23,969 research outputs found

    Parameter Sensitivity Analysis of Social Spider Algorithm

    Full text link
    Social Spider Algorithm (SSA) is a recently proposed general-purpose real-parameter metaheuristic designed to solve global numerical optimization problems. This work systematically benchmarks SSA on a suite of 11 functions with different control parameters. We conduct parameter sensitivity analysis of SSA using advanced non-parametric statistical tests to generate statistically significant conclusion on the best performing parameter settings. The conclusion can be adopted in future work to reduce the effort in parameter tuning. In addition, we perform a success rate test to reveal the impact of the control parameters on the convergence speed of the algorithm

    Robustness analysis of evolutionary controller tuning using real systems

    Get PDF
    A genetic algorithm (GA) presents an excellent method for controller parameter tuning. In our work, we evolved the heading as well as the altitude controller for a small lightweight helicopter. We use the real flying robot to evaluate the GA's individuals rather than an artificially consistent simulator. By doing so we avoid the ldquoreality gaprdquo, taking the controller from the simulator to the real world. In this paper we analyze the evolutionary aspects of this technique and discuss the issues that need to be considered for it to perform well and result in robust controllers

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    ACO for continuous function optimization: a performance analysis

    Get PDF
    The performance of the meta-heuristic algorithms often depends on their parameter settings. Appropriate tuning of the underlying parameters can drastically improve the performance of a meta-heuristic. The Ant Colony Optimization (ACO), a population based meta-heuristic algorithm inspired by the foraging behavior of the ants, is no different. Fundamentally, the ACO depends on the construction of new solutions, variable by variable basis using Gaussian sampling of the selected variables from an archive of solutions. A comprehensive performance analysis of the underlying parameters such as: selection strategy, distance measure metric and pheromone evaporation rate of the ACO suggests that the Roulette Wheel Selection strategy enhances the performance of the ACO due to its ability to provide non-uniformity and adequate diversity in the selection of a solution. On the other hand, the Squared Euclidean distance-measure metric offers better performance than other distance-measure metrics. It is observed from the analysis that the ACO is sensitive towards the evaporation rate. Experimental analysis between classical ACO and other meta-heuristic suggested that the performance of the well-tuned ACO surpasses its counterparts

    A self-learning particle swarm optimizer for global optimization problems

    Get PDF
    Copyright @ 2011 IEEE. All Rights Reserved. This article was made available through the Brunel Open Access Publishing Fund.Particle swarm optimization (PSO) has been shown as an effective tool for solving global optimization problems. So far, most PSO algorithms use a single learning pattern for all particles, which means that all particles in a swarm use the same strategy. This monotonic learning pattern may cause the lack of intelligence for a particular particle, which makes it unable to deal with different complex situations. This paper presents a novel algorithm, called self-learning particle swarm optimizer (SLPSO), for global optimization problems. In SLPSO, each particle has a set of four strategies to cope with different situations in the search space. The cooperation of the four strategies is implemented by an adaptive learning framework at the individual level, which can enable a particle to choose the optimal strategy according to its own local fitness landscape. The experimental study on a set of 45 test functions and two real-world problems show that SLPSO has a superior performance in comparison with several other peer algorithms.This work was supported by the Engineering and Physical Sciences Research Council of U.K. under Grants EP/E060722/1 and EP/E060722/2
    corecore