

S t u d y o n M u l t i - o b j e c t i v e O p t i m i z a t i o n o f C i r c u i t
D e s i g n b y E v o l u t i o n a r y C o m p u t a t i o n T e c h n o l o g i e s

Bao, Zhiguo

April 2011

Waseda University Doctoral Dissertation

S t u d y o n M u l t i - o b j e c t i v e O p t i m i z a t i o n o f

C i r c u i t D e s i g n b y E v o l u t i o n a r y
C o m p u t a t i o n Te c h n o l o g i e s

Bao, Zhiguo

Graduate School of Information, Production and Systems
Waseda University

April 2011

Abstract

Study on Multi-objective Optimization of Circuit Design
by Evolutionary Computation Technologies

BAO, Zhiguo

Evolvable Hardware (EHW) has been researched for hardware design since early

1990s. It is classified into two categories: evolutionary circuit design and adaptive

systems. Evolutionary circuit design uses evolutionary algorithms (EAs) to design

a system that meets a predefined specification, and adaptive systems reconfigure an

existing design to counteract faults or to adapt to a variable operational environment.

EHW can be used as an alternative to conventional hardware design methodology.

This research field has been actively studied by many researchers since Field Pro-

grammable Gate Array (FPGA) appeared as a hardware device. EHW techniques

combined with FPGAs seems to be successful and promising in various applications,

because it could automatically generate digital circuits by using EAs. EHW has been

used to design digital circuits, such as a multiplier, a neural network, a robot con-

troller, a traffic signal classifier, a digital image filter and so on. However, there still

remain critical issues such as scalability, maintainability and generalization to apply

EHW for practical design problems. One of them is a circuit optimization with mixed

design constraints.

Therefore, in this research, the circuit design for mixed constraints is discussed,

and a new design methodology using several evolutionary computation technologies

is proposed. As a result, it is shown that our proposed design methodology can

efficiently produce good circuits to meet the mixed design constraints.

The organization of the thesis is as follows:

In chapter 1, the evolutionary computation technologies are introduced, such as

Genetic algorithm (GA) or Particle Swarm Optimization (PSO). Evolutionary com-

putation involves combinatorial optimization problems. GA is a search heuristic that

mimics the process of natural evolution. This heuristic is routinely used to generate

good solutions to optimization and search problems. PSO is a computational method

that optimizes a problem by iteratively improving a candidate solution, and it is

a method for performing numerical optimization without explicit knowledge of the

gradient of the problem. EHW has an interesting application of evolutionary com-

putation technologies. We focus on mixed constrained circuit design problems where

evolutionary computation technologies are used to efficiently optimize circuit design

and also to deal with the fault tolerance circuit design.

In chapter 2, GA is applied to gate level circuit design optimization. We propose

optimal circuit design by using GA with parameterized uniform crossover (GApuc)

and with fitness function composed of circuit complexity, power and signal delay.

Parameterized uniform crossover is much more likely to distribute its disruptive trials

in an unbiased manner over larger portions of the space. It has higher exploratory

power than one- and two-point crossover and we have more chances to find better

solutions.

Its effectiveness is verified by experiments. From the results, we can see that the

best elite fitness, the average value of fitness of the correct circuits and the number

of the correct circuits of GApuc are better than that of GA with one- or two-point

crossover. The best circuits generated by GApuc are 10.18% and 6.08% better in

evaluating value compared with those by GA with one- and two-point crossover,

respectively.

Chapter 3 proposes GA with different structure selection (GAdss) and its appli-

cation to autonomous design optimization for combinatorial circuits.

In traditional GA, the tournament selection for crossover and mutation is based

on fitness of individuals. It can make convergence easily, but maybe lose some useful

genes. In selection, besides on fitness, we consider the different structure from indi-

viduals comparing to the elite one. First, some individuals are selected using more

different structures, then crossover and mutation are performed for them to generate

new individuals. By this way, GA can increase diversification to searching spaces,

so that it can find better solution. By evolution, GAdss can find optimized circuits

with less complexity, less power and less signal delay than traditional GA. From the

results, we can see that the best elite fitness, the average value of fitness of correct

circuits and the number of correct circuits of GAdss are better than traditional GA.

The best case of optimal circuits generated by GAdss is 8.1% better in evaluating

value than that by traditional GA.

Chapter 4 describes mixed constrained image filter design for noise reduction using

a GApuc (Genetic Algorithm with parameterized uniform crossover) on a reconfig-

urable processing array. The complexity, power and signal delay in Configurable Logic

Blocks (CLBs) and wires are considered. An image filter for noise reduction is exper-

imentally synthesized to verify the validity of the proposed method. By evolution,

quality of the optimized image filter on reducing salt-and-pepper noise is better than

that of other papers. Consequently it is shown that the proposed design method is

effective in mixed constrained image filter design for salt-and-pepper noise reduction.

Chapter 5 proposes the use of PSO to design a mixed constrained image filter. In

order to further reduce the processing time, PSO is used instead of GA. An image filter

is experimentally synthesized using PSO to verify the effectiveness of our proposed

method. By using evolution process, the quality of an optimized image filter by PSO

is almost same as that of GA, but the running time by PSO is 10% shorter than that

of GA.

Chapter 6 describes mixed constrained image filter design with fault tolerance for

noise reduction using GA on a reconfigurable processing array. Some CLBs (Config-

urable Logic Blocks) in a reconfigurable processing array are set fault at random. The

proposed method with GA autonomously synthesizes a filter fitted to the reconfig-

urable device with some faults, evaluating the complexity, power and signal delay. An

image filter for noise reduction is experimentally synthesized to verify our method.

By evolution, the quality of an optimized image filter on a reconfigurable processing

array with faults is almost same as that on a reconfigurable processing array with

no fault. Consequently our proposed design method is also effective for fault-tolerant

optimization.

Finally, chapter 7 concludes that the proposed method by GApuc can produce

better circuits compared with other researches, and that PSO can get the almost

same circuit in shorter processing time. Furthermore, the quality of an optimized

image filter on a reconfigurable processing array with some faults is almost same as

that on a reconfigurable processing array with no faults.

We will also apply evolutionary computation technologies to autonomous design

circuits for more complex functional requirements, and enhance more practical infor-

mation about circuit to fitness function. The future subject is to develop an adaptive

system which can reconfigure an existing design by evolutionary computation tech-

nologies in order to meet a variable operational environment.

Keywords: Genetic Algorithm, Particle Swarm Optimization, Circuit optimiza-

tion, Multi-objective optimization of circuit design, Image filter design for noise re-

duction, fault tolerance circuit design

TABLE OF CONTENTS

Page

List of Figures . iv

List of Tables . vi

Chapter 1: Introduction . 1

1.1 Evolutionary Computation . 1

1.1.1 Evolutionary Algorithm . 2

1.1.2 Swarm Intelligence . 3

1.2 Evolvable Hardware . 3

1.3 Mixed Constrained Circuit Design . 5

1.4 Thesis Organization . 6

Chapter 2: Gate Level Circuit Design Optimization using Genetic Algorithm
with Parameterized Uniform Crossover 9

2.1 Introduction . 9

2.2 Gate Level Circuit Design Optimization using GApuc 11

2.2.1 Objective . 11

2.2.2 Genetic Encoding . 12

2.2.3 Fitness Function . 14

2.2.4 Tournament Selection . 16

2.2.5 Crossover . 17

2.2.5.1 One-point Crossover 17

2.2.5.2 Two-point Crossover 18

2.2.5.3 Parameterized Uniform Crossover 18

2.2.5.4 The range of probability in Parameterized Uniform
Crossover . 19

2.2.6 Mutation . 19

i

2.2.7 Replacement . 20

2.2.8 Evolutionary Process . 20

2.3 Experiments and Discussion . 21

2.3.1 Evaluation of GAs . 22

2.3.2 Experimental Results . 23

2.3.3 Discussion . 24

2.4 Conclusion . 29

Chapter 3: Gate Level Circuit Design Optimization using Genetic Algorithm
with Different Structure Selection 33

3.1 Introduction . 33

3.2 Genetic Algorithm with Different Structure Selection 34

3.2.1 Tournament selection . 35

3.2.2 Crossover . 35

3.2.3 Mutation . 36

3.3 Gate Level Circuit Design Optimization using GAdss 36

3.3.1 Objective . 36

3.3.2 Genetic Encoding . 37

3.4 Experiments and Results . 38

3.5 Conclusion . 40

Chapter 4: Mixed Constrained Image Filter Design for Noise Reduction us-
ing Genetic Algorithm . 43

4.1 Introduction . 43

4.2 Image Filter Design for Noise Reduction using GA 45

4.2.1 Image Filter . 45

4.2.2 Reconfigurable Processing Array for Image Filter 45

4.2.3 Genetic Encoding . 47

4.2.4 Fitness Function . 48

4.3 Experimental Results . 51

4.3.1 Experiments on salt-and-pepper noise 52

4.3.2 Experiments on gaussian noise 57

4.4 Conclusions . 58

ii

Chapter 5: Mixed Constrained Image Filter Design using Particle Swarm
Optimization . 61

5.1 Introduction . 61

5.2 Particle Swarm Optimization . 62

5.3 Image Filter Design using PSO . 64

5.3.1 Image Filter . 65

5.3.2 Reconfigurable Processing Array for Image Filter 65

5.3.3 Genetic Encoding . 66

5.3.4 Fitness Function . 67

5.4 Experimental Results . 69

5.5 Conclusions . 72

Chapter 6: Fault-tolerant Image Filter Design using GA 75

6.1 Introduction . 75

6.2 Fault-tolerant Image Filter Design using GA 77

6.2.1 Image Filter . 77

6.2.2 Reconfigurable Processing Array for Image Filter 78

6.2.3 Genetic Encoding . 79

6.2.4 Fitness Function . 79

6.3 Experimental Results . 82

6.4 Conclusions . 85

Chapter 7: Conclusions and Future work 89

7.1 Conclusions . 89

7.2 Future work . 90

Acknowledgements . 91

Bibliography . 93

Publications . 99

Index . 103

iii

LIST OF FIGURES

Figure Number Page

1.1 EHW combines evolutionary techniques and a reconfigurable hardware. 4

1.2 An example of mixed constrained circuit design optimization. 5

1.3 An example of evolutionary circuit design. 6

2.1 An initial 5*5 array with the input/output function for a 2-bit full adder. 12

2.2 An example of crossover. 17

2.3 An example of Parameterized Uniform Crossover with a probability
(Ppuc and (1− Ppuc)). 19

2.4 An example of mutation. 20

2.5 The process of our method. 21

2.6 The evolutionary process of GA. 22

2.7 Elite fitness of GA with different crossover vs the number of generations. 25

2.8 The graphical representation of chromosome with fitness 670. 27

2.9 The graphical representation of chromosome with fitness 692. 27

2.10 The graphical representation of chromosome with fitness 716. 28

2.11 The graphical representation of chromosome with fitness 722. 28

2.12 The graphical representation of chromosome with fitness 728. 29

2.13 The optimized circuit with fitness 670 after removing unnecessary gates. 30

2.14 The optimized circuit with fitness 692 after removing unnecessary gates. 30

2.15 The optimized circuit with fitness 716 after removing unnecessary gates. 30

2.16 The optimized circuit with fitness 722 after removing unnecessary gates. 32

2.17 The optimized circuit with fitness 728 after removing unnecessary gates. 32

3.1 Reproduction of GA, left: traditional GA, right: GAdss. 34

3.2 An initial 4*4 array with the input/output function for a 2-bit half adder. 36

3.3 The graphical representation of chromosome (501). 40

3.4 The optimized circuit after removing unnecessary gates (501). 40

3.5 The optimized circuit after removing unnecessary gates (471). 41

iv

4.1 An example image filter. 45

4.2 A reconfigurable processing array. 46

4.3 The input and output of a image filter for noise reduction. 48

4.4 Elite fitness of GA (Y-axis) vs. the number of generations (X-axis). . 53

4.5 The optimized image filter of the best one. 57

4.6 The input images with noise. 60

4.7 The output images by the evolved filter of Fig. 4.5. 60

5.1 The overview of our method. 62

5.2 The evolutionary process of PSO. 63

5.3 An example image filter. 65

5.4 A reconfigurable processing array. 66

5.5 Elite fitness of PSO (Y-axis) vs the number of generations (X-axis). . 70

5.6 The optimized image filter by PSO (0.9). 72

5.7 The input images with noise. 73

5.8 The output images by the evolved filter of Fig. 5.6. 73

6.1 The overview of our method. 77

6.2 A reconfigurable processing array with faults. 78

6.3 Elite fitness of GA (Y-axis) vs. the number of generations (X-axis). . 83

6.4 The optimized image filter of Fault(2). 85

6.5 The input images with noise. 86

6.6 The output images by the evolved filter of Fig. 6.4. 86

v

LIST OF TABLES

Table Number Page

1.1 Contents of following chapters. 7

2.1 The related researches. 10

2.2 Information of gates. 13

2.3 A truth table of an adder with 5 inputs and 3 outputs. 15

2.4 Conditions for evolution. 23

2.5 Results of GA with different crossover. 24

2.6 The account of five elite fitness. 31

3.1 Conditions for evolution. 38

3.2 Results of different GA. 39

4.1 Features of related works. 44

4.2 Functions implements in a CLB. 47

4.3 An example of weight value setting. 50

4.4 Conditions for evolution. 52

4.5 Results of GA with different crossover on salt-and-pepper noise. . . . 54

4.6 Experiment environments . 55

4.7 Test results (MDPP) between different papers. 56

4.8 The best evolved image filter between different papers. 56

4.9 Results of GA with different crossover on gaussian noise. 57

4.10 Comparison of the noise reduction between different noise. 58

5.1 Conditions for evolution. 69

5.2 Fitness values of PSO with different w, and GA. 71

6.1 Features of related works. 76

6.2 Conditions for evolution. 82

6.3 Results on a reconfigurable processing array with different faults. . . 84

vi

1

Chapter 1

INTRODUCTION

1.1 Evolutionary Computation

In computer science, evolutionary computation [1–3] is a subfield of artificial intelli-

gence (more particularly computational intelligence) that involves combinatorial op-

timization problems.

The use of Darwinian principles for automated problem solving originated in the

fifties. It was not until the sixties that three distinct interpretations of this idea

started to be developed in three different places. Evolutionary programming (EP)

was introduced by Lawrence J. Fogel in the USA, while John Henry Holland called

his method a genetic algorithm (GA). In Germany, Ingo Rechenberg and Hans-Paul

Schwefel introduced evolution strategies (ES). These areas developed separately for

about 15 years. From the early nineties, they are unified as different representatives

of one technology, called evolutionary computing. Also in the early nineties, a fourth

stream following the general ideas had emerged - genetic programming (GP). These

terminologies denote the field of evolutionary computing and consider evolutionary

programming, evolution strategies, genetic algorithms, and genetic programming as

sub-areas.

Evolutionary computation uses iterative progress, such as growth or development

in a population. This population is then selected in a guided random search using

parallel processing to achieve the desired end. Such processes are often inspired by

biological mechanisms of evolution.

2

1.1.1 Evolutionary Algorithm

In artificial intelligence, an evolutionary algorithm (EA) [4–6] is a subset of evolution-

ary computation, a generic population-based meta heuristic optimization algorithm.

An EA uses some mechanisms inspired by biological evolution: reproduction, muta-

tion, recombination, and selection. Candidate solutions to the optimization problem

play the role of individuals in a population, and the fitness function determines the

environment within which the solutions “live”. Evolution of the population then takes

place after the repeated application of the above operators.

EAs often perform well approximating solutions to all types of problems because

they ideally do not make any assumption about the underlying fitness landscape;

this generality is shown by successes in fields as diverse as engineering, art, biology,

economics, marketing, genetics, operations research, robotics, social sciences, physics,

politics and so on.

Genetic algorithm (GA) [7,8] is the most popular type of EA. The GA is a search

heuristic that mimics the process of natural evolution. This heuristic is routinely

used to generate useful solutions to optimization and search problems. GAs belong

to the larger class of EA, which generate solutions to optimization problems using

techniques inspired by natural evolution, such as inheritance, mutation, selection, and

crossover.

In GA, a population of strings (called chromosomes or the genotype of the genome),

which encode candidate solutions (called individuals, creatures, or phenotypes) to an

optimization problem, evolves toward better solutions. Traditionally, solutions are

represented in binary as strings of 0s and 1s, but other encodings are also possible.

The evolution usually starts from a population of randomly generated individuals

and happens in generations. In each generation, the fitness of every individual in

the population is evaluated, multiple individuals are stochastically selected from the

current population (based on their fitness), and modified (recombined and possibly

3

randomly mutated) to form a new population. The new population is then used in the

next iteration of the algorithm. Commonly, the algorithm terminates when either a

maximum number of generations has been produced, or a satisfactory fitness level has

been reached for the population. If the algorithm has terminated due to a maximum

number of generations, a satisfactory solution may or may not have been reached.

1.1.2 Swarm Intelligence

Swarm intelligence (SI) describes the collective behaviour of decentralized, self-organized

systems, natural or artificial. The concept is employed in work on artificial intelli-

gence. The expression was introduced by Gerardo Beni and Jing Wang in 1989,

in the context of cellular robotic systems [9]. SI systems are typically made up of

a population of simple agents interacting locally with one another and with their

environment. The agents follow very simple rules, and although there is no central-

ized control structure dictating how individual agents should behave, local, and to

a certain degree random, interactions between such agents lead to the emergence of

“intelligent” global behavior, unknown to the individual agents.

Particle swarm optimization (PSO) [10–12] is a method for performing numer-

ical optimization without explicit knowledge of the gradient of the problem to be

optimized.

PSO optimizes a problem by maintaining a population of candidate solutions called

particles and moving these particles around in the search-space according to simple

formulae. The movements of the particles are guided by the best found positions in

the search-space, which are continually updated as better positions are found by the

particles.

1.2 Evolvable Hardware

Evolvable hardware (EHW) [13–19] is a new field about the use of EAs to create spe-

cialized electronics without manual engineering, as shown in Figure 1.1. It brings to-

4

EHW Reconfigurable
hardware

Evolutionary
computation

Figure 1.1: EHW combines evolutionary techniques and a reconfigurable hardware.

gether reconfigurable hardware, artificial intelligence, fault tolerance and autonomous

systems. EHW refers to hardware that can change its architecture and behavior dy-

namically and autonomously by interacting with its environment.

