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Abstract—Performance of the metaheurisitc algorithms are
often subjected to their parameter tuning. An appropriate tuning
of the parameters drastically improves the performance of a
metaheuristic. The Ant Colony Optimization (ACO), a population
based metaheuristic algorithm inspired by the foraging behaviour
of the ants, is no different. Fundamentally, the ACO depends
on the construction of new solution variable by variable basis
using a Gaussian sampling with a selected variable from an
archive of solutions. The selection of variable for sampling plays
a vital role in the performance of the ACO. Present study
offers a performance analysis of the ACO based on the tuning
of its underling parameters such as selection strategy, distance
measure metric and pheromone evaporation rate. Performance
analysis suggests that the Roulette Wheel Selection strategy
enhance the performance of the ACO due to its ability to provide
non uniformity and wider coverage of selection in terms of
selection of a solution for sampling. On the other hand, distance
measure metric, ‘Squared Euclidean’ offers better performance
than its competitor distance measure metrics. It is observed from
the analysis that the ACO is sensitive towards the parameter
evaporation rate. Therefore, a proper choice may improve its
performance significantly. Finally, a comprehensive comparison
between ACO and other metaheuristics suggested that the per-
formance of the improvised ACO surpasses its counterparts.

Index Terms—Metaheuristic; Ant colony optimization; Con-
tinuous optimization; Performance analysis;

I. INTRODUCTION

Ant Colony Optimization (ACO) is a population based
metaheuristic optimization algorithm inspired by the foraging
behaviour of ants was initially proposed for solving the
discreet optimization problems. Later, it was extended for the
optimization of continuous optimization problems. In present
study, we shall examine the strength and weakness of the
classical ACO algorithm for function optimization. In present
paper we shall follow the improvised version of the Ant
Colony Optimization with an abbreviation ACO. The perfor-
mance of the classical ACO is fundamentally dependent on the
mechanism of the construction of new solutions variable by
variable basis where an n dimensional continuous optimization
problem has n variables. Therefore, the key to success of the
ACO is in its construction of a new solutions. To construct a
new solution, a variable from an available solutions archive is
selected for a Gaussian sampling in order to obtained a new
variable. Therefore, n newly obtained variable construct a new
solution. The other influencing parameter to the performance
of the ACC is distance measure metric, which is used for
computing the average distance between ith variable from a
selected solution and the ith variables of the other solutions

in an available solutions set (solution archive). In the distance
computation, the parameter pheromone evaporation rate plays
an important role. In present study we shall analyse the
impact of the mentioned parameters on the performance of
the ACO. We shall also analyse and compare the performance
of the improvised ACO with the other classical metaheuristic
algorithms.

We shall explore the minute details of the ACO for the
optimization of the continuous optimization problems in sec-
tion II. A comprehensive performance analysis based on the
underlying parameters of the ACO is provided in section III
followed by a discussion and conclusion in sections IV.

II. CONTINUOUS ANT COLONY OPTIMIZATION (ACO)

The foraging behaviour of the ants inspired the formation of
a computational optimization technique, popularly known as
Ant Colony Optimization. Deneubourg et al. [1] illustrated
that while searching for food, the ants, initially randomly
explore the area around their nest (colony). The ants secrete
a chemical substance known as pheromone on the ground
while searching for the food. The secreted pheromone becomes
the means of communication between the ants. The quantity
of pheromone secretion may depend on the quantity of the
food source found by the ants. On successful search, ants
returns to their nest with food sample. The pheromone trail
left by the returning ants guides the other ants to reach to the
food source. Deneubourg et al. in their popular double bridge
experiment have demonstrated that the ants always prefer to
use the shortest path among the paths available between a
nest and a food source. M. Dorigo and his team in early 90’s
[2], [3] proposed Ant Colony Optimization (ACO) algorithm
inspired by the foraging behaviour of the ants. Initially, ACO
was limited to discrete optimization problems only [2], [4], [5].
Later, it was extended to continuous optimization problems
[6]. Blum and Socha [7], [8] proposed the continuous version
of ACO for the training of neural network (NN). Continuous
ACO is a population based metaheuristic algorithm which
iteratively constructs solution. A complete sketch of the ACO
is outlined in Figure 2. Basically, the ACO has three phases
namely, Pheromone representation, Ant based solution con-
struction and Pheromone update.

