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It is proposed that human decision making in many multi-task situations
might be modeled in terms of the manner in which the human detects events
related to his tasks and the manner in which he allocates his attention among
hls tasks once he feels events have occurred. A model of human event
detection performance in such a situation is presented. An assumption of the
model is that, in attempting to detect events, the human eenerates the
probabilities that events have occurred. Dlscriminant analysls is used to
model the human's generation of these probabilities. An experimental study
of human event detection performance in a multiple process monitoring
situation is desorlbed and the application of the event detection model to
this situation is addressed. The experimental study employed a situation in
which subjects _lmultaneously monitored several dynamic processes for the
occurrence of event_ and made yes/no decisions on the presence of events in
each process. Input to the event detection model of the information
displayed to the experimental subjects allows comparison of the model's
performancewith the performanceof the subjects.

INTRODUCTION

In many systems, the human operator spends much of his time monitoring
subsystems for events which call for action on his part. Aircraft, power
stations, and process control plants are examples of such systems. As the
complexity of these systems increases, the operator becomes responsible for
more subsystems of greater variety. There is consequently a greater
probability that the operator will encounter situations in which there are
more tasks than he can acceptably perform.

One means of maintainin_ the operator's workload at a satisfactory level
is the introduction of automation capable of performing some of the
operator's tasks. Models of the operator's task performance would be of use
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.'in predicting tl_e performance gains to be expected from the introduction of
such aids. Further, in systems in which !_he responsibilities for some tasks
are shared by the operator and an automated decision maker, these models

•. might also be used within the system to coordinate the actions of the two
decision makers.

Senders [I] and Smallwood [2] have modeled human decision making in
multiple process monitoring tasks. Senders postulated that the human monitor
samples his displays in a manner Which allows reconstructionof the displayed ........

._. signals. An information theory,approach is employed to determine how often
and for what duration the human must sample each display. Smallwood proposed
that the human operator forms an internal model of the processes he is

• monitoring and of the environment relevant to his task as a result of his
past perceptions of them. A Situation is considered in which the operator
seeks to detect excursions of instruments beyond threshold values. The
operator is modeled as directing, his attention to the instrument whose
current probability of exceeding threshold (based on the operator's internal
model) is greatest. It might be noted, in passing, that the internal model
concept discussed by Smallwood is perhaps as appropriate to the design of
automated decision makers "as it is to modeling the human decision maker. If
the automated decision maker is to interact approprlately with the human, it
would seem that its internal model of the relevant envircnment should include
a model of the human.

Carbonell [3,4] and Senders and Posner [5] have proposed queueing theory
approaches to the modeling of humam decision making in multiple process
monitoring tasks. Carbonell uses a priority queueing discipline. He assumes
that the human operator attempts to minimize the risk involved in not
observing other instruments when he chooses to monitor a particular
instrument. Senders and Posner employ a first come first served service
discipline. They suggest two models which might be used to estimate the
inter-observation intervals for an instrument (i.e., the time between
arrivals of the instrument to the queue of instruments awaiting observation
by the human monitor). The first model involves the degree of the observer's
uncertainty about the value of the variable displayed on the instrument. The
second model involves the probability that the displayed variable will e_ceed
an acceptable limit.

The models cited above emphasize the monitoring of displays, rather than
the decisions or actions that result from the human operator's perception of
the displayed values. The operator's motivation for monitoring the displays
is the possibility that an event which requires his action will occur. The
multi-task decision making problem addressed in this paper concerns the event
detection and action selection decisions the operator makes on the basis of
the information he gains through monitoring.

Human decision making in such multl-task situations, then, might be
modeled in terms of the manner in which the human detects events related to
his tasks and the manner in which he allocates his attention among his tasks
once he feels events have occurred. Gai and Curry [6] have developed a model
of the bureaumonitor in a failure detection task. The model has two stages,
the first being a galmn filter which estimates the states and observations
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of ,the monitored process and the second a decision mechanism which operates
on the Kalman filter residuals using sequential analysis concepts. The model
can be used to describe the human monitor's detection of additive failures in

stationary random processes. "

Sheridan and Tulga [7] have modeled the manner"in which the human

operator allocates his attention among various tasks. They address a

situation in which events present themselves unequivocally and ,sea dynamic ..-_
programming approach to determine the action sequence which maximizes the

operator's earnings. This action sequence is begun, but can be superceded by
a new sequence calculated in response to the appearance of additional tasks.

