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Abstract 

The impetus for higher performance, robustness and efficiency in the aerospace, automotive and energy 

industries has been reflected in more stringent requirements which the composite manufacturing industry 

needs to comply with. The process design challenges associated with this are significant and can be only 

partially met by integration of simulation in the design loop. The implementation of numerical 

optimisation tools is therefore necessary. The development of methodologies linking predictive 

simulation tools with numerical optimisation techniques is pivotal to identify and therefore develop 

optimal design conditions that allow full exploitation of the efficiency opportunities in composite 

manufacturing. Numerical and experimental results concerning the optimisation techniques and 

methodologies implemented in literature to address the optimisation of thermoset composite 

manufacturing processes are presented and analysed in this study.  
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1 Introduction 

In recent decades composite materials have become a viable and preferred high performance material 

solution in several fields including the aerospace, automotive and renewable energy sectors. The 

expansion in utilisation of thermosetting matrix composite materials and the increased geometrical 

complexity and scale has placed the focus on processing simulation and optimisation to address the 

demand for maximum product performance at minimum production cost. The complexity of the 

phenomena involved in composites processing makes a trial and error approach highly inefficient and 

ineffective. Moreover, the need to comply with strict mechanical performance requirements and tight 

development time scales highlights the importance of the design stage. In such a scenario, conformity 

with specifications cannot be addressed at the end of the production line since re-manufacturing work at 

this stage is, when feasible, costly. Furthermore, the interdependencies between processing stages is such 

so that defects generated at one stage can affect significantly the success of subsequent steps of the 

process. Thermosetting composite manufacturing processes generally involve three stages, namely: 

winding/draping/forming, during which the fibres are placed in the desired lay-up configuration, filling or 

consolidation, where the reinforcement is impregnated with resin or the pre-impregnated material is 

consolidated to reach the desirable levels of fibre volume fraction and thickness, and finally curing during 

which the part undergoes the crosslinking reaction initiated by heating following an appropriate thermal 

profile. 

Fig. 1 summarises defects that can arise at each stage of manufacturing and illustrates their links 

with subsequent processing steps. Defects at the draping stage include wrinkling, excessive shear and 

misalignment. These can generate variations in thickness and fibre volume fraction which affect 

permeability and the filling stage, influence the generation of residual stresses and distortion during cure 

but also reduce the final quality in terms of mechanical performance. Defects produced during filling and 

consolidation include resin rich areas, voids and dry spots. These can affect heat transfer during the cure 

and have an adverse effect on mechanical performance. A poorly designed curing stage can lead to 

incomplete cure, severe temperature overshoots, unacceptable levels of residual stresses and distortion 

and cure induced matrix cracking, all of which directly degrade the performance of the final product. 

Therefore, predictive tools and optimisation methodologies are needed to achieve first time right 

manufacturing practices and exploit efficiently the resources employed in the process. 



The aim of the present paper is to summarise the state of the art on numerical optimisation of 

thermosetting matrix composite manufacturing, focusing on the methodologies adopted, the objectives 

addressed and the design parameters optimised. The current trends in numerical optimisation of 

composites manufacturing processes are also identified and suggestions for future steps required to cover 

gaps in the field are offered.  

2 Numerical optimisation methods 

Optimisation methodologies can be broadly classified into two groups: gradient based techniques and 

zero order search methods. An optimisation methodology that tries to reach the minimum or maximum of 

an objective function by using its derivatives is called a gradient based technique. This family of 

techniques can be used successfully when the landscape of the problem is relatively simple, either convex 

or non-convex. In cases in which the landscape is riddled with local minima and/or maxima the success of 

gradient based methods depends strongly on the selection of the initial values of the optimisation 

variables, requiring a priori knowledge of the landscape which is often not available. An example of a 

first order gradient based technique is the steepest descent method, which is based on the fundamental 

property of the gradient of a function to point towards the direction of maximum increase. 

Unlike gradient based techniques, zero order search methods do not require continuity of the 

objective function and of its derivatives. The only requirement is that the objective function can be 

evaluated at any point within the design space selected. These methods use stochastic tools to search for 

the optimal solution and they tend to converge to global optimum points. However, there is no guarantee 

about the strict optimality of the solution obtained. Most often zero order methods are inspired by nature 

and can also be referred to as stochastic algorithms or Evolutionary Strategies (ES). The main benefits of 

using such algorithms are that they can overcome the limitation of gradient based technique of getting 

trapped in local minima and they are not sensitive to initial values of design variables. These methods 

usually start with the generation of a first random set of solutions called population and move towards 

improved sets of solutions at each algorithm iteration (generation) through the evaluation of current 

solutions and the use of stochastic operators. The most widely used evolutionary strategies are Genetic 

Algorithms (GA) [1], Particle Swarm Optimisation (PSO) [2, 3], and Ant Colony Optimisation (ACO) [4, 

5]. GAs are based on natural selection concepts. A population of individuals encoded in a string of bits, 



each representing a solution, forms a generation. At each generation the fitness of every solution is 

assessed based on the optimisation objectives. The best individuals are sent directly to the new generation 

whilst the remaining become part of a tournament routine for the selection of the parents for the 

reproduction of new offspring. Two parents generate a new individual by applying mathematical 

operators that mimic biological processes such as cross-over and mutation. The reproduction process 

stops once the new population is complete and the overall algorithm stops when a certain stop criterion is 

met (i.e. maximum number of generations reached). Fig. 2 represents the operation of a GA that deals 

with multi-objective optimisation problems. PSO is based on mimicking the social behaviour and 

dynamic movements and communication of insects and birds. Each particle in the search space adjusts its 

path in the optimisation space according to its own experience related to the objectives of optimisation as 

well as the experience of other particles. ACO mimics the behaviour of ants when seeking the best path 

between their colony and a resource. Ants that successfully find the resource lay down pheromone trails. 

