameter
settings tuned against the hybrids. The optimal k for this standalone αβ was 10 in
Breakthrough, 50 in Catch the Lion, and 14 in Othello. In addition, the standalone
αβ used iterative deepening.

1000 games were played in each domain. The results were win rates for the MCTS-
minimax hybrids of 66.9% in Breakthrough, 17.4% in Catch the Lion, and 26.9%
in Othello. This means that the MCTS-minimax hybrids presented in this chapter
outperform both their MCTS part and their αβ part in Breakthrough, demonstrating
a successful combination of the advantages of the two search approaches. In Catch
the Lion and Othello however, regular αβ is still stronger. This result was expected in
the extremely tactical domain of Catch the Lion, where the selectivity of MCTS often
leads to missing important moves, and the information returned from rollouts seems
unreliable (compare with Subsections 8.3.5 and 8.4.3). The relative strength of αβ in
Othello is more surprising and warrants future investigation. It is possible that the
search space of Othello is full of soft traps (Ramanujan et al., 2010b), giving minimax
a similar advantage as the hard traps in Catch the Lion.

8.5 Conclusion and Future Research
In this chapter, we continued the research on MCTS-minimax hybrids for the case
where domain knowledge in the form of heuristic evaluation functions is available.
Three approaches for integrating such knowledge into MCTS were considered. MCTS-
IR uses heuristic knowledge to improve the rollout policy. MCTS-IC uses heuristic
knowledge to terminate rollouts early. MCTS-IP uses heuristic knowledge as prior for
tree nodes. For all three approaches, we compared the computation of state evaluations
through simple evaluation function calls (MCTS-IR-E, MCTS-IC-E, and MCTS-IP-E)
to the computation of state evaluations through shallow-depth minimax searches using
the same heuristic knowledge (MCTS-IR-M, MCTS-IC-M, and MCTS-IP-M). This
hybrid MCTS-minimax technique has only been applied to MCTS-IR before in this
form.

Experiments with unenhanced αβ in the domains of Othello, Breakthrough and
Catch the Lion showed that MCTS-IP-M is strongest in Othello, MCTS-IP-E is
strongest in Breakthrough, and MCTS-IC-E is strongest in Catch the Lion. The
embedded minimax searches improve MCTS-IP in Othello and Catch the Lion, but
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are too computationally expensive for MCTS-IR and MCTS-IC in these two domains,
as well as for all hybrids in Breakthrough. The main problem of MCTS-minimax
hybrids with unenhanced αβ seems to be the sensitivity to the branching factor of the
domain at hand.

Further experiments introduced move ordering and k-best pruning to the hybrids in
order to cope with this problem, resulting in the enhanced hybrid players called MCTS-
IR-M-k, MCTS-IC-M-k, and MCTS-IP-M-k. Results showed that with these relatively
simple enhancements, MCTS-IP-M-k is the strongest standalone MCTS-minimax
hybrid investigated in this chapter in all three tested domains. Because MCTS-IP-M-k
does not have to call minimax in every rollout or even in every rollout move, it
performs better than the other hybrids at low time settings when performance is most
sensitive to a reduction in rollouts. MCTS-IP-M-k was also shown to work better for
Breakthrough on an enlarged 18×6 board than on the 6×6 board, demonstrating the
suitability of the technique for domains with higher branching factors. Additionally,
it was shown that the combination of MCTS-IP-M-k with minimax rollouts can
lead to further improvements in Breakthrough and Catch the Lion. Moreover, the
best-performing hybrid outperformed a simple αβ implementation in Breakthrough,
demonstrating that at least in this domain, MCTS and minimax can be combined to
an algorithm stronger than its parts. MCTS-IP-M-k, the use of enhanced minimax for
computing node priors, is therefore a promising new technique for integrating domain
knowledge into an MCTS framework.

A first direction for future research is the application of additional αβ enhancements.
As a simple static move ordering has proven quite effective in all domains, one could
for example experiment with dynamic move ordering techniques such as killer moves
or the history heuristic.

Second, some combinations of the hybrids play at a higher level than the hybrids
in isolation, despite using the same heuristic knowledge. This may mean we have
not yet found a way to fully and optimally exploit this knowledge, which should be
investigated further. Combinations of MCTS-IR, MCTS-IC and MCTS-IP could be
examined in more detail, as well as new ways of integrating heuristics into MCTS.

Third, all three approaches for using heuristic knowledge have shown cases where
embedded minimax searches did not lead to stronger MCTS play than shallower
minimax searches or even simple evaluation function calls at equal numbers of rollouts
(compare Subsections 8.3.2 to 8.3.4). This phenomenon has only been observed in
MCTS-IR before and deserves further study.

Fourth, differences between test domains such as their density of terminal states,
their density of hard and soft traps, or their progression property (Finnsson and
Björnsson, 2011) could be studied in order to better understand the behavior of
MCTS-minimax hybrids with heuristic evaluation functions, and how they compare
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to standalone MCTS and minimax. The influence of the quality of the evaluation
functions and the move ordering functions themselves could also be investigated in
greater depth. Comparing Breakthrough with two different move orderings was only
a first step in this direction. As mentioned before, artificial game trees could be a
valuable tool to separate the effects of individual domain properties.
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9
Conclusions and Future Work

This thesis investigated several approaches to improving Monte-Carlo Tree Search
(MCTS) in one-player and two-player domains. The first part on one-player games
covered enhancements of the rollout quality and the selectivity of the search, and the
second part on two-player games dealt with enhancements of the time management
and the tactical strength of MCTS. The research was guided by the problem statement
and the research questions formulated in Section 1.3.

This chapter presents the conclusions of this thesis. Section 9.1 answers the four
research questions, Section 9.2 provides an answer to the problem statement, and
Section 9.3 gives recommendations for future work.

9.1 Answers to the Research Questions
The following subsections address the four research questions posed in Section 1.3 one
by one.

9.1.1 Rollouts in One-Player Domains

In MCTS, every state in the search tree is evaluated by the average outcome of
Monte-Carlo rollouts from that state. For the consistency of MCTS, i.e. for the
convergence to the optimal policy, uniformly random rollouts beyond the tree are
sufficient. However, stronger rollout strategies typically greatly speed up convergence.
The strength of Monte-Carlo rollouts can be improved for example by hand-coded
heuristics, with the help of supervised learning or reinforcement learning conducted
offline, or even through online learning while the search is running. But most current
techniques show scaling problems in the form of quickly diminishing returns for MCTS
as search times get longer. This led to the first research question.
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Research Question 1: How can the rollout quality of MCTS in one-player domains be
improved?

This research question was answered by introducing Nested Monte-Carlo Tree
Search (NMCTS), replacing simple rollouts with nested MCTS searches. Instead of
improving a given set of rollout policy parameters either offline or online, calls to the
rollout policy are replaced with calls to MCTS itself. Independent of the quality of the
base-level rollouts, this recursive use of MCTS makes higher-quality rollouts available
at higher levels, improving MCTS especially when longer search times are available.
NMCTS is a generalization of regular MCTS, which is equivalent to level-1 NMCTS.
Additionally, NMCTS can be seen as a generalization of Nested Monte-Carlo Search
(NMCS) (Cazenave, 2009), allowing for an exploration-exploitation tradeoff by nesting
MCTS instead of naive Monte-Carlo search. The approach was tested in the puzzles
SameGame (with both random and informed base-level rollouts), Clickomania, and
Bubble Breaker. The time settings were relatively long—either ∼21 minutes or ∼2.5
hours per position.

