22,938 research outputs found

    Strong Effects of Network Architecture in the Entrainment of Coupled Oscillator Systems

    Get PDF
    Entrainment of randomly coupled oscillator networks by periodic external forcing applied to a subset of elements is numerically and analytically investigated. For a large class of interaction functions, we find that the entrainment window with a tongue shape becomes exponentially narrow for networks with higher hierarchical organization. However, the entrainment is significantly facilitated if the networks are directionally biased, i.e., closer to the feedforward networks. Furthermore, we show that the networks with high entrainment ability can be constructed by evolutionary optimization processes. The neural network structure of the master clock of the circadian rhythm in mammals is discussed from the viewpoint of our results.Comment: 15 pages, 11 figures, RevTe

    Towards a Holistic CAD Platform for Nanotechnologies

    Get PDF
    Silicon-based CMOS technologies are predicted to reach their ultimate limits by the middle of the next decade. Research on nanotechnologies is actively conducted, in a world-wide effort to develop new technologies able to maintain the Moore's law. They promise revolutionizing the computing systems by integrating tremendous numbers of devices at low cost. These trends will have a profound impact on the architectures of computing systems and will require a new paradigm of CAD. The paper presents a work in progress on this direction. It is aimed at fitting requirements and constraints of nanotechnologies, in an effort to achieve efficient use of the huge computing power promised by them. To achieve this goal we are developing CAD tools able to exploit efficiently these huge computing capabilities promised by nanotechnologies in the domain of simulation of complex systems composed by huge numbers of relatively simple elements.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Evolutionary robotics and neuroscience

    Get PDF
    No description supplie

    Modeling and Optimization of Complex Building Energy Systems with Deep Neural Networks

    Full text link
    Modern buildings encompass complex dynamics of multiple electrical, mechanical, and control systems. One of the biggest hurdles in applying conventional model-based optimization and control methods to building energy management is the huge cost and effort of capturing diverse and temporally correlated dynamics. Here we propose an alternative approach which is model-free and data-driven. By utilizing high volume of data coming from advanced sensors, we train a deep Recurrent Neural Networks (RNN) which could accurately represent the operation's temporal dynamics of building complexes. The trained network is then directly fitted into a constrained optimization problem with finite horizons. By reformulating the constrained optimization as an unconstrained optimization problem, we use iterative gradient descents method with momentum to find optimal control inputs. Simulation results demonstrate proposed method's improved performances over model-based approach on both building system modeling and control

    Does money matter in inflation forecasting?.

    Get PDF
    This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. In our forecasting experiment we use two non-linear techniques, namely, recurrent neural networks and kernel recursive least squares regression - techniques that are new to macroeconomics. Recurrent neural networks operate with potentially unbounded input memory, while the kernel regression technique is a finite memory predictor. The two methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a naive random walk model. The best models were non-linear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation
    corecore