The path with the strongest pheromone trails leads to the optimal solution and the most likely to be 

followed. In ACO a number of artificial ants build solutions and exchange information about the quality 

of their solution using a variable that operates as the pheromone. The practice of joining two different 

algorithms, e.g. a gradient based and a zero order algorithm, has also been used widely. This is done to 

combine desirable features from each of the methods, e.g. global optimality of an ES solution and fast 

convergence to a local optimal points offered by a gradient based technique. Table 1 reports advantages 

and disadvantages of the two main classes of optimisation techniques. Gradient based techniques have the 

advantage of fast convergence; however, in the case of a landscape riddled with many local minima, they 

are likely to be trapped in one. Zero search methods on the other hand avoid getting trapped in local 

minima and are insensitive to initial conditions; however they are computationally expensive. Gradient 

based techniques can be used when the landscape of the problem is fully known. 

Depending on the number of objectives under study, the problem can be defined as a Single 

Objective (SO) optimisation problem involving one objective, or a Multi Objective (MO) optimisation 

problem which involves two or more objectives. SO optimisation can be set up to account for more than 

one objective at once. This is carried using tailored weighted objective functions in which multiple 

objectives are aggregated in a weighed sum with weights that imply their relative prioritisation. In 

contrast, MO approaches address the full trade-off between optimisation objectives without prescribing 



the results through prioritisation of the objectives leading to a final optimal efficient front expressed as a 

Pareto set of solutions. Fig. 3 illustrates the updating of the Pareto archive in a MO optimisation problem. 

Regarding the filling of the Pareto archive, each non-dominated individual belonging to the current 

generation is compared with individuals already in the Pareto archive. Four different scenarios can occur:  

a) Any individual in the archive dominates the ones in the current generation, therefore, the Pareto 

archive does not change; 

b) An individual is not dominated by any individuals in the archive and it dominates one of them; 

as a consequence it replaces it; 

c) The archive is not full and no dominance occurs then the individual is simply added to the 

archive; 

d) The archive is full and no dominance occurs, then one individual of the pair of individuals with 

the smallest distance in the Pareto archive is replaced by the new individual. The metric distance is 

calculated using an Euclidean norm. 

3 Thermosetting composite manufacturing process optimisation 

The following sections review the research efforts up to date in optimisation of the three stages of 

thermoset composite manufacturing: winding/draping/forming, filling/consolidation and curing. The 

focus is on the type of optimisation approach implemented, the objectives selected and the design 

parameters used. An overview of the optimisation landscape is presented in Fig. 4 summarising the 

objectives addressed in literature for each of the three stages of composite processing. Fig. 5 illustrates a 

time line reporting the milestones in the field of numerical optimisation of composite manufacturing. The 

time line highlights the principal trends followed by the research in this field. The first works in the field 

addressed SO optimisation problems, followed by treatment of competitive objectives simultaneously in a 

MO optimisation framework, with the most recent trend involving consideration of variability in a 

stochastic modelling framework that leads to robust MO optimisation.  

3.1 Process simulation 

Simulation of the processing is a necessary step towards the optimisation of manufacturing. Simulation 

tools have been developed in order to address the solution of each stage of the overall process. The 

winding/draping/forming stage, in which reinforcement is laid on a tool in its final shape, has been treated 



either by using kinematic models which assume inextensible tows that rotate freely at crossover points 

and have only pure shear as the active deformation mechanism [6-9] or by means of Finite Element (FE) 

modelling which can predict the overall  mechanical response of the reinforcement but has the drawback 

of a higher computational cost [10-13]. The filling stage, in which dry fabrics are impregnated with liquid 

resin, has been addressed by solving Darcy’s law which governs the resin flow through porous media [14-

18]. Darcy’s law is as follows: 

�� = −��� ∙ ∇� (1)

where K
~

 is the permeability tensor of the preform which depends on the geometry and architecture of 

the fabric, � is the pressure, � is the viscosity and �� is the velocity vector. 

Consolidation simulation has been used to predict the distribution of the applied pressure on the resin 

and reinforcement and predict the evolution of thickness and fibre volume fraction [19-25]. The curing 

stage, which involves material state change of the matrix from liquid to glass, is a heat transfer problem 

with heat generation due to the chemical reaction occurring in the resin during the process [26-30]. The 

heat generated due to the reaction is quantified using a cure kinetics model of the resin [31, 32]. 

The heat transfer equation to solve the problem is the following: 

����� ���� = ∇(��∇�) + ������ ���� (2)

Here ��, ��� and �� represent the density, specific heat capacity and thermal conductivity of the 

composite, whilst � is the temperature, �� is the density of the resin, ��  the resin volume fraction, ��  the 

total heat generated by the resin and 
����  the reaction rate of the resin.  