In its most fundamental form, an EA manipulates a population of individuals

where each individual describes how to construct a candidate circuit. Each circuit

is assigned a fitness, which indicates how well a candidate circuit satisfies the design

specification. The EA uses stochastic operators to evolve new circuit configurations

from existing ones. Done properly, over time the EA will evolve a circuit configuration

that exhibits desirable behavior.

Each candidate circuit can be either simulated or physically implemented in a

reconfigurable device. Typical reconfigurable devices are field-programmable gate

arrays (FPGA, for digital designs) or field-programmable analog arrays (FPAA, for

analog designs). At the lower level of abstraction, they are field-programmable tran-

sistor arrays (FPTA) that can implement either digital or analog designs.

The concept was pioneered by Adrian Thompson at the University of Sussex,

England, who evolved a tone discriminator using fewer than 40 programmable logic

gates and no clock signal in a FPGA in 1996. This is a remarkably small design for

such a device and relied on exploiting peculiarities of the hardware that engineers

normally avoid. For example, one group of gates has no logical connection to the rest

5

 Truth table:
 a b : c s
 0 0 : 0 0
 0 1 : 0 1
 1 0 : 0 1
 1 1 : 1 1

 Or function expression:
 (c:s) = a + b.

 Lower power,
 Lower signal delay,
 Lower complexity,
 ...

 Correctness,
 Power,
 Signal delay,
 Complexity,
 ...

Desired circuit behavior: Optimization:

Constraints:

Logic circuit:

Library:

a

b s

c

Gates: ...

Or CLBs: +, -, >>, <<, ...

Figure 1.2: An example of mixed constrained circuit design optimization.

of the circuit, yet is crucial to its function.

EHW problems fall into two categories: original design and adaptive systems.

Original design uses EAs to design a system that meets a predefined specification.

Adaptive systems reconfigure an existing design to counteract faults or a changed

operational environment.

1.3 Mixed Constrained Circuit Design

Circuit design flow in our proposed system is shown in Fig. 1.2, where an abstract form

of desired circuit behavior (truth table or function expression) is finally turned into

a design implementation in terms of logic gates or CLBs (Configurable Logic Blocks

of FPGA). Circuit optimization is the process of finding an equivalent representation

of the specified logic circuit under one or more specified constraints. Generally the

circuit is constrained to correctness, less complexity, less power, and less signal delay.

6

7
8

7

Integer string to appoint a circuit:

(1,9,3)(0,2,7)(0,1,7)(3,4,8) (1,9,3)(0,2,7)(9,9,9)(3,1,8)

Initial circuit Final circuit

3
0

1

2
3

4

7

8

3
0

1

2
3

EAs

Figure 1.3: An example of evolutionary circuit design.

Thus, we need to consider the attribute of gates or CLBs, such as complexity, power,

and signal delay. In mixed constrained circuit design optimization, it needs more

processing time, when the number of gates or CLBs is larger.

Evolutionary circuit design uses EAs to design a circuit that meets a predefined

specification. First, an integer string is used to appoint a circuit. Then, the integer

string is changed by EAs to get better circuit. In the end, a desired circuit can be

created, as shown in Figure 1.3.

1.4 Thesis Organization

The contents of following chapters are shown in Table 1.1.

In chapter 2, we propose a new method for circuit design optimization by GA,

where mixed constraints on circuit complexity, power, and signal delay are considered.

First, we introduce the evaluating value about correctness, complexity, power, and

signal delay to the fitness function. Then GA can autonomously synthesize a circuit

whose function is equivalent to a conventional design, but which is simpler and has

better performance.

One-point crossover, two-point crossover, and parameterized uniform crossover

7

Table 1.1: Contents of following chapters.

Item Method Level Circuit Optimization Fault-tolerant

Chapter 2 GA Gate Adder Yes No

Chapter 3 GAdss Gate Adder Yes No

Chapter 4 GA Function Image filter Yes No

Chapter 5 PSO Function Image filter Yes No

Chapter 6 GA Function Image filter Yes Yes

[20] are typical crossover methods used in GA. Parameterized uniform crossover is

much more likely to distribute its disruptive trials in an unbiased manner over larger

portions of the space, then it has more exploratory power than one and two-point

crossover. Thus it enhances more diversification to searching spaces, then it has more

chances of finding better solution. Therefore we use GA with parameterized uniform

crossover, named GApuc.

In chapter 3, we propose a new approach for circuit design optimization by GA

with Different Structure Selection (GAdss), where mixed constraints on circuit com-

plexity, power and signal delay are considered. We introduce the evaluating value

about correctness, complexity, power and signal delay for the fitness function in order

to meed the mixed constrains. In the first step, the fitness function is used to find the

solutions with 100% correctness of the target circuit, and with maximal evaluating

values about complexity, power and signal delay. Then, GAdss can autonomously

synthesize a circuit that is equivalent to a conventional design in functionality, but

is simpler and has better performance. As a result, GAdss can find a better circuit,

compared to traditional GA. To verify an effectiveness of our approach, a simple 2-bit

half adder circuit is experimentally synthesized.

Chapter 4 describes mixed constrained image filter design for noise reduction using

8

a GA where parameterized uniform crossover is adopted on a reconfigurable processing

array. The circuit complexity, power and signal delay in both logic blocks and wires are

optimized. In this design, first, the evaluating values about correctness, complexity,

power and signal delay are introduced to the fitness function. Then GA autonomously

synthesizes an image filter which is simple and has better performance. To verify the

validity of the proposed method, an image filter for noise reduction is experimentally

synthesized.

Chapter 5 applies PSO to mixed constrained image filter design for noise reduction.

The circuit complexity, power and signal delay which are caused by both logic gates

and wires, are optimized. In this design, first, the evaluating value about correctness,

complexity, power and signal delay are introduced to the fitness function. Then PSO

autonomously synthesizes an image filter which is simpler and has better performance

than the conventional design. To verify the validity of our method, an image filter

for reducing noise is experimentally synthesized.

Chapter 6 describes mixed constrained image filter design with fault tolerant using

GA on a reconfigurable processing array. There may be some faulty Configurable

Logic Blocks (CLBs) in a reconfigurable processing array at random. The proposed

method with GA autonomously synthesizes a filter fitted to the reconfigurable device

with some faults, evaluating the complexity, power and signal delay in both CLBs

and wires. An image filter for noise reduction is experimentally synthesized to verify

the validity of our method. By evolution, the quality of the optimized image filter on

a reconfigurable device with faults is almost same as that with no fault.

Finally, this paper concludes with a summary of the results in chapter 7.

9

Chapter 2

GATE LEVEL CIRCUIT DESIGN OPTIMIZATION
USING GENETIC ALGORITHM WITH

PARAMETERIZED UNIFORM CROSSOVER

We propose optimal circuit design by using GA with parameterized uniform crossover

(GApuc) and with fitness function composed of circuit complexity, power, and signal

delay. Parameterized uniform crossover is much more likely to distribute its disrup-

tive trials in an unbiased manner over larger portions of the space, then it has more

exploratory power than one and two-point crossover, so we have more chances of find-

ing better solutions. Its effectiveness is verified by experiments. From the results, we

can see that the best elite fitness, the average value of fitness of the correct circuits

and the number of the correct circuits of GApuc are better than that of GA with

one-point crossover or two-point crossover. The best case of optimal circuits gener-

ated by GApuc is 10.18% and 6.08% better in evaluating value than that by GA with

one-point crossover and two-point crossover, respectively.

2.1 Introduction

EAs is a generic population-based heuristic optimization algorithm. It uses some

mechanisms inspired by biological evolution, such as selection, crossover, mutation,

and replacement.

One of the interesting application of EAs, called EHW [13–19] has been researched

for hardware design since early 1990s’. It is classified into two categories: evolution-

ary circuit design (or named “original design”) and adaptive systems. Evolutionary

circuit design uses EAs to design a system that meets a predefined specification, and

10

Table 2.1: The related researches.

Year Author Level Circuit Method Fitness Experiment

1992 J. R. Koza et al. Gate Boolean 11-multiplexer GP Correctness Software

1994 T. Higuchi et al. Gate Arbitration logical circuit GA Correctness PLDs

2000 D. Keymeulen et al. Transistor Fault-tolerant circuit

(XNOR, multiplier)

GA Correctness FPTA

2002 J. F. Miller et al. Gate 4*4-Bit Multiplier GP Correctness Software

2003 K. A. Vinger et al. Function FIR-filter GA Correctness Xilinx Virtex XCV1000 FPGA

2004 J. Torresen et al. Function Sign Number Recognition GA Correctness Software

2004 Y. Zhang et al. Function Image filter GP Correctness Xilinx Virtex XCV1000 FPGA

2007 E. Benkhelifa et al. Gate 3-bit adder GA Correctness and

Number of gate

Software

2007 L. Sekanina et al. Function Image filter GA Correctness Xilinx Virtex II Pro FPGA

FIR-filter: Finite input response filter.

adaptive systems reconfigure an existing design to counteract faults or to adapt to a

variable operational environment. EHW can be used as an alternative to conventional

hardware design methodology. This field has been actively investigated by a number

of researchers such as Higuchi [21], Julian Miller [22] and Adrian Thompson [23] since

FPGA appeared first as a hardware device. The application of the EHW technique

seems to be successful and promising, because it could automatically generate digital

circuits by using EAs. EHW has been used to design digital filter [24], neural net-

work chip [25], robot controller [26], multiplier [27], traffic signs classifier [28], digital

image filter [29], polymorphic digital circuits [30] and so on. The related researches

are listed in Table 2.1. However, there still remain critical issues such as scalability,

maintainability and generalization [31–33] to apply EHW for practical design prob-

lems. One of them is a circuit optimization problem, where mixed design constraints

are subjected.

In this chapter, we propose a new method for circuit design optimization by GA

[7, 8] which is one of typical EAs, where mixed constraints on circuit complexity,

power, and signal delay are considered. First, we introduce the evaluating value about

11

correctness, complexity, power, and signal delay to the fitness function. Then GA

can autonomously synthesize a circuit whose function is equivalent to a conventional

design, but which is simpler and has better performance.

One-point, two-point crossover, and parameterized uniform crossover [20] are typ-

ical crossover methods used in GA. Parameterized uniform crossover is much more

likely to distribute its disruptive trials in an unbiased manner over larger portions of

the space, then it has more exploratory power than one and two-point crossover. Thus

it enhances more diversification to searching spaces, then we have more chances of

finding better solution. Therefore we use GA with parameterized uniform crossover,

named GApuc.

To verify the effectiveness of our method, a simple 2-bit full adder circuit is ex-

perimentally synthesized.

Section 2.2 describes the use of GApuc as a new method for the automatic design

of an optimized circuit. Section 2.3 shows experiments on a 2-bit full adder circuit

design as an example. Finally, this chapter concludes with a summary of the results

in Sect. 2.4.

2.2 Gate Level Circuit Design Optimization using GApuc

2.2.1 Objective

The overall objective is to discover novel solutions by the application of GApuc in

the circuit design optimization process. The target circuit has to provide identical

functional behavior equivalent to the specification, but requires less complexity, less

power, and less signal delay.

In this section, we will demonstrate the principle of GApuc in the circuit design

process using a 2-bit full adder as a sample logic circuit.

12

G0

G1

G2

G3

G5

G6

G7

G8

G10

G11

G12

G13

G20

G21

G22

G23

a0

a1

b0

b1

c1

s1

s0
G15

G16

G17

G18

G4 G9 G14 G24G19

c0

Column: 1 2 3 4 5

Row:

0

1

2

3

4

Figure 2.1: An initial 5*5 array with the input/output function for a 2-bit full adder.

2.2.2 Genetic Encoding

To process a genetic encoding easily, the logic circuit under consideration is assumed

to be organized on a two dimensional array of gates, which was proposed in [19],

shown in Fig. 2.1. Each gate accepts two inputs and produces one output according

to its logical function. The gates in the first column of the array are set with prede-

fined inputs. For the purpose of this experiment, the combinatorial circuit takes five

primary inputs. Therefore there are 32 input patterns of the circuit. Gates in the

following columns receive outputs from gates in the preceding columns.

The chromosome is a string of integers where each three continuous genes consti-

tute a gate. Each triplet of the gate encodes the two inputs and the type of a gate,

respectively, such as:

(Input 1, Input 2, Gate type).

In this experiment using a 2-bit full adder, the last two gates are not used, so the

chromosome length is calculated by the following equation:

3 ∗ ((numberofcolumns) ∗ (numberofrows)− 2).

13

Table 2.2: Information of gates.

GT LF GC EC Power EP SD ESD

0 NAND 4 6 3 7 4 6

1 NOR 4 6 3 7 4 6

2 XNOR 8 2 4 6 6 4

3 NOT(in1) 2 8 2 8 3 7

4 NOT(in2) 2 8 2 8 3 7

5 WIRE(in1) 0 10 6 4 8 2

6 WIRE(in2) 0 10 6 4 8 2

7 AND 6 4 5 5 7 3

8 OR 6 4 5 5 7 3

9 XOR 8 2 4 6 6 4

- (not used) 0 20 0 20 0 20

GT : gate type.

LF : logical function.

GC: gate complexity.

EC: evaluation of complexity.

EP : evaluation of power.

SD: signal delay.

ESD: evaluation of signal delay.

(2.1)

In the experiment, the array is a fixed size of 5*5 gates (shown in Fig. 2.1), thus

the length of the chromosome is 69 which is caused by (3 ∗ (5 ∗ 5− 2)). The inputs of

each gate in the first column of the array can take the value of any integer in the range

of [0, (max number inputs− 1)]. On the other hand, gates on the other columns can

take any integer value in the range of [0, ((now columns−1)∗ (numberofrows)−1)].

As for the third gene in the triplet, gate type is defined as shown in Table 2.2, which

was proposed in [34,35].

14

In order to judge the difference of the complexity, power, and signal delay between

different gates, we assign values about complexity, power, and signal delay to each

gate. In the evolution, the larger the fitness is, the better the circuit is. So we use

evaluating values about complexity, power, and signal delay in fitness function. In

Table 2.2, “GC” is the complexity about CMOS circuit of one gate, defined by the

number of CMOS, “EC” equals to (10 − GC). “power” is the value about power

of one gate, defined by the power of CMOS circuit, “EP” equals to (10 − power).

“SD” is the value about signal delay of one gate, defined by the signal delay of CMOS

circuit, and “ESD” equals to (10− SD).

A typical chromosome then can be a sequence of triplets such as:

([0, X], [0, X], [0, 9])...([0, X], [0, X], [0, 9]).

Here, X means a range of a position of the corresponding signal. For primary

input, X = 4. For input from output of a gate Gm shown in Fig. 2.1, X = m.

2.2.3 Fitness Function

The fitness function in this experiment aims at accepting solutions with 100% cor-

rectness of the target circuit, and with maximal evaluating values about complexity,

power, and signal delay. We use two functions F1 and F2. The former is a ratio of

correct outputs to all test data, and the latter is an evaluating function of circuit

complexity, power, and signal delay. The following equations show how the fitness of

individuals is calculated [34,35]:

F1 =
num rightout ∗ 100

num trainingdata
. (2.2)

num rightout : the number of correct outputs generated from circuit individual.

15

Table 2.3: A truth table of an adder with 5 inputs and 3 outputs.

inputs outputs

a1 a0 b1 b0 c0 c1 s1 s0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1

0 0 0 1 0 0 0 1

0 0 0 1 1 0 1 0

0 0 1 0 0 0 1 0

0 0 1 0 1 0 1 1

0 0 1 1 0 0 1 1

0 0 1 1 1 1 0 0

0 1 0 0 0 0 0 1

0 1 0 0 1 0 1 0

0 1 0 1 0 0 1 0

0 1 0 1 1 0 1 1

0 1 1 0 0 0 1 1

0 1 1 0 1 1 0 0

0 1 1 1 0 1 0 0

0 1 1 1 1 1 0 1

1 0 0 0 0 0 1 0

1 0 0 0 1 0 1 1

1 0 0 1 0 0 1 1

1 0 0 1 1 1 0 0

1 0 1 0 0 1 0 0

1 0 1 0 1 1 0 1

1 0 1 1 0 1 0 1

1 0 1 1 1 1 1 0

1 1 0 0 0 0 1 1

1 1 0 0 1 1 0 0

1 1 0 1 0 1 0 0

1 1 0 1 1 1 0 1

1 1 1 0 0 1 0 1

1 1 1 0 1 1 1 0

1 1 1 1 0 1 1 0

1 1 1 1 1 1 1 1

num trainingdata: the number of all training data obtained from the truth table

(Table 2.3) of a 2-bit full adder where inputs are a1, a0, b1, b0 and c0.

F2 = (
∑

i∈N

ecvi) ∗ αc + (
∑

i∈N

epvi) ∗ αp + (
∑

j∈Cols

(min
k∈Rows

edvjk)) ∗ αd. (2.3)

ecvi : evaluation of complexity value of the gate i.

16

epvi : evaluation of power value of the gate i.

edvj ,k : evaluation of signal delay value of the gate on column j and row k in an array.

αc: the weight of complexity (set to 1 here).

αp: the weight of power (set to 1 here).

αd : the weight of signal delay (set to 1 here).

N : the number of gates in the array.

Cols: the number of columns in the array.

Rows: the number of rows in the array.

Fitness =

F1, when(F1 < 100),

F1 + F2, when(F1 = 100).
(2.4)

The first part F1 of the fitness function compares the output response of the

evolved circuit with the desired ones from a truth table (such as Table 2.3). If all

matching, then the fitness value for the correctness is 100. The second fitness F2

searches for the most optimum solution in terms of complexity, power, and signal

delay. This is done by designating gates with different evaluating values about com-

plexity, power, and signal delay (shown in Table 2.2).

2.2.4 Tournament Selection

Tournament selection runs a “tournament” among several individuals (such as two

individuals in this research) chosen at randomly from the population and selects the

winner which with better fitness value.

17

Figure 2.2: An example of crossover.

2.2.5 Crossover

The crossover is operated between two parents, and two new individuals are generated.

One-point crossover, two-point crossover, and parameterized uniform crossover are

typical crossover methods, an example of these three types of crossover are shown in

Fig. 2.2.

