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Abstract

In plants consisting of multiple interacting subsystems, the decision on how to optimally select

and place actuators and sensors and the accompanying question on how to control the overall plant

is a challenging task. Since there is no theoretical framework describing the impact of sensor and

actuator placement on performance, an optimization method exploring the possible configurations is

introduced in this paper to find a trade-off between implementation cost and achievable performance.

Moreover, a novel model-based procedure is presented to simultaneously co-design the optimal

number, type and location of actuators and sensors and to determine the corresponding optimal

control architecture and accompanying control parameters. This paper adds the optimization of the

control architecture to the current state-of-the-art. As an optimization output, a Pareto front is

presented, providing insights on the optimal total plant performance related to the hardware and

control design implementation cost.

The proposed algorithm is not focused on one particular application or a specific optimization

problem, but is instead a generally applicable method and can be applied to a wide range of applica-

tions (e.g., mechatronic, electrical, thermal). In this paper, the co-design approach is validated on a

mechanical setup.
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1. Introduction

1.1. Different co-design components

Many industrial plants can be represented by a set of subsystems, connected through physical in-

teractions. The overall design of these systems involves two main challenges, hence the term ’combined

design’ or ’co-design’. This involves the selection of the optimal hardware architecture (being sensor5

& actuator selection & placement) and the optimal control configuration (being control architecture

and controller tuning parameters), as can be seen in Figure 1. This terminology is widely used in

literature ([1, 2, 3, 4, 5]) and is consistently used throughout this paper.

Figure 1: Overview of the nomenclature used for the different parts of the total plant composition optimiza-

tion.

1.2. Need for simultaneous co-design

Traditionally, the hardware architecture and control configuration designs are treated sequentially10

and are therefore entirely separated from each other [6]. First, mechanical engineers design a physical

setup, corresponding with the structural objectives on, for instance, weight, inertia or strength. Next,

the position of the actuators and sensors in the system is determined, and these actuators and sen-

sors are dimensioned. Subsequently, control engineers design a control system for the fixed physical

structure based on the given inputs and outputs of actuators and sensors, satisfying a different set15

of objectives, such as settling time, reference tracking properties or robustness to disturbances. This

sequential design approach is intuitive to implement but suffers from several problems when applied

to more sophisticated applications.

First, there is usually a tight interdependency between the control configuration and sensor & ac-

tuator selection & placement parameters. Moreover, the hardware selection & placement can limit the20

design space of the controller and hence the optimal achievable control performance. In many cases, it

is hard to predict the distinct impact of these design properties on the overall plant performance. It is,

for example, often unclear what the effect is on the overall plant performance when a specific actuator

or sensor is left out or sized differently on a subsystem level. Therefore, the hardware engineers have

to make assumptions regarding the control configuration, after which the control engineers have to25
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stick to the hardware architecture created by the hardware engineers. This sequential approach might

not lead to the most efficient or optimal design. Since modern plants are becoming increasingly more

complex and the resources are always constrained by cost and space, a resource-efficient design has

become an increasingly important issue [7].

Second, in the case of sequential design, the incorporation of the needs of both mechanical and30

control engineers becomes even more complicated as the size of the system gets larger. This results

in sub-optimal designs and considerable integration, test and validation efforts. Therefore, there is a

rising demand for systematic and comprehensive co-design methods to accomplish both the optimal

hardware architecture and control configuration [7]. This means that a generically applicable proce-

dure has to be developed in which both the placement and selection of the actuators and sensors have35

to be carried out, as well as the simultaneous determination of the control architecture and associated

control parameters. This will enable the end user to gain a better understanding of the inevitable

trade-off between cost and performance.

1.3. Multi-objective optimization

It is clear that a simultaneous co-design of both hardware architecture and control configuration40

can result in a more efficient design process, taking into account multiple (conflicting) objectives.

These objectives are always related to a trade-off between cost and performance. To a limited de-

gree, efforts have been made to implement a multi-objective co-design of control configuration and

hardware architecture in electromechanical systems, but in these cases, it is always assumed that the

control architecture is fixed. For example, an optimization problem with a small number of design45

variables describing the suspension geometry of a hard disc and its corresponding control parameters

was formulated in [8]. The result is an optimization of the design variables of a hard disc suspension

geometry and the controller feedback gains through the use of the Linear Quadratic Regulator (LQR)

method. Similarly, the co-design of control parameters and the geometrical properties of machine

tools (using a multilevel decomposition), parallel robots (using a differential evolution algorithm) and50

a four-bar system (using a Genetic Algorithm) was detailed in [6], [9] and [10], respectively. A design

method for the sequential optimization of the mechanical structure and the control parameters for a

two-link high-speed robot is developed in [11]. In that paper, optimal feedback gains minimizing the

settling time are obtained as functions of the structural parameters describing the arm link geometry.

These structural parameters are then optimized using a gradient projection method in order to acquire55

an overall optimal performance. A co-design optimization for a combined passive/active automotive

suspension for a quarter-car model was executed in [12]. In that case, the controller feedback gains,

as well as the physical variables (passive stiffness and damping coefficients), were optimized for an ob-

jective incorporating sprung mass acceleration, tire deflection, suspension stroke and maximum active
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control force. More recently, research on the multi-objective optimization of a product’s disassembly60

sequence planning has been conducted. For this purpose, a hybrid intelligent algorithm integrating

fuzzy simulation and an artificial bee colony optimization is proposed in [13]. Moreover, an artificial

bee colony algorithm is also used in [14] to maximize the profit and minimize the energy consumption

of a product’s disassembly sequence.

