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Abstract 

 

MDEA: Malware Detection with Evolutionary Adversarial Learning 

Xiruo Wang, M.S.Comp.Sc 

The University of Texas at Austin, 2019 

                

                    Supervisor: Risto Miikkulainen 

 

Many applications have used machine learning as a tool to detect malware. These 

applications take in raw or processed binary data to feed neural network models to classify 

benign or malicious files. Even though this approach has proved effective against dynamic 

changes, such as encrypting, obfuscating and packing techniques, it is vulnerable to 

specific evasion attacks to where that small changes to the input data cause 

misclassification at test time. In this paper, I propose MDEA, an Adversarial Malware 

Detection model that combines a neural network and evolutionary optimization attack 

samples to make the network robust against evasion attacks. By retraining the model with 

the evolved malware samples, network performance improves a big margin. 
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     Chapter 1:  Introduction 

 

The high proliferation of and dependence on computing resources in daily life has 

not only greatly increased the potential of malware to harm consumers but has also 

significantly increased the attack space (Acquisti et al. 2010). It is estimated that almost 

one in four computers operating in the U.S. were already infected by malware in 2008 

(Plonk et al. 2008) and according to Kaspersky Lab, up to one billion dollars was stolen 

from financial institutions worldwide due to malware attacks in 2015 (K. Lab 2015). More 

recently, the notorious and widespread NotPetya ransomware attack is estimated to have 

caused $10 billion dollars in damages worldwide. Even worse, as reported by McAfee 

Labs, the diversity of malware is still evolving in expanding areas such that in Q1 2018, 

on average, five new malware samples were generated per second (Beek et al. 2018). As a 

specific example, total coin miner malware rose by 629% in Q1 to more than 2.9 million 

samples in 2018 (Beek et al. 2018). 

As a result of the magnitude of the threat posed by malware, a great deal of research 

has been conducted on the problem of malware identification. At the moment there are two 

widely used approaches for malware detection: dynamic analysis, which obtains features 

by monitoring program executions and static analysis, which obtains feature from binary 

programs without running them. Intuitively, the dynamic analysis will be the first choice, 

since it can provide us the most accurate program behavior data. However, there are many 

issues in dynamic analysis in practice. Dynamic analysis requires a specially constructed 
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running environment such as a customized Virtual Machine (VM), which will be a huge 

computational burden to test numerous samples. Furthermore, in order to bypass this 

defense, some malwares will alter the behaviors when they are detected (Raffetseder et al. 

2015, Garfinkel et al. 2007). Even the malwares don't change its behavior during the 

detection process, the analysis environment can get false positive data that may result from 

other software. 

On the other hand, the static analysis methods also have their disadvantages. The 

signature-based method, in which malware features are extracted by computer security 

experts, provides the basis for most commercial antivirus products. While they are widely 

used, static pattern analysis (Reddy et al. 2006, Narouei 2015) (like API calls, N-grams, 

and so on) is limited in their ability to combat various encryption, polymorphism and 

obfuscation methods used by malware attackers. As for machine learning based malware 

classification technologies, several successful attempts (Rieck 2011, Zakeri 2015) have 

been applied to malware detection, which rely heavily on relevant domain knowledge for 

to provide malware analysis and determine features. This approach cannot adapt to fast-

changing malware patterns and comes with the high cost of artificial feature engineering. 

In recent years, researchers have begun exploring a new frontier in data mining and 

machine learning known as deep learning. Deep learning techniques are now being 

leveraged in malware detection and classification tasks, (Hardy et al. 2016, Gibert 2016, 

Drew et al. 2017, Yan et al. 2018) for exploring SAE, CNN, and RNN models to devise 

malware detection architectures. Although research thus far has provided promising 
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results, there are still many open challenges and opportunities for DL to improve 

performance in malware identification and classification tasks. First of all, due to the quick 

increase in the amount of novel malware, malicious techniques and patterns are changing 

and evolving rapidly. As a result, handling novel malware is one of the most pressing issues 

that deep learning methods might handle. In addition, in contrast to the natural language 

processing or computer vision tasks that are usually explored in deep learning tasks, 

malware byte files and assembly instructions have less understandable patterns. The 

difficulty of adapting these traditional deep learning methods directly to the task of 

malware classification and identification brings us to further explore data prepossessing 

techniques for network inputs. Furthermore, the adversarial attacks against neural 

networks, which only manipulate small portion of the input data and causes 

misclassification, has been proven to be one of the biggest vulnerabilities of DL. Even 

though these types of adversarial attack are less common on malware detection models 

because of the complexity and fragility of binary executables, there have been research 

shown that evading deep neural network for malware binary detection is possible. In their 

work, they trained a gradient-based model to append bytes to the overlay section of 

malware samples. Even though the model successfully evaded the deep neural network, 

both the model and the modification method are rather simple and cannot cover the 

complicated modifications real malware writers do. 