2.2.5.1 One-point Crossover

A single crossover point on both parental chromosomes is selected randomly. All

data beyond that point in either chromosome are swapped between the two parental

chromosomes. The resulting chromosomes are the children.

18

2.2.5.2 Two-point Crossover

Two-point crossover needs two points to be selected randomly on the parental chro-

mosomes. Everything between the two points is swapped between the parental chro-

mosomes, then generate two children chromosomes.

2.2.5.3 Parameterized Uniform Crossover

The parameterized uniform crossover exchanges some gates with a probability of Ppuc

(range: (0,0.5], see section 2.2.5.4). The procedure of the parameterized uniform

crossover is given as follows.

1. Select two individuals as parents using tournament selection.

2. Some gates in the parents are selected as the crossover gates with a probability

of Ppuc. We generate a random number Rn (range: [0,1]) at each gate, which

will be selected if Rn ≤ Ppuc.

3. Two parents exchange the crossover gates with each other.

4. The two new individuals become the individuals of the next generation.

In general, uniform crossover is much more likely to distribute its disruptive trials

in an unbiased manner over larger portions of the space. To see that this is true,

consider the extreme case in which one parent is a string of all 0s and the other all

1s. Clearly uniform crossover can produce offspring anywhere in the space, while one

and two-point crossovers are restricted to rather small subsets. Therefore, uniform

crossover has the additional property that it has more exploratory power than that

of one or two-point crossover.

The disruption potential is easily controlled via a single parameter Ppuc. This

suggests the need for only one crossover form (parameterized uniform crossover),

which is adapted to different situations by adjusting Ppuc.

19

Figure 2.3: An example of Parameterized Uniform Crossover with a probability (Ppuc
and (1− Ppuc)).

2.2.5.4 The range of probability in Parameterized Uniform Crossover

For parameterized uniform crossover, the range of the probability (Ppuc) is from 0 to

0.5. Effect of Ppuc equals to that of (1− Ppuc), for example, the effect of (Ppuc =

0.6 or 0.7) equals to that of (Ppuc = 0.4 or 0.3).

As shown in Fig. 2.3, P1 and P2 are two parental individuals, C1 and C2 are

produced by parameterized uniform crossover (PUC) with a probability (Ppuc), C3

and C4 are produced by parameterized uniform crossover with a probability (1 −
Ppuc).

C1 = P1 ∗ (1− Ppuc) + P2 ∗ (Ppuc),

C2 = P2 ∗ (1− Ppuc) + P1 ∗ (Ppuc),

C3 = P1 ∗ (1− (1−Ppuc)) + P2 ∗ (1−Ppuc) = P1 ∗ (Ppuc) + P2 ∗ (1−Ppuc) =

P2 ∗ (1− Ppuc) + P1 ∗ (Ppuc),

C4 = P2 ∗ (1− (1−Ppuc)) + P1 ∗ (1−Ppuc) = P2 ∗ (Ppuc) + P1 ∗ (1−Ppuc) =

P1 ∗ (1− Ppuc) + P2 ∗ (Ppuc),

So, C1 = C4, C2 = C3.

2.2.6 Mutation

Mutation is executed on one parent so as to generate a new individual, as shown in

Figure 2.4. The procedure of mutation is given as follows.

20

Figure 2.4: An example of mutation.

1. Select one individual as a parent using tournament selection.

2. Some genes are selected with a probability of Pm. We generate a random

number Rn (range: [0,1]) at each gene, which will be selected if Rn ≤ Pm. The

selected genes are changed randomly and the new individual is generated.

3. The new individual becomes the individual of the next generation.

2.2.7 Replacement

In the evolution of GA, for next generation, some elite individuals (Elite Size) are

preserved, some new individuals (Crossover Size) are produced by crossover method,

some new individuals (Mutation Size) are produced by mutation method. The pop-

ulation size is the sum of elite size, crossover size, and mutation size.

2.2.8 Evolutionary Process

GA is a widely used search technique to find optimum or quasi optimum solutions for

optimization or search problems. The overview of our GA method is shown in Fig.

2.5.

Figure 2.6 shows a graphical representation of the GA mechanisms. GA involves a

search from a population of individuals. In the initialization of a GA population, each

21

Define circuit function

Use GA to find optimal solution

Remove redundancies from the solution

End

Start

Get the final circuit

Figure 2.5: The process of our method.

individual is randomly generated. In the evaluation, GA evaluates each candidate

according to a fitness function, which indicates how well a candidate satisfies the

design specification. In each generation, the elite individuals are preserved and the rest

of the individuals are replaced by the new ones generated by crossover and mutation.

GA continues to evolve until it satisfies stop criteria (such as the maximum number

of generations). With each generation involving in a competitive selection that rejects

and discards poor solutions, based on the survival of the fittest paradigm, the elite

fitness of the population is expected to increase in each generation. Therefore, a

desired solution can be extracted from the population in the end. This process makes

GA well suit combinatorial and continuous problems.

2.3 Experiments and Discussion

This experiment aims to verify circuit design optimization by GApuc. Table 2.4 shows

the parameters of the evolution of GApuc. There is no fixed method to define the

number of generations, population size, crossover probability and mutation proba-

22

Initial population of candidate solutions

Calculate all candidate fitness

Elite selection

Satisfy stop
criteria?

End

Crossover and mutation
to generate new

population and replace
old one

No

Yes

Start

Figure 2.6: The evolutionary process of GA.

bility. Therefor some preliminary experiments were performed in advance to decide

parameters suitable for our experiment.

The proposed method has been implemented in Eclipse SDK 3.1.1 with jre 1.6.0;

and tested on a PC with Inter(R) Core(TM)2 CPU at 2.67 GHz and 2.0 GB RAM.

2.3.1 Evaluation of GAs

Figure 2.7 shows the elite fitness of GA vs the number of generations during the

circuit evolution, where GA with one-point crossover, with two-point crossover, and

with parameterized uniform crossover were experimented. From the results, we can

see that the elite fitness jumps when F1 reaches 100, and it is increasing during the

evolution period. When Fitness is less than 100, GA evolves to get correct circuit;

23

Table 2.4: Conditions for evolution.

Number of Generation : 600

Population Size : 6010

Elite Size : 10

Crossover Size : 3000

Mutation Size : 3000

Crossover Probability (Pc) : 1

Probability in PUC (Ppuc) : 0.3, 0.4, 0.5

Mutation Probability (Pm) : 0.015

PUC: Parameterized Uniform Crossover.

after Fitness reaches 100, GA evolves to get more optimized circuit.

2.3.2 Experimental Results

Table 2.5 shows the results of GA with different crossover. For each GA, we select

the successful results over 50 independent trials. In Table 2.5, “Best” means the

best elite fitness value; “Quality1” the percent of better in evaluating value of best

individual compared to that of GA with one-point crossover; “Quality2” the percent of

better in evaluating value of best individual compared to that of GA with two-point

crossover; “Average” the average fitness value of the top three individuals; “Var”

the sample variance of elite fitness of correct individuals; “Quantity” the number of

correct individuals over 50 independent trials; “Time” the average running time of

one trial from 50 trials.

From the results, we can see that GApuc produces better solutions than GA with

one-point crossover or two-point crossover, from the points of the best elite fitness,

the average value of top three fitness and the number of correct circuits. Compared to

24

Table 2.5: Results of GA with different crossover.

Item GA(one) GA(two) GApuc(0.3) GApuc(0.4) GApuc(0.5)

Best 670 692 716 722 728

Quality1 - 3.86% 8.07% 9.12% 10.18%

Quality2 - - 4.05% 5.06% 6.08%

Average 633.25 651.75 691.5 669.75 706.25

Var 5678.80 1529.58 2210.53 2194.00 2096.13

Quantity 5 4 9 7 8

Time(m) 5.16 5.22 5.2 5.24 5.26

GA(one): GA with one-point crossover.

GA(two): GA with two-point crossover.

GApuc(0.3): GApuc with (Ppuc : 0.3).

GApuc(0.4): GApuc with (Ppuc : 0.4).

GApuc(0.5): GApuc with (Ppuc : 0.5).

one-point crossover and two-point crossover, the parameterized uniform crossover is

much more likely to distribute its disruptive trials in an unbiased manner over larger

portions of the space, thus it can find better solution.

2.3.3 Discussion

In the experiments, the optimized circuits were obtained. Some chromosomes are

given as follows:

The chromosome with fitness 670, obtained by GA with one-point crossover:

(0, 3, 2)(2, 4, 2)(2, 4, 0)(0, 1, 9)(1, 0, 3)

(3, 1, 8)(0, 1, 7)(1, 4, 1)(2, 0, 8)(0, 3, 0)

(2, 7, 2)(4, 6, 7)(3, 0, 6)(1, 4, 9)(1, 9, 1)

25

Figure 2.7: Elite fitness of GA with different crossover vs the number of generations.

(0, 3, 6)(9, 1, 1)(0, 0, 9)(1, 4, 8)(9, 4, 6)

(0, 4, 9)(9, 13, 2)(10, 14, 9).

The chromosome with fitness 692, obtained by GA with two-point crossover:

(2, 4, 1)(2, 4, 2)(0, 1, 9)(0, 1, 0)(0, 3, 6)

(2, 4, 0)(3, 1, 1)(0, 4, 6)(3, 1, 8)(1, 0, 2)

(3, 5, 7)(4, 0, 3)(1, 7, 3)(7, 8, 3)(3, 9, 6)

26

(10, 12, 0)(0, 10, 4)(12, 7, 7)(12, 4, 8)(3, 13, 3)

(2, 4, 9)(1, 10, 9)(0, 15, 9).

The chromosome with fitness 716, obtained by GApuc with (Ppuc : 0.3):

(0, 1, 0)(0, 3, 6)(2, 4, 2)(2, 4, 0)(0, 1, 9)

(1, 4, 0)(2, 4, 6)(1, 0, 7)(2, 0, 4)(0, 4, 7)

(0, 4, 3)(6, 5, 8)(8, 7, 6)(4, 1, 4)(0, 5, 2)

(2, 14, 1)(13, 8, 2)(2, 13, 5)(0, 3, 0)(3, 13, 2)

(1, 4, 9)(2, 14, 9)(3, 15, 2).

The chromosome with fitness 722, obtained by GApuc with (Ppuc : 0.4):

(2, 4, 0)(2, 4, 2)(0, 0, 3)(1, 3, 7)(1, 3, 2)

(1, 4, 5)(4, 2, 5)(1, 2, 6)(2, 0, 6)(2, 4, 1)

(5, 9, 5)(9, 4, 8)(4, 2, 4)(0, 1, 4)(3, 9, 1)

(7, 14, 4)(10, 11, 0)(11, 8, 4)(8, 3, 1)(1, 14, 1)

(2, 4, 9)(1, 14, 9)(0, 19, 2).

The chromosome with fitness 728, obtained by GApuc with (Ppuc : 0.5):

(2, 4, 9)(2, 4, 0)(0, 1, 9)(0, 1, 0)(3, 3, 5)

(1, 0, 0)(3, 0, 2)(3, 1, 2)(3, 2, 8)(2, 4, 0)

(5, 3, 4)(9, 3, 0)(8, 9, 6)(0, 8, 9)(3, 6, 9)

(8, 7, 2)(12, 0, 0)(9, 10, 7)(0, 11, 0)(12, 1, 2)

(2, 4, 9)(0, 11, 9)(1, 18, 0).

27

a0

a1

b0

b1

c1

s1

s0

c0
0

1

2

3

4

G

G

G

0

1

2

3

4

5

6

7

8

9

15

16

17

18

19

10

11

12

13

14

(0,3,2) (3,1,8) (2,7,2) (0,3,6) (0,4,9)

(2,4,2) (0,1,7) (4,6,7) (9,1,1) (9,13,2)

(2,4,0) (1,4,1) (3,0,6) (0,0,9) (10,14,9)

(0,1,9) (2,0,8) (1,4,9) (1,4,8)

(1,0,3) (0,3,0) (1,9,1) (9,4,6)

G

G

G

G G

G

G

Figure 2.8: The graphical representation of chromosome with fitness 670.

a0

a1

b0

b1

c1

s1

s0

c0
0

1

2

3

4

G

G

0

1

2

3

4

5

6

7

8

9

15

16

17

18

19

10

11

12

13

14

(2,4,1) (2,4,0) (3,5,7) (10,12,0) (2,4,9)

(2,4,2) (3,1,1) (4,0,3) (0,10,4) (1,10,9)

(0,1,9) (0,4,6) (1,7,3) (12,7,7) (0,15,9)

(0,1,0) (3,1,8) (7,8,3) (12,4,8)

(0,3,6) (1,0,2) (3,9,6) (3,13,3)

G

G

G

G

G

G

G

G

G

Figure 2.9: The graphical representation of chromosome with fitness 692.

The graphical representation of these chromosomes are shown in Figures 2.8, 2.9,

2.10, 2.11 and 2.12, respectively. In these figures, the gates used in the final circuit

are shown by logic gates symbols.

In the Table 2.6, we show the evaluating values about complexity, power, and

signal delay of each gate in five experimented circuits. Then, calculate the sum of

the evaluating values about complexity and power, and also calculate the min of the

evaluating values about signal delay of each column. From this table, we can see how

to calculate the fitness function of F2 and Fitness.

Figures 2.13, 2.14, 2.15, 2.16 and 2.17 show the optimized circuits with fitness

28

a0

a1

b0

b1

c1

s1

s0

c0
0

1

2

3

4

G

G

G

G

G

G

G

0

1

2

3

4

5

6

7

8

9

15

16

17

18

19

10

11

12

13

14

(0,1,0) (1,4,0) (0,4,3) (2,14,1) (1,4,9)

(0,3,6) (2,4,6) (6,5,8) (13,8,2) (2,14,9)

(2,4,2) (1,0,7) (8,7,6) (2,13,5) (3,15,2)

(2,4,0) (2,0,4) (4,1,4) (0,3,0)

(0,1,9) (0,4,7) (0,5,2) (3,13,2)

G

G

G

G

G

Figure 2.10: The graphical representation of chromosome with fitness 716.

a0

a1

b0

b1

c1

s1

s0

c0
0

1

2

3

4

G

G

G

G

G

G

G

0

1

2

3

4

5

6

7

8

9

15

16

17

18

19

10

11

12

13

14

(2,4,0) (1,4,5) (5,9,5) (7,14,4) (2,4,9)

(2,4,2) (4,2,5) (9,4,8) (10,11,0) (1,14,9)

(0,0,3) (1,2,6) (4,2,4) (11,8,4) (0,19,2)

(1,3,7) (2,0,6) (0,1,4) (8,3,1)

(1,3,2) (2,4,1) (3,9,1) (1,14,1)

G

G

G

G

G

Figure 2.11: The graphical representation of chromosome with fitness 722.

670, 692, 716, 722 and 728, respectively, after removing unnecessary gates.

The circuits in Figures 2.15, 2.16 and 2.17 are superior to the circuits in Figures

2.13 and 2.14 in quality, because the former has larger fitness and is composed of less

gates, this leads a circuit with less complexity, less power, and less signal delay.

The circuit in Fig. 2.16 has one more gates than the circuit in Fig. 2.15. But the

gates in Fig. 2.16 has less complexity, such as ‘NOT’ in col1 and ‘NOR’ in col3. From

Table 2.6, we can see the value of F2 of the circuit in Fig. 2.16 is lager than that of

the circuit in Fig. 2.15. So the circuit in Fig. 2.16 has less complexity, less power,

and less signal delay than the circuit in Fig. 2.15.

29

a0

a1

b0

b1

c1

s1

s0

c0
0

1

2

3

4

G

G

G

G

G

G

G

G G

0

1

2

3

4

5

6

7

8

9

15

16

17

18

19

10

11

12

13

14

(2,4,9) (1,0,0) (5,3,4) (8,7,2) (2,4,9)

(2,4,0) (3,0,2) (9,3,0) (12,0,0) (0,11,9)

(0,1,9) (3,1,2) (8,9,6) (9,10,7) (1,18,0)

(0,1,0) (3,2,8) (0,8,9) (0,11,0)

(3,3,5) (2,4,0) (3,6,9) (12,1,2)

G

G

G

Figure 2.12: The graphical representation of chromosome with fitness 728.

2.4 Conclusion

This chapter applied GA to circuit design optimization. First, we introduce the eval-

uating value about correctness, complexity, power, and signal delay to the fitness

function. Then GA can autonomously synthesize a circuit that is equivalent to a con-

ventional design in function, but is simpler and has better performance. By evolution,

GApuc can find optimized circuits with less complexity, less power, and less signal

delay than GA with one-point crossover or two-point crossover.

However, the number of correct individuals is low, and the running time is long,

which points out the future research direction. Also, there are other crossover meth-

ods, such as arithmetic crossover [36] and heuristic crossover [37]. We will compare

parameterized uniform crossover with other crossover methods in the problem of cir-

cuit design optimization, to search a better crossover method.

We will also apply GA to autonomous design circuits for more complex functional

requirements, and enhance more practical information about circuit to fitness func-

tion. In the future, we will develop the adaptive systems which reconfigure an existing

design by GA to adapt to a variable operational environment.

30

a0

a1

b0

b1

c1

s1

s0
c0

0

1

2

3

4

0

1

2

3

4

7

9

10

13

14

(0,3,2)

(2,7,2)

(0,4,9)

(2,4,2)
(9,13,2)

(2,4,0) (1,4,1)
(10,14,9)

(0,1,9)
(1,4,9)

(1,0,3) (0,3,0) (1,9,1)

Figure 2.13: The optimized circuit with fitness 670 after removing unnecessary gates.

a0

a1

b0

b1

c1

s1

s0

c0
0

1

2

3

4

0

1

2

3

4

5

15

10

12

(2,4,1)

(2,4,0)

(3,5,7)

(10,12,0)

(2,4,9)

(2,4,2) (1,10,9)

(0,1,9)

(1,7,3)

(0,15,9)

(0,1,0)

(0,3,6)

Figure 2.14: The optimized circuit with fitness 692 after removing unnecessary gates.

a0

a1

b0

b1

c1

s1

s0

c0
0

1

2

3

4

0

1

2

3

4 5
15

(0,1,0)

(1,4,0)
(2,14,1)

(1,4,9)

(0,3,6) (2,14,9)

(2,4,2) (3,15,2)

(2,4,0)

(0,1,9) (0,5,2) 14

Figure 2.15: The optimized circuit with fitness 716 after removing unnecessary gates.