As it is known for SameGame that restarting several short MCTS runs on the
same problem can lead to better performance than a single, long run (Schadd et al.,
2008b), NMCTS was compared to multi-start MCTS. Level-2 NMCTS was found
to significantly outperform multi-start MCTS in all test domains. In Clickomania,
memory limitations limited the performance of very long searches, which gave an
additional advantage to NMCTS.

Furthermore, level-2 NMCTS was experimentally compared to its special case of
NMCS. For this comparison, NMCTS (just like NMCS) used the additional technique
of move-by-move search, distributing the total search time over several or all moves
in the game instead of conducting only one global search from the initial position.
NMCTS significantly outperformed both level-2 and level-3 NMCS in all test domains.
Since both MCTS and NMCS represent specific parameter settings of NMCTS, correct
tuning of NMCTS has to lead to greater or equal success in any domain.

In conclusion, NMCTS is a promising new approach to one-player search, especially
for longer time settings.

9.1.2 Selectivity in One-Player Domains
In the most widely used variants of MCTS, employing UCB1 or UCB1-TUNED (Auer
et al., 2002) as selection strategies, the selectivity of the search is controlled by a
single parameter: the exploration factor. In domains with long solution lengths or
when searching with a short time limit however, MCTS might not be able to grow a
search tree deep enough even when exploration is completely turned off. Because the
search effort can grow exponentially in the tree depth, the search process then spends
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too much time on optimizing the first moves of the solution, and not enough time
on optimizing the last moves. One option to approach this problem is move-by-move
search—however, move-by-move search has to commit to a single move choice at each
tree depth d before it starts a new search at d + 1. New results from simulations
deeper in the tree cannot influence these early move decisions anymore. This led to
the second research question.

Research Question 2: How can the selectivity of MCTS in one-player domains be
improved?

This research question was answered by proposing Beam Monte-Carlo Tree Search
(BMCTS), a combination of MCTS with the idea of beam search. BMCTS expands a
tree whose size is linear in the search depth, making MCTS more effective especially in
domains with long solution lengths or short time limits. Like MCTS, BMCTS builds a
search tree using Monte-Carlo simulations as state evaluations. When a predetermined
number of simulations has traversed the nodes of a given tree depth, these nodes are
sorted by a heuristic value, and only a fixed number of them is selected for further
exploration. BMCTS is reduced to a variant of move-by-move MCTS if this number,
the beam width, is set to one. However, it generalizes from move-by-move search as it
allows to keep any chosen number of alternative moves when moving on to the next
tree depth. The test domains for the approach were again SameGame (with both
random and informed rollouts), Clickomania, and Bubble Breaker. The time settings
were relatively short—they ranged between 0.016 seconds and 4 minutes per position.

First, BMCTS was compared to MCTS using one search run per position. The
experimental results show BMCTS to significantly outperform regular MCTS at a
wide range of time settings in all tested games. Outside of this domain-dependent
range, BMCTS was equally strong as MCTS at the shortest and the longest tested
search times—although the lower memory requirements of BMCTS can give it an
additional advantage over MCTS at long search times. Depending on the domain and
time setting, optimal parameter settings can either result in a move-by-move time
management scheme (beam width 1), or in a genuine beam search with a larger beam
width than 1. BMCTS with a larger width than 1 was found to significantly outperform
move-by-move search at a domain-dependent range of search times. Overall, BMCTS
was most successful in Clickomania as this domain seems to profit most from deep
searches.

Next, BMCTS was compared to MCTS using the maximum over multiple search
runs per position. The experiments demonstrated BMCTS to have a larger advantage
over MCTS in this multi-start scenario. This suggests that the performance of BMCTS
tends to have a higher variance than the performance of regular MCTS, even in some
cases where the two algorithms perform equally well on average. In all test domains,
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multi-start BMCTS was better than multi-start MCTS at a wider range of time
settings than single-start BMCTS to single-start MCTS.

This observation led to the idea of examining how BMCTS would perform in a
nested setting, i.e. replacing MCTS as the basic search algorithm in Nested Monte-
Carlo Tree Search. The resulting search algorithm was called Nested BeamMonte-Carlo
Tree Search (NBMCTS), and experiments showed NBMCTS to be the overall strongest
one-player search technique proposed in this thesis. It performed better than or equal
to NMCTS in all domains and at all search times.

In conclusion, BMCTS is a promising new approach to one-player search, especially
for shorter time settings. At longer time settings, it combines well with NMCTS as
proposed in the previous chapter.

9.1.3 Time Management in Two-Player Domains
In competitive gameplay, time is typically a limited resource. Sudden death, the
simplest form of time control, allocates to each player a fixed time budget for the
whole game. If a player exceeds this time budget, she loses the game immediately.
Since longer thinking times typically result in stronger moves, the player’s task is to
distribute her time budget wisely among all moves in the game. This is a challenging
task both for human and computer players. Previous research on this topic has mainly
focused on the framework of αβ search with iterative deepening. MCTS however
allows for much more fine-grained time-management strategies due to its anytime
property. This led to the third research question.

Research Question 3: How can the time management of MCTS in two-player domains
be improved?

This research question was answered by investigating and comparing a variety of
time-management strategies for MCTS. The strategies included newly proposed ones
as well as strategies described in Huang et al. (2010b) or independently proposed
in Baudiš (2011), partly in enhanced form. The strategies can be divided into semi-
dynamic strategies that decide about time allocation for each search before it is started,
and dynamic strategies that influence the duration of each move search while it is
already running. All strategies were tested in the domains of 13×13 and 19×19 Go,
and the domain-independent ones in Connect-4, Breakthrough, Othello, and Catch
the Lion.

Experimental results showed the proposed strategy called STOP to be most
successful. This strategy is based on the idea of estimating the remaining number of
moves in the game and using a corresponding fraction of the available search time.
However, MCTS is stopped as soon as it appears unlikely that the final move selection
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will change by continuing the search. The time saved by these early stops throughout
the game is anticipated, and earlier searches in the game are prolonged in order not
to have only later searches profit from accumulated time savings. For sudden-death
time controls of 30 seconds per game, EXP-STONES with STOP increased Orego’s
win rate against GNU Go from 25.5% (using a simple baseline) or from 35.3% (using
the state-of-the-art ERICA-BASELINE) to 39.1%. In self-play, this strategy won
approximately 60% of games against ERICA-BASELINE, both in 13×13 and 19×19
Go under various time controls. Furthermore, comparison across different games
showed that the domain-independent strategy STOP is the strongest of all tested
time-management strategies. It won 65.0% of self-play games in Connect-4, 58.2% in
Breakthrough, 54.8% in Othello, and 60.4% in Catch the Lion. The strategies UNST
and CLOSE also proved effective in all domains, with the exception of CLOSE in
Othello.

