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RÉSUMÉ

La mise sur le marché de composants toujours plus performants et compétitifs en termes de
coût, ainsi que le développement rapide des technologies de commande et de navigation en
robotique, nous ont amenés à envisager le contrôle d’un large essaim de quadrirotors. Di-
verses solutions impliquant des drones existent déjà pour différentes applications: inventaire
forestier, gestion du littoral, suivi du trafic, etc. Parmi celles-ci, la recherche et le sauvetage
en situation d’urgence représentent à nos yeux la possibilité la plus intéressante et constitue,
de fait, la première motivation de notre travail. Par conséquent, une large revue de littérature
sur la question est fournie. Ce travail se concentre sur le contrôle de l’essaim lui-même, et
non sur l’application finale.

Tout d’abord, un modèle mathématique de la dynamique du quadrirotor est présenté et
plusieurs lois de commande numérique sont synthétisées. Ces dernières implémentent les
modes de fonctionnement nécessaires aux algorithmes de navigation, à savoir : commande
en vitesse, commande en position et commande en suivi. Ensuite, deux solutions originales
et complémentaires de contrôle d’essaim sont proposées.

D’une part, un algorithme d’essaimage pour la navigation extérieure est développé. Con-
trairement à la plupart des travaux trouvés dans la littérature, la solution proposée ici gère
non seulement le maintien, mais aussi l’initialisation de la formation. Plus spécifiquement,
un modèle de formation hexagonale est introduit. Ensuite, les places en formation sont at-
tribuées de façon optimale à l’aide de l’algorithme hongrois. Enfin, les agents se déplacent
jusqu’à la place qui leur est assignée tout en évitant les autres agents avec un algorithme
de navigation inspiré du Artificial Potential Field. De plus, cette solution tient compte de
contraintes de conception réalistes et a été intégrée avec succès dans un logiciel embarqué de
quadrotor déjà existant et opérationnel. Les résultats de simulations Software-In-The-Loop
sont fournis.

D’autre part, une solution d’essaimage pour la navigation intérieure est étudiée. L’algorithme
proposé implémente un certain nombre de comportements individuels simples, de sorte qu’un
grand essaim peut suivre un meneur dans des environnements encombrés en se fiant unique-
ment aux informations locales. Des simulations préliminaires sont effectuées et les résultats
montrent qu’il serait possible de faire fonctionner, conformément au besoin étudié, un es-
saim de cent quadrirotors avec l’algorithme proposé. En particulier, l’essaim est capable de
suivre le meneur, de maintenir la connectivité, d’éviter les collisions entre agents, d’éviter les
obstacles et même de se faufiler dans des espaces étroits.
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ABSTRACT

The ever-growing hardware capabilities and the rapid development of robotic control and
navigation technologies have led us to consider the control of an entire swarm of quadrotors.
Drone-based solutions have been developed for different applications: forest inventory, coastal
management, traffic monitoring, etc... Among these, the Search And Rescue application
represents for us a very promising field of application and constitutes the first motivation of
our work. As a result, a wide literature review on the matter is provided. Nevertheless, this
work focuses on the swarm control itself, and not on the end user application.

First, a mathematical model of the quadrotor dynamics is presented and several digital control
laws are designed. The latter provide operating modes useful for the navigation algorithms,
namely: velocity control, position control and tracking control. Then, two original and
complimentary swarming solutions are proposed.

On the one hand, a swarming algorithm for outdoor navigation is developed. Unlike most of
the works reviewed in the literature, our solution handles not only the maintenance but also
the initialization of the formation. More specifically, an hexagonal formation pattern is intro-
duced. Then, positions are optimally assigned using the Hungarian algorithm. Finally, the
agents move to their assigned position while avoiding collisions with the other fleet members
thanks to a navigation algorithm inspired from Artificial Potential Field. In addition, this
solution accounts for realistic design constraints and was successfully integrated into already
existing quadrotor onboard software. Software-In-The-Loop simulation results are provided.

On the other hand, a swarming solution for indoor navigation is investigated. The proposed
algorithm enforces a certain set of expected individual simple behaviors such that a large
swarm can follow a leader through cluttered environments relying only on local information.
Preliminary simulations are run and the results show that it is possible to operate a swarm of
a hundred quadrotors with the proposed algorithm. In particular, the swarm is able to follow
the leader, maintain connectivity, avoid collisions with the other agents, avoid obstacles, and
even squeeze to pass through narrow spaces.
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CHAPTER 1 INTRODUCTION

1.1 Background

Since the 1990s, researchers and companies around the world never stopped designing Un-
manned Aerial Vehicles (UAVs) with different shapes, technologies, and purposes. Originally
used as practice targets for military training, UAVs development experienced an important
shift when the Dayton-Wright Airplane Company invented a pilotless aerial torpedo that
would explode at a preset time during World War I [1].

Nowadays, UAVs are heavily used for military applications: in 2013, at least 50 countries
operated UAVs for intelligence and defense. A certain democratization of UAVs has been
observed in the last years, as the use of UAVs has become vey popular in many civilian
applications such as photography, mapping, survey, and security.

A specific type of UAVs, the quadrotors, have become quite popular among the research
community [2]. Indeed, the four-rotor design allows them to be relatively simple in design,
yet highly reliable and maneuverable. Therefore, they have become perfect platforms for
safe and low-cost experiments in navigation and control strategies for 6 Degrees of Freedoms
(DoFs) mobile robots.

More recently, the distributed control of multiple quadrotors and Multi-Agents Systems
(MASs), has been extensively studied [3]. Indeed, using MASs composed of several cheaper
and smaller units may present numerous advantages compared with one unique super-efficient
expensive unit. Apart from the obvious financial risk related to a system failure when dealing
with a single and centralized solution, MASs provide high resilience and robustness, enhanced
sensing capabilities and lower physical risks when it comes to development. In various do-
mains, such as exploration, search, rescue and surveillance, UAVs’ MASs could be used to
map dangerous or inaccessible areas, help find survivors after major disasters, identify risks
such as gas leaks or structure vulnerabilities, provide an ad hoc communication network for
rescue teams and detect intruders in restricted areas [4].

1.2 Aim

This project is financed and supervised by Humanitas Solutions, a team of designers, devel-
opers, and researchers building resilient solutions for critical environments. Thus, it is in-
tegrated into a higher-level workflow that targets emergency response and especially Search

https://www.humanitas.io/


2

And Rescue (SAR) applications. Even though the SAR matter is investigated in the lit-
erature review and may have influenced some development choices, this project focuses on
the swarm control itself, not on the end-user application, with the end goal of designing a
quadrotor swarm offering autonomous navigation capabilities. For instance, the solutions
proposed here should allow one rescuer without specific training to operate a large swarm of
UAV from the operation base to the intervention field.

1.2.1 General objective

The general objective of this project is to design and develop swarming solutions to allow a
group of quadrotors to fly in formation through free and cluttered environments, in a fully
distributed and autonomous fashion.

1.2.2 Specific objectives

To support the general objective, five specific objectives have been identified.

Objective #1 - Provide modularity and scalability to the swarm
The agents have to communicate and coordinate with each other to achieve the mission in a
distributed manner. Nevertheless, the dependencies must be contained to a minimum level
to ensure a maintainable and scalable system.

Objective #2 - Ensure robustness and fault tolerance
The swarm must be robust to single agent faults. Moreover, it should be able to endure
communication errors or external disturbances. Also, the control law has to be compliant
with material capabilities.

Objective #3 - Perform collision and obstacle avoidance
The navigation algorithm has to prevent quadrotors from colliding with each other and
crashing against environment obstacles.

Objective #4 - Maintain connectivity among the swarm
Every agent in the swarm has to keep a way to interact with all the others.

Objective #5 - Guarantee real-time efficiency
The swarming problem mixes computation, communication, and control. Therefore, we
need to consider how digitalization, i.e., quantification and sampling, may affect real-time
performances of the system.

Objective #6 - Provide reliable proof of performances
Simulations account only for a restrictive part of what we know from the real-world phe-
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nomenons. Thus, the most reliable way to asses performances remains experiments. There-
fore, efforts have to be made to get as close as possible from an operational prototype, e.g.,
Software-In-The-Loop (SITL) or Hardware-In-The-Loop (HITL) simulations.

1.3 Scope

The autonomous navigation problem is very complex and interdisciplinary, especially when it
comes to indoor navigation. While a comprehensive solution would have to consider on-board
state estimation, localization, mapping, and even communication issues, this project solely
focuses on the formation control part of the problem. This also implies that the high-level
path planning of the entire swarm in the global frame, as well as the low-level controller of
agents, are not extensively studied here. Moreover, only formations in the horizontal plane
(i.e., the same altitude for all agents) are considered. Finally, two distinct swarming solutions
are proposed for indoor and outdoor environments.

1.4 Organization

The remainder of this work is organized as follows. Chapter 2 provides a wide review on
UAVs’ swarm control, navigation and applications in the SAR context. Chapter 3 describes
the dynamics of the quadrotors and presents several simple control laws that enable different
flight modes which are relevant for formation control. Chapter 4 discusses the design of a
simple swarming solution for outdoor environments without obstacle avoidance. This solution
is implemented in ROS and some advanced SITL simulations are realized using the software
solutions under development at Humanitas Solutions. Chapter 5 presents a distributed leader-
follower formation algorithm suitable for indoor environments (i.e., with obstacle avoidance)
inspired by the work of Sakai et al. [5]. Finally, Chapter 6 summarizes the important results
and achievements of this work and mentions potential future projects and improvements.
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CHAPTER 2 LITERATURE REVIEW

2.1 Overview

The aim of this chapter is to provide a global view of both research challenges and general
aspects related to quadrotor swarm control for SAR applications. Before going into further
details, let us clarify the literature review scope and organization (Figure 2.1). Hence, the
review will follow a top-down approach: from SAR applications to estimation & tracking
methods. Note that hardware solutions themselves will not be discussed here unless they
interfere in a specific way with the software solution (e.g. estimation solutions are associated
with a particular type of sensor).

Search & Rescue

Search & Inform
Quadrotor
Hardware

Computation

Communication

Sensors

Airframe

Energy

Actuators

Software

Consensus

Estimation

Mapping

Localization

Path Planning

OAS

CAS Tracking

Fault Mgmt.

Control

Assess

Software

Path Planning

Coverage

Prioritization

Figure 2.1 Review scope

2.2 Search & Rescue

We first focus on the SAR problem and the related methods. Qi et al. [6] reported that
manual SAR operations are usually conducted by several small teams, hardly coordinated.
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Each team counts around twelve professionals and is responsible for a small area (≈ 5 km2).
They decomposed the search and rescue procedure into seven phases :

1. Collect and analyze data about the assigned search region;

2. Limit access to hazardous areas;

3. Determine search strategy and priorities;

4. Execute search strategy;

5. Rescue survivors;

6. Provide medical care;

7. Analyze performances and adapt methods for the future.

This decomposition is not really relevant while considering a quadrotor swarm instead of a
team of humans. Hence, we will be considering only three relevant axes in the following :
assess, search and inform.

2.2.1 Assess

The first phase, called the assess phase, gathers all the steps that occur before the swarm
take-off, i.e., analyzing collected knowledge to define priorities and develop a search strategy.
Indeed, we may be able to collect some existing maps of the area, satellite imagery, and
various other information about the region such as population density or transport corridors.
Based on such data, San Juan et al. [7] proposed to build a risk/occupancy map using a Fuzzy
Inference System (FIS).

2.2.2 Search

The second phase occurs from the take-off to the landing of the swarm. During this phase,
the swarm will try to apply the predefined search applyins strategy real-time modifications
only when necessary. Traditionally, the search has been conducted using predetermined
standard search patterns such as rectangular sweep [8]. However, though still limited, the
ever-growing computation capabilities of quadrotors enable non-standard approaches to the
search problem that promise to be more effective. Dames and Kumar [9] addressed the
problem of autonomous localization of an unknown number of targets with a stochastic
solution, namely the Probability Hypothesis Density (PHD) filter. Note that the developed
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solution is able to assess the end of the mission. Ji et al. [10] designed an adaptive density
function based on an online updated probability map and an uncertainty map. Those are
then used to balance target detection and area exploration. Li and Duan [11] modeled the
search problem with Game Theory. A search strategy is updated online using a potential
game approach. Then optimal coverage is guaranteed with binary log-linear learning. Hayat
et al. [12] developed an optimization-based solution for multi-objective UAV swarm SAR
using a Genetic Algorithm (GA). Their solution aims to minimize both search duration (i.e.,
area coverage) and network connectivity according to a certain weighting. Finally, San Juan
et al. [7] proposed four algorithms relying on graph theory : an Artificial Potential Field
(APF) approach, a Fuzzy Logic (FL) approach, an Adaptive-Network-based Fuzzy Inference
System (ANFIS) and a Particle Swarm Optimization (PSO) approach. Note that the FL
and the PSO solutions are tuned using GA. According to their tests, the ANFIS approach
has been shown to be the best one.

2.2.3 Inform

Simultaneously to the search mission, the swarm will have to ensure a communication link
toward the Base Station (BS) and even provide a communication network to rescuers in the
field. This problem is addressed by Hayat et al. [12] through three different communication
strategies :

• Information First (IF) strategy: once a target is found, a messenger (i.e., one designated
UAV among the swarm) flies on a direct path to bring the target information to BS
(i.e. data ferrying). This allows a fast response of the rescue team.

• Connectivity First (CF) strategy: at the time a target is found, the swarm will have
to establish a communication link from the target to the BS. This enables the reactive
monitoring of the target.

• Simultaneous Information & Connectivity (SIC) strategy: this hybrid solution aims to
ensure enough connectivity to link the target to the BS while a messenger is sent to
notify the BS.

All three strategies are implemented using the Multi-objective Path Planning (MOPP) algo-
rithm that provides GA-optimal coverage.
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2.3 Swarm

Formation control of a UAVs swarm is a special case of the consensus problem. Consensus
means that all the agents of the swarm reach an agreement on certain variables of interest
in order to fulfill a defined goal [13]. Primary goals of such a system in a SAR context are
to ensure cohesion of the swarm and coverage of the area while avoiding obstacles in the
environment and collisions among the swarm members.

2.3.1 Architectures

MAS can be organized along different architectures (Figure 2.2) that we classify in two groups.
The first includes centralized architectures based on a BS that collects all information, deals
with most of the computational load and makes decisions for the agents to follow. Due to
the dependency on the the BS, this approach is not the most promising. Moreover, a faulty
communication link between the agents and the BS will have a strong impact on the system
performance. In the second group we find decentralized architectures letting the UAVs taking
part in decision and planning procedures, increasing in this way the overall system robustness.
A distinction can be made between two different variants of decentralized architectures. First,
we consider a fully decentralized architecture where all UAVs will be totally autonomous and
independent. This configuration provides strong resilience but does not fully exploit the full
power of a swarm, as each UAV acts independently or in small groups. For this reason, we
will prefer a distributed architecture according to which the UAVs are demanded to directly
cooperate and communicate in order to make a collective decision, in other words, to achieve
a consensus. In addition, Ge et al. [14] proposed a cluster architecture for MAS. The agents
therein were split into subgroups, potentially resulting in larger swarms.

2.3.2 Models

MASs are often modeled using graph theory for both formation and communication modeling.
We define here some graph basic properties. In brief, a graph is a set of nodes connected by
edges. We distinguish directed graphs from undirected graphs. The undirected graphs feature
exclusively bidirectional edges (e.g., each node can receive from and respond to connected
nodes) [15]. Conversely, directed graphs imply unidirectional connections. The symmetry in
undirected graphs results in great model simplifications and easier controller designs. How-
ever, depending on the algorithm one might want to implement, using a directed graph model
may be a more efficient [16]. We can also enrich the model by weighting either the edges
[14] or the nodes [17]. Most of the solutions developed for MAS control rely on a classic
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graph with positive weights, meaning agents’ actions converge to the same objective (i.e.,
collaborative behavior). However, recent studies on real-world cases (e.g., social networks)
have shown that antagonistic behaviors may enhance the overall performance of the group.
In order to reproduce that kind of antagonistic interactions, Altafini [18] introduced a signed
graph with positive and negative weights for consensus formation control. We have just seen
that modeling choices will have a strong impact on the performances of the final control
solution. Namely, properties attributed to the graph model directly influence system per-
formance. In that regard, Sun et al. [19] proposed an energy-optimized formation control
that involves graph topology optimization by estimating, at each iteration, the minimal rigid
graph that fits the actual formation. This help minimizes communication complexity and
energy dissipation.

(a) (b) (c)

Figure 2.2 (a) Centralized. (b) Decentralized. (c) Distributed architecture.
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2.3.3 Strategies

Formation control of MAS has been a concern for researchers for more than a decade and
several strategies have been developed accordingly. In their attempt to propose standardized
formations for spacecraft control, Beard et al. [20] presented three formation strategies :

• Leader-follower approach: at least one agent is identified as the leader and tracks
the trajectory specified by the path planner, while the rest of the swarm, namely the
followers, keep tracking the leader’s position by considering some prescribed and pos-
sibly time-varying offsets [13]. This is called morphous formation control as distances
between agents are explicitly specified through a formation function. One may also
consider variants such as multi-leader strategy [17] or switching leader strategy [21].

• Behavior-based approach : several expected behaviors are implemented in parallel on
each agent [22]. In other words, it is a multi-objective control law that will try to
achieve tracking, obstacle avoidance, cohesion, collision avoidance, connectivity, etc.
simultaneously. Thus, this approach is categorized as amorphous formation control.

• Virtual structure approach: the swarm is considered as a single system, called vir-
tual structure. The virtual structure approach is, a special case of the leader-follower
approach which considers virtual leaders that are not actual agents.

2.3.4 Control

Back in 1986, Craig Reynolds, an artificial life and computer graphics expert, developed the
Boids (short for “bird-oid” objects), an artificial life program which simulates the flocking
behavior of birds [23]. Even though its work was initially intended for computer animation,
C. Reynolds laid the foundations of behavior-based swarm control. In particular, he showed
that the complex motion observed in a flock of birds, a herd of land animals or a school of
fishes emerge from a set of simple distributed rules as that correspond to :

• Collision Avoidance: avoid collisions with nearby agents;

• Velocity Matching: attempt to match velocity with nearby agents;

• Flock Centering: attempt to stay close to nearby agents.

More complex rules can be added, such as obstacle avoidance and goal seeking.
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Sabattini et al. [22] developed a behavior-based solution for distributed control of MAS while
maintaining connectivity. This solution implements two linear control laws in a complemen-
tary manner: one for tracking, and one for connectivity maintenance. Xiang et al. [24], on the
other hand, achieved distributed robust nonlinear control of UAV MAS in a leader-follower
manner with a full order Sliding Mode Control (SMC). Note that, in addition to handling
non-linearity, SMC is robust to both model uncertainties and external disturbances, which
makes it a suitable candidate for the UAV MAS control problem. Jasim and Gu [25] also
managed to achieve leader-follower distributed robust nonlinear control but decided to use
suboptimal H∞ control instead. Bandyopadhyay et al. [26] proposed to deal with distributed
control of a large-scale MAS. They designed a Probabilistic Swarm Guidance using Inhomo-
geneous Markov Chain (PSG-IMC).

Concerning Obstacle Avoidance Systems (OASs) and Collision Avoidance Systems (CASs),
Wang et al. [27] developed a sense and avoid dual-mode control strategy that involves a
“safe mode” for obstacle-free environment operations and a “danger mode” activated when
there is a chance of a collision with another agent or when there are obstacles on the path.
In danger mode, collisions/obstacles avoidance is handled by a modified Grossberg Neural
Network (GNN) and a visibility graph [28]. A more common way to ensure collision and
obstacle avoidance would be the APF as proposed by Zhao et al. [29]. Assuming a leader-
follower strategy, the basic idea of the APF method is that each follower is driven by two
kinds of artificial forces generated by other agents of the swarm: an attractive force leading
the agent to the desired position and a repulsive force avoiding collision among the swarm.
Usually, those two forces and their ratio depend on the distances between agents. The agents
are then moved toward the minimum of the potential field thus created in order to achieve
control while ensuring collision avoidance. Note that for obstacle avoidance, one will just
need to consider obstacles as fixed agents. Nevertheless, this method suffers from a strong
drawback that needs to be addressed. Indeed, the potential field created will most likely
present local minima that may prevent the agents from converging to their expected position
and formation. Also, Sakai et al. [5] designed a complete CAS/OAS for UAV MAS enabling
formation reorganization to go through narrow spaces and ensuring connectivity maintenance
by only using geometric constraints (i.e., distances and Line-of-Sight (LOS) preservation).
Nguyen et al. [30] used path deformation to deal with obstacle avoidance. In this case, close
obstacle avoidance is completely integrated with path planning, applying a transformation
to the predetermined path in the neighborhood of the obstacle. The main advantage of
this method is its extreme simplicity, which leads to a straightforward design and limited
computation load.
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2.3.5 Communication

As far as the formation control problem is concerned, the main communication constraint
consist in maintaining connectivity among the MAS members. Sabattini et al. [22] distin-
guished two approaches for connectivity maintenance :

• The Local connectivity preservation approach aims at preserving the original set of links
throughout the mission. Of course, this strategy is highly restrictive as visibility and
range constraints imply a roughly fixed formation;

• The Global connectivity preservation approach relaxes this restriction by enabling links
to be removed and added at will as long as the overall connectivity is maintained.

