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ABSTRACT

This paper considers the leader-following bipartite consensus for a class of nonlinear multi-agent sys-
tems (MASs) subject to exogenous disturbances under directed fixed and switching topologies, respec-
tively. Firstly, two new output feedback control protocols involving signs of link weights are
introduced based on relative output measurements of neighboring agents. In order to estimate the dis-
turbances produced by an exogenous system, a disturbance observer-based approach is developed.
Then, sufficient conditions for leader-following bipartite consensus with directed fixed topologies are
derived. Furthermore, by assuming that each switching topology contains a directed spanning tree, it
is proved that the leader-following bipartite consensus can be realized with the designed output feedback
control protocol if the dwell time is larger than a non-negative threshold. Finally, numerical simulations
inspired by a real-world DC motors are provided to illustrate the effectiveness of the proposed
controllers.

Output feedback control

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, a tremendous amount of attention has been
devoted to cooperative control of MASs [1,2]. This can be ascribed
to its wide applications in varieties of fields such as sensor net-
works [3], unmanned air vehicles [4], power systems [5], formation
control [6], and so on.Among the dynamic behavior of MASs, con-
sensus is a fundamental issue, which is committed to driving each
participating agent to the same state by only collecting the local
information from its neighbors [7]. Leader-following consensus
reduces the tracking consensus when there is a leader in MASs,
where the followers’ states will gradually become consistent with
that of the leader over time [8-10].

Most literature consider that agents interact cooperatively to
finish a common task. However, competitive interaction may also
exist in practical situations. For instance, it was introduced in
[11] that companies not only collaborate but also compete in the

* Corresponding author at: Key Laboratory of Smart Manufacturing in Energy
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industrial market. If there was competition for market resources,
the challenges would appear because it would generate competi-
tion among company relatives and decrease chances of coopera-
tion. Also, in view of the leader-follower framework, the authors
investigated the cooperation between employer and employees,
and cooperation or competition among employees in the manage-
ment control system [12]. Then, the signed graph has been a uni-
versal tool to describe the networks with both cooperative and
competitive relationships. The study on dynamic behavior of MASs
over signed graphs can be traced back to [13], where the agents
exhibit dynamic phenomena of bipartite consensus and consensus
for signed graphs with balanced and unbalanced structures,
respectively. In particular, all agents eventually evolve into two
subgroups with different consensus states if the signed graph is
structurally balanced, and they gradually converge to a common
state O if the signed graph is structurally unbalanced. Inspired by
this pioneering work [13], there have been made much efforts
toward addressing the dynamic behaviors of consensus and bipar-
tite consensus for MASs on signed digraphs from different aspects
[14,15]. In particular, concerning leader-following dynamics, we
mention leader-following bipartite consensus under fixed-time
[16], fractional-order nonlinear dynamics [17], event-triggered
control [18], and finite-time control [19].
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It is worthwhile noticing that most of current works on compet-
itive interactions depend on the assumption that communication
topologies are undirected and fixed [20]. However, for many prac-
tical situations, communication channels among agents may be
interrupted or be reconstructed. The interactions among agents
may be time-varying over a period of time, and it is essential to
consider MASs over directed switching topologies. Therefore, a
large number of works with regard to consensus subject to switch-
ing topologies have been reported. In [21], based on Lyapunov the-
ory and the property of M-matrix, the leader-following consensus
control problem of nonlinear MASs was solved under switching
topologies. In [22], the authors investigated leader-following con-
sensus for MASs over directed fixed and switching topologies,
respectively. As interactions among agents include competitive
and cooperative links, constructing an effective control protocol
to realize bipartite consensus under switching topologies is in
great demand and challenging. In [23], based on a distributed
observer and the certainty equivalence principle, the leader-
following bipartite consensus problem of multiple uncertain
Euler-Lagrange systems over signed switching networks was
solved. Later, the signed consensus for MASs over fixed and switch-
ing topologies was concerned in [24]. And the pinning control
problem for MASs subjected to switching topologies has been
resolved in [25]. As we have seen, although many studies have
been performed on leader-following bipartite consensus control
of MASs, it is usually supposed that the dynamic of each agent is
linear. While in practical situations, nonlinear MASs are common
[26]. Then in [27], the authors presented a distributed impulsive
controller for nonlinear MASs under a pinning control strategy.
Therefore, it is essential to investigate the bipartite consensus of
nonlinear MASs with switching communication topologies, includ-
ing competitive interactions.

As an interesting issue continued from single systems, how to
deal with exogenous disturbances, cyber-attacks and noises has
received more and more attention recently [28]. In [29], the
team-triggered fixed-time consensus control for a class of
double-integrator agents under the uncertain disturbance was
investigated. In [30], a distributed filtering algorithm was devel-
oped to realize the distributed implementation subject to the
cyber-attacks and non-Gaussian noises. In [31], the discrete time-
varying linear system with superposed system noises was investi-
gated. Meanwhile, how to reject disturbances is also an expressly
important topic under switching topologies. In [32], under switch-
ing topologies, the semi-global output consensus of MASs with
exogenous disturbances was addressed. Furthermore, disturbance
observer-based control strategies were provided to deal with dis-
turbances from network-connected dynamic systems [33,34].
Motivated by the forgoing related works, a disturbance observer-
based control law is utilized to investigate the bipartite consensus
for MASs subject to exogenous disturbances under switching
topologies in this paper.

Many existing works on bipartite consensus mainly employed
full relative states of neighboring agents to construct control laws.
However, the relative state information of agents can not always
be obtained in practical engineering. Therefore, as one of the cen-
tral topics in cooperative control, output feedback control played
an important role in achieving asymptotic tracking by designing
a distributed controller [35,36]. And it should be pointed out that
only linear MASs with an output feedback control approach has
been taken into account during a relatively long period [37,38].
Indeed, nonlinear dynamics are more general in practical environ-
ments. By employing the output feedback control approach, con-
sensus control strategies of nonlinear MASs have been presented
to achieve robust adaptive output consensus in [39]. The output
feedback consensus problem of high-order linear systems subject
to switching topologies was also solved by designing output con-
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trol strategies in [40]. However, the above mentioned literatures
only study bipartite consensus problem under switching topolo-
gies without exogenous disturbances, and the limited information
for unknown disturbances makes it difficult to consider the bipar-
tite consensus, involving how to construct the output feedback
control strategy without using any state information, how to com-
bine the nonlinear control condition, and how to deal with the
effects of competitive relationship between agents. These are chal-
lenging problems for leader-following bipartite consensus for non-
linear MASs subject to exogenous disturbances.

In this paper, we fill in this gap by considering a leader-
following bipartite consensus for a class of nonlinear MASs under
directed fixed and switching topologies. After having formally
defined the two controllers and illustrated the algorithms to set
the gain matrices, we performed a theoretical analysis of the pro-
posed approaches. Through a Lyapunov-based argument, we prove
that the two controllers are able to guarantee convergence of the
system to a leader-following bipartite consensus. Our algorithms
and theoretical findings are then illustrated via numerical simula-
tions on some case studies based on a real-world MAS inspired by
[22,25] and formed by single-link manipulators with revolute
joints actuated by DC motors, which interact over different (static
or switching) topologies. The numerical findings show the good
performances of the proposed controllers in different scenarios,
corroborating our theoretical results. The main novelties of our
approach with respect to the literature discussed in the above
are summarized as follows:

e Compared with some results using the full relative states of
neighboring agents [9,28], two new distributed bipartite con-
sensus control strategies based on output measurements are
proposed, in which only the relative output information of
neighboring agents is utilized. Also different from [1,16] that
the dynamic of system state is linear, we consider a class of Lip-
schitz nonlinear condition, which is more significant from prac-
tical point of view.