The performance of the time-management strategies was compared across domains,
and a shift of available time towards either the opening or the endgame was identified
as an effect influencing the performance of many strategies. All time-management
strategies that prolong search times when certain criteria are met take available time
from the later phases and shift it to the earlier phases of the game. All strategies that
shorten search times based on certain criteria move time from the opening towards
the endgame instead. When testing the effect of time-management approaches, it is
therefore worth investigating whether these shifts have a positive or negative effect.
Consequently, a methodology was developed to isolate the effect of these shifts and
judge the effect of a given strategy independently of it. This allows to partly explain
the performance of a given strategy. Should the shifting effect be negative, the strategy
STOP-B provides an example of how to possibly counteract it by introducing an
explicit shift in the opposite direction.

In conclusion, STOP is a promising new sudden-death time management strategy
for MCTS.

9.1.4 Tactical Strength in Two-Player Domains

MCTS builds a highly selective search tree, guided by gradually changing rollout
statistics. This seems to make it less successful than the traditional approach to
adversarial planning, minimax search with αβ pruning, in domains containing a large
number of terminal states and shallow traps (Ramanujan et al., 2010a). In trap
situations, precise tactical play is required to avoid immediate loss. The strength
of minimax in these situations lies largely in its exhaustive approach, guaranteeing
to never miss a consequence of an action that lies within the search horizon, and
quickly backing up game-theoretic values from the leaves. MCTS methods based on
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sampling however could easily miss a crucial move or underestimate the significance of
an encountered terminal state due to averaging value backups. This led to the fourth
research question.

Research Question 4: How can the tactical strength of MCTS in two-player domains
be improved?

This research question was answered by proposing and testing MCTS-minimax
hybrids, integrating shallow minimax searches into the MCTS framework and thus
taking a first step towards combining the strengths of MCTS and minimax. These
hybrids can be divided into approaches that require domain knowledge, and approaches
that are knowledge-free.

For the knowledge-free case, three different hybrids were studied using minimax
in the selection/expansion phase (MCTS-MS), the rollout phase (MCTS-MR), and
the backpropagation phase of MCTS (MCTS-MB). Test domains were Connect-4,
Breakthrough, Othello, and Catch the Lion. The newly proposed variant MCTS-MS
significantly outperformed regular MCTS with the MCTS-Solver extension in Catch
the Lion, Breakthrough, and Connect-4. The same holds for the proposed MCTS-MB
variant in Catch the Lion and Breakthrough, while the effect in Connect-4 was neither
significantly positive nor negative. The only way of integrating minimax search into
MCTS known from the literature, MCTS-MR, was quite strong in Catch the Lion and
Connect-4 but significantly weaker than the baseline in Breakthrough, suggesting it
might be less robust with regard to differences between domains such as the average
branching factor. As expected, none of the MCTS-minimax hybrids had a positive
effect in Othello due to the low number of terminal states and shallow traps throughout
its search space. The density and difficulty of traps predicted the relative performance
of MCTS-minimax hybrids across domains well.

Problematic domains for the knowledge-free MCTS-minimax hybrids seemed to
feature a low density of traps in the search space, as in Othello, or in the case of
MCTS-MR a relatively high branching factor, as in Breakthrough. These problems
were consequently addressed with the help of domain knowledge. On the one hand,
domain knowledge can be incorporated into the hybrid algorithms in the form of
evaluation functions. This can make minimax potentially much more useful in search
spaces with few terminal nodes before the latest game phase, such as that of Othello.
On the other hand, domain knowledge can be incorporated in the form of a move
ordering function. This can be effective in games such as Breakthrough, where traps
are relatively frequent, but the branching factor seems to be too high for some hybrids
such as MCTS-MR.

For the case where domain knowledge is available, three more algorithms were
therefore investigated employing heuristic state evaluations to improve the rollout
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policy (MCTS-IR), to terminate rollouts early (MCTS-IC), or to bias the selection of
moves in the MCTS tree (MCTS-IP). For all three approaches, the computation of
state evaluations through simple evaluation function calls (MCTS-IR-E, MCTS-IC-E,
and MCTS-IP-E, where -E stands for “evaluation function”) was compared to the
computation of state evaluations through shallow-depth minimax searches using the
same heuristic knowledge (MCTS-IR-M, MCTS-IC-M, and MCTS-IP-M, where -M
stands for “minimax”). MCTS-IR-M, MCTS-IC-M, and MCTS-IP-M are MCTS-
minimax hybrids. The integration of minimax has only been applied to MCTS-IR
before in this form. Test domains were Breakthrough, Othello, and Catch the Lion.

The hybrids were combined with move ordering and k-best pruning in order to cope
with the problem of higher branching factors, resulting in the enhanced hybrid players
MCTS-IR-M-k, MCTS-IC-M-k, and MCTS-IP-M-k. Results showed that with these
two relatively simple αβ enhancements, MCTS-IP-M-k is the strongest standalone
MCTS-minimax hybrid investigated in this thesis in all three tested domains. Because
MCTS-IP-M-k does not have to call minimax in every rollout or even in every rollout
move, it performs better than the other hybrids at low time settings when performance
is most sensitive to a reduction in rollouts. MCTS-IP-M-k was also shown to work
well on an enlarged 18×6 Breakthrough board, demonstrating the suitability of the
technique for domains with higher branching factors. Moreover, the best-performing
hybrid outperformed a simple αβ implementation in Breakthrough, demonstrating
that at least in this domain, MCTS and minimax can be combined to an algorithm
stronger than its parts.

In conclusion, MCTS-minimax hybrids can improve the performance of MCTS in
tactical domains both with and without an evaluation function. MCTS-IP-M-k—using
minimax for computing node priors—is a promising new technique for integrating
domain knowledge into an MCTS framework.

9.2 Answer to the Problem Statement
After addressing the four research questions, we can now provide an answer to the
problem statement.

Problem Statement: How can the performance of Monte-Carlo Tree Search in a given
one- or two-player domain be improved?

The answer to the problem statement is based on the answers to the research
questions above. First, the performance of MCTS in one-player domains can be
improved in two ways—by nesting MCTS searches (NMCTS), and by combining
MCTS with beam search (BMCTS). The first method is especially interesting for
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longer search times, and the second method for shorter search times. A combination
of NMCTS and BMCTS can also be effective. Second, the performance of MCTS
in two-player domains can be improved in two ways as well—by using the available
time for the entire game more intelligently (time management), and by integrating
shallow minimax searches into MCTS (MCTS-minimax hybrids). The first approach
is relevant to scenarios such as tournaments where the time per game is limited. The
second approach improves the performance of MCTS specifically in tactical domains.

9.3 Directions for Future Work
To conclude the last chapter of this thesis, the following paragraphs summarize some
promising ideas for future research. They are organized by the chapters from which
they result.

Chapter 4: Nested Monte-Carlo Tree Search.

Chapter 4 introduced NMCTS and demonstrated its performance in SameGame,
Bubble Breaker and Clickomania. The experiments presented so far have only used
an exploration factor of 0 for level 2 however. This means that the second level of
NMCTS proceeded greedily—it only made use of the selectivity of MCTS, but not of
the exploration-exploitation tradeoff. The first step for future research could therefore
be the careful tuning of exploration at all search levels. Furthermore, it appears that
NMCTS is most effective in domains where multi-start MCTS outperforms a single,
long MCTS run (like SameGame and Bubble Breaker), although its lower memory
requirements can still represent an advantage in domains where multi-start MCTS is
ineffective (like Clickomania). The differences between these classes of tasks remain
to be characterized. Finally, NMCTS could be extended to non-deterministic and
partially observable domains, for example in the form of a nested version of POMCP
(Silver and Veness, 2010).

