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his tasks once he feels events have occurred. A model of human event
detsction performance in such a situation is presented, An assumption of the
model is that, in attempting to detect events, the human generates the
probabiiities that events have ocourreq, Discriminant analysis is yseq to
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performance with the performance of the subjects,

INTRODUCTION

In many systems, the human operator Spends much of hig time monitoring
subsystems for events which call for action on his part, Aireraft, power
stations, and process control plants are -examples of syuch Systems. As the
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One means of maintaining the operator's workload at g Satisfaotory level 5
is the introduct ion of automation capable of performing some of the !
operator's tasks, Models of the operator's task performance would be of use

#This research was Supported by the National Aeronautics and Space
Administration under NASA-Ames Grant NSG-2119,
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‘4n predicting the performance gains to be expected from the introduction of
such aids. Further, in systems in which ‘he responsibilities for some tasks
are shared by the operator and an automated decision maker, these models
might also be used within the system to coordinate the actions of the two
decision makers.

Senders [1] and Smallwood [2] have modeled human decision making in
multiple process monitoring tasks. Senders postulated that the human monitor
samples his displays in a manner which allows reconstruction of the displayed
signals. An information theory- approach is employed to determine how often
and for what duration the human must sample each display. Smallwood proposed
that the human operator forms an internal model of the processes he is
n - monitoring and of the environment relevant to his task as a result of his
? past perceptions of them. A situation is considered in which the operator
seeks to detect excursions of instruments beyond threshold values. The
operator is modeled as directing his attention to the instrument whose
current probability of exceeding threshold (based on the operator's internal
model) is greatest. It might be noted, in passing, that the internal model
concept discussed by Smallwood is perhaps as appropriate to-the design of
automated decision makers as it is to modeling the human decision maker. If
the automated decision maker is to interact appropriately with the human, it
would seem that its internal model of the relevant envircnment should include
a model of the human,

Carbonell [3,4] and Senders and Posner [5] have proposed queueing theory
approaches to the modeling of human decision making in multiple process
monitoring tasks. Carbonell uses a priority queueing discipline. He assumes
that the human operator attempts to minimize the risk involved in not
observing other instruments when he chooses to monitor a particular
instrument. Senders and Posner employ a first come first served service
discipline. They suggest two models which might be used to estimate the
inter-observation intervals for an instrument (i.e., the time between
arrivals of the instrument to the queue of instruments awaiting observation
by the human monitor). The first model involves the degree of the observer's
uncertainty about the value of the variable displayed on the instrument. The
second model involves the probability that the displayed variable will exceed
an acceptable limit.

The models cited above emphasize the monitoring of displays, rather than .
the decisioms or actions that result from the human operator's perception of
the displayed values. The operator's motivation for monitoring the displays
is the possibility that an event which requires his action will occur. The
multi-task decision making problem addressed in this paper concerns the event
detection and action selection decisios the operator makes on the basis of
the information he gains through monitoring.

Humn decision making in such multi-task situations, then, might be
modeled in terms of the manner in which the human detects events related to
his tasks and the manner in which he allocates his attention among his tasks
once he feels events have occurred. Gai and Curry [6] have developed a model
of the humaun monitor in a failure detection task. The model has two stages,
the first being a Kalman filter which estimates the states and observations
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of .the monitored process and the second a decision mechanism which operates
on the Kalman filter residuals using sequential analysis concepts, The model
can be used to describe the human monitor's detection of additive failures in
stationar'y random processes.

‘Sheridan and Tulga [7] have modeled the manner in which the human

operator allocates his attention among various tasks. They address a

situation in which events present themselves unequivocally and nse a dynamic
programming approach to determine the action sequence which maximizes the
operator's earmings. This action sequence is begun, but can be superceded by

a new sequence calculated in response to the appearance of additional tasks.,

Rouse [8]1 has investigated the issue of allocation of decision'making
responsibility between a human operator and an automated decision maker. He
presents a mathematical formulation of the multi-task decision  making
situation appropriate to the modeling of either decision maker. Based on
displayed information, the decision maker is assumed to generate
probabilities that events have occurred in his tasks. He also generates
density functions which characterize his perceptions of what might occur in
his tasks while his attention is diverted to a particular task and how long
his attention will be diverted should he decide to take a given action.
Combining estimates of the probabilities events have occurred with the
density functions of time between events in the tasks and action times with

~ respect to the tasks, the decision maker chooses his actions to minimize an

appropriate cost criteriom. In this paper, we present a model of the human's
event detection performance consistent with this mathematical formulation,
describe an experimental study of event detection performance in a multiple
process monitoring situation, and address the application of the model to the
process monitoring situation.

