1,056 research outputs found

    Comparing an evolved finite state controller for hybrid system to a lookahead design

    Get PDF

    An Analysis Review: Optimal Trajectory for 6-DOF-based Intelligent Controller in Biomedical Application

    Get PDF
    With technological advancements and the development of robots have begun to be utilized in numerous sectors, including industrial, agricultural, and medical. Optimizing the path planning of robot manipulators is a fundamental aspect of robot research with promising future prospects. The precise robot manipulator tracks can enhance the efficacy of a variety of robot duties, such as workshop operations, crop harvesting, and medical procedures, among others. Trajectory planning for robot manipulators is one of the fundamental robot technologies, and manipulator trajectory accuracy can be enhanced by the design of their controllers. However, the majority of controllers devised up to this point were incapable of effectively resolving the nonlinearity and uncertainty issues of high-degree freedom manipulators in order to overcome these issues and enhance the track performance of high-degree freedom manipulators. Developing practical path-planning algorithms to efficiently complete robot functions in autonomous robotics is critical. In addition, designing a collision-free path in conjunction with the physical limitations of the robot is a very challenging challenge due to the complex environment surrounding the dynamics and kinetics of robots with different degrees of freedom (DoF) and/or multiple arms. The advantages and disadvantages of current robot motion planning methods, incompleteness, scalability, safety, stability, smoothness, accuracy, optimization, and efficiency are examined in this paper

    Towards a generic optimal co-design of hardware architecture and control configuration for interacting subsystems

    Get PDF
    In plants consisting of multiple interacting subsystems, the decision on how to optimally select and place actuators and sensors and the accompanying question on how to control the overall plant is a challenging task. Since there is no theoretical framework describing the impact of sensor and actuator placement on performance, an optimization method exploring the possible configurations is introduced in this paper to find a trade-off between implementation cost and achievable performance. Moreover, a novel model-based procedure is presented to simultaneously co-design the optimal number, type and location of actuators and sensors and to determine the corresponding optimal control architecture and accompanying control parameters. This paper adds the optimization of the control architecture to the current state-of-the-art. As an optimization output, a Pareto front is presented, providing insights on the optimal total plant performance related to the hardware and control design implementation cost. The proposed algorithm is not focused on one particular application or a specific optimization problem, but is instead a generally applicable method and can be applied to a wide range of applications (e.g., mechatronic, electrical, thermal). In this paper, the co-design approach is validated on a mechanical setup

    State-of-the-art in control engineering

    Get PDF
    AbstractThe paper deals with new trends in research, development and applications of advanced control methods and structures based on the principles of optimality, robustness and intelligence. Present trends in the complex process control design demand an increasing degree of integration of numerical mathematics, control engineering methods, new control structures based of distribution, embedded network control structure and new information and communication technologies. Furthermore, increasing problems with interactions, process non-linearities, operating constraints, time delays, uncertainties, and significant dead-times consequently lead to the necessity to develop more sophisticated control strategies. Advanced control methods and new distributed embedded control structures represent the most effective tools for realizing high performance of many technological processes. Main ideas covered in this paper are motivated namely by the development of new advanced control engineering methods (predictive, hybrid predictive, optimal, adaptive, robust, fuzzy logic, and neural network) and new possibilities of their SW and HW realizations and successful implementation in industry

    Design, modelling, simulation and integration of cyber physical systems: Methods and applications

    Get PDF
    The main drivers for the development and evolution of Cyber Physical Systems (CPS) are the reduction of development costs and time along with the enhancement of the designed products. The aim of this survey paper is to provide an overview of different types of system and the associated transition process from mechatronics to CPS and cloud-based (IoT) systems. It will further consider the requirement that methodologies for CPS-design should be part of a multi-disciplinary development process within which designers should focus not only on the separate physical and computational components, but also on their integration and interaction. Challenges related to CPS-design are therefore considered in the paper from the perspectives of the physical processes, computation and integration respectively. Illustrative case studies are selected from different system levels starting with the description of the overlaying concept of Cyber Physical Production Systems (CPPSs). The analysis and evaluation of the specific properties of a sub-system using a condition monitoring system, important for the maintenance purposes, is then given for a wind turbine
    corecore