6 research outputs found

    Numerical optimisation of thermoset composites manufacturing processes: A review

    Get PDF
    The impetus for higher performance, robustness and efficiency in the aerospace, automotive and energy industries has been reflected in more stringent requirements which the composite manufacturing industry needs to comply with. The process design challenges associated with this are significant and can be only partially met by integration of simulation in the design loop. The implementation of numerical optimisation tools is therefore necessary. The development of methodologies linking predictive simulation tools with numerical optimisation techniques is pivotal to identify and therefore develop optimal design conditions that allow full exploitation of the efficiency opportunities in composite manufacturing. Numerical and experimental results concerning the optimisation techniques and methodologies implemented in literature to address the optimisation of thermoset composite manufacturing processes are presented and analysed in this study

    Numerical analysis of the influence of empty channels design on performance of resin flow in a porous plate

    Get PDF
    This numerical study aims to investigate the influence of I and T-shaped empty channels’ geometry on the filling time of resin in a rectangular porous enclosed mold, mimicking the main operating principle of a liquid resin infusion (LRI) process. Geometrical optimization was conducted with the constructal design (CD) and exhaustive search (ES) methods. The problem was subjected to two constraints (areas of porous mold and empty channels). In addition, the I and T-shaped channels were subjected to one and three degrees of freedom (DOF), respectively. Conservation equations of mass and momentum for modeling of resin/air mixture flow were numerically solved with the finite volume method (FVM). Interaction between the phases was considered with the volume of fluid method (VOF), and the effect of porous medium resistance in the resin flow was calculated with Darcy’s law. For the studied conditions, the best T-shaped configuration resulted in a filling time nearly three times lower than that for optimal I-shaped geometry, showing that the complexity of the channels benefited the performance. Moreover, the best T-shaped configurations were achieved for long single and bifurcated branches, except for configurations with skinny channels, which saw the generation of permanent voids

    Simulation pour l'aide Ă  l'optimisation et fabrication intelligente des composites par injections sous renfort

    Get PDF
    Injection sous renfort -- Moulage par transfert de résine -- Composites -- Modéliser l'injection sous renfort -- Outils de caractérisation -- Instrumentation de moule -- Délimiter l'espace de faisabilité -- Méthodes d'optimisation -- Exemples d'optimisation -- Review of numerical filling algorithms used in resin transfer molding simulations and new hybrid formulation -- Guiding selection for reduced process development time in RTM -- Processing parameters -- Moldability diagram -- General mathematical models -- Mathematical models simplification -- Test case -- Building the moldability diagram -- Méthodology -- Développement d'un outil de caratésisation de résine thermodurcissable pour les besoins industriels -- Concept de mini-moule thermique et sommaire du travail réalisé -- Détail du travail réalisé

    Contribution à la modélisation de l'écoulement de résine dans les procédés de moulage des composites par voie liquide

    Get PDF
    Les procĂ©dĂ©s de moulage des composites par voie liquide reprĂ©sentent des solutions trĂšs attractives sur le plan industriel, car ils permettent de rĂ©aliser des piĂšces complexes et de grandes dimensions Ă  bas coĂ»ts. NĂ©anmoins, ces procĂ©dĂ©s demandent une bonne maĂźtrise des mĂ©canismes d'imprĂ©gnation qui restent relativement difficiles Ă  anticiper. Le travail s'articule autour d'une Ă©tude expĂ©rimentale et numĂ©rique, visant Ă  modĂ©liser l'Ă©coulement de la rĂ©sine liquide dans le renfort fibreux pendant l'Ă©tape de remplissage. Le moyen d'essai dĂ©veloppĂ© est destinĂ© Ă  la mesure de la permĂ©abilitĂ©, Ă  la fois dans le plan et dans la direction transverse au renfort. L'Ă©tude numĂ©rique porte sur la simulation des Ă©coulements macroscopique et microscopique. À l'Ă©chelle macroscopique, l'originalitĂ© du modĂšle proposĂ© rĂ©side dans le couplage des mĂ©thodes BEM et Level Set, en 2D et 3D. À l'Ă©chelle microscopique, un solveur stationnaire BEM a Ă©tĂ© dĂ©veloppĂ© pour Ă©valuer la permĂ©abilitĂ© d'une microstructure fibreuse en 2D.Liquid Composite Molding (LCM) is more and more used in industry for its ability to produce complex and large parts at low cost. However, this process needs a special care to anticipate properly the impregnation of the fibrous reinforcement, which remains a challenging task important to achieve. This work is divided into an experimental and a numerical study. It aims to model the resin flow through the fibrous reinforcement occurring during the mold filling stage. An experimental setup has been designed to measure both plane and transverse permeabilities of the reinforcement. The numerical study is focused on the simulation of the flow at macroscopic and microscopic scales. At macro scale, our main contribution is the coupling between BEM and Level Set methods, which has been achieved for both 2D and 3D problems. At micro scale, a stationary BEM solver has been developed to evaluate the transverse permeability of a 2D fibrous microstructure

