
Spontaneous Facial Micro 

Expression Recognition and 

Analysis using Varying 

Resolutions 
 

by 
 

Pratikshya Sharma 
 

 
Thesis submitted for the degree of 

 

Doctor of Philosophy (PhD) 

 

 
 

Intelligent Systems Research Centre 

School of Computing, Engineering & Intelligent Systems 

Faculty of Computing, Engineering and the 

Built Environment  

Ulster University 
 

 

 

April 2022 
I confirm that the word count of this thesis is less than 100,000 words 

 



i | P a g e  
 

 

 

 

ABSTRACT 

During the early years of facial expression research, works have mostly employed macro 

expressions which are easily identifiable. In contrast, in recent years utilizing facial micro 

expression has gained more acknowledgement in facial analysis due to stronger genuineness 

of its attributes. Subsequently, emotion analysis through facial micro expression has higher 

acceptability especially in psychology, autism, pain assessment, security, criminal 

investigations, and similar circumstances that demand critical decision making. Owing to its 

cross-discipline application, today micro expression analysis using facial images remains an 

active research field. Due to extreme minuteness of these expressions, they are often missed 

during observations however, studies show with the introduction of computer vison and 

machine/deep learning algorithms they have a higher chance of being identified. Therefore, the 

focus of this thesis is to conduct thorough investigations and design novel approaches for micro 

expression analysis employing suitable methods.  

Most of the existing literature has overlooked the phase information while describing 

image patterns specifically to achieve micro expression recognition. Consequently, this thesis 

investigates the effectiveness of employing phase information for micro expression analysis. 

Furthermore, interpolation and video magnification are also introduced in later experiments to 

aid the extraction method. Additionally, the literature also highlighted the absence of adequate 

work examining the impact of resolutions and image quality for micro expression analysis. 

Therefore, the aim of this thesis is to explore micro expression to design a pipeline capable of 
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boosting the expression recognition performance. Moreover, this thesis establishes threefold 

contributions to address the research gap: firstly, a pipeline that exploits interpolation, phase 

and temporal information in a non-cross database environment is utilized. Secondly, influence 

of video magnification is examined to improve expression recognition within this pipeline. 

Third, a novel pipeline to employ low quality micro expression images is developed by 

reconstructing such images using deep learning and generative adversarial networks.  

In this thesis, to verify the suitability of combining phase, temporal, and magnification 

methods for micro expression, experiments are conducted on seven spontaneous micro 

expression databases. Results obtained clearly indicate the approach is as competitive as any 

other existing traditional methods. Furthermore, the experimental results obtained after 

introducing deep learning and generative adversarial networks into the second novel pipeline 

clearly highlight the significance of image reconstruction in achieving recognition boost even 

when the quality of input is compromised. Therefore, this thesis establishes significant progress 

towards the development of techniques for micro expression recognition that can be 

collaborated with medical/security and similar fields to assist in identifying vital cues.  

 

 

 

 

 

 

 

 



iii | P a g e  
 

ACKNOWLEDGEMENTS 

This momentous experience certainly wouldn’t have happened without the support I received 

from many people throughout my research. First and foremost, I am extremely grateful to my 

supervisors Professor Sonya Coleman, Dr. Pratheepan Yogarajah and Dr. Laurence Taggart for 

giving me this excellent research opportunity at Ulster University, UK. The constant support, 

encouragement, patience, and knowledge from Professor Sonya has helped me cultivate my 

scientific research ability. Invaluable insight on how to conduct research, helpful advice along 

with personal support received from Dr. Pratheepan has helped me profoundly in solving 

research problems throughout this period. Working closely with Dr. Laurence has been very 

fruitful in grasping the required understanding in the field of autism. By sharing his expertise 

during several discussion sessions has helped me immensely in conceptualizing my research. 

I extend my special thanks to external supervisor Dr. Pradeepa Samarsinghee, Sri Lanka 

Institute of Information Technology for her support and cooperation in all stages of my 

conference and journal paper publications. Her expert technical assistance through assessments 

and suggestions continuously guided me in strengthening my technical writing competency. 

I wish to express my gratitude to Ulster University for the financial support I received 

through Vice-Chancellor’s Research Scholarship (VCRS) to conduct this research at Intelligent 

Systems Research Centre (ISRC). 

I offer a special thanks to my colleagues and friends for making my research experience 

very enjoyable. 

Lastly, I am forever grateful to my parents for their constant encouragement that helped 

me embark on this journey. The unconditional love and moral support from them, my siblings, 

my nephews, and every other member of my family helped me manage stressful situations 

throughout these years. 



iv | P a g e  
 

Contents  

Abstract i 

Acknowledgements iii 

List of Figures vi 

List of Tables viii 

List of Abbreviations ix 

List of Publications xi 

   

1 Introduction 1 

 1.1 Background……………………………………………………………… 1 

 1.2 Importance of Micro Expression Recognition in Autism……………….. 4 

 1.3 Motivation……………………………………………………………….. 6 

 1.4 Problem statement……………………………………………………….. 8 

 1.5 Aim and objectives………………………………………………………. 9 

 1.6 Contributions…………………………………………………………….. 9 

 1.7 Thesis Structure………………………………………………………….. 10 

    

2 Facial Micro Expression: A Literature Review 13 

 2.1 Introduction……………………………………………………………… 13 

 2.2 Micro expression………………………………………………………… 17 

 2.3 Spontaneous facial micro expression datasets…………………………... 20 

 2.4 Micro expression recognition system…………………………………….. 24 

  2.4.1 Pre-processing………………………………………………… 25 

  2.4.2 Micro facial feature extraction……………………………….... 31 

  2.4.3 Deep learning based micro expression recognition………….... 38 

  2.4.4 Feature classification………………………………………….. 40 

 2.5 Recognizing micro expression with low resolution images…………….... 42 

 2.6 Application of micro expression recognition system…………………….. 44 

 2.7 Summary………………………………………………………………… 47 

    

3 Image Super Resolution: Theories and Techniques 48 

 3.1 Resolution implications for micro expression analysis…………………... 48 

 3.2 Progression of deep learning super resolution techniques………………. 52 

 3.3 Residual dense network………………………………………………….. 57 

 3.4 Generative adversarial network………………………………………….. 60 

  3.4.1 Artefact cancelling generative adversarial network………….... 61 

  3.4.2 Enhanced super resolution generative adversarial network…… 63 

  3.4.3   Further improving enhanced super resolution generative 

adversarial network (nESRGAN+)…………………………..... 

 

64 

 3.5 Bicubic interpolation…………………………………………………...... 66 

 3.6 Image degradation……………………………………………………….. 67 

 3.7 Summary………………………………………………………………… 68 

    

4 Local phase quantization for micro facial feature extraction 69 

 4.1 Introduction……………………………………………………………… 69 

 4.2 Local phase quantisation method………………………………………... 72 



v | P a g e  
 

  4.2.1 Short term Fourier transform………………………………...... 73 

  4.2.2 Decorrelation………………………………………………….. 74 

  4.2.3 Quantisation…………………………………………………... 76 

  4.2.4 LPQ-TOP method…………………………………………….. 77 

 4.3 Experiments and results………………………………………………….. 80 

  4.3.1 Face detection and pre-processing…………………………….. 80 

  4.3.2 Micro facial feature extraction and classification……………... 82 

  4.3.3 Results and discussion……………………………………….... 84 

 4.4 Summary………………………………………………………………… 90 

    

5 Amplifying spontaneous facial micro expression to achieve recognition boost 91 

 5.1 Introduction……………………………………………………………… 91 

 5.2 Eulerian video magnification…………………………………………….. 94 

  5.2.1 Eulerian motion magnification………………………………... 95 

 5.3 Proposed approach……………………………………………………….. 98 

 5.4 Experiments and results………………………………………………….. 101 
  5.4.1 Pilot experiment………………………………………………... 103 
  5.4.2 Experiments employing non-magnified data………………….... 107 
  5.4.3 Experiments employing magnification process……………….... 109 
  5.4.4 Proposed approach vs. other methods…………………………... 115 

 5.5 Conclusion……………………………………………………………….. 117 

    

6 Image Super Resolution for Micro Expression Analysis 119 

 6.1 Introduction……………………………………………………………… 119 

 6.2 The proposed micro expression reconstruction & recognition pipeline….. 121 

  6.2.1 Feature extraction and classification parameter……………….... 124 

 6.3 Experiments, results, and analysis……………………………………...... 125 

  6.3.1 Image degradation……………………………………………… 125 

  6.3.2 Image reconstruction…………………………………………… 126 

  6.3.3 Image quality assessment………………………………………. 130 

  6.3.4 Image reconstruction result analysis……………………………. 132 

  6.3.5 Recognition result analysis before super resolution……………. 136 

  6.3.6 Recognition result analysis employing super resolution……….. 138 

   6.3.6.1 Performance analysis on SMIC-VIS…………………. 138 

   6.3.6.2 Performance analysis on SMIC-HS………………….. 141 

   6.3.6.3 Performance analysis on CASME II…………………. 142 

   6.3.6.4 Performance comparison across all methods and 

databases…………………………………….………. 

 

144 

 6.4 Summary………………………………………………………………… 148 

    

7 Conclusion 150 

 7.1 Introduction……………………………………………………………… 150 

 7.2 Research findings………………………………………………………... 151 

 7.3 Limitations……………………………………………………………….. 155 

 7.4 Future Work…………………………………………………………….... 156 

 7.5 Concluding Remarks…………………………………………………….. 158 

  Bibliography……………………………………………………………... 159 
 



vi | P a g e  
 

List of Figures 

Figure  Page 

2.1 Happy macro and micro expression……………………………..................... 15 

2.2 Three stages of micro expression……………………………………………. 18 

2.3 Three facial regions where expressions are generally visible........................... 19 

2.4 Sample micro expression images from various datasets…….......................... 22 

2.5 A basic framework for micro expression recognition…………….................. 25 

2.6 Illustration of Haar features………………………………………................. 25 

2.7 Illustration of face detection procedure……………………………………... 26 

2.8 Modelling face using ASM by identifying landmarks and regions………….. 27 

2.9 Temporal interpolation model……………………………………................. 28 

2.10 Description of facial image with LBP-TOP method………………………… 32 

2.11 Illustration of six discrete neighbour points in LBP-SIP technique………….. 34 

2.12 An outline for extraction process employing 3DHOG………………………. 35 

2.13 An outline of convolutional neural network employed for facial 

expressions………………………………………………….......................... 

 

37 

2.14 Network structure of convolutional neural network…………..…………….. 37 

2.15 Illustration of three hyperplanes identified for data segregation….................. 41 

2.16 Illustration of optimal hyperplane that gives maximum data 

segregation………………………………………………………………….. 

 

41 

2.17 Reconstruction technique employing super-resolution for LR images……… 43 

2.18 Framework for micro expression recognition with LR images……................ 44 

   

3.1 Illustration of network structure for SRCNN and FSRCNN………………… 54 

3.2 Illustration of residual learning……………………………............................ 54 

3.3 Illustration of residual block used in various architecture…………………… 55 

3.4 Dense block used in SRDenseNet architecture and Residual dense block 

used in residual dense network ……………………………………………… 

56 

3.5 Residual dense network with contiguous memory…………………………... 57 

3.6 Architecture of residual dense block………………………………………… 58 

3.7 Architecture of generative adversarial network……………………………... 60 

3.8 Basic architecture of super resolution network……………………………… 61 

3.9 Residual block………………………………………………......................... 61 

3.10 Architecture of generator network …………………………….…................. 62 

3.11 Architecture of discriminator network……………………………................. 63 

3.12 Residual in residual dense block (RRDB)……………………….................... 64 

3.13 nESREGAN+ architecture employed for super resolution….......................... 65 

3.14 Illustration of 4x4 neighbourhood for computing 16 coefficients…………… 66 

   

4.1 Extracting feature from each block and concatenating them into single 

feature vector……………………………………........................................... 

 

77 

4.2 Concatenated histogram obtained from three orthogonal planes……………. 77 

4.3 Features extracted from each block representing a sequence, concatenated to 

form feature vector………………………………………………………….. 

 

78 

4.4 LPQ Fourier frequencies and M x N neighbourhood………........................... 79 

4.5 Step-by-step layout for computing LPQ over facial image……….................. 79 



vii | P a g e  
 

4.6 Bare bone structure for micro expression recognition system……………….. 80 

4.7 Instance of LPQ representation on XY plane, derived for positive label…….. 82 

4.8 Instance of LPQ representation on XY plane, derived for negative label…..... 83 

4.9 Instance of LPQ representation on XY plane, derived for surprise label…….. 83 

4.10 Highlighting the texture patterns captured by LPQ descriptor……………… 83 

4.11 Performance comparison of SVM kernel on features extracted from 

CASMEII using LPQ-TOP………………….................................................. 

 

85 

4.12 Confusion matrix obtained for CASMEII data……………………………… 87 

   

5.1 Illustration of Eulerian video magnification framework……......................... 95 

5.2 Micro expression recognition pipeline with EVM, TIM, and LPQ-TOP……. 98 

5.3 Non-magnified raw image sequence for disgust micro expression.................. 102 

5.4 Illustration of magnified image sequences for disgust micro expression 

obtained using different bandpass filters……………………………………. 

 

103 

5.5 Highlighting areas with appearance of muscle motion exaggeration after 

applying EVM………………………………………………......................... 

 

104 

5.6 Demonstrating magnified image sequences obtained for disgust micro 

expression at different settings of magnification factor……………………... 

 

105 

5.7 Magnified micro expression image sequences for various dataset………….. 110 

5.8 SVM kernel performance comparison on various dataset…………………… 113 

5.9 Performance comparison of LPQ-TOP and other methods……….................. 115 

   

6.1 Outline of proposed approach employing image reconstruction before micro 

expression recognition.……………………………………………………… 

 

121 

6.2 Detailed illustration of pipeline to reconstruct micro expression images from 

low quality data and its recognition process……...…...................................... 

