139 research outputs found

    Improving EHW performance introducing a new decomposition strategy

    Get PDF
    This paper describes a new type of decomposition strategy for Evolvable Hardware, which tackles the problem of scalability. Several logic circuits from the MCNC benchmark have been evolved and compared with other Evolvable Hardware techniques. The results demonstrate that the proposed method improves the evolution of logic circuits in terms of time and fitness function in comparison with BIE and standard EHW

    An Evolvable Combinational Unit for FPGAs

    Get PDF
    A complete hardware implementation of an evolvable combinational unit for FPGAs is presented. The proposed combinational unit consisting of a virtual reconfigurable circuit and evolutionary algorithm was described in VHDL independently of a target platform, i.e. as a soft IP core, and realized in the COMBO6 card. In many cases the unit is able to evolve (i.e. to design) the required function automatically and autonomously, in a few seconds, only on the basis of interactions with an environment. A number of circuits were successfully evolved directly in the FPGA, in particular, 3-bit multipliers, adders, multiplexers and parity encoders. The evolvable unit was also tested in a simulated dynamic environment and used to design various circuits specified by randomly generated truth tables

    Accelerating FPGA-based evolution of wavelet transform filters by optimized task scheduling

    Get PDF
    Adaptive embedded systems are required in various applications. This work addresses these needs in the area of adaptive image compression in FPGA devices. A simplified version of an evolution strategy is utilized to optimize wavelet filters of a Discrete Wavelet Transform algorithm. We propose an adaptive image compression system in FPGA where optimized memory architecture, parallel processing and optimized task scheduling allow reducing the time of evolution. The proposed solution has been extensively evaluated in terms of the quality of compression as well as the processing time. The proposed architecture reduces the time of evolution by 44% compared to our previous reports while maintaining the quality of compression unchanged with respect to existing implementations. The system is able to find an optimized set of wavelet filters in less than 2 min whenever the input type of data changes

    Study on multi-objective optimization of circuit design by evolutionary computation technologies

    Get PDF
    戶ćșŠ:新 ; 栱摊ç•Șć·:ç”Č3364ć· ; ć­ŠäœăźçšźéĄž:ćšćŁ«(ć·„ć­Š) ; 授䞎ćčŽæœˆæ—„:2011/4/25 ; æ—©ć€§ć­Šäœèš˜ç•Șć·:新568

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Differentiable Genetic Programming

    Full text link
    We introduce the use of high order automatic differentiation, implemented via the algebra of truncated Taylor polynomials, in genetic programming. Using the Cartesian Genetic Programming encoding we obtain a high-order Taylor representation of the program output that is then used to back-propagate errors during learning. The resulting machine learning framework is called differentiable Cartesian Genetic Programming (dCGP). In the context of symbolic regression, dCGP offers a new approach to the long unsolved problem of constant representation in GP expressions. On several problems of increasing complexity we find that dCGP is able to find the exact form of the symbolic expression as well as the constants values. We also demonstrate the use of dCGP to solve a large class of differential equations and to find prime integrals of dynamical systems, presenting, in both cases, results that confirm the efficacy of our approach

    Exploiting development to enhance the scalability of hardware evolution.

    Get PDF
    Evolutionary algorithms do not scale well to the large, complex circuit design problems typical of the real world. Although techniques based on traditional design decomposition have been proposed to enhance hardware evolution's scalability, they often rely on traditional domain knowledge that may not be appropriate for evolutionary search and might limit evolution's opportunity to innovate. It has been proposed that reliance on such knowledge can be avoided by introducing a model of biological development to the evolutionary algorithm, but this approach has not yet achieved its potential. Prior demonstrations of how development can enhance scalability used toy problems that are not indicative of evolving hardware. Prior attempts to apply development to hardware evolution have rarely been successful and have never explored its effect on scalability in detail. This thesis demonstrates that development can enhance scalability in hardware evolution, primarily through a statistical comparison of hardware evolution's performance with and without development using circuit design problems of various sizes. This is reinforced by proposing and demonstrating three key mechanisms that development uses to enhance scalability: the creation of modules, the reuse of modules, and the discovery of design abstractions. The thesis includes several minor contributions: hardware is evolved using a common reconfigurable architecture at a lower level of abstraction than reported elsewhere. It is shown that this can allow evolution to exploit the architecture more efficiently and perhaps search more effectively. Also the benefits of several features of developmental models are explored through the biases they impose on the evolutionary search. Features that are explored include the type of environmental context development uses and the constraints on symmetry and information transmission they impose, genetic operators that may improve the robustness of gene networks, and how development is mapped to hardware. Also performance is compared against contemporary developmental models

    Linux XIA: an interoperable meta network architecture

    Full text link
    With the growing number of clean-slate redesigns of the Internet, the need for a medium that enables all stakeholders to participate in the realization, evaluation, and selection of these designs is increasing. We believe that the missing catalyst is a meta network architecture that welcomes most, if not all, clean-state designs on a level playing field, lowers deployment barriers, and leaves the final evaluation to the broader community. This thesis presents the eXpressive Internet (Meta) Architecture (XIA), itself a clean-slate design, as well as Linux XIA, a native implementation of XIA in the Linux kernel, as a candidate. As a meta network architecture, XIA is highly flexible, leaving stakeholders to choose an expressive set of network principals to instantiate a given network architecture within the XIA framework. Central to XIA is its novel, non-linear network addressing format, from which derive key architectural features such as evolvability, intrinsically secure identifiers, and a low degree of principal isolation. XIP, the network layer protocol of XIA, forwards packets by navigating these structured addresses and delegating the decision-making and packet processing to appropriate principals, accordingly. Taken together, these mechanisms work in tandem to support a broad spectrum of interoperable principals. We demonstrate how to port four distinct and unrelated network architectures onto Linux XIA, none of which were designed for interoperability with this platform. We then show that, notwithstanding this flexibility, Linux XIA's forwarding performance remains comparable to that of the more mature legacy TCP/IP stack implementation. Moreover, the ported architectures, namely IP, Serval, NDN, and ANTS, empower us to present a deployment plan for XIA, to explore design variations of the ported architectures that were impossible in their original form due to the requirement of self-sufficiency that a standalone network architecture bears, and to substantiate the claim that XIA readily supports and enables network evolution. Our work highlights the benefits of specializing network designs that XIA affords, and comprises instructive examples for the network researcher interested in design and implementation for future interoperability
    • 

    corecore