    ContrĂŽle de la fabrication des composites par injection sur renforts

    Get PDF
    RÉSUMÉ: Les procĂ©dĂ©s de mise en forme des composites par injection sur renforts (LCM) sont de plus en plus utilisĂ©s pour fabriquer des composites Ă  haute performance. Lors d’une mise en oeuvre par les procĂ©dĂ©s LCM, le renfort fibreux sec est tout d'abord drapĂ© Ă  l’intĂ©rieur d’un moule. AprĂšs la fermeture du moule ou le recouvrement du renfort par une membrane, une rĂ©sine polymĂšre est injectĂ©e ou infusĂ©e sous vide Ă  travers le renfort. Les renforts fibreux couramment utilisĂ©s dans les procĂ©dĂ©s LCM possĂšdent gĂ©nĂ©ralement une structure Ă  porositĂ© bimodale: des pores microscopiques existent entre les filaments dans les mĂšches de fibres, tandis que des pores macroscopiques sont crĂ©Ă©s entre les mĂšches suite Ă  la couture ou au tissage du tissu. À l’échelle microscopique, les forces capillaires Ă  l’intĂ©rieur des mĂšches fibreuses jouent un rĂŽle majeur sur la qualitĂ© des composites fabriquĂ©s par injection de rĂ©sine. En effet, les forces capillaires rĂ©gissent l’apparition de dĂ©fauts d’imprĂ©gnation du renfort par emprisonnement d’air. Ces dĂ©fauts sont critiques car ils ont un impact nĂ©gatif sur les performances mĂ©caniques des piĂšces composites au cours de leur vie en service. Toutefois, trĂšs peu de donnĂ©es expĂ©rimentales sont disponibles sur la formation de ces dĂ©fauts microscopiques et macroscopiques. De telles donnĂ©es seraient utiles pour les ingĂ©nieurs qui veulent accroĂźtre l’efficacitĂ©, la productivitĂ© et la robustesse des procĂ©dĂ©s d’injection sur renforts. Par consĂ©quent, une approche expĂ©rimentale multi-Ă©chelle est prĂ©sentĂ©e dans cette thĂšse afin de mieux comprendre la physique fondamentale des phĂ©nomĂšnes d’imprĂ©gnation et d’emprisonnement d’air dans les renforts fibreux Ă  porositĂ© bimodale et ainsi proposer des solutions pratiques pour les ingĂ©nieurs en contrĂŽle de procĂ©dĂ©. Dans un premier temps, un montage est dĂ©veloppĂ© pour Ă©tudier la saturation des renforts fibreux Ă  l’échelle macroscopique, durant le moulage des composites par transfert de rĂ©sine (RTM). Ce montage permet de dĂ©terminer les paramĂštres qui gouvernent la qualitĂ© de l’imprĂ©gnation des renforts fibreux lors de l’étape du remplissage et pendant les stratĂ©gies industrielles de post-remplissage (purge du moule et consolidation). Ces paramĂštres sont identifiĂ©s Ă  l’aide de trois plans d’expĂ©rience. Il s’agit de la vitesse d’avancĂ©e du front de rĂ©sine, de la pression appliquĂ©e aux ports d’injection et du dĂ©bit d’écoulement de la rĂ©sine lors de la purge du moule. L’analyse effectuĂ©e dans ces plans d’expĂ©rience s’appuie sur une procĂ©dure ASTM standard de dĂ©termination de la teneur en vides dans les piĂšces composites par carbonisation.----------ABSTRACT: Liquid Composite Molding (LCM) is an increasingly used class of processes to manufacture high performance composites. In LCM, the fibrous reinforcement is first laid in a mold cavity. After closure of the mold or covering of reinforcement with a plastic bag, a polymer resin is either injected or infused under vacuum through the fiber bed. The engineering fabrics commonly used in LCM possess generally dual scale architecture in terms of porosity: microscopic pores exist between the filaments in the fiber tows, while macroscopic pores appear between the tows as a result of the stitching/weaving fabrication process. On a microscopic scale, capillary flows in fiber tows play a major role on the impregnation quality of composites made by resin injection through fibrous reinforcements. Indeed, the capillary forces control the formation of impregnation defects in the fibrous reinforcement as a result of mechanical air entrapment. These defects are critical because they have a negative impact on the mechanical performance of composite parts during their operating life. However, very little experimental data are available in the literature on the formation of these microscopic and macroscopic impregnation defects. Such data would be useful for process engineers that want to increase efficiency, productivity and robustness of LCM processes. Therefore, a multiscale study is presented in this thesis in order to better understand the fundamental physics of impregnation and air entrapment phenomena in dual scale fibrous reinforcements and thus propose practical solutions for process control engineers. First of all, an experimental setup is developed to study the saturation of fibrous reinforcements, at the macroscopic scale, during the Resin Transfer Molding (RTM).This setup is used to determine some key parameters of the part filling step and industrial post-filling strategies (mold bleeding and consolidation) that control the impregnation quality of fibrous reinforcements. These key parameters are identified using three series of experiments. These parameters are the flow front velocity, the inlet mold pressure and the bleeding flow rate. The analyses in these three series of experiments are based on an ASTM standard procedure for void content determination in the composite parts by carbonization (also called loss on ignition (LOI))
    corecore