639 research outputs found

    Enhancing cloud security through the integration of deep learning and data mining techniques: A comprehensive review

    Get PDF
    Cloud computing is crucial in all areas of data storage and online service delivery. It adds various benefits to the conventional storage and sharing system, such as simple access, on-demand storage, scalability, and cost savings. The employment of its rapidly expanding technologies may give several benefits in protecting the Internet of Things (IoT) and physical cyber systems (CPS) from various cyber threats, with IoT and CPS providing facilities for people in their everyday lives. Because malware (malware) is on the rise and there is no well-known strategy for malware detection, leveraging the cloud environment to identify malware might be a viable way forward. To avoid detection, a new kind of malware employs complex jamming and packing methods. Because of this, it is very hard to identify sophisticated malware using typical detection methods. The article presents a detailed assessment of cloud-based malware detection technologies, as well as insight into understanding the cloud's use in protecting the Internet of Things and critical infrastructure from intrusions. This study examines the benefits and drawbacks of cloud environments in malware detection, as well as presents a methodology for detecting cloud-based malware using deep learning and data extraction and highlights new research on the issues of propagating existing malware. Finally, similarities and variations across detection approaches will be exposed, as well as detection technique flaws. The findings of this work may be utilized to highlight the current issue being tackled in malware research in the future

    EvoDeep: A new evolutionary approach for automatic Deep Neural Networks parametrisation

    Full text link
    [EN] Deep Neural Networks (DNN) have become a powerful, and extremely popular mechanism, which has been widely used to solve problems of varied complexity, due to their ability to make models fitted to non-linear complex problems. Despite its well-known benefits, DNNs are complex learning models whose parametrisation and architecture are made usually by hand. This paper proposes a new Evolutionary Algorithm, named EvoDeep. devoted to evolve the parameters and the architecture of a DNN in order to maximise its classification accuracy, as well as maintaining a valid sequence of layers. This model is tested against a widely used dataset of handwritten digits images. The experiments performed using this dataset show that the Evolutionary Algorithm is able to select the parameters and the DNN architecture appropriately, achieving a 98.93% accuracy in the best run. (C) 2017 Elsevier Inc. All rights reserved.This work has been co-funded by the next research projects: EphemeCH (TIN2014-56494-C4-4-P) and DeepBio (TIN2017-85727-C4-3-P) Spanish Ministry of Economy and Competitivity and European Regional Development Fund FEDER, Justice Programme of the European Union (2014-2020) 723180 -RiskTrack-JUST-2015-JCOO-AG/JUST-2015-JCOO-AG-1, and by the CAM grant S2013/ICE-3095 (CIBERDINE:Cybersecurity, Data and Risks). The contents of this publication are the sole responsibility of their authors and can in no way be taken to reflect the views of the European Commission.Martín, A.; Lara-Cabrera, R.; Fuentes-Hurtado, FJ.; Naranjo Ornedo, V.; Camacho, D. (2018). EvoDeep: A new evolutionary approach for automatic Deep Neural Networks parametrisation. Journal of Parallel and Distributed Computing. 117:180-191. https://doi.org/10.1016/j.jpdc.2017.09.006S18019111

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    GUIDE FOR THE COLLECTION OF INSTRUSION DATA FOR MALWARE ANALYSIS AND DETECTION IN THE BUILD AND DEPLOYMENT PHASE

    Get PDF
    During the COVID-19 pandemic, when most businesses were not equipped for remote work and cloud computing, we saw a significant surge in ransomware attacks. This study aims to utilize machine learning and artificial intelligence to prevent known and unknown malware threats from being exploited by threat actors when developers build and deploy applications to the cloud. This study demonstrated an experimental quantitative research design using Aqua. The experiment\u27s sample is a Docker image. Aqua checked the Docker image for malware, sensitive data, Critical/High vulnerabilities, misconfiguration, and OSS license. The data collection approach is experimental. Our analysis of the experiment demonstrated how unapproved images were prevented from running anywhere in our environment based on known vulnerabilities, embedded secrets, OSS licensing, dynamic threat analysis, and secure image configuration. In addition to the experiment, the forensic data collected in the build and deployment phase are exploitable vulnerability, Critical/High Vulnerability Score, Misconfiguration, Sensitive Data, and Root User (Super User). Since Aqua generates a detailed audit record for every event during risk assessment and runtime, we viewed two events on the Audit page for our experiment. One of the events caused an alert due to two failed controls (Vulnerability Score, Super User), and the other was a successful event meaning that the image is secure to deploy in the production environment. The primary finding for our study is the forensic data associated with the two events on the Audit page in Aqua. In addition, Aqua validated our security controls and runtime policies based on the forensic data with both events on the Audit page. Finally, the study’s conclusions will mitigate the likelihood that organizations will fall victim to ransomware by mitigating and preventing the total damage caused by a malware attack