To deal with global connectivity preservation, Sabattini et al. [22] introduced the concept
of critical agent. An agent identifies itself as critical if at least one of its neighbors, as de-
scribed by the communication graph, is isolated. In other words, critical agent disconnection
will cause a split of the communication graph. Thus, their swarm control solution involves
detecting the critical agent and limiting control law effects on those to avoid splitting the
graph. Sakai et al. [5] achieved connectivity preservation in obstacle environments by limit-
ing control output to preserves LOS between neighbor agents as well as maximum distance
constraints. Their solution also features a set of rules that enable the swarm to safely change
its network topology (i.e., its communication graph).

It is worth pointing out that the communication system in swarm suffers numerous limita-
tions, constraints, and errors that have to be considered at the design stage. For example,
one may experience packet disorders, packet dropouts, quantization errors, and transmis-
sion delays [3]. Communication capabilities may also be limited by antenna ranges, network
topology complexity, and computation power.

2.3.6 Digitization

Even though control and communication are often modeled and studied as continuous pro-
cesses, it cannot be ignored that the final implementation will be discrete both in time and
amplitude. As a matter of fact, the way we deal with that digitization problem will greatly
impact system performance, especially when it comes to swarm control where control and
communication tasks happen in an interdependent manner. In their survey, Ge et al. [31]
listed several strategies to deal with the sampling. We first consider time-triggered sampling.
In such an approach, sampling action is driven by time but this can be formalized in a dif-
ferent way. We will be distinguishing synchronous sampling when all agents sample signals
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at the same moment from asynchronous sampling when sampling happens at different times
for all agents. Also, considering only one agent, we can define the sampling period to either
uniform, non-uniform or even random (i.e., the period can be fixed over time, evolve in a
deterministic way or even in a stochastic fashion). As a result, we can list six time-triggered
sampling mechanisms : Synchronous Uniform Sampling (SUS), Synchronous Non-uniform
Sampling (SNS), Synchronous Random Sampling (SRS), Asynchronous Uniform Sampling
(AUS), Asynchronous Non-uniform Sampling (ANS) and Asynchronous Random Sampling
(ARS). When it comes to performances, ARS would be the most efficient approach as it
may require less sampling action on the overall and no strict synchronization in the swarm.
But it will also require more effort when it comes to design. An even more efficient way to
perform sampling is synchronous or asynchronous Event-Triggered (also called self-triggered
[32]) sampling (SES/AES). However, one might have to be careful with the event-triggered
sampling mechanism as it presents a major drawback known as Zeno phenomenon. In fact,
under certain circumstances, the sampling period of an event-triggered mechanism may drop
to zero and cause the failure of the system. So far, we only discussed time digitization.
Li et al. [16] addressed amplitude digitization (i.e., quantization) for networks with limited
bandwidth proposing an efficient quantization adaptation mechanism. One should remark
that sampled control law remains unchanged during the whole sampling period because of
the use of Zero-Order Hold (ZOH) to keep control inputs constant. This method requires
that the controller works continuously during each sampling period, which may result in com-
putational overload. In that regard, Liu et al. [33] proposed a Pulse-Modulated Intermittent
Control (PMIC) solution that unifies impulsive and sampled control. PMIC can adapt the
sampling period by defining a proper pulse function so that controllers only need to work
during a fraction of each sampling period.

2.3.7 Challenges & Objectives

In brief, Recchiuto and Sgorbissa [4] summarized the swarm control challenge as a certain
set of expected characteristics to achieve :

• Cooperative and distributed architecture: task load needs to be shared among all the
swarm agents available. Note that this kind of architecture is more resilient than a
centralized one (e.g., a BS that controls each UAV independently);

• Modularity and scalability: the agents have to communicate with each other to achieve
the mission in a distributed manner. Nevertheless, the dependencies must be contained
to a minimum level to ensure a maintainable and scalable system;
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• Robustness and fault tolerance: the MAS must be robust to single agent faults. More-
over, it should be able to endure communication errors or external disturbances;

• Real-time and efficiency: the MAS control problem involves computation, communica-
tion, and control. Therefore, we need to pay close attention to how digitization may
affect real-time performance of the system.

2.4 Path Planning

The efficiency of a search strategy strictly depends on how the UAVs compute their corre-
sponding flying paths. Therefore, some path planning techniques and solutions have to be
reviewed as well. In SAR applications, path planning should optimize the coverage of the
area of interest. Also, considering the MAS context, path planning has to ensure collision
and obstacle avoidance. Thus, coverage and collisions/obstacles avoidance will be considered
here as the two main objectives of path planning.

2.4.1 Strategies

We distinguish two complementary strategies for path planning. Indeed, path planning
happens in two different forms. On the one hand, we have offline path planning, which
consists in designing the main path before take off, i.e., during the assess phase. On the
other hand, we consider online path planning according to which flying paths are computed
during the flight, essentially during the search phase. Online path planning deals with on-the-
fly optimization of the path and collision/obstacle avoidance. Note that online path planning
is subject to strong real-time constraints and complexity limitations due to poor embedded
computation power on the UAVs. At the opposite, offline path planning does not suffer such
constraints but may rely on inaccurate a priori information. Therefore, an optimal path
planning system should combine these two strategies.

2.4.2 Algorithms

Avellar et al. [8] studied the problem of maximum coverage of ground areas using UAV
swarms. In the first approach, they introduced some basic geometric considerations such
as optimal sweep direction. We consider a rectangular area to be covered and assume that
we use a sweeping pattern to explore the area. Then, while the two dimensions of the area
are different, the sweep direction determines the number of turns required to cover the area.
Furthermore, we know that the UAVs sensing capability is degraded during a turn so that
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such a maneuver represents a certain loss of time and energy. Therefore, the optimal sweep
direction is the sweep direction that reduces the number of turns. Note that this is especially
true for fixed-wing UAVs but is still relevant for quadrotors. Then, they solved the Vehicle
Routing Problem (VRP) using graph theory to model the path for a unique UAV to cover
the area and Mixed Integer Linear Program (MILP) to split the path between a team of
UAVs. They even manage to find the optimal number of UAVs to complete the mission by
considering the maximum flight time and the setup time of UAVs.

A widely used method for path planning is the APF technique. We already introduced this
technique for collision avoidance in the formation control problem. Let consider here a more
global definition of APF for path planning applications. Let us suppose that the target
to be reached by the agent has been characterized by a negative potential field, while all
areas or objects to avoid by positive potential fields. Then, the planned path slides along a
valley of the potential field toward its minimum, i.e., the target. This method provides fast
convergence with a relatively simple implementation. Unfortunately, like said previously, this
solution may fail to perform in presence of local minima in the potential field. Barraquand
et al. [34] managed to avoid the local minima problem by constructing proper potential field
using numerical techniques and bitmap representation.

Path planning can also be considered through the optimization prism. Mellinger et al. [35] for-
mulate the path planning problem (i.e., optimal trajectory generation and collision/obstacle
avoidance) using Mixed-Integer Quadratic Programs (MIQPs). Relying on differential flat-
ness of quadrotors dynamics, the optimal trajectory generation is achieved using quadratic
programs while collision avoidance is ensured by integer constraints, hence the MIQP. Even
though this approach enables aggressive trajectories, it cannot a priori handle decentralized
architecture and is not able to deal with a large swarm or too cluttered environments.

Last but not least, learning-based methods have also been applied to path planning. Zhang
et al. [36] successfully combined the Model Predictive Control (MPC) technique with Rein-
forcement Learning (RL) to develop a computationally efficient controller handling obstacle
avoidance. As MPCs represents a very high computational load, the technique cannot be
applied right away on quadrotors. Instead, the team had the idea to train a neural network to
reproduce MPCs behavior at a much lower cost. In order to do so, they used a “remote” MPC
supported by BS and external sensors such as a Vicon system to control the quadrotor. Then
they fed the Neural Network (NN) with the collected flight data. This approach presents
good results in simulation, but unfortunately, no experiment has been realized. Also, NNs
cannot give any mathematical proof or guaranty on stability, therefore this method may not
be applicable to critical applications like SAR.
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One could also consider the nature of the trajectory generated. Indeed, the simplest tra-
jectory could be defined by a waypoint set while a more complex one may include not only
position but also velocity, acceleration, and even jerk data. Recall that jerk is the time
derivative of acceleration. In that regard, Conover [37] developed a jerk-augmented Lin-
ear–Quadratic Regulator (LQR) that would track jerk-augmented trajectories derived from
high-order smooth polynomial position trajectories. This kind of enriched path planning,
combined with a suitable controller, enables a more precise tracking and aggressive maneu-
vers.

In order to better deal with each different situation, the path planner could feature different
flight modes. For instance, Wang et al. [27] proposed to evaluate the risk of collision to
switch the path generation algorithm accordingly: choosing a more conservative trajectory
planning when the risk is high and using a more efficient one when the risk is low. Also,
Faessler et al. [38] developed an emergency-landing procedure that relies only on the most
reliable sensors (e.g., Inertial Measurement Unit (IMU)) to avoid damaging the quadrotors
when other sensing systems (e.g., Global Positioning System (GPS), odometry, etc.) fail,
especially in the experimental phase. This mode enhances the robustness of the overall
system significantly.

Table 2.1 Path planning solutions

Pros Cons Reference

Sweep + MILP Simple design and
implementation.
Optimal swarm size.
Include setup time.

No prioritization.
No online updates.
Irrelevant for indoor
applications.

Avellar et al. [8]

APF + Bitmap Simple design and
implementation.
Fast convergence.

Local minima issue. Barraquand et al.
[34]

MIQP Optimal trajectories.
Aggressive maneuvers.

Complex design
and implementation.
Centralized solution.

Mellinger et al.
[35]

MPCs + RL Low computation cost.
High robustness.

Complex design.
No theoretical proof.

Zhang et al. [36]
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2.5 Tracking

Designing efficient trajectories is not enough. We still have to ensure that our quadrotor is
able to follow a moving target, hence to solve the tracking problem. Note that we already
discussed the control and decision-making of the whole by assuming, in most cases, the pres-
ence of individual lower-level controllers. Here we will deal with those lower-level controllers.
Although, the main objective of such controllers is to ensure a minimal tracking error, other
desirable capabilities have to be envisioned. For instance, high convergence speed, fault-
tolerant control or even fault recovery. Also, the tracking problem features some important
constraints that should be modeled or at least considered prior to synthesis. Among them,
let us list actuator saturation, payload change, transmission delays or wind disturbances.

2.5.1 Models

The first step toward controller design is the dynamic model of the open-loop system. De-
pending on targeted applications and performance, we will prefer either one reduced sim-
plified system model or, at the opposite, a high-fidelity model. Classic quadrotor models
most likely belong to the first category. Indeed, an overwhelming majority of researchers
chose to simplify the quadrotor model and get rid of its nonlinearities by linearizing it at
hovering point. This enables a quite easy synthesis as it decouples the outputs of the model.
But the linearization hypothesis only holds in a close neighborhood of the hovering point
such that aggressive maneuvers can only be achieved using multiple linearized models and a
sequential composition controller [37]. The opposite extreme strategy consists of using the
full-order nonlinear model. This may lead to strenuous control synthesis, high complexity
design, which is not desirable. Thus, we will prefer a reduced-order nonlinear system ob-
tained by neglecting some minor aerodynamic effects and actuators dynamics. Using such a
model, several researchers have been able to design nonlinear controllers that achieve at least
Lyapunov Asymptotic Stability (AS). In addition, Miao et al. [39] noticed that the reduced
dynamics could be put under strict feedback form which implies that Backstepping Control
(BSC) synthesis can be applied right away without much effort.

Note that the choice of the body frame of reference of the quadrotor influences the form of
the dynamics equation. Indeed, two different configurations have been used by researchers
(Figure 2.3) :

• the plus “+” configuration with pitch and roll axes aligned with the quadrotor’s arms;

• the cross “×” configuration with pitch and roll axes shifted by 45◦ from the arms.
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The yaw axis traditionally points toward the belly of the quadrotor. Clearly, the + configura-
tion eases dynamics modelling and somehow simplifies the dynamic equations. Nevertheless,
one would prefer the × configuration because it easily allows to place a camera pointed
forward (i.e, along x/roll axis) without incurring in obstructions from the airframe.

x x

y y

z
y

z
y

(a) (b)

Figure 2.3 (a) “×” configuration. (b) “+” configuration.

A determinant point in the quadrotor kinematic and dynamic modelling is the orientation
representation. Traditionally, we define the orientation of flying objects (e.g., plane, heli-
copter, satellites, ...) using the famous Euler angles: roll, pitch, and yaw. Unfortunately,
that representation suffers a singularity. Indeed, when the axes of two of the three possible
rotations become co-linear, it follows the loss of one degree of freedom in rotation: we call
that phenomenon the gimbal lock. That said, Euler angles may be convenient for under-
standing and communication of results but it may bring some problems when it comes to
achieving acrobatics. Instead, we could simply use rotation matrices, also called DCMs or
matrices of the SO(3) group. This representation does not have any singularity but suffers
another major drawback. Indeed, controlling a DCM would mean working with six fully
coupled state variables, which could represent a large computation cost. Hopefully, a last
system for representing rotations was introduced by Hamilton [40] : the unit quaternion.
That representation does not suffer any singularity. In addition, it is more compact and
faster to compute than DCM or even Euler angles. Thus, we will prefer unit quaternions to
other rotation representations for the model and will use Euler angles to communicate our
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results.

2.5.2 Structure

Although we are aware that several control structures exist for quadrotor control, let us
only discuss the most widely applied (Figure 2.4). First, notice that to generate a linear
displacement of the quadrotor in the horizontal plane, we have to tilt it in the chosen direction.
Therefore we will be considering two nested control loops. The inner-loop will have to
stabilize the quadrotor at hovering and ensure attitude and altitude control. The outer-loop
will generate altitude and attitude control inputs for the inner loop in order to track velocity
or/and position references from the path planner. At a lower level, we could also consider an
innermost loop to deal with motors dynamics [41].

Motor
controller

Attitude
controller

Position
controller

Path
planner

Controller Dynamic

Figure 2.4 Standard control structure

2.5.3 Design

Recall that the linearized model presents decoupled inputs-outputs. That said, a large va-
riety of linear controllers have been successfully applied to quadrotor control. The struc-
ture of the control stays roughly the same, namely state feedback with integral action (i.e.,
Proportional-Integral-Derivative (PID) control). The synthesis, however, can be conducted
through different methods. Clearly, pole assignment or, in a more complete fashion, eigen-
structures assignment can be applied but may require some experience to be properly tuned.
Also, Linear-Quadratic-Gaussian (LQG) method has been widely used to design optimal
controllers.

Unfortunately, linear control can only achieve local stability. Hence, we have to consider
nonlinear control to ensure global stability. For instance, Jia et al. [42] introduced a hybrid
nonlinear control solution that combines BSC with SMC. The integral action is added to
the control loop in order to ensure zero steady state error. The proposed controller does not
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present the chattering phenomenon usually observed with SMC and seems to be more robust
than other traditional controllers (e.g., PID, LQR, BSC).

Still, the control design listed above does not consider external disturbances or model uncer-
tainties at synthesis level. Therefore, some researchers have turned to robust control design.
For instance, Jasim and Gu [25] used the H∞-synthesis and µ-synthesis method to design
a suboptimal robust controller that outperforms a back-stepping controller in presence of
disturbances and uncertainties. In brief, the H∞-synthesis method translates the control
problem expressed in terms of frequential performances (i.e., frequential weighting functions)
into a mathematical optimization problem. Then, it solves the optimization problem using
a numerical method such as the D-K iteration procedure. Thus, H∞ controllers can sat-
isfy the stabilization requirement along with guaranteed performances. Nevertheless, proper
frequential weighting functions can be hard to find. Ataei et al. [43] proposed an MPCs
based solution to design a quadrotor robust controller. They notably introduced a relaxation
technique to reduce the computational cost of LMIs solving processed by the controller in
presence of a large number of uncertainties and disturbances. Dabin [44] implemented a linear
Active Disturbance Rejection Control (ADRC) on a mini-quadrotor in order to ensure proper
trajectory tracking in presence of wind. The ADRC idea is to use an uncertainty/disturbance
estimator to adapt the linear feedback control accordingly. Ranjbaran and Khorasani [45]
developed an adaptive controller to ensure global stability in presence of actuators’ Loss Of
Efficiency (LOE). To do so, they designed a parameter estimator along with update law to
adapt control accordingly. Note that the quadrotor model used is nonlinear but the LOE
model developed is linear.

2.6 Estimation

A major issue in operating quadrotor is being capable of retrieving accurate data about its
states and parameters from sensor measurements to feed the control loop. First, we need to
estimate the orientation and rotation rate of the quadrotor. This information is critical for
the controller in order to stabilize the hovering equilibrium. Therefore, orientation estimation
needs to be highly reliable and will be treated individually for each agent. Then, we need
to compute the quadrotor’s position, translational velocity, acceleration and even jerk [37]
in order to achieve trajectory tracking. Note that that information could be retrieved in a
distributed fashion as each agent may be able to collect information on position and velocity of
its neighbors. As for swarm control, a distributed solution will present better computational
efficiency and higher robustness in case of sensor failure. At agent level, we may also need
to estimate some parameters such as sensor biases or even actuator efficiency to enable fault
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Table 2.2 Tracking solutions

Pros Cons Reference

Linear ctrl. Simple design and
implementation.

Only locally stable. Conover [37]

Adaptive ctrl. Simple design.
Good robustness.

Only locally stable.
High computation
cost.

Dabin [44]
Ranjbaran and
Khorasani [45]

BSC + SMC High robustness. Elaborate design. Jia et al. [42]

H∞ ctrl. Guaranteed robust
performances.

Hard to tune. Jasim and Gu [25]

MPCs High robustness. Complex design.
High computation
cost.

Ataei et al. [43]

detection. At the swarm level, it would be interesting to estimate other parameters such as
transmission delays or network topology [46].

Nevertheless, states and parameters estimation in quadrotors applications could be tricky.
Indeed, complete estimator solutions have been studied and developed for years now and
are widely used on board of commercial aircraft or satellites. But low-cost quadrotors bring
new challenges for estimator design. In fact, cheap sensors suffer high noise levels, biases
and scale factors which lead to serious issues estimating attitude. Moreover, quadrotors’
kinematics are highly nonlinear such that filters used in classical navigation systems may
fail to provide accurate attitude estimates. Then, cost and weight constraints also limit the
computational power on board. In addition, we have to consider that some measurements
could be temporarily compromised or unavailable [39], especially for indoor applications. For
instance, GPS signal will not be available inside a building. Also, high luminosity variations
at the door crossing may result in failure of visual-based estimations. At last, some estimation
systems may require burdensome offline calibration prior to take-off [38] and this has to be
considered in the performance evaluation of the estimation solution.
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2.6.1 Techniques & Sensors

Navigation techniques can be categorized into two main classes. On the one hand, position
fixing techniques rely on external sources of information to determine the absolute position
of the system. Those techniques provide accurate estimations but depend entirely on the
availability of external sources, which severely degrades the robustness of the solution. On
the other hand, dead reckoning techniques measure both distance and direction traveled from
a start position or configuration, by some form of motion sensing (velocity and/or accelera-
tion measurements). These techniques only provide positioning relative to the starting point.
Moreover, the position error obtained grows with time because the successive distance and di-
rection measurement errors accumulate (i.e., error integration over time). Nevertheless, dead
reckoning techniques present some advantages with respect to position fixing. Indeed, they
are self-contained, fully autonomous and usually perform at a higher rate. Also, they provide
direct acceleration and velocity estimates, which are often necessary to the controller. In
contrast, position fixing techniques would have to differentiate the position signal to retrieve
velocity and acceleration, which is very sensitive to noise. An efficient estimation solution
will often combine both position fixing techniques and dead reckoning techniques through
sensor fusion algorithms to obtain an accurate and reliable estimate.

Position Fixing

A famous position fixing solution is the Global Navigation Satellite Systems (GNSSs) such
as the American GPS. An embedded GPS receiver can determine its own position using
signals emitted from satellites to measure the distance from those satellites and triangulate
its position (i.e., ranging solution). GPS accuracy depends on the number of satellites visible
by the receiver. Hence, GPS may provide very good performances for outside applications
but cannot be used for indoor applications.

Other ranging and bearing solutions such as Sound Navigation and Ranging (SONAR), Radio
Direction and Ranging (RADAR), and Light Detection and Ranging (LIDAR) can also be
used for position fixing assuming that we have some sort of map of the environment. Those
present quite interesting performance and have been widely used for robot navigation. But
they may be hard to implement on quadrotors due to strict payload limitations.

More basic position fixing solutions are available for quadrotors. For instance, a barometer
is a simple way to determine the altitude of the quadrotors using the atmospheric pres-
sure model. Nevertheless, the accuracy of such a solution may not be relevant for indoor
applications.
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Absolute orientation can be estimated from observation of Earth gravity vector measured by
accelerometers and the geomagnetic field vector measured by magnetometers. Unfortunately,
this absolute estimate accuracy will greatly depend on body acceleration and magnetic per-
turbations. Also, we need to know where our quadrotors are on Earth as the geomagnetic
vector is not the same everywhere.

More recently, pattern recognition techniques have been developed to achieve position fixing
using cameras. Even though those demonstrate good performance, especially for indoor navi-
gation, they may require too much computation to be implemented right away on quadrotors.
Note that different types of cameras are available for such applications. Monocular cameras
are the most basic solution and will only provide 2D information. Binocular cameras and
RGB-D cameras, however, can provide information about image depth but often require a
higher computation power.