 

124 

6.3 Instance of HR and LR images from three database......…………................... 125 

6.4 Before and after applying degradation on three databases............................... 126 

6.5 An abstract view to demonstrate resolution levels for image degradation and 

image super resolution model……………………………………………….. 

 

127 

6.6 Images reconstructed using super resolution algorithms with scale factor two 135 

6.7 Images reconstructed using super resolution algorithms with scale factor 

four………………………………………………………………………….. 

 

135 

6.8 Recognition performance analysis on three databases at different resolutions 

before introducing super resolution…............................................................. 

 

137 

6.9 Recognition performance analysis on SMIC-VIS database after introducing 

super resolution………………………………………................................... 

 

139 

6.10 Recognition performance analysis on SMIC-HS database after introducing 

super resolution………………………………………................................... 

 

140 

6.11 Recognition performance analysis on CASME II database after introducing 

super resolution………………………………………................................... 

 

143 

6.12 Overall recognition performance analysis (scale factor 2)………………… 145 

6.13 Overall recognition performance analysis (scale factor 4)…………………... 146 

   

7.1 Proposed pipeline for micro expression recognition 152 

7.2 Proposed pipeline for micro expression recognition by applying SR 

algorithm on LR images…………………………………………………….. 

154 

   



viii | P a g e  
 

List of Tables 

 

 

 

 

 

 

 

 

 

    Table  Page 

Table 2.1 Spontaneous micro expression database summary…………………. 23 

 

Table 4.1 Micro expression recognition results on CASMII dataset with 

varying combinations of orthogonal planes………………………… 

 

84 

Table 4.2 Performance metrics obtained on CASMEII………………………… 87 

Table 4.3 Accuracy %  comparison for CASMEII……………………………... 88 

Table 4.4 Accuracy %  comparison for CASMEII & SMIC…………………… 88 

 

Table 5.1 Dataset used and their class distribution……………………………... 108 

Table 5.2 LPQ-TOP performance on seven datasets (without magnification).… 108 

Table 5.3 Accuracy % obtained using LPQ-TOP and its comparison across 

various datasets.……………………………………………………... 

 

111 

Table 5.4 Accuracy % comparison between LPQ-TOP and other methods.….... 114 

Table 6.1 Spontaneous micro expression dataset used…………………………. 123 

Table 6.2 Summary of notations, resolution and methods used………………… 123 

Table 6.3 Peak signal to noise ratio…………………………………………….. 131 

Table 6.4 Structural similarity index…………………………………………… 131 

Table 6.5 Accuracy % obtained before introducing super resolution 

algorithms…………………………………………………………… 

 

136 

Table 6.6 Accuracy obtained for various super resolution algorithms on SMIC-

VIS…………………………………………………………………... 

 

138 

Table 6.7 Accuracy% obtained for various super resolution algorithms on 

SMIC-HS……………………………………………………............. 

 

140 

Table 6.8   Accuracy% obtained for various super resolution algorithms on 

CASME II…………………………………………………………… 

 

142 

Table 6.9 Accuracy% comparison for various super resolution algorithms 

across all datasets and methods …………….………………………... 

 

144 



ix | P a g e  
 

List of Abbreviations 

3D Three Dimensional 

ASM Active Shape Modelling 

ASD Autism Spectrum Disorder 

AU Action Unit  

AU-IGAN AU Intensity Controllable GAN 

Bi-WOOF Bi-Weighted Oriented Optical Flow 

BN  Batch Normalization  

CASME Chinese Academy of Sciences Micro-expression 

CBP-TOP Centralized Binary Pattern on Three Orthogonal Planes 

CDMER Cross Database Micro Expression Recognition 

CLM Constrained Local Model  

CM Contiguous Memory 

CNN Convolutional Neural Network 

CV Computer Vision 

DFF Dense Feature Fusion  

DFT Discrete Fourier Transform 

DL Deep Learning 

DRMF Discriminative response map fitting 

EAI Emotion Avatar Image 

EDSR Enhanced Deep Super Resolution Network 

ELM Extreme Learning Machine  

EMM  Eulerian Motion Magnification 

ESRGAN Enhanced Super Resolution Generative Adversarial Network 

EVM Eulerian Video Magnification 

FACS Facial Action Coding System 

FCNN Fully Convolutional Neural Network 

FE Facial Expression 

FER Facial Expression Recognition 

fps Frames per second 

FSRCNN Fast Super Resolution Convolutional Neural Network  

GAN Generative Adversarial Network 

GFF Global Feature Fusion 

GLMM Global Lagrangian Motion Magnification 

GRL Global Residual Learning 

GSL Group Sparse Learning 

HIGO Histogram of Image Gradient Oriented on Three Orthogonal Planes 

HOG Histogram of Gradient 

HOG-TOP Histogram of Gradient on Three Orthogonal Plane 

HOOF Histogram of Optical Flow Orientation 

HR High Resolution 

HS High Speed 

ICE-GAN Identity-aware and Capsule Enhanced Generative Adversarial Network  

IIR Infinite Impulse Response 

ISR Image Super Resolution 

kNN k-Nearest Neighbour 



x | P a g e  
 

LBP Local Binary Pattern 

LBP-MOP Local Binary Pattern - Mean Orthogonal Plane 

LBP-SIP Local Binary Pattern with Six Intersection Points 

LBP-TOP Local Binary Pattern on Three Orthogonal Plane 

LFF Local Feature Fusion 

LPQ Local Phase Quantisation 

LPQ-TOP Local Phase Quantisation on Three Orthogonal Plane 

LR Low Resolution 

LReLU Leaky Rectified Linear Unit 

LRL Local Residual Learning  

LSTM Long Short-Term Memory model 

LWM Local Weighted Mean 

MDMO Main Direction Mean Optical Flow 

ME Micro Expression 

MER Micro Expression Recognition 

METT Micro Expression Training Tool  

MKL Multiple Kernel Learning  

ML Machine Learning 

MMEW Micro and Macro Expression Warehouse  

nESRGAN+ Further Improved Enhanced Super Resolution Generative Adversarial 

Network 

NIR Near Infra-red 

PCA Principal Component Analysis 

PI Perceptual Index 

PReLU Parametric Rectified Linear Unit 

PSNR Peak Signal to Noise Ratio 

RBF Radial Basis Function 

RDB Residual Dense Block 

RDN Residual Dense Network 

ReLU Rectified Linear Unit 

RRDB Residual in Residual Dense Block 

RRDRB Residual-in-Residual Dense-Residual-Block 

SAMM Spontaneous Micro-Facial Movement 

SMIC Spontaneous  Micro-expression database 

SR Super Resolution 

SRCNN Super Resolution Convolutional Neural Network 

SRGAN Super Resolution Generative Adversarial Network  

SSIM Structural Similarity Index 

STFT Short Term Fourier Transform 

STLBP-IP Spatio Temporal Local Binary Pattern with Integral Projection 

STTM Spatio temporal Texture Map 

SVM Support Vector Machine 

TD Typically Developed 

TIM Temporal Interpolation Model 

VGG Visual Geometry Group 

VIS Visual 

York DDT York Deception Detection Test 

 

 



xi | P a g e  
 

List of Publications 

 

  

Conference Publications 

1. Sharma, P., Coleman, S., Yogarajah, P. & Laurence, T. (2019). Micro expression 

classification accuracy assessment. IMVIP 2019: Irish Machine Vision & Image 

Processing, Technological University Dublin, Dublin, Ireland, August 28-30. 

doi:10.21427/kbny-0a41. 

2. Sharma,P., Coleman, S., Yogarajah, P. , Taggart, L.  and Samarasinghe P., (2021) 

"Magnifying Spontaneous Facial Micro Expressions for Improved Recognition," 

2020 25th International Conference on Pattern Recognition (ICPR), 2021, pp. 7930-

7936, doi: 10.1109/ICPR48806.2021.9412585. 

3. Sharma, P., Coleman, S., Yogarajah, P., Taggart, L. and Samarasinghe, P. (2022), 

Evaluation of Generative Adversarial Network Generated Super Resolution Images 

for Micro Expression Recognition. In Proceedings of the 11th International 

Conference on Pattern Recognition Applications and Methods - ICPRAM, ISBN 

978-989-758-549-4, pages 560-569. DOI: 10.5220/0010820100003122. 

 Journal Publication 

4. Sharma, P., Coleman, S., Yogarajah, P. et al. Comparative analysis of super-

resolution reconstructed images for micro-expression recognition. Adv. in Comp. 

Int. 2, 24 (2022). https://doi.org/10.1007/s43674-022-00035-x. 

 

 

 



1 | P a g e  
 

Chapter1 

Introduction  

1.1 Background 

Over the years, use of digital images has significantly increased due to steady growth in 

availability of high end, yet cost effective, imaging devices. Subsequently, facial image 

analysis has evolved as an extensively researched multidisciplinary field with substantial work 

leading to exceptional outcomes and continued progress. Facial appearance is the first visible 

feature perceived by the human eye and is a prime source of information, vital to multiple 

aspects of our everyday life [1]. Making judgements based on analysis of an individual’s facial 

appearance comes naturally to humans. Meanwhile, building methods that enable machines to 

imitate similar skills is a challenging task. Nevertheless, with the rapid boom of technology, 

numerous automated methods have emerged over several years. Facial cues are crucial to 

performing various analysis including age estimation [2-3], gender prediction [2], face 

recognition [4], blink detection [5] and concentration level estimation [6]. In the medical field, 

cues drawn from facial images are often used for pain assessment [7], psychological analysis 

[8], emotion estimation [9], monitoring mental health [10], and more. Entertainment [11] and 

ecommerce [12] are two other areas where facial image analysis finds application. Such diverse 

applications rightly demonstrate the usefulness as well as significance of performing facial 

expression analysis.  

 Facial expressions (FE) are a result of facial muscle movements, stimulated by facial 
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nerves. These muscles surround facial components like ears, nose, eyes, and mouth, and also 

span across the neck area and skull [13]. This unique placement and association of facial 

muscles with other facial components facilitate muscle movements leading to formation of 

expressions perceived as smile, surprise, angry etc., as they appear on the human face. 

Extensive research by [14] suggested that three components of effective communication are 

verbal, facial gestures, and vocal, with 7%, 55% and 38% contribution respectively. Tone, 

intonation, and pause are some of the attributes constituting vocal components whereas 

messages or words spoken constitute verbal components. Evidently facial cues seem to be a 

major contributor for enriched communication and, therefore, remains one of the most actively 

pursued research fields within facial image analysis and is commonly known as facial 

expression recognition (FER). Muscle changes that appear on a face due to an individual’s 

current emotional state are commonly referred as FE, thus are often seen as one of the strongest 

emotional indicators. Applying computer vision (CV) techniques to analyse such facial 

expressions has fuelled numerous smarter inventions promoting quality social information 

exchange. For instance, by reading a user’s emotion a music application can tailor the playlist 

[15]. Estimating a student’s engagement level through FE is another instance highlighting its 

usage [6,16]. Another breakthrough in FER research is the development of advanced 

techniques where analysis is no longer limited to still images, rather 3D image, video, varying 

pose, dynamic image etc., are employed. Since FE has a dominant role in conveying an 

effective message, its absence or limited availability in real life will make the process of 

drawing fundamental cues more challenging. Real life scenarios where individuals exhibit 

reduced FE are commonly associated with schizophrenia [17], depression [18], brain injury 

[19], autism [20], partially conscious patients, partial face paralysis [21] to name a few. 

Consequently, research involving images containing reduced FE to draw cues that aid decision 
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making in the medical field is significantly growing. Developing assistive applications that can 

automatically analyse FE can significantly reduce the overall decision-making process, scale 

down workload for health professionals, and speed up the diagnosis/detection phase which 

ultimately accelerates access to medical aid for patients [22]. The research scope of this thesis 

is within a particular category of FE known as micro expression (ME).  Since manual methods 

for ME recognition involve extensive training and yet are unable to yield satisfactory 

recognition accuracy, a shift towards automated systems have risen considerably [23]. 

Availability of better imaging devices, processors, and machine/deep learning (DL) techniques 

have boosted the computational power, thereby favouring this shift. In addition, contactless 

data acquisition methods using better quality equipment has led to an increase in the number 

of publicly available ME databases. It is notable that the availability of these databases supports 

the incremental increase in interest for ME research and analysis.  Today, several works exist 

to confirm the significant contributions made in the field of ME solely by exploiting ME data 

contained within these databases. Further, during creation of these databases, ME were 

acquired in either controlled or in the wild scenarios, therefore both categories of ME databases 

are available for research. At present ME analysis can be performed by training algorithms or 

trained individuals on two ME data formats i.e., image or video. Evidently, automated ME 

recognition systems have achieved significantly improved results [23] over manual methods.  

Therefore, in line with the current trend, this thesis focuses on the problem of automatic 

facial ME recognition, classification and analysis. Accurately classifying such expressions 

from image/video sequences to draw useful interpretations will comprise a significant segment 

of this thesis. 
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1.2 Importance of Micro Expression Recognition in Autism 

CV seeks to design methods to acquire information from regions of interest within an image 

and assist computers to derive useful analysis. Use of CV techniques to automate medical 

examination processes has been steadily growing over the past decade. A systematic review by 

[24] suggested that analysis drawn by employing CV techniques can provide useful 

information that can help further autism-based research. The main motive behind introducing 

CV techniques in autism-based research is to overcome existing limitations that occur due to 

manual processes. These limitations include higher costs for medical examination, time-

consuming processes, frequent clinical visits, scalability issues, and human errors to name a 

few [22]. In [25] it was suggested that almost 30 different medical conditions could be pre-

diagnosed by automatically detecting the appropriate symptoms using computer vision. 