Chapter 5: Beam Monte-Carlo Tree Search.

Chapter 5 presented BMCTS and tested it in SameGame, Bubble Breaker and
Clickomania. However, the chosen implementation of BMCTS does not retain the
asymptotic properties of MCTS—due to permanent pruning of nodes, optimal behavior
in the limit cannot be guaranteed. The addition of e.g. gradually increasing beam
widths, similar to progressive widening (Chaslot et al., 2008; Coulom, 2007a) but based
on tree levels instead of individual nodes, could restore this important completeness
property. Moreover, the basic BMCTS algorithm could be refined in various ways,
for instance by using different simulation limits and beam widths for different tree
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depths, or by experimenting with different heuristics for selecting the beam nodes.
Techniques such as stratified search (Lelis et al., 2013) could potentially increase the
diversity of nodes in the beam and therefore improve the results. Additionally, it
would be interesting to compare the effects of multiple nested searches, and the effects
of multiple beam searches on MCTS exploration.

Chapter 6: Time Management for Monte-Carlo Tree Search.

Chapter 6 discussed various time management strategies for MCTS in adversarial
games with sudden-death time controls. A natural next research step is the combined
testing and optimization of these strategies—in order to determine to which degree
their positive effects on playing strength are complementary, redundant, or possibly
even interfering. The strategy ERICA-BASELINE, consisting of a move-dependent
time formula in combination with the UNST and BEHIND heuristics, demonstrates
that some combinations can be effective at least in Go. A possible combination of
all strategies could take the form of a classifier, trained to decide about continuing
or aborting the search in short intervals while using all information relevant to the
individual strategies as input. Another worthwhile research direction is the development
of improved strategies to measure the complexity and importance of a position and
thus to effectively use time where it is most needed.

Chapter 7: MCTS and Minimax Hybrids.

Chapter 7 investigated three MCTS-minimax hybrids which are independent of
domain knowledge in the form of heuristic evaluation functions. They were tested
in Connect-4, Breakthrough, Othello, and Catch the Lion. In all experiments except
those concerning MCTS-MR, we used fast, uniformly random rollout policies. On the
one hand, the overhead of our techniques would be proportionally lower for any slower,
informed rollout policies such as typically used in state-of-the-art programs. On the
other hand, improvement on already strong policies might prove to be more difficult.
Examining the influence of such MCTS enhancements is a possible direction of future
work. Furthermore, while we have focused primarily on the game tree properties of
trap density and difficulty as well as the average branching factor in this chapter, the
impact of other properties such as the game length or the distribution of terminal
values also deserve further study. Eventually, it might be possible to learn from the
success of MCTS-minimax hybrids in Catch the Lion, and transfer some ideas to larger
games of similar type such as Shogi and Chess.

Chapter 8: MCTS and Minimax Hybrids with Heuristic Evaluation Functions.

Chapter 8 studied three MCTS-minimax hybrids for the case where heuristic
evaluation functions are available. A first direction for future research is the application
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of additional αβ enhancements. As a simple static move ordering has proven quite
effective in all domains, one could for example experiment with dynamic move ordering
techniques such as killer moves or the history heuristic. Moreover, some combinations
of the hybrids play at a higher level than the hybrids in isolation, despite using the
same heuristic knowledge. This may mean we have not yet found a way to fully and
optimally exploit this knowledge, which should be investigated further. Combinations
of the three hybrids could be examined in more detail, as well as new ways of integrating
heuristics into MCTS. In addition, all three approaches for using heuristic knowledge
have shown cases where embedded minimax searches did not lead to stronger MCTS
play than shallower minimax searches or even simple evaluation function calls at equal
numbers of rollouts. This phenomenon has only been observed in MCTS-IR before and
deserves further study. Finally, differences between test domains such as their density
of terminal states, their density of hard and soft traps, or their progression property
(Finnsson and Björnsson, 2011) could be studied in order to better understand the
behavior of MCTS-minimax hybrids with heuristic evaluation functions, and how
they compare to standalone MCTS and minimax. The influence of the quality of
the evaluation functions and the move ordering functions themselves could also be
investigated in greater depth.

General remarks. Research in the field of AI in games can be torn between the re-
quirement to improve algorithm performance (e.g. in the sense of playing or solving
performance) in concrete games—“real” games whose rules are known and whose
challenge is intuitively understood—and the aspiration to provide scientific insight
that generalizes well beyond one or two such games. The approach to this problem
chosen in this thesis is the use of a small set of different test domains, as far as possible
taken from the class of games known to the literature, and the study of algorithm
performance across this set. Unfortunately, different algorithm behavior in different
games in such a small set cannot always be explained easily. The large number of
differences between any two “real” games potentially confounds many effects, such
as for example Breakthrough featuring more traps throughout the search space than
Othello, but also having a larger branching factor. As a result, some conclusions
regarding the reasons of observed phenomena remain somewhat restricted. In future
research on topics similar to those covered in this thesis, different approaches could
therefore be considered.

A first option is the use of large sets of test domains, allowing e.g. for the application of
regression analysis to quantify the relationships between game properties (independent
variables) and algorithm performance (dependent variable). This option however
requires considerable programming effort. A possible way to reduce the effort has
been found in the area of General Game Playing, where game domains are described
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in a common game description language and can thus be exchanged with ease among
all GGP researchers and their engines.

A second option is the use of artificial game trees—parameterized artificial domains
whose search spaces are constructed with the desired properties, for example while
being searched by a game playing algorithm. Artificial game trees can be a valuable
tool to separate the effects of domain properties and study them in isolation. In this
way, they can help researchers not to be distracted by the potentially idiosyncratic
behavior of a number of “real” games chosen for investigation. However, great care
must be taken to construct sufficiently realistic game models, in order to be able to
generalize findings from artificial back to “real” domains.
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Summary

This thesis is concerned with enhancing the technique of Monte-Carlo Tree Search
(MCTS), applied to making move decisions in games. MCTS has become the
dominating paradigm in the challenging field of computer Go, and has been
successfully applied to many other games and non-game domains as well. It is now
an active and promising research topic with room for improvements in various di-
rections. This thesis focuses on enhancing MCTS in one-player and two-player domains.

Chapter 1 provides a brief introduction to the field of games and AI, and presents
the following problem statement guiding the research.

Problem Statement: How can the performance of Monte-Carlo Tree Search in a given
one- or two-player domain be improved?

Four research questions have been formulated to approach this problem statement.
Two questions are concerned with one-player domains, while two questions are dealing
with adversarial two-player domains. The four research questions address (1) the
rollout phase of MCTS in one-player domains, (2) the selection phase of MCTS in
one-player domains, (3) time management for MCTS in two-player tournament play,
and (4) combining the strengths of minimax and MCTS in two-player domains.

Chapter 2 describes the basic terms and concepts of search in games. It also
introduces the two classes of search methods used in the thesis: minimax-based search
techniques for two-player games, and MCTS techniques for both one- and two-player
games. Enhancements for both minimax and MCTS are explained as far as relevant
for this thesis.

Chapter 3 introduces the test domains used in the following chapters. These
include the one-player games SameGame, Clickomania, and Bubble Breaker, and
the two-player games Go, Connect-4, Breakthrough, Othello, and Catch the Lion.
For each game, its origin is described, its rules are outlined, and its complexity is
analyzed.