1) Pheromone Representation: Success of the ACO algo-
rithm lies in its representation of artificial pheromone. The
whole exercise of the ACO is devoted to maintain its artificial
pheromone. The artificial pheromone represents a solution



S1 s11 s21 . . . si1 . . . sn1 f(s1) ω1

S2 s12 s22 . . . si2 . . . sn2 f(s2) ω2
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...

. . .
...

...
...

Sj s1j s2j . . . sij . . . snj f(sj) ωj

...
...

. . .
...

. . .
...

...
...

Sk s1k s2k . . . sik . . . snk f(sk) ωk

g1 g2 gi gn

Fig. 1. A typical Solution Archive/Pheromone Table. In a sorted solution
archive for a minimization problem, the function value associated with the
solutions are f(s1) � f(s2) � . . . � f(sk) therefore the weight
associated with the solutions are ω1 � ω2 � . . . � ωk . The weight
indicated the best solution should have highest weight. For the construction
of new solution n Gaussian are sampled using a selected µ from the archive.

archive of a target problem. Socha and Dorigo [?], illustrated
a typical representation of solution archive given in Figure 1.
The solution archive shown in Figure 1 contains k number
of solutions, each of which has n number of decision vari-
ables. In the case of a n dimensional benchmark optimization
problem, variables in solution Sj indicates the variables of the
optimization problem. Whereas, in the case of neural network
(NN) training, a phenotype to genotype mapping is employed
in order to represent NN as a vector of synaptic weights
[9], [10]. Therefore, a solution Sj in the archive represent
a vector of synaptic weights or a solution vector. A solution
vector is initialized or created using random value chosen from
a search space defined as S ∈ [min,max]. I case of NN,
min is defined as x − 4x and max is defined as x + 4x,
where x is set to 0. In the case of discrete version of ACO, a
discrete probability mass function is used whereas, in case its
continuous version, a continuous probability density function
is derived from pheromone table. The probability density
function is used for the construction of m new solutions. These
m new solutions are appended to initial k solutions and then
from k + m solutions m worst solutions are removed. Thus,
the size of solution archive is maintained to k.

2) Ant Based Solutions Construction: New solution is
constructed variable by variable basis. The first step in the
construction of new solution is to choose a solution from the
set of solution archive based on its probability of selection.
The probability of selection to the solutions in the archive is
assigned using (1) or (2). The computation of the probability of
selection a solution j given in (1) is based on the rank of the
solution in the archive whereas, the probability of selection
given in (2) is based on the fitness value of the solution.
For the construction of the ith (i ∈ [1, n]) variable of lth

(index into new solution set i.e. l ∈ [1,m]) solution, jth

(j ∈ [1, k]) solution from a solution archive is chosen based on
its probability of selection as per (1) or (2). Several selection
strategies may be adopted for the selection of jth solution
from a solution archive. The method of selection may be based
on the probability of selection assigned based on the fitness
function value or the weight assigned to the solution based
on their rank. Hence, the probability of choosing jth solution

from the solution archive may be given as

pj =
ωj

k∑
r=1

ωr

, (1)

or

pj =
f(sj)
k∑

r=1
f(sr)

, (2)

where ωj is a weight associated to the solution j computed as

ωj =
1

qk
√

2π
e

−(rank(j)−1)2

2q2k2 , (3)

where q is a parameter of the algorithm. Since in (2) the small-
est function value gets lowest probability, a further processing
is required in order to assign highest probability to smallest
function value. The mean of the Gaussian function is set to
1, so that the best solution acquire maximum weight. The
f(Sj) indicates the function value of the jth solution. In case
of the optimization problems, function value computation is
straight forward whereas, in the case of the neural network
training, the fitness of the solution is assigned using the Root
Mean Square Error (RMSE) induced on NN for the given
input training pattern (a given training dataset) [11]. The
benchmark functions (including the RMSE computation of the
benchmark dataset) are the minimization problems, therefore,
the lower the value of a function higher the rank the solution
in the solution archive. A detailed discussion on the selection
methods is offered in section III-A.