In order to explore the data space more thoroughly, an action space is defined. The 

action space consists of 10 different modification methods of binary programs. On top of 
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that, an evolutionary optimization is used to search the best action sequence of a specific 

malware since many researches have shown that evolutionary learning sup 

In this paper, I propose MDEA, an Adversarial Malware Detection model that 

combines a deep neural network and an evolutionary optimization. MDEA consists of a 

convolutional neural network that classifies raw byte data from malware binaries, and an 

evolutionary optimization that modifies the malwares that are detected. In contrast to 

simply append bytes to the end of each file, an action space is defined for the evolutionary 

optimization to pick from and choose best action sequences for each malware sample. With 

the evolutionary learning, the probability that the generated input sample is classified as 

benign can be maximally increased. The new samples then will be fed into the detection 

network for retraining. These three steps form a cycle that is similar to Generative 

Adversarial Nets (GAN) (Goodfellow et al. 2014). 

The experiments are performed on 7371 Windows Portable Executable (PE) 

malware samples and 6917 benign PE samples. The results show that MDEA not only 

drastically decreases the detection model accuracy, but also increases the overall detection 

performance from 90% to 93% after the retrain process. With this result I aim to claim that 

adversarial evolutionary training can improve both the robustness and the performance of 

malware detection network. 

The rest of the paper is structured as follows. Chapter 2 presents the related work. 

Chapter 3 describes the overview of my malware detection system and the details of each 

component. Chapter 4 describes my experimental setups and discuss the results. Finally, 
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Chapter 5 draws conclusions for my experiment and Chapter 6 provides suggestions for 

further research on this topic.
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Chapter 2:  Related Work 

Malware detection and classification has been a well-studied problem for many 

years. Notably, in 2015, the open Kaggle Contest: Microsoft Malware Classification 

Challenge (BIG 2015) (Kaggle, 2015) created a large burst of energy and attention towards 

the goal of malware classification. The champion of this contest used machine learning 

with sophisticated static pattern analysis in order to achieve high accuracy in classifying 

the malware samples provided in the challenge. Observing this, my goal is to leverage deep 

learning models without sophisticated feature engineering. In this section, I briefly 

introduce related works in signature-based, learning-based (Yan et al. 2018), adversarial-

based (Anderson et al. 2018) approaches and evolutionary techniques. 

 

2.1 Signature-based Malware Detection 

Signature-based and behavior-based methods are widely used in the anti-malware 

industry and are often used to identify “known” malware (Cloonan 2017). When an anti-

malware solution provider identifies an object as malicious, its signature is added to a 

database of known malware. These repositories may contain hundreds of millions of 

signatures that identify malicious objects.  One of the major advantages of signature-based 

malware detection is its thoroughness since it follows all conceivable execution ways of a 

given document (Souri et al. 2018). Because of the simplicity of building such a system, 

signature-based malware detection has been the primary identification technique used by 

malware products and remains the base approach used by the latest firewalls, email and 

network gateways. Therefore, many researches have been done in this field. Santos et al. 

(2010) created an opcode sequence-based malware detection system. Preda et al. (2007) 

proposed a semantics-based framework for reasoning about malware detector. Chaumette 

et al. (2011) created an automated virus signature extraction system with abstract 
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interpretation. Ojugo and Eboka (2019) investigated detection of metamorphic malware 

attacks using the Boyer Moore algorithm for string-based signature detection scheme. 

Venugopal and Hu (2008) showed that a signature matching algorithm can be suitable for 

use in mobile device scanning due to its low memory requirements. Fan et al. (2015) 

expanded the normal signature approaches to the API log domain and utilized with data 

mining techniques. Fraley and Figueroa (2016) presented a unique approach leveraging 

topological examination using signature-based techniques. They also used data mining 

techniques in order to uncover and spotlight the properties of malicious files. Despite the 

widespread adoption of signature-based malware detection within the information security 

industry, malware authors can easily evade this signature-based method through techniques 

such as encryption, polymorphism, and obfuscation. Signature-based analysis is, therefore, 

poorly equipped to handle the current state of malware generation. 