 Solution of the heat transfer problem coupled with mechanical analysis has also been addressed in 

literature to predict the generation of process induced stresses and distortion [33-39]. 

3.2 Winding, draping and forming stage optimisation 

Optimisation of the filament winding process has been carried out addressing the winding path and 

pretension. Typical constraints applied are:  target winding angles, no bridging and no slippage. The 

target of the process is to produce fibre paths as closely as possible to a nominal design since poor 

compliance to nominal lay-up values can lead to lower mechanical performance. Fig. 6 shows a time line 



of the optimisation effort on the topic. 

An optimal pre-load tension distribution has been found for the winding of cylindrical and spherical 

pressure vessels using a gradient technique in order to minimise the slippage of fibres [40]. The optimal 

winding path has been determined applying dynamic programming to minimise process time, taking into 

account constraints with respect to maximum winding speed and acceleration [41]. Minimisation of 

winding cost has been carried out by means of a GA and a random search algorithm showing that the GA 

outperforms a random search algorithm solution by bringing a 70% further reduction in process cost [42]. 

MO optimisation of the filament winding process has not been attempted in the literature. 

In forming, optimal holding force profiles have been investigated to minimise the occurrence of 

wrinkling using GAs. Comparison between optimised holding force profiles with uniform force profiles 

showed that optimised profiles result in the elimination or reduction of concentrated buckling of tows [43, 

44]. The optimal in plane tension to minimise wrinkles has been achieved by means of optimal blank 

holders arrangement achieving about 50% reduction in wrinkles formation [45]. The optimisation of 

dimensions of rigid blocks (risers) has been addressed to minimise wrinkles formation during forming 

[46]. The optimal selection of draping starting position and direction for the minimisation of process cost 

and weight has been addressed in the case of a curved C-spar using a gradient based technique showing 

that the minimisation of material consumption leads to minimum process cost, whilst minimisation of 

weight always leads to higher process cost [47]. MO optimisation of draping has been undertaken aiming 

to minimise the maximum absolute shear angle and the average shear angle using a GA using pre-shear, 

drape starting point and draping direction as design parameters [48]. This setup leads to 30% reduction in 

computational time compared to an exhaustive search and a more accurate solution and design space 

exploration [48].  

The research efforts to date on draping/forming and filament winding process optimisation have 

focussed on the process itself. However, the success of stages following draping (i.e. filling and curing) 

depends strongly on the accuracy and quality of the draping stage. As a consequence future research 

optimisation efforts should address the optimisation of draping parameters to minimise filling and curing 

related objectives so that a clear link between stages could be established. 

3.3 Filling stage optimisation for LCM 

The aim of optimising the filling stage of LCM is to achieve satisfactory impregnation of the dry 



reinforcement without compromising the duration of the process, which eventually affects process cost. 

The design parameters are the gate and vent locations, the filling temperature profile and the injection rate 

and pressure. A poor selection of these parameters can lead to process failures or defects that affect part 

quality. Fig. 7 illustrates the time line of the optimisation effort on the topic. 

The optimisation of the filling stage of LCM processing has addressed both quality and cost related 

objectives. Single Objective (SO) optimisation dealing with minimisation of dry spots and micro/macro 

voids has been investigated for Resin Transfer Moulding (RTM) and Resin Injection under Flexible 

Tooling (RIFT). Significant reductions in void content can be achieved throughout the parts when an 

optimised injection rate profile is applied [49]. A distance based fitness function has been implemented to 

improve the filling pattern and to minimise dry spots by finding the optimal number and/or configuration 

of gates and vents [50-52]. Furthermore, cost related objectives such as filling time, have been considered 

in SO optimisation of the RTM process. Optimal gates number and/or locations have been investigated to 

minimise filling time [53-56]. The presence of many local minima in the problem landscape has driven 

the algorithm choice toward nature inspired techniques, mainly GAs. The combination of gradient based 

methods with GAs results in an 85% reduction in computational time compared to GAs alone and almost 

60% reduction in filling time for the filling of a plate with an insert compared to a standard case [53]. The 

optimisation of gate locations for the filling of an uneven plate brought about 50% reduction in filling 

time [55], whilst a gate optimisation combined with a sequential injection strategy resulted in reduction in 

filling time by 85% compared to a standard solution [54]. An optimisation methodology based on the 

Centroidal Voronoi Diagram used to minimise filling time by optimal gate placement achieved about 

90% reduction in number of simulations required at the cost of a 2% increase in filling time compared to 

a GA [56]. The anticipation of the flow pattern becomes very difficult as the complexity of the part 

increases. Incorrect selection of gates and vents can lead to dry spots and voids which in turn lead to 

rejection of the part. The capability of addressing the location of gates and vents at design stage can 

minimise the risk of process failure. 