It is also important to mention motion capture systems such as Vicon as they are widely used
for experimental studies. Those systems use several cameras installed in the environment to
track some markers attached to the quadrotor. Then, it computes the states of the quadrotors
with such high fidelity that it is often used as ground truth for experimental studies.

Dead Reckoning

A classical dead reckoning solution would be inertial navigation. This technique involves
inertial sensors such as accelerometers and gyroscopes that respectively measure linear ac-
celeration and rotational acceleration. In theory, we could easily compute the velocity, the
angular rate, the position and the orientation of the quadrotor by successive integration as-
suming that we know what is the initial state of our quadrotor. But like we said before, the
sensors may suffer some bias, scale factor and high-level noise which imply important errors
in the estimate after integration. Moreover, the initial state of the quadrotor may not be
available.

More recently, visual odometry techniques have been developed. Classic odometry consists
in using wheel sensors (encoders) to measure and then integrate a ground vehicle’s velocity.
In the same fashion, visual odometry uses optical flow captured by cameras to estimate the
quadrotor velocity and integrate it to get the position. Once again, those techniques suffer
the dead reckoning usual drawbacks, namely error integration and tbe need for initial state
knowledge.
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2.6.2 Data Fusion

We have seen that either position fixing or dead reckoning cannot possibly be used right
away for navigation. That is why we want to perform data fusion (also called sensor fusion).
Indeed, if we manage to design a filter that properly combines the benefit of position fixing or
dead reckoning, we might be able to compute an accurate estimate. We consider orientation
estimation using an IMU [47]. Most IMUs embed a three-axis magnetometer along with a
three-axis gyroscope and a three-axis accelerometer. All of them are commonly built using
Micro-ElectroMechanical Systems (MEMS). Then, the basic idea behind data fusion for IMU
is to mitigate the drift error due to gyro measurement integration with an absolute estimate
from accelerometers and magnetometers when available. Therefore, we finally obtain an
accurate measurement of orientation at a high rate update. The same result on the absolute
position can be achieved using cameras by combining visual odometry and pattern recognition
(i.e., loop closure). Remark that the filter that will perform data fusion will have to deal
with signals having different sampling periods and possibly suffering from delays [48].

Clearly, the traditional Luenberger observer does not enable sensor fusion and cannot be
applied here due to high-level sensor noise. Therefore, a straightforward approach for sensor
fusion is to use deterministic linear Complementary Filters (CFs) to combine sensors mea-
surements in the frequency domain [49]. An effective alternative is to use extended stochastic
linear estimation techniques derived from the famous Kalman Filter [50]. For instance, the
Extended Kalman Filter (EKF) has been extensively applied for orientation estimation [51].
Although these methods provide effective orientation estimations and have been widely ap-
plied for quadrotor orientation estimation, highly nonlinear kinematics of quadrotors could
lead them to fail. Julier et al. [52] proposed a new nonlinear filter to accommodate highly
nonlinear systems. By propagating a sampled estimate distribution through the real nonlin-
ear kinematics, this new filter gets rid of linearization errors of the EKF. What will be called
the Unscented Kalman Filter (UKF) has since been proved to be a good alternative to the
EKF for highly nonlinear systems even though they present a slightly heavier computation
cost [53]. Note that other stochastic nonlinear filters exist such as the Particle Filter (PF)
but their computation cost makes them irrelevant to quadrotor implementations. Hamel and
Mahony [47] proposed a nonlinear CF exploiting the structure of the rotation matrix in or-
der to compute high-quality orientation estimates from typical low-cost IMU. Their solution
has been shown to perform well even if only one vector among the gravity vector and the
geomagnetic vector is available.
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Recently, position estimation has been addressed through the Simultaneous Localization and
Mapping (SLAM) framework [54]. SLAM tackles the estimation problem by constructing
and updating a map of the environment while simultaneously keeping track of an agent’s
location within it. Note that this kind of solution is of great interest when it comes to SAR
applications.

Tomic et al. [48] developed a complete solution including hardware and software design for
urban SAR powered by autonomous quadrotors. They proposed a light version of existing
SLAM solutions to be implemented on a quadrotor. The odometry data is traditionally fused
with the IMU data using an EKF. But no geometric map is built. Instead, the correction
for drift errors is achieved by recognizing known landmarks in the environment. Moreover,
the odometry system is fed by a binocular camera and a LIDAR which enable the system to
perform both indoor and outdoor. Indeed, an indoor environment consists of walls that can
easily be detected by a LIDAR. In contrast, lack of luminosity in such an environment could
cause the camera odometry to fail. Conversely, sunlit outdoor environments contain light in
the part of the spectrum that coincides with that used by infrared laser scanners which may
prevent the LIDAR odometry from providing a good estimate. But such environments have
many natural features and good lighting conditions, which make them perfectly suited for
visual odometry systems.

In contrast, Verykokou et al. [55] only addressed the mapping problem. Indeed, in SAR
applications, having a complete and accurate map of the affected area could significantly
improve disaster response. A fast 3D environment modeling using images from quadrotors
and Structure From Motion (SFM) open-source algorithms is presented. In brief, SFM
process consists of three steps. First, features are extracted in each image using a feature
point detector and descriptor. One of the most widely used feature detectors is the Scale-
Invariant Feature Transform (SIFT) [56], which are scale and rotation invariant and robust to
changes in illumination. Then, the descriptors are matched. One of the matching algorithms
that track features from one image to another is the Lukas–Kanade tracker [57]. It is common
then to filter the matches to remove incorrect matches. The Random Sample Consensus
(RANSAC) algorithm is usually chosen to reject the outliers [58]. After that, a dense point
cloud is obtained using a Dense Image Matching (DIM) algorithm. And finally, the dense
cloud is transformed into a mesh representation and the texture of the derived surface model
is applied to obtain a complete 3D map.

Faessler et al. [38] proposed a low-cost solution for the SLAM problem using a micro-
quadrotor. The solution developed features only two sensor units: one IMU and one monoc-
ular camera looking downward. Visual odometry is performed using the Semidirect Visual
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Odometry (SVO) algorithm introduced by Forster et al. [59]. Data fusion between IMU and
odometry is processed using the EKF-based multi-sensor fusion algorithm designed by Lynen
et al. [60]. From the images streamed by the quadrotor, a dense 3D map is constructed in real
time on the ground station using the Regularized Monocular Depth (REMODE) algorithm
previously developed in Pizzoli et al. [61]. This system has been shown to perform well both
in indoor and outdoor experiments.

Table 2.3 Sensing solutions

Pros Cons

GNSS Absolute positioning
in global frame.

Not available indoor.

RADAR
LIDAR

High range.
High accuracy

Expensive.
High computation cost.
Heavy and large.

Mono-Camera Low cost.
Low computation load

No depth information.

Stereo-Camera
RGB-D Cam.

Depth information Expensive.
High computation load.
Heavy and large.

IMU Low cost.
Gives absolute orientation
and relative position.
Fully self-contained

Need for global position.
Poor accuracy.
High-level noise.
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Table 2.4 Data fusion solutions

Pros Cons Reference

Linear CF Simple
implementation.

Hard to tune.
Does not handle
strong nonlinearities.

Zimmermann and
Sulzer [49]

EKF Simple design. Does not handle
strong nonlinearities.

Sabatini [51]

UKF & UKF Handle strong
nonlinerities.

Complex
implementation.
High computation
load.

Crassidis and
Markley [53]

Nonlinear CF Simple
implementation.

Hard to tune. Hamel and
Mahony [47]

Full SLAM Accurate dense
3D map.

Centralized remote
computation.

Faessler et al. [38]

Light SLAM Reduced computation
requirements.

No geometric map. Tomic et al. [48]

SFM Accurate dense
3D map.

Centralized remote
computation.

Verykokou et al.
[55]
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CHAPTER 3 MODEL & CONTROL

3.1 Model

3.1.1 System Description

A quadrotor, also called quadcopter, is a UAV lifted and propelled by four horizontal rotors
attached to a rigid cross airframe. Unlike helicopters whose main rotor axis can tilt to
generate the desired thrust, quadrotor’s control is achieved by differential control of the
thrust generated by each rotor. Pitch, roll and altitude controls are then straightforward to
understand. To ensure no resulting moment from rotors at hovering, rotor i rotates Clockwise
(CW) if i is odd and Counterclockwise (CCW) if i is even (Figure 3.1). Thus, yaw control is
managed by introducing a difference in the average speed of the two CW/CCW pairs of rotors.
Note that the system is underactuated because only three rotations and one translation are
actuated, leaving two remaining Degrees of Freedom, namely the translational motion in the
horizontal plane.

F1

F2

F3

F4

$4

$3
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φ

θ

Figure 3.1 Quadrotor & body frame in “×” configuration

3.1.2 Frame of References

Let {o} denote the North-East-Down (NED) frame assumed inertial with unit vectors along
the axes denoted by {xo,yo, zo}. Let {b} be the body frame attached to the quadrotor
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gravity center with unit vectors {xb,yb, zb}. The transformation of the frame {o} into frame
{b} presented on Figure 3.2 can be described by a ZYX Euler rotation sequence given by :

1. A yaw rotation ψ ∈ [−π, π]
about the original z-axis.

2. A pitch rotation θ ∈ [−π
2 ,

π
2 ]

about the intermediate y-axis.

3. A roll rotation φ ∈ [−π, π]
about the transformed x-axis.

zb

x2,b

yb

θ

φ

ψ

xo

yo

zo,1

y1,2

z2

x1

Figure 3.2 Euler angles & reference frames

Then the orientation of the body frame {b} with respect to frame {o} is given by the rotation
matrix Ro

b ∈ SO(3) such that we have Ro
b =

[
xo

b yo
b zo

b

]
. From the ZY X Euler angles

sequence, we can compute

Ro
b =


cos θ cosψ − cosφ sinψ + sinφ sin θ cosψ sinφ sinψ + cosφ sin θ cosψ
cos θ sinψ cosφ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ
− sin θ sinφ cos θ cosφ cos θ

 . (3.1)

Alternatively, if Ro
b[3, 1] 6= ±1, we have

ψ = atan2 (Ro
b[2, 1],Ro

b[1, 1]) , θ = − arcsin (Ro
b[3, 2]) , φ = atan2 (Ro

b[3, 2],Ro
b[3, 3]) . (3.2)

And for Ro
b[3, 1] = ±1 (i.e. in case of gimbal lock), we can define

ψ = atan2 (−Ro
b[3, 1]Ro

b[1, 2],−Ro
b[3, 1]Ro

b[1, 3]) , θ = −Ro
b[3, 1]π2 , φ = 0. (3.3)

3.1.3 Rigid Body Dynamics

The rigid body equations of motion of the airframe [62] are given by :

ṙ = v, (3.4)

mv̇ = mgzo + Ro
bF, (3.5)

Ṙo
b = Ro

b

[
ωb/o×

]
, (3.6)

Jω̇b/o = −ωb/o × Jωb/o + M, (3.7)
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where r ∈ R3 is the position vector of the quadrotor in frame {o}, v ∈ R3 is the linear
velocity in frame {o} with respect to {o}, ωb/o ∈ R3 is the angular velocity in frame {b}
with respect to {o}. The constants g, m and J ∈ R3×3 are respectively gravity acceleration,
quadrotor mass and inertia matrix. The vectors F ∈ R3 and M ∈ R3 here expressed in
frame {b}, are respectively non-conservative forces and moments applied on the quadrotor,
so essentially thrust and turning torque from rotors.

The notation [a×] denotes the skew-symmetric matrix, such that [a×] b = a×b for the vector
cross product × and any vector a,b ∈ R3. To be more specific, for ωb/o =

[
ω1 ω2 ω3

]>
,

the related skew-symmetric matrix is

[ω×] =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (3.8)

3.1.4 Dominant Aerodynamics

We will only provide here a simple model for aerodynamics involved in quadrotors to get a
basic understanding of how it works. There are many aerodynamic phenomena (e.g., blade
flapping [63]) associated with any rotorcraft that will not be discussed here because assumed
to be negligible under normal operation of the quadrotor.

The force F on the quadrotor is the sum of thrusts developed by the four rotors

F =
4∑
i=1

Fi, (3.9)

where Fi = −kT$2
i zb with kT the blades’ bearing parameter and $i the rotor i angular

rate. The moment M on the airframe is the sum of a moment P ∈ R3 induced by the
force discussed above, a moment Q ∈ R3 induced by the rotation of rotors and a gyroscopic
moment G ∈ R3 resulting from the rotations of the frame and the rotors

M = P + Q + G, (3.10)

with P =
4∑
i=1

ri × Fi, Q =
4∑
i=1

(−1)i+1τ i, G =
4∑
i=1

(−1)iσi × ωb/o, (3.11)

where ri ∈ R3 is the vector from gravity center to rotor i, τ i = (kD$2
i + Jm$̇i)zb and

σi = Jm$izb with kD the drag parameter of blades and Jm the inertial momentum of rotors.
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3.1.5 Control Inputs Decoupling

Since the motor dynamics are fast with respect to the rigid body dynamics and aerodynamics,
we will assume that rotor speeds can be instantly achieved and will be considered as the true
control inputs of the system. This also implies that the inertial momentum of rotors has to
be negligible (i.e., Jm ≈ 0 kg m2). Assuming that all four rotors are at same distance d from
the gravity center, then, considering an “×” configuration (Figure 3.1) we obtain

r1 = d√
2

(xb + yb), r2 = d√
2

(xb − yb), r3 = d√
2

(−xb − yb), r4 = d√
2

(−xb + yb). (3.12)

The expression of F and M in body frame are then:

F =


0
0
−T


b

=


0
0

−kT ($2
1 +$2

2 +$2
3 +$2

4)


b

, (3.13)

M =


Mx

My

Mz


b

=


dkT√

2
(−$2

1 +$2
2 +$2

3 −$2
4)

dkT√
2

($2
1 +$2

2 −$2
3 −$2

4)

kD ($2
1 −$2

2 +$2
3 −$2

4)



b

. (3.14)

Let $ =
[
$2

1 $2
2 $2

3 $2
4

]>
be the real control input vector and ũ =

[
T Mx My Mz

]>
be the substitute decoupled control input vector. Then, we define the invertible matrix T

ũ = T$. (3.15)

such that

T =



−kT −kT −kT −kT
−dkT√

2
dkT√

2
dkT√

2
−dkT√

2
dkT√

2
dkT√

2
−dkT√

2
−dkT√

2
kD −kD kD −kD


and T−1 =



− 1
4kT

−
√

2
4dkT

√
2

4dkT
1

4kD
− 1

4kT

√
2

4dkT

√
2

4dkT
− 1

4kD
− 1

4kT

√
2

4dkT
−
√

2
4dkT

1
4kD

− 1
4kT

−
√

2
4dkT

−
√

2
4dkT

− 1
4kD


.

That way, we can easily obtain the $ that generates the desired T and M

$ = T−1ũ. (3.16)
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3.2 Control

3.2.1 Architecture

As observed in the literature and depicted in Figure 3.3, the controllers discussed in the
following sections consist of two nested control loops. The inner-loop will ensure the control
of the quadrotor’s orientation: this is the attitude controller. The outer-loop will compute
orientation reference inputs for the attitude controller to track velocity or position references.
Such a control architecture can be applied to quadrotors because their rotational dynamics
is assumed to be much faster than their translational dynamics. This is especially true in
our application because we do not target aggressive behavior, but rather smooth motion.
While the attitude controller will not be discussed in the following, several control laws (i.e.,
several flight modes) will be developed for the translational dynamics to generate different
behaviors useful for formation control. Note that the simulations in this section are run in
MATLAB Simulink 2019b.

3.2.2 Design Model

Low-level control of quadrotors is not the main interest of this work. Therefore, the quadro-
tor’s rotational dynamics will be assumed fully and perfectly stabilized and controlled by an
existing attitude controller. Note that this inner control loop can be implemented using sim-
ple linear controllers such as a Proportional-Derivative (PD) [64] or more specific non-linear
controllers [65]. As a result, the control input considered for translational control will be the
resultant thrust force in frame {o}.

r̄

v̄

T

Mū θ̄, φ̄

ψ̄

$

r v ψ, θ, φ ωb/o

Translation
Control

Attitude
Control

T−1

Figure 3.3 Control architecture
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Under these assumptions, the quadrotor dynamics consist in three decoupled double integra-
tors such that 3.4 and 3.5 simply become

ṙ = v, (3.17)

v̇ = u, (3.18)

with

r =
[
rx ry rz

]>
, v =

[
vx vy vz

]>
, u =

[
ux uy uz

]>
= gzo + 1

m
Ro

bF, (3.19)

where u is the control input vector of the translational subsystem to be controlled. Note that
the state vector is assumed fully known at any time such that no output vector or function
needs to be defined.

For completeness and practical implementation purposes, the relation between u the control
inputs of the outer-loop and

[
θ φ T

]>
the reference inputs of the inner-loop is presented.

Making small angles approximation for φ and θ and for any value of ψ, it can be obtain that


ux = −g (cos(ψ)θ + sin(ψ)φ) ,

uy = −g (sin(ψ)θ − g cos(ψ)φ) ,

uz = g − 1
m
T,

⇔



θ = −1
g

(cos(ψ)ux + sin(ψ)uy) ,

φ = −1
g

(sin(ψ)ux − cos(ψ)uy) ,

T = m(g − uz).

(3.20)

It worth pointing out that the dynamics along the three different directions are fully decoupled
and strictly identical. Therefore, only one direction will be considered from now on. Then,
the following discrete-time model can be derived from 3.17 and 3.18 using the ZOH method

r(k + 1) = r(k) + Tsv(k) + T 2
s

2 u(k), (3.21)

v(k + 1) = v(k) + Tsu(k), (3.22)

where Ts is the controller sampling time and |u(k)| < umax is the saturated control input
that accounts for the small angles approximation and the actuator limitations (i.e., maximal
roll/pitch angles and maximal thrust). Note that the effects of quantization that occurs in
digital control are ignored. This assumption holds as long as the values of the states r and v
and the control input u remain in a certain interval and the Analog-Digital Converter (ADC)
has sufficient resolution. In practice, this is verified because the r, v and u are respectively
limited by battery life, aerodynamic performance and actuator physics.
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3.2.3 Velocity Control

Synthesis

The goal of the velocity control law is to bring the error ev(k) = v(k) − v̄(k) to zero where
v̄ is the desired velocity. In order to account for disturbances and model uncertainties, we
introduce xIv the integral of the error ev. Then, we propose the unbounded control law:

u∞(k) = −KIvxIv(k)−KPvv(k) +KFvv̄(k), (3.23)

with KIv, KPv and KFv, respectively the integral, the proportional and the feed forward
gains. Figure 3.4 displays the block diagram of the velocity control.