Other examples of multi-objective optimizations can be found in [15, 16, 17, 18, 19, 20]. All of65

the co-design examples mentioned above are limited in the sense that they can only deal with a

fixed control architecture. Furthermore, they are focused on one particular application or a specific

optimization problem and therefore lack universal applicability. In contrast, the approach described

in this paper is a generally applicable method, capable of optimizing the control architecture itself as

part of the control configuration optimization.70

1.4. Different control architectures

Concerning the control configuration for systems consisting of multiple subsystems, there are three

general control architecture methods, being centralized, decentralized and distributed control (see Fig-

ure 2). With centralized control, all subsystems are manipulated using only one central controller. The

use of a completely centralized controller becomes infeasible as the number of subsystems increases.75

Decentralized control uses an individual controller unit for every subsystem without interaction be-

tween these controllers. In between centralized and decentralized control, distributed control can be

implemented. Here, the control tasks are mapped on different processing units while control data is

transferred between the controllers using a communication system [7]. [21] provides an overview and

classification of decentralized, distributed and hierarchical control architectures for large-scale sys-80

tems. Comparison of these methods has been extensively described in [22]. The conclusions tend to

favour distributed control, which involves local information exchange between subsystem controllers

[23].

1.5. Control structure optimization (without hardware architecture optimization)

In the following examples, the control configuration is optimized, but no hardware architecture85

optimization is performed. In [24], the differences between centralized and decentralized control for

the Airbus A320 longitudinal and lateral dynamics are investigated. The optimal control architecture

(centralized ↔ decentralized ↔ distributed) was also examined for a spatial six-degree-of-freedom

electro-hydraulic parallel robot [25]. In [26], a distributed Model Predictive Control (MPC) method

was presented and compared with centralized and decentralized MPC for a sextuple water tank system.90

Results show that the optimal control method depends on the extent to which the model is identified

and whether reference tracking or disturbance rejection is preferred.
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Figure 2: Schematic overview of a system consisting of four interacting subsystems (a) with one centralized

controller, (b) with four decentralized controllers, one for each subsystem, (c) with distributed

controllers. The communication system used for the information exchange between the controllers

is highlighted in blue.
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1.6. Co-design with fixed control architecture

As far as the co-design of hardware architecture and control configuration is concerned, in current

literature, only the control parameters are optimized as part of the control configuration optimization,95

while the control architecture is always assumed fixed. There are, however, many control architec-

ture features which are very often used in industrial motion control and for which (to the author’s

knowledge) no other work is found that considers changing control architectures. This is a sub-

stantial disadvantage as the optimization of the control architecture has the potential to generate a

considerable gain in performance. The optimization algorithm presented in this paper also allows to100

simultaneously optimize the control architecture (together with the control parameters) as part of the

control configuration optimization. This results in a very powerful tool that is capable of performing

a profound co-design of hardware architecture and control configuration.

1.7. A Genetic Algorithm meets the optimization problem requirements

A possible algorithm that can cope with the optimization requirements is a Genetic Algorithm105

(GA) [27]. As for many optimizing algorithms, a Genetic Algorithm searches for an optimal solution

by minimizing a fitness value, which is calculated based on a user-specific objective function. The

objective function can be programmed freely according to, for instance, settling time, tracking error,

energy consumption, vibrations, or a weighted combinations of these objectives. A disadvantage of

using a GA is the relatively long computational time. During the optimization, non-linear constraints110

can be taken into consideration. These non-linear constraints can be programmed in agreement with,

for example, hardware cost, maximum actuator output, control complexity or (full) state constraints.

In [28, 29, 30], the full state constraints on a class of strict-feedback non-linear systems are handled

using an adaptive fuzzy control with barrier Lyapunov functions (BLF).

Genetic Algorithms have been successfully applied to determine optimal controller settings. [31]115

used a GA to define the optimal LQR settings to control an inverted pendulum, while [32] used

the same methodology for a quarter-car MacPherson strut suspension. A GA can also be used to

optimize H∞ control, as shown for a quarter-car model in [33]. [34] used a GA to optimally tune

a fractional-order PID-controller to manage an automatic voltage regulator system. Other examples

of the implementation of a Genetic Algorithm to optimize feedback gains can be found for (quarter)120

car active suspension control [35, 36], multi-machine power systems [37], (double-parallel) inverted

pendulum systems [38] or hovercraft control [39]. The papers mentioned above applied the Genetic

Algorithm only to determine the optimal feedback gains. A Genetic Algorithm can also be used to

optimize the trajectory for single-axis mechanisms performing repetitive tasks [40].

Moreover, [41] applied a Genetic Algorithm to define the optimal placement of an actuator/sensor125

pair for a simple cantilever beam, which is a common element of large flexible structures or robotic
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arms. This was done by moving transmission zeros as far as possible to the left in the left-half plane.

Once the Genetic Algorithm found the optimal location for the actuator/sensor pair, the closed-loop

response of the system was improved by using another Genetic Algorithm to design the optimal digital

controllers. In [42], a dynamic programming algorithm is used to control a hybrid power train system130

in a hybrid hydraulic excavator under different system parameters, after which a Genetic Algorithm

is employed to acquire the power train system parameters for optimal energy consumption. The last

two examples are however sequential co-design methods.

1.8. Additions to the current state-of-the-art

In this paper, a novel optimization procedure is elaborated to use a Genetic Algorithm to simul-135

taneously determine the optimal location, type and number of sensors and actuators, together with

the control loop architecture and its optimal control parameters. The greatest novelty in this work

lies in the possibility of optimizing the control loop architecture as part of the simultaneous co-design.

This generic optimization algorithm is demonstrated on a model of a mechanical synchronization ap-

plication. It shows that the optimization algorithm is capable of simultaneously optimizing both the140

actuator & sensor selection & placement, as well as the control architecture and control parameters.

In order to verify the control parameter optimization as part of the co-design, the comparison is made

with the conventional Linear Quadratic Regulator (LQR) method [43]. With this LQR method, con-

trol parameters are obtained for which the maximum permitted actuator forces are always exceeded.