 

 

2.2 Learning-based Malware Classification 

 

Because of the weaknesses of signature-based malware detection, machine 

learning is a popular approach to signatureless malware detection. Many different 

malware detection approaches using machine learning technology have been proposed in 

recent years, such as static analysis, which learns statistical characteristics (e.g. API calls, 

N-grams), or dynamic behavior analysis, which analyzes the behavior of a system against 

a baseline in order to determine anomalous (and possibly malicious) behavior. I focus on 

static analysis within the scope of this paper. In the Kaggle Microsoft Malware Contest 

(Kaggle 2015), the winner used many sophisticated features for their knn model in order 

to achieve high performance. Some other machine learning techniques are also studied in 

different works. Elkhawas et al. (2018) proposed a machine learning model with Support 
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Vector Machine (SVM). Wang et al. (2015) developed an automatic malware detection 

system by training an SVM classifier based on behavioral signatures and across-

validation scheme was used for solving classification accuracy problems by using SVMs 

associated with 60 families of real malware. Rehman et al. (2018) have reverse 

engineered the Android Apps to extract manifest files, and employed machine learning 

algorithms to efficiently detect malwares. They observed that SVM in case of binaries 

and KNN in case of manifest.xml files are the most suitable options in robustly detecting 

the malware in Android devices. Altaher (2016) proposed a hybrid neuro-fuzzy classifier 

(EHNFC) for Android malware classification using permission-based features. The 

proposed EHNFC not only has the capability of detecting obfuscated malware using 

fuzzy rules but can also evolve its structure by learning new malware detection fuzzy 

rules to improve its detection accuracy when used in detection of more malware 

applications. Yuan et al. (2016) proposed to associate the features from the static analysis 

with features from dynamic analysis of Android apps and characterize malware using 

deep learning techniques. Yuxin and Siyi (2017) presented a deep belief network (DBN) 

that represents malware as opcode sequences. DBNs can use unlabeled data to pretrain a 

multi-layer generative model, which can better represent the characteristics of data 

samples. 

Unlike all the above research works, in order to cut down on the necessity of 

expert analysis, I will only take the basic features as input for deep learning model. Many 

different deep learning models have been proposed on malware detection. Some people 

intend to solve this problem by LSTM model (Yan 2018), while others proposed 

"malware image" that are generally constructed by treating each byte of the binary as a 

https://www.sciencedirect.com/topics/computer-science/machine-learning-algorithm
https://www.sciencedirect.com/topics/computer-science/machine-learning-algorithm
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gray-scale pixel value, and defining an arbitrary “image width” that is used for all 

images. From all these approaches, I found that the MalConv network (Raff et al. 2017), 

which use raw byte embeddings as the input, achieved the highest accuracy. Therefore, I 

choose to use this model as my detection model. 

 

2.3 Adversarial Model for Sample Generation 

 

Nguyen et al. ‘s paper (2015) arguably inspired the later research on adversarial 

model. They found that it was easy to produce images that were completely unrecognizable 

to humans, but deep neural networks (DNNs) could recognize it with high confidence. 

They trained DNN on ImageNet and MNIST datasets and produced many human-

unrecognizable images. Goodfellow et al. (2014) proposed the first generative adversarial 

nets (GAN). GAN consists of two models. One of the models is the generative model, 

which captures the data distribution and a discriminative model that estimates the 

probability that a sample came from the training data rather than from generative model. 

GAN has a very huge potential since it can learn to mimic any data distribution 

because of the generality of its structure. Therefore, GAN has been used in many domains 

such as computer vision, natural language processing etc. Zhu et al. (2017) used cycle GAN 

to build a mapping function from two image domains. Karras et al. (2018) proposed a way 

to modify the network structures for both generator and discriminator in GAN. The method 

they used greatly increased the variation in generated images. 

Recent work in adversarial machine learning has shown that deep learning models 

for machine learning are susceptible to gradient-based attacks. Anderson (Anderson et al. 