Since the upper bounds of exogenous disturbances are not
always obtainable, it is comparatively challenging for estimat-
ing the states of agents due to the unknown exogenous distur-
bances. In order to deal with this problem, a disturbance
observer-based control protocol is formulated to estimate the
exogenous disturbances and system states, which provides an
effective solution to the MASs subject to exogenous
disturbances.

As interactions among agents might be time-varying, coopera-
tive or antagonistic, and exogenous disturbances are inevitably
generated from exogenous systems, both switching topologies
and exogenous disturbances are investigated in the context of
bipartite consensus under signed communication topologies in
this paper. The derived results are more general.

The rest of the paper is organized as follows. In Section 2 we report
some definitions and preliminaries used in this paper. In Section 3,
we formulate the problem. In Section 4, we present our main
results, with proofs reported in Appendices A and B. In Section 5,
we discuss three numerical examples. Section 6 concludes the
paper and outlines future research.

2. Notation and Preliminaries
2.1. Notation
R" stands for n -dimensional Euclidean space. Iy denotes the

N x N identity matrix. 1y and Oy represent the N x 1 column vector
of all ones and all zeros, respectively. |-| represents an absolute
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symbol, ® denotes the Kronecker product. min(-) and Amax(-) repre-
sent the minimum and maximum eigenvalues of a matrix. sgn(-) is
a sign function, which satisfies

1,x>0

0,x=0

-1,x<0

sgn(x)

2.2. Preliminaries

Let ¥ = (v, &, /) be the sighed topology of the followers, with a
set of nodes v = {vq, 75, v3,---, vy} and a set of edges £ C 7" x 7.
Define N;={jev :(j,i)e&} as neighbors of agent .
o = [az] € RV is the signed weighted adjacency matrix, in which
a; > 0if (j,i) € &,i#j,and a; = 0,(j,i) ¢ &. A path from node z; to
v; is a sequence of edges in ¥, (v;, Un), (¥in, Vi2), -, (Vim, ;) With
distinct nodes vy, k =1,2,---,m. The Laplacian matrix L = (l3)
is defined as

NxN

N
li = Z |aj; lj = —ay,i#].

j=1ji

Definition 1. A signed graph ¥ is structurally balanced if the graph
possess a bipartition 71,7, satisfying ¥ ;U7 =7 and
YINY = and a;j > 0,v;,v5€ v (ke {1,2}), and
a; < 0,v; € ¥, v € V73 (k € {1,2}). Otherwise, it is called struc-
turally unbalanced.

Hence, define ¢ = {S = diag(s1,S2,---,Sn).,Si € {—1,1}}. The
lemma about structural balance can be obtained.

Lemma 1 [13]. For a structurally balanced graph %, there exists a
diagonal matrix S € & such that all diagonal elements of S</S are
nonnegative. On the other hand, one could conclude that the diagonal
entries of SLS are nonnegative and all off-diagonal entries of SLS are
non-positive. Besides, S € # provides a partition, i.e., v"; = {ils; > 0}
and v, = {ils; < 0}.

Assumption 1. Suppose that the digraph % consisting of a leader
and the N followers contain a directed spanning tree with the lea-
der located at the root.

Define R = diag(aio, G20, - - -, ano), Where a;p > O if the informa-
tion of the leader is available to follower i and a;; = 0 otherwise.
Let Ly = L + R. Based on Assumption 1, Ly is positive definite.

Lemma 2 [21]. If Assumption 1 holds, then there exists a matrix
© = diag{@,,---. @y}, with @; > 0 such that ©Lg + Ly® > 0, where

Lip =1y and ¢ = [, py]" € RV.

3. Problem Formulation

We consider a MAS consisting of N follower agents and one lea-
der agent. Define a n-dimensional state vector x;(t) € R" and a r-
dimensional output measurement z;(t) € R', which evolve in contin-
uous time t € R. We assume that all the followers have the same
internal dynamics, which may then be subject to external inputs
and exogenous disturbances. Specifically, the dynamic of the ith
follower agent subject to exogenous disturbances is described by

X,’(f) = AX,'(t) +f(X,‘(t), t) + Bu,-(t) + DWi(f),Z,'(f) = CXj(f), (1)
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in which u;(t) e R™ is the m-dimensional input vector;
f(-) : R" x R — R" is a nonlinear function, common to all the agents,
which is continuous and differentiable in t;w;(t) € RP denotes the
exogenous disturbance, which is generated by

wi(t) = Mwi(t),

in which M e RP*P is an external matrix;
Ac R BeR™™ CeR™, and D € R”P are constant matrices.
We assume that the leader’s state xo(t) € R" is not influenced by
external inputs and disturbances. Hence, the dynamic of the leader,
labeled by O, is defined as

Xo(t) = Axo(t) +f (Xo(t), 1). 3)

In the rest of this paper, we will make the following assumptions on
the agents’ dynamics.

2)

Assumption 2. The pair (A, B, C) is stabilizable and detectable.

Assumption 3. There exists a matrix F € R™? such that D = BF.

Assumption 4. The matrix M has k distinct eigenvalues and the
real part of each eigenvalue is zero. Moreover, (M, D) is observable.

Assumption 5. There exists a positive constant p > 0 such that
If(a1,t) = sif (a2, t)|| < pllar — sia2||, Va,a; € R". (4)

In our analysis, we focus on the study of the convergence to a
leader-following bipartite consensus for the MAS of N followers
and one leader defined in (1) and (3), which is defined as follows.

Definition 2 (Leader-following bipartite consensus). The leader-
following bipartite consensus for MAS (1) and (3) can be achieved
for some k € {1,2} if

lim|xi(t) — xo(6)]| = 0, Vi € 7%,
fimx(6) + x%(0)] = 0.¥i € 5,

which can be further written by
lim|xi(¢) - sixo(t)]| = 0,i = 1,2,---,N.

Note that, differently from other notions of consensus [21], in Def-
inition 2, we are not requiring that the leader converges to a fixed
point, but we say that a leader-following bipartite consensus is
achieved if the entire system synchronizes toward a trajectory in
which a set of followers has the same state of the leader, and the
states of remaining followers will asymptotically track the opposite
values of those of the leader.

Remark 1. As indicated in [22], Assumption 3 presents a matching
condition under which the disturbance effects can be compensated
through the control action. A sufficient criterion for the existence
of the matrix F is that rank(B,D) = rank(B). Since F may not be
equal to I, the disturbances can be imposed on some channels
other than the control input channels.

Remark 2. Eq. (2) is mainly motivated by the disturbance
observer-based approach for MASs in the work of [33]. It is to
reflect the deterministic disturbances such as constants and sinu-
soidal disturbances, and it covers a wide range of periodic distur-
bances such as the sinusoidal functions upon which many other
functions can be approximated with a bias. Moreover, Assumption
4 on the eigenvalues of M is commonly used for disturbance rejec-
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tion and output regulation. If the eigenvalues of the matrix M are
strictly located in the left-half plane, the disturbance is stable.