One of the reasons for this is that no constraints can be defined with LQR optimization. This is not145

the case when optimizing the control parameters using the proposed novel optimization algorithm.

This shows that the algorithm is able to make optimal use of the available actuator force. In this

paper, the optimization is demonstrated on an LTI state-space system representing a mechanical syn-

chronization model, but the proposed methodology is certainly not limited to LTI state-space systems,

as also non-linear and LPV systems can be dealt with.150

1.9. Section overview

The paper is organized as follows. Section 2 describes how the presence or absence of actuators and

sensors can be determined in state-space systems, as part of the hardware architecture optimization.

Next, section 3 details the control configuration optimization, which consists of both the control

architecture and the control parameter optimization. Section 4 specifies essential differences between155

various optimization methods and justifies the use of a Genetic Algorithm for this multi-objective

and discontinuous optimization problem. Section 5 details the specific use of a Genetic Algorithm to

co-design the hardware architecture and the control configuration. This co-design is illustrated on a
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synchronization application, as described in Section 6. Finally, conclusions and a discussion on future

work are formulated in Section 7.160

2. Hardware Architecture Optimization

A state-space representation can be used to describe a Linear Time-Invariant (LTI) system, as

formulated in (1), with n being the number of states in the original state vector x, m being the number

of outputs in the initial output vector y and l being the maximum number of available actuator inputs

from input vector u. To define the presence or absence of an actuator, ‘actuator placement binaries’

bact... ∈ [0, 1] are used for every possible actuator location. Bact groups these binaries into a diagonal

matrix. This can be seen in (2), where I is an identity matrix with dimension l, multiplied with an

array of the actuator placement binaries using an element-wise array multiplication (◦) (also known

as a Hadamard product [44], Schur product [45] or entrywise product [46]). As a consequence, Bact

is a diagonal matrix with dimensions l× l. Equation 3 shows how these binaries bact... define whether

an actuator will affect the LTI state-space system input, or not. The actuators possibly introduce

mass dynamics properties into the system, which are reflected in the system matrix A. Therefore, the

system matrix A is adjusted to A′ based on the actuator placement binaries and the accompanying

dynamics of the included or excluded actuators.

SSsys =

ẋ = A · x + B · u

y = C · x + D · u
,with x ∈ Rn , u ∈ Rl , y ∈ Rm (1)

Bact = I ◦ [bact1 bact2 ... bactl]
T (2)

ẋ = A′x + BBactu

=


A′1,1 A′1,2 · · · A′1,n

A′2,1 A′2,2 · · · A′2,n
...

...
. . .

...

A′n,1 A′n,2 · · · A′n,n




x1

x2
...

xn

 +


B1,1 B1,2 · · · B1,l

B2,1 B2,2 · · · B2,l

...
...

. . .
...

Bn,1 Bn,2 · · · Bn,l




bact1 0 · · · 0

0 bact2 · · · 0

...
...

. . .
...

0 0 · · · bactl




u1

u2

...

ul



=


A′1,1 A′1,2 · · · A′1,n

A′2,1 A′2,2 · · · A′2,n
...

...
. . .

...

A′n,1 A′n,2 · · · A′n,n




x1

x2
...

xn

 +


B1,1 B1,2 · · · B1,l

B2,1 B2,2 · · · B2,l

...
...

. . .
...

Bn,1 Bn,2 · · · Bn,l




bact1u1

bact2u2

...

bactlul



(3)

Similarly, the presence or absence of a sensor is represented by using ‘sensor placement binaries’

bsen... ∈ [0, 1]. Only the physical sensor presence or absence is used. No virtual sensing techniques
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are applied in this paper. The sensor placement binaries are grouped in a matrix Csen. This can be

seen in (4), where I is an identity matrix with dimension m, multiplied with an array of the sensor

placement binaries using an element-wise array multiplication (◦). Conventionally, the output vector

of a state-space system is appointed as y. The sparse rows from Csen are deleted and therefore Csen

has dimensions m′×m, where m′ is variable and is depending on which sensors are active. In this way,

Csen determines which of the output signals from the original state-space system are available to be

used as feedback signals, in correspondence with which sensors are active or not. As a consequence,

Equation 5 shows how binaries bsen... ensure what signals from the output equation are selected to

close the feedback loop. These feedback signals are indicated as y′.

Csen = I ◦ [bsen1 bsen2 ... bsenm]T (4)

y′ = Cseny

= Csen (Cx + DBactu)

=


bsen1 0 · · · 0

0 bsen2 · · · 0

...
...

. . .
...

0 0 · · · bsenm

 · ...

...




C1,1 C1,2 · · · C1,n

C2,1 C2,2 · · · C2,n

...
...

. . .
...

Cm,1 Cm,2 · · · Cm,n




x1

x2
...

xn

 +


D1,1 D1,2 · · · D1,l

D2,1 D2,2 · · · D2,l

...
...

. . .
...

Dm,1 Dm,2 · · · Dm,l




bact1 0 · · · 0

0 bact2 · · · 0

...
...

. . .
...

0 0 · · · bactl




u1

u2

...

ul




(5)

In this way, the basic state-space representation from (1) is extended to (6). Every sensor and

actuator placement binary is a design parameter for the optimization procedure, as explained later

in the paper. It is important to note here that the B and C matrix values are not optimization165

parameters for the algorithm, but are constant real values describing the initial LTI system, while the

actuator & sensor placement optimization is done on Bact and Csen, respectively. This state-space

system is graphically displayed in Figure 3.

SSsys =

 ẋ = A′ · x + B ·Bact · u

y′ = Csen · (C · x + D ·Bact · u)
,with x ∈ Rn , u ∈ Rl , y ∈ Rm (6)
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Figure 3: Graphical representation of equation (6).