In MCTS, every state in the search tree is evaluated by the average outcome of
Monte-Carlo rollouts from that state. For the consistency of MCTS, i.e. for the
convergence to the optimal policy, uniformly random rollout moves are sufficient.
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However, stronger rollout strategies typically greatly speed up convergence. The
strength of Monte-Carlo rollouts can be improved for example through hand-coded
knowledge, or by automated offline tuning of rollout policies. In recent years, the topic
of improving rollout policies online has received more and more attention, i.e. while
the search is running. This leads to the first research question.

Research Question 1: How can the rollout quality of MCTS in one-player domains be
improved?

Chapter 4 answers this research question by introducing Nested Monte-Carlo Tree
Search (NMCTS), replacing simple rollouts with nested MCTS searches. Instead of
improving a given set of rollout policy parameters either offline or online, calls to the
rollout policy are replaced with calls to MCTS itself. Independent of the quality of the
base-level rollouts, this recursive use of MCTS makes higher-quality rollouts available
at higher levels, improving MCTS especially when longer search times are available.
NMCTS is a generalization of regular MCTS, which is equivalent to level-1 NMCTS.
Additionally, NMCTS can be seen as a generalization of Nested Monte-Carlo Search
(NMCS), allowing for an exploration-exploitation tradeoff by nesting MCTS instead
of naive Monte-Carlo search. The approach was tested in the puzzles SameGame,
Clickomania, and Bubble Breaker, with relatively long time settings.

As it is known for SameGame that restarting several short MCTS runs on the
same problem can lead to better performance than a single, long run, NMCTS was
compared to multi-start MCTS. Level-2 NMCTS was found to significantly outperform
multi-start MCTS in all test domains. In Clickomania, memory limitations limited the
performance of very long searches, which gave an additional advantage to NMCTS.

Furthermore, level-2 NMCTS was experimentally compared to its special case of
NMCS. For this comparison, NMCTS (just like NMCS) used the additional technique
of move-by-move search, distributing the total search time over several or all moves
in the game instead of conducting only one global search from the initial position.
NMCTS significantly outperformed both level-2 and level-3 NMCS in all test domains.
Since both MCTS and NMCS represent specific parameter settings of NMCTS, correct
tuning of NMCTS has to lead to greater or equal success in any domain.

In Upper Confidence bounds applied to Trees or UCT, the most widely used variant
of MCTS, the selectivity of the search can be controlled with a single parameter: the
exploration factor. In domains with long solution lengths or when searching with a
short time limit however, MCTS might not be able to grow a search tree deep enough
even when exploration is completely turned off. The result is a search process that
spends too much time on optimizing the first steps of the solution, but not enough
time on optimizing the last steps. This leads to the second research question.
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Research Question 2: How can the selectivity of MCTS in one-player domains be
improved?

Chapter 5 answers this research question by proposing Beam Monte-Carlo Tree
Search (BMCTS), a combination of MCTS with the idea of beam search. BMCTS
expands a tree whose size is linear in the search depth, making MCTS more effective
especially in domains with long solution lengths or short time limits. Like MCTS,
BMCTS builds a search tree using Monte-Carlo simulations as state evaluations. When
a predetermined number of simulations has traversed the nodes of a given tree depth,
these nodes are sorted by a heuristic value, and only a fixed number of them is selected
for further exploration. BMCTS is reduced to a variant of move-by-move MCTS if this
number, the beam width, is set to one. However, it generalizes from move-by-move
search as it allows to keep any chosen number of alternative moves when moving on
to the next tree depth. The test domains for the approach were again SameGame,
Clickomania, and Bubble Breaker, with relatively short time settings.

BMCTS was compared to MCTS both using one search run per position (single-
start), and using the maximum over multiple search runs per position (multi-start).
The experimental results show BMCTS to significantly outperform regular MCTS at a
wide range of time settings in all tested games. BMCTS was also shown to have a larger
advantage over MCTS in the multi-start scenario. In all test domains, multi-start
BMCTS was stronger than multi-start MCTS at a wider range of time settings than
single-start BMCTS to single-start MCTS. This suggests that the performance of
BMCTS tends to have a higher variance than the performance of regular MCTS, even
in some cases where the two algorithms perform equally well on average.

This observation led to the idea of examining how BMCTS would perform in
a nested setting, i.e. replacing MCTS as the basic search algorithm in Nested
Monte-Carlo Tree Search. The resulting search algorithm was called Nested Beam
Monte-Carlo Tree Search (NBMCTS), and experiments showed NBMCTS to be the
overall strongest one-player search technique proposed in this thesis. It performed
better than or equal to NMCTS in all domains and at all search times.

In competitive gameplay, time is typically limited—in the basic case by a fixed
time budget per player for the entire game (sudden-death time control). Exceeding
this time budget means an instant loss for the respective player. However, longer
thinking times usually result in better moves, especially for an anytime algorithm like
MCTS. The question arises how to distribute the time budget wisely among all moves
in the game. This leads to the third research question.

Research Question 3: How can the time management of MCTS in two-player domains
be improved?
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Chapter 6 answers this research question by investigating and comparing a variety
of time-management strategies for MCTS. The strategies included newly proposed ones
as well as strategies described in the literature, partly in enhanced form. The strategies
can be divided into semi-dynamic strategies that decide about time allocation for each
search before it is started, and dynamic strategies that influence the duration of each
move search while it is already running. All strategies were tested in the domains of
13×13 and 19×19 Go, and the domain-independent ones in Connect-4, Breakthrough,
Othello, and Catch the Lion.

Experimental results showed the proposed strategy called STOP to be most
successful. STOP is based on the idea of estimating the remaining number of moves
in the game and using a corresponding fraction of the available search time. However,
MCTS is stopped as soon as it appears unlikely that the final move selection will
change by continuing the search. The time saved by these early stops throughout the
game is anticipated, and earlier searches in the game are prolonged in order not to have
only later searches profit from accumulated time savings. In self-play, this strategy
won approximately 60% of games against state-of-the-art time management, both
in 13×13 and 19×19 Go and under various time controls. Furthermore, comparison
across different games showed that the domain-independent strategy STOP is the
strongest of all tested time-management strategies.

All time-management strategies that prolong search times when certain criteria
are met take available time from the endgame and shift it to the opening of the game.
All strategies that shorten search times based on certain criteria move time from the
opening towards the endgame instead. Analysis showed that such a shift can have a
positive or negative effect. Consequently, a methodology was developed to isolate the
effect of a shift and judge the effect of a given strategy independently of it. Should
the shifting effect be negative, it can be counteracted by introducing an explicit shift
in the opposite direction.

One of the characteristics of MCTS is Monte-Carlo simulation, taking distant
consequences of moves into account and therefore providing a strategic advantage in
many domains over traditional depth-limited minimax search. However, minimax with
αβ pruning considers every relevant move within the search horizon and can therefore
have a tactical advantage over the highly selective MCTS approach, which might
miss an important move when precise short-term play is required. This is especially
a problem in games with a high number of terminal states throughout the search
space, where weak short-term play can lead to a sudden loss. This leads to the fourth
research question.
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Research Question 4: How can the tactical strength of MCTS in two-player domains
be improved?