31

Table 2.6: The account of five elite fitness.

item col1 col2 col3 col4 col5 F2/F

values EC EP ESD EC EP ESD EC EP ESD EC EP ESD EC EP ESD -

row0 2 6 4 20 20 20 2 6 4 20 20 20 2 6 4 -

row1 2 6 4 20 20 20 20 20 20 20 20 20 2 6 4 -

row2 6 7 6 6 7 6 20 20 20 20 20 20 2 6 4 -

row3 2 6 4 20 20 20 2 6 4 20 20 20 - - - -

row4 8 8 7 6 7 6 6 7 6 20 20 20 - - - -

sum/min 20 33 4 72 74 6 50 59 4 100 100 20 6 18 4 570/670

row0 6 7 6 6 7 6 4 5 3 6 7 6 2 6 4 -

row1 2 6 4 20 20 20 20 20 20 20 20 20 2 6 4 -

row2 2 6 4 20 20 20 8 8 7 20 20 20 2 6 4 -

row3 6 7 6 20 20 20 20 20 20 20 20 20 - - - -

row4 10 4 2 20 20 20 20 20 20 20 20 20 - - - -

sum/min 26 30 2 86 87 6 72 73 3 86 87 6 6 18 4 592/692

row0 6 7 6 6 7 6 20 20 20 6 7 6 2 6 4 -

row1 10 4 2 20 20 20 20 20 20 20 20 20 2 6 4 -

row2 2 6 4 20 20 20 20 20 20 20 20 20 2 6 4 -

row3 6 7 6 20 20 20 20 20 20 20 20 20 - - - -

row4 2 6 4 20 20 20 2 6 4 20 20 20 - - - -

sum/min 26 30 2 86 87 6 82 86 4 86 87 6 6 18 4 616/716

row0 6 7 6 20 20 20 20 20 20 20 20 20 2 6 4 -

row1 2 6 4 20 20 20 20 20 20 20 20 20 2 6 4 -

row2 8 8 7 20 20 20 20 20 20 20 20 20 2 6 4 -

row3 4 5 3 20 20 20 20 20 20 20 20 20 - - - -

row4 2 6 4 6 7 6 6 7 6 6 7 6 - - - -

sum/min 22 32 3 86 87 6 86 87 6 86 87 6 6 18 4 622/722

row0 2 6 4 20 20 20 20 20 20 20 20 20 2 6 4 -

row1 6 7 6 20 20 20 6 7 6 20 20 20 2 6 4 -

row2 2 6 4 20 20 20 20 20 20 20 20 20 6 7 6 -

row3 6 7 6 20 20 20 20 20 20 6 7 6 - - - -

row4 10 4 2 6 7 6 20 20 20 20 20 20 - - - -

sum/min 26 30 2 86 87 6 86 87 6 86 87 6 10 19 4 628/728

F : Fitness.

EC: evaluation of complexity.

EP : evaluation of power.

ESD: evaluation of signal delay.

32

a0

a1

b0

b1

c1

s1

s0

c0
0

1

2

3

4

0

1

2

3

4 9
1914

(2,4,0) (2,4,9)

(2,4,2) (1,14,9)

(0,0,3)
(0,19,2)

(1,3,7)

(1,3,2) (2,4,1) (3,9,1) (1,14,1)

Figure 2.16: The optimized circuit with fitness 722 after removing unnecessary gates.

a0

a1

b0

b1

c1

s1

s0
c0

0

1

2

3

4

0

1

2

3

4

9

1811

(2,4,9)
(2,4,9)

(2,4,0)

(9,3,0)

(0,11,9)
(0,1,9)

(1,18,0)
(0,1,0)

(0,11,0)

(3,3,5)

(2,4,0)

Figure 2.17: The optimized circuit with fitness 728 after removing unnecessary gates.

33

Chapter 3

GATE LEVEL CIRCUIT DESIGN OPTIMIZATION
USING GENETIC ALGORITHM WITH DIFFERENT

STRUCTURE SELECTION

In traditional GA, the tournament selection for crossover and mutation is based

on fitness of individuals. It can make convergence easily, but maybe lose some useful

genes. In selection, besides fitness, we consider the different structure from individuals

comparing to the elite one. First, some individuals are selected using more different

structures, then crossover and mutation are performed for these ones to generate

new individuals. By this way, GA can increase diversification to searching spaces, so

that it can find better solution. One of the promising application of GA is EHW,

which is a new research field to synthesize an optimal circuit. We propose optimal

circuit design by using GA with different structure selection (GAdss) and with fitness

function composed of circuit complexity, power and signal delay. Its effectiveness is

verified by simulations. From the results, we can see that the best elite fitness, the

average value of fitness of correct circuits and the number of correct circuits of GAdss

are better than traditional GA. The best case of optimal circuits generated by GAdss

is 8.1% better in evaluating value than that by traditional GA.

3.1 Introduction

In this chapter, we propose a new approach for circuit design optimization by GA with

Different Structure Selection (GAdss), where mixed constraints on circuit complexity,

power and signal delay are considered. We introduce the evaluating value about

correctness, complexity, power and signal delay for the fitness function in order to

34

Population at t-th generation

Population at (t+1)-th generation

Elite selection,
tournament selection

based on fitness,
crossover and

mutation

Tournament selection
based on different

structure,
crossover and

mutation

Figure 3.1: Reproduction of GA, left: traditional GA, right: GAdss.

meed the mixed constrains. In the first step, the fitness function is used to find the

solutions with 100% correctness of the target circuit, and with maximal evaluating

values about complexity, power and signal delay. Then, GAdss can autonomously

synthesize a circuit that is equivalent to a conventional design in functionality, but

is simpler and has better performance. As a result, GAdss can find a better circuit,

compared to traditional GA. To verify an effectiveness of our approach, a simple 2-bit

half adder circuit is experimentally synthesized.

In the next section, a brief overview of GAdss is described. Section 3.3 describes

the use of GAdss as a new approach for the automatic design of an optimized circuit.

Section 3.4 shows experiments on a 2-bit half adder circuit design as an example.

Finally, the chapter concludes with a summary of the results in section 3.5.

3.2 Genetic Algorithm with Different Structure Selection

In traditional GA, elite selection and tournament selection are based on the fitness

of individuals. This is good for GA to find the local best solution, but it may be

premature convergence. To make up for the weakness, we consider the different

35

structure of individuals compared to the elite one. The value of different structure

is defined by the sum of difference of genes between two individuals. We select some

individuals with different structure to do crossover and mutation, to generate some

new individuals to the next populations. This method can extend diversification to

search spaces, so can find a better solution.

Figure 3.1 shows a graphical representation of the reproduction of GAdss. In each

generation, the elite individuals are preserved. In selecting some individuals, half of

them are processed by tournament selection based on fitness, and another half are

processed by tournament selection based on different structure. Then crossover and

mutation are performed to create new ones for next generation.

3.2.1 Tournament selection

Here, tournament selection runs a “tournament” among two individuals chosen at

random from the population, and selects the winner which with the better fitness or

has more different structure.

3.2.2 Crossover

The crossover is operated between two parents, and two new individuals are generated.

This procedure is shown as follows.

1. Select two individuals as parents using tournament selection.

2. Some bits in the parents are selected as the crossover bits with the given prob-

ability of Pc.

3. Two parents exchange the corresponding selected bits with each other.

4. The two new individuals become the individuals of the next generation.

36

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

a1

a0

b1

b0 c

s1

s0
row:

0

1

2

3

column: 1 2 3 4

Figure 3.2: An initial 4*4 array with the input/output function for a 2-bit half adder.

3.2.3 Mutation

Mutation is executed for one parent, and a new individual is generated. This proce-

dure is shown as follows.

1. Select one individual as a parent using tournament selection.

2. Some bits are selected with the given probability of Pm. The selected bits are

changed randomly and the new individual is generated.

3. The new individual becomes the individual of the next generation.

3.3 Gate Level Circuit Design Optimization using GAdss

3.3.1 Objective

The overall objective is to discover novel solutions by the application of GA in the

circuit design process. The target circuit has to provide identical functional behavior

equivalent to the specification but require less complexity, less power and less signal

delay.

In this section, we will demonstrate the principle of GAdss in the design process

using a 2-bit half adder as a sample logic circuit.

37

3.3.2 Genetic Encoding

To process a genetic encoding easily, the logic circuit under consideration is assumed

to be organized on a two dimensional array of cells [19]. Each cell accepts two inputs

and produces one output. The cells in the first column (the left most in Fig. 3.2)

of the array are set with predefined inputs. For the purpose of this experiment, the

combinatorial circuit takes four primary inputs. Therefore there are 16 input patterns

of the circuit. Cells in the following columns receive outputs from cells in the previous

columns. The chromosome is a string of integers where each three continuous genes

embody a cell. Each triplet in the chromosome encodes the two inputs for the first

two genes and the type of a cell for the third gene, respectively. In this experiment,

the last cell in the bottom right corner in Fig. 3.2 is not used, so the chromosome

length is calculated by the following formula:

3 ∗ ((numberofcolumns) ∗ (numberofrows)− 1). (3.1)

In the experiment, the array is a fixed size of 4*4 cells (shown in Fig. 3.2), thus

the length of the chromosome is 45 (= 3 ∗ (4 ∗ 4 − 1)). The inputs of each cell in

the first column of the array can take the value of any integer in the range of [0 to

(max number inputs − 1)]. Cells in all other columns can take any integer value in

the range of [0 to ((now column− 1) ∗ (numberofrows)− 1)]. As for the third gene

in the triplet, cell type is defined as shown in Table 2.2.

A typical chromosome then can be a sequence of triplets such as:

([0, X], [0, X], [0, 9])...([0, X], [0, X], [0, 9]),

where, ([0, X], [0, X], [0, 9]) is a triplet in a cell.

Here, X is 3 in the first four cells (in the first column); X is ((now column−1)∗4−1)

in the other columns, now column is the number of (2,3,4) column where the cell is

38

Table 3.1: Conditions for evolution.

Number of Generation : 500

Population Size : 1210

Elite Size : 10

Crossover Size : 600

Mutation Size : 600

Crossover Probability (Pc) : 0.2, 0.5

Mutation Probability (Pm) : 0.023

placed. [0, 9] is the gate type, defined as shown in Table 2.2.

3.4 Experiments and Results

This experiment aims to verify circuit optimization by GAdss. Table 3.1 shows the pa-

rameters of the evolution of GAdss. There is no fixed method to define the number of

generations, population size, crossover probability and mutation probability. There-

fore some preliminary experiments were performed in advance to decide parameters

suitable for our experiment.

The proposed method has been implemented in Eclipse SDK 3.1.1 with jre 1.6.0;

and tested on a PC with Inter(R) Core(TM)2 CPU at 2.67 GHz and 2.0 GB RAM.

Table 3.2 shows the results of experiments using GAs. For each GA, we select the

successful results over 60 independent trials. In Table 3.2, “Best” means the best elite

fitness value; “Quality” the percent of better in evaluating value of best individual

compared to that of GA; “Average” the average fitness value of top three individuals;

“Quality” the number of correct individuals over 60 independent trials; “Time” the

running time of 60 trials.

From the results, we can see that the best elite fitness, the average fitness value

39

Table 3.2: Results of different GA.

Item GA(0.2) GAdss(0.2) GA(0.5) GAdss(0.5)

Best 447 465 471 501

Quality - 5.2% - 8.1%

Average 428.4 438 464.4 500.4

Quantity 3 7 14 16

Time(m) 19 19 25 25

GA(0.2): GA with (Pc : 0.2)

GAdss(0.2): GAdss with (Pc : 0.2)

GA(0.5): GA with (Pc : 0.5)

GAdss(0.5): GAdss with (Pc : 0.5)

of top three correct circuits, and the number of correct circuits of GAdss are better

than GA. Compared to traditional GA, GAdss considers the different structure from

individuals comparing to elite one, then it can enhance diversification to searching

spaces, so that it can find better solution.

In the experiments, the optimized circuit with fitness 501 was obtained by the

GAdss (Pc: 0.5). This chromosome is as follows:

(0, 2, 2)(0, 2, 7)(1, 3, 1)(1, 3, 2)(3, 2, 5)(0, 0, 5)(3, 0, 5)(1, 3, 1)

(1, 6, 9)(4, 2, 6)(3, 6, 1)(5, 7, 4)(0, 6, 3)(1, 3, 2)(2, 7, 1).

The graphical representation of this chromosome is shown in Figure 3.3. In this

figure, we show the useful gates with logic gates symbols. Figures 3.4 and 3.5 show the

optimized circuits with fitness 501 and 471, respectively, after removing unnecessary

gates. The circuit in Figure 3.4 is obviously better than the one in Figure 3.5, because

the former is composed of less gates, so that the lager fitness can produce a circuit

40

a0

a1

b0

b1

c1

s1

s0

0

1

2

3

G

G

G G

G

G

G

0

1

2

3 7

5

6

4

11

8

9

10

(0,2,2)

(1,3,1)

(1,6,9) (0,6,3)

(0,2,7) (0,0,5) (4,2,6) (1,3,2)

(1,3,1) (3,0,5) (3,6,1) (2,7,1)

(1,3,2)

(3,2,5)

(5,7,4)

Figure 3.3: The graphical representation of chromosome (501).

a0

a1

b0

b1 c1

s1

s0
0

1

2

3

0

1

2

3

7

(0,2,2)

(1,3,1)

(0,6,3)

(0,2,7) (1,3,2)

(1,3,1) (2,7,1)

(1,3,2)

Figure 3.4: The optimized circuit after removing unnecessary gates (501).

with less complexity, less power and less signal delay.

3.5 Conclusion

This chapter proposed GAdss and its application to autonomous design optimization

for combinatorial circuits. By evolution, GAdss can find optimized circuits with less

complexity, less power and less signal delay than traditional GA, because different

structure selection has effectiveness.

We can also apply GAdss to autonomous design circuits for more complex func-

41

a0

a1

b0

b1

c1

s1

s0

0

1

2

3

0

1

2

3

8

7

(1,3,1)

(2,7,1)

(3,7,1)

(0,2,0) (2,7,2)

(1,3,2) (0,8,1)

(0,2,1)

(1,1,4)

Figure 3.5: The optimized circuit after removing unnecessary gates (471).

tional requirements, and enhance more exact information about circuit to fitness

function.

42

43

Chapter 4

MIXED CONSTRAINED IMAGE FILTER DESIGN FOR
NOISE REDUCTION USING GENETIC ALGORITHM

This chapter describes mixed constrained image filter design for noise reduction

using a Genetic Algorithm (GA) with parameterized uniform crossover. The proposed

method with GA autonomously synthesizes a filter suitable for the reconfigurable pro-

cessing array, evaluating the complexity, power and signal delay in both Configurable

Logic Blocks (CLBs) and wires. An image filter for noise reduction is experimen-

tally synthesized to verify the validity of the proposed method. By the evolution, the

quality of the optimized image filter is better than that reported in other papers.

4.1 Introduction

Evolutionary hardware design is well suited for adaptive image processing systems,

because some intelligent preprocessing is usually required in these systems as the

input data streams come from complex practical situations via non-ideal cameras. In

these applications, image/video preprocessing (filtering), segmentation, recognition

and compression are included.

The image filter design problem is often approached by means of evolutionary de-

sign techniques. In addition to an optimization of filter coefficients [38], evolutionary

approaches are applied to find a complete structure of image filters. In [39], gaussian

noise filters were evolved using a variant of Cartesian Genetic Programming in which

target filters were composed of simple digital components, such as logic gates, adders

and comparators. Later, image filters for other types of noise and edge detectors were

evolved using the same technique [40–43].

44

Table 4.1: Features of related works.

Item Level Circuit Optimization

Vasicek [42] function image filter no

Bao [44] gate adder yes

Proposed function image filter yes

Vasicek et al. [42, 43] discussed image filter design at function level, but they

did not discuss any circuit constraints such as complexity, power consumption and

signal delay, as shown in Table 4.1. While we have proposed mixed constrained

design optimization using GA for some combinational circuits (such as an adder), the

discussion was at gate level [44–46]. This chapter applies the optimization method

to image filter design at function level, in order to deal with more complex functions

and larger sized circuits. The function of an image filer is more complex than that

of a 2-bit full adder circuit in the paper [44], the circuit size of an image filter is also

lager than that of the adder circuit.

This chapter describes mixed constrained image filter design for noise reduction

using a Genetic Algorithm (GA) where parameterized uniform crossover is adopted on

a reconfigurable processing array. The circuit complexity, power and signal delay in

both logic blocks and wires are optimized. In this design, first, the evaluating values

about correctness, complexity, power and signal delay are introduced to the fitness

function. Then GA autonomously synthesizes an image filter which is simple and

has better performance and fits to the reconfigurable processing array. To verify the

validity of the proposed method, an image filter for noise reduction is experimentally

synthesized.

The organization of this chapter is as follows: Section 4.2 describes an image

filter design for noise reduction using GA. Section 4.3 shows the experimental results.

45

I0
I1
I2

I3

I4
I6
I7
I8

I5 Image
filter

Figure 4.1: An example image filter.

Finally, Sect. 4.4 concludes this chapter.

4.2 Image Filter Design for Noise Reduction using GA

GA is applied to search good solutions to optimize the image filter design for noise

reduction on a reconfigurable processing array.

The resultant image filter has an identical functional behavior with less complexity,

less power and less signal delay.

4.2.1 Image Filter

Every image operator is considered as a digital circuit with nine 8-bit inputs and a

single 8-bit output, which processes gray-scaled (8-bit/pixel) images.

As shown in Fig. 4.1, every pixel value of the filtered image is calculated using a

corresponding pixel and its eight neighbors in the processed image [41,42].

4.2.2 Reconfigurable Processing Array for Image Filter

The reconfigurable image filter is implemented as a Virtual Reconfigurable Circuit

(VRC) (Fig. 4.2) [41]. As a new pixel value is calculated using nine pixels, the VRC

has got nine 8-bit inputs and a single 8-bit output. The VRC consists of two-input

46

CLB9

CLB10

CLB11

CLB12

CLB13

CLB14

CLB15

CLB16

CLB17

CLB18

CLB19

CLB20

CLB21

CLB23

CLB24

I0
I1
I2

I3
I4

I6

I7

I8

I5

CLB22 Out

Column: 0 1 2 3 4

0

1

2

3

Row:

0 2 8 12 18 22 28 32 38 x

y

2

4
6

14
16

24
26

34
36

CLB25

CLB26

CLB27

CLB28

CLB29

CLB30

CLB31

CLB32

CLB33

CLB34

CLB35

CLB36

CLB37

CLB39

CLB40

CLB38

42 48 52 58 62 68 72 78

5 6 7 8

Figure 4.2: A reconfigurable processing array.