 However, industrial practice is driven by two factors: cost and quality. The two drivers cannot be 

separated and need to be addressed together. Therefore, attempts to treat the filling problem in a more 

comprehensive way have been made by computing weighted fitness functions accounting for multiple 

objectives [57-64]. Weighted SO fitness functions considering dry spots, voids formation and filling time 



have been used with zero order search algorithms leading to the identification of optimal gate locations 

[60-64]. The optimal vent configuration problem for a given gate configuration has been addressed and 

successfully solved in the presence of disturbances, such as racetracking, using a combinatorial search 

[57] and a map-based exhaustive search [58]. The problem of finding the optimal single gate and multiple 

vents configuration to minimise filling time and dry spots in the presence of racetracking has also been 

addressed leading to a reduction in dry spots of about 45% [59] compared to a fixed gate location [57, 

58]. Minimisation of the through thickness temperature gradient and filling time has been carried out 

using a weighted fitness function to optimise the filling temperature and the resin injection temperature 

achieving reduction of the aggregated objective value by about 30% [65]. A MO optimisation 

methodology has been built for optimising RTM gate locations to minimise both filling time and void 

content successfully identifying the Pareto set and the corresponding efficient front highlighting the 

competitive nature of the objectives selected [66]. Multi objective optimisation of RTM targeting optimal 

gate locations to minimise resin waste and weld line area (i.e. the area originating from two colliding 

resin fronts) alongside filling time and dry spots has been addressed yielding a Pareto set of solutions in 

which filling time and weld line volume are negatively correlated and dry spots and resin wastage are 

positively correlated [67]. Fig. 8 illustrates the efficient set evolution at different generations for a flat 

plate (a) and rib (b) model; a trade-off between filling time (i.e. cost objective) and weld line area (i.e. 

quality objective) exist. A MO methodology linking a GA with a commercial FE solver was developed to 

minimise both filling time and degree of cure at the end of the filling stage by optimising gate locations 

and non-isothermal temperature profiles [68, 69]. The Pareto set showed that reduction of 66% in filling 

time and 15% in degree of cure at the end fillingis possible compared to a standard isothermal filling 

stage [68]. The findings highlight that standard isothermal profile suggested in material datasheet tend to 

be too conservative and as consequence not optimal. The MO optimisation presented points out that 

improved solutions both in terms of process cost and quality exist and the MO framework can uncover 

them. Fig. 9 illustrates the convergence of the efficient set to the final Pareto set. The results show that a 

trade-off between filling time and maximum degree of cure at the end of the filling exists and provides 

the designer with a set of optimal solutions to choose from according to the application.  

Optimal cure profiles to minimise process time accounting for consolidation constraints have been 

identified. Reduction in process time of about 50% compared to a standard profile has been achieved 



[70]. Minimisation of an objective function considering consolidation time and temperature overshoot by 

identification of optimal cure cycles has been performed using a GA, reducing consolidation time by 67% 

compared to a standard cure cycle [71]. A GA has been used to identify optimal pressure profiles to 

minimise the difference from a target fibre volume fraction [72].  

Up to date few works have addressed the problem of the filling stage in a MO setting. The 

results obtained are encouraging, suggesting that there is significant margin for improvement in both 

quality and cost related objectives. In the context of promoting the use of composites in high volume 

production applications analysis, of this type is essential. Future research should focus on this direction. 

In terms of optimisation parameters, the definition of non-isothermal filling profile highlighted that 

standard filling profiles do not exploit fully efficiency opportunities. In addition to this, surface 

convection coefficient should be considered at the design stage and possibly be part of the optimisation 

parameters. Variability has not been taken into account yet. Deterministic models fail to deal with the 

variability of the real industrial practice, therefore stochastic models accounting for permeability and 

viscosity uncertainty should be implemented in a robust optimisation framework.  

3.4 Curing stage optimisation 

3.4.1 Pultrusion process 

The optimisation of the pultrusion process has been addressed mainly as a SO problem. The objectives 

addressed are both cost related, such as process time and energy consumption, and quality related, such as 

minimisation of degree of cure variation across the thickness or residual stress. The constraints adopted 

include the maximum temperature allowed within the part to avoid degradation of the resin and minimum 

degree of cure at the exit of the die. Poorly designed cure cycles can lead to a violent exothermic reaction 

that affects quality of the part and also induce thermal gradients and therefore degree of cure gradients 

through thickness. Fig. 10 presents the time line of the research efforts on pultrusion process. 

A zero order search algorithm has been adopted and combined with a gradient based technique in a 

hybrid scheme to optimise the pulling speed and the temperature profile achieving a reduction in process 

cost of about 30% [73]. The objective of energy consumption minimisation has also been tackled to 

reduce process cost [74, 75]. The optimisation sought optimal die temperatures to minimise energy 

consumption in a dual die pultrusion process, whilst the quality of the manufactured parts was ensured by 

applying a minimum degree of cure variation across the thickness allowed. A swarm particle algorithm 



was adopted for SO optimisation showing that it is possible to minimise energy consumption by lowering 

the temperature of the second heater and exploiting the heat released by the cure reaction triggered with 

the first heater temperature achieving a 25% reduction in energy consumption compared to a standard 

process [74, 75]. Cure cycle optimisation has been carried out under uncertainty showing that minimum 

cure time increases when variability is taken into account [76, 77]. The introduction of variability 

considerations into the optimisation loop is a necessary step toward robust optimisation. Robustness of 

manufacturing processes can only be addressed by implementing stochastic models in a rigorous 

optimisation framework. Understanding uncertainty generation and propagation can prevent process 

failures. Quality related objectives such as uniformity of cure through the thickness or minimum residual 

stresses have been addressed in SO optimisation of the pultrusion process. A gradient based optimiser has 

been used to minimise the degree of cure gradient across the thickness by optimising the pulling speed 

and the temperature profile of heaters placed along the die [78-80]. Introducing die cooling to the 

optimisation led to 75% improvement in cure uniformity compared to standard conditions, whilst 

highlighting that pulling speed and cooling die temperature play an important role in decreasing 

temperature overshoot [80]. Hybrid algorithms combining a GA with a gradient based technique [81] and 

a PSO algorithm [82] have been applied to optimise the heating profile to maximise the uniformity of the 

cure across the thickness achieving 85% [81] and 80% [82] improvement compared to nominal solutions. 