2018) proposed a more general framework based on reinforcement learning (RL) for 

attacking static portable executable (PE) anti-malware engines. They show in experiments 

that this adversarial learning method can attack a gradient-boosted machine learning model 



10 

 

and evade components of publicly hosted antivirus engines. Suciu et al. explored the area 

of adversarial examples for malware detection by training an existing model on a 

production-scale dataset. They showed that some previous attacks are less effective than 

initially reported, while simultaneously highlighting architectural weaknesses that 

facilitate new attack strategies for malware classification. Grosse et al. (2017) expanded on 

existing adversarial example crafting algorithms to construct a highly effective attack that 

uses adversarial examples against malware detection models.  Maiorca et al. (2019) 

presented a system to generate malwares embedded in PDF files. Kolosnjaji et al. (2018) 

proposed a gradient-based attack model that is capable of evading a deep network by only 

changing few specific bytes at the end of each malware sample, while preserving its 

intrusive functionality. This work is interesting because they used the same malware 

detection network structure (MalConv) and similar approach as mine. They showed that 

by simply appending learnt bytes at the end of malware samples, they were able to decrease 

the detection accuracy by more than 50%. Even though this work achieved good result, 

neither of them used their generated attack samples to improve the detection model. Their 

learning methods are also mathematically unsophisticated, which may result in nonoptimal 

solution. 

I will reproduce and improve upon the methods in these paper with evolutionary 

learning and leverage the generated adversarial samples back to the deep learning model 

to further improve the accuracy. 

 

 

2.4 Evolutionary Algorithm 

 

 

Evolutionary algorithm (EA) uses mechanisms inspired by biological evolution, 

such as mutation, recombination and selection to select the best individual of a population 

to solve an optimization problem. At the beginning, EA is considered as a scalable 
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alternative to reinforcement learning (Salimans et al. 2017). In recent years, there have 

been many researches showed that EA performed much better than traditional optimizing 

method such as gradient descend in different domain (Real et al. 2019; Podryabinkin et 

al. 2019). This advantage of EA has been proven even more in machine and deep 

learning because of the diversity and complexity it provides (Young et al. 2015; Hooman 

et al. 2018). Martín et al. (2016) created an Android malware detection system with 

evolutionary strategies to leverag third-party calls to bypass the effects of these 

concealment strategies.  Petroski et al. (2018) evolved the weights of a DNN with genetic 

algorithm (GA) and it performed well on hard deep RL problems, including Atari and 

humanoid locomotion. Esteban et al. (2019) evolved an image classifier— AmoebaNet-

A—that surpassed hand-designs for the first time. They modified the tournament 

selection evolutionary algorithm by introducing an age property to favor the younger 

genotypes. They also showed that their evolved model worked well in their benchmark 

against reinforcement learning approaches. Chen et al. (2019) built a model to generate 

groundwater spring potential map. They utilized GA to perform a feature selection 

procedure and data mining methods for optimizing set of variables in groundwater spring 

assessments. 

In all the above literatures, EA showed a great advantage against the traditional 

optimization method such as stochastic gradient descent and reinforcement learning. The 

gradient-free nature makes EA less vulnerable to local minimum issue and easier to 

approach more general solutions for a complicated parameter search problem. EA also 

has higher robustness and performs well when the number of time steps in an episode is 

long, where actions have long-lasting effects, or if no good value function estimates 
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are available (Salimans et al. 2017). Therefore I chose EA as the optimization method for 

my project. 
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Chapter 3: Model 

This chapter discusses the design and process of my proposed MDEA model. 

Section 3.1 describes an overview of the model structure. Section 3.2 discusses the dataset 

information and the details of the detection model. Section 3.3 explains the definition and 

details of action space, which is used by evolutionary optimization method. Finally, Section 

3.4 describes the evolutionary optimization algorithm in details. 

 

3.1 Structure Overview 

 

 
Figure 1: Model Diagram 

This diagram shows the overall model flow of MDEA.  

Top: Detection Model based on the MalConv network Raff et al (2017). 

Bottom: The Evolutionary Optimization Algorithm 

 

 Overall, the malware detection process consists of two major parts. A diagram of 

our model is shown in Figure 1. The first part involves preprocessing malware sample data 

and feeding these data to our 1-D Convolutional network. The second part uses 

evolutionary optimization to evolve adversarial malware samples to evade the network. All 

the newly generated malwares that successfully bypass the detection model will be added 
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into the training set to retrain the detection model. The first and second part together form 

a loop as shown in Figure 1. During the training phase, this loop is iterated multiple times 

until the detection accuracy of the detection model converges to an optimal value.  