Remark 3. Different from conventional consensus, the interac-
tions among agents are usually described by a signed graph with
positive/negative weights. This means that the row sum of Lapla-
cian is generally not zero, and Laplacian of a signed graph may
be positive definite, which are the main differences with standard
graph theory for conventional consensus [8-10]. Based on Lamma
1 and the premise of structural balance, we can finally define

= SLS + R. Then, one obtains L is positive definite, i.e., Lz > 0.
That is, a leader-following bipartite consensus problem can be con-
verted into a conventional leader-following consensus problem on
a standard graph. In addition, the main contribution of the sighed
graph is that it can depict the relationships between agents not
only cooperative but also competitive. And the leader in the MASs
(3) can be a real or a virtual agent that provides a reference state
being tracked by the followers. Based on the relative output
information among neighboring agents, the nonlinear MASs can
acheve bipartite consensus under switching topologies, whilst
the disturbances are fully rejected by the designed disturbance
observer. Examples of practical physical systems are the formation
control of unmanned air vehicles [4], the cooperative control of
mobile robots [6], the design of distributed moving sensor net-
works [7], and so forth. Therefore, the bipartite consensus is much
more general and the consensus can be recognized as a special case
of it.

4. Main Results

In this section, we have solved the leader-following bipartite
consensus problem for nonlinear MASs with deterministic exoge-
nous disturbances over directed topologies by utilizing an
observer-based approach. Specifically, we will start considering
fixed topologies. Then, we will generalize our results to switching
topologies.

4.1. Bipartite consensus under directed fixed topologies

In this subsection, we consider the bipartite consensus for the
MASs in (1)-(3) over a directed fixed topology. An observer-based
controller based on the output measurements is developed by
defining the following input functions for the followers:

= pK; {ZW'J} Xi(t) — sgn(ag)x;(t)) + ap(Xi(t) — sixo(t))}

— Fwy(t), i=1,--- N, (5)

where B > 0 is a coupling strength, K, is the feedback gain matrix,
X;(t) is the state observer, and w;(t) is the disturbance estimation
vector. The evolution of these two functions are defined as follows:

Xi(t) = A%i(t) + f (%(t), ) + Buy (t) + DWi (1)
—OCF[Z|% (E —sgn(ag)&(t ))+a,-0(E,-(t)—sgn(aio)éo(t))},
(6)
and
W;(t) = MW ()

el {Z|aij (Efi(t) —sgn(ay) %(t)) +aip (E,—(t) - sgn(a,—o)éo(t)ﬂ ,
=

7)
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where o >0 is a coupling strength, F is the state observer gain
matrix, G; is the disturbance observer gain matrix, and
Ei(t) =: z;(t) — Cx;(t) is the error between the measurement output
and the corresponding quantity computed from the state observer.
Since the leader acts as a reference signal generator, it is supposed
that Xo(t) = xo(t), i.e., the leader does not need to observe its own

state. Then, one has & (t) = zo(t) — CXo(t) = zo(t) — Cxo(t) = 0. Define
the following three errors:
E,’(t) = X,'(t) — )A(i(t), Ei(t) = )AC,'(t) — S,‘Xo(t), e,-(t) :

= wi(t) — Wi(D) ®)

in which & (t) denotes the observer error between the state of agent
i and its observer, Ei(t) denotes consensus tracking error between
the state observer of agent i and the state of the leader or its oppo-
site side, and e;(t) denotes the error between the disturbance and its
observer, respectively. Note that, if the three quantities in (8) con-
verge to 0 as t — oo, then the observer-based controller is well-
defined and a bipartite leader-following consensus is achieved
according to Definition 2. Hence, we will utilize these three quanti-
ties to study the system. Specifically, utilizing the definitions in (8),
we can write the dynamics for the state and its observer as

Xi(t) = Axi(t) + f(xi(t), )

N
+ BBK; {Zlaul (Ri(t) — sgn(a)X;(t)) + apo(Xi(t) — S;-Xo(f))ﬂ
=1

+ Dei(t),
C))
and
xi(t) = Axi(t)
N
+ BBK; {Z|au| (%i(t) — sgn(ay)X;(t)) + aw(X(t) — s,-xo(t))]
j=1
(), 1)

N
{Z|aij| (Ei(t) - sgn(a,j)éj(t)) + aioéi(t):| .

j=1
(10)
respectively. Since s;isja; > 0,i,j =1,---N, one obtains a;s; = |ay]s;
and |ayls; = agsgn(a;)s; = |ag|sisgn(ay). Then the following dynam-
ics for the three errors in (8) can be obtained:

&(t) = AG(t) + f(xi(t),t) — f(%i(t),t) + Dei(t)
| 3oyl (5(0) - sen(as)3(0) + awi(0)]. (1)
Lj=1 J
Ei(t) = A&() + F(Ri(t), £) — sif (Xo (L), ) + Buy(t)
- oF Z{au|(2, —sgn(a,»j)éj(t)>+aioé,-(t) , (12)
éi(t) = Mei(t) + G [Zatﬂ( _Sgn(aij>éj(t)> +ai05i(t):| (13)

In the following, we will show that, if Assumptions 1-5 hold, then
one can establish an algorithmic procedure to design the gain
matrices for the observer-based control law in (17)-(19). Specifi-
cally, we propose the following algorithm.

Algorithm 1. Assume Assumptions 1-5 hold. Then, we define the
following steps:
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1. Solve the following two matrix inequalities:

AP+ PA— p,C"C+y,0+cP P D'P

p 1 0 |<0 (14)
x 0 I

T T "

AP+PA—M1P§BP+/21+CZP PI <o, (15)

to get a matrix P, with p;>0,4, >0,¢ >0,c,>0,
vy > (0 + 1) Amax (@’1L,T3®LR>+

(CTCCTC>, and p is defined in Assumption 5.

/max(®) 12,
02, ), >

Zmin (

% p2 +  OlAmax

“min

2. Solve the LMI as follows:
QM +M'Q + ;1 +¢3Q < 0, (16)
to get a matrix Q, with ¢z > 0 and 75 > Zmax (CTCCTC> +1.
3. Choose coupling strengths o > py/%,8 > U;/%, where

20C = min (LR + G)’lL;G)) and © = diag{¢,,---, Py}

Theorem 1. Under Assumptions 1-5, the leader-following bipar-
tite consensus for nonlinear MAS (1) and (3) with the deterministic
disturbances (2) is achieved by observer-based control law (5) if

K;y=-BP,Gi=Q 'C"and F= -P'C".

Proof: At this stage, we can analytically prove that the observer-
based control law in (17)-(19) with gain matrices defined in Algo-
rithm 1 can solve the leader-following bipartite consensus problem
for nonlinear MAS in (1)-(3). The following result formally guaran-
tees our claim. The proof, which is based on the Lyapunov stability
theory to show the convergence of the three quantities in (8), is
quite cumbersome and is thus reported in Appendix A.