    MORPH: Towards Automated Concept Drift Adaptation for Malware Detection

    Full text link
    Concept drift is a significant challenge for malware detection, as the performance of trained machine learning models degrades over time, rendering them impractical. While prior research in malware concept drift adaptation has primarily focused on active learning, which involves selecting representative samples to update the model, self-training has emerged as a promising approach to mitigate concept drift. Self-training involves retraining the model using pseudo labels to adapt to shifting data distributions. In this research, we propose MORPH -- an effective pseudo-label-based concept drift adaptation method specifically designed for neural networks. Through extensive experimental analysis of Android and Windows malware datasets, we demonstrate the efficacy of our approach in mitigating the impact of concept drift. Our method offers the advantage of reducing annotation efforts when combined with active learning. Furthermore, our method significantly improves over existing works in automated concept drift adaptation for malware detection

    Deep learning-powered malware detection in cyberspace: a contemporary review

    Get PDF
    This article explores deep learning models in the field of malware detection in cyberspace, aiming to provide insights into their relevance and contributions. The primary objective of the study is to investigate the practical applications and effectiveness of deep learning models in detecting malware. By carefully analyzing the characteristics of malware samples, these models gain the ability to accurately categorize them into distinct families or types, enabling security researchers to swiftly identify and counter emerging threats. The PRISMA 2020 guidelines were used for paper selection and the time range of review study is January 2015 to Dec 2023. In the review, various deep learning models such as Recurrent Neural Networks, Deep Autoencoders, LSTM, Deep Neural Networks, Deep Belief Networks, Deep Convolutional Neural Networks, Deep Generative Models, Deep Boltzmann Machines, Deep Reinforcement Learning, Extreme Learning Machine, and others are thoroughly evaluated. It highlights their individual strengths and real-world applications in the domain of malware detection in cyberspace. The review also emphasizes that deep learning algorithms consistently demonstrate exceptional performance, exhibiting high accuracy and low false positive rates in real-world scenarios. Thus, this article aims to contribute to a better understanding of the capabilities and potential of deep learning models in enhancing cybersecurity efforts

    Android HIV: A Study of Repackaging Malware for Evading Machine-Learning Detection

    Full text link
    Machine learning based solutions have been successfully employed for automatic detection of malware in Android applications. However, machine learning models are known to lack robustness against inputs crafted by an adversary. So far, the adversarial examples can only deceive Android malware detectors that rely on syntactic features, and the perturbations can only be implemented by simply modifying Android manifest. While recent Android malware detectors rely more on semantic features from Dalvik bytecode rather than manifest, existing attacking/defending methods are no longer effective. In this paper, we introduce a new highly-effective attack that generates adversarial examples of Android malware and evades being detected by the current models. To this end, we propose a method of applying optimal perturbations onto Android APK using a substitute model. Based on the transferability concept, the perturbations that successfully deceive the substitute model are likely to deceive the original models as well. We develop an automated tool to generate the adversarial examples without human intervention to apply the attacks. In contrast to existing works, the adversarial examples crafted by our method can also deceive recent machine learning based detectors that rely on semantic features such as control-flow-graph. The perturbations can also be implemented directly onto APK's Dalvik bytecode rather than Android manifest to evade from recent detectors. We evaluated the proposed manipulation methods for adversarial examples by using the same datasets that Drebin and MaMadroid (5879 malware samples) used. Our results show that, the malware detection rates decreased from 96% to 1% in MaMaDroid, and from 97% to 1% in Drebin, with just a small distortion generated by our adversarial examples manipulation method.Comment: 15 pages, 11 figure

    From Malware Samples to Fractal Images: A New Paradigm for Classification. (Version 2.0, Previous version paper name: Have you ever seen malware?)

    Full text link
    To date, a large number of research papers have been written on the classification of malware, its identification, classification into different families and the distinction between malware and goodware. These works have been based on captured malware samples and have attempted to analyse malware and goodware using various techniques, including techniques from the field of artificial intelligence. For example, neural networks have played a significant role in these classification methods. Some of this work also deals with analysing malware using its visualisation. These works usually convert malware samples capturing the structure of malware into image structures, which are then the object of image processing. In this paper, we propose a very unconventional and novel approach to malware visualisation based on dynamic behaviour analysis, with the idea that the images, which are visually very interesting, are then used to classify malware concerning goodware. Our approach opens an extensive topic for future discussion and provides many new directions for research in malware analysis and classification, as discussed in conclusion. The results of the presented experiments are based on a database of 6 589 997 goodware, 827 853 potentially unwanted applications and 4 174 203 malware samples provided by ESET and selected experimental data (images, generating polynomial formulas and software generating images) are available on GitHub for interested readers. Thus, this paper is not a comprehensive compact study that reports the results obtained from comparative experiments but rather attempts to show a new direction in the field of visualisation with possible applications in malware analysis.Comment: This paper is under review; the section describing conversion from malware structure to fractal figure is temporarily erased here to protect our idea. It will be replaced by a full version when accepte
    corecore