Next to the presence or absence of the actuators and sensors, indicated by the accompanying

binaries bact... and bsen..., the optimizing algorithm should also be able to select between different170

types of actuators and sensors. Therefore, extra hardware selection integer values iact... and isen... are

added and grouped in vectors Iact and Isen, respectively. They correspond with the different possible

types of actuators and sensors at every active actuator or sensor position. If multiple actuator types

are possible, then the optimizing algorithm can effectively choose between each actuator type with

a different cost and maximum actuator output. For example, a more expensive actuator can have175

a higher control effort. Based on this integer value, the accompanying actuator cost and maximum

output are taken into account as non-linear constraints during the optimization.

3. Control Configuration Optimization

The algorithm proposed in this paper allows optimizing the control architecture together with the

control parameters. This is in contrast to current literature in which co-design algorithms are found180

that only consider the control parameter optimization as part of the control configuration optimization.

The ability to also optimize the control architecture is a significant added value since modern industrial

drives used for motion control have various control architecture possibilities on which the end user has

to decide whether or not to implement them. One example of these control architecture capabilities

is cascaded control, where multiple SISO (Single Input, Single Output) controllers are connected one185

after another. In this case, the outer controller generates a control signal that serves as the setpoint

for the following controller [47]. In addition to cascaded control, feedforward control can be applied

to reduce the tracking error. This is done by pre-commanding the system depending on a reference

signal or a disturbance signal, without using any feedback from the plant itself. As a result, reference

feedforward or disturbance feedforward can be obtained [47]. Finally, also synchronizing control (also190

known as cross-coupling) can be used as a control architecture, referring to a control loop extension

used to improve output synchronization between coupled subsystems that are both parts of a larger

system [48]. Thereby, the synchronous control of subsystem outputs is improved by taking into account
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the output deviations. This can be applied by adding separate controllers (e.g., P/PI/PID) acting on

the relative fault signals between different actuators. This can reduce the error between the different195

outputs when one or more subsystems are disturbed internally or externally [48].

In order to allow the overall optimization routine to switch between different control architectures,

each control architecture feature is accompanied by a binary indicating its presence or absence. As a

result, every decentralized or distributed controller loop, feedforward control loop, and synchronizing

control loop can be activated or deactivated by a binary in the control architecture optimization. These200

control architecture selection binaries (e.g., bdis, bFF , bSC for distributed, feedforward or synchronizing

control, respectively) are grouped in vector Bc. The entire design space is thus defined by the case

in which all possible control features are active. In addition to the control architecture, the control

parameters are also simultaneously optimized by the overall optimization algorithm. Vector Rc groups

all control parameter values.205

4. Optimization Algorithm Selection

The co-design optimization algorithm must be able to deal with binary numbers (sensor and actua-

tor placement, selection of the applied control loop architectures), integer values (sensor and actuator

selection) and real numbers (control parameters), resulting in a mixed-integer problem [49]. This

also implies that the objective functions are discontinuous and therefore non-smooth and non-convex.210

A schematic overview of the optimization variables is depicted in Table 1, while a mathematical

formulation of the optimization problem can be seen in Equation 7.

Optimization variables Type Grouped in

Sensor and actuator placement binary ∈ B (e.g., bact1, bsen1) Matrixes Bact and Csen

Sensor and actuator selection integer ∈ Z+| ≤ z (e.g., iact1, isen1) Vectors Iact and Isen

Control loop architecture selection binary ∈ B (e.g., bFF , bSC) Vector Bc

Control parameters real ∈ R (e.g., KFF , KSC) Vector Rc

Table 1: Overview of the optimization variables, with z = number of possible actuator or sensor types.

min Objective function(b, i,K)
b∈B, i∈Z+, K∈R

subject to


non-linear constraint 1

non-linear constraint 2

...

(7)

It is clear that the overall co-design issue is, in fact, a multi-objective optimization problem since

this optimization is executed for a combination of multiple objectives, such as energy consumption,

actuator effort, reference tracking or vibration reduction. In general, one may distinguish between215
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derivative-free and gradient-based algorithms as the two main approaches to deal with multi-objective

optimization problems.

In gradient-based optimizations, a general Linear Time-Invariant (LTI) system is represented as

a Linear Matrix Inequality (LMI). From this LMI, a convex optimization problem can be expressed

and mathematically solved [50]. An advantage of the gradient-based algorithms is that they often220

need less time to converge to an optimal solution [51]. There are also two main limitations of these

methods.

First, additional constraints usually result in convergence in a local optimum, being an optimal

point in a convex subset. This local optimum is not necessarily a global optimum, being the optimal

point in the complete set. Second, a convexification-based approach for non-convex problems only225

works for some specific cases, resulting in limited applicability [20]. Because the functions for this

co-design optimization problem are non-smooth and even discontinuous, derivative or gradient infor-

mation generally cannot be used to determine the direction in which the function is increasing (or

decreasing) [52].

In contrast to the gradient-based approach, the derivative-free algorithms do not rely on the deriva-230

tives and can, therefore, work exceptionally well when the objective function is noisy and discontinuous

[53]. Derivative-free methods are often the best global-searching algorithms as they sample a large

portion of the design space [54]. A drawback of these methods is that they are computationally expen-

sive and also stochastic and thus non-deterministic. They may yield different solutions on different

runs, even when started from the same point on the same model, depending on which points are235

randomly sampled [52]. Some examples of commonly used derivative-free algorithms are: DIRECT

or Dividing Rectangles [54], Simulated Annealing (SA) [55], Genetic Algorithms (GA) [54], Surrogate

Optimization [56], Particle Swarm Optimization (PSO) [57] or Artificial Bee Colony Algorithm (ABC)

[13].