Remark 4. For general nonlinear MASs, it may be challenging to
design distributed protocols only based on relative states of
neighboring agents over directed networks, and the state feedback
control approach is no longer applicable. To amend the drawback
of this fact, the disturbance observer approach and output feed-
back control approach have been proved to be significant in
dealing with the bipartite consensus problem of nonlinear MASs
with exogenous disturbances. Furthermore, as far as we know, the
measurement outputs can be transmitted to a remote data-
processing center performing a signal estimation task in network
systems. However, it is still an open topic that how to combine the
observer-based approach with networked system, and the
designed approach presented in [31] might be useful for investi-
gating this topic.

Remark 5. Noticeably, based on the Finsler’s lemma in [44] and
bounded real lemma in [45], one can conclude that the Assumption
2 is a necessary condition for the feasibility of LMIs (14) and (15).
Also the Assumption 5 is the so-called Lipschitz condition and all
linear and piecewise-linear time-invariant continuous functions
satisfy this condition. However, there are some related works that
considered the continuous-time nonlinear dynamics which do not
satisfy the Lipschitz condition [2,9,20]. For instance, in [26], the
nonlinear functions f;(-)(i=1,2,---,n) are unknown, and it
involves the periodically time-variant disturbances
di(t)(i=1,2,---,n), which can be estimated by fourier series
expansion. Therefore, how to relax the constraints one the system'’s
dynamic and combine nonlinear conditions with the time-varying
periodic disturbances will be considered in our future studies.
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4.2. Bipartite consensus under directed switching topologies

In this subsection, the leader-following bipartite consensus is
studied for MASs over switching topologies. The set of all directed
switching communication topologies can be denoted as
G={9"(v,6", "), -, 9 (v,6%, ")}, where &° is the set of

directed links, .«Z° [a,ﬂ e RNN 7=1,... N denotes the graph

adjacency matrix, af >0, if je N}, otherwise ai = 0. Define
N{ ={j: (j,i) € &°} as the set of the neighbors of agent i, and if
{j,i}cé’, it is saild that i and j are adjacent. Let
@(t) : R — {1,2,---,N} represents the switch signal of communi-
cation topologies. Assume that there is an infinite sequence of
nonoverlapping time intervals [tk tki1), k €N, with
t; =0,79 <ty — ty < Ty, in which the positive constant 7,
denotes the dwell time.

Assumption 6. Assume that the switching digraph %" contains a
directed spanning tree for each I" € {1,2,---,7}, and the leader
(agent 0) is located at the root node.

Lemma 3. If Assumption 6 holds, then there exists a matrix
0" =diag{p!,---, @k}, with @ >0 that O'L{ '+

T T
(L;er)) ®" > 0, where (L;P) @' =1yand @' = [}, @k]" e RV,

such

Based on the directed switching topologies and the disturbance
observer, we propose a leader-follower bipartite consensus con-
troller for the ith agent as follows:

N
(1) = BK: {szf“w (Ri(6) = sgn (a7 )3(0) ) + a5 &i(t) = sixo (1)
j=1
~ Fi(0)
(17)

where f > 0 is a coupling strength, K, is the feedback gain matrix,
Xi(t) is the state observer, and w;(t) is the disturbance estimation
vector. The evolution of these two functions are defined as follows:

+ag” (18)
and
Wi(t) = M (t) — G, {Da}j’“)t ((&(0 - sen(@)&(®)
j=
+ag (Ei(t) —sgn (a;ga))go(t))} (19)

respectively, where & > 0 is a coupling strength, F is the state
observer gain matrix, G, is the disturbance observer gain matrix,
and &(t) =: z;(t) — Cx;(t) is the error between the measurement out-
put, z;(t), and the corresponding quantity computed from the state
observer, Cx;(t). Similar to the scenario with fixed topology, since
the leader acts as a reference signal generator, it is supposed that
Xo(t) = Xo(t), i.e., the leader does not need to observe its own state,
consequently, &(t) = 0. Similarly, we will investigate the conver-
gence of the system to a leader-following bipartite consensus under
switching topologies.

In the following, we will show that, if Assumptions 2-4 hold,
then a procedure to design the gain matrices for the observer-
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based control law in (17)-(19) can be designed, according to the
following algorithm.

Algorithm 2. Assume Assumptions 2-4 hold. Then, we define the
following steps:

1. Solve the following two matrix inequalities:

A'P+PA—j,5C"C+y,J+¢P P D'P

P -1 0 |<o0, (20)
* 0 -I

™H , b = BRIRB 1 - - = =

gP+PA-,u1PB BP + 95l + &P PJ <0, 21

to get a matrix P, with scalars fip >0, f; >0,¢; >0, ¢; >0,

Vs > ::éig::))p% & max (CTCCTC>,p is defined in Assumption 5,

and 7, > %pz+ (G +1)/max <®*’”<‘> (L;f’“)>T®w“)Lf“>>.
Then, take K, = —B"P and F = —P-1".

. Solve the LMI as follows:
QM +M'Q + ¢l +6Q <0, (22)
to get a matrix Q, with scalars ¢3 > 0,75 > Zmax (CTCCTC) + 1.

Then, take G, = Q-1C".
. Choose coupling strengths &> fio/%9, > f1/%, Where

Jo 2 minr_y..., (;.mm (L}; + (@r) o (L,S)T®F>> and OF

diag{o!, -, ok}

Theorem 2. Under Assumptions 2,3,4 and 6, the leader-following
bipartite consensus for nonlinear MASs (1), (3) subject to the deter-
ministic disturbances (2) is realized by utilizing observer-based
controller (17) if the dwell time 7o >In¢/¢,, where

~ . ~ . (T
Co = 1'1'111'1,'5{1.2.3}{&},&) = q)max/(pminv Pmin = mlnl"i{@i >}‘ Pmax =

maxr7,ﬂ{go§r)}, Fe{1,2,---,1}ie{1,2,---,N}.

Proof: Similar to the scenario with fixed topology, we can ana-
lytically prove that the observer-based control law in (17)-(19)
with gain matrices defined in Algorithm 2 can resolve the leader-
following bipartite consensus problem for nonlinear MAS in (1)-
(3) with switching topologies. The following result, whose proof
is reported in Appendix B, formally guarantees our claim.

Remark 6. Note that when selecting the coupling strength o, 8, &
and B, the parameters p,, i;, ilo, it1 should be chosen relatively
small so that o > y/20, > Ui/ 20,8 > Jlo/ %0, and f > ji; /2o hold.
However, both the convergence rates for bipartite consensus
tracking and states observing can be improved by enlarging the
coupling strength. This indicates that though the bipartite consen-
sus tracking problem can be solved by setting the coupling
strength o > glo, f > Wy /0, % > Jlo/%0, and B > fi1 /79 , the con-
vergence rates may be quite small when the coupling strengths
o,p,cand B are, respectively, only slightly larger than their
corresponding threshold values. Therefore, the utilize of larger
coupling strength could speed up the convergence process of the
controllers. These also reflect that our observer-based control
strategies are flexible from the practical point of view.

Remark 7. The control protocols (5) and (17) are partly motivated
by the observer-type protocols for MASs proposed in [21,25,33].
However, the observer designed here is indeed different from that
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in related works. First, our assumptions are less restrictive, as we
only require that a follower can access the information on its state
observer, and not the actual state. Second, when considering the
observer error between follower i and the leader, the requirement
for state information of follower agent is relaxed, i.e.,
&(t) = &i(t) — sixo(t), as we only require the state of the observer
embedded in follower i. However, the state information of follower
agent is necessary in existing related works [21,28,33]. Further-
more, our controllers could realize not only the common consensus
but also the bipartite consensus involved with the competitive
relationships between agents. And the nonlinear dynamics and
switching signals are also considered into the controllers, which
reflects that the research of our paper is more extensive.

