4,597 research outputs found

    Designing labeled graph classifiers by exploiting the R\'enyi entropy of the dissimilarity representation

    Full text link
    Representing patterns as labeled graphs is becoming increasingly common in the broad field of computational intelligence. Accordingly, a wide repertoire of pattern recognition tools, such as classifiers and knowledge discovery procedures, are nowadays available and tested for various datasets of labeled graphs. However, the design of effective learning procedures operating in the space of labeled graphs is still a challenging problem, especially from the computational complexity viewpoint. In this paper, we present a major improvement of a general-purpose classifier for graphs, which is conceived on an interplay between dissimilarity representation, clustering, information-theoretic techniques, and evolutionary optimization algorithms. The improvement focuses on a specific key subroutine devised to compress the input data. We prove different theorems which are fundamental to the setting of the parameters controlling such a compression operation. We demonstrate the effectiveness of the resulting classifier by benchmarking the developed variants on well-known datasets of labeled graphs, considering as distinct performance indicators the classification accuracy, computing time, and parsimony in terms of structural complexity of the synthesized classification models. The results show state-of-the-art standards in terms of test set accuracy and a considerable speed-up for what concerns the computing time.Comment: Revised versio

    Digging into acceptor splice site prediction : an iterative feature selection approach

    Get PDF
    Feature selection techniques are often used to reduce data dimensionality, increase classification performance, and gain insight into the processes that generated the data. In this paper, we describe an iterative procedure of feature selection and feature construction steps, improving the classification of acceptor splice sites, an important subtask of gene prediction. We show that acceptor prediction can benefit from feature selection, and describe how feature selection techniques can be used to gain new insights in the classification of acceptor sites. This is illustrated by the identification of a new, biologically motivated feature: the AG-scanning feature. The results described in this paper contribute both to the domain of gene prediction, and to research in feature selection techniques, describing a new wrapper based feature weighting method that aids in knowledge discovery when dealing with complex datasets

    Minimizing Computational Resources for Deep Machine Learning: A Compression and Neural Architecture Search Perspective for Image Classification and Object Detection

    Get PDF
    Computational resources represent a significant bottleneck across all current deep learning computer vision approaches. Image and video data storage requirements for training deep neural networks have led to the widespread use of image and video compression, the use of which naturally impacts the performance of neural network architectures during both training and inference. The prevalence of deep neural networks deployed on edge devices necessitates efficient network architecture design, while training neural networks requires significant time and computational resources, despite the acceleration of both hardware and software developments within the field of artificial intelligence (AI). This thesis addresses these challenges in order to minimize computational resource requirements across the entire end-to-end deep learning pipeline. We determine the extent to which data compression impacts neural network architecture performance, and by how much this performance can be recovered by retraining neural networks with compressed data. The thesis then focuses on the accessibility of the deployment of neural architecture search (NAS) to facilitate automatic network architecture generation for image classification suited to resource-constrained environments. A combined hard example mining and curriculum learning strategy is developed to minimize the image data processed during a given training epoch within the NAS search phase, without diminishing performance. We demonstrate the capability of the proposed framework across all gradient-based, reinforcement learning, and evolutionary NAS approaches, and a simple but effective method to extend the approach to the prediction-based NAS paradigm. The hard example mining approach within the proposed NAS framework depends upon the effectiveness of an autoencoder to regulate the latent space such that similar images have similar feature embeddings. This thesis conducts a thorough investigation to satisfy this constraint within the context of image classification. Based upon the success of the overall proposed NAS framework, we subsequently extend the approach towards object detection. Despite the resultant multi-label domain presenting a more difficult challenge for hard example mining, we propose an extension to the autoencoder to capture the additional object location information encoded within the training labels. The generation of an implicit attention layer within the autoencoder network sufficiently improves its capability to enforce similar images to have similar embeddings, thus successfully transferring the proposed NAS approach to object detection. Finally, the thesis demonstrates the resilience to compression of the general two-stage NAS approach upon which our proposed NAS framework is based

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Generalised cellular neural networks (GCNNs) constructed using particle swarm optimisation for spatio-temporal evolutionary pattern identification

    Get PDF
    Particle swarm optimization (PSO) is introduced to implement a new constructive learning algorithm for training generalized cellular neural networks (GCNNs) for the identification of spatio-temporal evolutionary (STE) systems. The basic idea of the new PSO-based learning algorithm is to successively approximate the desired signal by progressively pursuing relevant orthogonal projections. This new algorithm will thus be referred to as the orthogonal projection pursuit (OPP) algorithm, which is in mechanism similar to the conventional projection pursuit approach. A novel two-stage hybrid training scheme is proposed for constructing a parsimonious GCNN model. In the first stage, the orthogonal projection pursuit algorithm is applied to adaptively and successively augment the network, where adjustable parameters of the associated units are optimized using a particle swarm optimizer. The resultant network model produced at the first stage may be redundant. In the second stage, a forward orthogonal regression (FOR) algorithm, aided by mutual information estimation, is applied to re. ne and improve the initially trained network. The effectiveness and performance of the proposed method is validated by applying the new modeling framework to a spatio-temporal evolutionary system identification problem