Rouse [81 has investigated the issue of allocation of decision making
responsibility between a human operator and an automated decision maker. He

presents a mathematical formulation of the multi-task decision making
situation appropriate to the modeling of either decision maker. Based on

displayed information, the decision maker is assumed to generate

probabilities that events have occurred in his tasks. He also generates
density functions which characterize his perceptions of what might occur in

his tasks while his attention is diverted to a particular task and how long
his attention will be diverted should he decide to take a given action.
Combining estimates of the probabilities events have occurred with the

density functions of time between events in the tasks and action times with

respect to the tasks, the decision maker chooses his actions to minimize an

appropriate cost criterion. In this paper, we present a model of the human's

event detection performance consistent with this mathematical formulation, ]
describe an experimental study of event detection performance in a multiple

process monitoring situation, and address the application of the model to the
process monitoring situation.

THE EVENT Dk_ECTION MODEL

The event detection model assumes that, in attempting to detect events,

the human generates the probabilities that events have occurred. A
discrlmirant analysis approach [9,10] is used to model the human's generation

of these probabilities. Our use of discriminant analysis to model the
human's generation of event probabilities is motivated by the fact that this

approach does not require explicit models of the systems the human is

monitoring. An understanding of the systems is certainly helpful in
determining the features to extract from the observations. But explicit

models of the systems' structures are not required.

For each task i, various features xij , J=1,2, ...,mi, are extracted from
the human's task related observations zi. These features are properties of
the observations that characterize (or are believed to characterize) the

presence or absence of events related to the task. Following the extraction
of a set of features, the value of a linear discriminant function
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Yi = vilxil �"" �VimiXimi (1)

is calculated. Based on previous experience with the task, estimates are
made of the discrimimnt function coefficients vil, J=1,2, ...,ml, with which
to combine the feature values xi_ to obtain the "discriminantfunction score
¥i tha_ best dlfferentiatesobse_vatlons of events from the rest of the task
related observations. Estimates of the mean and variance of the discrimirant
function over observations of events and over the rest of the observations

are also formed. The a posterior:iprobability that an event has occurred is J

generated using the value of the discrimlnant function score, the estimates _
of the means and variances of this score over events and "non-events", and an
estimate of the a priori probability of the event.

If the human operator is forced to make a yes/no response on the
presence of an event, we might assume that he chooses the response which
maximizes his expected reward. We can then express his decision in a signal
detection, manner and state that he should respond "yes, an event related to _
task i has occurred" if the following inequality holds.

P(ei/Yi) VCRI + CFAi............ > .......... (2)

I - P(eilYi) VHi + CMi

P(ei/Y i) is the a posteriori probability that an event related to task i has q
occurred. The value of this probability is generated by the event detection

model. VCR is the value of correctly responding "no event" (a correct
rejection), CFA is the cost of incorrectly responding "event" (a false
alarm), VH is the value of correctly responding "event" (a hit), and CH is /
the cost of incorrectly responding "no event" (a miss).

It is predicted, then, that if the operator is forced to make a yes/no
decision on the presence of a task related event, he calculates the
likelihoodratio of _e event (the left hand side of Eq. (2)). He compares
the magnitude of the likelihood ratio with a threshold determined by the
values of correct responses and the costs of incorrect responses (the right
hand side of gq. (2)). He responds "event" if the likelihood ratio exceeds
the threshold.