This research question is answered by proposing and testing MCTS-minimax
hybrids, integrating shallow minimax searches into the MCTS framework and thus
taking a first step towards combining the strengths of MCTS and minimax. These
hybrids can be divided into approaches that require domain knowledge, and approaches
that are knowledge-free.

Chapter 7 studies three different hybrids for the knowledge-free case, using minimax
in the selection/expansion phase (MCTS-MS), the rollout phase (MCTS-MR), and
the backpropagation phase of MCTS (MCTS-MB). Test domains were Connect-4,
Breakthrough, Othello, and Catch the Lion. The newly proposed variant MCTS-MS
significantly outperformed regular MCTS with the MCTS-Solver extension in Catch
the Lion, Breakthrough, and Connect-4. The same held for the proposed MCTS-MB
variant in Catch the Lion and Breakthrough, while the effect in Connect-4 was neither
significantly positive nor negative. The only way of integrating minimax search into
MCTS known from the literature, MCTS-MR, was quite strong in Catch the Lion and
Connect-4 but significantly weaker than the baseline in Breakthrough, suggesting it
might be less robust with regard to differences between domains such as the average
branching factor. As expected, none of the MCTS-minimax hybrids had a positive
effect in Othello due to the low number of terminal states and shallow traps throughout
its search space. The density and difficulty of traps predicted the relative performance
of MCTS-minimax hybrids across domains well.

Problematic domains for the knowledge-free MCTS-minimax hybrids can be ad-
dressed with the help of domain knowledge. On the one hand, domain knowledge can
be incorporated into the hybrid algorithms in the form of evaluation functions. This
can make minimax potentially much more useful in search spaces with few terminal
nodes before the latest game phase, such as that of Othello. On the other hand,
domain knowledge can be incorporated in the form of a move ordering function. This
can be effective in games such as Breakthrough, where traps are relatively frequent,
but the branching factor seems to be too high for some hybrids such as MCTS-MR.

Chapter 8 therefore investigates three more algorithms for the case where domain
knowledge is available, employing heuristic state evaluations to improve the rollout
policy (MCTS-IR), to terminate rollouts early (MCTS-IC), or to bias the selection of
moves in the MCTS tree (MCTS-IP). For all three approaches, the computation of
state evaluations through simple evaluation function calls (MCTS-IR-E, MCTS-IC-E,
and MCTS-IP-E, where -E stands for “evaluation function”) was compared to the
computation of state evaluations through shallow-depth minimax searches using the
same heuristic knowledge (MCTS-IR-M, MCTS-IC-M, and MCTS-IP-M, where -M
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stands for “minimax”). MCTS-IR-M, MCTS-IC-M, and MCTS-IP-M are MCTS-
minimax hybrids. The integration of minimax has only been applied to MCTS-IR
before in this form. Test domains were Breakthrough, Othello, and Catch the Lion.

The hybrids were combined with move ordering and k-best pruning to cope
with the problem of higher branching factors, resulting in the enhanced hybrid
players MCTS-IR-M-k, MCTS-IC-M-k, and MCTS-IP-M-k. Results showed that
with these two relatively simple αβ enhancements, MCTS-IP-M-k is the strongest
standalone MCTS-minimax hybrid investigated in this thesis in all three tested
domains. Because MCTS-IP-M-k calls minimax less frequently, it performs better
than the other hybrids at low time settings when performance is most sensitive to a
reduction in speed. MCTS-IP-M-k also worked well on an enlarged Breakthrough
board, demonstrating the suitability of the technique for domains with higher
branching factors. Moreover, the best-performing hybrid outperformed a simple αβ
implementation in Breakthrough, demonstrating that at least in this domain, MCTS
and minimax can be combined to an algorithm stronger than its parts.

Chapter 9 finally concludes the thesis, and gives possible directions for future work.
The answer to the problem statement is twofold. First, the performance of MCTS
in one-player domains can be improved in two ways—by nesting MCTS searches
(NMCTS), and by combining MCTS with beam search (BMCTS). The first method is
especially interesting for longer search times, and the second method for shorter search
times. A combination of NMCTS and BMCTS can also be effective. Second, the
performance of MCTS in two-player domains can be improved in two ways as well—by
using the available time for the entire game more smartly (time management), and
by integrating shallow minimax searches into MCTS (MCTS-minimax hybrids). The
first approach is relevant to scenarios such as tournaments where the time per game
is limited. The second approach improves the performance of MCTS specifically in
tactical domains.

Several areas of future research are indicated. These include (1) applying NMCTS
to non-deterministic and partially observable domains, (2) enhancing BMCTS to
guarantee optimal behavior in the limit, (3) testing various combinations of time
management strategies, and (4) examining the paradoxical observations of weaker
performance with deeper embedded searches in MCTS-minimax hybrids, as well as
studying which properties of test domains influence the performance of these hybrids.



Samenvatting

Dit proefschrift houdt zich bezig met het verbeteren van de Monte-Carlo Tree Search
(MCTS) techniek om zodoende beslissingen te nemen in abstracte spelen. De laatste
jaren is MCTS het dominante paradigma geworden in allerlei speldomeinen zoals
Go. Tevens is het succesvol toegepast in verschillende optimaliseringsproblemen.
MCTS is tegenwoordig een actief en veelbelovend onderzoeksdomein met ruimte voor
verbeteringen in verscheidene richtingen. Dit proefschrift richt zich op het verder
ontwikkelen van MCTS voor één- en tweespeler domeinen.

Hoofdstuk 1 geeft een kort introductie over de rol die spelen vervullen in de kunst-
matige intelligentie. De volgende probleemstelling is geformuleerd om het onderzoek
te sturen.

Probleemstelling: Hoe kunnen we de prestatie van Monte-Carlo Tree Search verbeteren
voor een gegeven één- of tweespeler domein?

Vier onderzoeksvragen zijn geformuleerd voor het aanpakken van deze probleem-
stelling. Twee vragen houden zich bezig met éénspeler domeinen, terwijl de andere
twee zich richten op tweespeler domeinen. De vier onderzoeksvragen adresseren (1)
de Monte-Carlo simulatiefase van MCTS in éénspeler domeinen, (2) de selectiefase
van MCTS in éénspeler domeinen, (3) tijdmanagement voor MCTS in tweespeler
toernooien, en (4) het combineren van de kracht van minimax en MCTS in tweespeler
domeinen.

Hoofdstuk 2 beschrijft de basisbegrippen en concepten voor het zoeken in spelen.
Het introduceert ook twee klassen van zoekmethoden die worden gebruikt in het
proefschrift: minimax technieken voor tweespeler domeinen, en MCTS technieken
voor één- en tweespeler domeinen. Uitbreidingen voor zowel minimax als MCTS
worden uitgelegd zover ze relevant zijn voor het proefschrift.

Hoofstuk 3 introduceert de gebruikte testdomeinen in het proefschrift. Deze
bevatten de éénspeler domeinen SameGame, Clickomania en Bubble Breaker, en de
tweespeler domeinen Go, Vier op ’n rij, Breakthrough, Othello en Catch the Lion.
Voor elk spel wordt de achtergrond beschreven, de regels geschetst en de complexiteit
geanalyseerd.
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De sterkte van MCTS wordt mede bepaald door Monte-Carlo simulaties. Tijdens
deze fase wordt zetten geselecteerd op basis van een simulatiestrategie. Een dergelijke
strategie kan gebaseerd zijn op gecodeerde expertkennis of automatisch zijn verkregen
tijdens het zoeken. Dit heeft geleid tot de eerste onderzoeksvraag.