 

3.2 Dataset and Detection Model 

 

The dataset consists of 14,288 PE files. 7371 of them are malware samples, which 

were downloaded from VirusShare. The rest 6917 PE files are benign files that were 

gathered by crawling different websites. The deep neural network I trained and attacked in 

this paper is the MalConv Network proposed by Raff et al (2017). Figure 2 shows the 

detailed structure of MalConv Network. MalConv takes in up to k bytes data as input. Each 

byte is represented by a number A = {0, … ,255}. The k bytes ∈ Ak data that are extracted 

from input file are padded with zeros to form a vector x (if there are more than k bytes in 

the file, just take the first k bytes without padding). Then each element of vector x is fed 

into a trainable embedding layer to get an embedded vector z of 8 elements. After this 

embedding process, one dimensional vector x becomes a matrix Z ∈ Rdx8. This matrix Z is 

then fed into two layers 1-d convolutional layers. These two layers use Rectified Linear 

Unit (ReLU) and sigmoidal activation functions respectively. By combining these two 

layers with gating, the vanishing gradient problem caused by sigmoidal activation 

functions is avoided. The obtained values are then fed to a temporal max pooling layer 

followed by a fully connected layer with ReLU activations. The final classification is made 

by the probability output from the last fully connected layer as f(x). If f(x) > 0.5 then the 

sample is a benign file, otherwise it is classified as malware. 
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    Figure 2: Detection Model 

   This diagram shows the layer details of MalConv.  

 

3.3 Action Space 

  

 The action space is built on top of some PE file layout knowledge. Therefore, before 

introducing the action space, I will provide a brief description of the structure of PE files 

to better understand the actions. 

 A PE file consists of a number of headers and sections that tell the dynamic linker 

how to map the file into memory. In general, there are three types of layouts in PE: header, 

section table and data. Header is a data structure that contains basic information on the 

executables. Section table is a table that describes the characteristics of each file section. 

The data layout contains the actual data that related to each section. Malwares usually 

modify some of these structures to create malicious activities that are hard to detect. The 

stealth and sensitivity of these modifications make it even harder to alter some bytes 

without breaking the malware functionality. However, some of the sections are not 

important for the program to run. Some of them are even neglected by OS such as the 
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overlay section. By knowing such type of knowledge, I can construct the following action 

space: 

 The action space consists of 10 different actions with trainable parameters. These 

actions are inspired by Anderson et al.’s (2017) work. In their paper, they make each action 

accept random parameters to test evasion on a gradient boosted decision tree model with 

reinforcement learning. However, this randomness becomes a big issue in MDEA since 

evolutionary algorithm already introduced enough generality to the problem and more 

randomness would cause the model to not converge. Therefore, I introduce a parameter set 

corresponds to each action to make the model converge with acceptable time. 

 The actions are:  

1. Add a function to the import address table that is never used 

2. Manipulate existing section names 

3. Append bytes to extra space at the end of sections 

4. Create a new entry point 

5. Manipulate signature 

6. Manipulate debug info 

7. Pack the file 

8. Unpack the file 

9. Modify header checksum 

10.  Append bytes to overlay section. 

Note that some of these actions are not recoverable such as delete a signature, which 

means once the evolutionary optimization algorithm chooses to perform this action, all 

later generations of this malware will not be able to effectively perform the same action 

again. This irreversibility causes the diversity to drop drastically. I addressed this issue 

with more details in the experiment chapter later. 
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3.4 Evolutionary Optimization 

 

 I used a framework called DEAP (Distributed Evolutionary Algorithms in Python) 

to construct our evolutionary optimization algorithm. The evolutionary algorithm consists 

of three major parts: population initialization and evolution, binary modification and 

individual evaluation. Figure 3 shows an overview of the evolution algorithm. 

 

 

 

 

Figure 3: Evolutionary Algorithm 

                This diagram shows the evolutionary optimization cycle 

 

The population evolution part has different methods to breed new children to 

evolve. Mutation and crossover as two major evolution methods. Mutation alters one or 

more gene values in a chromosome from its initial state. In mutation, the solution may 

change entirely from the previous solution. There are many different types of mutation 

such as shrink mutation (Ronco et al. 2013), uniform mutation and boundary mutation etc. 