THE EVENT DETECTION MODEL

The event detection model assumes that, in attempting to detect events,
the human generates the probabilities that events have occurred. A
discriminant analysis approach [9,10] is used to model the human'‘s generation
of these probabilities. Our use of discriminant analysis to model the
human's generation of event probabilities is motivated by the fact that this
approach does not require explicit models of the systems the human is
monitoring. An understanding of the systems is certainly helpful in
determining the features to extract from the observations. But explicit

models of the systems' structures are not required.

For each task i, various features x;,, j=1,2, ...,my, are extracted from
the human's task related observations z;. These features are properties of
the observations that characterize (or are believed to characterize) the
presence or absence of events related to the task. Following the extraction
of a set of features, the value of a linear discriminant funection
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Yi = vi1x11 * ce0 * vimiximi '(1)

is calculated. Based on previous experience with the task, estimates are
mde of the discriminant function coefficients vy 4, J=1,2, «..,my, with which
to combine the feature values X4 to obtain the ‘discrimimant function score
Yy that best differentiates observations of events from the rest of the task
related observations. Estimates of the mean and variance of the diseriminant
function over observations of events and over the rest of the observations
are also formed. The a posteriori probability that an event has occurred is
generated using the value of the discriminmant function score, the estimates
of the means and variances of this score over events and "non-events", and an
estimate of the a priori probability of the event.

If the human operator is forced to make a yes/no response on the
presence of an event, we might assume that he chooses the response which
maximizes his expected reward. We can then express his decisiomn in a signal
detection manner and state that he should respond "yes, an event related to
task i has occurred" if the following inequality holds:

P(ei/Yi) VCR + CFA
5 S8y i

- (2)
1 - P(ei/Yi) VH

1 + CMi

P(eilYi) is the a posteriori probability that an event related to task i has
occurred. The value of this probability is generated by the event detection
model. Vep is the value of correctly responding "no event” (a correct
rejection), Cpy is the cost of incorrectly responding vevent” (a false
alarm), Vy 1is the value of correctly responding nevent" (a hit), and Cy is
the cost of incorrectly responding "o event" (a miss).

It is predicted, then, that if the operator is forced to make a yes/no
decision on the presence of a task related event, he calculates the
likelihood ratio of the event (the left hand side of Eq. (2)). He compares
the magnitude of the likelihood ratio with a threshold determined by the
values of correct responses and the costs of incorrect responses (the right
hand side of Eq. (2)). He responds vevent" if the likelihood ratio exceeds
the threshold.

THE EVENT DETECTION EXPERIMENT

An experiment has been run employing a situation in which subjects
simultaneously monitor several dynamic processes for the occurrence of events
and make yes/no decisions on the presence of events in each process. Figure
1 illustretes the display observed by the subjects in the experiment. The
static display was generated on a Tektronix 4010 by a time-shared DEC-System
10 and depiocts the measured values of the outputs of nine processes over 100
sampling intervals (i.e., 101 points). The processes had identical second
order system dynamics with a natural frequency of 0.75 rad/sec and a damping
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Figure 1. The Multiple Process Monitoring Situation

ratio of 0.5. Samples were taken at 0.2 second intervals. The inputs to the
processes were zero-mean Gaussian white noise sequences of identical
variance. The displayed measurements were obtained by corrupting the process
outputs with additive zero-mean Gaussian white noise sequences which normally
had identical variance. The measurement noise variance was normally selected
to yield measurements with signal-to-noise ratios of 25.0. An abnormal event
in a process was defined by an increase in the measurement noise variance
such that the signal-to-noise ratio following an event occurrence was
decreased to 95% of the signal-to-noise ratio of the vpreceding measurement.
Thus, abnormal events became more pronounced with each measurement following
their occurrence.

After scanning the nine process histories, the subject was given an
opportunity to key in the numbers of processes in which he had decided an
abnormal event had occurred. He was then given feedback regarding the actual
states of the processes he had keyed in ("1" indicating the normal state, “O"
indicating the abnormal state). An iteration in a trial was completed by
erasing the display, scoring the subject's performance, and returning all
abnormal processes detected by the subject to the normal state. Another
iteration was then begun by generating a new display depicting the process
histories advanced 10 sampling intervals in time as illustrated by Figure 2.
(The dashed vertical lines indicated to the subject the point at which he
last responded to each process.)
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The subject was allowed to respond to as many events as he thought had
occurred. He was awarded points for his hits, receiving high scores for
responding to events soon after their occurrence and lower scores for tardier
responses. A fixed number of points was deducted for each false alarm. The
subject was allowed to study the displays as long as he wished, but any time
taken beyond the first minute on each iteration reduced the score awarded for
hits made on that iteration.