Onderzoeksvraag 1: Hoe kan de kwaliteit van de Monte-Carlo simulaties in MCTS
worden verbeterd voor éénspeler domeinen?

Hoofdstuk 4 beantwoordt deze onderzoeksvraag door Nested Monte-Carlo Tree
Search (NMCTS) te introduceren. Het vervangt de Monte-Carlo simulaties door
geneste aanroepen van MCTS. Onafhankelijk van de kwaliteit van de Monte-Carlo
simulaties op het basis niveau, zorgt dit recursief gebruik van MCTS voor een betere
kwaliteit van de simulaties op de hogere niveaus. Dit geldt vooral als er veel zoektijd
beschikbaar is. NMCTS kan gezien worden als een generalisatie van de reguliere
MCTS en de Nested Monte-Carlo Search (NMCS). Deze aanpak is getest met relatief
hoge tijdsinstellingen in SameGame, Clickomania en Bubble Breaker.

Er wordt aangetoond dat NMCTS beter presteert dan multi-start MCTS in alle
testdomeinen. Verder wordt NMCTS vergeleken met NMCS. Het blijkt dat NMCTS
significant beter presteert dan NMCS in alle testdomeinen. Aangezien MCTS en
NMCS specifieke instanties zijn van NMCTS, leidt het correct afstellen van NMCTS
altijd tot betere dan wel gelijke prestaties in elk domein.

Upper Confidence bounds applied to Trees ofwel UCT is de meest gebruikte variant
van MCTS. In deze variant wordt de selectiviteit van het zoekproces gecontroleerd
door één parameter, de zogenaamde exploratiefactor. In domeinen met een lange
oplossingslengte of een korte zoektijd kan het zo zijn dat MCTS niet diep genoeg komt.
Het resultaat is dat het zoekproces te veel tijd spendeert aan de eerste stappen van de
oplossing, maar niet meer genoeg tijd heeft voor de laatste stappen. Dit heeft geleid
tot de tweede onderzoeksvraag.

Onderzoeksvraag 2: Hoe kan de selectiviteit van MCTS in éénspeler domeinen worden
verbeterd?

Hoofstuk 5 beantwoordt deze onderzoeksvraag door Beam Monte-Carlo Tree
Search (BMCTS) voor te stellen. Het is een combinatie van MCTS met beam search.
BMCTS laat een boom groeien waarvan de grootte lineair is aan de zoekdiepte. Dit
maakt MCTS meer effectief in domeinen met lange oplossingen of korte zoektijden.
Wanneer de knopen op een bepaalde zoekdiepte zijn bezocht door een vooraf ingesteld
aantal simulaties, worden ze gesorteerd op basis van hun waarde en worden de beste
geselecteerd voor verdere exploratie. De testdomeinen zijn wederom SameGame,
Clickomania en Bubble Breaker. Echter de zoektijden zijn deze keer relatief kort.
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BMCTS is vergeleken met MCTS waar beiden ofwel één zoekproces gebruiken per
positie (single-start), ofwel meerdere zoekprocessen gebruiken per positie (multi-start).
Voor het eerste scenario laten de experimenten zien dat BMCTS significant beter
presteert dan MCTS in alle domeinen voor een bepaalde reeks van zoektijden. Voor
het tweede scenario is multi-start BMCTS sterker dan multi-start MCTS voor een
grotere reeks van zoektijden dan in de voorgaande vergelijking.

Deze positieve resultaten hebben aanleiding gegeven tot het idee om BMCTS te
combineren met NMCTS. Het heeft geresulteerd tot het zoekalgoritme Nested Beam
Monte-Carlo Tree Search (NBMCTS). Experimenten tonen aan dat NBMCTS de
beste éénspeler zoektechniek voorgesteld in dit proefschrift is. NBMCTS presteert
beter dan wel gelijk aan NMCTS in alle domeinen voor alle zoektijden.

Tijd is typisch gelimiteerd in tweespeler toernooien. In de basis variant is er een
vaste hoeveelheid tijd voor de gehele partij. Overschrijding van de tijd betekent een
onmiddellijke nederlaag voor de betreffende speler. Echter meer bedenktijd voor een
zoektechniek zoals MCTS resulteert in het algemeen in betere zetten. De vraag rijst
dan hoe de tijd wijselijk te verdelen over alle zetten in de partij. Dit heeft geleid tot
de derde onderzoeksvraag.

Onderzoeksvraag 3: Hoe kan het tijdmanagement van MCTS in tweespeler domeinen
worden verbeterd?

Hoofstuk 6 beantwoordt deze onderzoeksvraag door het onderzoeken en vergelijken
van een verscheidenheid van tijdmanagementstrategieën voor MCTS. De strategieën
zijn ofwel nieuw, ofwel beschreven in de literatuur, ofwel verbeterd. De strategieën
kunnen worden onderverdeeld in semi-dynamische strategieën, die de hoeveelheid
zoektijd bepalen voor elke zoekproces voordat het wordt gestart, en dynamische
strategieën die de duur van elke zoekproces beïnvloeden, terwijl die al wordt uitgevoerd.
Alle strategieën zijn getest in de domeinen van 13×13 en 19×19 Go. De domein
onafhankelijke strategieën zijn tevens onderzocht in Vier op ’n rij, Breakthrough,
Othello en Catch the Lion.

Experimentele resultaten tonen aan dat de voorgestelde strategie STOP het meest
succesvol is. De strategie is gebaseerd op het idee van het schatten van het resterende
aantal zetten in het spel en gebruik te maken van een overeenkomstige fractie van
de beschikbare zoektijd. Echter, het MCTS zoekproces wordt gestopt zodra het
onwaarschijnlijk is dat de huidige beste zet zal veranderen als men langer zou blijven
denken. Er wordt tevens rekening gehouden met deze tijdsbesparingen gedurende de
partij. Zoekprocessen vroeg in het spel krijgen relatief meer tijd, zodat niet alleen
de latere zoekprocessen profiteren van de opgebouwde tijdwinst. Deze strategie wint
ongeveer 60% van de partijen tegen de beste tijdmanagementstrategie tot nu toe,
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zowel in 13×13 en 19×19 Go voor verschillende tijdsinstellingen. Bovendien laten
experimenten in verschillende spelen zien dat de strategie STOP de sterkste is van
alle geteste tijdmanagementstrategieën.

Alle tijdmanagementstrategieën die onder bepaalde voorwaarden de zoektijd
verlengen, verschuiven tijd van de latere fasen naar de vroegere fasen van het
spel. Alle strategieën die onder bepaalde voorwaarden de zoektijd verkorten
verschuiven tijd van de opening naar het eindspel. Verdere analyse toont aan dat
deze verschuiving een positief of negatief effect kan hebben. Bijgevolg is een methode
ontwikkeld om het effect van deze verschuiving te isoleren en het effect onafhankelijk
van de strategie te beoordelen. Indien de verschuiving een negatief effect heeft
kan dit worden tegengegaan met een expliciete verschuiving in de tegengestelde richting.