Once the jth solution is picked up, in the second step,
it is required to perform a Gaussian sampling. A Gaussian
distribution is given as

g(x, µ, σ) =
1

σ
√

2π
e−

(x−µ)
2σ2 , (4)

where µ is Si
j and σ is the average distance between the ith

variable of the selected solution Sj and the ith variable of
the all other solutions in the archive. Various distance metrics
adopted for computing the distance are comprehensively dis-
cussed in section III-B. The Gaussian sampling parameter σ
may be expressed as

σ = ξDi, (5)

where the constant ξ > 0, is a parameter of the algorithm,
known as pheromone evaporation rate (learning rate) and Di

is the computed average distance between the selected solution
and all the other solutions in the archive. For an example
Manhattan distance D2 may be given as

D2 =

k∑
r=1

| Si
r − Si

j |
k − 1

. (6)



1: procedure ACO(k, n,∆x, f(.),m, ξ, ε) . k → Archive
size, n → dimension, f(.) → objective function, m → #
of new solution , ξ → evaporation rate and ε→ stopping
criteria.

2: for i = 1 to k do
3: for j = 1 to n do
4: Sij := rand(min,max)
5: end for
6: fi = function(Si) . Compute function value.
7: end for
8: S := Sorting(S); . Sorting in ascending order of f .
9: repeat

10: for l = 1 to m do
11: for i = 1 to n do
12: Choose a solution Sji according to proba-

bility of selection where j ∈ [1, k].
13: µi = Sji and σi as per (5)
14: S′li = N (µi, σi)
15: end for
16: fl = function(S′l)
17: end for . m new solution constructed
18: S′′ = S + S′; . |S| = k, |S′| = m and
|S′′| = k +m, appending m new solution to k solutions.

19: S′′ = Sorting(S′′)
20: S := S′′ − Sm; . Truncate m poor solutions.
21: until Stopping criterion is satisfied

return f0 . Optimum function value.
22: end procedure

Fig. 2. Continuous Ant Colony Optimization (ACO)

3) Pheromone Update: In the final phase of the ACO, the
m number of newly constructed solutions are appended to
initial k solutions. The fitness of k+m solutions are ordered
in acceding sense. In the subsequent step, m number of worst
solutions are chopped out from k+m solution. Thus, the size
of solution archive is being maintained to k. The complete
discussion about the ACO is summed up in the algorithm given
in Figure 2.

III. PERFORMANCE EVALUATION

The ACO algorithm mentioned in Figure 2, is implemented
using Java programming language. The performance of ACO
algorithm is observed against the tuning of various underly-
ing parameters. The parameters taken into consideration for
performance analysis are, (i) Selection strategies used for
the selection of solution for Gaussian sampling (ii) Distance
metric and (iii) pheromone evaporation rate. We shall test the
algorithm over the benchmark function mentioned in the Table
I. The expression of the benchmark functions are as follows

−a exp

−b
√√√√1

d

d∑
i=1

x2i

−exp

(
1

d

d∑
i=1

cos(cxi)

)
+a+exp(1),

(7)

d∑
i=1

x2i , (8)

d∑
i=1

ix2i , (9)

d−1∑
i=1

[100(xi+1 − x2i )2 + (xi − 1)2], (10)

10d+

d∑
i=1

[x2i − 10 cos(2πxi)], (11)

d∑
i=1

x2i
4000

−
d∏

i=1

cos

(
xi√
i

)
+ 1, (12)

d∑
i=1

x2i +

(
d∑

i=1

0.5ixi

)2

+

(
d∑

i=1

0.5ixi

)2

, (13)

(x1 − 1)2
d∑

i=1

i(2x2i − xi − 1)2, (14)

and √√√√ 1

n

n∑
i=1

e2i (15)

where in (15) ei = (ŷi − yi) is the difference between the
target value yi and predicted value ŷi of a training dataset.

A. Selection Method

The selection of solution is critical to the performance
of the ACO provided in Figure 2. We shall analyse, how
the selection strategies influence the performance the ACO.
Several selection strategies may be adopted for the selection
of solutions which have probability of selection assigned as

TABLE I
THE BENCHMARK OPTIMIZATION PROBLEMS/FUNCTIONS CONSIDERS FOR

THE EXPERIMENT IN ORDER TO EVALUATE THE PERFORMANCE OF ACO
ALGORITHMS. THE EXPRESSIONS AND THE RANGE OF THE SEARCH SPACE

ARE MENTIONED.