Concerning the optimization algorithms mentioned above, only Direct Search, Genetic Algorithm,240

Particle Swarm Optimization and Surrogate Optimization can be used to find a global minimum

for non-smooth objective functions and constraints. From these, the Genetic Algorithm is the only

optimization algorithm that also supports mixed-integer optimization [58]. Consequently, it can be

concluded that at the moment and by the author’s knowledge, the Genetic Algorithm is the only

derivative-free algorithm available that is able to administer the requirements for the optimization245

problem discussed in this paper.

It is important to note that depending on the variables to be optimized, a model is obtained that

is always linear time-invariant (LTI) (if the initial system was already LTI), but the overlying opti-

mization problem is, in fact, a highly discontinuous, multi-objective and mixed-integer optimization

12



problem.250

5. Genetic Algorithm

Genetic Algorithms (GA) are a group of optimization algorithms based on evolutionary processes

and Darwin’s concept of natural selection [54]. It starts by (randomly) generating an initial population

of individual solutions utilizing a creation function. Every solution consists of a combination of

proposed design parameters (sensor and actuator placement binaries ∈ B, sensor and actuator selection255

integers ∈ Z+, control loop architecture binaries ∈ B and real numbers for the control parameters

∈ R). The limits for the binaries are fixed at [0,1], while the limits on the integers are defined by the

number of possible types of sensors and actuators. The limits for the real numbers representing the

control parameters are the only design parameter limits that have to be specified by the end user. Too

small limits cause the algorithm to search only over a limited design space. That is why these limits260

are preferably chosen relatively large. However, excessively large limits may cause the algorithm to

need more iterations leading to a longer computational time.

For every individual solution, a fitness value is calculated using an objective function (often referred

to as ‘fitness function’), resulting in a definite score of how well the individual performs. As this is

a minimization function, individuals with a lower fitness value have a better performance. When265

assigning a fitness value, the constraints are also taken into consideration. Individual solutions that

do not meet certain constraints are penalized with a much higher fitness value as a result.

Based on these fitness values, GA then applies three different operations to create a new generation

of individuals, being elite selection, crossover and mutation. Elite selection implies that individuals

with the best fitness have the most significant probability of being directly selected to pass on to the270

next generation, unchanged. Crossover is where parts of two individuals from the initial population

(sensor & actuator placement binaries, sensor & actuator selection integers, control loop architecture

selection binaries or control parameters) are exchanged to get two new individuals. Mutation is where

variables of one individual from the initial population are randomly changed to get a new individual.

The crossover fraction indicates the ratio between crossover and mutation.275

The above process is executed to generate a new generation of individuals and is continued to

further improve the fitness of the best individual until a stopping criterion is met [54]. Possible

stopping criteria are related to a maximum calculation time, a maximum number of generations or a

minimum amount of change in the average fitness values of successive generations. The workflow of

the algorithm is schematically displayed in Figure 5.280

An advantage of the Genetic Algorithm is that there is a large amount of freedom in the scoring of

each individual, as this can easily be programmed in the ‘fitness function’. In this way, the individual’s
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fitness can be calculated according to (a weighted sum of) several objectives, such as settling time,

reference tracking, energy consumption or robustness. This fitness function can be non-linear and

even discontinuous. The implementation of discontinuous and highly non-linear constraints can easily285

be programmed in a ‘constraint function’. This can be achieved without any convexification-based

approach necessary for gradient-based optimization algorithms.

A disadvantage of the Genetic Algorithm is that a relatively long calculation time is required

compared to gradient-based methods [59]. Because this is also a heuristic algorithm, it cannot be

fully guaranteed that the solution found by the Genetic Algorithm is the global minimum of the290

optimization problem [60]. However, the randomization avoids being stuck in a local minimum as

much as possible [61].

The overall optimization problem has multiple conflicting objectives and therefore has no unique

optimal solution. Instead, the concept of Pareto optimality can be used to characterize the trade-off

between different objectives. Pareto optimality is obtained when one objective of an individual solution295

cannot be improved without one or more other objectives deteriorating. Such an individual solution

is then described as a Pareto point. All Pareto points collectively form a Pareto front that indicates

the boundary of the Pareto optimality [62, 63]. In the context of this paper, the main results from the

optimizing algorithm can be graphically shown in a Pareto front, revealing the trade-off between the

total implementation cost and the optimal performance to be achieved. A general example of such a300

Pareto front is given in Figure 4. In this figure, every point represents the performance of a particular

plant composition, being hardware architecture and control configuration (with controller tuning).

As stated before, the lower the fitness value, the better the performance. The best performing plant

compositions are situated at the Pareto front (in blue), and these show the maximum achievable plant

performance for a given total plant cost. If, for example, a plant design is operating with a sub-optimal305

performance (not on the blue Pareto front), two different actions can be taken: performance can be

increased without an extra cost (arrow 1) or the investment cost can be reduced without deterioration

in performance (arrow 2).

It is clear that this is a very useful tool to graphically provide insights for the end user into the

trade-off between performance and cost, which is otherwise very complicated to predict.310
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Figure 4: General overview of a Pareto front.
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Figure 5: Schematic overview of a Genetic Algorithm’s workflow.
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6. Mechanical Synchronization Setup

6.1. Setup Introduction

The performance of the optimization algorithm is tested on a motion control application in which

a central load inertia needs to be positioned. Common examples of this type of application are steel

ladles used in the steel industry or overhead gantry cranes. In this case, the central load inertia can315

be driven by either one or two actuators on the sides of this load inertia. A graphical overview of the

application is given in Figure 6, with θ the angular displacement [rad], T1 the actuator 1 torque [Nm],

T2 the actuator 2 torque [Nm], TL the load torque [Nm], k the torsion spring constant [Nm/rad] and

b the angular damping constant [Nms/rad].