Configurable Logic Blocks (CLBs) placed in a 8∗4 array. Any input of each CLB may

be connected to either a primary circuit input or the output of a CLB in the preceding

columns. Any CLB can be programmed to implement one of the functions given in

Table 4.2 [47, 48]. All these functions operate with 8-bit operands and produce 8-bit

results.

The CLB with different function has different complexity, power and signal delay.

The values of complexity (FC), power (FP) and signal delay (SD) are newly defined

for each function in a CLB, as shown in Table 4.2. The gate level circuit with different

function has different number of gates. The values of FC, FP and SD in each function

are set considering the number of gates, the power of gates and the critical path of

the circuit, respectively.

Figure 4.2 shows coordinates of inputs and output of each logic block, therefor the

length of connection wires can be calculated.

47

Table 4.2: Functions implements in a CLB.

ID Function Description FC FP SD

0 255 Constant 8 5 1

1 x Identity 16 10 2

2 255− x Inversion 24 15 3

3 x ∨ y Bitwise OR 32 20 3

4 x ∨ y Bitwise x OR y 40 25 4

5 x ∧ y Bitwise AND 32 20 3

6 not(x ∧ y) Bitwise NAND 40 25 4

7 x⊕ y Bitwise XOR 64 38 4

8 x À 1 Right shift by 1 15 9 2

9 x À 2 Right shift by 2 14 8 2

10 (x ¿ 4) ∨ (y À 4) Swap 16 10 2

11 x + y + (addition) 358 215 18

12 x +s y + with saturation 367 220 19

13 (x + y) À 1 Average 350 210 18

14 max(x, y) Maximum 240 145 16

15 min(x, y) Minimum 240 145 16

- (wire) (wire) 16 10 2

FC: function complexity.

FP : function power.

SD: signal delay.

4.2.3 Genetic Encoding

The chromosome is a string of integers where each three continuous integers constitute

a logic block. Each triplet in the chromosome encodes the two inputs and the function

type of a logic block, respectively, such as [45,46]:

(Input 1, Input 2, Function type).

A typical chromosome then can be a sequence of triplets such as:

48

Image filter
Corrupted
image (ci)

Filtered image
(fi)

Original image
(oi)

+ Noise

Figure 4.3: The input and output of a image filter for noise reduction.

(IN1
1 , IN1

2 , F 1
type) · · · (IN i

1, IN i
2, F

i
type) · · ·

Here, IN i
1 and IN i

2 mean the positions of the corresponding input signals. F i
type

means the function type of a logic block. For a primary input, 0 ≤ IN i ≤ 8. For

the input from the output of a logic block CLBm shown in Fig. 4.2, IN i = m. The

function in a CLB is defined as shown in Table 4.2, and F i
type has the same value as

the ID in the Table 4.2.

4.2.4 Fitness Function

The pixels of corrupted image cv are used as the inputs of VRC. The pixels of filtered

image fi are generated and compared to the pixels of original image oi, as shown in

Figure 4.3.

The design objective is to minimize the difference between the filtered image and

the original image. The image size is M∗N pixels, but only the area of (M−2)∗(N−2)

pixels is considered, because the pixel values at the borders are ignored, and remain

unfiltered. The fitness value of a candidate filter is obtained as follows:

49

(1) VRC is configured using a candidate chromosome,

(2) the created circuit is used to produce pixel values in the image fi, and

(3) the fitness value is calculated as

Fitness = (−1) ∗ (F1 ∗ β + F2). (4.1)

where,

F1 and F2 mean the correctness and the quality of the circuit respectively, and are

defined as follows. β is the weight on F1.

F1 = (
M−2∑

i=1

N−2∑

j=1

|fi(i, j)− oi(i, j)|).

(4.2)

where,

M : the number of columns of the pixels in an image.

N : the number of rows of the pixels in an image.

fi(i , j): the pixel (i, j) in filtered image fi, the value range is [0,255].

oi(i , j): the pixel (i, j) in original image oi, the value range is [0,255].

F2 = SD ∗ αsd + Pb ∗ αpb + Cb ∗ αcb +

Pw ∗ αpw + Cw ∗ αcw. (4.3)

where,

SD: signal delay of a circuit individual, determined by a critical path.

50

Table 4.3: An example of weight value setting.

αsd: the weight on signal delay in F2.

Pb: power of logic blocks in a circuit, calculated by summation of all logic block’s

power.

αpb: the weight on power of logic blocks in F2.

Cb: complexity of logic blocks in a circuit, calculated by summation of all logic block’s

complexity.

αcb: the weight on complexity of logic blocks in F2.

Pw: power of all wires in a circuit, calculated by summation of all wire’s power.

αpw: the weight on power of wires in F2.

Cw: complexity of wires in a circuit, calculated by summation of all wire’s complexity.

αcw: the weight on complexity of wires in F2.

The priority of evaluating values in Eq. (4.1) is: F1 > F2. In the experiment, β is

set to 0.1 ∗ 109. The priority of evaluating values in Eq. (4.3) is set as: SD > Pb >

Cb > Pw > Cw in the experiment, in order to get the circuit which has less signal

delay (SD), less power of CLBs (Pb), less complexity of circuit (Cb), less power of

51

wires (Pw), and less length of wires (Cw). So, αsd is set to 1∗109, αpb is set to 1∗105,

αcb is set to 1∗103, αpw is set to 100, and αcw is set to 1. All α’s and β are empirically

assigned in the experiment by the priority and the range of values, as shown in Table

4.3. These factors (SD, Pb, Cb, Pw,Cw) have the possible relation one another, but

they need to be considered independently in order to see the value of each factor.

In the signal processing system, the quick response is usually the most important,

so the priority of SD is set as first. In recent years, low power is requested, so

the priority of Pb is set as second. In the end, the priority of Cb is set as third, to

evaluate the complexity of circuit. To fit the request of an applied system, the priority

of evaluating values could be changed. Compared with wires, the effect of power and

complexity of CLBs are lager, so the priority of Pw and Cw are set as fourth and

fifth, respectively.

F1 is the difference between pixels in filtered image and original image; the less the

value is, the better the circuit is. F2 searches for the optimum solution considering

complexity, power and signal delay simultaneously in both logic blocks and wires; the

less the value is, the better the quality of circuit is. In the evolution, the larger the

fitness is, the better the quality of image filter is.

4.3 Experimental Results

Table 4.4 shows the parameters of the evolution of GA used in the experiment. These

parameters suitable for the experiment are decided based on the results of papers

[42, 44], and some preliminary experiments were performed in advance. Crossover

could exchange some logic blocks between two individuals by Ppuc, and here is 10%,

20%, 30%, 40% and 50% of all logic blocks. Mutation could change some genes in

one individual by Pm, and here is 10% of all genes, input number or function type

of a logic block in an image filter. The image filter design is a so difficult problem,

that it costs evolution times. How to set a less population size and a less number of

generation to reduce CPU time, will be reported in another paper.

52

Table 4.4: Conditions for evolution.

Number of Generation : 3000

Population Size : 1210

Elite Size : 10

Crossover Size : 600

Mutation Size : 600

Probability in PUC (Ppuc) : 0.1, 0.2, 0.3, 0.4, 0.5

Mutation Probability (Pm) : 0.1

PUC: Parameterized Uniform Crossover.

The proposed method was implemented in Eclipse SDK 3.5.1 with Java Runtime

Environment(JRE) 1.6.0; and tested on a PC with Inter(R) Core(TM) i7 CPU at

3.33 GHz and 9.0 GB RAM.

There are two popular types of noise, impulse noise and gaussian noise. Salt-

and-pepper noise is a kind of impulse noise. Salt-and-pepper noise is a form of noise

typically seen on images. It represents itself as randomly occurring white and black

pixels. Gaussian noise is statistical noise that has a probability density function of the

normal distribution (also known as gaussian distribution). In other words, the values

of the noise are gaussian-distributed. The experiments are done on salt-and-pepper

noise and gaussian noise.

4.3.1 Experiments on salt-and-pepper noise

The image filter is evolved for a 512∗512 Lena image corrupted by 5% salt-and-pepper

noise, shown in Fig. 4.6 (a).

Figure 4.4 shows the elite fitness of GA with parameterized uniform crossover

(GApuc) with (Ppuc : 0.5) vs. the number of generations during the image filter

53

Figure 4.4: Elite fitness of GA (Y-axis) vs. the number of generations (X-axis).

evolution. The elite fitness is increasing during the evaluation time.

Table 4.5 shows the results of GA with one-point crossover, GA with two-point

crossover and GApuc. For each GA, the results over 10 independent trials are used.

“Average” means the average fitness value of 10 individuals; “Best one” means the

best elite fitness value from 10 trials; “Worst one” means the worst elite fitness value

from 10 trials; “time” means the average running time. The Mean Difference Per

Pixel (MDPP) [49] is one of the indices to measure image visual quality, defined by:

MDPP = F1/(M − 2)/(N − 2).

“Ratio” is the relative value of MDPP of each case compared to that of GApuc(0.5).

The larger the fitness is, the better the quality of the image filter is. The less the

54

Table 4.5: Results of GA with different crossover on salt-and-pepper noise.

Item Average Best one Worst one

Fitness MDPP Ratio Time Fitness MDPP Ratio Fitness MDPP Ratio

GA(one) -30366060770697 1.164 1.782 3008 -21281786918352 0.813 2.398 -40986003212711 1.573 1.386

GA(two) -28047502361136 1.075 1.647 3078 -13985925592497 0.535 1.577 -34228038597079 1.312 1.156

GApuc(0.1) -23793601855133 0.911 1.396 3122 -13365407294613 0.510 1.503 -31858306263898 1.222 1.077

GApuc(0.2) -22713411861392 0.870 1.332 3057 -12637228640667 0.482 1.422 -33754998637883 1.295 1.141

GApuc(0.3) -28325975394119 1.086 1.662 3047 -10964236877206 0.418 1.233 -34714221520211 1.330 1.172

GApuc(0.4) -20179654261105 0.772 1.182 3012 -9054626762316 0.343 1.012 -31888871497524 1.223 1.078

GApuc(0.5) -17077462155600 0.653 1.000 3004 -8917525353615 0.339 1.000 -29615620999819 1.135 1.000

GA(one): GA with one-point crossover.

GA(two): GA with two-point crossover.

GApuc(x): GA with parameterized uniform crossover with (Ppuc : x), x = 0.1, 0.2, 0.3, 0.4, 0.5.

MDPP : the Mean Difference Per Pixel.

MDPP value is, the better the quality is. The less the ratio is, the better the quality

is.

According to these results, GApuc produces better solutions than other GA, from

the point of the best elite fitness. The parameterized uniform crossover is much more

likely to distribute its disruptive trials in an unbiased manner over larger portions of

the space, therefor it could find better solution. The parameterized uniform crossover

is a special case of a uniform crossover, in which the parameter of crossover probability

is used. The performance of GApuc was discussed in the paper [44].

The difference between the best and the worst case is large. The proposed method

will be improved and compared with more other methods in the future work.

An example of chromosome of best one of GApuc(0.5) is as follows:

(4, 6, 1)(1, 7, 15)(3, 8, 15)(4, 1, 9)(12, 11, 9)(0, 0, 0)

(0, 0, 0)(0, 0, 0)(0, 0, 0)(13, 9, 11)(0, 0, 0)(0, 0, 0)(16, 19, 0)

(0, 0, 0)(0, 0, 0)(0, 0, 0)(21, 13, 11)(0, 0, 0)(0, 0, 0)

(18, 11, 14)(10, 28, 14)(0, 0, 0)(0, 0, 0)(0, 0, 0)(25, 9, 14)

55

Table 4.6: Experiment environments

Item Proposed Vasicek [42]

GA Elite selection Elite selection

Mutation Mutation

Crossover -

Population 1210 8

Generation 3000 160000

Runs 10 64

All individuals 36300000 81920000

Hardware PC FPGA

All individuals = Population ∗Generation ∗Runs.

(0, 0, 0)(0, 0, 0)(0, 0, 0)(29, 33, 15)(0, 0, 0)(0, 0, 0)(0, 0, 0)

The graphical representation of this chromosome is shown in Fig. 4.5.

Table 4.7 shows that the best MDPP value of GApuc(0.5) is better than that in

ref [42] which was the best one in this research field until now. Complexity, power and

signal delay of this evolved image filter are also less than that in ref [42], as shown in

Table 4.8, because less CLBs are used . Note that complexity, power and signal delay

of ref [42] were recalculated by the proposed method. Table 4.6 shows the experiment

environments in this chapter and the paper [42]. The number of all individuals of

the proposed method is less than that of ref [42]. In the evolution of GA, crossover

method could improve GA to find better results. F2 makes the evolution to find the

sample circuit of less complexity, power and signal delay.

Figure 4.6 shows the input images with 5% salt-and-pepper noise. The MDPP

value of these images are 6.343, 6.314, 6.399, 6.373 and 6.386, respectively. Figure 4.7

shows the output images by the image filter of Fig. 4.5. The MDPP value of these

56

Table 4.7: Test results (MDPP) between different papers.

Test image Proposed Vasicek [42] Median [42]

Lena 0.339 0.367 3.577

Aireplane 0.322 0.338 3.536

Bridge 0.563 0.657 7.830

Camera 0.434 0.627 4.413

Goldhill 0.389 0.451 5.870

The test images are with 5% salt-and-pepper noises.

Table 4.8: The best evolved image filter between different papers.

Item Used SD Pb Cb Pw Cw

Proposed 12 100 1331 2208 449 715

Vasicek [42] 17 132 2085 3457 792 1261

Used: the number of the used CLBs.

images are 0.339, 0.322, 0.563, 0.434 and 0.389, respectively. Obviously, the evolved

image filter could reduce noise for all cases.

The image filter was evolved using Lena image and tested on other images. As the

image is relatively large, the evolved filter is general. The filter can remove the same

type of noise even if other images are used. In order to verify the general property,

more other training images, test images and the type of noise will be used in the

future work.

57

0 1 2

3 4 5

6 7 8

x

(4,6,1) 9

min

(1,7,15) 10

min

(3,8,15)
11

>>

(4,1,9)
12

>>

(12,11,9)
13

(0,0,0)
14

(0,0,0)
15

(0,0,0) 16

(0,0,0) 17

+

(13,9,11)
18

(0,0,0)
19

(0,0,0)
20

255
(16,19,0)

21

(0,0,0)
22

(0,0,0)
23

(0,0,0)
24

+

(21,13,11)
25

(0,0,0)
26

(0,0,0)
27

max

(18,11,14)
28

max
(10,28,14)

29

(0,0,0)
30

(0,0,0)
31

(0,0,0)
32

max

(25,9,14)33

(0,0,0)
34

(0,0,0)
35

(0,0,0)
36

min

(29,33,15)
37

(0,0,0)
38

(0,0,0)
39

(0,0,0)
40

Figure 4.5: The optimized image filter of the best one.

Table 4.9: Results of GA with different crossover on gaussian noise.

Item Average Best one Worst one

Fitness MDPP Ratio Time Fitness MDPP Ratio Fitness MDPP Ratio

GA(one) -92232132117266 3.543 1.032 3115 -90909133615331 3.491 1.053 -95937598641947 3.686 1.052

GA(two) -91413860405079 3.511 1.022 3124 -90648118865578 3.482 1.050 -92518547446667 3.554 1.014

GApuc(0.1) -91355184876030 3.509 1.022 3126 -88637725581150 3.405 1.027 -93288503206412 3.584 1.023

GApuc(0.2) -90771275511862 3.486 1.015 3152 -88520140327854 3.399 1.025 -92874525580133 3.567 1.018

GApuc(0.3) -90519932559665 3.476 1.012 3161 -88183518975416 3.386 1.021 -93090403211696 3.576 1.021

GApuc(0.4) -89663479902260 3.444 1.003 3163 -87249310838306 3.351 1.010 -91809435240150 3.527 1.006

GApuc(0.5) -89413330235145 3.434 1.000 3179 -86364048263411 3.317 1.000 -91202103208038 3.504 1.000

4.3.2 Experiments on gaussian noise

The image filter was evolved using Lena image and tested on other images with

gaussian noise (µ = 0, σ = 65) over 10 independent trials. Table 4.9 shows the results

of GA with one-point crossover, GA with two-point crossover and GApuc on gaussian

noise.

Table 4.10 compares the noise reduction between different noise of the best evolved

image filter. The reduction ratio on salt-and-pepper noise is better than that on

gaussian noise. The proposed method has better effective on salt-and-pepper noise,

but not on gaussian noise. The noise value and noise distribution of gaussian noise

are different from those of salt-and pepper noise. Therefore, another consideration is

58

Table 4.10: Comparison of the noise reduction between different noise.

Test image Salt-and-pepper noise Gaussian noise

Inputs Outputs Ratio Inputs Outputs Ratio

Lena 6.343 0.339 0.947 6.082 3.317 0.455

Aireplane 6.314 0.322 0.949 6.121 3.296 0.462

Bridge 6.399 0.563 0.912 6.033 3.117 0.483

Camera 6.373 0.434 0.932 5.853 3.114 0.468

Goldhill 6.386 0.489 0.939 6.095 3.423 0.438

The test images are with 5% salt-and-pepper noises or gaussian noise (µ = 0, σ = 65).

Ratio: 1-(Outputs/Inputs), the ratio of noise reduction.

required.

4.4 Conclusions

This paper described mixed constrained image filter design for noise reduction using a

GApuc (Genetic Algorithm with parameterized uniform crossover) on a reconfigurable

processing array. The complexity, power and signal delay in both CLBs (Configurable

Logic Blocks) and wires are considered. An image filter for noise reduction is experi-

mentally synthesized, to verify the validity of the proposed method. By evolution, the

quality of the optimized image filter on reducing salt-and-pepper noise is better than

that of other papers. Because the parameterized uniform crossover has effectiveness.