Remark 8. According to Algorithms 1 and 2, the existence of the
gain matrices to be used in the controller depends on the possibil-
ity to solve a set of matrix inequalities. It is easy to observe that the
matrix inequalities in Algorithm 2 are feasible if and only if the
matrix inequalities in Algorithm 1 are feasible. Therefore, in the
process of solving matrix inequalities in Algorithms 1 and 2, they
need to be scaled by the Yang’s inequality correspondingly. If the
matrix inequality remains in its original form, the coefficients of
the matrix will appear in the non-diagonal position of the matrix.
Since the diagonal element is 0, it will be impossible to solve the
matrix inequality. Then, after the introduction of some parameters,
they will increase the complexity, but these parameters also
increase the flexibility of the conditions, making it easier to find
the solution of matrix inequality. To overcome this drawback, we
use the property of the Kronecker product to reduce the computa-
tional complexity. Also, the introduction of Lipschitz nonlinear
condition could combine two terms of the inequality into one,
thereby reducing the computational burden. In general, the appli-
cation of the Young’s inequality could result in some new decision
variables, this is an inevitable problem when using this approach.
However, we believe that the increase in time complexity caused
by the calculation of Yang’s inequality is controllable.

5. Numerical examples

In this section, we propose and discuss three examples to illus-
trate our theoretical findings and demonstrate the performance of
the algorithms we developed. In the first example, we consider a
scenario with a fixed topology and we show that the observer-
based controller proposed in Algorithm 1 is able to steer the
system to leader-following bipartite consensus. We consider the
scenario of a linear dynamics and we discuss the characteristics
of the consensus state reached, depending on the topology struc-
ture. In the second example, we consider a nonlinear dynamics
on a static signed topology, and we show that our algorithm is also
able to deal with nonlinear scenarios, where other methods pro-
posed in the literature fail [16,20]. In the third example, we con-
sider a scenario of nonlinear dynamics on switching topologies,
and we illustrate how Algorithm 2 can be used to design an
observer-based controller for the system, while in [21], the linear
controllers and observers proposed cannot be used. In these exam-
ples, we consider a network of six agents interacting according to
four different topologies, labeled as %, %,, %3, and %,, and illus-
trated in Fig. 2. Observe that all the six topologies are structurally
balanced, with the same partition equal to
"1 ={1,2},72 = {3,4,5}. Similar to [21,22], we consider a MAS
consisting of six single-link manipulators with revolute joints actu-
ated by DC motors: N =5 follower agents and one leader agent,
labeled as agent 0. A schematic illustration of the physical system
is reported in Fig. 1. The state of each agent is characterized by a 4-
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Link

Torsional spring

Motor

Fig. 1. Schematic of the single-link manipulator with a flexible joint.

dimensional vector x;(t) = (X (£), X2 (£), X3 (), Xia(t)) ", where x;1(t)
is the angular rotation of the motor, x;(t) is the angular velocity
of the motor, x;5(t) is the angular rotation of the link of the ith
manipulator, and xi(t) is the angular velocity of the link of the
ith manipulator. Similar to [21,22], the dynamic of the ith manip-
ulator can be written in the form of (1), withFig. 3

ro 1 0 0 0

A —486 -126 486 0 B 216 7
0 0 0 10 0
1195 0 -195 0 0 23
1 017 )
10 117

C= D=B.
01|’ M ’
10 1

(a)
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and nonlinear function f(x;(t),t) = (0,0,0,0.333sin (x;3(t)))". The
0 1.5
-15 0
to obtain that D = BF. Also, it is easy to verify that Assumptions 2-4
hold, and that Assumptions 5 holds with p = 0.333. In the simula-
tions, the initial conditions are assigned randomly.

disturbances are generated by (2) with M = [ } It is easy

Example 1. We consider the MAS made of six single-link manip-
ulators with dynamics defined in (1) and (23), interacting on the
fixed topologies %; and %, illustrated in Figs. 2(a) and (b),
respectively, where the first topology does not contain antagonistic
edges, whereas the second does. We construct the observer-based
controller utilizing the proposed Algorithm 1, for which conver-
gence is guaranteed by Theorem 1. Specifically, by simple calcu-
lations, we get ® = diag{2.0422,1.0060,0.9012,2.3980}. We take
a=1,c=1,c3=3,9,=5,7, =7,73 =6, and the following step
1) of Algorithm 1, we set a =34, =21,u, =10, and u; =6, it
yields that /4o = 0.3173. Note that the Algorithm 1 holds if

A'TP+PA+p,l+cP P

0. 24
P i @4

Then, based on (24) and Algorithm 1, we compute the following
matrices P and Q

0.7373  0.0147 -0.6210 -0.2588
p— 0.0147 0.0162 —-0.0063 0.0175
-0.6210 -0.0063 1.0708 —1.0625 |’
—0.2588 0.0175 —-1.0625 3.7443
3.9492 0.1854 —-1.2871 -0.6210
0.1854 45754 -1.2934 -0.1762
Q= -1.2871 -1.2934 3.6787 -1.2641|’
-0.6210 -0.1762 -1.2641 3.3694

2.5
Time (s)

(b)

Fig. 3. Temporal evolution of x;; (t) under the linear dynamics in Example 1.
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respectively, which are used in Algorithm 1 to compute the gain
matrices:

7[0.3679 0.2960 0.3001 0.1959]T
"7 102997 0.1963 0.6546 0.6079] °

P {71.1711 —60.8337 -1.1634

—-15.5325 14.2425 -15.6654 —-5.8523

and K; =[-0.3167 —0.3508 0.1363 — 0.3781]. Under the con-
troller (5), the states of five followers and the leader without and
with antagonistic edges are shown in Figure. 3, which reflects the
control law also can solve the bipartite consensus problem for linear
MASs under directed fixed topology. In contrast, the linear con-
troller and observer design in [22] does not hold in this model sim-
ulation. Interestingly, when considering the trajectories with

70.1267]T
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antagonistic edges, it can be observed that the states of agents 1
and 2 can asymptotically approach those of the leader, while the
states of agents 3, 4 and 5 asymptotically track the opposite values
of those of the leader, which is in accordance with the cluster par-
tition v"; and v",.