−
v̄ ev

v

+

+
−
+

+

+

−

u

xIv
+
+

KIv

KPv

KWv

z−1

+

KFv

u∞

Figure 3.4 Velocity control block diagram

Therefore, we obtain the following closed-loop dynamics

xIv(k + 1) = xIv(k) + v(k)− v̄(k) +KWv [u∞(k)− u(k)] , (3.24)

v(k + 1) = −TsKIvxI(v)(k) + (1− TsKPv)v(k) + TsKFvv̄(k), (3.25)
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where u = sat(u∞) and sat(·) is a symmetric saturation function defined as

sat(a) =


−usat, if a ≤ −usat,

a, if − usat < a < usat,

usat, if usat ≤ a,

(3.26)

with 0 < usat < umax, a tuning parameter to set maximal acceleration of agents. The term
in KWv is introduced to prevent the wind-up of the error integral xIv in case of control input
saturation. Nevertheless, the controller will first be synthesized for the nominal case with no
saturation (i.e., u(k) − sat (u(k)) = 0) and the anti wind-up gain KWv will be tuned later
through simulations. Thus, the closed-loop nominal transfer function in Z plane is

v(z)
v̄(z) =

TsKFv

(
z −

(
1− KIv

KFv

))
z2 + (TsKPv − 2) z + (TsKIv − TsKPv + 1) . (3.27)

Then, KIv and KPv are chosen such that the closed loop system has two real poles 0 < pv,1 ≤
pv,2 < 1 and KFv is adjusted such that the zero of the transfer function compensates the
slowest pole pv,2:

KPv = 2− pv,1 − pv,2
Ts

, KIv = KPv + pv,1pv,2 − 1
Ts

, KFv = KIv

1− pv,2
. (3.28)

Tuning

Given a maximal expected reference input step v̄max, we want to choose the poles pv,1 and pv,2
such that the the response time is minimized and the control input remains below usat. For
Ts = 0.10 s, usat = 3.4 m s−2 and vmax = 0.50 m s−1, simulations have shown that pv,1 = 0.30
and pv,2 = 0.80 lead to acceptable time responses. Figure 3.5 shows a settling time of 0.3 s
and no overshoot. While pv,1 sets the closed-loop response time, pv,2 can be set to a bigger
value to moderate the obtained control gains. Then KWv is adjusted so that no significant
overshoot is observed for a reference input step ten times bigger than v̄max as displayed on
Figure 3.6. The corresponding gains are

KPv = 9.0 s−1, KIv = 1.4 s−1, KFv = 7.0 s−1, KWv = 0.5 s.
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Figure 3.5 Maximal velocity step response without saturation
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Figure 3.6 Excessive velocity step response with saturation

3.2.4 Position Control

Synthesis

Position control is about bringing the error er(k) = r(k)− r̄(k) to zero where r̄ is the desired
position. We denote xIr the integral of the error er and propose the unbounded control law

u∞(k) = −KIrxIr(k)−KPrr(k)−KDrv(k) +KFrr̄(k), (3.29)

with KIr, KPr, KDr and KFr, respectively the integral, the proportional, the derivative and
the feed forward gains. Figure 3.7 shows the block diagram of the position control.
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Figure 3.7 Position control block diagram

Thus, the closed-loop system dynamics follows

xIr(k + 1) = xIr(k) + r(k)− r̄(k) +KWr [u∞(k)− u(k)] , (3.30)

r(k + 1) = −T
2
s

2 KIrxIr(k) +
(

1− T 2
s

2 KPr

)
r(k) +

(
Ts −

T 2
s

2 KDr

)
v(k) + T 2

s

2 KFrr̄(k),

(3.31)

v(k + 1) = −TsKIrxIr(k)− TsKPrr(k) + (1− TsKDr)v(k) + TsKFrr̄(k), (3.32)

where KWr is the anti wind-up gain of the position controller. Therefore, the closed-loop
nominal (i.e., without saturation) transfer function in Z plane is

r(z)
r̄(z) = T 2

sKFr

2
(z + 1) (z − br,0)

z3 + ar,2z2 + ar,1z + ar,0
, (3.33)

where

ar,2 = T 2
s

2 KPr + TsKDr − 3, ar,0 = T 2
s

2 (KIr −KPr) + TsKDr − 1, (3.34)

ar,1 = T 2
s

2 KIr − 2TsKDr + 3, br,0 = 1− KIr

KFr

. (3.35)
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Then, KIr, KPr and KDr are chosen such that the closed loop system has two conjugate
poles pr,1/2 and one real pole pr,3. KFv is adjusted such that the zero of the transfer function
compensates the real pole pr,3:

KDr = ār,0 − ār,1 + ār,2 + 7
4Ts

, KIr = 2
Ts2 (ār,1 + 2TsKDr − 3) , (3.36)

KPr = 2
Ts2 (ār,2 − TsKDr + 3) , KFr = KIr

1− b̄r,0
, (3.37)

where

ār,2 = − (p1,r + p2,r + p3,r) , ār,1 = pr,1pr,2 + pr,2pr,3 + pr,3pr,1, (3.38)

ār,0 = −pr,1pr,2pr,3, b̄r,0 = pr,3. (3.39)

Tuning

Given a maximal expected reference input step r̄max, we want to choose the poles pr,1/2 and
pr,3 such that the the response time is minimized and the control input remains below usat.
Instead of directly choosing pole values, let us introduce two tuning parameters : 0 < ωr <

2π
Ts

and 0 < ξr < 1 such that

pr,1 = eTssr , pr,2 = p∗r,1, pr,3 = |pr,1|, sr = −ωr
(
ξr + j

√
1− ξ2

r

)
. (3.40)

For Ts = 0.1 s, usat = 2.6 m s−2 and r̄max = 50.0 m, simulations have shown that ωr = 0.23
and ξr = 0.71 lead to acceptable time responses. Figure 3.8 shows a settling time of 13 s and
an overshoot below 5%. Then KWr is adjusted so that no significant overshoot is observed
on Figure 3.9 for a reference input step ten times bigger than r̄max. The gains used are

KPr = 0.10 s−2, KIr = 0.00084 s−2, KDr = 0.48 s−1, KFr = 0.052 s−2, KWr = 50 s2.
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Figure 3.8 Maximal position step response without saturation
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Figure 3.9 Excessive position step response with saturation

3.2.5 Tracker Control

Synthesis

The objective of tracker control law is to enable some sort of following behavior where the
controlled agent follows another agent while maintaining a static offset. This is achieved
if the controller manages to bring the errors er(k) = r(k) − r̄(k) and ev(k) = v(k) − v̄(k)
to zero where r̄ and v̄(k) are respectively the offset position and the velocity of a targeted
moving agent with control input ū(k). For design purposes, we assume that agents can
communicate their state and control input to others without any delay (i.e., r̄(k), v̄(k) and
ū(k) are available for the controller at epoch k). Nevertheless, further simulations will assess
the effect of communication delays on control performance. Once again, we introduce xIt the
integral of the error er. Then, we propose the unbounded control law

u∞(k) = −KItxIt(k)−KPter(k)−KDtev(k) + ū(k), (3.41)

with KIr, KPr and KDr, respectively the integral, the proportional and the derivative gains.
Figure 3.10 presents the block diagram of the tracker control.



39

− +
r̄

r

v

er

v̄

ū
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Figure 3.10 Tracker control block diagram

Then, the closed-loop error dynamics is

xIt(k + 1) = xIt(k) + er(k) +KWt

[
u∞(k)− u(k)

]
, (3.42)

er(k + 1) = −T
2
s

2 KItxIt(k) +
(

1− T 2
s

2 KPt

)
er(k) +

(
Ts −

T 2
s

2 KDt

)
ev(k), (3.43)

ev(k + 1) = −TsKItxIt(k)− TsKPter(k) + (1− TsKDt) ev(k), (3.44)

where KWt is the anti wind-up gain of the target controller. Note that this dynamic is
identical to the one for position control. Then, the gains that place the two conjugate poles
pt,1/2 and one real pole pt,3 are obtained just like the ones of position controller.
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Figure 3.11 Maximal initial position error response without saturation
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Tuning

Given a maximal expected initial position error er(0) = er,max and no velocity initial error
ev(0) = 0 m s−1, we want to choose the poles pt,1/2 and pt,3 such that the response time is
minimized and the control input remains below 3usat. Here, we want to take advantage of
saturation to avoid any major undershoot. Poles are chosen using the method described for
position control. For Ts = 0.1 s, usat = 3.4 m s−2 and er,max = 2.5 m, simulations have shown
that ωt = 1.5 and ξr = 0.71 lead to an acceptable time response. Figure 3.11 shows the
time response of the system without saturation and we can measure a settling time of 5 s
and a massive undershoot of 30 %. Then KWt is adjusted so that no significant undershoot
is observed on Figure 3.12 for an initial position error ten times bigger than er,max. Finally,
Figure 3.13 displays the time response of the system for an initial position error equal to
er,max and we can observe a settling time of 3 s with no undershoot. The corresponding gains
are

KPt = 4.1 s−2, KIt = 0.20 s−2, KDt = 2.9 s−1, KWt = 5 s2.

In addition, Figure 3.14 shows the tracking error time response when the target of the tracker
controller is an agent with position controller and reference input step r̄max = 50.0 m for a
maximal expected communication delay τmax = 0.3 s. Under this conditions, the tracking
error position remains below 1.6 m.
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Figure 3.12 Excessive initial position error response with saturation

3.2.6 Velocity Limiter

Synthesis

In cases where the controller does not explicitly set the velocity of the agent (i.e., position
and tracker control), we want to dynamically limit the velocity of the agent and even stop
the agent (i.e., limit set to zero). Such velocity limiter will notably come in handy in Sub-
section 4.3.1. Hence, the goal of the velocity limiter is to ensure |v(k)| < v̄lim(k) where
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Figure 3.13 Maximal initial position error response with saturation
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Figure 3.14 Tracking error response
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Figure 3.15 Velocity limit steps response without noise
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v̄lim(k) > 0 is the velocity limit reference input. The velocity limiter is designed to be added
in the controller just before saturation. As such, it takes u∞, v and v̄lim as inputs and gen-
erates ulim, the u∞ substitute that enforce velocity limitation and finally u(k) = sat(ulim).
The switching unbounded control law ulim is defined as follows

ulim(k) =


min(u∞(k), u+(k)), if v̄lim(k) > εlim and v(k) > 0,

max(u∞(k), u−(k)), if v̄lim(k) > εlim and v(k) ≤ 0,

u∼(k), if v̄lim(k) ≤ εlim,

(3.45)

with

u+(k) = −Klim (v(k)− v̄lim(k)) , u−(k) = −Klim (v(k) + v̄lim(k)) , u∼(k) = −Klimv(k),

where 0 < Klim <
2
Ts

and 0 < εlim are two tuning parameters. Klim influences the dynamics
of the velocity limiter (i.e., fast dynamics for big values of Klim). εlim is introduced to avoid
the chattering effect typical of switching control laws. Let assume that we do not take this
precaution (i.e., εlim = 0) and the estimate/measurement of v manifests some error/noise.
Then for vlim = 0 and u∞ > 0 (alternatively, u∞ < 0), when v finally reach vlim, the
error/noise prevents v from being exactly zero. Thus, ulim will constantly switch between
u∞ and u+ (respectively, u−) : that is the chattering effect.
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Figure 3.16 Velocity limit steps response with chattering

Tuning

Let us assume that v is free of any error. We want to choose Klim such that the velocity
limiter exhibits the fastest dynamics while the control input ulim remains below usat for
a velocity limit step v̄lim,max. For Ts = 0.1 s, usat = 2.6 m s−2 and v̄lim,max = 1.00 m/s,
simulations have shown that Klim = 2.50 s−1 leads to acceptable time responses. Figure 3.15
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displays the response of an agent using the position controller augmented by the velocity
limiter. At t = 0 s, the position controller experience a position reference input step of 100 m
while the velocity limit reference input (i.e. the dashed line) is set to 3 m/s. At t = 10 s,
the velocity limit steps to 2 m/s (i.e., v̄lim,max below). Then, at t = 30 s, the velocity limiter
is released (i.e., set to a high value) so that the position controller operates freely and r

finally reaches 100 m. Note that the control input peak observed at t = 10 s for a velocity
limit reference step v̄lim,max remains below usat. Now, let us assume that v manifests some
estimation errors such that v is the sum of the true velocity value and a discrete-time zero-
mean Gaussian noise of sampling time Ts and variance σ2

n. Then, taking εlim = 3σ allows us
to globally avoid the chattering effect as the switching control will be theoretically triggered
by estimation error only 3 times every 1000 periods. To illustrate this, Figure 3.16 and
Figure 3.17 show the response of an agent using the position controller augmented by the
velocity limiter for Ts = 0.1 s, usat = 2.6 m s−2 and σn = 0.1 m/s. In the simulations, the
same noise has also been added to the position estimate. At t = 0 s, the position controller
experiences a position reference input step of 100 m. At t = 1 s, the velocity limit reference
input is set to zero and released a dozen of seconds later. On the one hand, Figure 3.16
exhibits control input chattering when no action is taken to avoid it. On the other hand,
Figure 3.17 displays the system response when εlim = 3σn. On the latter, we can still see
some strong oscillation of the control input when the velocity limiter stops the agent (i.e.,
between t = 5 s and t = 15 s). This is simply the noise on v amplified by gain Klim. Note
that 0.1 m/s is a big variance for velocity estimation error in steady-state, this accounts for
a worst case scenario.
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Figure 3.17 Velocity limit steps response without chattering
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CHAPTER 4 OUTDOOR SWARMING

4.1 Introduction

Swarm control has recently become a popular topic in the research community. As such,
numerous formation control solutions have been proposed. The most common strategy found
in the literature is the leader-follower formation which provides an intuitive way to deal
with swarm control. Namely, agents in the swarm (i.e. the followers) try to maintain a
certain position (i.e., an offset) with respect to an identified agent (i.e., the leader) while
the latter moves. However, most of the reviewed work assumes that the followers know their
corresponding positions in the formation and does not address how the agents are assigned
their respective offsets (e.g., [25], [13] and [66]). This implies manual initialization procedures
and limits the autonomy of the solution. With this in mind, we decided to develop a complete
solution that not only handles formation maintenance, but also formation initialization where
positions in formation are assigned to agents.

This chapter first presents the problem setting based on the material under development at
Humanitas Solutions. Then, a position assignment algorithm and a formation control method
are combined to produce an original swarming solution for outdoor environments. Finally,
SITL simulations are performed to evaluate the solution performance.

4.2 Problem Setting

As mentioned above, this swarming algorithm has to be integrated into the preexisting solu-
tion developed by Humanitas Solutions and tested in their proprietary simulator. Therefore,
some parameters specific of the system design have to be introduced.

The dynamics of quadrotors and embedded attitude controller match the assumptions made
in Chapter 3 so that the controllers previously developed can be successfully implemented.
Both the translation control and the swarming algorithm are constrained by design to run in
the same thread with sampling time Ts. Also, let dc and dr denote respectively the collision-
free distance and the reference neighbors distance so that dq < dc < dr, where dq is the
quadrotors’ total diameter. In practice, we sets dc ≈ 3dq and dr ≈ 3dc.

Communications between agents in the swarm are handled by Heterogeneous Embedded Ad
hoc Virtual Emergency Network (HEAVEN), a distributed networking solution developed
by Humanitas Solutions. HEAVEN provides multi-hop capability that allows information ex-
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change between all agents, as long as the swarm communication graph is connected. Two
agents are said to be neighbors in the communication graph (i.e., single hop) if the physical
distance between them remains below the communication range dcom. The communication
delay τi,j between agent i and j is proportional to the topological distance between them
dist(i, j) (i.e., number of hops). Hence, we have τi,j = dist(i, j)τcom where τcom is the delay
for single-hop communication. In practice, we observed that τcom ≤ 3Ts. This delay is gen-
erated by onboard processes. Actually, the single-hop round-trip-time of HEAVEN has been
measured to be around a millisecond. More details on graph theory are given in Section 5.2.5.

As for leader control, we consider a simple path following mission where the leader is required
to visit a certain sequence of way-points (i.e., a path). If the given path is a trip home (i.e.,
last way-point corresponds to the take-off position), then followers also return at their take-off
position (also called home). Indeed, Humanitas Solutions’s embedded mission manager makes
agents go straight back home when idle, regardless of collisions. Therefore, our solution has
to work out a collision-free way back home before handing the agent control back to the
mission manager. That said, we only focus on the swarming solution developed here and
only round-trip path (i.e., starting and ending at home) are to be tested.

4.3 Swarming Algorithm

4.3.1 Workflow

Overview

In the initial state, N agents are hovering at their respective home with the same altitude,
the user has sent the mission and selected the leader. The agent with index i = N is defined
as leader and the other N − 1 agents as followers. Then, the swarming algorithm, outlined
in Figure 4.2, for both leader and followers starts. After a short initialization sequence, the
leader waits until all followers have reached their auto-assigned position in formation. After
that, the leader starts moving along a given path using the position control of Section 3.2.4
while followers maintain their offset with respect to the leader using the tracker control of
Section 3.2.5. The leader monitors followers’ states (i.e., current algorithm sequence) and
position, and waits for them when necessary. Then, when all way-points of the given leader’s
path have been visited (i.e., the leader is back home), the followers go back to their respective
homes.
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Communication

For the entire duration of the swarming task, all agents broadcast a standardized message
every Ts. Those messages help to maintain a local view of the swarm in the form of an
unordered map swarmMap with the followings fields :

• agentId : Agent’s unique HEAVEN address and key of the map;

• swarmId : Swarm’s unique identifier to allow simultaneous swarms operation;

• timeStamp : Time of the last update of the entry;

• taskState : Current algorithm state {INIT; FORM, FLOW, LEAD, STOP};

• px, py, pz : Agent GPS position (latitude, longitude, relative altitude);

• vx, vy, vz : Agent velocity in NED frame;

• ux, uy, uz : Agent acceleration control input in NED frame.

If an entry has not been updated for more than Tmsg, then the entry is removed from the
map in order to keep the map accurate.

Leader/Init.

Target initial
position

Set state to
LEAD

Record initial
position

Wait for
other agents

Leader/End

Set state to
STOP

Wait agents
to notice

[STOP detected]

[timed out]

Follower/Init.

Wait for
stable swarm

Wait for
leader

Set state to
INIT

Target initial
position

Follower/Follow

Set state to
FLOW

Follow until
no LEAD

Start tracker
control

Figure 4.1 Activities (part. 1)
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Follower

[LEAD detected]

[timed out]

Initialize

Form

Follow

End

[else]

[STOP detected]

Leader

[agents detected]

[timed out]

Initialize

Handle
formation

Handle
follower delay

Follow
path

End

[no waypoints left]

[else]

Figure 4.2 Main activity diagram



48

Initialization Sequence

Figure 4.1 shows initialization sequence details for both leader and followers. Here, the leader
sets his state to LEAD, records and maintains his initial position (i.e., home) and waits to
receive a message from another agent with the same swarm_id. If no other agent has been
detected after a time Tled, the leader aborts the swarming mission. As for the followers, they
set their state to INIT, record and maintain their initial position, then wait for the swarm
composition to stabilize. In practice, the swarm is said to be stable if no agent has been
added or removed from the local map of the swarm for a time Tini. If no leader (i.e., an
agent with state = LEAD) has been detected after a time Tfol, the followers launch the stop
sequence. If a leader is detected, the followers record the agentId of the leader.

Leader/Follow path

Start position
control

Check target
distance

Target next
waypoint

Check
waypoint

[arrived on target]
[else]

Follower/Form

Set state to
FORM

Assign target
offset

Start APF
navigation

Check target
distance

[else]

[arrived on target]

Follower/End

Target
home position

Set state to
STOP

Start APF
navigation

Move until
arrived

[near home]
[else]

Figure 4.3 Activities (part. 2)
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Formation Sequence

Once the leader has been initialized, it stands still until all followers are ready to follow
(i.e., at assigned positions in formation). In the meantime, followers execute the formation
sequence displayed in Figure 4.1. They set their state to FORM and use the APF navigation
algorithm detailed in 4.3.3 to reach their formation offset while avoiding other agents. Every
Ts, they update their assigned offset using a distributed algorithm explained in 4.3.2. Thus,
the offset is continuously updated to handle possible inaccuracies in the local swarm map.

Leader/Handle delay

Check agents
distance

Stop moving

Wait agents
to catch up

Block agents
not in place

[else]
[all in place]

[all in place]

[timed out]

Leader/Handle formation

Check agents
state

Stop moving

Wait agents
to follow

Block agents
not FLOW

[else]
[all FLOW]

[all FLOW]

[timed out]

Figure 4.4 Activities (part. 3)
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Navigation Sequence

When the followers finally arrive at the assigned offsets, they set their state to FLOW and use
the tracker control to maintain their offset with respect to the leader, as shown in Figure 4.3.
As long as all followers are actually following, the leader moves along the path just as de-
scribed in Figure 4.1. However, if followers are unable to accurately maintain their offset or if
they happen to change their state, Figure 4.4 shows that the leader stop (i.e., velocity limiter
set to zero) and wait for the followers to catch-up. To be more precise, the leader wait Tdel
for followers to catch-up and Tfor for followers to switch to state FLOW. The followers that
still do not meet the leader’s requirements after these times are ignored for the rest of the
mission.

In practice, the “all in place” condition is implemented as ‖∆W‖ < ∆W,th where ∆W inte-
grates the variations of the barycenter of the swarm with respect to the leader. Specifically,
we define

∆W(k + 1) = ∆W(k) + εW(k + 1)− εW(k)
2 , (4.1)

with
εW(k) = 1

|W|
∑
i∈W

ri(k)− rN(k), (4.2)

where W is the set of agents with state FLOW at period k. It has been found in simulation
that an appropriate threshold value is ∆W,th = dr

2 .

Stop Sequence

Once the leader has visited all way-points along the path, the leader runs the stop sequence
described in Figure 4.3. It sets his state to STOP and waits Tend for the followers to set their
states to STOP as well. Then, the leader task is completed and the control is handed back to
the mission manager. As soon as a follower does not detect any LEAD and at least one STOP,
it executes the stop sequence presented in Figure 4.1. It sets its state to STOP and uses the
APF navigation algorithm to go back home while avoiding other agents. Once arrived at
home, the follower task is completed and the mission manager takes over.
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4.3.2 Position Assignment

Formation Pattern

Before investigating how to assign positions in formation to each follower, one has to choose
a set of offsets (i.e., positions with respect to the leader) to be assigned. Recall that only
formations in the horizontal plane are considered here.

We define the formation undirected simple graph Gh(h) = (Vh, Eh) where the parameter
h =

[
h>0 h>1 h>2 . . . h>M

]>
∈ R2×M+1 is the set of all M ≥ N − 1 offsets to be assigned

and the leader position h0. Without lack of generality, we set h>0 = [0, 0]. This graph is
unrelated to the communication graph or even the position of the agents. It depends only
on the size of the swarm N and relies essentially on geometric considerations. Indeed, the
edges set Eh gathers all couples of nodes in Vh (i.e., offsets to be assigned) that have adjacent
Voronoi cells. The Voronoi cell associated to a given node is the region consisting of all points
closer to that node than to any other. In our application, closeness of points is evaluated
using the Euclidean distance. Figure 4.5 represents the Voronoi cells (dotted lines) of a given
sets of nodes (bold point) and the resulting edges (solid lines).

Node Link Voronoi cell

Figure 4.5 Voronoi diagram
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As a first criterion, we want to find a formation pattern such that all nodes i ∈ Vh are at
the same distance dr from all their neighbors j ∈ Nh,i. This is true if the formation graph
Gh fits a regular tessellation in two dimensions (i.e., graph nodes are located at the corners
of the tiles). Indeed, a regular tessellation in two dimensions is the tiling of a plane using
identical regular polygons with no overlaps and no gaps. As displayed in Figure 4.6, there are
only three polygons that can form such regular tessellations: the equilateral triangle, square,
and regular hexagon. As a second criterion, we want to maximize the compactness of the
formation. In other terms, we want to maximize the degree of each node (i.e., the number of
neighbors) . Therefore, we chose the equilateral triangle, which implies a maximal degree of
6, whereas the square and the regular hexagon give maximal degrees of 4 and 3, respectively.
For the same reason, we set the formation contour to a regular hexagon, which enforces a
minimal degree of 3.