Consequently the proposed design method is effective for mixed constrained image

filter design on reducing salt-and-pepper noise.

In the future works, we will try to use more pixels as inputs to check whether

the more pixels inputs can improve the quality of the evolved filter, consider how to

reduce the noise at the border of the output image, do the experiment on FPGA to

59

check the efficiency of evolved instance on hardware in practice, and consider the new

method for reducing gaussian noise.

60

Figure 4.6: The input images with noise.

Figure 4.7: The output images by the evolved filter of Fig. 4.5.

61

Chapter 5

MIXED CONSTRAINED IMAGE FILTER DESIGN
USING PARTICLE SWARM OPTIMIZATION

This chapter describes evolutionary image filter design for noise reduction using

particle swarm optimization (PSO), where mixed constraints on the circuit complex-

ity, power and signal delay are optimized. First, the evaluating values about correct-

ness, complexity, power and signal delay are introduced to the fitness function. Then

PSO autonomously synthesizes a filter. To verify the validity of our method, an image

filter for noise reduction is synthesized. The performance of resultant filter by PSO

is similar to that of Genetic Algorithm (GA), but the running time of PSO is 10%

shorter than that of GA.

5.1 Introduction

We proposed mixed constrained design optimization using GA for some combina-

tional circuits [46, 47]. The proposed method could synthesize good circuits about

complexity, power and signal delay, but it took the large running time for GA pro-

cess. As another optimization method, particle swarm optimization (PSO) [10–12]

was proposed and evaluated, and it is promising to find a good solution in shorter

time, compared to GA.

This chapter applies PSO to mixed constrained image filter design for noise re-

duction, shown in Fig. 5.1. The circuit complexity, power and signal delay which are

caused by both logic gates and wires, are optimized. In this design, first, the evaluat-

ing value about correctness, complexity, power and signal delay are introduced to the

fitness function. Then PSO autonomously synthesizes an image filter which is simpler

62

Define circuit function

Use PSO to find optimal solution

Remove redundancies from the solution

End

Start

Get the final circuit

Figure 5.1: The overview of our method.

and has better performance than the conventional design. To verify the validity of

our method, an image filter for reducing noise is experimentally synthesized.

The organization of this chapter is as follows: a brief overview of PSO is described

in the next section. Section 5.3 describes design optimization for an image filter using

PSO. Section 5.4 shows the experimental results. Finally, Sect. 5.5 concludes this

chapter.

5.2 Particle Swarm Optimization

Particle swarm optimization (PSO) is an algorithm model on swarm intelligence that

finds a solution to an optimization problem in a search space, shown in Fig. 5.2.

In PSO, a particle represents a candidate solution to the problem. Each particle is

treated as a point in the D-dimensional problem space. The i-th particle is represented

as Xi = (xi1, xi2, · · · , xiD). The best previous position (the position giving the best

fitness value) of the i-th particle is recorded and represented as Pi = (pi1, pi2, · · · , piD).

The index of the best particle among all the particles in the population is represented

by the symbol g. The rate of the position change (velocity) for particle i is represented

63

Initial particles of candidate solutions

Calculate all particle fitness

Update all particles

End of generation?

End

No

Yes

Start

Figure 5.2: The evolutionary process of PSO.

as Vi = (vi1, vi2, · · · , viD). The particle is updated according to the following equations:

v
(t+1)
id = w ∗ v

(t)
id + c1 ∗ rand() ∗ (p

(t)
id − x

(t)
id)

+c2 ∗Rand() ∗ (p
(t)
gd − x

(t)
id), (5.1)

x
(t+1)
id = x

(t)
id + v

(t+1)
id . (5.2)

where,

0 ≤ i ≤ (n− 1), 1 ≤ d ≤ D.

n: number of particles in a group.

D: number of members in a particle.

t: pointer of iterations (generations).

w: inertia weight factor.

64

c1, c2: acceleration constant.

rand(), Rand(): uniform random value in the range [0,1].

v
(t)
id : velocity of particle i at iteration t, V min

id ≤ v
(t)
id ≤ V max

id .

x
(t)
i : current position of particle i at iteration t.

The inertia weight factor w is employed to control the impact of the previous

history of velocities on the current velocity, thereby influencing the trade-off be-

tween global (wide-ranging) and local (fine-grained) exploration abilities of the “flying

points”. A larger inertia weight facilitates global exploration (searching new areas)

while a smaller inertia weight tends to facilitate local exploration to free-tune the cur-

rent search area. Suitable selection of the inertia weight provides a balance between

global and local exploration abilities and thus requires fewer iterations on average to

find the optimum. Good values of w are usually slightly less than 1 [12]. It could be

randomly initialized for each particle. Or a high value of w at the beginning of the

run facilitates global search, while a small w tends to localize the search.

c1 and c2 are constants that say how much the particle is directed towards good po-

sitions. They represent a “cognitive” and a “social” component, respectively, in that

they affect how much the particle’s personal best and the global best (respectively)

influence its movement. Usually we take c1 = c2 = 2 [12].

5.3 Image Filter Design using PSO

PSO is applied to search good solutions to optimize the image filter design.

The target image filter is to provide identical functional behavior with less com-

plexity, less power and less signal delay.

65

CLB9

CLB10

CLB11

CLB12

CLB13

CLB14

CLB15

CLB16

CLB17

CLB18

CLB19

CLB20

CLB21

CLB23

CLB24

I0
I1
I2

I3

I4
I6
I7
I8

I5

I0
I1
I2

I3
I4

I6

I7

I8

I5

Image
filter

CLB22
Out

Figure 5.3: An example image filter.

5.3.1 Image Filter

Every image operator is considered as a digital circuit with nine 8-bit inputs and a

single 8-bit output, which processes gray-scaled (8-bit/pixel) images.

As shown in Fig. 5.3, every pixel value of the filtered image is calculated using a

corresponding pixel and its eight neighbors in the processed image [42].

5.3.2 Reconfigurable Processing Array for Image Filter

Similarly to [41], the reconfigurable image filter is implemented as a Virtual Reconfig-

urable Circuits (VRC) (Fig. 5.4). As a new pixel value is calculated using nine pixels,

the VRC has got nine 8-bit inputs and a single 8-bit output. The VRC consists of

two-input CLBs (Configurable Logic Blocks in FPGA) placed in a 4 ∗ 4 array. Any

input of each CLB may be connected to either a primary circuit input or the output

66

CLB9

CLB10

CLB11

CLB12

CLB13

CLB14

CLB15

CLB16

CLB17

CLB18

CLB19

CLB20

CLB21

CLB23

CLB24

I0
I1
I2

I3
I4

I6

I7

I8

I5

CLB22 Out

Column:0 1 2 3 4

0

1

2

3

Row:

0 2 8 12 18 22 28 32 38
x

y

2

4
6

14
16

24
26

34
36

Figure 5.4: A reconfigurable processing array.

of a CLB in the preceding column. Any CLB can be programmed to implement one

of the functions given in Table 4.2 [42], all these functions operate with 8-bit operands

and produce 8-bit results. Table 4.2 also gives value of complexity (FC), power (FP)

and signal delay (SD) for each function in a CLB.

In Fig. 5.4, there are position of inputs and output of each logic block. Therefore,

we add values of wire about complexity, power and signal delay.

5.3.3 Genetic Encoding

The chromosome (particle) is a string of integers where each three continuous integers

constitute a logic block. Each triplet in the chromosome encodes the two inputs and

the function type of a logic block, respectively, such as:

(Input 1, Input 2, Function type).

A typical chromosome then can be a sequence of triplets [46,47], such as:

67

((IN1
1 , IN1

2 , F 1
type) · · · (IN i

1, IN i
2, F

i
type) · · ·)

Here, IN i
1 and IN i

2 mean the positions of the corresponding input signals. F i
type

means the function type of a logic block. For a primary input, 0 ≤ IN i ≤ 8. For

the input from the output of a logic block CLBm shown in Fig. 5.4, IN i = m. The

function in a CLB is defined as shown in Table 4.2.

5.3.4 Fitness Function

The pixels of corrupted image ci are used as inputs of VRC. Pixels of filtered image

fi are generated, which are compared to the pixels of original image oi.

The design objective is to minimize the difference between the filtered image and

the original image. The image size is M∗N pixels, but only the area of (M−2)∗(N−2)

pixels is considered, because the pixel values at the borders are ignored, and thus

remain unfiltered. The fitness value of a candidate filter is obtained as follows:

(1) the VRC is configured using a candidate chromosome

(2) the created circuit is used to produce pixel values in the image fi and

(3) the fitness value is calculated as

Fitness = (−1) ∗ (F1 ∗ β + F2). (5.3)

where,

F1 and F2 are defined as follows and β is the weight on F1.

F1 =
M−2∑

i=1

N−2∑

j=1

(|fi(i, j)− oi(i, j)|).

(5.4)

where,

68

M : the number of columns of the pixels in the image.

N : the number of rows of the pixels in the image.

fi(i , j): the pixel (i, j) in filtered image fi, the value range is [0,255].

oi(i , j): the pixel (i, j) in original image oi, the value range is [0,255].

F2 = SD ∗ αsd + Pg ∗ αpg + Cg ∗ αcg

+Pw ∗ αpw + Cw ∗ αcw.

(5.5)

where,

SD: signal delay of a circuit individual, determined by a critical path.

αsd: the weight on signal delay in F2.

Pg: power of logic blocks in a circuit, calculated by summation of all logic block’s

power.

αpg: the weight on power of logic blocks in F2.

Cg: complexity of logic blocks in a circuit, calculated by summation of all logic block’s

complexity.

αcg: the weight on complexity of logic blocks in F2.

Pw: power of all wires in a circuit, calculated by summation of all wire’s power.

αpw: the weight on power of wires in F2.

69

Table 5.1: Conditions for evolution.

Number of Generation : 100.

Population Size : 600.

Inertia weight factor w : [0.4, 1.0].

Limit of change in velocity of each member in an individual:

V max
id = 0.5 ∗ pmax

id , V min
id = −0.5 ∗ pmax

id .

Acceleration constant : c1 = 2, c2 = 2.

Cw: complexity of wires in a circuit, calculated by summation of all wire’s complexity.

αcw: the weight on complexity of wires in F2.

The priority of evaluating values in Eq. (5.3) is: F1 > F2. In this experiment, β

is set to 0.1∗ 109. The priority of evaluating values in Eq. (5.5) is: SD > Pg > Cg >

Pw > Cw. In this experiment, αsd is set to 0.1 ∗ 106, αpg is set to 1 ∗ 103, αcg is set to

0.1 ∗ 103, αpw is set to 10, and αcw is set to 1. All α’s and β are empirically assigned

in our experiment.

5.4 Experimental Results

Table 5.1 shows the parameters of the evolution of PSO used in this experiment. Some

preliminary experiments were performed in advance to decide parameters suitable for

our experiment.

The proposed method was implemented in Eclipse SDK 3.1.1 with jre 1.6.0; and

tested on a PC with Inter(R) Core(TM)2 CPU at 2.67 GHz and 2.0 GB RAM.

The image filter is evolved for a 512 ∗ 512 Lena image corrupted by 5% salt-and-

pepper noise, shown in Fig. 5.7 (a).

70

Figure 5.5: Elite fitness of PSO (Y-axis) vs the number of generations (X-axis).

Fig. 5.5 shows the elite fitness of PSO with w = 0.9 vs the number of generations

during the image filter evolution. The elite fitness is increasing during evaluation

time.

Table 5.4 shows the results of PSO with different w. For each PSO, we use results

over 10 independent trials. “max” means the best elite fitness value from 10 trials;

“average” means the average fitness value of 10 individuals; “time” means the average

running time (minutes) of one trial from 10 trials. The larger the fitness is, the better

the image filter is. The less the ratio is, the better the image filter is.

From the results, we can see that PSO(0.9) produces better solutions than others,

from the point of the best elite fitness.

An example of chromosome by PSO(0.9) with fitness −48550809287267 is as fol-

lows:

71

Table 5.2: Fitness values of PSO with different w, and GA.

Item Max Average Running time

Fitness Ratio Fitness Ratio Time(m) Ratio

PSO(0.4) -80005207479684 1.65 -99745634920892 1.11 42.80 0.99

PSO(0.5) -80535402393364 1.66 -94873624466988 1.06 43.60 1.01

PSO(0.6) -79181905512328 1.63 -97375325953839 1.09 43.20 0.99

PSO(0.7) -56076103257304 1.15 -94746895485425 1.06 42.60 0.98

PSO(0.8) -57981907477527 1.19 -91487054845692 1.02 41.70 0.96

PSO(0.9) -48550809287267 1.00 -89652125806386 1.00 43.00 1.00

PSO(1.0) -85478004803230 1.76 -102629344653216 1.14 40.00 0.92

PSO(w1) -82558108959223 1.70 -93726626111394 1.05 42.80 0.99

PSO(w2) -63176503079148 1.30 -91741585167119 1.02 42.00 0.97

GA -47595302921595 0.98 -64678393342856 0.72 47.70 1.10

PSO(w): PSO with w = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0.

PSO(w1): PSO with w = 1.0− 0.6 ∗ generation/generation size.

PSO(w2): PSO with w = 0.4 + 0.6 ∗ random().

GA: Number of Generation, Population Size is same to that of PSO; Elite Size = 10, Crossover
Probability (Pc) = 0.3, Mutation Probability (Pm) = 0.1, (ref. [47]).

(0, 0, 0)(1, 7, 15)(3, 5, 14)(8, 5, 15)(0, 0, 0)(0, 0, 0)

(0, 0, 0)(11, 12, 14)(0, 0, 0)(0, 0, 0)(0, 0, 0)(4, 16, 15)

(10, 20, 14)(0, 0, 0)(0, 0, 0)(0, 0, 0)

The graphical representation of this chromosome is shown in Fig. 5.6.

As the image is relatively large, we can assume that the evolved filter is general.

The filter is able to remove the same type of noise also from other images. The image

filter was evolved using Lena image and tested on other images.

Figures in Fig. 5.7 show the input images with 5% salt-and-pepper noise, the

72

0 1 2

3 4 5

6 7 8

(0,0,0) 9

min

(1,7,15) 10

max

(3,5,14) 11

min

(8,5,15) 12

(0,0,0)
13

(0,0,0)
14

(0,0,0)
15

max

(11,12,14)
16

(0,0,0)
17

(0,0,0)
18

(0,0,0)
19

min

(4,16,15)
20

max

(10,20,14)
21

(0,0,0) 22

(0,0,0) 23

(0,0,0) 24

Figure 5.6: The optimized image filter by PSO (0.9).

MDPP value of these images are 6.42, 6.29 and 6.35, respectively. Figures in Fig.

5.8 show the output images by the image filter in Fig. 5.6, the MDPP value of these

images are 1.87, 2.37 and 2.51, respectively. Obviously, this image filter could reduce

noise for all cases.

5.5 Conclusions

This chapter proposed the use of PSO (Particle Swarm Optimization) for mixed

constrained image filter design for noise reduction. The complexity, power and signal

delay both of the CLBs (Configurable Logic Blocks) and wires are considered. An

image filter for removing noise is experimentally synthesized using PSO, to verify

the validity of our method. By evolution, quality of the optimized image filter by

PSO(0.9) is almost same as that of GA, but the running time of PSO is 10% shorter

than that of GA.

73

Figure 5.7: The input images with noise.

Figure 5.8: The output images by the evolved filter of Fig. 5.6.

74

75

Chapter 6

FAULT-TOLERANT IMAGE FILTER DESIGN USING GA

This paper describes mixed constrained image filter design with fault tolerant

using Genetic Algorithm (GA) on a reconfigurable processing array. There may be

some faulty Configurable Logic Blocks (CLBs) in a reconfigurable processing array at

random. The proposed method with GA autonomously synthesizes a filter fitted to the

reconfigurable device with some faults, evaluating the complexity, power and signal

delay in both CLBs and wires. An image filter for noise reduction is experimentally

synthesized to verify the validity of our method. By evolution, the quality of the

optimized image filter on a reconfigurable device with faults is almost same as that

with no fault.

6.1 Introduction

The high density of chips increases the possibility of faulty components and the com-

plexity of designs increases the probability of human errors. The acceptance for faults

is diminishing as the systems are demanded for high reliability. The need for fault-

tolerant designs is stated as the long-term grand challenges in [50].

The above may be summarized as two key demands: novel automated design and

fault tolerance. Recently, a new research field exploring solutions to these problems

has grown, that is the field of bio-inspired hardware design. Biological organisms such

as humans are in many ways extremely complex, yet nature has managed to evolve

creatures that utilize their physical, chemical, electrical and biological properties in

intricate complex dynamical ways. In addition, they are tolerant of faults on many

levels in that they keep on functioning even though cells or sometimes even entire

76

Table 6.1: Features of related works.

Item Level Circuit Optimization Fault

Vasicek [42] function image filter no no

Bao [44] gate adder yes no

Bao [47] function image filter yes no

Proposed function image filter yes yes

limbs fail [51].

Vasicek et al [42,43] discussed image filter design at function level by using evolu-

tional approach, but they did not discuss any circuit constraints such as complexity,

power consumption and signal delay, and did not deal with fault tolerant. While

we have proposed mixed constrained design optimization using Genetic Algorithm

(GA) for some combinational circuits (such as adder), the discussion was at gate

level [44–46], but also did not deal with fault tolerant.

This chapter describes mixed constrained image filter design for noise reduction

using GA on a reconfigurable processing array [52]. There may be some faulty Con-

figurable Logic Blocks (CLBs) in a reconfigurable processing array at random. The

circuit complexity, power and signal delay in both logic blocks and wires are opti-

mized. The differences among the related works are shown in Table 6.1. In this

design, first, the evaluating value about correctness, complexity, power and signal

delay are introduced to the fitness function. Then GA autonomously synthesizes an

image filter which is simple and has better performance and fits to the reconfigurable

processing array with faults. To verify the validity of our method, an image filter for

noise reduction is experimentally synthesized.

The organization of this paper is as follows: Section 6.2 describes fault-tolerant

design optimization for an image filter using GA. Section 6.3 shows the experimental

77

Define circuit function

Use GA to find optimal solution

End

Start

Get the final circuit

Figure 6.1: The overview of our method.

results. Finally, Sect. 6.4 concludes this paper.

