94 research outputs found

    Data-Driven Architecture to Increase Resilience In Multi-Agent Coordinated Missions

    Get PDF
    The rise in the use of Multi-Agent Systems (MASs) in unpredictable and changing environments has created the need for intelligent algorithms to increase their autonomy, safety and performance in the event of disturbances and threats. MASs are attractive for their flexibility, which also makes them prone to threats that may result from hardware failures (actuators, sensors, onboard computer, power source) and operational abnormal conditions (weather, GPS denied location, cyber-attacks). This dissertation presents research on a bio-inspired approach for resilience augmentation in MASs in the presence of disturbances and threats such as communication link and stealthy zero-dynamics attacks. An adaptive bio-inspired architecture is developed for distributed consensus algorithms to increase fault-tolerance in a network of multiple high-order nonlinear systems under directed fixed topologies. In similarity with the natural organisms’ ability to recognize and remember specific pathogens to generate its immunity, the immunity-based architecture consists of a Distributed Model-Reference Adaptive Control (DMRAC) with an Artificial Immune System (AIS) adaptation law integrated within a consensus protocol. Feedback linearization is used to modify the high-order nonlinear model into four decoupled linear subsystems. A stability proof of the adaptation law is conducted using Lyapunov methods and Jordan decomposition. The DMRAC is proven to be stable in the presence of external time-varying bounded disturbances and the tracking error trajectories are shown to be bounded. The effectiveness of the proposed architecture is examined through numerical simulations. The proposed controller successfully ensures that consensus is achieved among all agents while the adaptive law v simultaneously rejects the disturbances in the agent and its neighbors. The architecture also includes a health management system to detect faulty agents within the global network. Further numerical simulations successfully test and show that the Global Health Monitoring (GHM) does effectively detect faults within the network

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Fractional Order Fault Tolerant Control - A Survey

    Get PDF
    In this paper, a comprehensive review of recent advances and trends regarding Fractional Order Fault Tolerant Control (FOFTC) design is presented. This novel robust control approach has been emerging in the last decade and is still gathering great research efforts mainly because of its promising results and outcomes. The purpose of this study is to provide a useful overview for researchers interested in developing this interesting solution for plants that are subject to faults and disturbances with an obligation for a maintained performance level. Throughout the paper, the various works related to FOFTC in literature are categorized first by considering their research objective between fault detection with diagnosis and fault tolerance with accommodation, and second by considering the nature of the studied plants depending on whether they are modelized by integer order or fractional order models. One of the main drawbacks of these approaches lies in the increase in complexity associated with introducing the fractional operators, their approximation and especially during the stability analysis. A discussion on the main disadvantages and challenges that face this novel fractional order robust control research field is given in conjunction with motivations for its future development. This study provides a simulation example for the application of a FOFTC against actuator faults in a Boeing 747 civil transport aircraft is provided to illustrate the efficiency of such robust control strategies

    Autonomous Navigation of Quadrotor Swarms

    Get PDF
    RÉSUMÉ La mise sur le marché de composants toujours plus performants et compétitifs en termes de coût, ainsi que le développement rapide des technologies de commande et de navigation en robotique, nous ont amenés à envisager le contrôle d’un large essaim de quadrirotors. Di-verses solutions impliquant des drones existent déjà pour différentes applications: inventaire forestier, gestion du littoral, suivi du trafic, etc. Parmi celles-ci, la recherche et le sauvetage en situation d’urgence représentent à nos yeux la possibilité la plus intéressante et constitue, de fait, la première motivation de notre travail. Par conséquent, une large revue de littérature sur la question est fournie. Ce travail se concentre sur le contrôle de l’essaim lui-même, et non sur l’application finale. Tout d’abord, un modèle mathématique de la dynamique du quadrirotor est présenté et plusieurs lois de commande numérique sont synthétisées. Ces dernières implémentent les modes de fonctionnement nécessaires aux algorithmes de navigation, à savoir : commande en vitesse, commande en position et commande en suivi. Ensuite, deux solutions originales et complémentaires de contrôle d’essaim sont proposées. D’une part, un algorithme d’essaimage pour la navigation extérieure est développé. Contrairement à la plupart des travaux trouvés dans la littérature, la solution proposée ici gère non seulement le maintien, mais aussi l’initialisation de la formation. Plus spécifiquement, un modèle de formation hexagonale est introduit. Ensuite, les places en formation sont attribuées de façon optimale à l’aide de l’algorithme hongrois. Enfin, les agents se déplacent jusqu’à la place qui leur est assignée tout en évitant les autres agents avec un algorithme de navigation inspiré du Artificial Potential Field. De plus, cette solution tient compte de contraintes de conception réalistes et a été intégrée avec succès dans un logiciel embarqué de quadrotor déjà existant et opérationnel. Les résultats de simulations Software-In-The-Loop sont fournis. D’autre part, une solution d’essaimage pour la navigation intérieure est étudiée. L’algorithme proposé implémente un certain nombre de comportements individuels simples, de sorte qu’un grand essaim peut suivre un meneur dans des environnements encombrés en se fiant uniquement aux informations locales. Des simulations préliminaires sont effectuées et les résultats montrent qu’il serait possible de faire fonctionner, conformément au besoin étudié, un essaim de cent quadrirotors avec l’algorithme proposé. En particulier, l’essaim est capable de suivre le meneur, de maintenir la connectivité, d’éviter les collisions entre agents, d’éviter les obstacles et même de se faufiler dans des espaces étroits.----------ABSTRACT The ever-growing hardware capabilities and the rapid development of robotic control and navigation technologies have led us to consider the control of an entire swarm of quadrotors. Drone-based solutions have been developed for different applications: forest inventory, coastal management, traÿc monitoring, etc... Among these, the Search And Rescue application represents for us a very promising field of application and constitutes the first motivation of our work. As a result, a wide literature review on the matter is provided. Nevertheless, this work focuses on the swarm control itself, and not on the end user application. First, a mathematical model of the quadrotor dynamics is presented and several digital control laws are designed. The latter provide operating modes useful for the navigation algorithms, namely: velocity control, position control and tracking control. Then, two original and complimentary swarming solutions are proposed. On the one hand, a swarming algorithm for outdoor navigation is developed. Unlike most of the works reviewed in the literature, our solution handles not only the maintenance but also the initialization of the formation. More specifically, an hexagonal formation pattern is intro-duced. Then, positions are optimally assigned using the Hungarian algorithm. Finally, the agents move to their assigned position while avoiding collisions with the other fleet members thanks to a navigation algorithm inspired from Artificial Potential Field. In addition, this solution accounts for realistic design constraints and was successfully integrated into already existing quadrotor onboard software. Software-In-The-Loop simulation results are provided. On the other hand, a swarming solution for indoor navigation is investigated. The proposed algorithm enforces a certain set of expected individual simple behaviors such that a large swarm can follow a leader through cluttered environments relying only on local information. Preliminary simulations are run and the results show that it is possible to operate a swarm of a hundred quadrotors with the proposed algorithm. In particular, the swarm is able to follow the leader, maintain connectivity, avoid collisions with the other agents, avoid obstacles, and even squeeze to pass through narrow spaces