An Artificial Neural Network (ANN) procedure has been used in combination with a GA to select the 

temperature profile and pulling speed to minimise the degree of cure variation across thickness, leading to 

a 50% improvement [83, 84]. An hybrid algorithm has been used to minimise the energy consumption of 

the pultrusion process by selecting  the number of heaters and pulling speed leading to a 120% increase in 

productivity compared to standard processing [85]. Although, it is possible by applying constraints, to 

contain the outcomes of objectives not specifically addressed by the optimisation, SO objective 

optimisation does not address the challenges of the manufacturing process as a whole and its outcomes 

are not optimal trade-offs between them which is the reason why recent research efforts focus on MO 

optimisation and SO optimisation is being abandoned. A MO variant of the problem aiming to identify 

the optimal number of heaters, their dimensions and the temperature profile along the die in order to 

maximise pulling speed and minimise energy consumption subject to maximum temperature and 

minimum final degree of cure constraints has led to 70% reduction in energy consumption and 100% 



increase in pulling speed [86, 87]. The MO problem of maximising pulling speed and degree of cure by 

optimising first and second heater temperature profiles and initial resin temperature has been tackled. A 

surrogate model has been implemented to speed up the computational time. Compared to initial 

configuration a 20% increase in pulling speed and 7% in degree of cure has been reached [88]. In a 

follow-up work, the maximisation of the pulling speed was addressed together with the minimisation of  

the spring-in angle of a C-section, using the previous optimisation parameters. Compared to the initial 

configuration, optimal solutions in the Pareto front led to 18% pulling speed increase and 46% decrease 

in spring-in angle [89]. 

3.4.2 Batch processes 

The optimisation of the cure stage of batch processes such as autoclave and LCM has been addressed 

both as a minimisation problem for cost related objectives (e.g. cure time) and quality related objectives 

(e.g. temperature overshoot or residual stresses). Typical constraints for the batch process optimisation 

are the maximum temperature allowed during the cure and minimum degree of cure reached within the 

part at the end of the process. Fig. 11 presents the time line of the research efforts on batch processes. 

Starting from a recommended cure profile, a near optimal cure profile has been identified using a 

zero order search algorithm for thick composite laminates leading to about 40% reduction in process time 

and also to about 60% reduction in overshoot temperature [90, 91]. The implementation of a gradient 

based technique to the same cure problem results in a further 60% reduction in cure time [92]. Different 

combinations of zero order search algorithms have also been explored to design optimal cure profiles 

minimising process time [93, 94]. SO optimisation of thick components showed that the introduction of a 

three dwell cure profile can bring about a 60%  reduction in process time compared to a two dwell profile 

[95]. The application of optimisation to identify optimal cure profiles becomes critical for increased 

thicknesses [70, 95, 96]. GA and PSO have been implemented to minimise the cure time achieving a 

reduction of about 25% compared to standard profiles [97, 98] whilst the implementation of a GA in 

combination with ANN led to about 40% reduction [99]. 

 Similarly, optimal cure profiles have been sought to minimise residual stresses and temperature 

overshoot. The effect of different cure profiles on residual stress formation has been investigated and 

reduction in residual stresses in the range of 25-30% achieved [100]. Optimal parameters for curing of 



composite laminates to maximise material properties have been identified by means of gradient based 

techniques achieving improvements in the order of 10-20% [101, 102]. Optimal cure profiles to minimise 

residual stresses have been identified using graphical methods and the sensitivity of process stresses to 

cycle parameters achieving reduction of about 30% [103, 104]. The minimisation of residual stress has 

also been tackled by setting SO problems aimed to minimise the temperature gradients in the through 

thickness direction. Different gradient based techniques have been successfully implemented reaching a 

quasi-uniform temperature distribution through the thickness [105, 106].  

Weighted objectives have been used to account for both quality and cost related objectives in the 

process of cure. The optimisation problem constitutes still a SO problem; however, benefits in both 

objectives can be achieved. A weighted fitness function has been designed to account for minimum cycle 

time, maximum final degree of cure and minimum residual stresses [107, 108]. A comparison between 

gradient based techniques and ES to identify optimal cure cycles for the minimisation of a weighted 

fitness functions including cure time and uniformity through the thickness terms showed that the hybrid 

algorithm generates better overall performance in terms of CPU time [109, 110]. Optimal cure cycles 

identified with ES, when variability in the input parameters was considered, led to 80% lower rejection 

rate compared to those with cure cycles not accounting for input variability [111]. A GA optimiser has 

been used with a weighted fitness function taking into account cure time, temperature and cure gradients 

through the thickness to determine optimal cure cycle. Application of the cure cycle found led to 

negligible temperature and degree of through thickness cure gradients [112]. Optimal cure cycle design 

taking into account both cure time and final curvature due to distortion has also been addressed using a 