Eight subjects were given three trials spaced over several days. Each
trial was 20 iterations long. The first and third trials given half the
subjects were jdentical, with one -vent scheduled to occur per iteration.
Their second trial scheduled the same events as the first and third trials,
but also scheduled an additional event occurrence each iteration, The rest
of the subjects were given the same trials in different order so that two
events were scheduled to occur per iteration in the first and third trials
while one occurrence per jteration was scheduled in the second trial. (Not
all scheduled events actually occurred. If an event was scheduled to occur
in a process in which a previous event had not yet been detected by the
subject, the scheduled event was deleted from the trial.) Events were
scheduled to occur uniformly over the nine processes and over the 10 new
points displayed for each process on each jteration (the last 10 points on
the first iteration, in vhich all 101 points were new) within the constraint
that no two events could oceur in a process within 30 sampling intervals of

668




C T T TR T T R TRSRAR T TR AR T R TR R

each other.

Befcre each trial, the subject was told the average number of new events
he could ex,:et to occur per iteration. He was not given any information
regarding thre dynamics of the processes, but was told that he could exrect
the processes to exhibit similar characteristics when operating normally. He
was also not told what parameter changes defined events, but was told that
all events would generally exhibit similar characteristics, and all would
become more pronounced as time passed, The subject was given several
iterations of training before each trial during which solid vertical lines
were included on the process histories to mark exactly when and where events
had occurred.

During each trial, the subject was asked to keep a log in which he
described his strategies for event detection and noted characteristics of the
process measurements he used in his attempts to detect events. After each
trial, he was asked to order these characteristics in terms of their
usefulness in event detection.

APPLICATION OF THE MODEL TO THE EXPERIMENTAL SITUATION

The event detection model Suggerts that the human operator in the
experimental situation just described extracts various features from his
observations of the process measurements. He attempts to select features
which characterize the presence or absence of task related events. Through
his experience with the processes, the operator has formed estimates of the
diserimimant function coefficients with which to combine the features to
obtain a discriminmant function score. He has also formed estimates of the
means and variances of this score over observations of events and over the
rest of his observations. The operator generates the likelihood ratio that
an event has occurred based on the value of the discriminant function score.
his estimates of the means and variances of the score, and his estimate of
the a priori probability of an event occurrence. He compares the likelihood
ratio with a threshold that is based solely on the values of correot
responses and the costs of incorrect responses and responds “event" if the
likelihood ratio exceeds the threshold.

Four features of the process measurements were selected for use with the
event detection model. Selection of these features was guided by the
comments of the experimental subjects regarding the characteristics of the
process measurements they found useful in event detection. The first feature
involves the magnitude changes between Successive measurements in a seguence
of the mst recent measurements. The second feature involves the presence of
reversals in direction in this sequence (changes from -ositive slope to
negative, or vice versa, of the line segments connecting the measurements of
the sequence). The third feature tests for the simultaneous occurence of
large magnitude changes and reversals. The fourth feature, like the first,
is a measure of magnitude changes, but it is much more local in that it
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involves only the four most recent measurements of the process output.

In extracting these features from the brocess measurements, the val.o:
of the features over recent measurements are weighted more heavily than “ne
values over earlier measurements. The weight decreases exponentially w-tih
the age of the measurement and the rate of this decrease is a free parameter .
The value of the first feature, for éxample, a measure of the magn'tud:
changes between Successive wmeasurements in a sequence of the n most recent
- measurements of a process’ output, is given by

X1=(

xMﬂ
1]

|2 (0e1)=2000) 1 expl= B (ne1-k) 1} / S expl- B(ne1-k)] (3)
1 k=t

isasurement, and B is the free parameter goveming the relative weighting of
the eature's value over recent and earlier measurements in the sequence.

In the generation of the likelihood ratio of an event in a process at a
glven iteration of an  experimental trial, the Sequence of process
measurements over which the features are calculated ends with the 1last
measurement displayed for the process on that iteration. The cutoff length
used in extracting the features from the process is a free parameter. Values
of the features over process measurements taken earlier than the cutoff are
not calculated (or, effectively, are assigned zero weight). If the subject
responded '"event" to the pProcess at some point following the cutoff, then
features are calculated over only those measurements occurring after this
response. The information on the state of the process that the subject gains
when he responds to the process motivates this constraint, If the process is
in the narmal state, then on Succeeding iterations the subject knows that if
an event has occurred. it must have occurred following his last response. If
the process is in the abnormal state, then the process is reset to normal
when the subject keys in his respense. On Succeeding iterations the subject
knows that if another event has occurred in the process, it must have
occurred following his last response. In either case, the subject (and the
model) should calculate features only over measurements oceurring after the
Subject's last response.