Simultaneous growth in application of CV techniques for autism spectrum disorder analysis is 

also noticed in recent years. The word autism was derived by a Swiss psychiatrist, Paul Eugen 

Bleuler, from a Greek word “autos” which means self [26]. He used this term initially to define 

certain characteristics of schizophrenia around 1912. Later it was used by Leo Kanner in 1943 

to describe symptoms of autism that are commonly accepted nowadays [27]. Autism spectrum 

disorder commonly abbreviated as ASD is said to affect a child right from early childhood to 

adulthood and beyond. It is a developmental disorder particularly in the central nervous system 

hence often referred to as a neurodevelopmental disorder. Some of the early developmental 

deficiencies are usually visible in terms of non-verbal interactions and social behaviours. Some 

distinctive social behaviours include restricted body gestures, limited eye contact, reduced 

facial expressions and reduced range of overall activities [28]. A systematic review [24] 

pointed out the usefulness of CV based analysis for autism. In order to examine the expression 
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production between ASD and typically developed (TD) children, [29] utilized machine 

learning (ML) and CV techniques to estimate facial action unit (AU) intensities. The results 

indicated that the proposed automated method was successful in analysing the expression 

production. In [20], videos of ASD adults were recorded, and facial analysis was performed 

using software named FaceReader 6.1, by estimating expression intensity for neutral and six 

other categories of facial expression. In order to assess attention and atypical behaviours in 

infants with ASD, [30] employed a CV method where a tablet was used to present the video 

stimuli and its camera was used to record a video of the infant. To test the feasibility of the CV 

approach for analysing emotion in children with ASD, [31] utilized automated FE analysis. 

Using a web camera, the recordings of the children viewing stimuli videos were taken. The 

faces acquired thereafter were used for expression examination. Through experiments it was 

determined that CV based methods could reliably capture atypical attention usually associated 

with infants having ASD. Therefore, these works indicate the success and suitability of CV 

based methods for automatic analysis in autism-based research. 

When a child undergoes an ASD screening process, the first step involves analysis of 

expressions displayed on the face [32]. Through experimental observations, [33] found that 

individuals with ASD smiled less during conversation. In work by [34], while examining 

children with ASD it was established that facial gestures exhibited by them were less complex. 

Observations also suggested that regions located near the eyes were significantly different 

when compared with children without ASD.  Moreover, the ability to exhibit negative emotions 

like sadness and disgust varied significantly between ASD and TD children. In an exhaustive 

meta-analysis by [35], some characteristic observations made in regard to facial expressions 

exhibited by children with ASD were (a) they last for a brief period only, (b) limited display 

of expressions, (c) lower frequency, (d) lower quality. Another meta-analysis stated that facial 
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expressions exhibited by people with ASD are not as explicit enough as compared to those in 

a TD individual [36]. Consequently, it is understood that individuals with ASD potentially 

either lack or have very little capability to be expressive through facial expressions. The work 

in [36] once again pointed out that those facial expressions in ASD have a short duration 

whereas [37] concluded that such faces tend to have minimal facial muscle movements. 

Another survey presented in [38] further affirms the advantage of utilizing CV for healthcare.   

Such facial characteristics common to individuals with autism resembles ME therefore, this 

thesis considers examining ME in TD adults closely using computer vision techniques which 

can be used as a reference point for making comparisons and useful analysis about ME in 

individuals with ASD in the future.  

 

1.3 Motivation 

Several human attributes (e.g., body movements, posture, heart rate etc.) exist that can be used 

to derive emotion related information during a social interaction. Nonetheless, communication 

is an essential component for information exchange during social interaction and since FE are 

a substantial contributor, analysing them to make useful inferences seems feasible and more 

relevant. However, ASD in an individual seems to affect one’s ability to have effective 

communication. Reduced ability to express facial gestures is one characteristic very common 

in an individual with ASD. Therefore, gathering information about the current state of mind 

using facial expressions seems challenging.  

Due to high prominence and ability to be manipulated, acquiring emotional state using 

macro expressions may not be reliable during the decision-making process. On the other hand, 
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due to feeble intensity, spotting ME on one’s face is laborious. However, owing to its 

genuineness analysing ME to derive relevant information seems more valid especially during 

high stake situations. Continued advances in facial ME clearly demonstrate its ability to be 

utilized in a variety of situations to solve interdisciplinary human centred problem. Therefore, 

this thesis considers analysing expression by employing facial ME in TD adults.  

Emerging superior video acquisition methods, as well as CV algorithms, promises 

development of a more effective and powerful automated facial micro expression recognition 

(MER) workflow. As demonstrated by extensive research, a human’s ability to spot and 

decipher ME is far behind state-of -the-art results achieved using automated approaches even 

with trained human experts. Besides, manually keeping track of the types of ME identified 

during examination can be extremely tedious. Therefore, using an automated MER system can 

increasingly offer better processing capability, suitable for real world applications employing 

ML/DL techniques. Moreover, little research exists that has explored the impact of image 

resolution during MER and analysis, as such this thesis presents a novel pipeline for a MER 

system to address this point. Though ME analysis is now a well-established research field with 

notable success, its contributions still fall short in comparison to normal FE, providing 

abundant room for continued progress. 

To summarize, the following points highlight the motivation behind development of an 

automated MER pipeline in this thesis. 

1. The ME appears when expression leaks over the face while an individual attempts 

to hide one’s feelings and are difficult to manipulate [39]. Due to this characteristic, 

information extracted from these expression finds its application for solving crime 

and addressing security issues [40]. 

2. With the ability to provide cues to identify and monitor a number of health concerns 
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like autism, depression, facial paralysis etc., MER can significantly supplement 

decision making process in the health sector. 

3. In a more realistic outlook, authors in [41] rightly pointed out that ME acquired in 

real world scenarios are often prone to unfavourable settings. Consequently, it is 

expected that such data will be of much inferior quality which raises the need to 

have suitable approaches to utilize it. Taking this notion forward this thesis 

examines lower quality ME data (degraded and low resolution) in addition to usual 

HR data. 

4. With evidence from previous research implying better recognition accuracy 

achieved using automated methods [23], this thesis follows a similar trend and 

incorporates ML/DL techniques to mobilize interdisciplinary research. 

 

 

1.4 Problem Statement 

Several feature extraction methods have been used to describe ME patterns in the spatial as 

well as temporal domain, and the approaches to recognize and classify them employ machine, 

as well as DL techniques. The core problem faced while analysing ME is how to extract the 

changes that are extremely minute in nature. While performing such tasks one often stumbles 

upon certain obstacles like low intensity movements, imbalanced distribution of data per class, 

non-uniform class labels among the available databases, varying frame rates of the captured 

data within a database as well as across different databases, poor inter-class discriminative 

features, and limited availability of databases. Further, none of the databases take real world 

situations into consideration due to which there is an absence of low-resolution ME databases. 
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1.5 Aim and Objectives 

 

The aim of this thesis is to utilise feature extraction techniques and evaluate their suitability for 

ME, and also apply ML algorithms on both high resolution (HR) as well as low resolution (LR) 

images to develop a novel automated ME classification pipeline. To achieve this, the thesis 

considers the objectives as outlined below: 

1. To investigate the efficiency of recognizing different classes of ME from the available 

databases, employing features from the temporal domain and training models using ML 

algorithms.  

2. To explore the advantage of utilizing video magnification with temporal interpolation 

and phase quantization technique and build a MER pipeline by conducting suitable 

experiments. 

3. To explore and compare two feature extraction approaches i.e., LPQ-TOP and LBP-

TOP for describing the ME pattern. 

4. To conduct research using LR micro expression images for expression recognition and 

investigate the impact of introducing super resolution techniques into MER pipeline. 

5. To evaluate the performance of the proposed pipeline mentioned above (2 & 4) on 

several standard databases. 

1.6 Contributions 

 

The research undertaken in this thesis makes contributions towards the development of an 

automatic MER system. The main contributions are outlined below: 

1. The ME frames are unified using a temporal interpolation model (TIM), its texture 

patterns are described using local phase quantization on three orthogonal planes (LPQ-
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TOP), and tested in a non-cross database environment i.e., where images employed for 

the testing and classification processes belong to the same database. 

2. A novel MER pipeline employing Eulerian video magnification (EVM), TIM and LPQ-

TOP is proposed. 

3. The proposed methods are evaluated on seven different ME databases i.e., SMIC-HS, 

SMIC-VIS, SMIC-NIR, CASME, CAS(ME)2, CASMEII and SAMM. 

4. To deal with low resolution ME images, another novel pipeline is proposed which 

exploits DL and a generative adversarial network (GAN) to reconstruct super resolution 

ME images. 

5. The proposed pipeline is evaluated on three different databases i.e., CASMEII, SMIC-

HS and SMIC-VIS. 

 

1.7 Thesis Structure 

 

The thesis consists of seven chapters of which the introductory work presented in the current 

chapter structurally appears as the first. The overall structure of the remainder of this thesis is 

organised as follows: 

• Chapter 2 presents a review of the literature relating to MER techniques. It introduces 

the concept of ME along with the specifications of various ME databases used in 

research. It includes a brief explanation of key components of MER systems with 

reference to the experiments performed in this thesis. Challenges faced when dealing 

with low quality ME images and existing solutions are also discussed. This is followed 

by discussion on some notable applications of ME highlighting its influence over cross-
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discipline research areas. 

• Chapter 3 highlights the importance of resolutions for ME analysis followed by the 

contribution of DL for super resolution. Thereafter it provides technical information on 

the various techniques explored for performing image super resolution. This includes 

algorithms utilizing residual dense networks, generative adversarial networks and 

bicubic interpolation. It also provides a short description on how image degradation can 

be achieved. All theories and methods described in this chapter provide the foundation 

on which the contribution Chapter 6 will be based upon. 

 

• Chapter 4 explores the working principles of LPQ-TOP feature extraction algorithm 

and investigates its use for describing micro expression patterns on the spatial and 

temporal domains. Further, the classification of the images is realised by using SVM. 

The chapter explores the suitability of LPQ-TOP as a micro expression feature 

extraction method along with TIM, and realises the first contribution listed in Section 

1.6. 

 

 

• Chapter 5 addresses the limitation of discriminative features inherent with micro 

expressions by introducing video magnification. It explores the muscle amplification 

process before initiating feature extraction on all seven databases using the LPQ-TOP 

method. Further it examines the combined contribution of magnification, interpolation, 

and LPQ-TOP to achieve improved classification. This chapter realises second, and 

third contributions listed in Section 1.6. 
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• Chapter 6 presents the newly developed pipeline to perform micro expression 

classification using low quality images. To mimic low quality images, 64x64 and 32x32 

sized images have been considered throughout the experiments. Five different super 

resolution methods are exploited individually to construct super resolution images and 

are then utilized for recognition. An exhaustive performance analysis of the proposed 

pipeline is presented over three different ME databases. This chapter realises the last 

two contributions listed in Section 1.6. 

 

 

• Chapter 7 concludes this thesis by providing a summary of contributions, the limitations 

of the research presented in the thesis in the field of micro expression recognition along 

with direction and suggestions for future research.  
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Chapter 2 

Facial Micro Expression: A Literature 

Review 

2.1 Introduction  

For the past few decades there is a growing interest in understanding human emotions and 

feelings, particularly for measuring health and well-being; communication is considered as a 

distinguished and competent tool for doing so. Classically, communication is divided into two 

categories, verbal and non-verbal. The ability to identify and draw appropriate implication from 

non-verbal cues is one of the most challenging tasks demanding extensive research from 

various disciplines, particularly from social science, medical science, psychology, and 

technological sciences, for more than two decades. In addition, some of the common non-

verbal cues that have attracted interest from research scholars of diverse backgrounds include 

body language, facial expressions, facial emotion, eye movements, eye contact, hand gestures 

etc. Analysing such cues are imperative since they are sourced directly from the emotional 

brain [42] and are manifested largely as most authentic expressions. As rightly stated by the 

proverb “face is the index of mind”- FE are major contributors in decoding facial emotion 

thereby facilitating health professionals in deriving one’s psychological status. Conventional 

facial movements that occur due to contraction of facial muscles in certain order result in 

exhibition of expressions on faces. Lines, wrinkles, and folds are by-products of such muscle 
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contraction which alters the positions of facial landmarks.  It is universally accepted that almost 

all varieties of FE generally involve brow movements [43]. These movements could construe 

either raising or lowering brows and have high visibility. Brow lowering is usually associated 

with negative emotions identified as sadness, fear, anger etc. On the contrary, brow raising may 

imply expression of positive emotions like happiness, surprise etc.  

Research has shown that FE are effective in comprehending a rich source of information 

essential for rendering facial emotion and are broadly categorized into macro and micro 

expressions. Both these expressions are highly informative non-verbal cues in facial emotion 

analysis and hence examining such expressions has gained immense popularity over several 

decades.  Facial macro expressions are typically very prominent and can be determined very 

easily since it lasts > 0.5 second and <4 seconds [44]. Extensive research with high end results 

has been successfully achieved for macro expressions and the research continues. Sometimes 

it is debated that macro expressions might not always be the best measure for decoding a 

person’s real emotion and psychological status mainly due to its voluntary and conscious 

characteristics. Consequently, a person displaying such expressions is aware of it and has full 

control over them, therefore, can potentially display manipulated expression, diverging from 

their real emotion. In such circumstances these facial macro expressions cannot be a measure 

for determining legitimate cue.  

On the other hand, research work on ME appeared much later and is still evolving. 

Though research on this field has increased in recent years yet, it still remains an area where 

much work is needed. ME are believed to expose legitimate emotion since they are natural, 

authentic, genuine, and honest expressions. Such ME appear on a person’s face in an 

involuntary manner; hence a person has minimal control over them. It is believed that in an 
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attempt to stifle one’s true emotion consciously or unconsciously, sometimes these expressions 

leak on one’s face [39]. These are more natural and genuine than macro expressions and are 

thus perceived to be useful cues. Few characteristics that distinguish these expressions from 

one another include duration, facial segments forming these expressions and intensity. 