Function Expression Dim. Range f(x∗)

F1 Ackley as per (7) d -15,30 0.0

F2 Sphere as per (8) d -50,100 0.0

F3 Sum Square as per (9) d -10,10 0.0

F4 Dixon & Price as per (14) d -10,10 0.0

F5 Rosenbrook as per (10) d -5,10 0.0

F6 Rastring as per (11) d -5.12,5.12 0.0

F7 Griewank as per (12) d -600,600 0.0

F8 Zakarov as per (13) d -10,10 0.0

F9 abolone(RMSE)
as per (15)

90
-1.5,1.5

0.0

F10 baseball(RMSE) 170 0.0



per (1) (named as Weight) or (2) (named as FitVal). Now,
we have Roulette Wheel Selection (RWS), Stochastic Univer-
sal Sampling (SUS) and Bernoulli Heterogeneous Selection
(BHS) selection strategies available at hand. Therefore, each
of these three selection strategy may be used to select an
individual which has probability of selection assigned using
either of the probability assignment method mentioned in (1)
and (2). Therefore, we have six different strategies available
at hand. The six selection strategies are namely, RWS(FitVal),
RWS(Weight), SUS(FitVal), SUS(Weight), BHS(FitVal) and
BHS(Weight).

In Roulette Wheel Selection, the individuals occupy the
segment of wheel. The slice (segment) of the wheel occupied
by the individuals are proportional to the fitness of the individ-
uals. A random number is generated and the individual whose
segment spans the random number is selected. The process is
repeated until the desired number of individuals is obtained.
Each time an individual required to be selected, a random
number rand(0, 1) is generated and tested against the roulette
wheel. The test verifies that the random number R fall in
the span of which segment of roulette wheel. The individual
corresponding to the segment to which the random number R
belongs to is selected.

Unlike roulette wheel selection, the stochastic universal
sampling uses a single random value to sample all of the
solutions by choosing them at evenly spaced intervals. Initially,
it is required to fix the number of candidates to be selected.
Let, k be the number of solution need to be selected. For the
selection of first candidate, the random number R in the case
of SUS is generated in [0, 1/k]. For other candidates, random
number Ri := Ri−1 + 1/k is obtained, where i indicates
individual to be selected.

The Bernoulli Heterogeneous Selection (BHS) depend on
the Bernoulli distribution [12] may be described as follows.
For k independent variables representing the function value
of solutions, where k indicates the number of solutions.
Therefore, to select an individual, the BHS may act as follows.
The Bernoulli distribution [12] is a discrete distribution having
two possible outcomes labelled by sel = 0 and sel = 1 in
which sel = 1 (”success”) occurs with probability pr and
sel = 0 (”failure”) occurs with probability qr = 1−pr, where
0 < pr < 1 . Therefore, it has probability density function

Pr(sel) =

{
1− pr for sel = 0

pr for sel = 1.
(16)

Accordingly, the outline of Bernoulli Heterogeneous Selec-
tion algorithm proposed in Figure 3.

The parameters setting for the performance evaluation of
ACO based on selection strategy is as follows, the solution
archive k = 10, n = 30, m = 10, ξ = 0.5, ε = 1000
iterations and distance metric chosen is D2 (Manhattan).
The experimental results of the various selection strategy is
provided in Table II where the values are the mean of the
functions F1 to F10 listed in Table I where the each function
Fi has and its value computed over an average of 20 trials. In

1: procedure BHS(P ) . P → vector containing probability
of selection of the individuals in a population k

2: for j = 1 to k do
3: R := rand(0, 1) . random value
4: if (select(R, pj)) then

return Solution j is selected
5: end if
6: end for
7: end procedure
8: procedure SELECT(R, pj)
9: if (R < pj) then

return true
10: else

return false
11: end if
12: end procedure

Fig. 3. Bernoulli Heterogeneous Selection (BHS)

TABLE II
AN EXPERIMENTAL RESULT FOR THE PERFORMANCE EVALUATION OF

SELECTION STRATEGIES. THE RESULTS INDICATED THE SUPERIORITY OF
RWS METHOD OVER OTHER SELECTION STRATEGIES

Selection probability
assignment

Selection Method

RWS SUS BHS Rank 1
function fitness value
based

28.202 101.252 34.931 41.725

weight computed
based on rank

35.105 95.216 36.503

other words, the each function values are the average over 20
distinct trials/instances and the final value given in Table I is
the average of each function. Examining Table II, it may be
observed that the RWS selection strategy outperform the other
selection strategies. The RWS selection with the probability of
selection computed based on function value yields best result
among the mentioned selection strategies. The performance of
BHS selection strategy is competitive to RWS selection. The
result in table indicate the perform SUS is worst among the all
mentioned selection methods. From Table II, it is interesting
to note that performance over probability of selection based
on function value performs better than its counterpart with an
exceptional being SUS case.