6.2 Fault-tolerant Image Filter Design using GA

GA is applied to search good solutions to optimize the image filter design on a recon-

figurable processing array with some faults.

The resultant image filter has an identical functional behavior with less complexity,

less power and less signal delay.

6.2.1 Image Filter

Every image operator is considered as a digital circuit with nine 8-bit inputs and a

single 8-bit output, which processes gray-scaled (8-bit/pixel) images.

As shown in Fig. 4.1, every pixel value of the filtered image is calculated using a

corresponding pixel and its eight neighbors in the processed image [41,42].

78

CLB9

CLB10

CLB11

CLB12

CLB13

CLB14

CLB15

CLB16

CLB17

CLB18

CLB19

CLB20

CLB21

CLB23

CLB24

I0

I1

I2

I3

I4

I6

I7

I8

I5

CLB22 Out

Column: 0 1 2 3 4

0

1

2

3

Row:

0 2 8 12 18 22 28 32 38
x

y

2

4
6

14
16

24

26

34
36

CLB25

CLB26

CLB27

CLB28

CLB29

CLB30

CLB31

CLB32

CLB33

CLB34

CLB35

CLB36

CLB37

CLB39

CLB40

CLB38

42 48 52 58 62 68 72 78

5 6 7 8

Figure 6.2: A reconfigurable processing array with faults.

6.2.2 Reconfigurable Processing Array for Image Filter

The reconfigurable image filter is implemented as a Virtual Reconfigurable Circuits

(VRC) (Fig. 6.2) proposed in [41]. As a new pixel value is calculated using nine pixels,

the VRC has got nine 8-bit inputs and a single 8-bit output. The VRC consists of

two-input Configurable Logic Blocks (CLBs) placed in a 8 ∗ 4 array. Any input of

each CLB may be connected to either a primary circuit input or the output of a CLB

in the preceding column. Any CLB can be programmed to implement one of the

functions given in Table 4.2 [47, 48], all these functions operate with 8-bit operands

and produce 8-bit results.

The CLB with different function, has different complexity, power and signal delay.

We newly define the values of complexity (FC), power (FP) and signal delay (SD) for

each function in a CLB, as in Table 4.2. The gate level circuit with different function,

has different number of gates. We define the values of FC, FP and SD considering

the number of gates in each function.

As shown in Fig. 6.2, the coordinates of inputs and output of each logic block

are defined based on VRC, so that we can calculate the critical length of connection

79

wires.

There may be some faulty CLBs in a reconfigurable processing array at random.

The output of a faulty CLB is a value in the range [0,255] at random.

6.2.3 Genetic Encoding

The chromosome is a string of integers where each three continuous integers constitute

a logic block. Each triplet in the chromosome encodes the two inputs and the function

type of a logic block, respectively, such as [45,46]:

(Input 1, Input 2, Function type).

A typical chromosome then can be a sequence of triplets such as:

(IN1
1 , IN1

2 , F 1
type) · · · (IN i

1, IN i
2, F

i
type) · · ·

Here, IN i
1 and IN i

2 mean positions of the corresponding input signal. F i
type means

function type of logic block. For primary input, 0 ≤ IN i ≤ 8. For input from output

of a logic block CLBm shown in Fig. 6.2, IN i = m. Function in a CLB is defined as

shown in Table 4.2.

6.2.4 Fitness Function

The pixels of corrupted image ci are used as inputs of VRC. Pixels of filtered image

fi are generated, which are compared to the pixels of original image oi.

The design objective is to minimize the difference between the filtered image v

and the original image w. The image size is M ∗ N pixels, but only the area of

(M − 2) ∗ (N − 2) pixels is considered, because the pixel values at the borders are

ignored, and thus remain unfiltered. The fitness value of a candidate filter is obtained

as follows:

80

(1) VRC is configured using a candidate chromosome,

(2) the created circuit is used to produce pixel values in the image fi, and

(3) the fitness value is calculated as

Fitness = (−1) ∗ (F1 ∗ β + F2). (6.1)

where,

F1 and F2 mean correctness and quality of the circuit respectively, and are defined

as follows. β is the weight on F1.

F1 = (
M−2∑

i=1

N−2∑

j=1

|fi(i, j)− oi(i, j)|).

(6.2)

where,

M : the number of columns of the pixels in the image.

N : the number of rows of the pixels in the image.

fi(i , j): the pixel (i, j) in filtered image fi, the value range is [0,255].

oi(i , j): the pixel (i, j) in original image oi, the value range is [0,255].

F2 = SD ∗ αsd + Pb ∗ αpb + Cb ∗ αcb +

Pw ∗ αpw + Cw ∗ αcw. (6.3)

where,

SD: signal delay of a circuit individual, determined by a critical path.

81

αsd: the weight on signal delay in F2.

Pb: power of logic blocks in a circuit, calculated by summation of all logic block’s

power.

αpb: the weight on power of logic blocks in F2.

Cb: complexity of logic blocks in a circuit, calculated by summation of all logic block’s

complexity.

αcb: the weight on complexity of logic blocks in F2.

Pw: power of all wires in a circuit, calculated by summation of all wire’s power.

αpw: the weight on power of wires in F2.

Cw: complexity of wires in a circuit, calculated by summation of all wire’s complexity.

αcw: the weight on complexity of wires in F2.

The priority of evaluating values in Eq. (6.1) is: F1 > F2. In this experiment, β

is set to 0.1 ∗ 109. The priority of evaluating values in Eq. (6.3) is: SD > Pb > Cb >

Pw > Cw. In this experiment, αsd is set to 1 ∗ 109, αpb is set to 1 ∗ 105, αcb is set to

1 ∗ 103, αpw is set to 100, and αcw is set to 1. All α’s and β are empirically assigned

in our experiment.

F1 is the difference between pixels in filtered image and original image; the less

the value is, the better the circuit is. F2 searches the optimum solution considering

complexity, power and signal delay simultaneously in both logic blocks and wires; the

less the value is, the better the quality of circuit is. In the evolution, the larger the

fitness is, the better the quality of image filter is.

82

Table 6.2: Conditions for evolution.

Number of Generation : 3000

Population Size : 1210

Elite Size : 10

Crossover Size : 600

Mutation Size : 600

Probability in PUC (Ppuc) : 0.5

Mutation Probability (Pm) : 0.1

Faulty CLBs : 0,2,4,6,8,10,12

PUC: Parameterized Uniform Crossover.

6.3 Experimental Results

Table 6.2 shows the parameters of the evolution of GA used in this experiment, where

faulty CLBs are set. These parameters are decided based on the results of papers

[42, 44], and some preliminary experiments were performed in advance. Crossover

may exchange some logic blocks between two individuals by Ppuc, here is 50% of

all logic blocks. Mutation may change some genes in one individual by Pm, here

is, 10% of all genes, input number or function type of a logic block in an image

filter. The number of faulty CLBs in the reconfigurable processing array is set as

0, 2, 4, 6, 8, 10, 12, at random position.

The proposed method was implemented in Eclipse SDK 3.5.1 with Java Runtime

Environment(JRE) 1.6.0; and tested on a PC with Inter(R) Core(TM) i7 CPU at

3.33 GHz and 9.0 GB RAM.

The image filter is evolved for a 512 ∗ 512 Lena image corrupted by 5% salt-and-

pepper noise, shown in Fig. 6.5 (a).

83

Figure 6.3: Elite fitness of GA (Y-axis) vs. the number of generations (X-axis).

Fig. 6.3 shows the elite fitness of GA with parameterized uniform crossover (GA-

puc) with (Ppuc : 0.5) vs. the number of generations during the image filter evolution.

The elite fitness is increasing during evaluation time.

Table 6.3 shows the results on a reconfigurable processing array with different

faults. For each case, we execute over 10 independent trials. “Available” means

the number of available CLBs. “Average” means the average values of 10 individuals,

there are the number of used CLBs, the value of the MDPP and running time. “Ratio”

is the relative value of MDPP of each case compared to that of no fault Faults(0).

The larger the fitness is, the better the quality of image filter is. The less the MDPP

value is, the better the quality is. The less the ratio is, the better the quality is.

“Best one” means the best optimized image filter from 10 trials. “Worst one”

84

Table 6.3: Results on a reconfigurable processing array with different faults.

Item CLBs Average Best one Worst one

Available Used MDPP Ratio Time Used MDPP Ratio SD Pb Cb Pw Cw Used MDPP Ratio

Faults(0) 29 9.3 0.760 1.000 3004 10 0.339 1.000 112 1055 1749 449 713 8 1.071 1.000

Faults(2) 27 8.2 1.101 1.448 3051 9 0.364 1.075 99 705 1166 314 498 6 2.035 1.900

Faults(4) 25 6.7 1.545 2.032 3046 8 0.376 1.110 74 677 1123 350 558 6 2.107 1.968

Faults(6) 23 7.2 1.464 1.926 3054 7 0.388 1.146 101 693 1148 339 539 6 2.058 1.922

Faults(8) 21 7.5 1.508 1.984 3048 8 0.442 1.306 98 890 1476 376 599 7 2.091 1.952

Faults(10) 19 6.5 1.750 2.302 3043 7 0.450 1.328 76 665 1102 288 458 5 2.172 2.027

Faults(12) 17 5.7 1.544 2.044 3049 6 0.524 1.547 90 668 1108 308 482 3 2.205 2.058

Available: In a 8*4 CLBs array, only one is useful on the last column, so the max number of available CLBs
is 29.

Faults(x): A reconfigurable processing array with x faulty CLBs at random position, x = 0, 2, 4, 6, 8, 10, 12.

Used: the number of the used CLBs.

means the worst optimized image filter from 10 trials.

The quality of the optimized image filter on a reconfigurable processing array with

a few faults (2-6 faults) is almost same as that on a reconfigurable processing array

with no fault, that is less than 14.6% in the item of different value of MDPP of the

best one.

The quality of the optimized image filter of Fault(2) is only 7% less than that

of Fault(0) in the item of the MDPP value of the best one, but the values of

SD, Pg, Cg, Pw, Cw of the circuit of Fault(2) are better than that of Fault(0).

An example of chromosome of best one of fault(2) is as follows:

(1, 7, 15)(3, 5, 13)(4, 5, 1)(0, 0, 0)(9, 10, 14)(11, 9, 2)

(0, 0, 0)(0, 0, 0)(0, 0, 0)(0, 0, 0)(0, 0, 0)(0, 0, 0)(0, 0, 0)

(0, 0, 0)(0, 0, 0)(13, 14, 12)(0, 0, 0)(0, 0, 0)(0, 0, 0)

(14, 9, 5)(0, 0, 0)(0, 0, 0)(0, 0, 0)(0, 0, 0)(0, 0, 0)(0, 0, 0)

(0, 0, 0)(11, 24, 15)(28, 36, 14)(0, 0, 0)(0, 0, 0)(0, 0, 0).

85

0 1 2

3 4 5

6 7 8

min

(1,7,15)
9

>>

(3,5,13) 10

x

(4,5,1) 11

(0,0,0)
12

max

(9,10,14)13

max

(11,9,2) 14

(0,0,0)
15

(0,0,0)
16

(0,0,0)
17

(0,0,0)
18

(0,0,0)
19

(0,0,0)
20

(0,0,0)
21

(0,0,0)
22

(0,0,0)
23

+s

(13,14,12)
24

(0,0,0)
25

(0,0,0)
26

(0,0,0)
27

^

(14,9,5) 28

(0,0,0)
29

(0,0,0)
30

(0,0,0)
31

(0,0,0)
32

(0,0,0)
33

(0,0,0)
34

(0,0,0)
35

min

(11,24,15)
36

max

(28,36,14)
37

(0,0,0)
38

(0,0,0)
39

(0,0,0)
40

Figure 6.4: The optimized image filter of Fault(2).

The graphical representation of this chromosome is shown in Fig. 6.4.

As the image is relatively large, we can say that the evolved filter is general. The

filter is able to remove the same type of noise also from other images. The image

filter was evolved using Lena image and tested on other images.

Figures in Fig. 6.5 show the input image with 5% salt-and-pepper noise, the

MDPP value of these images are 6.380, 6.458 and 6.321, respectively. Figures in Fig.

6.6 show the output image by the image filter of Fig. 6.4, the MDPP value of these

images are 0.364, 0.377 and 0.420, respectively. Obviously, this image filter could

reduce noise for all cases.

6.4 Conclusions

This chapter described mixed constrained image filter design with fault tolerance for

noise reduction using GA (Genetic Algorithm) on a reconfigurable processing array.

The complexity, power and signal delay in both CLBs (Configurable Logic Blocks) and

wires are considered. An image filter for noise reduction is experimentally synthesized,

to verify the validity of our method. By evolution, the quality of the optimized image

filter on a reconfigurable processing array with a few faults is almost same as that on

a reconfigurable processing array with no fault. Consequently our proposed design

method is effective for fault-tolerant optimization.

86

Figure 6.5: The input images with noise.

Figure 6.6: The output images by the evolved filter of Fig. 6.4.

87

We will also apply GA to autonomous design circuits for more complex functional

requirements, and enhance more practical information about circuit to fitness func-

tion. Future works are to find better genetic encoding method to apply GA to large

sized circuits, and to improve GA to reduce the processing time.

88

89

Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This research focus on mixed constrained circuit design by evolutionary technolo-

gies, to get the optimization circuit in short processing time, and deal with the fault

tolerance circuit design.

Chapter 2 applied GA to gate level circuit design optimization. First, we intro-

duced the evaluating value about correctness, complexity, power, and signal delay to

the fitness function. Then GA can autonomously synthesize a circuit that is equiva-

lent to a conventional design in function, but is simpler and has better performance.

To verify the effectiveness of our method, a simple 2-bit full adder circuit is experi-

mentally synthesized. By evolution, GApuc (Genetic Algorithm with parameterized

uniform crossover) can find optimized circuits with less complexity, less power, and

less signal delay than GA with one-point crossover or two-point crossover.

Chapter 3 proposed GAdss (Genetic Algorithm with different structure selection)

and its application to autonomous design optimization for combinatorial circuits.

By evolution, GAdss can find optimized circuits with less complexity, less power

and less signal delay than traditional GA, because different structure selection has

effectiveness.

Chapter 4 described mixed constrained image filter design for noise reduction

using a GApuc on a reconfigurable processing array. The complexity, power and

signal delay in both CLBs (Configurable Logic Blocks) and wires are considered. An

image filter for noise reduction is experimentally synthesized, to verify the validity

of the proposed method. By evolution, the quality of the optimized image filter on

90

reducing salt-and-pepper noise is better than that of other papers. Consequently

the proposed design method is effective for mixed constrained image filter design on

reducing salt-and-pepper noise.

Chapter 5 proposed the use of PSO (Particle Swarm Optimization) for mixed

constrained image filter design for noise reduction. The complexity, power and signal

delay both of the CLBs and wires are considered. An image filter for removing noise

is experimentally synthesized using PSO, to verify the validity of our method. By

evolution, quality of the optimized image filter by PSO(0.9) is almost same as that of

GA, but the running time of PSO is 10% shorter than that of GA.

Chapter 6 described mixed constrained image filter design with fault tolerance

for noise reduction using GA on a reconfigurable processing array. The complexity,

power and signal delay in both CLBs and wires are considered. An image filter for

noise reduction is experimentally synthesized, to verify the validity of our method.

By evolution, the quality of the optimized image filter on a reconfigurable processing

array with a few faults is almost same as that on a reconfigurable processing array

with no fault. Consequently our proposed design method is effective for fault-tolerant

optimization.

7.2 Future work

We will also apply evolutionary technologies to autonomous design circuits for more

complex functional requirements, and enhance more practical information about cir-

cuit to fitness function. In the future, we will develop the adaptive systems which

reconfigure an existing design by evolutionary technologies to adapt to a variable

operational environment.

91

ACKNOWLEDGMENTS

First, I would like to thank my supervisor, Professor Takahiro Watanabe, for his

constructive instruction and helpful discussion in my research. Also, I want to express

my sincere acknowledgement to his support for my Doctor thesis research.

I give my acknowledgement to Professor Takeshi Yoshimura, Professor Shinji

Kimura and Professor Hiroshi Miyashita for their suggestion in my research topic.

I show my thankfulness to Professor Kotaro Hirasawa for his valuable advices and

discussion for my paper review and research selection. Also, I study many knowledge

in evolutionary algorithms by his generous guidance.

I give my acknowledgement to Professor Satoshi Goto for his financial support for

my Doctor thesis research.

I also thank Mr. Keyan Chen, Mr. Dawei Cao, Mr. Yuehui Shi, Mrs. Meiyan Li,

Mrs. Fangfang Wang, Mrs. Yiwen Su, Mrs. Xiaoming Zhao and all members of our

laboratory, for their kind help and nice advices in my laboratory study and daily life.

I want to thank the excellent research collaboration with Prof. Jinglu Hu, Dr.

Shingo Mabu, Dr. Yun Yang, Dr. Song Chen, Dr. Zhangcai Huang, Dr. Jin Zhou,

Dr. Guangfei Yang, Dr. Shuming Wang, Dr. Benhui Chen, Dr. Lu Yu, Dr. Boyang

Li, Dr. Xinjie Yu, Dr. Feng Wen, Mr. Jun Wang, Mr. Yang Chen and Mr. Wenqiang

Zhang. Their discussions are fruitful and necessary for my research and study. Their

friendly relationship gives me happy research environment and I enjoy all friends in

Waseda University with me.

Finally, I would like to dedicate this thesis to my loving parents, Mr. Shuntong

Bao and Mrs. Linghuan Zhang, for their helpful advice and durative support.

92

93

BIBLIOGRAPHY

[1] Kenneth A. De Jong. Evolutionary computation - a unified approach. In Genetic
Programming and Evolvable Machines, volume 8(3), pages 293–295. MIT Press,
Springer, 2007.

[2] A. P. Alves da Silva and P. J. Abrao. Applications of evolutionary computa-
tion in electric power systems. In Proc. of the 2002 Congress on Evolutionary
Computation (CEC 2002), pages 1057 – 1062, Honolulu, HI, May 2002.

[3] E. Eberbach. On expressiveness of evolutionary computation: is ec algorithmic?
In Proc. of the 2002 Congress on Evolutionary Computation (CEC 2002), pages
564 – 569, Honolulu, HI, May 2002.

[4] T. Back. Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford Univ. Press, USA, Jan.
1996.