However, it has been claimed that duration is the exclusive characteristic that sets these 

expressions apart, dismissing intensity as a potential classification factor [45]. The work in [45] 

also notes that expressions with life span stretching beyond ME duration eventually qualify as 

macro expressions. It is a well-known fact that ME is signified by rapid muscle movement 

which lasts only for a short span of time, ideally for less than half a second. These works have 

also revealed that ME have comparably very low intensity than macro expressions which 

makes recognizing such expressions more arduous. Some of the terms that have been 

commonly used to describe the nature of ME include short duration, low intensity, faint, rapid 

movements, subtle, split-second movement, fleeting expression etc., [39] [47]. Almost 80% of 

the facial components contribute to forming a macro expression whereas a significantly smaller 

number of facial segments take part in forming a ME. Carefully observing Figure 2.1(a) high 

Figure 2.1.  (a) Happy macro expression (CK database) [46], (b) Happy micro 

expression (CASMEII database) [47]. 

                   (a)                                                            (b) 
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prominence and clear visibility of macro expression is evident, whereas subtle and minuteness 

of ME which seem almost undetectable are evident in Figure 2.1(b). The formation of lines 

around the mouth and nose region due to facial activity is clearly visible for the macro 

expression but is extremely faint for ME. These ME have a wide range of applications in the 

real world like criminal investigation, autism, psychology, schizophrenia, lie detection, 

business negotiations and mental diseases [48][49]. Some popular applications of ME will be 

discussed in later sections.  

MER systems can be devised using both manual as well as automated methods.  For 

recognizing ME manually, observations are made by highly trained individuals and has 

acquired an accuracy of only 47% [50]. In [51] a psychological experiment was conducted and 

an average recognition rate of 50% was achieved. The Micro Expression Training Tool 

(METT) is an instance of a tool developed for manual ME detection by Ekman [52]. Such 

manual approaches are often tedious and time consuming therefore, [53] designed an automatic 

MER system and tested it using the METT videos. From the performance obtained, the 

automated approach clearly worked better in comparison to the trained human approach. 

Moreover, with the availability of a number of ME databases, attention from computer science 

researchers has increased significantly. Hence CV methods are being successfully explored for 

ME and are continuously improving recognition performance.  This accelerating success of 

automated approaches is reflected by accuracies as high as 75.3% achieved for MER [49] 

compared with accuracy not exceeding beyond 50% obtained so far for manual approaches. 

Such results endorse the fact that by using automated MER techniques, we can achieve superior 

performance compared with manual approaches. These positive outcomes have contributed to 

automated approaches gaining more prominence than manual approaches for identifying such 

fleeting expressions.  
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The focus of this thesis is designing an effective automated MER system utilizing ML 

and DL algorithms. By building such a MER system we intend to provide groundwork which 

can be extended and utilized for future applications like estimating emotion of individuals with 

autism using these ME.  

This chapter will provide a systematic overview on ME along with discussion on 

several topics related to this field of research. Section 2.2 introduces ME, then, in Section 2.3 

a short description of different databases used for evaluation of ME analysis algorithms is 

provided. This is followed by Section 2.4 which outlines core components of an automatic 

system that recognizes ME. Taking a real-life scenario into account Section 2.5 discusses 

recognizing ME from images with low resolution. Areas where MER systems can be applied 

are discussed in Section 2.6, with final concluding remarks presented in Section 2.7. 

 

2.2 Micro Expression  

According to [54] FE are a constant negotiation between two neurological pathways, pyramidal 

and extrapyramidal tract, which are sourced from two different sections of the brain. Facial 

movements that are voluntary in nature are caused by the pyramidal tract whereas involuntary 

ones are the result of the extrapyramidal tract. In a high-stake situation when a person tries to 

control their expressions, both these tracts get activated which creates a neural conflict leading 

to a quick leakage of expressions, called ME [54].  ME were first spotted by Haggard and Isaacs 

while reviewing motion pictures captured for psychotherapy sessions in 1966 [55]. The concept 

was further expanded by Ekman with his subsequent works [39][43]. Through these works, ME 

were believed to be indicators of emotional state. Research suggests that the discriminative 
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characteristics of facial ME are its exceptionally short duration lasting approximately between 

0.04 to 0.2 seconds [45] and remarkably low intensity muscle movements [39-45]. The highest 

acceptable duration limit is 0.5 seconds [47].  Since facial muscle contractions last for a brief 

amount of time these facial movements are perceived to be almost invisible to the naked eye 

and are likely to be missed using traditional observation methods. The inherently imperceptible 

characteristics makes recognizing ME considerably challenging and effortful.  Based on muscle 

contraction patterns, expressions are generally categorized as happy, sad, fear, surprise, disgust 

etc. [56]  

 

 

 

 

 

 

      The lifetime of a ME is generally divided into three stages commonly termed as onset, 

apex and offset [45] (see Figure 2.2). These three stages are based on the strength of intensity 

for a given expression which acts as markers for choosing the correct frames during spotting. 

Facial Action Coding System (FACS) [57] plays a crucial role in building a bond between the 

two entities: muscle changes and emotional states. This system was crafted to point out the 

precise time of occurrence and ending of an AU. During the initial stage when an AU is first 

perceptible and has the lowest intensity of facial motion, it is termed as onset stage (see Figure 

2.2 (a)). In this stage the muscle starts contracting with stronger changes in various facial regions 

Figure 2.2. Three stages of micro expression: (a) onset, (b) apex (c) offset [47].  

                   (a)                                           (b)                                           (c) 
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along with increased visibility. As they progress the AU becomes fully visible at its peak and 

the intensity is at the highest, this stage is known as apex (see Figure 2.2 (b)) and is visibly the 

most expressive frame [45]. Further, as facial muscles start relaxing and AU disappears, it 

characterizes the offset stage (see Figure 2.2 (c)), with no intensity of facial motion [45]. This 

absence of motion intensity on facial muscles brings the face back to its neutral state. Thus, this 

sequential shift of facial muscle motion is in general a progression from neutral to onset, then 

to apex, followed by offset and, back to neutral state. 

 

 

 

 

 

 

 

Appearance of facial expressions is generally visible on three facial regions identified as brow-

forehead, eyes-nose bridge, and lower face as illustrated in Figure 2.3. The lower face includes 

regions identified as cheek, nose, mouth, chin, and jaw. The presence of a particular FE can be 

established by examining the arrangement of features, degree of tension or relaxation, and 

existence, or absence of wrinkles. It is believed that any change in one of the facial regions will 

alter the appearance of other facial components present in that particular section. However, any 

movement in one of the facial regions may not always result in noticeable variation in terms of 

appearance in the other two regions. Considering universal expressions convention [57], a happy 

                    (a)                    (b)                     (c) 

Figure 2.3. Three facial regions where expressions are generally visible [57]: (a) brow-forehead, (b) 

eyes-nose bridge (c) lower face.  
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expression is generally identified by the appearance of raised lip corners, raised cheeks, 

appearance of wrinkles around the eyes along with tight muscles around them. Following the 

same convention, sadness is identified by raised inner corners of eyebrows, both lip corners 

drawn down, and muscles of eyelids loosened. A dilated pupil with open mouth, eyebrow, and 

eyelids both pulled up signifies a surprise expression. When the eyebrows, upper and lower 

eyelids all seemed pulled down with tightened lips, it is identified as an anger expression. A 

stretched mouth with eyebrows and eyelids pulled up determines muscle patterns for fear. 

Wrinkled nose with loose lips along with pulled up upper lip and pulled down eyebrow patterns 

implies presence of disgust expression. These muscle patterns for a variety of expressions are 

applicable to ME as well; however, due to feeble motion intensity as well as extremely short 

span, the visibility of such patterns may be almost imperceptible.  

   Though researchers have been working dedicatedly to improve the performance of 

recognition systems for these miniscule expressions, it is still behind results achieved for macro 

expression and provides ample scope for research and improvement. The two fundamental 

reasons behind this deficiency have been rightly pointed out as inadequate number of databases 

as well as demanding characteristics of ME itself [23,58]. However, recent work indicates both 

drawbacks have been addressed to some extent by various works utilizing different approaches 

which shall be discussed in Section 2.4.     

 

2.3 Spontaneous Facial Micro Expression Datasets 

To test and evaluate ME algorithms and carry out a meaningful comparison, standardised 

databases are essential. Deriving strengths and weaknesses of algorithms on such standardised 
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databases helps to achieve fair and acceptable contributions. Most of the existing state-of-the-

art MER systems have experimented on HR images to achieve high end results. This thesis has 

explored the area of ME with both high as well as LR image data. Since ME databases contain 

frontal views of the face, not much effort has been put into developing algorithms that cater to 

various face orientations for ME. To ease the task of recognition, ME databases contain image 

or video sequences recorded over a neutral background with good lighting conditions. For 

manual ME detection, a tool popularly known as METT was developed by [52]. Subsequently 

in later years databases were categorized into posed and spontaneous. The ME collected from 

those participants who deliberately produce the required expression or are asked to mimic a 

given expression constitutes a posed ME database. Polikovsky’s database (PD) [59] and 

unsupervised segmentation fusion-high definition (USF-HD) [60] are two such posed ME 

databases.  

On the other hand, ME gathered from participants without any prior knowledge of the 

type of expressions to be displayed for a given set of stimuli constitutes a spontaneous database. 

Spontaneous ME databases that are generally employed with automated approaches include:  

• York Deception Detection Test (York DDT) [61], 

• Chinese Academy of Sciences Micro-expression (CASME [62], 

• CAS(ME)2  [63],  

• CASMEII [47]);  

• Spontaneous Micro-expression database (SMIC-HS, SMIC-VIS, SMIC-NIR) [64] and  

• Spontaneous Micro-Facial Movement (SAMM) Dataset [65-66].  

Apart from these, “in the wild” ME database comprising of poker game videos downloaded 

from YouTube named as MEVIEW is also available [67]. Recently a new database known as 

micro and macro expression warehouse (MMEW) has been developed by [68]. In this thesis 
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databases employed include SMIC-HS, SMIC-VIS, SMIC-NIR, CASME, CAS(ME)2, 

CASMEII and SAMM at various stages. ME can be classified into universally categorized 

emotion classes namely, happiness, surprise, contempt, disgust, sadness, fear, and anger. 

Capturing and eliciting such ME is extremely difficult, consequently existing datasets do not 

have a complete set of all these classes. Some MEs like happy can easily be elicited, while some 

expressions like fear are difficult, this has resulted in uneven distribution of the data collected. 

Class labels provided for various ME databases are not uniform either. For instance, SMIC 

database has only three categories i.e., positive, negative and surprise whereas CASME database 

has seven categories of expressions. Detailed information about these databases relevant to this 

thesis has been listed in Table 2.1. along with a sample image from each of these databases in 

Figure 2.4. 

 

 

 

 

 

 

 

 

 

   

 

 

 

     

                  (a)                            (b)                                 (c)                                (d) 

                

                               (e)                              (f)                                  (g) 

Figure 2.4. Sample micro expression images from various datasets. (a) SMIC-HS   (b) SMIC-

VIS  (c) SMIC-NIR      (d) CASME   (e) CAS(ME)2      (f) CASMEII      (g) SAMM 

 

 

 

 

 



23 | P a g e  
 

 

 

Table 2.1. Spontaneous micro expression database summary. 

 

 

Database 

Total 

participant

s 

Total 

ethnic 

group

s 

Tota

l 

data 

Total 

emotion 

class  

FPS 

Facial 

resoluti

on 

Label names & 

distribution 

Label 
Distri

bution 

SMIC-HS 

[64] 
16 3 164 3 100 

190 x 

300 

Positive 51 

Negative 70 

Surprise 43 

SMIC-VIS 

[64] 
08 3 71 3 25 130x160 

Positive 28 

Negative 23 

Surprise 20 

SMIC-NIR 

[64] 
08 3 71 3 25 

190 x 

230 

Positive 28 

Negative 23 

Surprise 20 

CASME 

[62] 
35 1 195 8 60 

150 x 

190 

Surprise 20 

Happiness 9 

Disgust 88 

Fear 2 

Sadness 6 

Tense 28 

Contempt 2 

Repression 40 

CAS(ME)2 

[63] 
22 1 53 4 30 NA 

Positive 6 

Negative 19 

Surprise 9 

Others 19 

CASMEII 

[47] 
26 1 246 5 200 

280 x 

340 

Happiness 32 

Surprise 25 

Disgust 63 

Repression 27 

Others 99 

SAMM 

[65-66] 
32 13 133 7 200 

400 x 

400 

Happiness 26 

Disgust 9 

Surprise 15 

Fear 8 

Contempt 12 

Anger 57 

Sadness 6 
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2.4 Micro Expression Recognition System 

MER is a research area which deals with classifying human facial emotions through extremely 

minute and fine expressions on one’s face. Given its significant role for facial emotion 

estimation and analysis, automating the MER would be an extremely beneficial step. This thesis 

investigates the advancement of technologies for MER and develops an automated system by 

employing CV with the possibility of extending it for real world applications. As highlighted in 

Section 2.1, the manual method for MER is very laborious since it involves rigorous individual 

training. For manually recognizing such expressions using videos, experts need to carefully 

inspect the video, frame by frame, often pausing in between to ensure these expressions are not 

missed. During such inspections if any interruptions occur then the viewing may have to be 

restarted which makes this method very tedious and laborious. This process has achieved much 

less accuracy so far and hence successful automated MER systems are still being sought, thus 

the thesis focus remains on building a successful automated approach. Some early works that 

attempted to automatically identify spontaneous ME include [64][69-70]. In almost all these 

works, focus was laid on automatically recognizing ME using images or videos picturing 

frontal-view of faces. These expressions were collected from various participants who displayed 

expressions in response to a particular stimulus. As highlighted earlier, ME can be posed or 

spontaneous, however the work of this thesis focuses on spontaneous ME.   

 This section aims to provide a comprehensive literature review of recent methods in the 

field of ME and focuses exclusively on its automatic recognition. A general approach to such 

an automated framework for spontaneous MER usually consists of three primary stages namely, 

pre-processing, micro facial feature extraction and feature classification (Figure 2.5). For a 

better understanding, each of these components are systematically reviewed in this section. 
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Additionally, the existing spontaneous ME databases employed in this work has already been 

summarised in Section 2.3. 