To investigate the differences in the performance of the
selection strategies indicated above, three hundred selections
by each of the selection methods is plotted graphically in
Figure 5. As per the algorithm outlined in Figure 2, to
construct a single solution, variable by variable, we need to
select a solution from the solution archive of size k individuals
n number of times, where n is the number of variables in
a solution. Hence, to construct m number of solutions each
of which having n variables m × n selection is required.
Figure 5 represents the construction of 10 new solution from a
solution archive of size 10 and each solution in the archive is
having 30 variables representing the dimension of a function
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Fig. 4. Mapping of the individual selection according to their rank. The
mapping indicate the span of rank coverage in selection and the distribution
of selection. (a) top left - SUS( green - FitVal, purple - weight), (a) top right -
RWS( indigo - FitVal, red - weight) and (a) bottom left - BHS( blue - FitVal,
orange - weight)

F1. Therefore, 10 × 30 = 300 selection are made at one
iteration. Figure 5 illustrate the mapping of selection made in
a single iteration of the algorithm ACO used for optimization
of function F1. In figure 5, ten concentric circles represent
the solutions in the solution archive. The center of the circle
(marked 0) indicate the solution with rank 1 (highest) while the
subsequent outer concentric circle indicates the representation
of increasing rank of solution. Therefore, the center indicated
the best solution whereas the outermost concentric circle
indicate the worst solution. Hence from the center to the
outermost concentric circle each circle in increasing diameter
represents 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th and 10th ranked
solution respectively.

The six selection strategies namely, RWS(FitVal),
RWS(Weight), SUS(FitVal), SUS(Weight), BHS(FitVal)
and BHS(Weight) are represented by indigo, red, green,
purple, blue and orange coloured lines. Examining Figures
4(a) and 5, SUS(FitVal) and SUS(Weight) selection strategy
selects the solutions uniformly in each of the new individual
construction. The distribution of the selection (picking a
solution) is uniform (from best to worst) throughout 300
selection. Therefore, the selection are repeat at a step of 30
(dimension). It may also be observed that the coverage of
selection is distributed from the best to worst selection. The
results provided in Table II indicates poor performance of
SUS selection strategy. Therefore, an uniform selection with
wider coverage of ranks happens to be poor selection strategy.
In case of RWS(FitVal) and RWS(Weights) selection mapping
provided in Figures 4(b) and 5 indicated a span of selection
from rank 1 (center marked 0) to rank 5 (outermost circle
marked 4) in case of function value and rank 1 to rank 3 in
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Fig. 5. A combined representation of the selection strategies. The center
represent an individual with rank 1 and outermost circle represents an
individual with rank 10.

case of Weight. However, its selection is mostly distributed
within the range of rank 1 to 4 in case of FitVal and rank 1 to
2 in case of Weight. It is worth mentioning that unlike SUS
case, in RWS the selections is not uniform throughout 300
selections for construction of each of the 10 new solutions.
The non uniform selection with coverage of selection to an
adequate range of best to worst solution helps RWS selection
strategy to achieve better performance over its competitor
selection strategy. Similar to RWS, BHS selection also offer
non uniform selection of individuals but on the contrary to
the RWS its coverage of rank is mostly concentrated to fittest
individual in the archive. From Figures 4(c) and 5, it may
be observed that the BHS selection is non-uniform but its
selection spans upto rank 3 among the 10 individuals whereas
the RWS spans upto rank 5. From Figures 4(a), 4(b), 4(c)
and 5, it may observed that probability of selection computed
based on the weights indicated in purple (in Figure 4(a)), red
(in Figure 4(b)) and orange (in Figure 4(c)) behaves similar to
the probability of selection computed based on function value
but, it tend to prefer selection towards best ranks. However,
the results provide in Table II indicated the the preference of
better rank in case of SUS offers better result than preferring
each individuals in archive.