THEEVENTDETECTIONEXPERI_NT

An experiment has been run employlng a situation in which subjects
simultaneouslymonitor several dynamic processes for the occurrence of events
and make yes/no decisions on the presence of events in each process. Figure
I illustrates the display observed by the subjects in the experiment. The
static display _s generated on a Tektronix 4010 by a time-shared DEC-System

i 10 and depicts the measured values of the outputs of nine processes over 100

I sampling intervals (i.e., 101 points). The processes had identical second
order system dynamics _ritha natural frequencyof 0.75 rad/seo and a damping
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Figure I. The Multiple Process Monitoring Situation

ratio of 0.5. Samples were taken at 0.2 second intervals. The inputs to the
processes were zero-mean Gaussian white noise sequences of identical
variance. The displayed measurements were obtained by corrupting the process !
outputs with additive zero-mean Gaussian white noise sequences which normally ii
had identical variance. The measurement noise variance was normally selected !
to yield measurementswith signal-to-noise ratios of 25.0. An abnormal event i
in a process was defined by an increase in the measurement noise variance
such that the signal-to-noise ratio following an event occurrence was
decreased to 95% of the signal-to-noise ratio of the preceding measurement.
Thus, abnormal events became more pronounced with each measurement following
their occurrence.

Af'terscanning the nine process histories, the subject was given an
opportunity to key in the numbers of processes in which he had decided an
abnormal event had occurred. He was then _iven feedback regarding the actual
states of the processes he had keyed in ("I" indicating the normal state, "0"
indicating the abnormal state). An iteration in a trial was completed by
erasing the display, scoring the subject's performance, and returning all
abnormal processes detected by the subject to the normal state. Another
iteration was then begun by generating a new display depicting the process
histories advanced 10 sampling intervals in time as illustrated by Figure 2.
(The dashed vertical lines indicated to the subject the point at which he ,

: last responded to each process.)

I
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Figure 2. An Updated Display

The subject was allowed to respond to as many events as he thought had

, occurred. He was awarded points for his hits, reoeivlng high scores for
responding to events soon after their occurrence and lower scores for tardier

responses. A fixed number of points was deducted for each false alarm. The

subject was allowed to study the dlsolays as long as he wished, but any time

taken beyond the first minute on each iteration reduced the score awarded for
hits made on that iteration.

Eight subjects were _iven three trials spaced over several da.vs. Each

trial was 20 iterations long. The first and third trlals given half the
subjects were identical, with one ,_vent scheduled to occur per iteration.
Their second trial scheduled the same events as the first and third trials,

but also scheduled an additional event occurrence each iteration, The rest

of the subjects were given the same trials in different order so that two I

events were scheduled to occur per iteration in the first and third trials i
while one occurrence per iteration was scheduled in the second trial. (Not I
all scheduled events actually occurred. If an event was scheduled to occur I

in a process in which a previous event had not yet been detected by the

subject, the scheduled event w_s deleted from the trial.) Events were

scheduled to occur uniformly over the nine processes and over the 10 new

polnts displayed for each process on each iteration (the last 10 points on

the first iteration, in _ihlch all 101 points were new) within the constraint
that no two events could occur in a process within 30 sampling Intervals of
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each other.

Before e_ch trial, the subject was told the average number of new events
he could ex_,_ctto occur per iteration. He was not given sny Infor,_ation
regarding the dynamics of the processes, but was told that he could exr,ect
the processe_ to exhibit similar characteristicswhen operating normally. He
was also not told what parameter changes defined events, but was told that
all events would generally exhibit similar characteristics, and all would
become more pronounced as time passed. The subject was given several ....
iterations of training before each trial during which solid vertical ].ines
were included on the process histories to mark exactly when and where e_ents
had occurred.

During each trial, the subject was asked to keep a log in which he
described his strategies for event detectionand noted characteristics of the j
process measurements he used in his attempts to detect events. After each
trial, he was asked to order these characteristics in terms of their
usefUlness in event detection.

APPLICATION OF THE MODEL TO THE EXPERI_NTAL SITUATION

The event detection model suggests that the human operator in the
experimental situation Just described extracts various features from his
observations of the process measurements. He attempts to select features
which characterize the presence or absence of task related events. Through
his experience with the processes, the operator has formed estimates of the
discriminant function coefficients with which to combine the features to
obtain a discrimimnt function score. He h_s also formed estimates of the
means and variances of this score over observations of events and over the
rest of his observations. The operator generates the likelihood ratio that
an event has occurred based on the value of the dlscrimlnantfunction score.
his estimates of the means and variances of the score, and his estima_e of
the a priori probability of an event occurrence. He compares the likelihood
ratio with a threshold that is based solely on the values of correct
responses and the costs of incorrect responses and responds "event" if the
llketihoodratio exceeds the threshold.