 

 

 

 

 

 

 

 

2.4.1 Pre-processing 

Image quality is generally affected by several factors while undergoing the acquisition process, 

for example, pose, illumination etc. This has an adverse impact on recognition accuracy and 

requires attention. To neutralise such influence, it is essential to perform pre-processing on the 

raw images. This pre-processing stage is the initial stage of the recognition process that 

primarily focuses on data preparation. Here, the available databases are processed to generate 

improved data suitable for recognition purposes. Such improvements are commonly achieved 

by eliminating or suppressing redundant and unwanted attributes 

of the input data. Different pre-processing methodologies relevant 

to MER include face detection, face alignment and segmentation, 

frame normalization, motion magnification and data 

augmentation. Face detection and tracking is an active research 

field with much literature available and is beyond the scope of this 
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Figure 2.5. A basic framework for microexpression recognition [23]. 

Figure 2.6. Illustration of Haar 

features [71]. 
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thesis. Hence, in this section we discuss different methodologies of the pre-processing step 

which are popularly employed for ME analysis and highlight their contributions.  

The most widely used face detector for face analysis is the Viola and Jones (V & J) 

detector [71]. It processes input in the form of image or image sequences to automatically find 

the face region by employing Haar features. The edge, linear, centre and diagonal are four Haar 

features used by the algorithm as illustrated in Figure 2.6 (a), (b), (c) and (d) respectively. The 

edge features are used for detecting facial patterns that appear as edges, like eyebrows which 

generally appear darker. Line features are used for detecting facial features that appear as lines, 

like nose bridge. Similarly, diagonal features are used for picking diagonal facial features like 

wrinkles, jaw, chin etc. For frontal-view face images with neutral background this method is 

sufficient for face detection. The raw images are likely to be occupied by other objects along 

with a face, due to which face detection becomes necessary. It helps to crop out the face and 

therefore becomes the only object occupying the whole image. The step-by-step procedure it 

follows to achieve detection is illustrated in Figure 2.7 [71]. 
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Figure 2.7. Illustration of face detection procedure [71]. 
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For MER, inclusion of a sequence of images rather than a single image is vital. Thus, 

variances in pose or scale between images need to be removed to eliminate any adverse 

influence over recognition performance. 

Algorithms that are capable of aligning faces are 

helpful in dealing with such situations.  

Active Shape Model (ASM) [72] is 

widely used as a face alignment technique 

which employs a group of patches to represent a 

facial appearance. Alternating between response 

map construction and shape fitting, the alignment process is fine-tuned at every iteration. An 

instance of face modelling using ASM with landmarks and regions is depicted in Figure 2.8.  

Discriminative response map fitting (DRMF) [73] is another texture-based face 

alignment technique that can effectively detect 68 feature points, if given a facial region as input. 

By employing a template, another technique commonly known as constrained local model 

(CLM) [74] learns shape layout and texture variations for modelling faces. To preserve shape 

attributes of a face, the integral projection [75] method employs image differences while 

computing horizontal and vertical projections. Another popular face alignment technique is 

local weighted mean (LWM) [76] which has been extensively used for ME [41] [47]. Databases 

with ME videos contain varying frame lengths, hence, to achieve uniform alignment of frames 

while employing these videos, the temporal interpolation method (TIM) [77] has been widely 

accepted for ME analysis [70]. The method has been employed in this thesis therefore its 

working principle is briefed here.  

The basic principle of TIM is to build a continuous function following a curve trajectory 

using the set of images that constitute a ME video. To achieve this, a graph representation is 

Figure 2.8. Modelling face using ASM by 

identifying landmarks and regions [72]. 
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generated where every instance of ME video is expressed in terms of a path graph consisting of 

‘n’ vertices, denoted as Pn (see Figure 2.9). In this type of graph-based representation the edges 

represent adjacency matrix W whereas vertices represent video frames expressed as [70]: 

W {0,1}nxn ;      Wi,j {
= 1, 𝑖𝑓 |𝑖 − 𝑗| = 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

     (2.1) 

To achieve generalization where all connected vertices have minimum distance between 

them, the graph path is mapped to a line, with minimization given by [70]: 

∑(𝑦𝑖 − 𝑦𝑗) 
2  𝑊𝑖,𝑗  ;  𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗 = 1,2,…𝑛   

𝑖,𝑗

 
  (2.2) 

In equation (2.2) the map is denoted by y= (y1, y2…., yn)T . It must be noted here that this 

minimization process is same as computing Laplacian graph constituting {y1, y2,....,yn-1} 

eigenvectors. Therefore, yk can be assumed to be a set of points expressed by [70]: 

𝑓𝑘
𝑛(𝑡) = sin(𝑘𝑡 +  (𝑛 − 𝑘) /(2𝑛)) , 𝑡[1/𝑛, 1]  (2.3) 

Here in equation (2.3) the points are sampled over time interval t, where t= 1/n, 2/n,….,1 

Figure 2.9.(a) Illustrating an instance of micro expression with a graph representation  [70].                  

(b) Abstract view of temporal interpolation method for mapping video against a curve [70]. 
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resulting in a curve expressed by [70]: 

Ꞙ𝑛(𝑡) =  [

𝑓1
𝑛(𝑡)

𝑓2
𝑛(𝑡)
⋮

𝑓𝑛−1
𝑛 (𝑡)

] 

(2.4) 

Arbitrary positions within the ME images are then chosen to temporally interpolate them using 

this resultant curve. To establish a correlation between the image space and curve Fn, individual 

image frames are mapped to a set of points described by [70]: 

Ꞙn(1/n), Ꞙn(2/n),….., Ꞙn(1) (2.5) 

In addition to this linear extension of graph, embedding is also utilized to gather knowledge 

about transformation vector denoted by w, which aims in minimizing the following [70]:                              

  ∑(𝑤𝑇𝑥𝑖 − 𝑤𝑇𝑥𝑗  ) 
𝟐 𝑊𝑖,𝑗

𝑖,𝑗

 ; 𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗 = 1,2,… , 𝑛 
(2.6) 

Here in equation (2.6) 𝑥𝑖 denotes a vector with its mean removed, given by 𝑥𝑖 = 𝜉𝑖 − 𝜉′, the 

vectorized image is denoted by 𝜉𝑖  and 𝜉′ denotes the mean. The resulting problem of eigen value 

is expressed as: 

𝑋𝐿𝑋𝑇 𝑤 = 𝜆′𝑋𝑋𝑇 𝑤   (2.7) 

Utilizing singular value decomposition to further solve this problem where X= U ∑ VT the new 

image 𝜉 can be interpolated as described by equation (2.8) where square matrix is denoted by 

symbol M and 𝜉𝑖  is assumed to be linearly independent: 

𝜉 = 𝑈𝑀Ꞙ𝑛 (𝑡) +  𝜉′ (2.8) 

To summarise, the uniform frame length is achieved by interpolating frames at random 

locations using graph embedding technique (See Figure 2.9(a)). The interpolated frames at low 

dimensional space are mapped back to corresponding high dimensional space which ultimately 

results in a normalized sequence of frames (Figure 2.9(b)).  
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For dealing with the subtleties of ME, video magnification has been identified as an 

effective technique and this is substantiated with experiments reporting increase in recognition 

accuracy with its usage [40][49][78]. The technique essentially amplifies the feeble motion 

thereby increasing the visibility of these subtle expressions. Eulerian video magnification 

(EVM) was initially developed to boost the visibility of the human pulse and heartbeat rate in 

infants [79]. Both activities involve extremely faint movements that are almost invisible to 

human eyes. The method successfully intensified irregular and low magnitude movements 

thereby increasing their visibility. A detailed model of this magnification technique is discussed 

in Chapter 5. Global Lagrangian motion magnification (GLMM) is another motion-based 

technique explored by [80] which takes a different approach than EVM to achieve 

magnification. It considers global displacement between frames as opposed to local 

displacement considered in EVM. Experiments also demonstrate that TIM combined with 

video/motion magnification help to promote capabilities of existing MER systems [40][78].  

  To address insufficiency in availability of ME data, data augmentation has been applied 

for MER by various researchers. The most common practice for augmenting data involves 

flipping image/video data horizontally or vertically, rotating with varying angles, translating 

along x and y axis, using varied scaling factors etc. Using augmentation, [81] generated synthetic 

images and reported accuracy boost on both the CASME and CASMEII database. Similarly, to 

increase the volume of data, [82] exploited a generative adversarial network (GAN) and 

successfully generated fake ME images. It was also effective in eliminating class imbalance 

issue prevalent in the ME dataset. In [83] a new technique was proposed to deal with the 

unbalanced data issue in ME using both an AU and a GAN. The method was called an AU 

intensity controllable GAN (AU-IGAN). AU have intensities that vary according to the level of 

expressiveness, therefore by using its variants in different combinations, synthetic ME training 
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samples were formed. For every ME category approximately 300 to 400 synthesised data were 

created using this technique. Moreover, every type of ME class was created in this new 

synthesized database for each subject. Employing these steps, a significant boost in the volume 

of data was achieved along with more balanced class distribution. 

 

2.4.2 Micro Facial Feature Extraction 

Primarily, the target of this phase is to obtain stable and discriminatory facial features. The 

quality of features extracted directly affects the performance of classifiers, hence recognition 

systems give much attention to methods that can extract optimal features. For effectively 

representing input information, feature extraction techniques generally convert pixel data into a 

reduced form. This helps in minimising discrepancy that may be caused by unwanted external 

conditions associated with the input such as motion blur, lightning condition etc. Additionally, 

extraction of such optimal features is critical to minimize variations within a class and 

simultaneously maximize inter-class variations. The goal is not only to extract desired features, 

but also to ensure that the scaled down data can effectively represent its source.  Feature 

extraction methods can be broadly categorized into appearance based, geometric based or 

hybrid.  

Appearance based approaches aim to capture texture patterns based on different 

appearance features such as image intensity, gradient, filter bank etc. In simple terms, it applies 

filter banks or image filters to extract required facial attributes. On the other hand, geometry-

based approaches generally use geometric relationships of facial components defined by 

features such as location of facial landmarks, angle between certain points, Euclidean distance 

etc. Sometimes combinations of these approaches can be employed and are known as hybrid 
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methods. Facial representation, when encoded using image sequences employing a frame-by-

frame approach, is termed as a spatial based method. However, if encoding involves a temporal 

window for image sequences, then it is known as a spatio-temporal method. Various feature 

extraction techniques employed specifically for ME have emerged in recent years. To ensure 

minute changes of ME are successfully extracted, inclusion of temporal variations is essential. 

During implementation this is realized by considering a temporal window and examining the 

sequence of frames within it. Consequently, approaches that facilitate information extraction 

from spatio-temporal domains are popular among MER system, commonly identified as 

dynamic based approaches.  
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Local binary pattern on three orthogonal planes (LBP-TOP) [84] is one such approach 

and remains one of the most widely employed spatio-temporal feature extraction techniques 

particularly for ME [47][49]. Its approach is to select a centre pixel and its neighbouring pixels, 

then compare their pixel values. This helps to describe texture variations within a circular region 

by applying binary codes. The method extracts required features from three planes then 

generates a histogram to represent the features (See Figure 2.10). Including planes 

corresponding to the time domain, helps in representing temporal variations of the subjects. 

This method was also used as a baseline evaluation for the CASMEII [47], SMIC [64] and 

SAMM [65-66] databases. The popularity of this method is due to its low computational 

complexity and favourable tolerance with varying illumination in the input. This method has 

been employed in this thesis therefore its working principle is briefed here.  

The notation used to refer a Local Binary Pattern (LBP) operator with certain radius R 

and neighborhood sample points P is LBPP,R. For every LBPP,R, the total number of binary 

patterns generated is given by 2𝑝. Mathematically, for a center pixel, c with cordinates (𝑥𝑐, 𝑦𝑐), 

with P neighbouring pixel at R radius, the LBP is computed using equation (2.9) and (2.10) [84].                                                                                

 

In equation (2.9), g𝑝 and gc denote grey values for the neighbour pixel and centre pixel 

respectively, 2𝑝 represents the weight on the neighbouring pixel at 𝑝th location where, 𝑝 =

0,… , P − 1  and 𝑠(𝑥) in equation (2.10) manages the sign issue. The binary pattern obtained is 

then arranged in either clockwise or anti-clockwise manner to obtain its corresponding decimal 

𝐿𝐵𝑃P,R
(𝑥𝑐, 𝑦𝑐) = ∑ 𝑠(g𝑝 − gc)2

𝑝

P−1

𝑝=0

 

 (2.9) 

 

 

 

𝑠(𝑥) = {
1, 𝑥 ≥ 0
 0, 𝑥 < 0  

 (2.10) 
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equivalent. Every occurrence of the LBP code generated throughout the image is then collected 

to build a histogram. This operation is performed on all three planes XY, XT and YT to 

generate three corresponding histograms. As a concluding step all three histograms are 

concatenated to form a final histogram. 

A variation of LBP-TOP 

method was developed by [85] where 

the central pixel was used to compare 

with a pair of neighbouring pixels, 

thereby reducing the binary code 

length to half the size than that of LBP-

TOP. The method was known as 

centralized binary pattern on three 

orthogonal planes (CBP-TOP). By 

employing an extreme learning machine (ELM) during classification, the combination of these 

two techniques was effective in improving the recognition. Subsequently a more condensed 

form of LBP-TOP was suggested by [86-87] which used only six unique points of three 

intersecting planes to represent the features known as local binary pattern with six intersection 

points (LBP-SIP) (see Figure 2.11). This method was able to reduce the space and time 

complexity by half compared with the LBP-TOP method. They also developed another 

variation of LBP-TOP which represented features in a super compact form by computing the 

average of each plane known as local binary pattern - mean orthogonal plane (LBP-MOP). This 

method drastically reduced the feature extraction time compared with the LBP-TOP method; 

specifically, it extracted features 38 times faster than the conventional LBP-TOP.  

LPQ based methods have also been actively employed in macro expression research 

Figure 2.11. Illustration of six discrete neighbour 

points in LBP-SIP technique [86-87]. 
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[88] with good performance and now its usefulness can also be seen for ME too. An extension 

of this method, popularly known as LPQ-TOP was explored for ME in [89]. These works 

successfully demonstrate the robustness of LPQ-TOP as an extraction technique.  