B. Distance Measure Metric

After the selection of a solution from an archive, another
crucial operation in ACO algorithm is sampling of the selected
solution. To sample the selected solution, parameter µ and σ
need to be computed. As discussed in section II, the parameter
µ is the ith variable of the jth solution selected for sampling
and the parameter σ is computed as per expression (5) where
distance Di (i ∈ [1, 10]) is a distance metric listed in Table III.
The distance computed between the selected solution (point)



TABLE III
AN EXPERIMENTAL RESULT OVER THE DISTANCE MEASURE METRIC

INDICATED THAT SUPERIORITY OF SQUARED EUCLIDEAN DISTANCE OVER
ALL OTHER DISTANCE METRICS

# Distance Measure Metric Mean Fun. Value
Expression Metric Name

D1

(
∑
|xi − yi|r)1/r

Minkowsky (r = 0.5) 28.792
D2 Manhattan (r = 1) 33.203
D3 Euclidean (r = 2) 44.578
D4 Minkowsky (r = 3) 45.211
D5 Minkowsky (r = 4) 51.909
D6 Minkowsky (r = 5) 53.702
D7

∑
(xi − yi)2 Squared Euclidean 14.308

D8 max |xi − yi| Chebychev 93.642

D9

∑
|xi−yi|∑
xi+yi

Bray Curtis 98.983

D10
∑ |xi−yi|
|xi|+|yi|

Canberra 103.742

with other solution (points) in the solution archive is critical
to the performance of ACO algorithm. To compute distance
between two points, usually the Euclidean distance metric
is used. In general for computing distance between points
(x1, x2, . . ., xn) and (y1, y2, . . ., yn) Minkowski distance
of order r is used. The Euclidean distance is a spacial case
of Minkowski distance metric, where r = 2. An experimental
result over all the distance metric mentioned in the Table III.
The experimental setup is as follows: k = 10, n = 2, m = 10,
ξ = 0.5 and ε = 1000 iterations. It may be noted that for the
experimentation purpose the RWS selection with probability
selection based on function value is used. Examining table
III, it is found that the Squared Euclidean (D6) is performed
better than all the other distance metric. However, it may also
be noted that the performance of ACO decreases over the
increasing order of ’r’ of Minkowski metric.

C. Evaporation Rate

The parameter evaporation rate (ξ) in ACO algorithm is
treated as learning rate. The performance evaluation of ACO
based on the evaporation rate with the following parameter
combination k = 10, n = 20, m = 10, and ε = 1000
iterations is illustrated in Figure 6. It may be noted that for the
experimentation purpose the RWS selection with probability
selection based on function value is used and the distance
metric D6 is chosen for the computation of σ. In Figure 6, the
values along the vertical axis represents the mean functions
F1 to F10 (where each function value is averaged over twenty
trails) listed in Table I while the values along the horizontal
axis represent evaporation rate ξ. The performance of ACO
is evaluated by regulating the evaporation rate between 0.1
and 0.1. Investigating Figure 6, it may be observed that a
valley shaped curve is formed. Initially, for ξ = 0.3, a high
mean of function value is noted. While changing the value
of ξ, a substantial improvement is being observed in the
performance of the ACO. Hence, the performance of ACO
is highly sensitive to the parameter ξ. It may be observed
from Figure 6, that the increasing the value of ξ enhance
the performance of ACO. However, the performance of ACO
slightly declined on further increasing the value of ξ onward

0.5. A sudden high drop in performance if observed at the
evaporation rate high sensitivity towards evaporation rate can
be observed from the Figure 6.
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Fig. 6. An experimental results over different value of evaporation rate ξ.
The results indicate a high sensitivity towards the parameter ξ.

D. Comparison with Other metaheuristics
An experiment conducted for the comparison between the

improvised ACO and other classical metaheuristic algorithm
such as Particle Swarm Optimization (PSO) and Differential
Evaluation.

The parameter setting adopted for ACO is as follows: the
population k = 10, n = 20, and ε = 1000 iterations,
evaporation rate ξ is set to 0.5, selection method for classical
ACO is BHS(Weight) and distance metric is D2 (Manhattan)
whereas for ACO∗ (improvised parameters) selection method
is RWS(FitVal) and the distance metric is D6 (Squared Eu-
clidean) is considered.