The estimation of discriminant funotion coefficients requires a
representation of normal and abnormal process measurements, This
representation was formed using the process histories displayed to the
subject on his third experimental trial., The process histories are Separated
into two groups of sequences - norpal and abnormal, Sequences of

coefficients v, J=1,2,...,m, with which to combine the features to beat
differentiate tween the two groups. The mean valye and the variance of the
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result ing diseriminant function scores for the sequences in each of the two
groups was also calculated.

The final requirements for application of the event detection model to
‘the experimental situation are estimates of the a priori probabilities of
event occurrences and the selection of a threshold against which likelihood
ratios of events can be compared. For experimental trials in which one event
was scheduled to occur per update of the display over the nine processes
monitored by the subject the a priori probability of an event occurrence in
each process was fixed at 1/9. For trials in which two events were scheduled
to occur per display update, the a priori probability was fixed at 2/9. The
threshold against which the likelihood ratios of events are compared is
assumed to remain constant through an experimental trial. The magnitude of
this conatant is a free parameter,

RESULTS

Figure 3 compares the event detection performance of t.e model with the
actual performance of each of the eight subjects in the third trial of the
experivent. In this trial, 20 events were scheduled to occur in the trials
given subjects A,B,C, and D, while 40 events were scheduled to occur in the
trials given subjects E,F,G, and H. In applying the model to each of these
trials, the number of measurements over which features were extracted (cutoff
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length) and the relative weighting of recent and older points ( B) were
adjusted to improve the fit of the model's performance to each subject's
performance. The value of the threshold against which likelihood ratios of
events were compared was also adjusted to improve the fit. Figure 3 reveals
a high degree of correspondence between the model's performance and the
performance of most subjects.

Figure 4 compares the event detection performance of the model with the
actual performance of the eight subjects in the second trial of the
experiment. In this trial, 40 events were scheduled to occur in the trials
given subjects A,B,C, and D, while 20 events were scheduled to occur in the
trials given subjects E,F,G, and H. 1In applying the model to erch of these
trials, none of the parameters of the model were changed from the settinzs
used to obtain the results presented in Figure 3. Despite the fact that the
numbers of events scheduled in these trials differ from those in the trials
used to assign the values of the parameters, the correspondence between the
model's performance and the performance of most subjects is reasonable.

-
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Figure 4. Comparison of Model with Subjects on Second Trial

Table 1 compares the mean detection times (in terms of the number of
sampling intervals which elapsed from the occurrence of an event toc the time
of its detection) for hits common to both subject and model in the trials
presented in Figures 3 and 4. It should be noted that the fact that the mean
detection times of the model are consistently smaller than those of the
subjects is an artifact of the manner in which the model's performance was
investigated. The model was tested on the process histories displayed to 8
subject in his experimental trial. In these trials. a process was returned
to the normal state at the point at which the subject detected an event in
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the process. Thus, in going over the prccess histories the model can never
respond to an event later than the subject responded to it. If the model
fails to respond to an event by the time of the subject's response, the model
is scored as havipg missed that event.

Table 1. - Comparison of Mean Detection Times

Trial 1 Trial 2
Subject Subject Model Subject Model
Code
A 2u 19 24 20
B 26 21 25 19
c 28 17 28 17
D 32 21 30 16
E 18 13 22 17
3 17 1l 27 16
G 20 17 27 20 j
H 20 17 22 18 !

ke plan to evaluate the model in the near future using a somewhat
different approach. Rather than running the model over the process histories
displayed to a subject on an earlier experimental trial (and constraining the
timing of the model's responses by the timing of the subject's responses in
that trial), we will use the model in place of the subjeect in the event
detection experiment. Processes in which events oceur will then remain in
the abnormal state until the model responds to the process The only
constraint on the model's detection times will be the end of the experimental
trial. Because the model's detection time for each event need no longer be
less than or equal to the subject's detection time for that event, we exvect
that, for a given number of hits, the model's threshold can be raised to
achieve the longer mean detection times and smaller numbers of false alarms
characteristic of the subjects in the experiment,

CONCLUDING REMARKS

In applying the event detection model to the experimental situation
described in this paper, we studied a situation in which the subject was
forced to respond yes or no to the possibility of an event related to each of
nine processes. In general, the human operator is not forced to make such
yes/no decisions with respect to each of his tasks. Instead he uses his
estimates of the probabilities of task-related events (which the event
detection model generates) in deciding how to allocate his attention among
his tasks. We plan to run an experiment investigating the human's attention
allocation performance in a multiple process monitoring situation similar to
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the one employed in the event detection experiment discussed here. Data from
this experiment will be used to develop and validate a model of attention
allocation performance in multi-task situations. (The modeling of human
attention allocation performance in multi-task situations is considered in
[11].) This model might be used in conjunction with the event detection model
as a part of the design process for, and the implementat.ion of, automated
decisim making systems.
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