Another extraction technique based on integral projection with difference images 

known as spatio-temporal local binary pattern with integral projection (STLBP-IP) was 

proposed by [90]. The method successfully preserved facial images’ shape attributes and was 

also effective in generating more discriminative facial features. To enhance the existing 

discriminative capability of the overall system, an improvisation of STLBP-IP was proposed 

by [91] which employed principal component analysis (PCA) and a feature selection technique 

based on the Laplacian method. By employing this approach an impressive increase in 

recognition rate by (approx.) 4% using the CASME II database and (approx.) 9% using the 

SMIC database was recorded compared with STLBP-IP. All these feature extraction techniques 

belong to the LBP family.  

Figure 2.12. An outline for extraction process employing 3DHOG [59]. 
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Apart from these LBP based methods, two gradient based methods that are popular for 

solving MER problems include histogram of oriented gradient with three orthogonal planes 

(HOG-TOP) and histogram of image-oriented gradient with three orthogonal planes (HIGO-

TOP). Three-dimensional HOG (3DHOG) was proposed by [59] to describe the spatio-

temporal structures of facial ME. By dividing the entire face into twelve regions, 

spatiotemporal blocks corresponding to each region was obtained. To construct a histogram for 

these regions the magnitude of gradient projections was computed in all three directions. An 

outline of this approach for extracting features is presented in Figure 2.12. In another research, 

the HOG technique was extended to calculate gradient magnitude and local gradient direction 

for each of its three planes known as histogram of image gradient oriented on three orthogonal 

planes (HIGO-TOP) [40]. The extraction process followed by HIGO is identical to HOG but 

ignores the magnitude factor. Both these methods have been extensively examined in [40] 

along with video magnification. The HIGO method augmented with magnification was able to 

achieve a remarkable recognition rate of 78.14% using the CASME II dataset. Besides LBP 

and gradient methods, optical flow-based approaches have also been widely examined for ME.  

The bi-weighted oriented optical flow (Bi-WOOF) approach was proposed in [45] to 

extract optical features of ME from a single apex frame. An apex frame is believed to possess 

the most discriminative features in comparison to other frames hence this work performs 

recognition based on features extracted from a single frame only.  The method was tested on 

the CASME II and SMIC datasets and produced results comparable with other methods with 

accuracies of 61% and 62% respectively. Optical flow-based methods generally estimate 

motion by examining the change in pixel intensities of frames over a period of time. A region 

of interest based main direction mean optical flow (MDMO) method was proposed in [92] for 

MER. The method was immune from the influence of translation, rotation, and illumination 
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variance. Experimental results demonstrated that this method performed better than the 

baseline LBP-TOP. This method takes both spatial as well as local static motion information 

into account. 

The 2D Gabor filter with sparse representation was employed by [93] and it was found 

to work better than HOOF and LBP-TOP used in earlier works. Similarly, exploiting Gabor 

filters further, [94] first magnified ME clips using EVM then employed spatio-temporal Gabor 

filters for feature extraction. The findings were similar to [93], which further strengthened its 

superiority over the other two methods.  Alongside these methods, attempts have been made to 

apply DL based approaches which will be discussed in Section 2.4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13. An outline of convolutional neural network employed for facial expressions [95]. 

 

Figure 2.14. Network structure of convolutional neural network [81]. 
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2.4.3 Deep Learning Based Micro Expression Recognition  

 

In recent years, besides handcrafted methods, a variety of DL based MER systems have 

evolved with excellent outcome. Though the small-scale nature of available ME dataset 

continues to be a bottleneck for DL based methods, research shows emergence of various 

techniques to overcome this. The work in [95] was one of the earliest attempts to utilize the DL 

concept for MER which is based on the architecture given in Figure 2.13. To deal with data 

inadequacy, transfer learning was applied, where a convolutional neural network (CNN) model 

was trained on ImageNet and then transferred the appropriate features for further processing. 

To extract features from datasets dissimilar to ME, the layer positioned right beneath the layers 

that were fully connected was chosen. In contrast, for datasets that resembled ME, the layer 

positioned just prior to the final layer with full connection was chosen.  

 In [81] a CNN based MER system was explored and applied data augmentation to 

generate exhaustive data for training purposes. The components of its model consisted of a 

convolutional layer, a rectified linear unit (ReLU), and a pooling and fully connected layer for 

classification. Features that are useful for performing recognition were extracted by the 

convolution and pooling layers whereas the classification process was taken care of by a fully 

connected layer. Five convolutional layers were built to obtain a deep network where the last 

four layers contained 3x3 filters and the first layer contained 11x11 filters. With a kernel size 

of 3x3, a total of three max pooling layers were fitted into the architecture. Moreover, it also 

consisted of three layers which were fully connected. This configuration of the deep network 

employed is illustrated in Figure 2.14. Using this approach, a significantly improved accuracy 

of 75.57% was achieved on the newly created database consisting of synthetic images. In [96], 

a CNN with an optical flow method was proposed which used an apex frame and an onset 
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frame to derive optical flow features which were then sent to a CNN model. The idea behind 

building the CNN model was to aid emotion class prediction by selecting features relevant for 

the classification process.  

Relying on facial colour related features rather than on motion related features, [97] 

presented a unique framework for MER. The framework employed a popular recurrent neural 

network; long short-term memory (LSTM) model and facial colour features. Based on the 

experimental results obtained, the authors concluded that this colour-based method 

outperformed some of the previously used motion-based approaches with an accuracy of 66.6% 

reported on CASME II dataset and 70.5% on SMIC dataset. Thus, the method seemed to be as 

competent as any other state-of-the art techniques.  

Similarly, in another CNN based work [98], simultaneous convolution of spatial and 

temporal data was performed to obtain motion as well as facial texture representations. Features 

extracted from 3DCNN were used as input to the long short-term memory (LSTM) model to 

further boost the temporal data. This method proved to be beneficial for ME cross-database 

based research. By fusing optical flow features with DL, [99] tested their approach using the 

CASME and CASMEII databases, achieving recognition rates of 57.80% and 58.03% 

respectively. Here, 68 facial landmarks were detected using the deep convolutional network, 

followed by a fused version of a deep CNN, FlowNet2.0, for extracting the optical flow 

information from the facial regions. To obtain more reliable features, an enhanced version of 

the optical flow technique was further applied before performing classification.  

Exploiting GAN and graph-based techniques, [100] developed the identity-aware and 

capsule enhanced generative adversarial network (ICE-GAN) for ME framework. The method 

effectively achieved an increase of 12.9% accuracy compared with other methods. Another 

example of such work is [101] which has explored the concept of CapsuleNet for ME. In their 



40 | P a g e  
 

approach as an initial step, the apex frame is identified by computing the absolute pixel 

differences between the current frame and onset, this is repeated for the offset frame also. It is 

then followed by a recognition process utilizing CapsuleNet on the identified apex frame. The 

method was able to surpass the baseline recognition performance. 

These works clearly suggest effective utilization of DL approaches for ME based 

experiments can be successful, with scope for further exploration. Moreover, transfer learning, 

CNN, GAN, Capsule net are instances that clearly demonstrate success of DL approaches for 

MER. Consequently, we will be exploring DL techniques in Chapter 6. 

 

2.4.4 Feature Classification 

 

The task of assigning class labels to input data by designing predictive models using machine 

learning algorithms is generally known as classification. This stage involves classification of 

the input into various emotion types based on the extracted features. Designing such predictive 

models requires a set of data with known class labels to be used for training. To evaluate the 

performance of such models, one of the commonly used metrics is the classification accuracy. 

This metric is based on the class labels predicted by such models. Surveys showed [102-103] 

that the appropriate methods to achieve this for MER include support vector machine (SVM), 

k-nearest neighbour (kNN), random forest, extreme learning machine (ELM), sparse based 

representation, CNN based approaches, group sparse learning (GSL) and relaxed K-SVD. 

Multiple kernel learning (MKL) [70] has also been employed for ME analysis with better results 

than SVM for some instances. For improving the classification performance with divide and 

conquer based approaches, [70] also employed a random forest for ME analysis. The nearest 

neighbour approach is based on distance determined between unknown samples and known 
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hyperplane that gives maximum data 

seggregation [105]. 

samples. The method was employed in one of the earliest works for ME where an accuracy of 

65.83% was achieved using the SMIC database [104]. Compared with other classifiers, SVM 

has been most extensively used for classifying ME.  

 Throughout this thesis classification is implemented using SVM [105] therefore, working 

principle of this method is discussed briefly. The datasets are separated into two sets namely 

training and testing. Individual instances of data in the training set contain several attributes and 

class labels. Based on this information, if given test data attributes, the SVM will build a model 

capable of predicting class labels for each instance of such test data. In simple terms, SVM 

searches for an optimal hyperplane that best differentiates various classes. Figure 2.15 illustrates 

an instance where three possible hyperplanes are identified that can segregate the data belonging 

to two different classes. The selection of an optimal hyperplane that gives maximum segregation 

for data belonging to two different classes is illustrated in Figure 2.16.  

 

 

  

 

 

 

 

 

Figure 2.15. Illustration of three 
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To identify the right hyperplane, it uses the kernel trick. The three most popular kernel functions 

used with SVM are linear, polynomial, and radial basis function (RBF) denoted by equation 

(2.11), (2.12) and (2.13) respectively [105]: 

where 𝑑, 𝑟 and γ are the kernel parameters, (x𝑖  ,x𝑗) represent training samples and 𝑇 denotes 

the transpose operation. In equation (2.12), d refers to polynomial degree, 𝑟 is coefficient, and γ 

in (2.12) and (2.13) is the gamma parameter that describes the scale of influence of each training 

sample.  

 

 2.5 Recognizing Micro Expression with Low Resolution 

Images  

The advancements in MER techniques are accelerating at an exceptional rate in recent years. 

Envisaging a real environment, the recordings captured in our everyday life are prime sources 

for many studies, but these data often suffer from poor quality. Consequently, this has opened 

up a new research direction involving low resolution ME images. Identifying a particular class 

of ME among several classes is extremely challenging due to less distinct inter-class 

discriminative features. LR of such images further diminishes the discriminative power of 

micro facial features. Undoubtedly, this increases the recognition challenge by twofold. To 

address the issue of LR for facial ME, [41] proposed reconstructing HR images from LR 

𝐾(x𝑖  ,x𝑗) = x𝑖
𝑇x𝑗 (2.11) 

  

𝐾(x𝑖  ,x𝑗) = (γ x𝑖
𝑇x𝑗 + 𝑟)  

𝑑 , γ > 0 (2.12) 

  

𝐾(x𝑖  ,x𝑗) = exp(−γ ||x𝑖  − x𝑗||
2), γ > 0 (2.13) 
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images by employing a face hallucination algorithm on individual frames. At present datasets 

available for ME contain only HR images. For instance, the CASME II micro expression 

dataset contains HR images with resolution of approximately 280 x 340, whereas LR images 

are usually below 50 x 50 [41] resolution.  Hence in [41], a LR micro expression image dataset 

was obtained by simulating three existing HR micro expression image datasets i.e., CASMEII, 

SMIC-HS and SMIC-subHS. The framework employed in their work to reconstruct super 

resolution (SR) ME images from LR images is depicted in Figure 2.17. Through experiments 

an improvement on overall classification accuracy was achieved using these datasets. However, 

low accuracy for individual classes was also observed alongside. From the results obtained, a 

drastic decline in the recognition accuracy was observed for expressions with exceptionally 

LR. Datasets from CASMEII and SMIC-HS yielded higher magnitude of misclassification than 

SMIC-subHS. It was observed that the reliability and validity of any FE analysis approach is 

directly affected by the resolution of the input image used hence acquiring decent resolution 

for the reconstructed facial ME images was crucial when employing SR techniques.  
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Work involving face SR for expression analysis has employed macro expressions, thus SR on 

ME is a unique concept introduced in [41]. Therefore, at the time of writing this thesis [41] is 

the only work that has employed the concept of SR for LR micro expression images. The 

general pipeline adopted in their work is presented in Figure 2.18. It must be noted that the 

solution provided in their work does not consider DL based methods.  Taking this concept 

further, this thesis attempts to solve the LR problem in images for ME by employing several 

DL techniques which will be discussed in Chapter 6. 

 

 2.6 Application of Micro Expression Recognition System 
 

The conception of ME can be traced back to 1969 when Ekman and Friesen [39] were 

examining an interview of a psychiatric patient. An extremely brief sad face was detected when 

the interview’s video clip was played in slow motion. Thorough examinations affirmed that 
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Figure 2.18. Framework for microexpression recognition with LR images [41]. 
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this lasted only for two frames which is approximately 1/12 of a second. This was followed by 

a quick dubious smile stretching for longer span. These observations revealed that the patient 

was trying to supress an underlying negative feeling, but some expressions leaked 

involuntarily. Such subtle expressions are termed as ME and are believed to reveal genuine 

emotions. Thus, application of ME in the field of psychology is evident. Similarly, Ekman also 

suggested that MER could be beneficial in understanding emotion of individuals with autism 

since they exhibit extremely fewer expressions on their face. Like facial macro expression 

[106-107], usefulness of ME can also be explored for assessing pain intensity for patients who 

are unable to express themselves. These instances illustrate tremendous potential of MER in 

identifying useful checkpoints that could assist in clinical diagnosis and investigation. 

Extending its application to mental health for estimating signs of depression, anxiety and 

suicidal tendencies can be very impactful and beneficial endeavour. 

Another instance where MER can become useful is in certain negotiations for business, 

politics, public policies etc. Negotiations involve decision making and studies show that 

emotion is an important factor that influences such decision-making processes [48]. By 

carefully examining such ME, one can get an intuitive insight into the party/individual’s state 

of mind during negotiations, which can be helpful in making informed decisions. Such decisive 

advantage can effectively save time by avoiding unfruitful conversations with people having 

little or no interest in affirming contracts.  