Example 2. In this case, consider a MAS of six single-link manipu-
lators with fixed topology %,. Fig. 4a depicts that the followers
approach the leader’s state with antagonistic edges under nonlin-
ear control protocol (5). Note that many existing controllers pro-
posed in the literature cannot handle this scenario [21,25].
Figs. 4b and 4c depict that the time evaluation of bipartite consen-
sus error between the leader and each follower agent as t — oc. The
evolution of disturbances and disturbance observers are plotted in

1 1 1 1

20 25 30 35 40

Time (s)

(a) State trajectories of six agents under controller (5)

— (t) withae=5and 3=10
== =3, () witha=10and §=15
35 (t) with a = 15 and 4 = 20

w3y () with @ = 20 and 3 = 25

memnn 3 (t) with o = 25 and 3 = 30

m— §, (4) with o = 5 and 8 = 10
-_— o, (t) with &« = 10 and 3 = 15
S (t) with @ = 15 and 8 = 20

w— 3y (1) with @ = 20 and G = 25

mnnnn & (t) with @ = 25 and 3 = 30

5 Time(s) 10 15

(b) Observer error

0 5 Time(s) 10 15

(c) Consensus tracking error

)
25 30 35 4

20
Time (s)

(d) Disturbances and observers

-15L L L L L L L L

20 25 30 35 40
Time (s)

(e) Disturbances and observers

Fig. 4. Temporal evolution of state x; (t), observer error &(t), consensus error &(t), disturbances w;(t), and disturbance observers @;(t) under the nonlinear dynamics in

Example 2..
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Figs. 4c and 4d, which show that the disturbance observer exhibits
an excellent estimation performance by utilizing the observer
based control method.

Example 3. Finally, we consider the nonlinear MAS in the scenario
of switching topologies, and we provide some simulation results to
illustrate the effectiveness of the control protocol proposed in
Algorithm 2, whose effectiveness is discussed in Theorem 2. We
consider the MAS of six single-link manipulators under switching
topologies with antagonistic edges shown in panels (c) and (d) of
Fig. 2. Note that it is not difficult to conclude the pair (A, B, C) is sta-
bilizable and detectable. Assume that the network topology
switches periodically between %; and %, every 0.4s. Assume
Assumption 6 holds, then, following Algorithm 2, let & =29,

B=32, [to=20,l; =8,7,=9, 75=6,95=5,¢1 =1,6, =2, and

Neurocomputing 488 (2022) 130-143

3 = 4, it yields that /, = 0.7218. Similar to Example 2, following
steps 2) and 3) of Algorithm 2, we compute

03109 0.0083 —0.2887 —0.0387
P 0.0083 0.0526  —0.0283 0.0652
-0.2887 -0.0283 0.8722 -1.0888 |’
—0.0387 0.0652 —1.0888 2.7165
41127 01678 -1.3310 -0.6656
_ 0.1678  4.7540 -1.3341 -0.2042
Q= -13310 -1.3341 3.8466 -1.3126|’
-0.6656 -0.2042 -1.3126 3.5213

respectively. Then, following Algorithm 2, we compute the three
gain matrices, obtaining

(a) State trajectories of six agents under

7.57 T 1

— 5, (t) with & = 5 and 3 = 10
= w5 (t) with & = 10 and § = 15
@3 (t) with & = 15 and § = 20

— 5, (1) with &@ = 20 and 3 = 25

mmmmn 5 () with & =25 and 3 = 30

25f.

40

controller (17)

s ), (t) with & = 5 and J = 10

w5, (1) with & = 10 and 3=15
§g (t) with @ = 15 and 3 = 20
(t

mummnig;(t) with @ = 25 and 3 = 30

(1) with & = 20 and § =25

e
o =~ N w B OO N © ©

Time(s)

(b) Observer

15 20
Time (s)

(d) Disturbances and observers

15 . . . .
10 15 20 25
Time ()

(e) Disturbances and observers

Fig. 5. Temporal evolution of state x; (t), observer error &(t), consensus error &(t), disturbances w;(t), and disturbance observers @;(t) under the nonlinear dynamics in

Example 3.
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G — 0.3554 0.2867 0.2876 0.1910
>~ 102886 0.1901 0.6244 0.5823

P {78.7655 —-18.2778 —6.2112

-10.2680 1.8811 —10.3730
and K, = [0.3303 —0.7992 0.2282 — 0.1146]. Based on Theorem 2,
bipartite consensus control subject to the deterministic distur-
bances can be realized if 7o = 0.4 > 0.3715. In particular, under
the controller (17), the states of five followers and the leader with
antagonistic edges are shown in Fig. 5a, which reflects the control
law could solve the bipartite consensus problem for nonlinear MASs
under directed switching topologies. Differently from most linear
controller and observer designed in the literature [26], which can-
not deal with nonlinear scenario. Furthermore, profiles of the obser-

ver error &(t) and the bipartite consensus tracking error &(t) are
shown in Figs. 5b and 5c. Our numerical simulations illustrate that
both the convergence for leader-following bipartite consensus and
state’s observer are typically fast and that their rates can be
improved by enlarging the coupling strength & and f. This indicates
that, even though the theoretical guarantees in Theorem 2 ensures
that the bipartite consensus can be solved by setting any coupling
strengths & > flo/%o and f > [i1 /%, the convergence rates may be
quite small if the coupling strengths are only slightly larger than
the requirements, suggesting the use of larger couplings to speed
up the convergence process. The evolution of disturbances and dis-
turbance observers are plotted in Figs. 5d and 5e, which show that
the exogenous disturbances are well estimated.

:|T
-2.17571"
—4.7172}

6. Conclusion

In this article, we have investigated the leader-following bipar-
tite consensus control of nonlinear MASs subject to exogenous dis-
turbances under directed fixed and switching topologies,
respectively. Firstly, a disturbance observer-based approach is pro-
posed to estimate the disturbances generated from the exogenous
system. Secondly, an observer-based control law based on relative
output measurements of neighboring agents is introduced. Then,
by assuming that each switching topology contains a directed
spanning tree, it is proved that the leader-following bipartite con-
sensus can be achieved with the designed output feedback control
law if the dwell time is larger than a non-negative threshold.
Finally, based on a real-world physical system, the effectiveness
of the developed algorithms in different scenarios is verified via
three numerical examples.

Our work advances the literature along several directions. Com-
pared to previous works [21,32], our approach is more general, as it
considered nonlinear MASs, antagonistic interactions, output feed-
back control, disturbance observer, and switching topologies
simultaneously, allowing to deal with more general and realistic
scenarios. In particular, different from [16,18], the disturbance
observer is incorporated into the controller to actively compensate
for the disturbance effects on leader-following bipartite consensus.
This enables our controller to be robust to disturbances produced
by an exogenous system, making our algorithms suitable for direct
application in many control areas, such as game control, formation
control, containment control, and flocking control for MASs
(6,14,22].

Our promising results, supported by the examples illustrated in
Section 5, suggest the possible extension of our methodology to
different scenarios. In particular, following [1,8], it would be inter-
esting to investigate event-based bipartite consensus of MASs
under directed switching topologies, and further extending our
algorithms to deal with the disturbances that cannot be estimated
or may be unbounded. Furthermore, following [29], a promising
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idea can be that of implementing a team-triggered control (TTC)
strategy, which incorporates the event-triggered control (ETC)
and self-triggered control (STC), to realize the bipartite consensus
of MASs under the uncertain disturbances. This idea will be inves-
tigated in our future study.
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Appendix A. Proof of Theorem 1

In the proof, we will show that &(t) — 0,&(t) — 0, and e(t) — 0
as t — oo, guaranteeing convergence to the leader-following bipar-
tite consensus.

