17 research outputs found

    AN FLC-PSO ALGORITHM-CONTROLLED MOBILE ROBOT

    Get PDF
    The ineffectiveness of the wall-following robot (WFR) performance indicated by its surging movement has been a concerning issue. The use of a Fuzzy Logic Controller (FLC) has been considered to be an option to mitigate this problem. However, the determination of the membership function of the input value precisely adds to this problem. For this reason, a particular manner is recommended to improve the performance of FLC. This paper describes an optimization method, Particle Swarm Optimization (PSO), used to automatically determinate and arrange the FLC’s input membership function. The proposed method is simulated and validated by using MATLAB. The results are compared in terms of accumulative error. According to all the comparative results, the stability and effectiveness of the proposed method have been significantly satisfied

    ENHANCING THE PERFORMANCE OF THE WALL-FOLLOWING ROBOT BASED ON FLC-GA

    Get PDF
    Determination of the improper speed of the wall-following robot will produce a wavy motion. This common problem can be solved by adding a Fuzzy Logic Controller (FLC) to the system. The usage of FLC is very influential on the performance of the wall-following robot. Accuracy in the determination of speed is largely based on the setting of the membership function that becomes the value of its input. So manual setting on membership function can still be enhanced by approaching the certain optimization method. This paper describes an optimization method based on Genetic Algorithm (GA). It is used to improving the ability of FLC to control the wall-following robot controlled by FLC. To provide clarity, the wall-following robot that controlled using an FLC with manual settings will be simulated and compared with the performance of wall-following robots controlled by a fuzzy logic controller optimized by a Genetic Algorithm (FLC-GA). According to comparative results, the proposed method has been showing effectiveness in terms of stability indicated by a small error

    Theory of Self-maintaining Robots

    Get PDF
    This thesis proposes a theory for robotic systems that can be fully self-maintaining. The presented design principles focus on functional survival of the robots over long periods of time without human maintenance. Self-maintaining semi-autonomous mobile robots are in great demand in nuclear disposal sites from where their removal for maintenance is undesirable due to their radioactive contamination. Similar are requirements for robots in various defence tasks or space missions. For optimal design, modular solutions are balanced against capabilities to replace smaller components in a robot by itself or by help from another robot. Modules are proposed for the basic platform, which enable self-maintenance within a team of robots helping each other. The primary method of self-maintenance is replacement of malfunctioning modules or components by the robots themselves. Replacement necessitates a robot team’s ability to diagnose and replace malfunctioning modules as needed. Due to their design, these robots still remain manually re-configurable if opportunity arises for human intervention. A system reliability model is developed to describe the new theory. Depending on the system reliability model, the redundancy allocation problem is presented and solved by a multi objective algorithm. Finally, the thesis introduces the self-maintaining process and transfers it to a multi robot task allocation problem with a solution by genetic algorithm

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Evolutionary Algorithms in Engineering Design Optimization

    Get PDF
    Evolutionary algorithms (EAs) are population-based global optimizers, which, due to their characteristics, have allowed us to solve, in a straightforward way, many real world optimization problems in the last three decades, particularly in engineering fields. Their main advantages are the following: they do not require any requisite to the objective/fitness evaluation function (continuity, derivability, convexity, etc.); they are not limited by the appearance of discrete and/or mixed variables or by the requirement of uncertainty quantification in the search. Moreover, they can deal with more than one objective function simultaneously through the use of evolutionary multi-objective optimization algorithms. This set of advantages, and the continuously increased computing capability of modern computers, has enhanced their application in research and industry. From the application point of view, in this Special Issue, all engineering fields are welcomed, such as aerospace and aeronautical, biomedical, civil, chemical and materials science, electronic and telecommunications, energy and electrical, manufacturing, logistics and transportation, mechanical, naval architecture, reliability, robotics, structural, etc. Within the EA field, the integration of innovative and improvement aspects in the algorithms for solving real world engineering design problems, in the abovementioned application fields, are welcomed and encouraged, such as the following: parallel EAs, surrogate modelling, hybridization with other optimization techniques, multi-objective and many-objective optimization, etc

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance
    corecore