2,252 research outputs found

    Face Image and Video Analysis in Biometrics and Health Applications

    Get PDF
    Computer Vision (CV) enables computers and systems to derive meaningful information from acquired visual inputs, such as images and videos, and make decisions based on the extracted information. Its goal is to acquire, process, analyze, and understand the information by developing a theoretical and algorithmic model. Biometrics are distinctive and measurable human characteristics used to label or describe individuals by combining computer vision with knowledge of human physiology (e.g., face, iris, fingerprint) and behavior (e.g., gait, gaze, voice). Face is one of the most informative biometric traits. Many studies have investigated the human face from the perspectives of various different disciplines, ranging from computer vision, deep learning, to neuroscience and biometrics. In this work, we analyze the face characteristics from digital images and videos in the areas of morphing attack and defense, and autism diagnosis. For face morphing attacks generation, we proposed a transformer based generative adversarial network to generate more visually realistic morphing attacks by combining different losses, such as face matching distance, facial landmark based loss, perceptual loss and pixel-wise mean square error. In face morphing attack detection study, we designed a fusion-based few-shot learning (FSL) method to learn discriminative features from face images for few-shot morphing attack detection (FS-MAD), and extend the current binary detection into multiclass classification, namely, few-shot morphing attack fingerprinting (FS-MAF). In the autism diagnosis study, we developed a discriminative few shot learning method to analyze hour-long video data and explored the fusion of facial dynamics for facial trait classification of autism spectrum disorder (ASD) in three severity levels. The results show outstanding performance of the proposed fusion-based few-shot framework on the dataset. Besides, we further explored the possibility of performing face micro- expression spotting and feature analysis on autism video data to classify ASD and control groups. The results indicate the effectiveness of subtle facial expression changes on autism diagnosis

    Short and long range relation based spatio-temporal transformer for micro-expression recognition

    Get PDF
    The authors would like to thank the China Scholarship Council – University of St Andrews Scholarships (No.201908060250) funds L. Zhang for her PhD. This work is funded by the National Key Research and Development Project of China under Grant No. 2019YFB1312000, the National Natural Science Foundation of China under Grant No. 62076195, and the Fundamental Research Funds for the Central Universities under Grant No. AUGA5710011522.Being spontaneous, micro-expressions are useful in the inference of a person's true emotions even if an attempt is made to conceal them. Due to their short duration and low intensity, the recognition of micro-expressions is a difficult task in affective computing. The early work based on handcrafted spatio-temporal features which showed some promise, has recently been superseded by different deep learning approaches which now compete for the state of the art performance. Nevertheless, the problem of capturing both local and global spatio-temporal patterns remains challenging. To this end, herein we propose a novel spatio-temporal transformer architecture – to the best of our knowledge, the first purely transformer based approach (i.e. void of any convolutional network use) for micro-expression recognition. The architecture comprises a spatial encoder which learns spatial patterns, a temporal aggregator for temporal dimension analysis, and a classification head. A comprehensive evaluation on three widely used spontaneous micro-expression data sets, namely SMIC-HS, CASME II and SAMM, shows that the proposed approach consistently outperforms the state of the art, and is the first framework in the published literature on micro-expression recognition to achieve the unweighted F1-score greater than 0.9 on any of the aforementioned data sets.PostprintPostprintPeer reviewe

    Improving Micro-Expression Recognition with Shift Matrices and Database Combination

    Get PDF
    Micro-expressions are brief, subtle changes in facial expressions associated with emotional responses, and researchers have worked for decades on automatic recognition of them. As convolutional neural networks have been widely used in many areas of computer vision, such as image recognition and motion detection, it has also drawn the attention of scientists to use it for micro-expression recognition. However, none of them have been able to achieve an accuracy high enough for practical use. One of the biggest problems is the limited number of available datasets. The most popular datasets are SMIC, CASME, CASMEII, and SAMM. Most groups have worked on the datasets separately, but few have tried to combine them. In our approach, we combined the datasets and extracted the shared features. If new datasets under the same classifying rules (FACS) are created in the future, they can easily be combined using our approach. In addition to this novel approach for combining datasets, we use a new way of extracting the features instead of the Local Binary Pattern from Three Orthogonal Planes (LBP-TOP). To be more specific, we create shift matrices, the changing pattern of pixels, to keep the spatial information of the videos. Our highest recorded accuracy from 100 experiments was 88 percent, but we chose to report 72.5 percent. This is the median accuracy and a more convincing result though it’s a little bit lower than the best result to date. However, our f1 score is 72.3 percent and higher than the best result to date. Our paper presents an extendable approach to micro-expression recognition that should increase in accuracy as more datasets become available

    Feature Representation Learning with Adaptive Displacement Generation and Transformer Fusion for Micro-Expression Recognition

    Full text link
    Micro-expressions are spontaneous, rapid and subtle facial movements that can neither be forged nor suppressed. They are very important nonverbal communication clues, but are transient and of low intensity thus difficult to recognize. Recently deep learning based methods have been developed for micro-expression (ME) recognition using feature extraction and fusion techniques, however, targeted feature learning and efficient feature fusion still lack further study according to the ME characteristics. To address these issues, we propose a novel framework Feature Representation Learning with adaptive Displacement Generation and Transformer fusion (FRL-DGT), in which a convolutional Displacement Generation Module (DGM) with self-supervised learning is used to extract dynamic features from onset/apex frames targeted to the subsequent ME recognition task, and a well-designed Transformer Fusion mechanism composed of three Transformer-based fusion modules (local, global fusions based on AU regions and full-face fusion) is applied to extract the multi-level informative features after DGM for the final ME prediction. The extensive experiments with solid leave-one-subject-out (LOSO) evaluation results have demonstrated the superiority of our proposed FRL-DGT to state-of-the-art methods
    • …
    corecore