(a) (b) (c)
Figure 4.6 (a) Triangular (b) Square (c) Hexagonal regular tessellations with Voronoi cells

Note that on Figure 4.6 the Voronoi diagram (dotted lines) associated with such a formation
graph draws an hexagonal grid. Specifically, all cells are regular hexagons with side length
equals to 1

2dr. Then, the formation can be efficiently described using a hexagonal coordinate
system. We introduce an implementation of the axial coordinate system, based on the work
presented in [67]. Let {h} denote the hexagonal axial frame attached to the leader gravity
center with axis {xh,yh} defined as


xh = drRαxo,

yh = dr
2 Rα

(
xo +

√
3yo

)
,

with Rα =
cosα − sinα

sinα cosα

 , (4.3)

where xo and yo are respectively the North and East vectors of the NED frame and α is the
yaw angle of the formation.



53

Then, for any r ∈ R2, we can switch between its hexagonal coordinates rh in frame {h} and
its Cartesian coordinates ro in frame {o} using

ro = To
hrh, rh = Th

oro, (4.4)

where

To
h = dr

cosα cos
(
α + π

3

)
sinα sin

(
α + π

3

) , Th
o = 2√

3dr

sin
(
α + π

3

)
− cos

(
α + π

3

)
− sinα cosα

 . (4.5)

Using this coordinate system, we have hh
i ∈ Z2 for all nodes i in Vh. Figure 4.7 shows a

hexagonal grid with unit cell coordinates and both reference frames.

0;0
-1;0

1;0

-2;0

2;0

1;-1
0;-1

2;-1

-1;-1

3;-1

2;-2
3;-2

2;-3
3;-3

-1;2
-2;2

0;2

-3;2

1;2
2;2

0;1
-1;1

1;1

-2;1

2;1

-3;1

-1;3
-2;3

-3;3

xh α

yh
yo

xo

Figure 4.7 Hexagonal coordinate system
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The defined hexagonal frame {h} also provides a fast way to determine the topological dis-
tance dist(i, j) between two nodes i, j ∈ Vh such that

dist(i, j) = 1
2
(∣∣∣(hj − hi)> x̃h

∣∣∣+ ∣∣∣(hj − hi)> ỹh

∣∣∣+ ∣∣∣(hj − hi)> (x̃h + ỹh)
∣∣∣) , (4.6)

where x̃h and ỹh are the dual basis of xh and yh defined by

x̃h = Syh

x>h Syh
, ỹh = −Sxh

x>h Syh
, with S =

 0 1
−1 0

 . (4.7)

In particular, we define the radius ρi ∈ N+ of nodes hi as the distance to the leader’s node 0
so that ρi = dist(i, 0).

As a third criterion, we want to minimize the sum of distances of nodes 0 < i ≤ M toward
the leader node ∑M

i=1 ‖hi‖. This aims to limit the communication delay between the followers
and the leader. This last criterion is trivially satisfied when the formation is centered on the
leader as shown in Figure 4.8. Thus, knowing the size of the swarm N , we can compute the
maximal radius ρmax for all nodes in Vh with

ρmax =

√

1
4 + N − 1

3 − 1
2

 , (4.8)

where d·e is the ceiling function that returns the least integer greater than or equal to its
argument. Taking all nodes i with ρi ≤ ρmax, we obtain a first set of Mmax offsets that
completely fill the hexagonal formation contour where

Mmax = 3ρmax (ρmax + 1) . (4.9)

Then, we refine the formation by removing the nodes i that are the farthest from the leader
(i.e., biggest ‖hi‖) while ensuring M ≥ N . This is achieved by removing the nodes i with
radius ρi = ρmax that do not satisfy

κi ≥ χ, (4.10)

with

κi = min
(∣∣∣h>i x̃h

∣∣∣, ∣∣∣h>i ỹh

∣∣∣, ∣∣∣h>i (x̃h + ỹh)
∣∣∣) , χ =

⌊
Mmax −N + 7

12

⌋
, (4.11)

where b·c is the floor function that returns the greatest integer less than or equal to its
argument. Note that this enforces 0 ≤M −N + 1 ≤ 11.
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Note that κi equals 0 for nodes located at the corner of the hexagonal formation contour,
increases by 1 when moving away to the next nodes and reaches

⌊
ρmax

2

⌋
for nodes located at

the center of the edge. Therefore, the process described above removes unnecessary nodes,
starting by the ones closest to the corners, that are the farthest from the center of the
hexagonal formation contour (i.e., the leader node). Figure 4.8 illustrates a formation graph
obtained for N = 40 and a given assignment of the generated offset. The first Mmax = 60
cells have dashed lines, the M = 42 cells of the final formation graph have plain lines, the
leader’s cell is hatched and the cells assigned to an agent are identified by dots.

yh

xh

Leader cellMmax cell M cellAgent

Figure 4.8 Formation graph for N = 40
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Assignment Algorithm

Assuming we have a set of M formation offsets, we want to assign those to each N − 1
followers in the swarm in order to minimize the overall distance traveled by all followers
to reach their position in formation. This goal has two motivations. First, it minimizes
the time and energy required for the swarm to reach the assigned formation. Second, it
strongly limits collision hazards. Indeed, if the minimization goal is satisfied, then none of
the paths from followers’ initial positions to assigned positions intersect with each other.
This can be observed in Figure 4.9 where a given set of followers (dots) are linked (line) to
their assigned offsets (circles). Also, note that the minimization goal is expressed in terms of
relative measurements. Therefore, the algorithm is able to perform in a decentralized manner.
Discrepancies between several local assignment instances of different followers may arise if
two followers are at the exact same minimal distance from two positions in formation (i.e.,
they form a square where corners alternate between the actual positions and the assigned
positions). To avoid this issue, the followers are ordered alphabetically by agent_id before
proceeding to the assignment and the distances are rounded up to the nearest decimetre.

Moreover, note that M ≥ N − 1, which means some offsets may remain unassigned in the
end. This is commonly known as an unbalanced Linear Assignment Problem (LAP) because
the two sets to be matched have different sizes. But let us consider the balanced case first
where M = N − 1 and we will generalize to the unbalanced case later.

A brute force solution would be to consider every possible assignment. The latter implies a
time complexity of O (M !) and is obviously not an option unless M is really small. But back
in 1955, Harold Kuhn introduced in [68] a method that can solve LAP in polynomial time:
the Hungarian Method. This optimization algorithm was named after Dénes König and Jenö
Egerváry, two Hungarian mathematicians whose works largely inspired Harold Khun.

A mathematical statement of the problem follows. Let cij be the positive cost resulting
from the assignment of agent i to offset j (e.g., the distance between the actual position
and position in formation). Then, solving the LAP is equivalent to choosing a set of M
independent elements of the matrix C = (cij) such that the sum of these elements is minimum.
Here, a set of elements of a matrix are said to be independent if no two of them lie in the
same line where “line” means either “rows” or “columns”. Then, Khun invokes two results
that structure his algorithm. First, it is readily seen that if a number is added to all of the
elements of any line of a cost matrix, then a minimal-cost assignment for the resulting cost
matrix is also a minimal-cost assignment for the original cost matrix. Second, the König-
Egeváry theorem states: if C is a matrix, and k is the maximum number of independent zero
elements of C, then there are k lines which contain all the zero elements of C.
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From here, the Hungarian Method can be outlined as follows:

Step A Subtract from each row of C its smallest element.

Step B Subtract from each column of C its smallest element.

Step C Find a minimum set of k lines that contains all the zero elements.

Step D If the minimum number of covering lines k equals the matrix sizeM , then the König-
Egeváry theorem concludes that a minimal-cost assignment of zeros is possible and
we can proceed to Step F. Otherwise, proceed to Step E.

Step E Determine the smallest element not covered by any line. Subtract this element from
each uncovered row, and then add it to each covered column. Return to Step C.

Step F Select a matching by choosing a set of independent zeros so that each row or column
has only one selected. This matching has minimal cost and the LAP is solved.

A simple trick to handle unbalanced LAP with the very same algorithm is to add necessary
rows or columns to the original matrix in order to obtain a square matrix. The dummy lines
added are usually filled with zeros. Of course, this solution is not optimal in terms of time
complexity, especially if M � N . Nevertheless, it could be acceptable in our case because
from Section 4.3.2 we have 0 ≤M −N + 1 ≤ 11. Also note that if M > N − 1, Step B has
no effect and could be skipped.

In our particular case, we want to assign a set ofM offsets in formation hj ∈ R2 to the N −1
followers in the swarm. To simplify the notations in this section, ri ∈ R2 denotes the position
of follower i < N in the horizontal plane (i.e., the altitude is ignored by the assignment
algorithm). We introduce the rectangular cost matrix C̃ ∈ R(N−1)×M with coefficients c̃ij
such that

c̃ij = ‖hj − h0 + rN − ri‖+ γjρjdr, with γj =

1, if ρj = ρmax,

0, otherwise.
(4.12)

The term γjρjdr is introduced to penalize the offsets on the periphery of the formation.
Finally, the square cost matrix C ∈ RM×M is obtained by adding M −N + 1 dummy rows

cij =

c̃ij, if 1 ≤ i ≤ N − 1,

0, if N ≤ i ≤M.
(4.13)
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We now illustrate the Hungarian Method with a simple applied example. Consider the
unbalanced LAP with M = 5, N = 5 and a given square cost matrix where the last row is
obviously a dummy line:

C =



10 10 13 12 14
19 18 16 19 17
8 7 9 8 10
15 17 14 18 19
0 0 0 0 0


. (4.14)

1. We subtract the row minimum from
each row (Step A).



0 0 3 2 4
3 2 0 3 1
1 0 2 1 3
1 3 0 4 5
0 0 0 0 0


(4.15)

2. Because M > N − 1, subtracting col-
umn minima has no effect (Step B).



0 0 3 2 4
3 2 0 3 1
1 0 2 1 3
1 3 0 4 5
0 0 0 0 0


(4.16)

3. There are k = 4 lines (bold elements)
required to cover all zeros (Step C).
The number of lines is smaller than
M = 5 so we proceed to Step E.

0 0 3 2 4
3 2 0 3 1
1 0 2 1 3
1 3 0 4 5
0 0 0 0 0


(4.17)

4. The smallest uncovered number is 1.
We subtract this number from all un-
covered rows and add it to all covered
columns (Step E).



0 0 4 2 4
2 1 0 2 0
1 0 3 1 3
0 2 0 3 4
0 0 1 0 0


(4.18)

5. There are now 5 lines required to cover
all zeros (Step C). We go to Step F.



0 0 4 2 4
2 1 0 2 0
1 0 3 1 3
0 2 0 3 4
0 0 1 0 0


(4.19)

6. The matching represented by the bold
zeros have minimal cost (Step F).



0 0 4 2 4
2 1 0 2 0
1 0 3 1 3
0 2 0 3 4
0 0 1 0 0


(4.20)
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The former implementation in [68] has time complexity of O (M4), but James Munkres has
provided a O (M3) implementation in [69] a few years later. Remark that the LAP can also
be tackled using graph formalism rather than matrix formalism. Graph formalism solves
the LAP by finding a minimum-weight perfect matching of a bipartite complete graph. In
other words, we build a graph where nodes belong to two disjoint and independent sets
(e.g., formation positions and actual followers positions) and all nodes from the first set are
linked to all nodes from the second by weighted edges (e.g., the weights equal the distance
between formation positions and actual positions). Then, we use graph properties to find an
independent edge set such that every node is incident to exactly one edge of this set (i.e.,
a perfect matching) and the sum of all edge’s weights is minimized (i.e., minimum-weight).
For instance, the LAPJV named after Roy Jonker and Ton Volgenant who proposed it in
[70] is a widely used variant of the Hungarian Method relying on graph theory formalism.
While the latter has the same O (M3) time complexity as Munkres’ algorithm, it presents
lower computation times and lower sensitivity to the problem’s inputs.

In practice, we could have adapted the C++ library in [71], itself based on the Pascal im-
plementation in [70]. Nevertheless, we used the C library libhungarian-0.3 in [72] based
on [68] instead. Indeed, the latter can directly handle unbalanced problem with a time
complexity of O ((N − 1)M2) and already provides acceptable computation times.
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Figure 4.9 Assignment map for N = 40, dr = 5 m and α = 0◦
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4.3.3 APF Navigation

We have seen that the position assignment discussed in Section 4.3.2 ensures that followers
will not cross each other’s path, while moving toward their assigned positions. Although this
interesting property effectively limits the collision hazards during both the formation and
stop sequences, it does not ensure collision avoidance. Indeed, this does not account for the
span of quadrotors and followers may collide with each other even though their respective
paths do not intersect.

To deal with collision avoidance, we propose a solution inspired by the APF method used
for path planning, hence the name “APF navigation”. In fact, a more accurate term would
be “physicomimetic navigation”. Here, all agents are viewed as positively charged moving
particles while the targets (e.g., the assigned positions) would be negatively charged static
particles. Then, the velocity control reference that moves one agent toward its target, while
avoiding other agents, can be inferred from the resultant electromagnetic forces applied to
that agent in the physicomimetic representation. Note that a system block may arise from
local minima when using APF method in general. However, in our particular case, this
cannot happens because agents’ paths do not intersect and there are no obstacles.

Actually, only the horizontal velocity reference input is computed using APF navigation. As
for the altitude control, agents are assigned a flight level different than the one of the leader
and agents that have already reached their targets. This stratagem makes use of the third
dimension in order to reduce the number of avoidance maneuvers required and therefore
decrease the time needed for the swarm to reach the formation. This altitude is maintained
with the position control of Section 3.2.4 while the horizontal control relies on the velocity
control of Section 3.2.3. As a result, the altitude reference input for the agent i using APF
navigation is set to r̄z,i = t>i zo−dc where ti ∈ R3 is the target position of agent i that satisfy
t>i zo = t>j zo for all agents i and j in the swarm. Let Fi denote the set of agents j that satisfy∣∣∣(rj − ri)> zo

∣∣∣ < 2
3dc (i.e., at the same flight level as agent i).

Then, we define the horizontal velocity reference input v̄i ∈ R2 for the agent i as follows

v̄i =


v̄∞,i
‖v̄∞,i‖

vsat, if ‖v̄∞,i‖ > vsat,

v̄∞,i, otherwise.
(4.21)
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By definition, ‖v̄i‖ is bounded by vsat < vmax to account for communication delays. In
practice, we set vsat = 1

10vmax while we estimate vmax = dc
τcom

. The “unbounded” reference
input v̄∞,i is the sum of two components enforcing each desired behavior

v̄∞,i = vcoli + vtari . (4.22)

The first component vcoli enforce collision avoidance behavior. Hence, vcoli is built so that
agent i is moved away from its neighbors. Therefore, we define vcoli as follows

vcoli =
∑

j∈Fi(Gσ)
ψcol(‖rj − ri‖)

rj − ri
‖rj − ri‖

, (4.23)

with

ψcol(z) =


vsat

(
z

dc
− 2

)
, if z < 2dc,

0, otherwise.
(4.24)

The second component vtari ensures target attraction so that agent i moves horizontally
toward its target ti. vtari is defined as follows

vtari = ψtar(‖Hti − ri‖)
Hti − ri
‖Hti − ri‖

, (4.25)

with

ψtar(z) =


vsat

z

dc
, if z < dc,

vsat, otherwise,
and H =

[
xo yo

]>
. (4.26)

On the one hand, it appears clearly on Figure 4.10 that ψcol(z) is a negative continuous
function for 0 ≤ z with ψcol(z) ≤ −vsat for z ≤ dc. On the other hand, it can be seen
that ψtar(z) is a positive continuous function for 0 ≤ z where 0 ≤ ψtar(z) ≤ vsat. As a
result, the collision avoidance component vcoli can effectively compensate the target attraction
component vtari . In other words the collision avoidance behavior can override the target
attraction behavior if necessary. Moreover, note that ψtar(z) = vsat for dc ≤ z and ψcol(z) = 0
for 2dc ≤ z. This implies that the agent moves at full speed toward its target as long as there
is no risk of collision.
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Once the agent is close enough to its target, APF navigation switches to position control on
the three dimensions with reference input r̄i = ti. Here, agent i is said to be “close enough”
when he satisfies

‖H (ti − ri)‖ <
dc
2 . (4.27)

As described in Figure 4.3, the APF navigation procedure ends when the agent finally reaches
its target (i.e., condition “arrived on target” is true) , that is when

‖ti − ri‖ < εr, (4.28)

where εr is a parameter that influences the navigation precision. In practice, we take εr = dc
10 .

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
z (m)

-1
-0.8
-0.6
-0.4
-0.2
0

0.2
0.4
0.6
0.8
1

ψ
(m

/s
)

ψcol
ψtar

Figure 4.10 ψcol(z) and ψtar(z) for dc = 1.5 m and vsat = 0.5 m/s
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4.4 Software Design

4.4.1 Development Environment

ROS

The embedded software for quadrotors, under development at Humanitas Solutions, largely
relies on ROS, more precisely on the Kinetic Kame distribution. Contrary to what its name
might suggest, ROS is not a proper Operating System (OS), but an open-source middleware
supported by Open Robotics and running on Unix-based platforms (essentially, Ubuntu and
Mac OS X). Although ROS is not an operating system, it provides services such as hard-
ware abstraction and low-level device control. It is also worth noting that ROS is not a
realtime framework (even less a Real-Time Operating System (RTOS)), though it is possible
to integrate ROS with realtime code. On their web page [73], Open Robotics summarizes
the philosophy of ROS in these terms: “The primary goal of ROS is to support code reuse
in robotics research and development. ROS is a distributed framework of processes (i.e.,
nodes) that enables executables to be individually designed and loosely coupled at runtime.
These processes can be grouped into Packages and Stacks, which can be easily shared and
distributed.” The “distributed framework of processes” evoked in the latter is actually rep-
resented as a graph: the “computation graph” as depicted in Figure 4.11. The remainder of
this section outlines some basic computation graph concepts of ROS, namely nodes, Master,
messages, and topics. Note that ROS also features a specific file system that will not be
viewed here. For more details on ROS, one can visit http://wiki.ros.org.

Topic

Node Node

publish subscribe

Master

Figure 4.11 ROS computation graph

http://wiki.ros.org
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A node represents a single process in the computation graph. There is no limit to the
complexity of the computation handled by a node, but the potential of ROS is best exploited
when nodes are kept to be minimal functional units. This enables a certain versatility and
re-usability of developed nodes. A robot control system usually comprises many nodes. For
instance, one node controls the propellers’ motors, one node performs localization, one node
performs path planning, one node handles communication, and so on. A ROS node can
either be written in C++ or in Python with the use of a ROS client library, respectively
roscpp or rospy. The ROS Master supervises all running nodes. For instance, it provides
name registration of nodes and set up node-to-node communication. Without the Master,
nodes would not be able to find each other and exchange messages. In ROS, messages are
simply data structures, defined by a given set of typed fields. Standard primitive types
(integer, floating-point, boolean, etc.), arrays of primitive types and even nested structures
are supported. Messages are routed via a transport system with publish/subscribe semantics.
For instance, nodes send out a message by publishing it to a given topic. Then, nodes
subscribed to this particular topic will receive the message.

Humanitas Ecosystem

Over the years, Humanitas Solutions has built a complete ecosystem to support the deployment
of UAV swarms in a distributed fashion. As depicted in Figure 4.12, the Humanitas ecosystem
is a distributed heterogeneous MAS where agents can be categorized into two groups: users
and robots. Users, equipped with digital tablets, can monitor all the other agents and control
the robots. All agents are connected via wireless links over HEAVEN, a distributed network
solution developed by Humanitas Solutions. Among the supported wireless interfaces let us
mention Wi-Fi (in both AP, STA and IBSS modes), Bluetooth and xBee 900 MHz. With Wi-
Fi interfaces, the bandwidth achieved can reach 500 Mbps, while the range depends on the
type of antenna and can vary from ten of meters to 15 km. At network level, the single-hop
round-trip-time for devices over ad hoc Wi-Fi has been measured to be around a millisecond.
The communication delay also depends on the refresh rates of the embedded processes. As a
result, the effective single-hop one-trip-time τcom experienced at agent level is often greater
than a millisecond.