I chose to implement the “mutShuffleIndexes” method in DEAP since most of the mutation 
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method only works for integers or floats and cannot be applied to action sequences. The 

“mutShuffleIndexes” method shuffles the attributes of the input individual. During the 

shuffle phase, there is also a probability to replace some of the elements in those attributes 

with randomly chosen elements. Crossover combines the genetic information of two 

parents to generate new offspring. It is one way to stochastically generate 

new solutions from an existing population, and analogous to the crossover that happens 

during sexual reproduction in biology. I implemented the uniform crossover method, 

which chooses each attribute from either parent with equal probability resulting in 

offspring which inherit more genetic information from one parent than the other. Selection 

is another important method in evolutionary algorithm. After the population is evolved, the 

action sequence will be sent to the binary modification section to produce modified 

malwares. The modified malwares will be evaluated by the detection model and the 

statistics for evolving next generation will be calculated. After the evaluation step, 

selection method picks the best offspring as the parent for next generation. For the 

perspective of simplicity, I implemented the “selectBest” selection algorithm for this 

project.  This cycle continues until there is enough data for further training, or the 

generation limit is reached.  

Let us denote all the malwares that got detected as Md and all the malwares that 

were not detected as Mn, then I want to find a function f(x) that makes f(Md) = Mn. The 

function f(x) is presented by action sequences {(a0, p0), (a1, p1), (a2, p2) … (ai, pi)} where ai 

is an action from action space and pi is the corresponding parameter for that action (i.e.: 

for appending overlay method, p indicates how many bytes append at the end). Our 

evolutionary optimization then aims to find a group of f(x) by crossover, mutation and 

selection. Let us denote the detection model as D(x), and for any malware sample m, if 

D(m) > 0.5, m is benign software. For each individual md in Md, our evolutional model can 

be expressed by:  

Equation 1: fopt(md) = argmax(D(f(md)). 

https://en.wikipedia.org/wiki/Chromosome_(genetic_algorithm)
https://en.wikipedia.org/wiki/Stochastic
https://en.wikipedia.org/wiki/Candidate_solution
https://en.wikipedia.org/wiki/Chromosomal_crossover
https://en.wikipedia.org/wiki/Sexual_reproduction
https://en.wikipedia.org/wiki/Biology


19 

 

With Equation 1, the overall algorithm for the evolution is expressed in the 

following form: 
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                       Chapter 4: Experiments 

 This chapter will discuss the experimental setups and results. Section 4.1 describes 

the details of the datasets, the division of training set and validation set, and the hardware 

I used to run this experiment. Section 4.2 describes the experimental results and their 

importance with two data graphs. Section 4.3 discusses the dead species problem I 

encountered during the experiment. Section 4.4 shows how evolutionary algorithm can 

overfit to a never-seen develpment set and potential solutions to the overfit problem. 

Section 4.5 presents the result of test modified malwares test against VirusTotal, a popular 

malware detection website. 

 

4.1 Experimental Setup 

 

 To set up the experiment I collected 7371 malware samples from VirusShare, a 

malware sample data website, and 6917 benign samples from web crawling. All these 

14,288 samples are Windows Portable Executables (PE). I divided dataset into two sets 

with 9:1 ratio as training set and validation set. I ran both neural network training and 

evolutionary optimization method on Texas Advanced Computing Center (TACC) 

Maverick2 server with 4 Nvidia 1080-TI GPUs and 16 Intel Xeon CPUs. The training time 

for detection network was around 10 hours and the running time for evolutionary 

optimization was around 24 hours each cycle. I recorded the accuracy and the number of 

modified bytes after each cycle.  
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4.2 Experimental Result 

 

This section presents the experimental result. The result graphs are shown in Figure 

4 and 5. 

 

          

 

   Figure 4: Detection rate against number of cycles 

 This graph shows how detection accuracy changed with number of cycles  
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Figure 5: Detection rate against number of modified bytes 

This graph shows how detection accuracy changed with number of modified bytes 

 

 

 Figure 4 shows the detection accuracy of the detection model increases with the 

number of cycles. After 10 cycles of training, which is around 12 days, the accuracy 

increases from 90% to around 93%. Note that there is a drop on the Cycle 4 in the graph, 

which I suspect that is caused by a dead species issue.  Section 4.3 addresses this issue 

with detailed discussion. 