GA and a weighted objectives function  leading to about 10% reduction in curvature associated with an  

increase in cure time by about 40% [113]. Minimisation of spring-in distortion has been achieved by 

optimising the mould angle using a gradient based optimisation techniques achieving improvements of 

about 80% [114, 115]. SO optimisation through definition of weighted fitness functions requires previous 

knowledge of the landscape of the problem and therefore are limited to the specific applications. MO 

optimisation frees the designer from required a priori knowledge of the process and provides a set of 

optimal solutions that can span different cost/performance applications. 

A MO solution of the curing process has been carried out with a GA considering cure time and 

overshoot temperature as objectives and obtaining a Pareto set including process designs with significant 



benefits in both objectives [116-118]. Fig. 12 shows a typical design landscapes for a cure process. The 

figure shows the complexity of the landscape at hand. The presence of several local minima calls for the 

use of zero order search methods (i.e. GA) to avoid getting trapped in local minima. Also, using a MO 

optimisation framework degree of cure inhomogeneity and curing time has been successfully minimised 

and relevant trade-offs identified [119]. In the case of VARTM processing, the addition of convection 

coefficient as optimisation parameter showed that further improvements can be obtained in terms of 

reduction in process time (30%) and degree of cure gradient through thickness (65%) when insulation is 

applied to the vacuum bag side compared to when standard natural convection is present [120]. The 

optimisation of the ramp up phase of the VARTM process has been undertaken by means of polyline 

temperature patterns to minimise cure time and degree of cure gradient; showing that two (or more) node 

designs are adequate to lead to optimal solutions [121]. A stochastic multi objective optimisation has been 

applied to identify robust Pareto sets containing optimal cure cycle designs able to reduce cure time and 

maximum overshoot temperature by 40% compared to standard solutions whilst reducing variability by 

about 20% [122]. Fig. 13 reports the comparison between deterministic and stochastic Pareto fronts. The 

objectives to minimise are cure time, maximum temperature overshoot and the two corresponding 

variabilities. The addition of variability makes the Pareto front shift toward longer cure time and higher 

temperature overshoot in search of more stable solutions. The findings from MO optimisation and robust 

MO optimisation highlight that cure profile recommended by product datasheets do not lead to optimal 

solutions. 

Research efforts in this area should move towards direct minimisation of residual stresses. With 

regard to optimisation parameters, convection coefficient needs to be part of the design domain as it could 

act as exothermic reaction regulator. The idea of MO optimisation for optimal solutions of the cure 

process is more established compared to the other two stages. Research has also addressed the topic of 

variability and robust optimisation; however, further work is needed on this. The implementation of 

robust MO optimisation will lead to lower part rejection rates and re-manufacture, shorter production 

times and better performance rendering the composite manufacturing practice more reliable, robust and 

environmentally sustainable. 



3.5 Combination with sensing 

Recent trends in the optimisation of composite manufacturing processes include the integration 

of process monitoring with optimisation. Measurements acquired from sensors are utilised to enrich the 

process optimisation loop with data that can reduce uncertainty. The application of an inverse scheme 

based on Markov Chain Monte Carlo (MCMC) integrating flow monitoring data with a surrogate model 

of the filling stage of RTM process led to the online estimation of process outcomes and reduction of their 

uncertainties [123]. A similar methodology aiming at a fast solution of the flow through porous media 

problem coupled a 2D analytical model of the flow through porous media with pressure sensors data 

leading to accurate flow front monitoring, permeability mapping and wash-out prevention [124]. A 

methodology to infer fibre permeability on-line has been developed. Additionally the use of Statistical 

Process Control (SPC) charting technique detects change in local permeability on-line allowing to control 

injection pressure [125]. Surrogate model based optimisations have been implemented to solve the 

draping problem [126] and to allow robust optimisation of the cure process [122]. A Bayesian inverse 

problem has been implemented to improve the probabilistic knowledge of permeability during the RTM 

process. The procedure is able to update on-line the local permeability via inversion of 

measurements/observations achieving optimal control of the process[127]. 

4 Conclusions 

Quality related objectives addressed for the winding/draping/forming stage include maximum shear 

angle, wrinkling, process time and process cost. Draping design parameters optimised include the draping 

direction and starting point, the pre-load tension and the holding force profile. The filling stage quality 

related objectives investigated address voids and dry spots as well as the filling time. The design 

parameters investigated for the filling stage include the injection rate, filling temperature profile and gates 

and vents locations and their numbers. The applied pressure profile has been used as design parameter for 

the consolidation problem. With respect to the cure stage, residual stresses and maximum overshoot 

temperature within the part have been addressed as the quality related objectives to be minimised, whilst 

the minimisation of the cure time has been attempted to minimise cost. Minimisation of spring-in and 

warpage deformation has also been addressed. The design variables considered for curing are the 

temperature profile and pulling speed for the particular case of the pultrusion process.   



