42 research outputs found

    Evolutionary establishment of moral and double moral standards through spatial interactions

    Get PDF
    Situations where individuals have to contribute to joint efforts or share scarce resources are ubiquitous. Yet, without proper mechanisms to ensure cooperation, the evolutionary pressure to maximize individual success tends to create a tragedy of the commons (such as over-fishing or the destruction of our environment). This contribution addresses a number of related puzzles of human behavior with an evolutionary game theoretical approach as it has been successfully used to explain the behavior of other biological species many times, from bacteria to vertebrates. Our agent-based model distinguishes individuals applying four different behavioral strategies: non-cooperative individuals ("defectors"), cooperative individuals abstaining from punishment efforts (called "cooperators" or "second-order free-riders"), cooperators who punish non-cooperative behavior ("moralists"), and defectors, who punish other defectors despite being non-cooperative themselves ("immoralists"). By considering spatial interactions with neighboring individuals, our model reveals several interesting effects: First, moralists can fully eliminate cooperators. This spreading of punishing behavior requires a segregation of behavioral strategies and solves the "second-order free-rider problem". Second, the system behavior changes its character significantly even after very long times ("who laughs last laughs best effect"). Third, the presence of a number of defectors can largely accelerate the victory of moralists over non-punishing cooperators. Forth, in order to succeed, moralists may profit from immoralists in a way that appears like an "unholy collaboration". Our findings suggest that the consideration of punishment strategies allows to understand the establishment and spreading of "moral behavior" by means of game-theoretical concepts. This demonstrates that quantitative biological modeling approaches are powerful even in domains that have been addressed with non-mathematical concepts so far. The complex dynamics of certain social behaviors becomes understandable as result of an evolutionary competition between different behavioral strategies.Comment: 15 pages, 5 figures; accepted for publication in PLoS Computational Biology [supplementary material available at http://www.soms.ethz.ch/research/secondorder-freeriders/ and http://www.matjazperc.com/plos/moral.html

    Constants in Future Cities and Regions

    Get PDF
    The paper resumes some of the conversations the authors had in three years of research, based on the review of best participatory planning practices worldwide. The case projects are selected and discussed with the protagonists across four leading issues: Simulation, Scenario and Visioning, Government and Governance, and Scale. The case-oriented discussion is a peculiarity of the book , contributing to give shape to future cities or regions. The aim is to build a critical thinking on how urban planning, policy and design issues are faced differently or similarly throughout every cases studied. The book include the description of computer models and media, socio-political experiments and professional practices which help communicating the future effects of different design, policy and planning strategies and schemes with a wide range of aims: from information, through consultation, towards active participation. The cases have confirmed that simulation tools can impact on local government and can drive new forms of "glocal" governance, shaping and implementing future plans and projects at different scale and time span. The following paragraphs will point at some of the constant thoughts the authors had around the selection and editing of the book's case studied and related issue

    If cooperation is likely punish mildly: Insights from economic experiments based on the snowdrift game

    Get PDF
    Punishment may deter antisocial behavior. Yet to punish is costly, and the costs often do not offset the gains that are due to elevated levels of cooperation. However, the effectiveness of punishment depends not only on how costly it is, but also on the circumstances defining the social dilemma. Using the snowdrift game as the basis, we have conducted a series of economic experiments to determine whether severe punishment is more effective than mild punishment. We have observed that severe punishment is not necessarily more effective, even if the cost of punishment is identical in both cases. The benefits of severe punishment become evident only under extremely adverse conditions, when to cooperate is highly improbable in the absence of sanctions. If cooperation is likely, mild punishment is not less effective and leads to higher average payoffs, and is thus the much preferred alternative. Presented results suggest that the positive effects of punishment stem not only from imposed fines, but may also have a psychological background. Small fines can do wonders in motivating us to chose cooperation over defection, but without the paralyzing effect that may be brought about by large fines. The later should be utilized only when absolutely necessary.Comment: 15 pages, 6 figures; accepted for publication in PLoS ON

    Interdependent network reciprocity in evolutionary games

    Get PDF
    Besides the structure of interactions within networks, also the interactions between networks are of the outmost importance. We therefore study the outcome of the public goods game on two interdependent networks that are connected by means of a utility function, which determines how payoffs on both networks jointly influence the success of players in each individual network. We show that an unbiased coupling allows the spontaneous emergence of interdependent network reciprocity, which is capable to maintain healthy levels of public cooperation even in extremely adverse conditions. The mechanism, however, requires simultaneous formation of correlated cooperator clusters on both networks. If this does not emerge or if the coordination process is disturbed, network reciprocity fails, resulting in the total collapse of cooperation. Network interdependence can thus be exploited effectively to promote cooperation past the limits imposed by isolated networks, but only if the coordination between the interdependent networks is not disturbe

