29,593 research outputs found

    Movie indexing via event detection

    Get PDF
    The past number of years has seen a large increase in the number of movies, and therefore movie databases, created. As movies are typically quite long, locating relevant clips in these databases is quite difficult unless a well defined index is in place. As movies are creatively made, creating automatic indexing algorithms is a challenging task. However, there are a number of underlying film grammar principles that are universally followed. By detecting and examining the use of these principles, it is possible to extract information about the occurrences of specific events in a movie. This work attempts to completely index a movie by detecting all of the relevant events. The event detection process involves examining the underlying structure of a movie and utilising audiovisual analysis techniques, supported by machine learning algorithms, to extract information based on this structure. This results in a summarised and indexed movie

    Scalable distributed event detection for Twitter

    Get PDF
    Social media streams, such as Twitter, have shown themselves to be useful sources of real-time information about what is happening in the world. Automatic detection and tracking of events identified in these streams have a variety of real-world applications, e.g. identifying and automatically reporting road accidents for emergency services. However, to be useful, events need to be identified within the stream with a very low latency. This is challenging due to the high volume of posts within these social streams. In this paper, we propose a novel event detection approach that can both effectively detect events within social streams like Twitter and can scale to thousands of posts every second. Through experimentation on a large Twitter dataset, we show that our approach can process the equivalent to the full Twitter Firehose stream, while maintaining event detection accuracy and outperforming an alternative distributed event detection system

    Multimodal Sparse Coding for Event Detection

    Full text link
    Unsupervised feature learning methods have proven effective for classification tasks based on a single modality. We present multimodal sparse coding for learning feature representations shared across multiple modalities. The shared representations are applied to multimedia event detection (MED) and evaluated in comparison to unimodal counterparts, as well as other feature learning methods such as GMM supervectors and sparse RBM. We report the cross-validated classification accuracy and mean average precision of the MED system trained on features learned from our unimodal and multimodal settings for a subset of the TRECVID MED 2014 dataset.Comment: Multimodal Machine Learning Workshop at NIPS 201

    Italian Event Detection Goes Deep Learning

    Get PDF
    This paper reports on a set of experiments with different word embeddings to initialize a state-of-the-art Bi-LSTM-CRF network for event detection and classification in Italian, following the EVENTI evaluation exercise. The net- work obtains a new state-of-the-art result by improving the F1 score for detection of 1.3 points, and of 6.5 points for classification, by using a single step approach. The results also provide further evidence that embeddings have a major impact on the performance of such architectures.Comment: to appear at CLiC-it 201

    Capsule Routing for Sound Event Detection

    Get PDF
    The detection of acoustic scenes is a challenging problem in which environmental sound events must be detected from a given audio signal. This includes classifying the events as well as estimating their onset and offset times. We approach this problem with a neural network architecture that uses the recently-proposed capsule routing mechanism. A capsule is a group of activation units representing a set of properties for an entity of interest, and the purpose of routing is to identify part-whole relationships between capsules. That is, a capsule in one layer is assumed to belong to a capsule in the layer above in terms of the entity being represented. Using capsule routing, we wish to train a network that can learn global coherence implicitly, thereby improving generalization performance. Our proposed method is evaluated on Task 4 of the DCASE 2017 challenge. Results show that classification performance is state-of-the-art, achieving an F-score of 58.6%. In addition, overfitting is reduced considerably compared to other architectures.Comment: Paper accepted for 26th European Signal Processing Conference (EUSIPCO 2018

    A model of human event detection in multiple process monitoring situations

    Get PDF
    It is proposed that human decision making in many multi-task situations might be modeled in terms of the manner in which the human detects events related to his tasks and the manner in which he allocates his attention among his tasks once he feels events have occurred. A model of human event detection performance in such a situation is presented. An assumption of the model is that, in attempting to detect events, the human generates the probability that events have occurred. Discriminant analysis is used to model the human's generation of these probabilities. An experimental study of human event detection performance in a multiple process monitoring situation is described and the application of the event detection model to this situation is addressed. The experimental study employed a situation in which subjects simulataneously monitored several dynamic processes for the occurrence of events and made yes/no decisions on the presence of events in each process. Input to the event detection model of the information displayed to the experimental subjects allows comparison of the model's performance with the performance of the subjects

    Event detection in location-based social networks

    Get PDF
    With the advent of social networks and the rise of mobile technologies, users have become ubiquitous sensors capable of monitoring various real-world events in a crowd-sourced manner. Location-based social networks have proven to be faster than traditional media channels in reporting and geo-locating breaking news, i.e. Osama Bin Laden’s death was first confirmed on Twitter even before the announcement from the communication department at the White House. However, the deluge of user-generated data on these networks requires intelligent systems capable of identifying and characterizing such events in a comprehensive manner. The data mining community coined the term, event detection , to refer to the task of uncovering emerging patterns in data streams . Nonetheless, most data mining techniques do not reproduce the underlying data generation process, hampering to self-adapt in fast-changing scenarios. Because of this, we propose a probabilistic machine learning approach to event detection which explicitly models the data generation process and enables reasoning about the discovered events. With the aim to set forth the differences between both approaches, we present two techniques for the problem of event detection in Twitter : a data mining technique called Tweet-SCAN and a machine learning technique called Warble. We assess and compare both techniques in a dataset of tweets geo-located in the city of Barcelona during its annual festivities. Last but not least, we present the algorithmic changes and data processing frameworks to scale up the proposed techniques to big data workloads.This work is partially supported by Obra Social “la Caixa”, by the Spanish Ministry of Science and Innovation under contract (TIN2015-65316), by the Severo Ochoa Program (SEV2015-0493), by SGR programs of the Catalan Government (2014-SGR-1051, 2014-SGR-118), Collectiveware (TIN2015-66863-C2-1-R) and BSC/UPC NVIDIA GPU Center of Excellence.We would also like to thank the reviewers for their constructive feedback.Peer ReviewedPostprint (author's final draft

    Traffic event detection framework using social media

    Get PDF
    This is an accepted manuscript of an article published by IEEE in 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC) on 18/09/2017, available online: https://ieeexplore.ieee.org/document/8038595 The accepted version of the publication may differ from the final published version.© 2017 IEEE. Traffic incidents are one of the leading causes of non-recurrent traffic congestions. By detecting these incidents on time, traffic management agencies can activate strategies to ease congestion and travelers can plan their trip by taking into consideration these factors. In recent years, there has been an increasing interest in Twitter because of the real-time nature of its data. Twitter has been used as a way of predicting revenues, accidents, natural disasters, and traffic. This paper proposes a framework for the real-time detection of traffic events using Twitter data. The methodology consists of a text classification algorithm to identify traffic related tweets. These traffic messages are then geolocated and further classified into positive, negative, or neutral class using sentiment analysis. In addition, stress and relaxation strength detection is performed, with the purpose of further analyzing user emotions within the tweet. Future work will be carried out to implement the proposed framework in the West Midlands area, United Kingdom.Published versio
    corecore