The positioning torque can be applied through two possible motor actuators at each side of the320

load inertia. Note that these motors also introduce inertia to the structure. The three bodies are

dynamically coupled through rotational springs and dampers (k and b), as depicted in Figure 6. For

this application, there are three possible sensor locations: one on the load inertia and one on each

of the outer actuator motors. While referring to the figures in the introduction, the system can be

represented schematically as in Figure 7. In this diagram, the three inertias can be seen as dynamically325

linked subsystems, in which the outer subsystems can be controlled with sensor information from

the respective inertia or the central load inertia. The distributed control can be represented as

the information exchange using a communication system between the controllers on the outermost

subsystems. Table 2 shows the key parameters for the setup.

The reference trajectory rθ to be followed by the load inertia can be seen in Figure 8 (a) and330

consists of a trapezoidal movement to an angle of 1.8 radians or roughly 103 degrees. The shape

of the associated load torque can be seen in Figure 8 (b). Furthermore, output disturbances d are

also added to create a more realistic situation where disturbances are present in the measured sensor

signal. In this way, it can be verified whether the obtained controllers respond adequately to the

relevant course of the output signals and not to the additional noise. This disturbance is a uniformly335

distributed noise with an amplitude equal to 0.05 rad.

17



Figure 6: Motion control application in which two

actuators have to position a central load in-

ertia (top), with schematic representation

(bottom).

Figure 7: Subsystem devision with controller ar-

rangement for a mechanical synchroniza-

tion application.

Parameter Value Unit

Actuator 1 inertia = J1 0.173 kgm2

Actuator 2 inertia = J2 0.173 kgm2

Load inertia = Jload 3 kgm2

Torsion spring constant 1 = k1 150 Nm/rad

Torsion spring constant 2 = k2 150 Nm/rad

Angular damping constant 1 = b1 0.2 Nms/rad

Angular damping constant 2 = b2 0.2 Nms/rad

Table 2: Key parameters for the motion control application.
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Figure 8: (a) Angular displacement trajectory to be followed by the central load inertia θload.

(b) Applied load torque TL.

6.2. Pareto front

The primary goal is to let the optimizer determine the Pareto front, graphically showing the

trade-off between implementation cost and achievable performance. For this example, the optimizing

algorithm can select the presence or absence and type of the two actuators at the sides of the load340

from a list of three possible motors, as can be seen in Table 3. Every motor has a specific cost and a

corresponding maximum actuator torque. Evidently, more expensive motors have a higher maximum

torque. As a result, the actuator selection integers iact1 and iact2 for the left and right actuator can

have values from 0 to 3, according to the selected actuator. If the actuator selection integer iact...

is equal to zero, no actuator is present on that location, and the corresponding actuator placement345

binary bact... is equal to 0.

In this setup, there is a maximum of three inertias. This means that there are also three possible

sensor locations providing position and speed feedback from the corresponding inertia. It is more

convenient to add a sensor on the actuator inertias since most actuators already provide relatively

easy mounting capabilities for encoders. This is why a sensor on the load inertia is more expensive350

compared to a sensor on the outer inertias. Table 4 shows the possible sensor locations and the

accompanying cost. Each sensor is assumed to feed back angular displacement and velocity. As a

result, the sensor selection integers isen1 and isen2 for the left and right actuator can each have integer

values from 0 to 2, depending on whether no sensor is used, a sensor on the corresponding actuator
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Actuator Actuator

Selection Maximum Placement

Integers iact... Cost Torque Binary bact...

0 No actuator e 0 0 Nm 0

1 Actuator type 1 e 400 2 Nm 1

2 Actuator type 2 e 1000 4 Nm 1

3 Actuator type 3 e 2000 15 Nm 1

Table 3: Different actuator types with their accompanying cost, maximum torque and corresponding actuator

placement binaries.

inertia or a sensor on the middle inertia is used. If the sensor selection integer isen... is equal to zero,355

no sensor is present, and the sensor placement binary bsen... is equal to 0.

Section 3 deals with the control architecture possibilities that can be implemented and optimized.

For this motion application, the control loop possibilities are depicted in Figure 9. For each actuator,

the inner cascaded loop is a PI speed controller, while the outer loop consists of a P position controller.

The algorithm can evaluate decentralized and distributed control for both the inner and outer loop360

controllers. In the case of decentralized control, there is no controller interaction present, as opposed

to distributed control where the controllers are interconnected to each other. As this motion control

application is a setup where synchronization is essential, the synchronizing control on speed and

position can also be used. Moreover, this is an application in which a trajectory has to be followed.

Therefore, feedforward control is also relevant.365

Sensor Sensor

Selection Placement

Integers isen... Cost Binary bsen...

0 No sensor data used e 0 0

1 Sensor on corresponding actuator e 200 1

2 Sensor on load inertia e 600 1

Table 4: Sensor selection integers for every actuator with their accompanying cost and corresponding sensor

placement binaries.

20



Figure 9: Control scheme of a mechanical synchronization application controlled by a distributed cascaded

controller with feedforward and synchronizing control.

Table 5 shows the possible control architecture features that can be implemented, with their

respective implementation costs. These costs are arbitrary and can be changed by the end user

according to their estimated value. The cost estimation can be influenced by, for example, hardware

cost, programming cost or estimated training cost for control technicians.