Figure 5 shows the relation between the detection accuracy and the number of 

modified bytes. I noticed that there is a big jump from 8000 bytes to 12,000 bytes. I think 

the reason why this happens is because some of the sections in the PE file have a certain 

length and when the number of modified bytes increases above a certain threshold, the 

modification bytes  start to capture more malware patterns, which increases the accuracy 

by a big margin. 
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4.3 Dead Species 

 

 

 This section discusses the dead species problem that caused the accuracy drop on 

Cycle 4 in Figure 4. There are many actions in the action space that are not reversable 

such as removing signatures, modifying checksum sections etc. If any of these actions are 

performed on the malware, a later generation will not be able to reverse it. Since it is 

unlikely to find an optimal action sequence at the beginning of evolution, picking such 

irreversible actions will drastically reduce the search space and the offspring that contain 

those actions will be stuck at bad local optimum.  

Figure 6 shows one of the examples of such dead species. There is an obvious gap 

between the normal species and the dead species after certain number of modified bytes. 

After investigating the records of these two evolutions, the result showed that the dead 

species picked “delete-checksum” and “remove signature” actions when number of 

modified bytes was equal to 15,879. This result validates my conjecture that irreversible 

actions caused the dead species problem. 

In order to solve this problem, validation weights are introduced into the 

evolutionary optimization algorithm. These weights represent the probability of each 

action being picked. The actions that can cause dead species are assigned with a very low 

probability. This countermeasure worked well in practice and increased the average 

accuracy by 1%. However, the validation weights only delay the occurrence of dead 

species instead of solving the problem. Any individuals that picked irreversible actions 

will lead to dead species and lose their diversity in evolution. Further possible techniques 

for dealing with this problem will be discussed in Chapter 5. 
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Figure 6: Example of dead species 

This graph shows the performance difference between a dead species and normal species. 

The big gap of the two lines shows how dead species can affect the performance. 
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4.4 Overfitting to Development Set  

 

 

 

 During the experimental results evaluation phase, there were some abnormalities 

in the results. While most of the detection accuracy lies within the range of 93%, few 

results are above 95% accuracy. With further research, this phenomenon is likely an 

instance of overfitting to the development set: repetitively checking against the 

development set and tuning based on the (Blum et al. 2015). Therefore, it is necessary to 

construct a unseen test set to check the true accuracy. Due to the computation limit, the 

size of the unseen test set is only 10% of the normal development set. The following 

Table 1 shows the result. 

  

Normal Development Set 

Acc 

True Test set Acc Accuracy Difference 

95.43% 92.55% 2.88% 

95.52% 92.71% 2.81% 

92.89% 92.69% 0.2% 

92.94% 92.79% 0.15% 

    

Table 1: True Test Set Accuracy Difference Table 

 

  

The first two rows are the abnormal results. It is clear that the accuracy drops 

significantly comparing to the other two accuracies. With this result, it is sufficient to 

conclude that evolutionary learning causes overfitting to development set and the evolved 

model should be checked against a test set that is not used in evolution.  

Recently, there are a few literatures proposed different method to solve this 

development set overfitting issue (Feldman et al 2019, Russo et al 2019). These issues 

will be discussed specifically in Chapter 5. 
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4.5 Comparison to a Signature-based Approach 

 

 In order to compare MDEA to a popular signature based anti-virus program, I 

submitted some modified malwares to VirusTotal, a website that scan files with multiple 

anti-virus engines to detect malware. 

 

 

Figure 7: Original Malware Sample 

 The result from VirusTotal by submitting unmodified malware sample 
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   Figure 8: Break Optional Header Checksum 

             The result from VirusTotal by submitting a modified malware sample. 

 

 

 

 

 Figure 7 shows the detection result from VirusTotal for the original malware 

sample. It clearly detected the malware. Figure 8 shows the detection result for a 

modified malware where I performed a single action to break its optional header 

checksum. In this case, only 3 out of 71 engines classified the malware sample as 

malware. In the meantime, MDEA classified this file as malware with over 99% 

confidence. Although more experimental analysis is need, this simple example suggests 
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that Deep Neural network approach is superior to traditional signature approach to 

malware detection. 
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Chapter 5 Discussion and Future Work 

This chapter will explain the design choices for MDEA. This section also evaluates 

how well the current approach worked and what could be improved in future work. 