First, utilizing the Kronecker product notation, (5)-(7) can be
written into a compact matrix form as

&) = [Ivew A+ oLy @ FC) &) + (In @ D)e(t)

v @ (F(X(0).0) = F&(1).0), (A1)
40 = v e A+ flLe @ BRI — oLy @ FC)E(t)

+ (F&(D),6) = (Sl @ f(xo(0), 1), (A2)
&(0) = (In ® Mje(t) + (Le © GIO(0), (A3)

where we use the notation f(x(t), t) :=

F&O.0 = [fT (0,0,

Fe®.0]

[e] (1), e; (D),

a0,
, fT(ch(t),t)]T, and e(t) :

-,eq()]". Then, we choose a Lyapunov function candidate V(t)
as follows
Vi(t) = Vi (t) + Via(t) + Vis(t), (A.4)
where  Vii(t) = ET()(® @ P)&(t), Vo (t) = E () (O @ P)E(t),  and

Vis(t) = e(t)(® ® Q)e(t). Taking the derivatives of Vyy(t), Vix(t)
and V43(t), we obtain

Va(t) =0 [@@ (ATP+PA) +2a(®LR @PFC)] &)
+2;T(f)(®®1’)x(f( x(t),t) —f(X(t),8)) +

Via(t) = E(t)[@® (ATP+PA) +2B(®Lr @ (PBK1))] &(t
+2& (f)(®®P)X(f( (6),t) - )
—ZaET(t)(@)LR@Pﬁc)E(t),

Vis(t) = e (0)[© @ (QM+M'Q)]e(t) + 2¢7 (£) (OLg 2 QG C)F(t).
(A5)

(0 (®@ @ PD)e(t),
&)
(SIv®f(xo(t),1)))
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According to Assumption 5 and Young’s inequality, we have

2 (O P)(f(x(0),t) - f(X(t),1)

< ((©®PPD

+[ (0,0 = FR(0),0) (@ © DF(X(0), 1) = F(X(0), )]

T(t)(®®PP")E(t)

+ s (@) F(x(8),6) = F(%(0), 1) (F(x(0), 1) ~ F(%(0), )]
)t

IN
ol

< E()(© @ PPT)E(L) + imax(©)p?ET (£)E(L)
< T [@@ (PPT 4 @) )}g
(A.6)

where
il @)ET(0E(0) < X P28 (6@ 0 DE(D)
Similar to (A.6), we obtain
2 E()(O@aP)(f(x(t),t) — Sy @ f(X(t), 1))

<< (B)(©@PP)L(L)

+[(F&(E),6) = Shy @ fxo(0),£))

(O D)(f(X(),t) = Sy @ f(x0(1), 1))]

< ) (©®PPT)ET) (A7)

o+ s (@) (F(R(0), 1) = SIy @ f(x0(0). 1))

(Fx(t),£) = SIn ® f(Xo(1), )]
<E(O)(O@PPN)E() + imax(©)p?ET (HE(E)
Folos (PP o) |2,
Substituting K; = —B'P,G; = Q~'C", and F = —P~'C" into (A.5), and
by using (A.6) and (A.7), we obtain the following inequalities:
GRS HUGICE (PA +A'P) — a((OLg + Ly ®) ® C'C)

=T )1:( )+ 28 (6)(© © PD)e(t),
Vi) <10 (ATP+P ) — B((®Lg + Lz ®) @ PBB'P)
+0® (PPT max( ) )] + 20" (t)(OLg ® CTC) (D),

V() =e ([0 e (QM+MTQ)] () +2¢7(t) (OLe © C'C) (1),

Let A=Lg +©® '[;® and H = —a((®Lg + [;®) ® C' C), by utilizing
Lemma 2, we obtain H< —a®@A®C'C < —alo® ® C'C, where
J0C2 = Jmin (LR + @’ILEG) and © = diag{¢,,---,@y}. According
to Lemma 1 in [23], we obtain

Via(t) < E(t)

x {@ ® (PA AP — apCTC 4 pPT 4 Lmax(©)

j~mir1(®)

pl)]a)

(A8)

+2¢7(£)(© @ PD)e(t).

Similarly, calculating the derivative of Vi, (t), we obtain
Via(t) < E'(8)

{6 N (ATP +PA — BioPBB'P+ PP' + /max(©)

/me (®)

pﬁ)} 20

(A9)

+ 20" (t)(OLg @ CTC) ().
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Based on Lemma 2 and the facts o > py/40, 8 > U, /%0, We obtain
Vi () < E(0) [@ ® <PA +ATP — oCTC 4 PPT 4 imadl®) pZI)] &(t)
+2«:T( )(© @ PD)e(t),

E(t)|@@ (ATP+PA — 1, PBB'P+ PP + ) p21) | &(t)
+20E7(t) (OLg ® CTC)E(t).

Via(t) <

Furthermore, under Assumptions 2 and 3, by utilizing Lemma 1, we
have

&(6)(© © PD)e(t)
F( )(© = D"PPD)&(t >+eT< )(© @ e(t),
afl(t)(OLr ® C'C)E(t) < alT(t)(® @ C'CCTC)&(t)
+aET(t)(®®1) (o T@LR@ )é(t)
< 2max (CTCCTO)ET(6)(O© ® DE(D)
+%max (© 'Ly OL) €T (1)(© @ DE(),
2e7(t)(®Lg @ C'C)E(t) < eT(t)(®@® CTCCTC)e(t)
FE(t )(@@1)( 1LT®LR®1)z(t)
< Jmax(CTCCTC)e" (£)(© @ De(t)
+imax (07 Ly OLR) € (£)(© © DE(D).

(A.10)

Then, we have V;(t) < Vi1(t) + Via(£) + Vy3(t), where

‘7“(0 _ ET(I) [® ® (PA +ATP . MocTC+DTPPD + PP"
e siot e,

Vis(t) = & (t)[© @ (A"P + PA — 1, PBB'P + PP"
+(2481 97+ s (CCCTC) ),

Vis(t) = e"(1)[@ @ (QM + M Q + (Jimax (C"CCTC) + 1)1]eft).
It can be yielded from (14), (15) and (16) that
Vi) <&
Via(t) < &
V]3(t)

()[®@® (PA+A"P— pyC'C+D'PPD + 7,1+ PP")]&(0),
T(t)[©@® (A'P+PA— u,PBB"P+PP" +7,1)]&(t),
e’ () [®® (QM +M Q-+ y51)]e(t).

According to the Schur complement lemma, with p >0, we can
conclude there exist three nonnegative parameters ci,c;, and c3

such that
Vin(t) < =187 (H)(® @ P)E(t), Via(t) < —C28T (£)(© @ P)E(t), and
\713(t) < —c3e" (H)(©®®Q)e(t). Then, we obtain V() < —coVi(t),

where ¢o = minic(123,{c;}. Thus, one has V;(t) < e~'V;(0). By sum-
ming the three terms in (A.4), we conclude that when
t — 0,V (t) — 0, which implies &(t) — 0, &(t) — 0, and e(t) — 0. This
completes the proof. ®

Appendix B. Proof of Theorem 2

Under Assumption 2, and utilizing the definitions in (8), we can
write the following dynamics for the state and its estimator:

Xl(t) :AX,'([')
N
+BBK, {Z\a;’m (%i(6) -~ sen (a7 )%(0)) + a5 &i(0) —Sm(ﬂ))]
=
+f(*i(t),t) + Des(t),
(B.1)
and
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Xi(t) = A%i(t)
+BBK; \a, x,(t) sgn(a;}?(”)kj(t)>+a$(”()2i(t)—s,-xg(t))>]
t),J:
LZa )| (&(0) - sgn(af >)3(t>)+a§3’<°%f(r>},

(B.2)

respectively, from which we derive the following dynamics for the
three errors in (8):

&) = [Ivoa+a(Lg”
+Iv @ (F(x(t),t) = f(X(0), 1)),

&) = [IN A+ ﬁ(L’” ®BK2>] o) - &(L,?“) ® ﬁc)z(t)
+H(x(1), 1) = (SIv @ f(xo (1), 1)),

é(t) = (v Mye(t) + (17" @ GoC ) &(t).