In order to determine the performance of an individual solution, the entire closed-loop system is370

simulated and the fitness value is calculated from the simulation results using (8). As specified in

Description Symbol Cost

Decentralized outer loop P-position control bPdec e 50

Distributed outer loop P-position control bPdis e 75

Decentralized inner loop PI-speed control bPIdec e 100

Distributed inner loop PI-speed control bPIdis e 140

Feedforward control bFF e 160

Synchronizing control on position bSCp e 300

Synchronizing control on speed bSCs e 320

Table 5: Control architecture features with their corresponding cost.
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Section 5, many fitness function criteria can be applied. Here, the control objective (or fitness value)

to be minimized is a weighted sum consisting of two parts. The first and most important objective is

to have an optimal trajectory tracking by the load inertia. For this, the ISE (Integral of Square Error)

error performance index is used which evaluates the central load reference tracking [64], as can be seen375

in the first part of (8). The second objective is to reduce undesirable variations in accelerations, as

this nervous behaviour reduces the life span of the system. Therefore, the accelerations on all inertias

are penalized by adding the RMS (Root Mean Square) value of these accelerations to the second part

of the calculation of the fitness value. Furthermore in (8), T is the total simulation time for every

individual solution (= 30s), r is the reference trajectory (see Figure 8a) and w1 and w2 correspond380

with the weights on reference tracking and acceleration, respectively.

F.V. =w1

(∫ t=T

t=0

(r(t)− θload(t)) 2dt

)
+

w2

√ 1

T

∫ t=T

t=0

θ̈1(t)2dt+

√
1

T

∫ t=T

t=0

θ̈load(t)2dt+

√
1

T

∫ t=T

t=0

θ̈2(t)2dt

 (8)

Consequently, the variables to be optimized by the Genetic Algorithm for this application are

2 actuator selection integers (iact1 and iact2), 2 sensor selection integers (isen1 and isen2), 7 control

architecture binaries (grouped in Bc) and a maximum of 18 real numbers for the control gains (grouped

in Rc). These add up to 29 optimization variables in total. The Genetic Algorithm can optimize these385

variables according to the fitness function (see (8)), with respect to constraints on maximum actuator

force and total plant cost. Similar to the application of previously mentioned constraints, constraints

could also be applied to the states itself, resulting in full-state constraints.

For both actuators, there are three possible actuator types and two possible sensor types, where

seven different control architecture features may or may not apply. Even if the optimization of the390

control parameters is not considered, there is a huge number of different possible plant compositions,

each with a corresponding cost. It would certainly not be efficient to determine the optimal control

parameters for each possible plant composition. Therefore, the optimal plant composition is only

determined for a limited number of total plant costs. As a result, the entire plant composition is

optimized several times, each time with a different maximum total plant cost. In this way, the395

Pareto points are determined. For this case, ten maximum plant composition costs are chosen, evenly

distributed between the smallest and largest possible plant composition cost, being e750 and e6350.

For every point, the maximum calculation time for the Genetic Algorithm is set to 20 minutes, leading

to approximately 3 hours and 20 minutes of total calculation time. Other key settings for the Genetic

Algorithm are shown in Table 6. The optimization algorithm was performed on an Intel R© Xeon R©
400

CPU @ 3.10 GHz with 64 GB of RAM.
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The maximum number of iterations is set to ‘infinite’. In this way, no maximum number of

iterations is given to the Genetic Algorithm as stopping criteria. The constraint tolerance is the

tolerance on the difference between consecutive averages of fitness values of successive generations.

If the difference between the average fitness value over a number of generations is smaller than the405

constraint tolerance, the Genetic Algorithm will assume that a global minimum has been found. For

this case, the constraint tolerance is chosen small with the purpose that the GA would not conclude

too quickly that a global minimum is found and in this way, the optimizing algorithm makes full use

of the specified optimization time. The crossover fraction determines in which ratio crossover and

mutation are applied to achieve a new generation. This value is set in such a way as to have a high410

mutation level when determining a new generation of possible solutions. This is desirable to keep the

search field large and not to end up in a local minimum as the optimization problem is discontinuous.

Description Value

Maximum number of iterations infinite

Constraint tolerance 1e-10

Crossover fraction 0.5

Population size 100

Elite count 10

Table 6: Genetic Algorithm’s key settings.

6.3. Results

Table 8 in Appendix A shows the optimization results for every point in the Pareto front. A

graphical overview of the results is shown in Figure 10. Depending on the binaries that determine415

the control architecture, some controller gains no longer apply, shown by a ‘/’ in Table 8. No feasible

solution was found for the first Pareto point with a maximum total plant cost equal to e750. In

other words, the limited amount of e750 does not allow for a useful plant arrangement. In any other

case, the maximum applicable actuator force (depending on what type of actuator is applied) is not

exceeded by the results.420

The second Pareto point with a maximum total plant cost equal to e1380 has a relatively high

fitness value, thus a very low performance. A detailed view is depicted in Figure 11 to better inspect

what the Pareto front looks like besides these first two outliers. As expected, the results show that the

fitness value decreases or in other words, the performance increases as a larger plant composition cost

is available. Since the performance of the system improves considerably from the third Pareto point425

onwards, it would be wise for the end user to decide to invest at least e2010 to obtain a satisfying
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operation of the setup. It is up to the end user to choose whether the gain in performance due to

higher investments is actually worth it, or not.

For comparison, a conventional LQR method was also applied to obtain the control parameters.

Note that this can only be done for a fixed hardware and control configuration. With this method,430

relative weights are assigned to the states and inputs using Q and R matrices, respectively. Hereafter,

the control gains are calculated [47]. Still, finding the right weights for this LQR method turns out

to be another difficulty. [43] describes an approach to determine these weights as the inverse of the

square of the maximum value for the corresponding state or input [65]. This method was applied to

the motion application using distributed outer loop P-position control with two actuators of type 2435

and 3, successively. Not only was the method described in [43] used to obtain Q and R matrices,

but also manual fine-tuning of these matrices was performed to check if the resulting controller gains

could be further improved. In each case, sensors on the corresponding motor inertias are used (isen1

= isen2 = 1). Table 7 shows the results of the LQR method, and these are also shown in Figure 11 as

red points. When using actuators of type 2, both the approach by [43] and manual fine-tuning lead440

to control parameters where the maximum actuator force of 4 Nm is exceeded, which is not the case

with optimization using the Genetic Algorithm. The approach described in [43] was also applied with

type 3 actuators with a maximum actuator force of 15 Nm. This also leads to a situation in which

the maximum actuator force is exceeded. After further manual fine-tuning, a situation was achieved

with an actuator force lower than the maximum actuator force, but still, the performance is worse445

than the control found by the Genetic Algorithm, as can be seen in Figure 11. From this, it can be

concluded that the obtained system using the LQR method always has a lower performance compared

to the optimization using the Genetic Algorithm.