[5] D. Ashlock. Evolutionary Computation for Modeling and Optimization. Springer,
Dec. 2005.

[6] T. Schnier and Xin Yao. Using multiple representations in evolutionary algo-
rithms. In Proc. of the 2000 Congress on Evolutionary Computation, volume 1,
pages 479 – 486, La Jolla, CA, July 2000.

[7] John Henry Holland. Adaptation in Natural and Artificial systems. University
of Michigan Press, Dec. 1975.

[8] Y. Chen, J. Hu, K. Hirasawa, and S. Yu. Solving deceptive problems using a
genectic algorithm with reserve selection. In Proc. IEEE Congress on Evolution-
ary Computation 2008 (CEC 2008), pages 884–889, Hongkong, June 2008.

[9] Gerardo Beni and Jing Wang. Swarm intelligence in cellular robotic systems. In
Proc. NATO Advanced Workshop on Robots and Biological Systems, Italy, June
1989.

[10] J. Kennedy and R. Eberhart. Particle swarm optimization. In IEEE International
Conference on Neural Networks, pages 1942–1948, 1995.

94

[11] Russell C. Eberhart and Yuhui Shi. Comparison between genetic algorithms
and particle swarm optimization. In EP ’98: Proceedings of the 7th Interna-
tional Conference on Evolutionary Programming VII, pages 611–616, London,
UK, 1998. Springer-Verlag.

[12] Jacob Robinson and Yahya Rahmat-Samii. Particle swarm optimization in elec-
tromagnetics. IEEE Transactions on Antennas and Propagation, 52(2):397–407,
Feb. 2004.

[13] T. Arslan, D. H. Horrocks, and E. Ozdemir. Structural cell-based vlsi circuit
design using a genetic algorithm. In Proc. 1996 IEEE International Symposium
On Circuits And Systems, pages 308–311, Atlanta, Georgia, USA, May 1996.

[14] D. Mange, M. Sipper, A. Stauffer, and G. Tempesti. Toward robust integrated
circuits: The embryonics approach. Proc. the IEEE, 88(4):516–541, April 2000.

[15] X. Zhang, G. Dragffy, A. G. Pipe, and Q. M. Zhu. Ontogenetic cellular hardware
for fault tolerant systems. In Proc. International Conference on Embedded Sys-
tems and Applications 2003 (ESA 2003), pages 144–150, Las Vegas, USA, June
2003.

[16] J. D. Lohn and G. S. Hornby. Evolvable hardware: using evolutionary computa-
tion to design and optimize hardware systems. IEEE Computational Intelligence
Magazine, 1(1):19–27, Feb. 2006.

[17] E. Stomeo, T. Kalganova, and C. Lambert. A novel genetic algorithm for evolv-
able hardware. In Proc. IEEE Congress on Evolutionary Computation 2006
(CEC 2006), pages 134–141, Canada, July 2006.

[18] A. Stoica and R. Andrei. Adaptive and evolvable hardware - a multifaceted
analysis. In Proc. Second NASA/ESA Conference on Adaptive Hardware and
Systems 2007 (AHS 2007), pages 486–498, Edinburgh, UK, Aug. 2007.

[19] E. Benkhelifa, A. Pipe, G. Dragffy, and M. Nibouche. Towards evolving fault
tolerant biologically inspired hardware using evolutionary algorithms. In Proc.
IEEE Congress on Evolutionary Computation 2007 (CEC 2007), pages 1548–
1554, Singapore, Sept. 2007.

[20] W. M. Spears and K. A. De Jong. On the virtues of parameterized uniform
crossover. In Proc. the Fourth International Conference on Genetic Algorithms,
1991.

95

[21] T. Higuchi, M. Iwata, I. Kajitani, et al. Evolvable hardware with genetic learning.
Proc. IEEE International Symposium on Circuits and Systems 1996 (ISCAS ’96),
4:29–32, May 1996.

[22] J. F. Miller, P. Thomson, and T. Fogarty. Designing electronic circuits using
evolutionary algorithms. arithmetic circuits: A case study. In D. Quagliarella,
J. Periaux, C. Poloni, and G. Winter, editors, Genetic Algorithms and Evolution
Strategy in Engineering and Computer Science, chapter 6, pages 105–131. John
Wiley & Sons Ltd., Morgan Kaufmann, Chichester, England, 1997.

[23] A.Thompson. Silicon evolution. In J. R. Koza et al., editors, Proc. Genetic
Programming 1996 (GP ’96), pages 444–452. MIT Press, 1996.

[24] D. J. Xu and M. L. Daley. Design of optimal digital filter using a parallel genetic
algorithm. IEEE Trans. on Circuits and Systems II: Analog and Digital Signal
Processing, pages 673–675, Oct. 1995.

[25] T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, M. Murakawa, I. Kajitani,
E. Takahashi, K. Toda, N. Salami, N. Kajihara, and N. Otsu. Real-world appli-
cations of analog and digital evolvable hardware. IEEE Trans. on Evolutionary
Computation, pages 220–235, Sept. 1999.

[26] A. Thompson, P. Layzell, and R. S. Zebulum. Explorations in design space:
unconventional electronics designthrough artificial evolution. IEEE Trans. on
Evolutionary Computation, pages 167–196, Sept. 1999.

[27] V. K. Vassilev, D. Job, and J. F. Miller. Towards the automatic design of more
efficient digital circuits. In Proc. The Second NASA/DoD Workshop on Evolvable
Hardware 2000 (EH 2000), pages 151–160, Pao Alto, CA, USA, Jul. 2000.

[28] J. Torresen, J. W. Bakke, and L. Sekanina. Recognizing speed limit sign numbers
by evolvable hardware. In Proc. Parallel Problem Solving from Nature - PPSN
VIII, pages 682–691, 2004.

[29] Y. Zhang, S. L. Smith, and A. M. Tyrrell. Digital circuit design using intrinsic
evolvable hardware. In Proc. NASA/DoD Conference on Evolvable Hardware
2004 (EH 2004), pages 55–62, June 2004.

[30] L. Sekanina. Evolutionary design of gate-level polymorphic digital circuits. In
Proc. Applications on Evolutionary Computing, pages 185–194, 2005.

96

[31] X. Yao and T. Higuchi. Promises and challenges of evolvable hardware. IEEE
Trans. on Systems, Man, and Cybernetics, Part C: Applications and Reviews,
29(1):87–97, Feb. 1999.

[32] V. K. Vassilev and J. E. Miller. Scalability problems of digital circuit evolution
evolvability and efficient designs. In Proc. The Second NASA/DoD Workshop
on Evolvable Hardware 2000 (EH 2000), pages 55–64, Palo Alto, CA, USA, July
2000.

[33] L. Sekanina. Evolutionary design of digital circuits: Where are current limits?
In Proc. The First NASA/ESA Conference on Adaptive Hardware and Systems
2006 (AHS 2006), pages 171–178, June 2006.

[34] Z. Bao and T. Watanabe. A new approach for circuit design optimization using
genetic algorithm. In Proc. International SoC Design Conference 2008 (ISOCC
2008), pages 383–386, Busan, Korea, Nov. 2008.

[35] Z. Bao and T. Watanabe. A novel genetic algorithm with cell crossover for circuit
design optimization. In Proc. IEEE International Symposium on Circuits and
Systems 2009 (ISCAS 2009), pages 2982–2985, Taipei, Taiwan, China, May 2009.

[36] T. Yalcinoz and H. Altun. A new genetic algorithm with arithmetic crossover to
economic and environmental economic dispatch. Engineering intelligent systems
for electrical engineering and communications, 13(1):45–52, 2005.

[37] F. Herrera and M. Lozano. Heuristic crossovers for real-coded genetic algorithms
based on fuzzy connectives. In Proc. of the 4th International Conference on
Parallel Problem Solving from Nature, pages 336 – 345, 1996.

[38] J. Dumoulin, J. Foster, J. Frenzel, and S. McGrew. Real-World Applications
of Evolutionary Computing, volume 1803 of Lecture Notes in Computer Science,
chapter Special Purpose Image Convolution with Evolvable Hardware, pages
111–125. Springer, 2000.

[39] L. Sekanina. Applications of Evolutionary Computing, (the 4th Workshop on
Evolutionary Computation in Image Analysis and Signal Processing, EvoIASP
2002), volume 2279 of Lecture Notes in Computer Science, chapter Image Filter
Design with Evolvable Hardware, pages 255–266. Springer, 2002.

[40] L. Sekanina. Evolvable Components: From Theory to Hardware Implementations.
Natural Computing Series. Springer, January 2004.

97

[41] T. Martinek and L. Sekanina. An evolvable image filter - experimental evalu-
ation of a complete hardware implementation in fpga. In Evolvable Systems -
From Biology to Hardware, volume 2005(3637), pages 76–85. Lecture Notes in
Computer Science, Springer, 2005.

[42] Z. Vasicek and L. Sekanina. Evaluation of a new platform for image filter evo-
lution. In Proc. the Second NASA/ESA Conference on Adaptive Hardware and
Systems, 2007 (AHS 2007), pages 577–586, Scotland, United Kingdom, Aug.
2007.

[43] Z. Vasicek and L. Sekanina. An evolvable hardware system in xilinx virtex ii pro
fpga. Int. J. Innovative Computing and Applications, 1(1):63–73, 2007.

[44] Z. Bao and T. Watanabe. Circuit design optimization using genetic algorithm
with parameterized uniform crossover. IEICE Trans. on Fundamentals, E93-
A(01):281–290, Jan. 2010.

[45] Z. Bao and T. Watanabe. A novel ga with multi-level evolution for mixed con-
strained circuit design optimization. In Proc. 2009 RISP International Workshop
on Nonlinear Circuits and Signal Processing (NCSP ’09), pages 411–414, Hon-
olulu, Hawaii, USA, March 2009.

[46] Z. Bao and T. Watanabe. A novel genetic algorithm with cell crossover for circuit
design optimization. In Proc. IEEE International Symposium on Circuits and
Systems 2009 (ISCAS 2009), pages 2982–2985, Taipei, Taiwan, May 2009.

[47] Z. Bao and T. Watanabe. Evolutionary design for image filter using ga. In Proc.
IEEE TENCON 2009, pages 1–6, Singapore, Nov. 2009.

[48] Z. Bao and T. Watanabe. Mixed constrained image filter design using particle
swarm optimization. In Proc. The Fifteenth International Symposium on Arti-
ficial Life and Robotics 2010 (AROB 15th 2010), pages 230–235, Beppu, Oita,
Japan, Feb. 2010.

[49] B. Rajan and S.Ravi. Fpga based hardware implementation of image filter with
dynamic reconfiguration architecture. IJCSNS International Journal of Com-
puter Science and Network Security, 6(12):121–127, Dec. 2006.

[50] International Technology Roadmap for Semiconductors. Execu-
tive Summary, international roadmap committee edition, 2009.
http://www.itrs.net/Links/2009ITRS/Home2009.htm.

98

[51] M. Hartmann and P. C. Haddow. Evolution of fault-tolerant and noise-robust
digital designs. IEE Proc. Computers and Digital Techniques, 51(4):287–294,
July 2004.

[52] Z. Bao, F. Wang, X. Zhao, and T. Watanabe. Fault-tolerant image filter design
using ga. In Proc. IEEE TENCON 2010, pages 1–6, Fukuoka, Japan, Nov. 2010.

[53] T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, and T. Furuya. Evolving
hardware with genetic learning: a first step towards building a darwin machine.
In Proc. the Second International Conference on Simulated Adaptive Behaviour,
pages 417–424. MIT Press, 1993.

[54] H. de Garis. Evolvable hardware: Genetic programming of a darwin machine. In
Rudolf F. Albrecht, Nigel C. Steele, and Colin R. Reeves, editors, Proc. Interna-
tional Conference on Artificial Neural Networks and Genetic Algorithms, pages
441–449, Innsbruck, Austria, 1993. Springer.

[55] T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, M. Murakawa, I. Kajitani,
E. Takahashi, K. Toda, N. Salami, N. Kajihara, and N. Otsu. Real-world appli-
cations of analog and digital evolvable hardware. IEEE Trans. on Evolutionary
Computation, 3(3):220–235, Sept. 1999.

[56] X. Yao and T. Higuchi. Promises and challenges of evolvable hardware. IEEE
Trans. on Systems, Man and Cybernetics, Part C: Applications and Reviews,
29(1):87–97, Feb. 1999.

[57] L. Sekanina. Evolutionary design of digital circuits: Where are current limits?
In Proc. The First NASA/ESA Conference on Adaptive Hardware and Systems
2006 (AHS 2006), pages 171–178, Piscataway, US, June 2006. IEEE Computer
Society.

99

PUBLICATIONS

Journal Papers

1. Zhiguo Bao, Fangfang Wang, Xiaoming Zhao and Takahiro Watanabe, “Mixed

Constrained Image Filter Design for Salt-and-pepper Noise Reduction using

Genetic Algorithm,” IEEJ Trans. EIS, Vol.131, No.3, pp. 363-368, Mar. 2011.

2. Zhiguo Bao and Takahiro Watanabe, “Circuit Design Optimization Using Ge-

netic Algorithm with Parameterized Uniform Crossover,” IEICE Trans. on

Fundamentals, Vol.E93-A, No.01, pp. 281-290, Jan. 2010.

3. Zhiguo Bao and Takahiro Watanabe, “Mixed constrained image filter design

using particle swarm optimization,” Journal of Artificial Life and Robotics, Vol.

15, No. 3, pp. 363-368, 2010.

4. Zhiguo Bao and Takahiro Watanabe, “A novel genetic algorithm with different

structure selection for circuit design optimization,” Journal of Artificial Life and

Robotics, Vol. 14, No. 2, pp.266-270, 2009.

5. Etsushi Ohkawa, Yan Chen, Zhiguo Bao, Shingo Mabu, Kaoru Shimada and

Kotaro Hirasawa, “Buying and Selling Stocks of Multi Brands Using Genetic

Network Programming with Control Nodes,” IEEJ Trans. EIS, Vol. 128, No.

12, pp.1811-1819, 2008.

100

International Conference Papers

6. Zhiguo Bao, Fangfang Wang, Xiaoming Zhao and Takahiro Watanabe, “Fault-

tolerant Image Filter Design using Particle Swarm Optimization,” Proc. The

Sixteenth International Symposium on Artificial Life and Robotics 2011 (AROB

16th 2011), pp. 653-658, Beppu,Oita, Japan, Jan. 2011.

7. Zhiguo Bao, Fangfang Wang, Xiaoming Zhao and Takahiro Watanabe, “Fault-

tolerant Image Filter Design using GA,” Proc. IEEE TENCON 2010, pp. 1-6,

Fukuoka, Japan, Nov. 2010.

8. Zhiguo Bao and Takahiro Watanabe, “Mixed Constrained Image Filter Design

Using Particle Swarm Optimization,” Proc. AROB 15th 2010, pp. 230-235,

Beppu, Oita, Japan, Feb. 2010.

9. Zhiguo Bao and Takahiro Watanabe, “Evolutionary Design for Image Filter

using GA,” Proc. IEEE TENCON 2009, pp. 1-6, Singapore, Nov. 2009.

10. Zhiguo Bao and Takahiro Watanabe, “A Novel Genetic Algorithm with Cell

Crossover for Circuit Design Optimization,” Proc. The IEEE International

Symposium on Circuits and Systems 2009 (ISCAS 2009), pp.2982-2985, Taipei,

Taiwan, May 2009.

11. Zhiguo Bao and Takahiro Watanabe, “A Novel GA with multi-level evolution

for Mixed constrained Circuit Design Optimization,” Proc. 2009 RISP Interna-

tional Workshop on Nonlinear Circuits and Signal Processing (NCSP ’09), pp.

411-414, Honolulu, Hawaii, USA, Mar. 2009.

12. Zhiguo Bao and Takahiro Watanabe, “A Novel Genetic Algorithm with Dif-

ferent Structure Selection for Circuit Design Optimization,” Proc. AROB 14th

2009, pp. 218-222, Beppu, Oita, Japan, Feb. 2009.

101

13. Zhiguo Bao and Takahiro Watanabe, “A New Approach for Circuit Design

Optimization using Genetic Algorithm,” Proc. International SoC Design Con-

ference (ISOCC) 2008, pp. 383-386, Busan, Korea, Nov. 2008.

14. Zhiguo Bao, Shigo Mabu, Kotaro Hirasawa and Jinglu Hu, “Buying and Sell-

ing Stocks of Multi Brands using Genetic Network Programming with control

nodes,” Proc. SICE (The Society of Instrument and Control Engineers) Annual

Conference 2007, pp. 1569-1576, Kagawa, Japan, Sept. 2007.

Domestic Conference Papers

15. YiWen Su, Zhiguo Bao, Kuoyang Tu and Takahiro Watanabe, “Circuit Design

Using Genetic Algorithm combined with Taguchi method and Particle Swarm

Optimization,” The 63rd Joint Conference of Electrical and Electronics Engi-

neers in Kyushu, pp. 115-116, Fukuoka, Japan, Sep. 2010.

16. Shi Yuehui, Zhiguo Bao, Wang Yang, Xiao Zuojun and Watanabe Takahiro,

“P/G Network Design to Optimize Area, Performance and Power Consump-

tion,” The 62nd Joint Conference of Electrical and Electoronics Engineers in

Kyushu (2009/09), pp. 10-1A-14, Fukuoka, Japan, Sep. 2009.

102

103

INDEX

CLBs (Configurable Logic Blocks), 5

EA (Evolutionary Algorithm), 2
EHW (Evolvable Hardware), 3
EP (Evolutionary Programming), 1
ES (Evolution Strategies), 1
Evolutionary Computation, 1

FPAA (Field-Programmable Analog Array), 4
FPGA (Field-Programmable Gate Array), 4
FPTA (Field-Programmable Transistor Array), 4

GA (Genetic Algorithm), 2
GAdss (GA with Different Structure Selection), 7
GApuc (GA with Parameterized Uniform Crossover), 7
GP (Genetic Programming), 1

Image Filter, 7

MDPP (Mean Difference Per Pixel), 53
Mixed Constrained Circuit Design, 5

PSO (Particle Swarm Optimization), 3

SI (Swarm Intelligence), 3

	bao01title.pdf
	wasedathesis.pdf
	INDEX.pdf