    Comparison of Outlier-Tolerant Models for Measuring Visual Complexity

    Get PDF
    [Abstract] Providing the visual complexity of an image in terms of impact or aesthetic preference can be of great applicability in areas such as psychology or marketing. To this end, certain areas such as Computer Vision have focused on identifying features and computational models that allow for satisfactory results. This paper studies the application of recent ML models using input images evaluated by humans and characterized by features related to visual complexity. According to the experiments carried out, it was confirmed that one of these methods, Correlation by Genetic Search (CGS), based on the search for minimum sets of features that maximize the correlation of the model with respect to the input data, predicted human ratings of image visual complexity better than any other model referenced to date in terms of correlation, RMSE or minimum number of features required by the model. In addition, the variability of these terms were studied eliminating images considered as outliers in previous studies, observing the robustness of the method when selecting the most important variables to make the prediction.The Carlos III Health Institute from the Spanish National plan for Scientific and Technical Research and Innovation 2013-2016 and the European Regional Development Funds (FEDER) “A way to build Europe” support this work through the “Colaborative Project in Genomic Data Integration (CICLOGEN)” Pl17/01826. This work has also been supported by the General Directorate of Culture, Education and University Management of Xunta de Galicia (Ref. ED431G/01, ED431D 2017/16), the “Galician Network for Colorectal Cancer Research” (Ref. ED431D 2017/23) and Competitive Reference Groups (Ref. ED431C 2018/49). On the other hand, the unique installation BIOCAI (UNLC08-1E-002, UNLC13-13-3503) was funded by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Funds (FEDER)Xunta de Galicia; ED431G/01Xunta de Galicia; ED431D 2017/16Xunta de Galicia; ED431D 2017/23Xunta de Galicia; ED431C 2018/4

    Energy efficient enabling technologies for semantic video processing on mobile devices

    Get PDF
    Semantic object-based processing will play an increasingly important role in future multimedia systems due to the ubiquity of digital multimedia capture/playback technologies and increasing storage capacity. Although the object based paradigm has many undeniable benefits, numerous technical challenges remain before the applications becomes pervasive, particularly on computational constrained mobile devices. A fundamental issue is the ill-posed problem of semantic object segmentation. Furthermore, on battery powered mobile computing devices, the additional algorithmic complexity of semantic object based processing compared to conventional video processing is highly undesirable both from a real-time operation and battery life perspective. This thesis attempts to tackle these issues by firstly constraining the solution space and focusing on the human face as a primary semantic concept of use to users of mobile devices. A novel face detection algorithm is proposed, which from the outset was designed to be amenable to be offloaded from the host microprocessor to dedicated hardware, thereby providing real-time performance and reducing power consumption. The algorithm uses an Artificial Neural Network (ANN), whose topology and weights are evolved via a genetic algorithm (GA). The computational burden of the ANN evaluation is offloaded to a dedicated hardware accelerator, which is capable of processing any evolved network topology. Efficient arithmetic circuitry, which leverages modified Booth recoding, column compressors and carry save adders, is adopted throughout the design. To tackle the increased computational costs associated with object tracking or object based shape encoding, a novel energy efficient binary motion estimation architecture is proposed. Energy is reduced in the proposed motion estimation architecture by minimising the redundant operations inherent in the binary data. Both architectures are shown to compare favourable with the relevant prior art

    The Value of Information for Populations in Varying Environments

    Full text link
    The notion of information pervades informal descriptions of biological systems, but formal treatments face the problem of defining a quantitative measure of information rooted in a concept of fitness, which is itself an elusive notion. Here, we present a model of population dynamics where this problem is amenable to a mathematical analysis. In the limit where any information about future environmental variations is common to the members of the population, our model is equivalent to known models of financial investment. In this case, the population can be interpreted as a portfolio of financial assets and previous analyses have shown that a key quantity of Shannon's communication theory, the mutual information, sets a fundamental limit on the value of information. We show that this bound can be violated when accounting for features that are irrelevant in finance but inherent to biological systems, such as the stochasticity present at the individual level. This leads us to generalize the measures of uncertainty and information usually encountered in information theory

    A multi-objective performance optimisation framework for video coding

    Get PDF
    Digital video technologies have become an essential part of the way visual information is created, consumed and communicated. However, due to the unprecedented growth of digital video technologies, competition for bandwidth resources has become fierce. This has highlighted a critical need for optimising the performance of video encoders. However, there is a dual optimisation problem, wherein, the objective is to reduce the buffer and memory requirements while maintaining the quality of the encoded video. Additionally, through the analysis of existing video compression techniques, it was found that the operation of video encoders requires the optimisation of numerous decision parameters to achieve the best trade-offs between factors that affect visual quality; given the resource limitations arising from operational constraints such as memory and complexity. The research in this thesis has focused on optimising the performance of the H.264/AVC video encoder, a process that involved finding solutions for multiple conflicting objectives. As part of this research, an automated tool for optimising video compression to achieve an optimal trade-off between bit rate and visual quality, given maximum allowed memory and computational complexity constraints, within a diverse range of scene environments, has been developed. Moreover, the evaluation of this optimisation framework has highlighted the effectiveness of the developed solution
    corecore