    Constants in Future Cities and Regions

    Get PDF
    The paper resumes some of the conversations the authors had in three years of research, based on the review of best participatory planning practices worldwide. The case projects are selected and discussed with the protagonists across four leading issues: Simulation, Scenario and Visioning, Government and Governance, and Scale. The case-oriented discussion is a peculiarity of the book , contributing to give shape to future cities or regions. The aim is to build a critical thinking on how urban planning, policy and design issues are faced differently or similarly throughout every cases studied. The book include the description of computer models and media, socio-political experiments and professional practices which help communicating the future effects of different design, policy and planning strategies and schemes with a wide range of aims: from information, through consultation, towards active participation. The cases have confirmed that simulation tools can impact on local government and can drive new forms of “glocal” governance, shaping and implementing future plans and projects at different scale and time span. The following paragraphs will point at some of the constant thoughts the authors had around the selection and editing of the book’s case studied and related issues

    How Natural Selection Can Create Both Self- and Other-Regarding Preferences, and Networked Minds

    Get PDF
    Biological competition is widely believed to result in the evolution of selfish preferences. The related concept of the `homo economicus' is at the core of mainstream economics. However, there is also experimental and empirical evidence for other-regarding preferences. Here we present a theory that explains both, self-regarding and other-regarding preferences. Assuming conditions promoting non-cooperative behaviour, we demonstrate that intergenerational migration determines whether evolutionary competition results in a `homo economicus' (showing self-regarding preferences) or a `homo socialis' (having other-regarding preferences). Our model assumes spatially interacting agents playing prisoner's dilemmas, who inherit a trait determining `friendliness', but mutations tend to undermine it. Reproduction is ruled by fitness-based selection without a cultural modification of reproduction rates. Our model calls for a complementary economic theory for `networked minds' (the `homo socialis') and lays the foundations for an evolutionarily grounded theory of other-regarding agents, explaining individually different utility functions as well as conditional cooperation

    Punishment in Public Goods games leads to meta-stable phase transitions and hysteresis

    Full text link
    The evolution of cooperation has been a perennial problem in evolutionary biology because cooperation can be undermined by selfish cheaters who gain an advantage in the short run, while compromising the long-term viability of the population. Evolutionary game theory has shown that under certain conditions, cooperation nonetheless evolves stably, for example if players have the opportunity to punish cheaters that benefit from a public good yet refuse to pay into the common pool. However, punishment has remained enigmatic because it is costly, and difficult to maintain. On the other hand, cooperation emerges naturally in the Public Goods game if the synergy of the public good (the factor multiplying the public good investment) is sufficiently high. In terms of this synergy parameter, the transition from defection to cooperation can be viewed as a phase transition with the synergy as the critical parameter. We show here that punishment reduces the critical value at which cooperation occurs, but also creates the possibility of meta-stable phase transitions, where populations can "tunnel" into the cooperating phase below the critical value. At the same time, cooperating populations are unstable even above the critical value, because a group of defectors that are large enough can "nucleate" such a transition. We study the mean-field theoretical predictions via agent-based simulations of finite populations using an evolutionary approach where the decisions to cooperate or to punish are encoded genetically in terms of evolvable probabilities. We recover the theoretical predictions and demonstrate that the population shows hysteresis, as expected in systems that exhibit super-heating and super-cooling. We conclude that punishment can stabilize populations of cooperators below the critical point, but it is a two-edged sword: it can also stabilize defectors above the critical point.Comment: 22 pages, 9 figures. Slight title change, version that appears in Physical Biolog

    Correlation of Positive and Negative Reciprocity Fails to Confer an Evolutionary Advantage: Phase Transitions to Elementary Strategies

    Get PDF
    Economic experiments reveal that humans value cooperation and fairness. Punishing unfair behavior is therefore common, and according to the theory of strong reciprocity, it is also directly related to rewarding cooperative behavior. However, empirical data fail to confirm that positive and negative reciprocity are correlated. Inspired by this disagreement, we determine whether the combined application of reward and punishment is evolutionarily advantageous. We study a spatial public goods game, where in addition to the three elementary strategies of defection, rewarding, and punishment, a fourth strategy that combines the latter two competes for space. We find rich dynamical behavior that gives rise to intricate phase diagrams where continuous and discontinuous phase transitions occur in succession. Indirect territorial competition, spontaneous emergence of cyclic dominance, as well as divergent fluctuations of oscillations that terminate in an absorbing phase are observed. Yet, despite the high complexity of solutions, the combined strategy can survive only in very narrow and unrealistic parameter regions. Elementary strategies, either in pure or mixed phases, are much more common and likely to prevail. Our results highlight the importance of patterns and structure in human cooperation, which should be considered in future experiments
    corecore