The hardware architecture of the quadrotors developed at Humanitas Solutions is summarized
in Figure 4.13. Quadrotors embed four kinds of functional units: power units, actuators, sen-
sors, and processing units. All embedded electronic components are powered by a Lithium
Polymer (LiPo) battery through a power module that ensures isolated and reliable voltage
supplies. As for actuators, the quadrotor simply has four Direct Current (DC) brushless
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HEAVEN distributed network

Figure 4.12 Humanitas ecosystem

motors paired with a 4in1 Electronic Speed Control (ESC) (Electronic Speed Controls). The
ESC has BLHeli-S DShot firmware installed. The sensors consist of a monocular camera, a
GNSS module, a barometer and a nine-axis IMU (itself including one three-axis gyroscope,
one three-axis accelerometer, and one three-axis compass). Finally, Humanitas quadrotors
are equipped with two processing units. The autopilot handles sensor fusion, basic local-
ization, and low-level control, while the companion computer deals with high-level control,
advanced localization, navigation, and communication. In other words, the autopilot handles
time-critical tasks, while the companion computer can run complex and time-consuming pro-
cesses. The autopilot board runs PX4, an open-source autopilot software, on NuttX RTOS.
The companion computer has Linux Ubuntu 16.04 installed with ROS Kinetic Kame distribu-
tion. It runs ROS nodes along with the HEAVEN application developed by Humanitas Solu-
tions. Besides the Wi-Fi module connected to the companion computer to handle HEAVEN
communication, the autopilot board is equipped with a radio receiver that enables direct
control of the quadrotor with an Radio Controlled (RC) controller. This feature is particu-
larly helpful when testing. Note that the IMU, the barometer and an additional compass are
built-in the Pixracer autopilot board. Moreover, other long range wireless interfaces can be
added when needed.
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Figure 4.13 Humanitas quadrotor architecture

4.4.2 Embedded Software

According to the description of the development environment in the previous section, the
swarming algorithm developed in Section 4.3 runs on the companion computer. At software
level, it is integrated into the Mission Manager. As displayed in Figure 4.12, the Mission
Manager communicates with the autopilot through the MAVLink (where MAV stand for
Micro Air vehicle) socket and with other agents through the HEAVEN socket. As a result,
the remainder of this section first focuses on the Mission Manager and then briefly covers
HEAVEN and MAVLink sockets.

Mission Manager

The Mission Manager is an early version of Humanitas swarming engine that was used to test
the algorithms developed in this project. Its main purpose is to handle both the distribution
and the execution of the tasks sent to robots by users. When a user sends a task to the
swarm, the mission manager usually assigns the task to a unique agent with an auction-
based distributed method that will not be covered here. Indeed, in our particular case, the
task (i.e., the role in the swarm) is directly assigned by the user.
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MAVLink Socket

MAVLink is a very lightweight messaging protocol for communicating with UAVs and between
onboard components. The MAVLink socket actually consists of one node providing ROS
topics and service servers to let the mission manager communicate with the autopilot. The
MAVLink package also defines a certain set of standardized messages/types readable by the
Px4 autopilot software (e.g., GlobalPositionInt, LocalPositionNED, etc.).

HEAVEN Socket

The HEAVEN socket essentially provides ROS topics to let the mission manager node share
information with other agents through HEAVEN network. It consists of two nodes in series.
On the one hand, the node on the side of the mission manager serializes/deserializes the
messages sent/received.On the other hand, the node on the side of the HEAVEN application
handles, amongst other things, port opening and peer scanning.

4.5 Simulation

4.5.1 Test Setup

To asses the validity of the developed solution, we ran SITL simulations using the Humanitas
simulator to model the quadrotor aerodynamics, the dynamics of the actuators and generate
the sensor feeds accordingly. Figure 4.14 summarizes the test setup.

The first computer runs several instances of the quadrotor onboard software and exchanges
data through a local network with the second computer that runs the simulator. Note that
the main specifications of the computers used for the test are available in Table 4.1.

Several software instances are actually encapsulated in several Docker containers. A Docker
container is a standardized and isolated unit that wraps up a piece of software and its
dependencies for development purposes. This mimics the kind of isolation obtained with
Virtual Machines (VMs) but it saves the kernel space of an OS and does not need to run
hardware virtualization. In practice, the containers are all instances of the same Docker
image. As depicted in Figure 4.16, the HEAVEN application, the mission manager software,
and the autopilot firmware are all installed on the image.

The Humanitas simulator has been developed with Unreal Engine, a source-available commer-
cial game engine with a royalty model for commercial use. Typically, this software includes
a physics engine and a rendering engine for 3D graphics. Figure 4.15 show a desaturated
preview of the graphics rendered by the simulator.
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In its current version, the simulator models quadrotor aerodynamics and actuator dynamics
and ideal sensor values (i.e., the estimators are directly fed with true values, not synthetic
measurements). Note that the simulator models the AR Drone 2.0 equipped with its indoor
hull, a quadrotor distributed by Parrot.

Containers computer

Linux Ubuntu

Docker

1 User 7 Agents Simulator computer

Microsoft Windows

Unreal Engine

Humanitas Simulator

Local Area Network

Figure 4.14 Test setup

Figure 4.15 Simulator visualization
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Table 4.1 Test computers specifications

Containers computer

Description: Notebook
Vendor: Lenovo
Version: ThinkPad T420
Processor: Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz 2 Cores
Memory: 10GB
Graphics: Integrated Intel HD Graphics 3000
OS: Linux Ubuntu 16.04.6 LTS (64bits)

Simulator computer

Description: Notebook
Vendor: Lenovo
Version: Ideapad 330-15ICH-81FK
Processor: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz 6 Cores
Memory: 16GB
Graphics: NVIDIA GeForce GTX 1050 2GB
OS: Microsoft Windows 10 Home (64bits)

HEAVEN App

Mission Manager

Autopilot Firmware

Figure 4.16 Docker image
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4.5.2 Test Design

During the test, a swarm of N = 8 agents will have to make a formation, visit five waypoints
forming a square and then go back home safely. In particular, the first and the last waypoint
are roughly placed above the home position of the swarm. Global and local coordinates of
the waypoints are given in Table 4.2.

More precisely, global coordinates are expressed in the World Geodetic System 84 (WGS84)
and local coordinates are given in the initial leader NED frame. The initial positions (i.e.,
the home position) of agents are defined by design in the simulator and cannot be modified.
Actually, the simulator places the quadrotors along the East axis of the NED frame, evenly
spaced by di ≈ 1.5 m.

For test automation purposes, we designed an automated user node widely based on the
software onboard quadrotors. That node identifies the agents at power-up and then generates
and sends a task to newly identified agents. Actually, the first identified agent will be the
leader and all other agents will be followers. As a result, the leader usually happens to be
the first or the second quadrotor created by the simulator. Note that this is a “hard” initial
state for our swarming algorithm. Indeed, all agents are aligned, the leader is far from the
center of the swarm and agents are spaced by less than the set collision distance dc = 1.65 m.

All parameter definitions and values used for this test are summarized in Table 4.3. Never-
theless, it has to be noted that the results discussed in the next section have been obtained
with an early iteration of the solution presented in previous sections. For instance, this ver-
sion features slightly different controller structures and gains (e.g., no integral action and no
velocity limiter). This leads to diminished performance with respect to the current version
but does not invalidate the discussion on results in the next section. One can observe two
other differences with the current version. First, once the leader reaches a waypoint, it waits
for all followers to be precisely at their assigned offset which slows down the whole process.
Second, in the end, the leader waits for all followers to go home before going home himself.
This also tends to slow down the mission.

Table 4.2 Test path

Waypoint Global Coordinates (DD,DD,m) Local Coordinates (m,m,m)
1 45.4583 , −73.6346 , 59.0 0.00 , −0.00 , 4.0
2 45.4584 , −73.6346 , 59.0 11.0 , −0.00 , 4.0
3 45.4584 , −73.6348 , 59.0 11.0 , −15.5 , 4.0
4 45.4583 , −73.6348 , 59.0 0.00 , −15.5 , 4.0
5 45.4583 , −73.6346 , 59.0 0.00 , −0.00 , 4.0
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Table 4.3 Test parameters

Definition Symbol Value

Sampling period Ts 100 ms
Number of agents N 7
Quadrotor diameter dq 55 cm
Initial spacing di 150 cm
Collision-free distance dc 165 cm
Formation spacing dr 500 cm
Formation yaw α 0◦

Command saturation usat 2 m/s2

Velocity saturation vsat 0.5 m/s
Control tolerance εr 50 cm
Catch-up threshold ∆W,th 200 cm
Data storage time Tmsg 2 s
Initialization delay Tini 5 s
Follower delay Tfol 10 s
Leader delay Tled 10 s
Catch-up delay Tdel 5 s
Formation delay Tfor 40 s
End delay Tend 10 s
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4.5.3 Results

The “raw” material obtained from simulations is presented here. Figures 4.17-4.19 presents
the states of the leader and a given follower throughout the test. In addition, Figure 4.20
displays the position of agents in the horizontal plane at three instants of interest: before
the swarm starts forming, when the swarm has reached the defined formation, and when the
follower start moving, a few moments after the leader has done the same. A full animated
version of Figure 4.20 is available at https://youtu.be/hSyYxYcHMxk and the video rendered
by the simulator is available at https://youtu.be/V_h7y1PrMFk.
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Figure 4.17 Position of the leader and a follower
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Figure 4.20 Snapshots of the swarm in initial, forming and following sequences

One can read on Figures 4.17-4.19 the workflow defined in Section 4.3.1. For instance,
at t = 10 s, the follower receives the task from the user and targets its home position.
Specificities of the early controller design explain the bounce in altitude at that moment.
Then, between t = 13 s and t = 22 s, it uses the APF navigation algorithm to go above its
position in formation. At t = 32 s, the follower finally reaches his position in formation. Two
seconds later, the leader starts moving toward the first waypoint. Then it visits waypoints
1,2,3,4 and 5 at t = 40, 51, 64, 76, 87 s respectively. Once it reaches the last waypoint, the
leader sends the stop signal and the follower uses the APF navigation algorithm once again
to go back home. The latter reaches home at t = 110s. Once all followers are home, the
leader finally goes home and arrives there at t = 120s. The mission is completed.

On the one hand, it can bee seen on Figure 4.21 that during the following sequence, all agents
manage to keep an average distance dn = 5 m from their neighbors. More over, that distance
is always greater than 4.2 m and never exceeds 5.8 m. On the other hand, Figure 4.22 shows
that the proposed solution enforce efficient collision avoidance during forming sequence, even
with an initial state that does not validate the collision avoidance condition (i.e., di < dc).
In addition, Figure 4.24 shows that the average tracking error, i.e., distance between the
actual position and the position in formation, remains below 0.8 m. This is acceptable with
respect to the collision-free distance dc = 1.65 m. Finally, Figure 4.23 provides an insight
on the communication delay. It can actually be inferred from that plot that the single-hop
communication delay is τcom ≈ 0.2 s which respects the condition τcom ≤ 3Ts.



76

40 50 60 70 80
Time (s)

4

4.5

5

5.5

6

d
n
(m

)

Figure 4.21 Average neighbors distance

15 20 25 30
Time (s)

0

1

2

3

4

5

6

d
n
(m

)

Figure 4.22 Minimal neighbors distance

40 42 44 46 48 50
Time (s)

0

2

4

6

8

10

12

r x
(m

)

Leader
Follower

Figure 4.23 Zoom on following delay

40 50 60 70 80
Time (s)

0

0.2

0.4

0.6

0.8

1

e r
(m

)

Figure 4.24 Average tracking error



77

CHAPTER 5 INDOOR SWARMING

5.1 Introduction

To the best of our knowledge, most of the swarming solutions in the literature involve a rigid
formation where each agent is assigned to a certain position within the swarm. This implies
a certain level of centralization which limits the scalability and the modularity of the swarm.
Moreover, rigid formations could be interesting for outdoor applications but are not best
suited for indoor navigation as obstacle avoidance becomes a major concern. Also, one has
to keep in mind that the final aim of this project is to implement the swarming solution on
nano-quadrotors. Hence, the swarming algorithm has to be sufficiently simple to be able to
run on board in real-time.

In that regard, Sakai et al. [5] have proposed a simple control method for leader-follower
swarming in cluttered indoor environments. They demonstrate their solution performance
through experiments operating seven two-wheel differential drive robots. Strictly speaking,
leader-follower approaches enforce a centralized architecture. In their paper, a hybrid solu-
tion fusing the behavior-based approach and the leader-follower approach is developed. An
implicit leader tracks a predefined trajectory while the rest of the swarm follows. This ap-
proach differs from classical leader-follower strategies as the followers will simply maintain
a certain distance from their neighbors and not track a predefined offset position from the
leader. In fact, the followers are only given a certain set of simple local rules that lead to
the emergence of global behavior. Moreover, they introduce a simple rule for changing the
network topology depending on environments, giving the swarm the ability to pass through
narrow spaces.

Following this framework, we identified two major problems that need to be addressed. On
one hand, a swarming algorithm has to be designed to maintain formation and connectivity
while avoiding collisions and obstacles. On the other hand, agents have to be able to deacti-
vate/activate links with their neighbors in order to pass obstacles, while maintaining global
connectivity among the swarm.

This chapter aims to present the problem setting as described in [5]. Then, a new distributed
swarming algorithm is developed based on the solution proposed in [5]. Finally, simulations
are performed to demonstrate solution effectiveness.
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5.2 Problem Setting

5.2.1 Assumptions

Swarm control and indoor navigation are complex problems. For the purpose of focusing
only on the formation control, simplifying assumptions have been made:

• Single integrator dynamics - The agents embed a robust low-level position controller
such that their dynamics can be assimilated to an ideal 2D single integrator.

• Point mass model - The agents are considered as point masses. As such, orientation of
the agent will not be explicitly considered.

• Full-state estimate - The agents can estimate their full state using the onboard computer
and sensors (i.e., position and velocity in 2D).

• Detection range - The agents are able to detect obstacles and other agents in direct
LOS within a certain range and in every direction.

• Communication range - The agents can communicate with all detected agents. How-
ever, only one-hop communication is authorized

• Real-time constraints - The low-level control, the estimator, detection and communica-
tion algorithms perform at higher rates than the swarming algorithm. Communication
delays are sufficiently low.

5.2.2 Dynamic Model

We consider a swarm of N agents in a 2D environment with obstacles. We assume that a
target path is given to only one of the N agents, called the leader, whose index is set as N
without loss of generality. Other agents i ∈ [1, N − 1] are called followers. According to the
above assumptions, the dynamics of the ith agent (i = 1, 2, . . . , N) can be described by the
following discrete-time state equation [5]

ri(k + 1) = ri(k) + ui(k), ‖ui(k)‖ ≤ umax, (5.1)

where ri(k) ∈ R2 and ui(k) ∈ R2 are respectively the position and the control input of agent i
at time step k ∈ N+. The input bound umax represents the hardware limitation and depends
on the sampling period Ts.
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5.2.3 Collision Model

Even though the simplification of the dynamic model has led us to consider point mass agents
for the dynamic model, we need to assign a certain footprint to agents in order to model the
collision and obstacle avoidance problem. Thus, a sufficient condition for collision avoidance
for agent i is given as follows

‖ri − rj‖ ≥ dc, ∀j ∈ V\{i}, (5.2)

where V := {1, 2, . . . , N} is the set of indices of all agents. The distance dc represents roughly
the diameter of the agents. We also assume that a sufficient condition for obstacle avoidance
is given by

‖ri − ro‖ ≥ do, ∀ro ∈ O, (5.3)

where O is the set of all points on obstacles in the environment.

5.2.4 Sensing Model

According to the assumption made, agents have a limited sensing range. Moreover, they can
only detect elements in direct LOS. To begin, let us define the line segment joining agents i
and j as

Lij = {(1− λ)ri + λrj,∀λ ∈ [0, 1]} , (5.4)

and the ray from agent i passing by obstacle o

L̄io = {(1− λ)ri + λro, ∀λ ≥ 0} . (5.5)

Then, we assume that agent i can retrieve agent j’s relative position

rji = rj − ri, (5.6)

if the following conditions are both satisfied

‖rj − ri‖ ≤ ds, (5.7)

‖q − ro‖ ≥ dl, ∀q ∈ Lij, ∀ro ∈ O, (5.8)

where the distance ds defines the maximum sensing range and dl describes a minimum clear-
ance distance between the segment joining the agents and each obstacle. Figure 5.1 presents
an example of sensing range.
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In the same fashion, agent i is able to detect a point on an obstacle ro ∈ O, if

‖ro − ri‖ ≤ ds, (5.9)

‖ro − ri‖ ≤ ‖q − ri‖ , ∀q ∈ L̄io ∩ O. (5.10)

The second condition means that an obstacle cannot be detected if another one is hiding it
from the agent. However, we assume that an agent can be detected even if a third agent
interrupts the LOS.

dl

ds

Sensing agent
Sensed agent
Hidden agent
Sensing range
Obstacle

Figure 5.1 Sensing range

5.2.5 Network Topology

A common way to model and study swarm organization is using graph theory. In short,
a graph G = (V , E) is a finite set of nodes (or vertices) V associated with a finite set of
edges (or links) E ⊂ V × V . For instance, the nodes represent the agents and the edges
represent the interactions and communications between agents. The directed edge from
nodes i to j is denoted e = (i, j). In this work, we assume that agents can perform two-way
communication. Therefore, we will only consider the case of simple undirected graphs, where
respectively, (i, i) /∈ E and (i, j) ∈ E ⇔ (j, i) ∈ E . A graph Gsub = (V , Esub) is a subgraph
of graph G, denoted by Gsub ⊆ G, if Esub ⊆ E . For each node i ∈ V , we define the set of
neighbors Ni(G) = {j ∈ V | (i, j) ∈ E}. A path on G is a finite sequence of unique nodes such
that every two consecutive nodes are neighbors (i.e., connected by an edge). The number of
nodes in the path is the length of the path. A graph is connected if and only if for each pair
of distinct nodes there exists a path that contains both nodes. By definition, if the subgraph
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Gsub is connected, then the graph G is connected. The topological distance of two nodes i
and j of a connected graph, denoted by dist(i, j), is equal to the length of the shortest path
in the graph that contains both nodes.

In terms of the sensing described above, let us define the sensing graph Gs(r(k)) =
(V , Es(r(k))) where r =

[
r>1 r>2 . . . r>N

]>
. The edge set Es gathers all couples of agents

that are able to detect each other at time k (i.e., conditions (5.7) and (5.8) are verified).
Note that Gs has to be connected at all times, and especially at initial time k = 0 in order
to be able to perform formation control. That condition on connectivity maintenance also
implies that the distance between the leader and each follower is kept under (N − 1)ds as
the maximum length of each edge in Gs is kept under ds. In order to simplify the network
topology, reduce the number of edges and subsequently maintain the communication
between agents to a minimum level, we will rather consider the following subgraph of Gs:

Gn(r(k)) = (V , En(r(k))), (5.11)

En(r(k)) = {(i, j) ∈ Es(r(k)) | ‖rj − ri‖ ≤ dn} , (5.12)

where dc < dn < ds. By definition, we know that if Gn is connected, then Gs is connected as
well. Therefore our goal will be to maintain the connectivity of Gn in the following.

5.3 Swarming Algorithm

5.3.1 Edge Management

We assume that Gn is connected at the initial time k = 0. Then, the easiest way to maintain
connectivity would be to control the agents so that the edges in En are preserved for all k > 0.
However, in order to be able to move in cluttered environments, some edges might have to
be deactivated so the formation can squeeze through narrow spaces. This finally implies that
edges will have to be reactivated as soon as possible to enable cohesive formation control. In
order to deal with the edge management, Sakai et al. [5] introduces a subgraph of Gn

Gσ(r(k)) = (V , Eσ(r(k))), (5.13)

Eσ(r(k)) = {(i, j) ∈ En(r(k)) |σij(k) = 1} , (5.14)

where σij(k) = σji(k) ∈ {0, 1} is a binary symmetric function. Thus, if we design σ such that
Gσ is connected, then the connectivity of Gn is maintained as long as the swarming algorithm
preserves all the edges of Gσ. Figure 5.2 summarizes Gs, Gn and Gσ definitions.
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(b)(a) (c)

Figure 5.2 Graphs (a) Gs, (b) Gn and (c) Gσ

In their paper, Sakai et al. [5] proposed a set of two rules to determine the value of σ.
While we have observed that those rules performed well for a small swarm, simulations with
swarms bigger that 10 agents have shown that they are too restrictive (i.e., too many edges
were preserved) and enforce too much rigidity in the formation. Moreover, the verification
of those rules at each time step represents a relatively heavy computational cost. Therefore,
we propose in the following a set of two other modified rules to deal with edge deactivation.

In this work, there are two cases where an edge (i, j) ∈ En is not included in Eσ (i.e.,
σij(k) = 0). To describe the first case, let us consider a minimal example with only three
agents as shown in Figure 5.3. In open spaces (i.e., no obstacle in the agents’ neighborhood),
the swarming algorithm moves the agent such that the distances between each agent are the
same. Therefore, the agents form an equilateral triangle at rest. Then, when the agents
encounter an obstacle, the formation will be distorted. In particular, when passing through a
narrow gap, the formation will have to squeeze along the direction of the gap. As the triangle
formation flattens out and the three agents tend to align, we can deactivate the longer edges
without endangering the global connectivity of the swarm. Now, we describe this case in
terms of a distributed deactivation rule. Let Aij and Bij be the sets of agents so that

Aij = {m ∈ Ni(Gn)\{j} | ‖rmi‖ < ‖rji‖} , ∀j ∈ Ni(Gn), (5.15)

Bij = {m ∈ Ni(Gn)\{j} | ‖rmj‖ < ‖rji‖} , ∀j ∈ Ni(Gn). (5.16)
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We also define

ϕ(p,q) = p>Hq
q>q

, H =
0 −1

1 0

 , ∀p,q ∈ R2, (5.17)

so that |ϕ(rmi, rji)| equals the ratio of the distance between agent m and the edge (i, j) over
the length of the edge (i, j). In other words, |ϕ(rmi, rji)| quantifies the “flatness” of the
triangle in m. And finally, the edge (i, j) is deactivated if

∃m ∈ Aij ∩ Bij, |ϕ(rmi, rji)| < ϕd, (5.18)

where 0 < ϕd <
1√
2 is a tuning parameter.