Eén van de kenmerken van MCTS is de Monte-Carlo simulatie, die rekening houdt
met de lange termijn. Het geeft daarom in veel domeinen een strategisch voordeel ten
opzichte van traditionele minimax zoekmethode. Echter, minimax met αβ snoeiing
beschouwt alle relevante zetten binnen de zoekhorizon. Het kan daardoor een tactisch
voordeel hebben ten opzichte van de zeer selectieve MCTS aanpak, die een belangrijke
zet kan missen wanneer tactisch spel is vereist. Het is vooral een probleem bij spellen
met een groot aantal eindtoestanden verspreid over de gehele zoekruimte, waarbij
zwak tactisch spel kan leiden tot een plotseling verlies. Dit heeft geleid tot de vierde
onderzoeksvraag.

Onderzoeksvraag 4: Hoe kan de tactische sterkte van MCTS in tweespeler domeinen
worden verbeterd?

Deze onderzoeksvraag wordt beantwoord door het introduceren en testen van
MCTS-minimax hybriden, die kleine minimax zoekprocessen in het MCTS raamwerk
integreren. Het is daarmee een eerste stap in de richting van het combineren van de
sterke punten van MCTS en minimax. Deze hybriden kunnen worden onderverdeeld
in aanpakken die domeinkennis vereisen en aanpakken die vrij zijn van domeinkennis.

Hoofdstuk 7 bestudeert drie verschillende hybriden voor de kennisvrije situatie.
Er wordt gebruik gemaakt van minimax bij de selectie- / expansiefase (MCTS-MS),
de simulatiefase (MCTS-MR), en de terugpropagatiefase van MCTS (MCTS-MB).
Testdomeinen zijn Vier op ’n rij, Breakthrough, Othello en Catch the Lion. De
voorgestelde variant MCTS-MS presteert aanzienlijk beter dan MCTS in Catch the
Lion, Breakthrough en Vier op ’n rij. Hetzelfde geldt voor de voorgestelde MCTS-MB
variant in Catch the Lion en Breakthrough, terwijl er geen meetbaar effect is in Vier op
’n rij. De enige uit de literatuur bekende manier om minimax te integreren in MCTS,
MCTS-MR, is vrij sterk in Catch the Lion en Vier op ’n rij, maar aanzienlijk zwakker
dan de reguliere MCTS in Breakthrough. Dit laatste suggereert dat MCTS-MR minder
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robuust is met betrekking tot domeinverschillen zoals de gemiddelde vertakkingsgraad.
Ten slotte heeft geen van de MCTS-minimax hybriden een positief effect op Othello
door het lage aantal eindtoestanden en ondiepe matsituaties over het gehele zoekgebied.
De dichtheid en de moeilijkheidsgraad van de matsituaties zijn goede voorspellers voor
de relatieve prestaties van de MCTS-minimax hybriden.

Problematische domeinen voor deze MCTS-minimax hybriden kunnen worden
aangepakt met behulp van domeinkennis. Enerzijds, kan domeinkennis in de hybride
algoritmen worden geïncorporeerd in de vorm van heuristische evaluatiefuncties. Dit
kan minimax veel effectiever maken in zoekruimten met relatief weinig eindtoestanden
vóór de eindfase, zoals die van Othello. Anderzijds kan domeinkennis in de vorm
van een zettenordeningsfunctie worden geïncorporeerd. Dit kan effectief zijn voor
spellen zoals Breakthrough, waar matsituaties relatief vaak voorkomen, maar de
vertakkingsfactor te hoog lijkt te zijn voor sommige hybriden zoals MCTS-MR.

Hoofdstuk 8 onderzoekt daarom drie algoritmen voor het geval wanneer domeinken-
nis aanwezig is. Er wordt gebruik gemaakt van heuristische evaluatiefuncties om
de simulatiestrategie te verbeteren (MCTS-IR), om Monte-Carlo simulaties voorti-
jdig te stoppen (MCTS-IC), of om de selectie van zetten in de zoekboom te sturen
(MCTS-IP). Voor alle drie de aanpakken wordt de waardering van toestanden middels
directe aanroepen van de evaluatiefunctie (MCTS-IR-E, MCTS-IC-E en MCTS-IP-E)
vergeleken met de waardering middels kleine minimax zoekprocessen gebruikmakend
van dezelfde evaluatiefunctie (MCTS-IR-M, MCTS-IC-M, en MCTS-IP-M). Deze
laatste drie zijn MCTS-minimax hybriden. De integratie van minimax is alleen door
MCTS-IR gebruikt in deze vorm. Testdomeinen zijn Breakthrough, Othello en Catch
the Lion.

De hybriden worden gecombineerd met zettenordening en k-best snoeiing om
zodoende om te gaan met hogere vertakkingsgraden resulterend in de verbeterde
hybride spelers MCTS-IR-Mk, MCTS-IC-Mk en MCTS-IP-Mk. Resultaten tonen aan
dat met deze twee relatief eenvoudige αβ verbeteringen, MCTS-IP-Mk de sterkste
MCTS minimax-hybride in alle drie de geteste domeinen is. Omdat MCTS-IP-Mk
minimax minder vaak aanroept, presteert het beter dan de andere hybriden bij lagere
tijdsinstellingen waar de prestatie van MCTS het meest gevoelig is voor een reductie
van het aantal simulaties per seconde. MCTS-IP-Mk werkt ook goed op een groter
Breakthrough bord, waaruit de geschiktheid van de techniek voor domeinen met
hogere vertakkingsgraden blijkt. Bovendien overtreft de best presterende hybride een
αβ implementatie in Breakthrough, waaruit blijkt dat althans voor dit domein MCTS
en minimax kunnen worden gecombineerd in een algoritme dat sterker is dan ieder
afzonderlijk.

Hoofstuk 9 sluit het proefschrift af. Het antwoord op de probleemstelling is
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tweeledig. Ten eerste kan de prestatie van MCTS in éénspeler domeinen op twee
manieren worden verbeterd — door het nesten van MCTS zoekprocessen (NMCTS),
en het combineren van MCTS met beam search (BMCTS). De eerste methode is vooral
interessant voor langere zoektijden, en de tweede methode meer geschikt voor kortere
zoektijden. Een combinatie van NMCTS en BMCTS kan ook effectief zijn.

Ten tweede kan de prestatie van MCTS tevens op twee manieren worden verbeterd
— door de beschikbare tijd voor de hele partij op een slimmere manier te gebruiken
(tijdmanagement), en door het integreren van kleine minimax zoekprocessen in MCTS
(MCTS-minimax hybriden). De eerste aanpak is relevant voor scenario’s zoals toer-
nooispel waar de hoeveelheid tijd per partij gelimiteerd is. De tweede aanpak verbetert
de prestatie van MCTS specifiek voor tactische domeinen.

Er zijn vier richtingen voor vervolgonderzoek. Deze zijn (1) het toepassen van
NMCTS in non-deterministische en gedeeltelijk waarneembare domeinen, (2) het
verbeteren van BMCTS om zo in de limiet optimaal gedrag te garanderen, (3) het
uittesten van verscheidene tijdmanagementstrategieën, en (4) het onderzoeken van
zwakkere prestaties met diepere ingebedde zoekprocessen in MCTS-minimax hybriden,
alsmede het bestuderen van welke eigenschappen van de testdomeinen invloed hebben
op de prestaties van deze hybriden.
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