Four features of the process measurements were selected for use with the
event detection model. Selection of these featursv was guided by the
comments of the experimental subjects regarding the characteristics of the
proces_ measurements they found usefUl in event detection. The first feature
involves the magnitude changes between successive measurements in a seouence
of the most recent measurements. The second feature involves the presence of
reversals in direction in this sequence (changes from :oslt!ve slope to
negative, or vice versa, of the llne segments connecting the measurements of
the sequence). The third feature tests for the simultaneous ocourence of
large magnitude changes and reversals. The fourth feature, llke the first,
is a measure of magnitude ohange_-,but it is much more local in that it
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ļ

invo!vea oniy the four moat recent measurements of the process output. {

In extracting these features from the process measurements, the vr_ ,_ei_
_ _ of the features over recent measurements are weighted more heavily than _h._

values over earlier measurements. The weight decreases exponentially _h
the age of the measurement and the rate of this decrease is a free parameter.
The value of the first feature, for example, a measure of the masn!tudo
changes between successive measurements in a sequence of the n most recen_
masurements of a process' output, is given by

O-t 0-!

x 1 = { k_=Iz(k+l)-z(k)l'exp[- _(n-l-k)])/ _exp[-/3(n-l-k)]=, (3)

_here z(k) is the k th measurement in the sequence, z(n) is the most recent
_surement, and _ is the free parameter governing the relative weighting of
the .feature's value over recent and earlier measurements in the sequence.

.: In the generation of the likstihood ratio of an event in a process at a
given tteratlm of an experimental trial, the sequence of process
measurement_ over which the features are calculated ends with the lazt
measurement displayed for the process on that iteration. The cutoff length

i used in extracting the features fran the process is a free parameter. Values
'_ of tho features over process masurementa taken earlier than the cutoff are
: not calculated (or, effectively, are assigned zero weight). If the subject
1 responded "event" to the _rouess at some _oint following the cutoff, then

features are calculated over only those measurements occurring after this
response. The information on the state of the process that the subject _atns

i when he responds to the process motivates this constraint, If the process is
in the normal state, then on muooeeding iterations the subject knows that if
an event has ooaurred, It must have occurred following his last response. If

i the process Is in the a_ormal state, then the process is reset to normal
when the subject keys In his response. On succeeding iterations the subject
knows that If another event has occurred in the process, It must have
occurred following his last response. In either case, the subject (and the
model) should calculate features only over measurements occurring after the
• ubJect's last response.

The estimation of dlacrtmlmnt _unotion coefficients requires a
representation of normal and abnormal pro_ess measurements. This
representation was formed using the process histories displayed to the
_bJeot on hls third experimental trial, _he _rocess histories are separated
into two groups of sequences - normal and abnormal. Sequences of
masurem_nts beginning when a process w_ returned to the normal state and
ending when an event occurred are defined to be normal. Sequences of
measurements beginning when an event occurred and ending when the proceam was
returned to the normal state are defined to be a_ormal. The values of the
four featur_mswera calnulated over the entire length of each of the a_quenoe8
in the two groups. A dtsor_mleant analysis was then performed on the
reaultln_ two groups of feature values to dete_tne the dlsorimlmnt function

i coefficients vt, J.l,2,,..,m, wlth which to combine the features to best
differentiate _etween the two groups. The mean value and the variance of the

|
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resulting discrimlmnt function scores for the sequences in each of the two
groups was also calculated.

The final requirements for application of the event detection model to
the experimental situation are estimates of the a priori probabilities of
event occurrences and the selection of a threshold against which likelihood
ratios of events can be compared. For experimental trials in which one event
was scheduled to occur per update of the display over the nine processes
monitored by the subject rhea priori probability of an event occurrence in
each process was fixed at I/9. For trials in which two events were scheduled

F

to occur per display update, the a priori probability was fixed at 2/9. The .-
threshold against which the likelihood ratios of events are compared is
assumed to remain constant through an experimental trial. The magnitude of
this constant is a free parameter.