To describe the second case, we consider a minimal example with four agents as shown
in Figure 5.4. Let us assume that the four agents are sufficiently close so that they are
connected to all three other agents. In this case, there are two edges crossing in the middle
of the formation. Simulations have shown that such configurations bring some unexpected
rigidity to the formation as the position of each agent is too constrained. While none of the
crossing edges are critical to global connectivity, we simply propose to deactivate the longest
of the crossing edges. Now, we develop a distributed deactivation rule to deal with this case.
Let Cij and Dij be the sets of agents so that

Cij = {m ∈ Aij ∩ Bij\{j} |ϕ(rmi, rji) < 0} , ∀j ∈ Ni(Gn), (5.19)

Dij = {m ∈ Aij ∩ Bij\{j} |ϕ(rmi, rji) > 0} , ∀j ∈ Ni(Gn), (5.20)

where the sign of ϕ(rmi, rji) determines on which side of the edge (i, j) the agentm is located.
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Then, the edge (i, j) is deactivated if

∃(m,n) ∈ Cij ×Dij, ‖rnm‖ < ‖rji‖ . (5.21)

Note that the deactivation rules developed above are distributed and symmetric such that
if agent i determines that edge (i, j) must be deactivated, then agent j necessarily comes to
the same conclusion and edge (i, j) is globally deactivated.

To sum up, we define σij as follows :

σij =

0, if (5.18) or (5.21),

1, otherwise.
(5.22)

5.3.2 Ranking System

In their paper, Sakai et al. [5] proposed a control scheme where followers do not need to
identify the leader. This is a great advantage as they managed to operate a small swarm
without the need for communication between agents. Unfortunately, such a control scheme
has been observed to be inefficient in the case of a bigger swarm. Indeed, we can see the
swarm like a damper that connects the leader to the farthest follower. Then, the leader
applies a traction force on the rest of the swarm in order to move it along the defined path.
But, as the swarm stretches and the distance between the leader and the farthest follower
grows, the damping of the system increases such that the force is totally absorbed before
reaching the last follower. This eventually results in the swarm being stuck as the leader is
unable to drag the entire swarm.

In order to give some sense of the leader position to the followers, a new feature relying on
minimal data transmission and simple computation has been introduced. We define the rank
ρi of agent i as the distance to the leader N so that

ρi = dist(i, N), (5.23)

where dist(·, ·) is the distance in the sense of graph theory. By definition, the leader rank
will always be ρN(k) = 0. Figure 5.5 illustrates the system of ranks. Now, let us assume
that each agent can retrieve the rank of its neighbors. Thus, each agent can estimate in what
direction it should move to actually follow the leader and the problem is solved.
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For that purpose, we define the “virtual leader” position li as seen by agent i

li = 1
|Si|

∑
j∈Si

rj, (5.24)

where Si is the set of all “surrogate leaders” as seen by agent i defined as

Si =
{
j ∈ Ni(Gσ)

∣∣∣∣∣ ρj = max
m∈Ni(Gσ)

ρm

}
. (5.25)

Also, each follower i can easily compute an estimate of its own rank ρ̄i with
ρ̄i(k + 1) = min

j∈Ni(Gσ)
(ρ̄j(k)) + 1, ρ̄i(0) = N − 1. (5.26)

Remark that this estimate may take some time before converging to the actual rank of the
agent. For instance, in the ideal case where agents do not change rank, it can be inferred
from (5.26) that

∀k < ρi, ρ̄i(k) > ρi, (5.27)

∀k ≥ ρi, ρ̄i(k) = ρi. (5.28)

Even though the convergence time can become significant as it depends on the number of
agents and the topology of the swarm, it cannot endanger the connectivity of the swarm.
Indeed, (5.26) also implies that

ρ̄i(k) < ρ̄j(k) ⇒ ρi(k) < ρj(k), ∀i, j ∈ V . (5.29)

In other words, the followers either sense the true direction of the leader, or does not sense
it at all, but they cannot sense the leader in the opposite direction.
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5.3.3 Follower Control

A common way to deal with autonomous navigation in an environment featuring obstacles is
using the Artificial Potential Field (APF) method. To solve the path planning problem, for
instance, the agent builds a potential field where regions to avoid are characterized by high
potential values and the goal is to have the lowest potential value. Then a safe path to the
goal can be inferred by sliding along the potential field valley toward the lowest potential. In
their paper, Sakai et al. [5] used the APF method to generate the control input of followers.
The final artificial potential field is constructed by superposition of several potential functions
that enforce different behaviors, namely collision avoidance, obstacle avoidance, cohesion, and
even LOS maintenance. Then, the direction of control input is derived from the APF and
its magnitude is determined so as to ensure collision avoidance, connectivity maintenance
and prevent actuator saturation. Note that the local minima issue that might arise when
using APF for path planning does not occur in the case of formation control as each agent
constructs a local APF at each time step.

In the following, we propose a modified version of the method described above. First, note
that in the case of formation control, there is no need for constructing an actual APF as we
only need to compute the derivative of the field at one point, not the entire path. Therefore,
we choose to directly construct the control input without building an APF. Indeed, we
would have to numerically compute the gradient of the APF at each time step otherwise.
Second, extensive simulations have shown that the LOS maintenance behavior often leads to
deadlock in a realistic environment. Therefore, we simply decide to ignore it. Third, apart
from actuator saturation prevention, all other behaviors are already enforced by the APF
definition. Then, the part where the control input magnitude is determined is redundant
in our opinion and will not be considered here. As a result, the solution presented in the
following does not require as many computational resources as the one in [5].

We define the control input ui for the follower i ∈ V\{N} as follows:

ui =


wi

‖wi‖
usat, if ‖wi‖ > usat,

wi, otherwise.
(5.30)

By definition, ‖ui‖ is bounded by usat < umax to prevent actuator saturation. Then, we
describe the unbounded control input wi as the sum of components enforcing each desired
behavior so that

wi = wobs
i + wcol

i + wcon
i + wcom

i + wled
i . (5.31)



87

The first component wobs
i is introduced for obstacle avoidance. In other words, wobs

i is
constructed so that it moves agent i away from the closest obstacle detected. Let Oi be the
set of points on obstacles detected by agent i (i.e., all points that verify conditions (5.9) and
(5.10)). Then the closest obstacle point oi is defined as

oi = argmin
ro∈Oi

‖ro − ri‖ . (5.32)

And wobs
i can be computed as follows :

wobs
i =


0, if Oi = ∅,

ψobs(‖oi − ri‖)
oi − ri
‖oi − ri‖

, otherwise,
(5.33)

with

ψobs(z) =


−Kobs

 1 + εobs
z − do
lo − do

+ εobs

− 1

 εobs, if do ≤ z ≤ lo,

0, otherwise,

(5.34)

where 0 < Kobs, 0 < εobs � 1 and do < lo are three tuning parameters. As shown on
Figure 5.6, Kobs represents the maximum strength of the repulsive force generated by the
obstacle on the agent (i.e., ψobs(do) = −Kobs). lo defines the maximum range of the force
around the obstacle (i.e ψobs(lo) = 0). εobs allows us to adjust how the force varies with
respect to the distance from the obstacle.
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ψ
co
n
(m

)

z (m)

Kcon

ln dn

εacon
εbcon
εccon

0

0
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In the same fashion as for obstacle avoidance, the second component wcol
i enables collision

avoidance behavior. In this case, wcol
i is built so that agent i is moved away from its neighbors.

Therefore, we define wcol
i as follows

wcol
i =

∑
j∈Ni(Gσ)

ψcol(‖rj − ri‖)
rj − ri
‖rj − ri‖

, (5.35)

with

ψcol(z) =


−Kcol

 1 + εcol
z − dc
lc − dc

+ εcol

− 1

 εcol, if dc ≤ z ≤ lc,

0, otherwise,

(5.36)

where 0 < Kcol, 0 < εcol � 1 and dc < lc are three tuning parameters. Similarly to what can
be seen on Figure 5.6, Kcol represents the maximum strength of the repulsive force generated
by one neighbor on the agent (i.e., ψcol(dc) = −Kcol). lc defines the maximum range of the
force around a neighbor (i.e ψcol(lc) = 0). εcol allows us to adjust how the force varies with
respect to the distance from neighbors.

The third component wcon
i is introduced to ensure connectivity maintenance. wcon

i has the
opposite effect than wcol

i , moving the agent toward its neighbors when the distance between
them becomes too big and the edge between them is endangered. Then, we describe wcon

i as
follows:

wcon
i =

∑
j∈Ni(Gσ)

ψcon(‖rj − ri‖)
rj − ri
‖rj − ri‖

, (5.37)

with

ψcon(z) =


Kcon

 1 + εcon
z − dn
ln − dn

+ εcon

− 1

 εcon, if ln ≤ z ≤ dn,

0, otherwise,

(5.38)

where 0 < Kcon, 0 < εcon � 1 and ln < dn are three tuning parameters. As shown on
Figure 5.7, Kcon represents the maximum strength of the attractive force generated by one
neighbor on the agent (i.e., ψcon(dn) = −Kcon). ln defines the minimum distance between
agents for the connectivity maintenance behavior to enter into effect (i.e ψcon(ln) = 0). εcon
allows us to adjust how the force varies with respect to the distance from neighbors.
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One would like to be able to adjust the compactness of the formation (i.e., the average
distance between agents). For that purpose, we introduced a fourth component wcom

i defined
as follows:

wcom
i =

∑
j∈Ni(Gσ)

ψcom(‖rj − ri‖)
rj − ri
‖rj − ri‖

, (5.39)

with

ψcom(z) =


Kcom

(
z − dc

αcom(dn − dc)
− 1

)
, if dc ≤ z ≤ dn,

0, otherwise,
(5.40)

where 0 < Kcom and 0 < αcom < 1 are two tuning parameters. As shown on Figure 5.8, Kcom

sets the strength of the force generated in order to achieve the desired level of compactness.
αcom is a normalized parameter that allows us to adjust the compactness of the swarm. For
instance, the swarm will spread as αcom increases.

Additionally, a fifth component wled
i ensures that agent i in the swarm is driven to the leader

by the means of its surrogate leader. We describe wled
i as follows

wled
i =


0, if Ni(Gσ) = ∅,

ψled(‖li − ri‖)
li − ri
‖li − ri‖

, otherwise,
(5.41)

with
ψled(z) = Kledz, (5.42)

where 0 < Kled sets the strength of the traction force of the leader as can be seen on Figure 5.9.
Note that the control law described above does not require absolute positioning, only relative
positions with respect to the agent of interest are needed to compute the control input.
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5.3.4 Leader Control

The goal of the leader (i = N) is to follow the target path without outrunning the rest of the
swarm. Let the path be a sequence of way-points P = {p1,p2, . . . ,pn} in the environment,
then the direction of the control input of the leader wN is defined such that it always points
towards the next way-point. A simple way to compute wN is presented in Algorithm 1. The
path generation will not be discussed in this work. Nevertheless, note that for the algorithm
to work properly, the path has to be sufficiently smooth and the way-points have to be
sufficiently spaced.

Algorithm 1: Leader control input direction update
Input: The absolute position rN and m the index of the last target way-point
Output: The control input direction wN and m the index of the new target way-point
Data: The path P = {p1,p2, . . . ,pn}
while 0 ≤ (pm+1 − pm)>(rN − pm) and m < n do

m← m+ 1
end

wN ←
pm − rN
‖pm − rN‖

return wN ,m
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Once the direction is found, the magnitude of the control input is determined so that the
leader does not lose connectivity with the rest of the swarm. Thus, we introduce ulsat and
ulcon, two upper bounds for uN such that

ulsat = αlsatusat, and ulcon = max
{

0, αlcondn − min
j∈Ni(Gσ)

‖rj − rN‖
}
, (5.43)

where 0 < αlsat < 1 and 0 < αlcon < 1 are two tuning parameters. On one hand, ulsat
prevents actuator saturation and improves the cohesion of the swarm while the maximum
speed of the leader is lower than the maximum speed of the followers. On the second hand,
ulcon ensures connectivity maintenance by limiting the maximum distance between the leader
and the closest follower. Finally, uN is defined as follows:

uN = wN min{ulsat, ulcon}. (5.44)

Figure 5.10 illustrates how the leader control input is generated from the path and the
position of followers.
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Figure 5.10 Leader control input
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5.4 Simulation

In order to demonstrate the effectiveness of the proposed solution, we run several simulations
in MATLAB 2018a. Simulation parameter values are inferred from dimensions and estimated
performance of a nano-quadrotor. The parameter definitions and values are summarized in
Table 5.1.

Table 5.1 Simulation parameters

Definition Symbol Value

Sampling period Ts 10ms
Number of agents N 30
Maximum input umax 0.025m
Collision-free distance dc 0.3m
Obstacle-free distance do 0.1m
Sensing range ds 2m
LOS-clearance distance dl 0.05m
Neighbor maximum distance dn 1m
Edge deactivation threshold φd 0.2
Input saturation level usat 0.02m
Obstacle avoidance gain Kobs 200m
Obstacle avoidance slope εobs 0.0001
Obstacle avoidance range lo 0.7m
Collision avoidance gain Kcol 200m
Collision avoidance slope εcol 0.0001
Collision avoidance range lc 0.7m
Connectivity maintenance gain Kcon 200m
Connectivity maintenance slope εcon 0.0001
Connectivity maintenance range ln 0.7m
Compactness gain Kcom 0.1m
Compactness level αcom 0.8
Leader traction gain Kled 0.06m
Leader input saturation level αlsat 0.7
Leader connectivity level αlcon 0.95

As displayed in Figure 5.11, the first test environment consists of a long straight corridor
with the leader path going from one extremity to another. This minimal test case allows
us to easily examine the effectiveness of the edge deactivation strategy when it comes to
going through narrow spaces. Consequently, we set the corridor length to l = 10 m and
performed simulations for different corridor widths w = {0.5, 0.6, 0.7, 0.8, 0.9} m. For each
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value of w, we ran 30 simulations with random eligible initial agent positions (i.e., the swarm
is connected in the initial state). Note that this also means that the leader is not necessarily
at the front of the swarm in the initial state.
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Figure 5.11 Straight corridor environment
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Figure 5.12 L-shaped corridor environment

0.5 0.6 0.7 0.8 0.9
w (m)

0

20

40

60

80

100

R
at
e
of

su
cc
es
s
(%

)

Straight case
L-shaped case

Figure 5.13 Rate of mission success for different corridor widths

Figure 5.13 shows the rate of success for each value of w. We observed that for widths
larger than 0.7m, the proposed solution was effective. Indeed, all the agents managed to
reach the other side of the corridor while maintaining connectivity as the maximum rank ρi
among agents remains below N . On the contrary, for widths smaller than 0.7 m, LOS may
be interrupted by the wall as the swarm enters the corridor, leading to the loss of global
connectivity. Even though this may represent a strong limitation, we assume that corridors
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smaller than 0.7 m are rarely seen in a real indoor environment. Furthermore, the conditions
for collision and obstacle avoidance were satisfied in all simulations. Indeed, minimum inter-
agent distance and agent-obstacle distance were always greater than their allowable minimum
value, dc and do respectively. When comparing with the results presented in [5], we can see
that they obtain better performances as their solution can handle corridor widths as small as
0.25 m with success. Nevertheless, their test environment is built using only circle obstacles
of radius 0.5 m which is not realistic and makes it easier for the swarm to enter the corridor.
As a result, when we test their solution in our environment, the swarm is unable to enter
the corridor without losing connectivity. Also, remark that failures manifest themselves in
different ways for the two solutions. On one hand, in [5], a failure consists in a deadlock of
the swarm along the path when the LOS-maintenance rule prevents the swarm from moving.
On the other hand, our solution does not present any LOS-maintenance rules and a failure
consists in global connectivity loss, with one part of the swarm following the leader and the
other remaining roughly motionless.

We have seen in the first test that LOS interruption when going near a corner wall may
result in connectivity failure. Therefore, the second test investigated the behavior of the
swarm when the path goes through an L-shaped corridor as shown on Figure 5.12. Once
again, we set the total corridor length to l = 10 m and performed 30 simulations for different
corridor widths w = {0.5, 0.6, 0.7, 0.8, 0.9} m. In this case, we can see on Figure 5.13 that
the proposed solution was effective for corridors larger than 0.7 m. Therefore, this test shows
that once the swarm has managed to enter the corridor, the proposed solution is able to
move the swarm to the end of the corridor with success in most cases, no matter the shape
of the corridor. In contrast, the results in [5] show that corners along the path significantly
degrade the rate of success. Still, they report slightly better performance as their solution
can handle corridor widths ranging to 0.5 m. But once again, when we test their solution in
our environment featuring sharp obstacles, the swarm is unable to enter the corridor without
losing connectivity.

Now, recall that the main limitation observed in the work of Sakai et al. [5] was the size
of the swarm. As a matter of fact, they only present results for N = 10 and we observed
in simulations that their solution was not able to move a bigger swarm. In this third test,
we demonstrate the scalability of our solution in a realistic scenario and the effectiveness of
the ranking system for leader following in big swarms. To do so, we reproduce the map of
an existing building and design a path that goes around the building. Then, we perform 10
simulations with randomly selected initial states for a swarm of 100 agents, i.e., N = 100.
Figures in Annex A show snapshots of the swarm for different simulation times. For all initial
states, the swarm managed to successfully follow the path. The condition on connectivity
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maintenance is satisfied as the maximum rank ρi among agents remains below N as seen on
Figure 5.16. Furthermore, Figure 5.14 and Figure 5.15 respectively show that the conditions
on collision avoidance and obstacle avoidance are also satisfied. Note that simulations with
swarms bigger than 100 agents have not been performed as they involve prohibitive simulation
time. Nevertheless, the proposed solution can virtually handle any number of agents because
it is fully distributed. In short, we can conclude that our solution is able to safely operate
any number of agents in a realistic environment. Moreover, the ranking system enables good
cohesion among the swarm all along the path as the followers will tend to catch up with their
virtual leader. This feature can be considered an improvement with respect to the solution
in [5] where the swarm can only start regrouping once the last agent clears the obstacle area.
Also, remark that the distributed swarming algorithm proposed here leads to the emergence
of a formation fitting a triangular tiling in which agents have an average of 6 neighbors.
However, on Figure 5.17 we can see that the average number of agents tends to 5 rather than
6. That can be explained by the case of agents at the periphery of the swarm that cannot
have neighbors in every direction.
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CHAPTER 6 CONCLUSION

6.1 Summary of Works

This work aimed to explore the field of quadrotor swarm control from an SAR perspective.
As an introduction to the subject, a wide literature review on the subject was produced in
Chapter 2. Then, a mathematical model of the quadrotor dynamics based on the literature
was presented in Chapter 3. In the same chapter, several digital control laws were designed
in order to provide control modes useful for swarm control. Those control laws had classical
PID-like structures. The remainder of this work consisted of two original and complimentary
swarming solutions based on the leader-follower paradigm.

Firstly, a swarming solution for outdoor navigation (i.e., no obstacle avoidance and unlimited
communication capabilities) was developed in Chapter 4. It accounted for specific design
constraints observed in the material under development at Humanitas Solutions. Unlike most
of the work in the literature, the solution proposed here handles not only the maintenance of
the formation but also the initialization of the formation. In particular, a formation pattern
is defined, then places are optimally assigned and, finally, the agents move to their assigned
place while avoiding others. This solution has been integrated into Humanitas’ quadrotor
onboard software and tested with SITL simulations.

Secondly, a swarming solution for indoor navigation (i.e., obstacle avoidance and limited
communication capabilities) was investigated. Based on previous work by Sakai et al. [5], a
new distributed algorithm for indoor navigation was developed as detailed in Section 5.3. In
particular, the algorithm enforces a certain set of expected individual simple behaviors such
that a large swarm can follow a leader through cluttered environments relying only on local
information. Simulation results discussed in Section 5.4 show that it is possible to operate
a swarm of a hundred quadrotors with the algorithm proposed. The swarm is able to follow
the leader, maintain connectivity, avoid collisions with other agents, avoid obstacles, and
even squeeze to pass through narrow spaces. Overall, the proposed solution outperforms the
solution in [5] in simulations.

6.2 Limitations & Future Research

The designed solution however has some limitations. The outdoor navigation solution pro-
posed here enforces an undesirable centralization on the leader as each agent tracks the
leader’s position. Even though the distributed nature of the communication network allows
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the followers to track the leader without a direct connection, this represents a strong limita-
tion for the solution. Indeed, in cases of leader failure, the mission will simply be aborted.
Thus, future improvements would have to investigate a way to replace the leader in case of
failure. This could also let the swarm select automatically its leader rather than letting the
user decide it which reduces the formation time. Also, the use of a virtual leader could be a
path worth exploring.

On a software level, the low-level control of the quadrotor could be completely relegated
to the autopilot. This may improve control performance and relax the mission manager
workload. Moreover, the mission manager node should be split into several nodes to match
ROS philosophy and provide more modularity and reusability.

Due to material limitations, we were not able to simulate more than seven quadrotors. Also,
no metrics on fault tolerance are given in this work. Finally, the simulation model used does
not account for the actual quadrotor specifications and does not model measurement errors
(e.g., noises, bias, and scale factor error). Therefore, extensive simulation and experimental
tests would have to be carried out to properly assess the solution performance and robustness.
Those would have to be run under both normal and faulty conditions with a large number
of agents.