For t € [ty, tks1), k € N, the multiple Lyapunov functions V,(t) can be
constructed as follows:

Va(t) = Var (£) + Vaa () + Vas(t), (B.3)

Var(0) = £ (6) (@7 & P) (1), Vaalt) = £ (1) (7 & P) (o),
and Vas(t) =e'(t) (@w(” ® Q)e(t). Taking the derivatives of
Vz] (f)‘ sz(t) and V23(t), which yleld

V() = &7 (1) [@’”“) ®

xE(028(0(07 @ P) (flx(0).1)

where

(AP + PA) + 22(©”L7" & PEC)|

~f((0),0) + 27 (1)(© @ PD)e(t),

V@ (AP+PA) + 2B(07VI7" @ (PBK:) ) | &(t)

+287(0)(07Y & P) (F(Ri(6),6) — (SIy 2 f(o(0),1)).
@ (PFC)] &),

® (QM +MTQ)]6T(t)

(e
V23(t) _ eT(t) [@W(f)
+2€7(0) (0L © QG;C) ().

(B.4)

To simplify the analysis, based on Assumption 5 and Young’s
inequality, we obtain

287(0) (0 @ P) ((x(1),t) ~ F(X(0), 1)

< (D) [@’”W ® (PﬁT %pzlﬂ &),

(B.5)
287(1) (0 P) (F(X(),£) — Sly © f(xo(¢), 1))
< %T(t) |:®w(t) ® (pp*r /max((gl;([)g p21>:| f( )
Substituting K, = —B'P,G, = Q~'C", and F = —P-'C" into (B.4), and

in view of (B.5), we obtain
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Var (8) < E (1) [@’”‘” ® (PA+ ATP)

—&(((aw(”Lg’

Lo g <PT3T

Llﬂ

j:j;((@”” §p 1>]E<)

+2ET(t)<®W ®PD>e(t),
wje™e
- B((0"17" + (?”)T@m(”)@PBBTP)

Arnax (G)“"“’)

/1(®m([)>)021)] &)

Vot ® (A'P+ PA)

+0"9g (PPW
min
+ 2887 (1) (@W”Lg’(“ ® CTC) &),
Vas(t) = €7 () [ 07" @ (QM + M7 Q)] e(t)
+2e7(t) (@‘U“)LR’”(” QCT c) (o).

Since & > flo/Jo and p > i1 /0, and according to Lemma 4 in [23],
we obtain

Var (1) < E7(0) [@” ® PA+ATP HoC"C+PP" +’“‘“§§W§pzl)}é(t>-
Vaal(t [@“ @ (PA+A"P— [,PBBTP+PP" + ’“‘“(9 gpl)]

&(6)+ 2687 (1) (@‘””L” ®C'C )g’(t).

Vas(t) =€ (0)| 07" & (QM+M'Q)]e(t) +2¢7 (1) (" L7 CTC) &(t).

Furthermore, under Assumptions 3 and 5, by utilizing Lemma 1, one
has

0 (@’”“> ® DTPPD) &)
1)e(t), 257 () (07Ly 2 C'C) &(t)

RN EG)

B max ((@wm) - (L;?“))T(a“(”L;f’(”) 2 (t) (@“’(” ® 1) &),

287 (1) (@’*"‘” ® PD)e(t) <
+e'(t) (@wm
< Wmax (CTCCTO)ET(8) (@“

and
-1
2e7 (1) ((@’T’(”) Lo
< max (CTCCTC)e" (1) (07 @1 )e(t)

+ Jmax ((@“’(”) - (LR‘”“))T@'”(”L,’?(”) () (@‘”m ® 1) ().

® CTC>E(t)

Similarly, one can conclude V,(t) < Var (t) + \722(t) + \723(t), where

Var () <E (1) [@“(” ® (AP+PAT - ﬂOCTC+DTPPD+«/41+barPTP)} (o),
Vaa(t) < (t)[@)””@(ATHPA [1PBB P+ 7,1+ PP’ )] (1),
Vas(t)<eT(t) [@w ® (QM+MTQ+~/61)} e(t).

Based on the Schur’s complement lemma, one can conclude there
exist three non-negative parameters ¢;,¢; and ¢z such that

Var(t) < =61 E7(8) (@wm ® P)E(t), Vaa(t) < 587 (0) (@'f'(” ® 13) o),
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and  Vys(t) < —Gse (b) (G)“’(” ® Q)e(t). Hence, one has

Vy(t) < —EoVa(t),t € [ty, tis1), for k € N, where € = minic(23{Ci}-
It is noted that the MASs with control law (17) switches when

t=ty,keN. Then one can obtain V,(t;) < Vy(t;)e %t <

e %WV, (t),t € [t1,t;), where V(t;) = HE Vy(t). Let T =w(ty),

U= (6 ), Amin = /i (0" ) @ P, Amax = imax (0") @ P, Amax =
Jmax (@r) &P, Amin = Jmin <®r) ®P, Bumin = /min (@r) © Q. Brax =
imax (©") © Q. Bmnax = /max (©") © Q. and  Bin = 7min (0" ) @ Q,
according to (B.3), one gets & (t)Amin(te) < Var(te) <
At E(0Amt) S Valt) < E(t)Amad(to),
eT(t)Bmaxe(t) < Vas(te) < el(t)Bmne(ty), E(t) Amnl(te) <

Vor (b ) < (6 ) Amax(te )y E (6 ) Aminl(t ) < Vot ) < E(tx)
Amaxé(ti-)and €T (6 ) Bmaxe(ti) < Vas(ti) < €7 (6 )Bmine(t), In
summary, we obtain Vyq(ty) < 6oV (te), Vaa(ty) < Vo (ty-), and
V23 (tk) < fong(tk-), where

. maxr_q..., (/lmax <®F)> -
o ming_; g (Amm (®F>)  QPrin

Thus, we obtain  V,(t) < foe=%V,(t;), ie, Vi(t) <
e(-to%+in)V,(0). Hence, if the dwell time satisfies o > In(¢y/Co),
then the following holds V(t;) <e*0V,(0), where
K = Co — (In4y)/To > 0. For t > t,, there exists a non-negative inte-
ger s > 2 such that t; < t < t;,1. In addition, for an arbitrary non-
negative integer weN, one has Vy(tw.1) < e 0V,(ty) <
e *WhV,(0). Similarly, when t € (t;, ts,1), one has

(-1
S‘E-l

V,(t) < e 0BV, (1) < e ot D0l (0) < e 51 “'V5(0)

EROL
<e 7 V,(0),
where s > 2 and 7o <ty — t < 7;. When t =t;,;, we obtain

Va(t) < e_%’{[vz(O). which implies &(t) — 0, &(t) — 0, and e(t) =0
ast—oo. W
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