1,721 research outputs found

    Evolutionary multiobjective optimization of the multi-location transshipment problem

    Full text link
    We consider a multi-location inventory system where inventory choices at each location are centrally coordinated. Lateral transshipments are allowed as recourse actions within the same echelon in the inventory system to reduce costs and improve service level. However, this transshipment process usually causes undesirable lead times. In this paper, we propose a multiobjective model of the multi-location transshipment problem which addresses optimizing three conflicting objectives: (1) minimizing the aggregate expected cost, (2) maximizing the expected fill rate, and (3) minimizing the expected transshipment lead times. We apply an evolutionary multiobjective optimization approach using the strength Pareto evolutionary algorithm (SPEA2), to approximate the optimal Pareto front. Simulation with a wide choice of model parameters shows the different trades-off between the conflicting objectives

    Racing Multi-Objective Selection Probabilities

    Get PDF
    In the context of Noisy Multi-Objective Optimization, dealing with uncertainties requires the decision maker to define some preferences about how to handle them, through some statistics (e.g., mean, median) to be used to evaluate the qualities of the solutions, and define the corresponding Pareto set. Approximating these statistics requires repeated samplings of the population, drastically increasing the overall computational cost. To tackle this issue, this paper proposes to directly estimate the probability of each individual to be selected, using some Hoeffding races to dynamically assign the estimation budget during the selection step. The proposed racing approach is validated against static budget approaches with NSGA-II on noisy versions of the ZDT benchmark functions

    Guest editorial: Memetic computing in the presence of uncertainties

    Get PDF
    Copyright @ Springer-Verlag 2010.The Guest Editors acknowledge the research support by the Academy of Finland, Akatemiatutkija 130600, Algorithmic Design Issues in Memetic Computing, and by the UK Engineering and Physical Sciences Research Council (EPSRC) Project: Evolutionary Algorithms for Dynamic Optimisation Problems, under Grant EP/E060722/1

    Regularity Model for Noisy Multiobjective Optimization

    Get PDF
    Regularity models have been used in dealing with noise-free multiobjective optimization problems. This paper studies the behavior of a regularity model in noisy environments and argues that it is very suitable for noisy multiobjective optimization. We propose to embed the regularity model in an existing multiobjective evolutionary algorithm for tackling noises. The proposed algorithm works well in terms of both convergence and diversity. In our experimental studies, we have compared several state-of-the-art of algorithms with our proposed algorithm on benchmark problems with different levels of noises. The experimental results showed the effectiveness of the regularity model on noisy problems, but a degenerated performance on some noisy-free problems

    Interval-based ranking in noisy evolutionary multiobjective optimization

    Get PDF
    As one of the most competitive approaches to multi-objective optimization, evolutionary algorithms have been shown to obtain very good results for many realworld multi-objective problems. One of the issues that can affect the performance of these algorithms is the uncertainty in the quality of the solutions which is usually represented with the noise in the objective values. Therefore, handling noisy objectives in evolutionary multi-objective optimization algorithms becomes very important and is gaining more attention in recent years. In this paper we present ?-degree Pareto dominance relation for ordering the solutions in multi-objective optimization when the values of the objective functions are given as intervals. Based on this dominance relation, we propose an adaptation of the non-dominated sorting algorithm for ranking the solutions. This ranking method is then used in a standardmulti-objective evolutionary algorithm and a recently proposed novel multi-objective estimation of distribution algorithm based on joint variable-objective probabilistic modeling, and applied to a set of multi-objective problems with different levels of independent noise. The experimental results show that the use of the proposed method for solution ranking allows to approximate Pareto sets which are considerably better than those obtained when using the dominance probability-based ranking method, which is one of the main methods for noise handling in multi-objective optimization

    Multiobjective Simulation Optimization Using Enhanced Evolutionary Algorithm Approaches

    Get PDF
    In today\u27s competitive business environment, a firm\u27s ability to make the correct, critical decisions can be translated into a great competitive advantage. Most of these critical real-world decisions involve the optimization not only of multiple objectives simultaneously, but also conflicting objectives, where improving one objective may degrade the performance of one or more of the other objectives. Traditional approaches for solving multiobjective optimization problems typically try to scalarize the multiple objectives into a single objective. This transforms the original multiple optimization problem formulation into a single objective optimization problem with a single solution. However, the drawbacks to these traditional approaches have motivated researchers and practitioners to seek alternative techniques that yield a set of Pareto optimal solutions rather than only a single solution. The problem becomes much more complicated in stochastic environments when the objectives take on uncertain (or noisy ) values due to random influences within the system being optimized, which is the case in real-world environments. Moreover, in stochastic environments, a solution approach should be sufficiently robust and/or capable of handling the uncertainty of the objective values. This makes the development of effective solution techniques that generate Pareto optimal solutions within these problem environments even more challenging than in their deterministic counterparts. Furthermore, many real-world problems involve complicated, black-box objective functions making a large number of solution evaluations computationally- and/or financially-prohibitive. This is often the case when complex computer simulation models are used to repeatedly evaluate possible solutions in search of the best solution (or set of solutions). Therefore, multiobjective optimization approaches capable of rapidly finding a diverse set of Pareto optimal solutions would be greatly beneficial. This research proposes two new multiobjective evolutionary algorithms (MOEAs), called fast Pareto genetic algorithm (FPGA) and stochastic Pareto genetic algorithm (SPGA), for optimization problems with multiple deterministic objectives and stochastic objectives, respectively. New search operators are introduced and employed to enhance the algorithms\u27 performance in terms of converging fast to the true Pareto optimal frontier while maintaining a diverse set of nondominated solutions along the Pareto optimal front. New concepts of solution dominance are defined for better discrimination among competing solutions in stochastic environments. SPGA uses a solution ranking strategy based on these new concepts. Computational results for a suite of published test problems indicate that both FPGA and SPGA are promising approaches. The results show that both FPGA and SPGA outperform the improved nondominated sorting genetic algorithm (NSGA-II), widely-considered benchmark in the MOEA research community, in terms of fast convergence to the true Pareto optimal frontier and diversity among the solutions along the front. The results also show that FPGA and SPGA require far fewer solution evaluations than NSGA-II, which is crucial in computationally-expensive simulation modeling applications

    Elite Accumulative Sampling Strategies for Noisy Multi-Objective Optimisation

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-15892-1_128th International Conference on Evolutionary Multi-Criterion Optimization 2015, Guimarães, Portugal, 29 March - 1 April 1 2015The codebase for this paper is available at https://github.com/fieldsend/EMO_2015_eliteWhen designing evolutionary algorithms one of the key concerns is the balance between expending function evaluations on exploration versus exploitation. When the optimisation problem experiences observational noise, there is also a trade-off with respect to accuracy refinement – as improving the estimate of a design’s performance typically is at the cost of additional function reevaluations. Empirically the most effective resampling approach developed so far is accumulative resampling of the elite set. In this approach elite members are regularly reevaluated, meaning they progressively accumulate reevaluations over time. This results in their approximated objective values having greater fidelity, meaning non-dominated solutions are more likely to be correctly identified. Here we examine four different approaches to accumulative resampling of elite members, embedded within a differential evolution algorithm. Comparing results on 40 variants of the unconstrained IEEE CEC’09 multi-objective test problems, we find that at low noise levels a low fixed resample rate is usually sufficient, however for larger noise magnitudes progressively raising the number of minimum resamples of elite members based on detecting estimated front oscillation tends to improve performance

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system
    • …
    corecore