The findings presented in this work highlight that multi-objective optimisation is part of the current trends 

in the field of composite manufacturing optimisation. This arises as a natural extension of the research 

work performed on single objective optimisation with constraints or the combination of different 

objectives in a weighted sum. The latter approach has the disadvantages of hindering the effect of each 

objective so that comprehensive conclusions regarding the objectives separately cannot be drawn. Using a 

pure multi-objective setting frees the designer from assigning unknown a priori benefits to the objective 

and allows two or more objectives to compete uncovering the optimal trade-offs governing the problem. 

Implementation of a MO optimisation strategy in standard industrial practice can provide the process 

designer with a complete spectrum of possible design choices to choose from. The Pareto front contains 

optimal design points for different end applications that can be selected depending on the risk preferences 

and process cost versus performance prioritisation associated with it. Furthermore, the complexity of the 

design landscapes, which have been shown to be in general multimodal, drives the selection towards 

nature-inspired algorithms, especially GAs, which have the ability to explore large part of the objective 

space without getting trapped in local minima. Consideration of variability and potential effects on the 

stability of solutions highlights the need to add to the existing framework stochastic analysis of the 

process involving process boundary conditions uncertainty and intrinsic material properties variability. A 

comprehensive description of the phenomena requires integration of stochastic simulation in the 

optimisation loop which will eventually lead to optimal solutions that are both efficient and robust. 
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Figure legend 

Fig. 1 Relationship between process design parameters and defect generation 

Fig. 2 GA functioning 

Fig. 3 Pareto archive update 

Fig. 4 Composite process optimisation objectives landscape 

Fig. 5 Time line depicting the milestones in numerical optimisation of composite manufacturing 

Fig. 6 Time line depicting the research efforts in numerical optimisation of filament winding, draping and 

forming process 

Fig. 7 Time line depicting the research efforts in numerical optimisation of LCM process 

Fig. 8 Fill time and weld line efficient front convergence a) flat plate b) rib model [67] 

Fig. 9 Pareto set at different generations illustrating the trade-off between filling time and maximum 

degree of cure at the end of the filling for a VARTM process [68]  

Fig. 10 Time line depicting the research efforts in numerical optimisation of pultrusion process 

Fig. 11 Time line depicting the research efforts in numerical optimisation of batch processes 

Fig. 12 Design space analysis landscape of the cure process: a) temperature overshoot as a function of 

first dwell temperature and ramp rate; b) process time as a function of first dwell temperature and ramp 

rate [117].

Fig. 13 Pareto front of stochastic and deterministic multi-objective optimisation [122] 



Table legend 

Table 1 Benefits and drawbacks of gradient based technique vs zero search methods 



Fig. 1 Relationship between process design parameters and defect generation 

Table 1 Benefits and drawbacks of gradient based technique vs zero search methods 

Algorithm Benefits Drawbacks 

Gradient based 

 Fast convergence 

 Reaches global minimum 

(dependent on accurate 

initial conditions 

selection) 

 get trapped in local minima 

 highly dependent on initial 

conditions 

 Necessity to know the landscape of 

the problem 

Zero search 

 Avoid local minima 

 Deals with any landscape 

 Insensitive to initial 

conditions 

 Computationally expensive 

 Does not guarantee the reaching of 

global minimum  

Filling/Consolidation 
stage

Curing stage 

Winding/Draping/Forming 
stage

Filling design parameters:
• Injection rate/pressure
• Mould filling temperature profile
• Gates/vents locations
• Gates/vents numbers
• Pressure profile

Winding/Draping/Forming 
design parameters:
• Pre-load tension
• Holding force profile
• Pre-shear
• Direction
• Starting point

Curing design parameters:
• Pulling speed
• Temperature profile
• Tool geometry

Shear deformation

Wrinkles

Fibre volume 
fraction/Thickness 

variation

Dry spots

Voids

Resin rich area
Permeability 

variation

Residual stresses
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Misalignment

Thermal properties 
variation





Fig. 2 GA functioning 

Fig. 3 Pareto archive update 
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Fig. 4 Composite process optimisation objectives landscape 

Thermoset composite processes objectives addressed

Winding/Draping/Forming stage Filling stage

Single-objective:

Filament winding
• Process time
• Process cost
• Slippage
• Weight
Forming
• Wrinkling
Draping
• Weight

Multi-objective:

Draping
• Maximum shear 

angle/Average shear 
angle

Single-objective:

LCM process
• Filling time
• Voids
• Dry spots

Multi-objective:

LCM process
• Voids/Filling time
• Dry spots/Wasted 

resin
• Filling time/Weld 

line
• Filling time/End 

filling degree of 
cure

Curing stage

Single-objective:

Pultrusion/Batch processes
• Process time
• Process cost
• Energy consumption
• Residual stresses
• Cure uniformity
• Spring-in

Multi-objective:

Pultrusion
• Pulling speed/Energy 

consumption
Batch processes
• Cure time/Temperature 

overshoot



Fig. 5 Time line depicting the milestones in numerical optimisation of composite manufacturing 

Fig. 6 Time line depicting the research efforts in numerical optimisation of filament winding, draping and 
forming process 

1994 – First SO 
optimisation work on 
filling [64]

1995 – First SO 
optimisation work on 
draping [40]

1993 – First SO 
optimisation work on curing 
in batch process [100]

2002 – First SO 
optimisation work on curing 
in pultrusion [73, 78]