Figure 12 illustrates the central load displacement for different plant compositions with a maximum

total plant cost of consecutively 750, 2010 and 6420 euro. This plot demonstrates that the load is more450

capable of following the desired trajectory for higher plant costs, which is logical as more hardware

and control architecture features become applicable.

isen1 isen2 iact1 iact2 Applied method Maximum actuator force [Nm] Fitness Value

1 1 2 2 Method proposed by [43] 5.2 (> fmax,act) 273

1 1 2 2 Manual fine-tuning 5.3 (> fmax,act) 290

1 1 3 3 Method proposed by [43] 55.2(> fmax,act) 1365

1 1 3 3 Manual fine-tuning 6.8 162

Table 7: Results after applying the LQR method. A comparison of these results with the results obtained

using the Genetic Algorithm is shown in Figure 11.
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Figure 10: Resulting Pareto front (overview). Figure 11: Resulting Pareto front (detailed view with

comparison to LQR optimization).

Figure 12: Resulting load displacement for different maximum total plant costs.

7. Conclusions and Future Work

Concerning the co-design of hardware architecture and control configuration, the current literature

only considers the optimization of the optimal location and number of sensors and actuators, together455

with corresponding control parameters. The main novelty of this paper is the addition to optimize

the control loop architecture as part of the simultaneous co-design. In addition, the algorithm also

allows optimizing for different types of actuators and sensors. The proposed methodology to co-design

the hardware architecture and control configuration provides useful insights into the trade-off between
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the maximum achievable performance and the total implementation cost, graphically represented in460

a Pareto front.

The Pareto points found by the optimizing algorithm using a GA have a lower fitness value

and thus a better performance compared to the conventional LQR method. This shows that the

Genetic Algorithm successfully optimizes not only the hardware and control architecture but also

the control parameters. If a complete Pareto front is to be compiled using the LQR method rather465

than the optimizing algorithm proposed in this paper, this should be done for every possible hardware

architecture and control architecture. It is therefore easy to see that the proposed optimizing algorithm

produces a Pareto front more efficiently. Moreover, the algorithm can better optimize the control

parameters to obtain an even better performance in comparison to the LQR method. If desired by

the end user, the cost interval between the Pareto points can be reduced to obtain a Pareto front with470

a higher resolution. This will, of course, increase the computational time.

The Genetic Algorithm is a heuristic method and computationally expensive. Calculation time

can be reduced by integrating specific prior knowledge of the plant and its composition. Nevertheless,

it can be concluded from the results presented in the paper that a GA is able to determine the optimal

achievable performance, depending on the maximum implementation cost with respect to the selected475

actuators, sensors, control architectures and (discontinuous) constraints. It is clear that this can sig-

nificantly help the end user to get a better understanding of the trade-off between optimal achievable

performance and implementation cost. In this paper, the co-design was successfully executed on a

mechanical synchronization application with a relatively low number of possible hardware combina-

tions. For larger applications with more possibilities, it is also more difficult to intuitively estimate the480

impact of changing configurations on the final performance of the system. This will make the practical

use of this method even more appealing. Additionally, for systems that are already operational, this

tool can be a great added value to evaluate the potential for performance improvements, related to

investment costs.

The method proposed in this paper is a general method applicable to a very broad range of system485

classes. These include, for example, mechatronic, electrical, thermal or chemical system classes. The

authors encourage industrial partners and other research groups to apply this method on different

systems.
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1 750 inf 0 0 0 0 ◦ ◦ ◦ ◦ ◦ ◦ ◦ / / / / / / / / / / / / / / / / / /

2 1380 2.5E3 1 0 2 1 • • ◦ ◦ ◦ ◦ ◦ 5 5 1 1 / / / / / / / / / / / / / /

3 2010 97 2 0 1 0 ◦ ◦ • ◦ • ◦ ◦ / / / / 5 5 / / 1 1 / / / / / / 1 1

4 2640 90 3 0 1 1 • • • ◦ ◦ ◦ ◦ 4.5 4.7 2.3 1.6 6 5 / / 0.9 0.7 / / / / / / / /

5 3270 38 3 0 1 1 ◦ • • • • • ◦ / / 0.9 1 5 5 1.2 1 1.1 1 1.1 0.9 1 / 1.2 / 1 1.1

6 3900 35 3 0 1 1 ◦ • • • • • ◦ / / 0.9 0.9 5.9 5.4 1.4 1 1 0.7 0.8 1 0.9 / 1 / 0.8 1.3

7 4530 33 3 0 1 1 ◦ ◦ • • • ◦ ◦ / / / / 5.3 5.1 0.9 0.3 1.8 0.9 1.3 0.9 / / / / 0.9 1

8 5160 29 3 0 1 1 ◦ ◦ • • • ◦ ◦ / / / / 6.8 1.2 1 8.7 2.1 20 1.1 -3.8 / / / / 1 0.8

9 5790 29 3 3 1 1 ◦ ◦ • • • ◦ ◦ / / / / 5 5 1.1 1 1 1.2 1 1.6 / / / / 1.2 1

10 6420 21 3 3 1 1 ◦ • • • • • • / / 1 0.9 4.9 4.1 1 1 1 1 1 1 0.9 1.1 1 1.1 1.2 0.8

Table 8: Pareto front results (rounded) for the mechanical synchronization application.
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