A person is usually vulnerable during high stake situations due to which leakage of 

expressions are sometimes inevitable, therefore MER can be helpful for detecting a lie. This 

belief was strengthened through findings by Ekman [39], where he confirmed such leakage 

was a powerful tool in identifying deceit. In an experiment conducted by [108] involving a 

mock crime scenario, participants were asked to either be truthful or lie about stealing. Results 
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obtained revealed that ME analysis was effective in differentiating between truthtellers and 

deceitful people. These findings clearly support the idea of utilizing MER for identifying tip-

off during criminal investigations, law enforcement and similar fields[23,40,49]. Identifying 

security threats for border control, in airports etc are another set of instances where application 

of MER can be advantageous [40]. By examining an individual’s ME, suspicious behaviour 

exhibited by them can be detected and can be dealt with suitably [40]. Thus, situations where 

screening individuals may be necessary for security reasons can certainly benefit from MER 

system. 

Reading ME for obtaining cues regarding students’ progress as part of classroom 

communication is another instance of ME application. Such application in academics field was 

explored by [109-110]. In [110] ME was obtained to determine the concentration level of 

students in a classroom. The information gained was then used for adjusting teaching methods 

to suit the student’s state of mind. Both these works promote the successful application of ME 

for academic monitoring and meaningful learning. 

Building an affective robot is another instance where MER finds its application. Such 

robots can read facial ME to improve communication between human and robot. It can be 

effective in helping people who have difficulty in expressing emotion like elderly, disabled, or 

autistic individuals.  Many other fields exist where MER can be applied and is beyond the 

scope of this thesis to cover them all. Such a wide range of inter-disciplinary application of ME 

has drawn attention of many researchers and its further expansion is evident in coming days. 
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2.7 Summary                                                                                                        

This chapter provided a review of various techniques that have been developed and applied to 

different components of MER systems. The basic model of a MER system along with its 

building blocks has been examined here. Various techniques and algorithms employed within 

these blocks for improving performance has also been presented. Through this extensive 

literature review, progress made so far in the field of automated MER can be comprehended. 

Amidst a wide range of approaches to ME analysis and recognition from various 

interdisciplinary groups, its resounding success is evident. With an increase in the interest in 

affect analysis with ME, substantial progress in the last decade has been identified. Exploring 

facial, ME has helped to uncover the current trends and challenges in this field. Study shows 

that accomplishments in ME analysis have successfully explored handcrafted as well as DL 

techniques, though approaches employing handcrafted methods are significantly higher in 

number. Based on the review it is fair to claim that the progress of DL based MER system was 

considerably influenced by designing novel databases through augmentation approaches. It has 

been observed that there exists significant works that have employed good quality ME images 

to achieve state-of-the-art recognition accuracy, whereas a small number of works exist that 

have explored low quality images for this task. 

Designing methods for micro feature representation to effectively encode subtle 

movements is one research area within ME analysis which will be explored in this thesis. Also, 

we have explored both HR and LR micro expression images in experiments conducted for this 

thesis. In this thesis, work employing HR data is discussed in Chapter 4 and Chapter 5, and in 

Chapter 6 the work employing LR images for ME is presented. 
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Chapter 3 

Image Super Resolution: Theories and 

Techniques 
 

 

3.1 Resolution Implications for Micro Expression Analysis 

In CV the need for good resolution images is vital for algorithms to achieve reliable and superior 

performance. Conventionally, analysis of ME has been performed using HR images which are 

ideal cases. These images are taken from datasets that are produced in ideal conditions with 

good lighting, no interference of illumination variations, full frontal view with no obstructions 

and resolutions of approximately above 150x150. However, in a real-world scenario, capturing 

expressions with HR may not always be possible particularly using low-cost surveillance 

cameras. External factors like ill pose, meagre lighting conditions, non-uniform illumination 

etc. can severely impact the quality of images captured using such low-cost devices. Very often 

faces captured using such cameras appear alongside several other objects hence are likely to 

take up only a limited space in the entire image. Thus, faces captured appear both very tiny as 

well as with poor resolution. The quality may also be affected if downloaded images, or images 

stored in restricted memory capacity etc. are employed.  In general, exploring LR micro 

expression can be extremely beneficial particularly for crowd scenarios and poorly illuminated 

areas [41]. Since MER is a substantially widespread inter-disciplinary application area it is 

undeniable that this implicitly spawns situations where images to be analyzed maybe of poor 

quality. Due to further loss of discriminative features owing to reduced resolution, these images 
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may not be of much use particularly for identifying certain minute facial details. Such 

insufficient resolution makes it extremely difficult for both humans and machines to utilize the 

available information.   

           To make these images useful, enhancing the textural information becomes essential and 

SR algorithms can be ideal to achieve this. A significant surge in the use of surveillance cameras, 

especially for monitoring public domains, has created a new challenge for recognizing ME 

collected under shallow lighting conditions. For these cameras, more emphasis is laid on 

capturing reliable recordings for longer period which is generally achieved by making a 

significant compromise on image/video resolution, thereby raising the need for algorithms that 

can deal with such resolution concerns [111]. SR is one such medium capable of addressing 

resolution challenges that are often engrained in images acquired using ordinary imaging 

devices. Reconstructed images obtained using SR algorithms often have improved pixel density 

subsequently offering more image details. Achieving good resolution using superior hardware 

is not always cost effective and therefore employing image processing algorithms seem more 

feasible [111]. The absence of discriminative facial details in ME along with faint muscle 

movement intensity that lasts for exceptionally short duration characterizes it to be laborious for 

recognition tasks. Extracting informative attributes from such LR images become effortful due 

to further loss in the availability of salient information which may have unfavorable influence 

on the performance of overall MER systems. As such, resolution of these ME images can be a 

pivotal factor during the recognition process. Differentiating among various classes of ME is 

already a challenge due to non-distinct features. Therefore, difficulties are further compounded 

when such expressions are captured with poor resolutions, as distinctive traits in such micro 

facial features reduces.  
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The very first work that studied the effect of resolution for ME was by [112]. The original 

images taken from the CASMEII database were downscaled to 75%,50% and 25%. 

Performance of three feature extraction techniques were tested on these downscaled images. At 

the lowest downscale level 3DHOG technique performed the best whereas at HR, the LBP-TOP 

method seemed to perform much better. At half the resolution histogram of optical flow 

orientation (HOOF) method gave the best performance in comparison to other two techniques. 

The work successfully realized the effects of resolution for ME but did not examine resolution 

enhancing techniques on such LR images. Moreover, the effect of image degradation other than 

LR was also not explored. 

To have more relevance with real-life applications, [41] proposed using deteriorated ME 

images that were both blurred and down sampled. Three levels for LR were considered i.e., 

16x16, 32x32 and 64x64. These LR micro expression images were then super-resolved using 

patch based and pixel-based face hallucination techniques on individual frames and was the first 

work to perform MER using deteriorated image quality. At present datasets available for ME 

contain only HR images. Hence in their work [41] LR micro expression image dataset was 

obtained by simulating three existing HR micro expression image databases i.e., CASME II, 

SMIC-HS and SMIC-subHS. Fast LBP-TOP was used for extracting the features which were 

then classified using SVM. The results indicated that employing significantly LR images at 

16x16 level makes it extremely difficult to achieve decent recognition results. Their approach 

worked comparatively better on SMIC-subHS with less misclassification reported than other 

two databases. Employing SMIC-HS database images at size 16x16, a drastic improvement on 

the recognition results was reported particularly for positive labels. In contrast, substantially 

higher misclassification results were reported for CASMEII database. Another observation 
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made for this database was that most of the data were misclassified into “others” category. When 

recognition accuracy obtained for SR images were compared with their corresponding LR 

images a significant improvement was noticed for all the three databases at all chosen resolution. 

By analyzing the overall reconstruction performance, observed through structural similarity 

index (SSIM), it was clear that the method produced best reconstruction results for SMIC-HS 

database followed by CASMEII and SMIC-subHS at 64x64 level. Same trend was observed for 

the other two levels also. However, observing peak signal to noise ratio (PSNR) suggested that 

reconstruction performance on SMIC-subHS was better than on CASMEII database at both 

64x64 and 32x32 level. Though reconstruction values obtained for SMIC-subHS database was 

slightly less compared to other databases, yet it successfully produced best recognition results 

recorded at 74.65% which is much higher than that obtained for SMIC-HS and CASMEII 

database at 52.44% and 48.18% respectively. Lower volume of data samples along with fewer 

class categories in SMIC-subHS might have worked in its favor thereby producing better 

recognition results in comparison. 

It must be noted here that to the best of the author’s knowledge, [112] is the first work 

to examine the effect of resolutions for MER. The work employed downscaled images but did 

not consider degrading images in their implementation. In [41], discussed earlier, the authors 

have addressed low quality issues for MER where quality of image is severely affected due to 

poor size and blurring. In their approach SR method was employed for enhancing such low-

quality images without DL techniques. Therefore, from extensive literature study limited work 

addressing poor quality issues for MER was noticed. Inspired from these two works, this thesis 

takes their concept forward and explores the recognition process for ME employing low quality 

images. 
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   To address the low-quality issues for facial ME images, this thesis proposes a novel 

approach that employs a SR technique using DL, GAN, and its variant. Therefore, this Chapter 

will discuss these SR algorithms in detail to be employed later in experiments for enhancing LR 

micro expression images.  

   It must also be mentioned here that at present public database available for ME contain 

only HR images therefore are unsuitable to be tested directly by SR algorithms. To simulate 

appropriate LR database suitable for SR methods, this thesis applies image degradation 

technique which shall be discussed in Section 3.6 

 

3.2 Progression of Deep Learning Super Resolution 

Techniques 
 

An image with dispersed and loosely aligned pixels consisting of comparatively fewer image 

details within them than standard resolution image is identified as a LR image. This obviously 

makes it appear pixelated, less precise, blurrier, and granular. On the other hand, image with 

more concentrated and compact pixel arrangement in addition to crisper and clearer appearance 

is classified as HR image. Implicitly, image details contained in it are much denser and 

condensed. Broadly, image with LR differ from HR image mainly in terms of pixel density per 

unit area and degree of coherence. A substantial lack of salient information (e.g., texture details, 

high frequency information etc.) in LR image makes the process of attribute extraction 

extremely challenging and laborious. The task of estimating a HR image by reconstructing an 

image from a LR input image of the same scene is generally known as image super resolution 

(ISR) and the reconstructed image is known as a SR image. Such methods are expected to 

overcome the influence of various degradation factors like blur, noise etc., acquired during 
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image acquisition. Producing improved reconstructed scenes along with restoration of essential 

details is paramount for these methods. For instance, when super resolving LR facial images, 

recovering facial details is imperative. The challenge is not only to reconstruct the face, but also 

to maintain attribute consistency with the original HR images. Thus, restoring face details in the 

reconstructed image is vital for face SR algorithms, to facilitate FE analysis. SR image can be 

estimated using HR video or multiple images or single image. In this thesis SR image was 

produced from single image input using DL methods hence the scope of discussion largely 

focuses on DL techniques for single ISR. The concept of SR was first introduced in 1984 by 

Tsai and Huang [113] where an image was reconstructed by employing multiple frames and has 

now progressed with several advancements. 

           One of the early works that applied DL concepts for SR employed a fully convolutional 

neural network (FCNN) [114-115] with a very straight forward architecture. These types of 

networks do not have dense connections at their rear and the technique was named super 

resolution convolutional neural network (SRCNN). Due to the absence of pooling, the output 

images obtained were the same size as the input images. The network was composed of three 

convolutional layers and two rectified linear units (ReLU), where structurally ReLU succeeded 

every convolution layer with an exception in the final layer. The first layer in the SRCNN was 

used for extracting features from a given LR image input. The second performed non-linear 

mapping where the extracted features were mapped to its corresponding high dimensional 

representations. The final layer utilizes the prediction information borrowed from its 

neighborhood to generate the SR image as output. The architecture employed to formulate 

SRCNN is illustrated in Figure 3.1.  
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Later, an improvement on this method introduced by [116] performed 40 times faster with 

exceptionally higher restoration capability and was known as fast super resolution convolutional 

neural network (FSRCNN). It was composed of five components namely feature extraction, 

shrinking, mapping, expanding and deconvolution. This structure utilized for FSRCNN is 

illustrated in Figure 3.1. Another advantage of this method was that it was able to perform both 

training as well as testing with much higher acceleration for varying upscaling factors.  

 

 

 

 

 

 

 

Figure 3.1. Illustration of network structure for super resolution convolution neural 

network(top) [116] and fast super resolution convolutional neural network(bottom) [116]. 
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Figure 3.2. Illustration of residual learning [138]. 
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In contrast to these methods, very deep networks were designed to perform SR that utilized 

residual learning as illustrated in Figure 3.2. The basic idea of such approach is to learn the 

residue i.e., difference between given input and the ground truth. A deep residual learning 

(ResNet) based SR technique called SRResNet used residual blocks instead of convolution and 

demonstrated better performance than SRCNN [117].  By removing the batch normalization 

module from the conventional residual network (ResNet) (refer Figure 3.3 (a)) and SRResNet 

(refer Figure 3.3 (b)); [118] was able to optimize the model and named it as an enhanced deep 

super resolution network (EDSR) (refer Figure 3.3 (c)). Additionally, it was able to save 

memory usage by a significant margin of 40%. With further advancements, densely connected 

CNN architectures evolved for enhancing the network performance and became popular for 

solving the SR problem. The architecture named as SRDenseNet benefited due to an accelerated 

training process from the dense connections introduced between the convolutional layers. An 

illustration of such dense block utilized in SRDenseNet is presented in Figure 3.4 (a). 

Figure 3.3.  Illustration of residual block  [118] used in (a) conventional ResNet, (b) Super 

resolution with ResNet  and (c) for EDSR.                                                    

         (a)                                                     (b)                                                                (c)                                                
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A residual dense network (RDN) is another instance that uses this type of architecture 

with some modifications (refer to Figure 3.4(b)). For learning local patterns this technique 

considers utilizing hierarchical feature representations exhaustively. Using a very deep RDN 

architecture to solve image SR problem [119] achieved favorable results. With the evolution of 

generative models in various CV related fields, its usefulness was noted for SR algorithms too. 