    Bipartite Consensus for a Class of Nonlinear Multi-agent Systems Under Switching Topologies:A Disturbance Observer-Based Approach

    Get PDF
    This paper considers the leader-following bipartite consensus for a class of nonlinear multi-agent systems (MASs) subject to exogenous disturbances under directed fixed and switching topologies, respectively. Firstly, two new output feedback control protocols involving signs of link weights are introduced based on relative output measurements of neighboring agents. In order to estimate the disturbances produced by an exogenous system, a disturbance observer-based approach is developed. Then, sufficient conditions for leader-following bipartite consensus with directed fixed topologies are derived. Furthermore, by assuming that each switching topology contains a directed spanning tree, it is proved that the leader-following bipartite consensus can be realized with the designed output feedback control protocol if the dwell time is larger than a non-negative threshold. Finally, numerical simulations inspired by a real-world DC motors are provided to illustrate the effectiveness of the proposed controllers

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Soft computing techniques applied to modelling and control of unmanned aerial vehicles

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, leída el 18-06-2019El uso de UAVs (vehículos autónomos aéreos), y en concreto, de cuatrirrotores o drones, está creciendo de día en día, y se espera que se usen en multitud de aplicaciones: rescate, seguridad,lucha contra incendios, agricultura, inspección de estructuras, logística, … En la mayoría de estas tareas los cuatrirrotores deben actuar de una forma totalmente autónoma. Estas aplicaciones y las que están por llegar requieren el diseño de modelos y controladores eficientes y robustos para esos vehículos no pilotados. Sin embargo, esta no es una tarea sencilla debido, entre otras causas, a la aleatoriedad de los flujos de aire, la dinámica altamente no lineal del UAV, el acoplamiento entre sus variables internas, etc. Estos factores hacen que las técnicas de Soft Somputing (computación suave, una rama de la Inteligencia Artificial), y entre ellas concretamente las redes neuronales artificiales y la lógica fuzzy, sean un enfoque prometedor para la identificación y el control de estos sistemas...The use of UAVs (unmanned aerial vehicles), and specially quadrotors, is growing day by day, they are planned to be used in multitude of valuable applications: rescue, security, firefighting, agriculture, structure inspection, logistics, … In most of those tasks, the quadrotorsare expected to be fully autonomous. All these applications and those to come, demand the design of efficient and robust models and controllers for those autonomous vehicles. However, this is not an easy task due to, among others: the randomness of the airstreams, the high nonlinearity dynamics, the coupling between the internal variables, etc. These factors make the Soft Computing techniques (a field of the Artificial Intelligence), and among them specially the artificial neural networks and the fuzzy logic, a promising approach for the identification and control of these systems...Fac. de InformáticaTRUEunpu

    Advanced Modeling, Control, and Optimization Methods in Power Hybrid Systems - 2021

    Get PDF
    The climate changes that are becoming visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this reprint presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications such as hybrid and microgrid power systems based on the Energy Internet, blockchain technology and smart contracts, we hope that they will be of interest to readers working in the related fields mentioned above
    • …
    corecore