2006 – First and only 
MO optimisation 
work on draping [48]

2006 – Introduction of 
uncertainties consideration in 
pultrusion optimisation [76]2012 – First MO optimisation 

work on curing in batch 
process [116]

2009 – First MO 
optimisation work on 
filling [66]

2018 – First MO 
robust optimisation 
work [122]

2013 – First MO optimisation 
work on curing in pultrusion
[86]

2003 – Filament 
winding: SO Cost 
optimisation [42]

1995 – Filament winding: 
Optimal pre-load tension to 
minimise fibre slippage [40]

2006 – Filament winding: 
Optimal winding path to 
minimise process time [41]

2006 – Forming: Optimal 
holding force profile to 
minimise wrinkle formation 
[43, 44]

2006 – Draping: MO 
optimisation of woven 
composite [48]

2010 – Draping: SO 
Cost/Weight 
optimisation [47]

2015 – Forming: Optimal 
plane tension to minimise 
wrinkles [45]

2018 – Forming: Optimal 
risers dimension to 
minimise wrinkles [46]



Fig. 7 Time line depicting the research efforts in numerical optimisation of LCM process 

Fig. 8 Fill time and weld line efficient front convergence a) flat plate b) rib model [67] 

1997 – RTM: Optimal filling 
and resin injection temperature 
to minimise filling time [65]

1994 – SO Gate 
location optimisation 
in LCM [64]

2002-2004 – RTM: gate and vent 
optimisation to minimise filling time/dry 
spots. SO weighted functions [57-60]

2000 – RTM: gate 
optimisation to minimise 
filling time [55]

1999-2001 – RTM:  gate optimisation to 
minimise filling time/dry spots. SO 
weighted functions [61-63]

2002-2004 – RTM: Optimal 
filling pattern to minimise dry 
spots [50, 52]

2006 – RTM: Injection flow 
optimisation to minimise 
micro-macro voids [49]

2009-2019 – (VA)RTM: MO 
optimisation quality/cost objectives 
[66-69]

2016 – RTM: Centroidal voronoi
diagram to find optimal gate 
locations [56]

2007 – RIFT: Optimal 
flow pipe arrangement 
[51]

2007 – LCM: Optimal gates 
number and location to minimise 
filling time [53]

2002 – RTM: Sequential 
injection strategy to minimise 
filling time [54]

1996 – Consolidation 
of thick laminates [71]

2009 – Optimal pressure 
profile to obtain desired Vf

[72]



Fig. 9 Pareto set at different generations illustrating the trade-off between filling time and maximum 
degree of cure at the end of the filling for a VARTM process [68]  

Fig. 10 Time line depicting the research efforts in numerical optimisation of pultrusion process 
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2007– Heating profile 
optimisation to maximise cure 
degree uniformity [81]

2004-2006 – Cure cycles 
optimisation under uncertainty to 
minimise process time [76, 77] 2009 – Optimal curing profiles 

to minimise energy 
consumption [74]

2013-2017 – MO 
optimisation with quality/cost 
objectives [86-89]

2010-2012 – Optimal temperature 
profile and pulling speed to minimise 
cure degree variation [83, 84]

2013 – Optimal number of heaters 
and pulling speed to minimise 
energy consumption [85]

2002 – Pulling speed/die heaters 
optimisation to minimise cure 
degree gradient [73, 78]

2003 – Simultaneous optimisation of 
pulling speed and die-heating to 
minimise cure degree gradient [79]

2003 – pre-heating and die-cooler 
additional optimisation parameters 
considered [80]

2018 – Heating profile 
optimisation to maximise 
cure degree uniformity [82]

2015 – Optimal curing profiles to 
minimise energy consumption 
[75]



Fig. 11 Time line depicting the research efforts in numerical optimisation of batch process 

(a) (b) 

Fig. 12 Design space analysis landscape of the cure process: a) temperature overshoot as a function of 
first dwell temperature and ramp rate; b) process time as a function of first dwell temperature and ramp 

rate [117]. 

1994-1997 – Optimal 
cure cycle to minimise 
cure time [90-92]

1998-2000 – Graphical methods to 
minimise residual stresses  [103, 104]

2001 – Optimal cure cycles for 
thick laminates to minimise 
cure time [95, 96]

2012-2019 – MO optimisation 
quality/cost objectives [116-122]

2017 – Optimal cure cycles to 
minimise cure time/final 
curvature (Weighted fitness 
function) [113]

1993-1995 – Optimal cure 
cycle to minimise residual 
stresses [100] and maximum 
material properties [101]

2002-2006 – Optimal cure cycles 
to minimise weighted fitness 
functions (quality/cost) [107-111]

2002 – Shape 
optimisation [115]

2003-2004 – Optimal 
cure cycles to minimise 
cure time [94, 98] 2011 – Optimal cure cycles to 

minimise process time [93]

2012 – Optimal cure cycles to 
minimise temperature gradient 
[106]

2014 – Optimal cure cycles to 
minimise cure induced distortion 
[114] and cure time [97] 

2015 – Optimal cure cycles to 
minimise cure time/cure 
degree gradient (Weighted 
fitness function) [112]



Fig. 13 Pareto front of stochastic and deterministic multi-objective optimisation [122] 