There are several design choices to be discussed here. The first one is the detection 

model, i.e. the MalConv network (Raff et al. 2017). Several malware detection methods 

were researched such as malware images (Nataraj et al. 2011), n-gram k nearest neighbor 

(Kaggle 2015), and LSTM sequence model (Yang et al. 2018) etc. After testing with the 

dataset, MalConv achieved the highest detection accuracy, therefore, MalConv is chosen 

as the detection network.  

Another design choice is to use evolutionary algorithm (EA) as the optimization 

method to generate malware samples instead of GANs and reinforcement learning (RL). 

EA has several advantages compared to GAN and reinforcement learning. Existing GANs 

(GAN and its variants) suffer from training problems such as instability and mode collapse. 

EA can achieve a more stable training process. GANs usually employ a pre-defined 

adversarial objective function alternating training a generator and a discriminator (Wang 

et al. 2019). However, the action space cannot be simply expressed as a single adversarial 

objective function. EA solves this problem by evolving a population of different adversarial 

objective functions (different action sequences). Compared to RL, EA does not need to 

backpropagate the action weights and biases, which makes the code shorter and 2-3 times 

faster in practice. EA is also highly parallelizable compared to RL since it only requires 

individuals to communicate a few scalars between each other. Finally, EA is also more 

robust in the perspective of scaling (Salimans et al. 2017). It is very easy to extend the 

action space and other parameters to achieve a different learning outcome. With the above 

benefits, EA was chosen instead of GANs or RL. 
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The current setup of MDEA increases detection accuracy from 90% to 93 %. Even 

though the result is promising, there are still some problems that can be fixed. First, the 

evolutionary optimization still suffers from the dead species problem. The validation 

weights introduced in Section 4.3 only delay the occurrence of dead species instead of 

solving it. One possible solution is adding an age function in the evolutionary optimization 

process to mark the generations and study the relation between the dead species and age. 

With the age function, it is possible to find the optimal age for each irreversible actions. 

Then, the final solution will only be selected from the correct age generation. 

The overfitting problem of evolutionary optimization is another field for future 

study. The current solution is to use a unseen test set (described in Section 4.4). However, 

this solution requires more data gathering time and can only be applied once. Recently, 

Feldman et al. (2019) showed the benefits that multiple classes have on the amount of 

overfitting caused by reusing development set. With their theory and method, I can extend 

the malware detection problem to multi-class malware classification problem, and the 

overfitting of development set can be reduced. The future plan is to relabel each malware 

samples into different malware classes and convert the detection problem into a multi-class 

classification problem to alleviate overfitting. 

Another future plan is to expand the search space for the evolutionary optimization 

algorithm by defining more modification actions. The number of actions in the action space 

is one of the key factors to ensure the diversity and generality of the evolutionary 

optimization. However, because of the fragility and sensitivity of binary EXE code, it is 

very hard to create new modification action without changing the functionality of the 

program 

The size and generality of the dataset can also be improved further. Since the search 

space is constrained by the diversity of malware types, adding different kinds of malware 

into the dataset can potentially improve the optimal detection accuracy. The input size of 

the detection model can also be further increased. Currently, MDEA takes in two million 



31 

 

bytes as the input. There are many malware samples in the dataset that have more than two 

million bytes and the extra bytes are cut off because of the length limit. The plan is to run 

MDEA with larger GPU memories, so that more data can be taken into the detection model, 

which may result in better performance. In addition, it is necessary to run an analysis in the 

future on how randomly modified malwares can influence the detection model. By 

conducting this validation, the significance of the evolutionary optimization algorithm can 

be verified.  
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Chapter 6 Conclusion  

In this thesis, I proposed MDEA, an evolutionary adversarial malware detection 

model that combines neural networks with evolutionary optimization and generates attack 

samples to solve the evasion attack problem and to increase detection accuracy. An action 

space is introduced, which contains 10 different binary modification actions. The 

evolutionary algorithm evolves different action sequences by picking actions from the 

action space and then tests different action sequences against the detection model. After 

successfully evolving action sequences that bypass the detection model, all these action 

sequences will be applied to corresponding malware samples to form new training set for 

the detection model. By training the network with this cycle, detection accuracy increased 

from 90% to around 93 % even with limited computing power. 

These results show that deep learning-based malware detection can defend against 

adversarial attacks and accuracy can be further improved by evolutionary learning. 

Evolutionary optimization provides generality and diversity that is difficult to achieve by 

other optimization algorithms. 

I believe that MDEA represents a great method to solve adversarial attack on 

malware detection network. 
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