The PSO [13] is a population based metaheuristic algorithm
inspired by foraging behaviour of swarm. A swarm is basically
a population of several particles. The mechanism of PSO de-
pends on the velocity and position update of a swarm. The ve-
locity in PSO is updated in order to update the position of the
particles in a swarm. Therefore, the whole population moves
towards an optimal solution. The influencing parameters are
cognitive influence C1, social influence C2 are set to 2.0 and
InertiaWeightHigh is set to 1.0 and InertiaWeightLow
is set to 0.0. The other parameter population size set to 10 and
ε set to 1000 iterations.

The DE [14], [15] inspired by natural evolutionary pro-
cess is a popular metaheuristic algorithm for the optimiza-
tion of continuous functions. The parameter of DE such as
weightfactor is set to 0.7, the corssoverfactor is set to 0.9
are the major performance controlling parameter. In present
study the DE version DE/rand − to − best/1/bin [16] is
used. The other parameter population size set to 10 and ε set
to 1000 iterations. Examining Table IV, it may be concluded
that at the present mentioned experimntal/ parameter setup,
the improvised version of ACO outperform the classical meta-
heuristics. However, from the present paper and study and the
availability of no free lunch theorem [17], it is clearly evident
that the mentioned meta-heuristcs are subjected to parameter
tuning. Hence a claim of superiority of the present improvised
ACO is subject to its comparisons parameter tuning of the
other mentioned metaheuristics.



TABLE IV
AN EXPERIMENT CONDUCTED FOR COMPARISON BETWEEN CLASSICAL

METAHEURISTICS ALGORITHMS. THE RESULTS INDICATE PERFORMANCE
SUPERIORITY OF ACO ALGORITHM OVER OTHER ALGORITHM

MENTIONED IN TABLE. NOTE: ACO INDICATES THE ORIGINAL VERSION OF ACO, ACO INDICATES

IMPROVISED ACO, PSO - CLASSICAL PARTICLE SWARM OPTIMIZATION AND DE - DEFERENTIAL EVOLUTION.

Funtion Test ACO ACO PSO DE

F1 f(x∗) 1.72 1.63 17.86 11.16
var 0.05 0.01 3.80 13.92

F2 f(x∗) 0.69 0.02 7875.01 1610.96
var 0.02 0.00 1.45E+07 3402.52

F3 f(x∗) 5.57 0.47 488.92 40.81
var 0.73 4.17 2.00E+05 200.54

F4 f(x∗) 131.42 65.23 2.20E+05 2763.53
var 4501.12 6160.92 9.35E+09 37334.53

F5 f(x∗) 127.56 32.24 81.27 22.27
var 308.44 618.88 569.12 56.08

F6 f(x∗) 0.46 0.06 62.64 13.22
var 0.27 0.01 712.26 39.88

F7 f(x∗) 4.93 12.72 458.32 44.71
var 1.60 294.76 20947.18 149.05

F8 f(x∗) 11.68 1.05 36556.80 2162.60
var 324.92 0.03 4.18E+09 13945.71

IV. DISCUSSION AND CONCLUSION

A comprehensive performance analysis of Ant Colony Op-
timization is offered in present study. The parameter such
as selection strategy, distance measure metric and evapora-
tion rate are put into meticulous tuning. The selection of a
variable in construction of new solution. The assignment of
the probability of selection to the individuals in the selection
strategy influence the performance ACO. Analysing the results
produce by the various selection strategy, it may be conclude
that the selection strategy, RWS together with the probability
of selection computed based on the function value offer better
result than its counterparts. The advantages with RWS strategy
is due to its ability to maintain non uniformity in selection
and prefering not only the best solution in a population of
individuals. Rather than sticking to Manhattan distance metric
only, it is interesting to test several available distance measure
metric for computing average distance between the selected
solution and all the other solutions. It is observed from the
experiments that the distance metric Squared Euclidean offer
better performance among the mentioned distance metric in
present study. It may also observed from the analysis that
the ACO is highly sensitive towards its parameter, pheromone
evaporation rate which control the magnitude of the average
distance between the selection solution (variable) to all the
other solution (individuals) in the population. A comparison
between classical metaheuristic indicated the dominance of the
ACO algorithm in present experimental setup. However, as
evident from the present study and the no free lunch theorem,
the metaheuristic algorithms are subjected to parameter tuning.
Therefore, claim of superiority of one metaheuristic algorithm
over other will always be under scanner.
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