Figure 3 compares the event detection performance of t_• model wlth the _ i
actual performance of each of the eight subjects In the third trial of the
experiment. In this trial, 20 events were scheduled to occur in the trials i
given ,_ubJectsA,B,C, and D, while qO events were scheduled to occur in the
t_lals given subjects £,FoG, and H. In applying the model to each of these i
trials, the n_mber of measurements over which features were extracted (cutoff
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i
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lenfth) and the relative welghtin6 of recent and older points (_) were
adjusted to improve the fit of the model's performance to each subject's
performance. The value of the threshold against which likelihood ratios of
events were compared was also adjusted to improve the fit. Figure 3 reveals
a hlgh degree of correspondence between the model's performance and the
performanceof most subjects.

Figure 4 compares the event detection performance of the model wlth the
actual performance of the eight subjects In the second trial of the
experiment. Zn this trial, 40 events were scheduled to occur in the trials
8ivan subjects A,B,C, and D, while 20 events were scheduled to occur in the
trials 8ivan subjects £,F,G, and H. In applying the model to e_ch of these
trials, none of the parameters of the modal were changed from the settings
used to obtain the results presented in Figure 3. Despite the fact that the
numbers of events scheduled in these trials differ from those in the trials
used to assign the values of the parameters, the correspondence between the
model's performanceand the performance of most subjects Is reasonable.

L | i | . t. ,
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FA_ure 4. Comparison of Hodel w_th Subjects on Second Trial

Table I compares the mean detection times (in terms or the number of
umplln8 Intervals which elapsed from the occurrence of an event to the time
of its detection) for hits common to both sub_ect and model In the trials
presented In Ftsures 3 and 4. It should be noted that the fact that the mean
detection times of the model are consistently miler than those of the
subjects Is an artifact of the manner In which the model's performance was
tnveotlgated. The model was teated on the process histories displayed to a
subject In his experimental trial. In these trials, a process uas returned
to the normal state at the point at which the subject detected an event In
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the process. Thus, in going over the process histories the model can never
respond to an event later than the subject responded" to it. If the model

fails to respond to an event by the time of the subject's response, the model

is scored as Imvi_g mlssed"that event.

Table I. - Comparison of Mean Detection Times

Trial .1 Trial 2

-. 5

Subject Subject Model Subject Model
Code

A 24 19 24 20

E 26 21 25 " 19
C 28 17 28 17 ,
D 32 21 30 16
E i8 13 22 .17
F 17 14 27 16

G 20 17 27 2O

20 17 22 18

_e plnn to evaluate the model in the near future using a somewhat
different approach. RBther than running the model over the process histories

displayed to a subject on an earlier experimental trial (and constraining the
timing of the model's responses by the timing of the subject's responses in

that trial), we will use the model in place of the subject in the event

detection experiment. Processes in which events occur will then remain in
the abnormal state until the model responds to the process The only

constraint on the model's detection times will be the end of the experimental

trial. Because the model's detection time for esch event need no longer be
less than or equal to the subject's detection time for that event, we expect

that, for a given number of hits, the model's threshold can be raised to

achieve the longer mean detection times and smaller numbers of false alarms
characteristic of the subjects in the experiment.

CONCLUDING REMARKS

In applying the event detection model to the experimental situation

described in this paper, we studied a situation in which the subject was

forced to respond yes or no to the p_ssibility of an event related to each of
nine processes. In general, the human operator is not forced to make such

yes/no decisions with respect to each of his tasks. Instead he uses his
estimates of the probabilities of task-related events (w_ioh the event

detection model generates) in deciding bow to allocate his attention among

his tasks. We plan to run an experiment investigating the human's attention

allocation performance in a multiple process monitoring situation similar to
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the one employed in the event detection experiment discussed here. Data from
this experiment will be used to develop and validate a model of attention
allocation performance in multi-task situations. (The modeling of human

attention allocation performance in multi-task situations is considered in

[11].) This model might be used in conjunction with the event detection model

as a part of the design process for, and the implementation of, automated

decisioa making systems.
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