As for the indoor environment, the proposed solution needs further testing that accounts
for quadrotor dynamics. As a matter of fact, it remains a simple thought experiment in the
current state. Therefore, future works should include experimental validation of the results of
the simulation operating a swarm of a dozen nano-quadrotors. The Crazyflies 2.1 distributed
by Bitcraze appear to be an affordable platform for such a test. As a first step, an external
motion capture system such as Vicon could be used to provide each agent the position of the
nearby obstacles and agents. In that regard, the Crazyswarm project [74] provides a solution
to fly a swarm of Crazyflies with Vicon. Then, extensive work on inter-agent communication,
obstacle detection, and neighbors relative localization, such as presented in [75], would have to
be pursued in order to operate the swarm without the help of a motion capture system. Note
that the solution developed here required high-rate communication between agents contrary
to what is proposed in [5]. Furthermore, as seen in Section 5.4, the solution proposed fails
to maintain connectivity when entering a narrow corridor. Therefore, working on preventing
LOS interruption in such cases would greatly improve the resilience of the swarm.



99

REFERENCES

[1] I. Shaw, Predator Empire: Drone Warfare and Full Spectrum Dominance. University
of Minnesota Press, 2016. [Online]. Available: https://books.google.ca/books?id=
x0DZjgEACAAJ

[2] F. Kendoul, “Survey of advances in guidance, navigation, and control of unmanned
rotorcraft systems,” Journal of Field Robotics, vol. 29, no. 2, pp. 315–378, 4 2012.
[Online]. Available: http:https://doi.org/10.1002/rob.20414

[3] X. H. Ge, F. W. Yang, and Q. L. Han, “Distributed networked control systems: A
brief overview,” Information Sciences, vol. 380, pp. 117–131, 2017. [Online]. Available:
<GotoISI>://WOS:000390501500008

[4] C. T. Recchiuto and A. Sgorbissa, “Post-disaster assessment with unmanned
aerial vehicles: A survey on practical implementations and research approaches,”
Journal of Field Robotics, vol. 35, no. 4, pp. 459–490, 2018. [Online]. Available:
<GotoISI>://WOS:000434130700003

[5] D. Sakai, H. Fukushima, and F. Matsuno, “Leader-follower navigation in
obstacle environments while preserving connectivity without data transmission,” Ieee
Transactions on Control Systems Technology, vol. 26, no. 4, pp. 1233–1248, 2018.
[Online]. Available: <GotoISI>://WOS:000435195200007

[6] J. T. Qi et al., “Search and rescue rotary-wing uav and its application to the lushan ms
7.0 earthquake,” Journal of Field Robotics, vol. 33, no. 3, pp. 290–321, 2016. [Online].
Available: <GotoISI>://WOS:000374846000003

[7] V. San Juan, M. Santos, and J. M. Andujar, “Intelligent uav map generation and
discrete path planning for search and rescue operations,” Complexity, p. 17, 2018.
[Online]. Available: <GotoISI>://WOS:000431548600001

[8] G. S. C. Avellar et al., “Multi-uav routing for area coverage and remote sensing with
minimum time,” Sensors, vol. 15, no. 11, pp. 27 783–27 803, 2015. [Online]. Available:
<GotoISI>://WOS:000365686400017

[9] P. Dames and V. Kumar, “Autonomous localization of an unknown number of
targets without data association using teams of mobile sensors,” Ieee Transactions

https://books.google.ca/books?id=x0DZjgEACAAJ
https://books.google.ca/books?id=x0DZjgEACAAJ
http:https://doi.org/10.1002/rob.20414
<Go to ISI>://WOS:000390501500008
<Go to ISI>://WOS:000434130700003
<Go to ISI>://WOS:000435195200007
<Go to ISI>://WOS:000374846000003
<Go to ISI>://WOS:000431548600001
<Go to ISI>://WOS:000365686400017


100

on Automation Science and Engineering, vol. 12, no. 3, pp. 850–864, 2015. [Online].
Available: <GotoISI>://WOS:000358585200008

[10] X. Ji et al., “Cooperative search by multiple unmanned aerial vehicles in a nonconvex
environment,” Mathematical Problems in Engineering, vol. 2015, 2015.

[11] P. Li and H. B. Duan, “A potential game approach to multiple uav cooperative
search and surveillance,” Aerospace Science and Technology, vol. 68, pp. 403–415, 2017.
[Online]. Available: <GotoISI>://WOS:000407185700037

[12] S. Hayat et al., “Multi-objective uav path planning for search and rescue,” in Robotics
and Automation (ICRA), 2017 IEEE International Conference on. IEEE, 2017, Con-
ference Proceedings, pp. 5569–5574.

[13] X. W. Dong et al., “Time-varying formation control for unmanned aerial vehicles:
Theories and applications,” Ieee Transactions on Control Systems Technology, vol. 23,
no. 1, pp. 340–348, 2015. [Online]. Available: <GotoISI>://WOS:000346794600030

[14] X. H. Ge, Q. L. Han, and X. M. Zhang, “Achieving cluster formation of multi-agent
systems under aperiodic sampling and communication delays,” Ieee Transactions
on Industrial Electronics, vol. 65, no. 4, pp. 3417–3426, 2018. [Online]. Available:
<GotoISI>://WOS:000422806300056

[15] W. L. He et al., “Leader-following consensus of nonlinear multiagent systems with
stochastic sampling,” Ieee Transactions on Cybernetics, vol. 47, no. 2, pp. 327–338,
2017. [Online]. Available: <GotoISI>://WOS:000395476200006

[16] H. Q. Li et al., “High-performance consensus control in networked systems with limited
bandwidth communication and time-varying directed topologies,” Ieee Transactions on
Neural Networks and Learning Systems, vol. 28, no. 5, pp. 1043–1054, 2017. [Online].
Available: <GotoISI>://WOS:000401981800003

[17] Z. C. Hou, I. Fantoni, and Ieee, “Distributed leader-follower formation control for
multiple quadrotors with weighted topology,” 2015 10th System of Systems Engineering
Conference (SoSE), pp. 256–261, 2015. [Online]. Available: <GotoISI>://WOS:
000380516100023

[18] C. Altafini, “Consensus problems on networks with antagonistic interactions,” IEEE
Transactions on Automatic Control, vol. 58, no. 4, pp. 935–946, 2013.

<Go to ISI>://WOS:000358585200008
<Go to ISI>://WOS:000407185700037
<Go to ISI>://WOS:000346794600030
<Go to ISI>://WOS:000422806300056
<Go to ISI>://WOS:000395476200006
<Go to ISI>://WOS:000401981800003
<Go to ISI>://WOS:000380516100023
<Go to ISI>://WOS:000380516100023


101

[19] H. Y. Sun et al., “Energy-optimized consensus formation control for the time-delayed
bilateral teleoperation system of uavs,” International Journal of Aerospace Engineering,
p. 22, 2018. [Online]. Available: <GotoISI>://WOS:000434182900001

[20] R. W. Beard, J. Lawton, and F. Y. Hadaegh, “A coordination architecture for spacecraft
formation control,” IEEE Transactions on control systems technology, vol. 9, no. 6, pp.
777–790, 2001.

[21] A. Clark et al., “Minimizing convergence error in multi-agent systems via
leader selection: A supermodular optimization approach,” Ieee Transactions on
Automatic Control, vol. 59, no. 6, pp. 1480–1494, 2014. [Online]. Available:
<GotoISI>://WOS:000337134000007

[22] L. Sabattini et al., “Distributed control of multirobot systems with global connectivity
maintenance,” Ieee Transactions on Robotics, vol. 29, no. 5, pp. 1326–1332, 2013.

[23] C. W. Reynolds, “Flocks, Herds and Schools: A Distributed Behavioral Model,” in
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH ’87. New York, NY, USA: ACM, 1987, pp. 25–34.
[Online]. Available: http://doi.acm.org/10.1145/37401.37406

[24] X. B. Xiang et al., “On decentralized adaptive full-order sliding mode control of
multiple uavs,” Isa Transactions, vol. 71, pp. 196–205, 2017. [Online]. Available:
<GotoISI>://WOS:000416189100002

[25] W. Jasim and D. B. Gu, “Robust team formation control for quadrotors,” Ieee
Transactions on Control Systems Technology, vol. 26, no. 4, pp. 1516–1523, 2018.
[Online]. Available: <GotoISI>://WOS:000435195200033

[26] S. Bandyopadhyay, S. J. Chung, and F. Y. Hadaegh, “Probabilistic and distributed
control of a large-scale swarm of autonomous agents,” Ieee Transactions on Robotics,
vol. 33, no. 5, pp. 1103–1123, 2017. [Online]. Available: <GotoISI>://WOS:
000412235700007

[27] X. H. Wang, V. Yadav, and S. N. Balakrishnan, “Cooperative uav formation flying with
obstacle/collision avoidance,” Ieee Transactions on Control Systems Technology, vol. 15,
no. 4, pp. 672–679, 2007. [Online]. Available: <GotoISI>://WOS:000247645500007

[28] M. d. Berg et al., Computational geometry: algorithms and applications. Springer-Verlag
TELOS, 2008.

<Go to ISI>://WOS:000434182900001
<Go to ISI>://WOS:000337134000007
http://doi.acm.org/10.1145/37401.37406
<Go to ISI>://WOS:000416189100002
<Go to ISI>://WOS:000435195200033
<Go to ISI>://WOS:000412235700007
<Go to ISI>://WOS:000412235700007
<Go to ISI>://WOS:000247645500007


102

[29] Y. C. Zhao et al., “Uav formation control with obstacle avoidance using improved
artificial potential fields,” in 36th Chinese Control Conference (CCC), ser. Chinese
Control Conference. NEW YORK: Ieee, 2017, Conference Proceedings, pp. 6219–6224.
[Online]. Available: <GotoISI>://WOS:000432015500072

[30] P. D. Nguyen, C. T. Recchiuto, and A. Sgorbissa, “Real-time path generation for mul-
ticopters in environments with obstacles,” in Intelligent Robots and Systems (IROS),
2016 IEEE/RSJ International Conference on. IEEE, 2016, pp. 1582–1588.

[31] X. H. Ge et al., “A survey on recent advances in distributed sampled-data cooperative
control of multi-agent systems,” Neurocomputing, vol. 275, pp. 1684–1701, 2018.
[Online]. Available: <GotoISI>://WOS:000418370200158

[32] J. H. Qin et al., “Recent advances in consensus of multi-agent systems: A brief
survey,” Ieee Transactions on Industrial Electronics, vol. 64, no. 6, pp. 4972–4983, 2017.
[Online]. Available: <GotoISI>://WOS:000401328500066

[33] Z.-W. Liu et al., “Pulse-modulated intermittent control in consensus of multiagent sys-
tems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 5,
pp. 783–793, 2017.

[34] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential field techniques
for robot path planning,” IEEE transactions on systems, man, and cybernetics, vol. 22,
no. 2, pp. 224–241, 1992.

[35] D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic program trajectory
generation for heterogeneous quadrotor teams,” in Robotics and Automation (ICRA),
2012 IEEE International Conference on. IEEE, 2012, pp. 477–483.

[36] T. Zhang et al., “Learning deep control policies for autonomous aerial vehicles with mpc-
guided policy search,” in 2016 IEEE international conference on robotics and automation
(ICRA). IEEE, 2016, pp. 528–535.

[37] D. Conover, “Trajectory generation for a quadrotor unmanned aerial vehicle,” Ph.D.
dissertation, École Polytechnique de Montréal, 2018.

[38] M. Faessler et al., “Autonomous, vision-based flight and live dense 3d mapping with a
quadrotor micro aerial vehicle,” Journal of Field Robotics, vol. 33, no. 4, pp. 431–450,
2016. [Online]. Available: <GotoISI>://WOS:000380102800003

<Go to ISI>://WOS:000432015500072
<Go to ISI>://WOS:000418370200158
<Go to ISI>://WOS:000401328500066
<Go to ISI>://WOS:000380102800003


103

[39] Z. Q. Miao et al., “Formation control of quadrotor uavs without linear velocity
measurements,” 2017 18th International Conference on Advanced Robotics (Icar), pp.
179–184, 2017. [Online]. Available: <GotoISI>://WOS:000426976400028

[40] W. R. Hamilton, “Xi. on quaternions; or on a new system of imaginaries in algebra,” The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 33,
no. 219, pp. 58–60, 1848.

[41] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Modeling, estimation,
and control of quadrotor,” IEEE Robotics Automation Magazine, vol. 19, no. 3, pp.
20–32, Sept 2012.

[42] Z. Jia et al., “Integral backstepping sliding mode control for quadrotor helicopter under
external uncertain disturbances,” Aerospace Science and Technology, vol. 68, pp. 299–
307, 2017.

[43] A. Ataei, I. C. Paschalidis, and Ieee, “Quadrotor deployment for emergency
response in smart cities: A robust mpc approach,” in 54th IEEE Conference
on Decision and Control (CDC), ser. IEEE Conference on Decision and Control.
NEW YORK: Ieee, 2015, Conference Proceedings, pp. 5130–5135. [Online]. Available:
<GotoISI>://WOS:000381554505053

[44] V. Dabin, “Commande d’un quadricoptère par rejet actif de perturbations,” Ph.D. dis-
sertation, École Polytechnique de Montréal, 2018.

[45] M. Ranjbaran and K. Khorasani, “Fault recovery of an under-actuated quadrotor aerial
vehicle,” in Decision and Control (CDC), 2010 49th IEEE Conference on. IEEE, 2010,
pp. 4385–4392.

[46] X. H. Ge and Q. L. Han, “Consensus of multiagent systems subject to
partially accessible and overlapping markovian network topologies,” Ieee Transactions
on Cybernetics, vol. 47, no. 8, pp. 1807–1819, 2017. [Online]. Available:
<GotoISI>://WOS:000405458200001

[47] T. Hamel and R. Mahony, “Attitude estimation on so [3] based on direct inertial mea-
surements,” in Proceedings 2006 IEEE International Conference on Robotics and Au-
tomation, 2006. ICRA 2006. IEEE, 2006, pp. 2170–2175.

[48] T. Tomic et al., “Toward a fully autonomous uav research platform for indoor and
outdoor urban search and rescue,” Ieee Robotics and Automation Magazine, vol. 19,
no. 3, pp. 46–56, 2012. [Online]. Available: <GotoISI>://WOS:000309058000010

<Go to ISI>://WOS:000426976400028
<Go to ISI>://WOS:000381554505053
<Go to ISI>://WOS:000405458200001
<Go to ISI>://WOS:000309058000010


104

[49] M. Zimmermann and W. Sulzer, “High bandwidth orientation measurement and control
based on complementary filtering,” in Robot Control 1991. Elsevier, 1992, pp. 525–530.

[50] E. J. Lefferts, F. L. Markley, and M. D. Shuster, “Kalman filtering for spacecraft attitude
estimation,” Journal of Guidance, Control, and Dynamics, vol. 5, no. 5, pp. 417–429,
1982.

[51] A. M. Sabatini, “Quaternion-based extended kalman filter for determining orientation by
inertial and magnetic sensing,” IEEE Transactions on Biomedical Engineering, vol. 53,
no. 7, pp. 1346–1356, 2006.

[52] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, “A new approach for filtering
nonlinear systems,” in American Control Conference, Proceedings of the 1995, vol. 3.
IEEE, 1995, pp. 1628–1632.

[53] J. L. Crassidis and F. L. Markley, “Unscented filtering for spacecraft attitude estima-
tion,” Journal of guidance, control, and dynamics, vol. 26, no. 4, pp. 536–542, 2003.

[54] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part i,”
IEEE robotics and automation magazine, vol. 13, no. 2, pp. 99–110, 2006.

[55] S. Verykokou et al., “Uav-based 3d modelling of disaster scenes for urban search
and rescue,” in IEEE International Conference on Imaging Systems and Techniques
(IST) / IEEE International School on Imaging, ser. IEEE International Conference on
Imaging Systems and Techniques. NEW YORK: Ieee, 2016, Conference Proceedings,
pp. 106–111. [Online]. Available: <GotoISI>://WOS:000388735200018

[56] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International
journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[57] B. D. Lucas, T. Kanade et al., “An iterative image registration technique with an ap-
plication to stereo vision,” in Artificial Intelligence (IJCAI), 1981, International Joint
Conference on). IJCAI, 1981, pp. 674–679.

[58] A. Hast, J. Nysjö, and A. Marchetti, “Optimal ransac-towards a repeatable algorithm
for finding the optimal set,” Journal of WSCG, vol. 21, no. 1, pp. 21–30, 2013.

[59] C. Forster, M. Pizzoli, and D. Scaramuzza, “Svo: Fast semi-direct monocular visual
odometry,” in Robotics and Automation (ICRA), 2014 IEEE International Conference
on. IEEE, 2014, pp. 15–22.

<Go to ISI>://WOS:000388735200018


105

[60] S. Lynen et al., “A robust and modular multi-sensor fusion approach applied to mav
navigation,” in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on. IEEE, 2013, pp. 3923–3929.

[61] M. Pizzoli, C. Forster, and D. Scaramuzza, “Remode: Probabilistic, monocular dense
reconstruction in real time,” in Robotics and Automation (ICRA), 2014 IEEE Interna-
tional Conference on. IEEE, 2014, pp. 2609–2616.

[62] T. Hamel et al., “Dynamic modelling and configuration stabilization for an x4-flyer.”
IFAC Proceedings Volumes, vol. 35, no. 1, pp. 217–222, 2002.

[63] P. Pounds, R. Mahony, and P. Corke, “Modelling and control of a large quadrotor
robot,” Control Engineering Practice, vol. 18, no. 7, pp. 691–699, Jul. 2010. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0967066110000456

[64] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and control
for precise aggressive maneuvers with quadrotors,” The International Journal of
Robotics Research, vol. 31, no. 5, pp. 664–674, Apr. 2012. [Online]. Available:
https://doi.org/10.1177/0278364911434236

[65] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of a quadrotor
UAV on SE(3),” in 49th IEEE Conference on Decision and Control (CDC), Dec. 2010,
pp. 5420–5425, 00545.

[66] M. Turpin, N. Michael, and V. Kumar, “Trajectory design and control for aggressive
formation flight with quadrotors,” Autonomous Robots, vol. 33, no. 1, pp. 143–156,
Aug. 2012. [Online]. Available: https://doi.org/10.1007/s10514-012-9279-y

[67] E. Luczak and A. Rosenfeld, “Distance on a hexagonal grid,” IEEE Transactions on
Computers, vol. 25, no. 5, pp. 532–533, may 1976.

[68] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval
Research Logistics, vol. 52, no. 1, pp. 7–21, Feb. 1955, 08558. [Online]. Available:
http://doi.wiley.com/10.1002/nav.20053

[69] J. Munkres, “Algorithms for the assignment and transportation problems,” Journal of
the society for industrial and applied mathematics, vol. 5, no. 1, pp. 32–38, 1957, 03117.

[70] R. Jonker and A. Volgenant, “A shortest augmenting path algorithm for dense and
sparse linear assignment problems,” Computing, vol. 38, no. 4, pp. 325–340, Dec. 1987.
[Online]. Available: http://link.springer.com/10.1007/BF02278710

http://www.sciencedirect.com/science/article/pii/S0967066110000456
https://doi.org/10.1177/0278364911434236
https://doi.org/10.1007/s10514-012-9279-y
http://doi.wiley.com/10.1002/nav.20053
http://link.springer.com/10.1007/BF02278710


106

[71] T. Kazmar, “Linear Assignment Problem solver (LAPJV/LAPMOD),” Oct.
2019, 00000 original-date: 2016-04-12T09:47:17Z. [Online]. Available: https:
//github.com/gatagat/lap

[72] B. Gerkey, “C implementation of the Hungarian Method,” 2003, 00018. [Online].
Available: http://robotics.stanford.edu/~gerkey/tools/hungarian.html

[73] “ROS - Introduction,” Open Robotics. [Online]. Available: http://wiki.ros.org/ROS/
Introduction

[74] J. A. Preiss et al., “Crazyswarm: A large nano-quadcopter swarm,” in 2017 IEEE In-
ternational Conference on Robotics and Automation (ICRA). Singapore, Singapore:
IEEE, May 2017, pp. 3299–3304, 00054.

[75] A. C. Luque, “Relative positioning system for UAVs in swarming applications,” Master’s
thesis, Technical University of Denmark, 2018.

https://github.com/gatagat/lap
https://github.com/gatagat/lap
http://robotics.stanford.edu/~gerkey/tools/hungarian.html
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Introduction


107

APPENDIX A INDOOR SIMULATION SNAPSHOTS

For visualization purposes, the following figures present an upper view of a swarm of 100
agents that follows a path in a realistic environment inspired by an existing building plan.
The obstacles (i.e. walls in this case) are depicted using solid lines and the leader target path
is represented with a dotted line. Agents are represented by dots that get darker as their
rank decreases (e.g. the leader is black with a white aureole). Connected agents are linked
by solid thin lines. At last, the leader is identified by a white halo. The full animation is
available at https://youtu.be/Q2PtnOUx4Gs.
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Figure A.1 Snapshot of a simulation for N = 100 at t = 0s
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Figure A.2 Snapshot of a simulation for N = 100 at t = 5s
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Figure A.3 Snapshot of a simulation for N = 100 at t = 10s
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Figure A.4 Snapshot of a simulation for N = 100 at t = 15s
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Figure A.5 Snapshot of a simulation for N = 100 at t = 20s
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Figure A.6 Snapshot of a simulation for N = 100 at t = 25s
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Figure A.7 Snapshot of a simulation for N = 100 at t = 30s
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Figure A.8 Snapshot of a simulation for N = 100 at t = 35s
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