GANs have a very powerful ability to learn and hence they become useful for SR tasks. The 

work in [120] used a GAN architecture to perform SR over a single image and called it a super 

resolution generative adversarial network (SRGAN). The image was super resolved with a 

factor of four and was the first work to have successfully upscaled images with this factor. 

Notably the images produced in their work were more realistic than those obtained from any 

other state-of-the art techniques used before. Using a novel approach by introducing a residual 

in residual dense block (RRDB), [121] was able to improvise on the visual as well as texture 

quality of its super-resolved output images. Several innovative deep convolutional neural 

networks (e.g., CNNs) are now available with variations that exploit RDN, residual dense blocks 

(RDB) and recursive learning architectures and have been successfully applied to SR problem. 

Borrowing the RDB and GAN based SR approaches from these works this thesis tests them on 

Figure 3.4. (a) Dense block used in SRDenseNet architecture (b) Residual dense block 

used in residual dense network [119]. 

(a)                                                          (b) 
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ME images. Only those work closely related to the methods employed in this thesis are 

highlighted in this section. An elaborative discussion of the methods employed in this thesis are 

presented in the following sections. 

 

 

 

 

 

 

 

 

3.3 Residual Dense Network 

Most DL approaches utilized for SR before [119] suffered from certain flaws like increased 

computational complexity, low growth rate, loss of image details from its LR input, variation in 

scales etc. To overcome loss of image details, [119] introduced the RDN, capable of fully 

exploiting hierarchical features from the LR input. RDB was used as the building blocks for 

RDN structure.  A detailed illustration of RDN utilized for performing ISR is given in Figure 

3.5. Structurally, RDB consists of three primary components i.e., local feature fusion (LFF), 

local residual learning (LRL) and dense connected layers. Since the output of one RDB is 

directly connected to every layer of its succeeding RDB, the entire RDB structure supports 

contiguous memory amongst them. The RDN was introduced for exploiting the hierarchical 

Figure 3.5. Residual Dense Network with contiguous memory [119]. 
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features from all its convolutional layers which had not been accomplished by previous CNN 

based SR algorithms. Four components of RDN architecture include shallow feature extraction, 

dense feature fusion followed by up-sampling network as illustrated in Figure 3.5. In order to 

extract the required shallow features from the LR input it uses two convolutional layers. In 

Figure 3.5 the shallow features extracted by the first layer are denoted by F-1 and F0 represents 

features extracted by the second layer. If the total number of RDB in the architecture is denoted 

by D, then the output of the dth RDB is given by Fd. The hierarchical feature extraction process 

is then followed by dense feature fusion (DFF). This is realized by performing global feature 

fusion (GFF) in addition to global residual learning (GRL). The DFF is represented with the 

help of an equation given below [119]:  

FDF = HDFF (F-1, F0, F1, …., FD) (3.1) 

In equation 3.1, FDF denotes the output of DFF and HDFF is the composite function of two 

operations namely, convolution and ReLU. Following the feature extraction process in both 

local and global space, the next step is up sampling and generating the HR image. 
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RDN is composed of RDB which is a densely connected CNN capable of extracting 

ample local features. A detailed illustration of the RDB architecture is presented in Figure 3.6. 

Also, due to a contiguous memory (CM) mechanism between several RDBs, it is capable of 

continuously learning from more improved features. To achieve this, every layer of the current 

RDB is fed with the state of the preceding RDB. If Fd-1 denotes the input and Fd denotes the 

output for dth RDB with G0 feature maps for both input and output, then the output of its cth  

convolutional layer is given by [119]:  

𝐹 = 𝜎(𝑊𝑑,𝑐[𝐹𝑑−1, 𝐹𝑑,1, … , 𝐹𝑑,𝑐−1]) (3.2) 

In equation (3.2), the activation function is the rectified linear unit (ReLU) denoted by σ, the 

weight for cth convolutional layer is represented by 𝑊𝑑,𝑐 , and the feature maps produced by (d-

1) RDB in their concatenated form is given by [𝐹𝑑−1, 𝐹𝑑,1, … , 𝐹𝑑,𝑐−1].  The convolutional layers 

in the dth RDB are 1, ….,(c-1)   which produce a feature map G0+(c-1) x G, where G represents 

feature map for 𝐹𝑑,𝑐. Thus, a direct connection is established between successive layers and the 

output of each layer and RDB. This is followed by LFF where in order to downsize the extracted 

features the dth RDB is directly fed with (d-1)th RDB feature maps in concatenated form. Also, 

the output information is regulated using a 1x1 convolutional layer. Since the architecture is a 

combination of LRL and dense connections, this architecture is often known as RDB. The 

advantages of utilizing LRL are it enhances the flow of information and boosts the network 

representation capability. 

To extract global features FGF the network further uses DFF composed of GFF and GRL. 

Here all the feature maps produced by all the RDB within the architecture are concatenated. 

This is then fused with the two convolutional layers of 1x1 and 3x3.  As the final step GRL is 

then employed before performing the upscaling denoted as FDF in Figure 3.5. 
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3.4 Generative Adversarial Network 

Ideally, GAN [122] based SR algorithms consist of three vital components namely generator, 

discriminator, and a loss function. The generator function estimates a HR image for the 

corresponding LR image whereas, the discriminator estimates if the generated image is realistic 

enough. Both these models try to tweak their parameter settings based on the outcome obtained 

by both the models to produce improvised results. For instance, if the discriminator fails to give 

correct prediction, then it uses the error information to avoid making similar mistakes in next 

successive rounds. However, if the discriminator is successful in making the correct prediction, 

then it means the generator model failed hence this time the generator tries to update its 

parameters and improvise its fake image generating abilities. If frequency of correct predictions 

is high then it demonstrates the better capability of discriminator, while higher the error count 

for the discriminator better the generator’s competency. By repeatedly performing these 

procedures it forces the generated data to get as close as possible to the actual data. Additionally, 

the loss function essentially helps in optimizing the overall GAN framework by quantifying the 

similarity between the real data and the generated data.  A basic framework to illustrate GAN 

architecture with its generative and discriminative models is presented in Figure 3.7.  
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During implementation both generative and discriminative models are trained simultaneously. 

Initially, the discriminator network is trained on real data for a period of time generally termed 

as epoch using a forward propagation. Following this, it is again trained on fake data generated 

by the generative model. Here the discriminator is expected to make a prediction if the image is 

fake. During this training phase of the discriminator, the generator model remains in idle state. 

Similarly, in the successive phase the generator is trained keeping the discriminator in idle state. 

Predictions made by the discriminator model in the previous phase is utilized to train the 

generator model in this phase which helps in tuning its results. This is also repeated for number 

of times measured in terms of epoch. Therefore, in order to train the discriminator as well as the 

generator it backpropagates the values computed as GAN loss. SR techniques that have 

employed GAN and are closely aligned with the work presented in this thesis are presented in 

the next subsections. 

 

 

 

 

3.4.1. Artefact Cancelling Generative Adversarial Network 

Broadening the GAN application, it has been utilised for ISR too in [120] and the method was 

known as SRGAN (see Figure 3.8). The network employed in the generator for SRGAN was a 

feed-forward CNN with two layers built using residual 

blocks (see Figure 3.9); with weights and biases 

obtained through the loss function optimization. The Figure 3.9. Residual block [119]. 

Figure 3.8. Basic architecture of super resolution network [120-121]. 
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layers were built using 64 feature maps, batch normalization (BN) layers and a 3x3 kernel and 

activation function named ParametricReLU. On the other hand, for building the network for 

discriminator LeakyReLU was employed. Further the network contained 8 convolutional layers 

of 3x3 kernels. Similar to the VGG network the kernel was incremented by employing a factor 

of two to obtain a resultant feature map of 512. To compute the probability estimation, the 

feature map was succeeded by two dense layers along with an activation function namely, 

sigmoid. The architecture of the generator and discriminator network employed in SRGAN is 

illustrated in Figure 3.10 and Figure 3.11 respectively. For estimating the loss at perceptual 

level, the method employed a weighted sum of two components namely adversarial loss and 

VGG based content loss. The approach using VGG feature loss as well as adversarial loss 

attempts to eliminate the noise. This method is referred to as noise-cancel throughout this thesis. 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Architecture of generator network with specifications for kernel size(k), 

number of feature maps and stride(s) for each layer of convolution [120]. 
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3.4.2. Enhanced Super Resolution Generative Adversarial Network 

By introducing 23 residual-in-residual dense blocks (RRDB) into the generator network 

structure along with improvisation on adversarial and perceptual loss, [121] successfully built 

the enhanced super resolution generative adversarial network (ESRGAN). The new architecture 

was basically an upgrade of the original SRGAN, with removal of BN and introduction of 

residual scaling (see Figure 3.12). Removal of BN benefited the network with scaled down 

complexity of computation and removal of artifacts from the generated images. Here, several 

RRDBs are employed, where each of these RRDBs are built using several RDBs. Further, each 

RDB consists of several convolutional layers (see Figure 3.12) and every convolutional layer 

that exists within the RDB consists of feature maps same as that discussed in Section 3.3. and 

utilizes residual scaling denoted by β.   

 

Figure 3.11. Architecture of discriminator network with specifications for kernel 

size(k), number of feature maps and stride(s) for each layer of convolution [120]. 
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The architecture of the discriminator employed is known as relativistic average 

discriminator (RaD). To gather salient information like textural attributes and sharp edge 

characteristics and continuously learn from them; both real and generated data are provided 

during adversarial training. In contrast to SRGAN in this architecture the perceptual loss was 

minimised  since the VGG features were utilized before employing activation function. Through 

experiement it was observed that the ESRGAN approach was able to produce much sharper 

images and with higher details than SRGAN. The model generates SR images from LR image 

by scaling it with a factor of four. LR images used during experiments were obtained using 

bicubic kernel function. For network interpolation, it undergoes two training first based on 

PSNR and second based on GAN then derives the final interpolation model using parameters 

from both PSNR and GAN models. 

 

3.4.3.  Further Improving Enhanced Super Resolution Generative 

Adversarial Network (nESRGAN+) 
 

To bring further improvements on images generated by ESRGAN at the perceptual level, the 

work in [124] introduced new blocks instead of the usual RRDB. In this new structure an 

Figure 3.12.  Residual in residual dense block (RRDB) [121]. 
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additional level of residual learning was introduced inside every dense block and was known as 

residual-in-residual dense residual block (RRDRB). The method was developed to bridge the 

gap between the images generated by the ESRGAN method and their corresponding ground 

truth. An overview of this further improved design is illustrated in Figure 3.13 and is referred 

to as nESRGAN+. This new RRDRB was built with a more superior network structure than the 

usual RRDB with further denser network, with an extra layer of residual learning augmented 

into the structure compared to ESRGAN architecture. The residuals are added at an interval of 

every two layers. Moreover, Gaussian noise is also injected after each residual in this 

architecture.  

 

 

 

 

 

 

 

 

 

Experimentally it was found that the images generated using RRDRB had substantially 

better visual quality than its previous variant. The method was tested on LR images with a 

scaling factor set to four. Sampling down the original HR images through the bicubic kernel, 

Figure 3.13. nESREGAN+ architecture employed for super resolution [124]. 
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these LR images were acquired. For implementation, the generator was built using 23 blocks 

and trained accordingly. The method was successful in restoring most of the image textures that 

existed in the original HR image. Through qualitative measurements like PSNR and perceptual 

index (PI) it was established that this method produced comparatively superior super-resolved 

images than both SRGAN and ESRGAN methods. 

 

 

 

 

 

 

 

 

3.5 Bicubic Interpolation 

 

The basic working principle of interpolation techniques is to estimate the value at some 

unknown positions by utilizing the information from a set of known data points. For such 

methods as the quantity of known data increases, as will the accuracy estimation for the pixel 

under consideration. Bicubic interpolation takes a simple approach for estimation by utilizing 

information from a neighborhood of size 4x4 (refer to Figure 3.14) [125]. The weighted average 

of the 16 nearest neighbors is computed where the weight for each known point is based on its 

distance from the target interpolation point. By applying a third order polynomial function this 

Figure 3.14. Illustration of 4x4 neighbourhood for computing 16 coefficients [125]. 
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method ensures that within four corner points the required surface can be fitted. It utilizes the 

value of intensity at these four points in addition to the derivatives along three directions i.e., 

diagonal, vertical and horizontal. The interpolated area is represented using equation 3.3 [125]: 

Here, 𝑓𝑖(𝑥, 𝑦) denotes the interpolated area for the point (x, y) and 𝑎𝑖𝑗 denotes the coefficients. 

Sixteen coefficients are computed in total, among them four are computed from the intensity 

values at four corners. Further, from the diagonal derivates, four other coefficients are 

computed. Lastly, taking the horizontal and vertical directions and utilizing their spatial 

derivatives information; eight coefficients are computed. Since the estimation is based on a 

greater number of known pixels, the method is regarded as one of the standard methods and 

often used for making fair comparisons with similar methods. 

 

3.6 Image Degradation 
 

The principal factor that determines the quality of any image is spatial resolution and is 

represented by the number of pixels per unit area for a given image. Due to growing demand to 

have good resolution images for digital image processing and its allied fields, data are usually 

captured from cameras possessing satisfactory resolution. Such HR images often enhance the 

results significantly. Datasets that are currently available for ME contain images captured using 

cameras with good resolutions and under a controlled environment. As such they are HR images 

and are not useful for SR tasks. Therefore, new sets of LR databases containing low quality 

images suitable for working with SR algorithm need to be built.  

𝑓𝑖(𝑥, 𝑦) = ∑ 

3

𝑗=0

∑𝑎𝑖𝑗𝑥
𝑖𝑦𝑗

3

𝑗=0

 

 

 

(3.3) 
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To construct deteriorated images, down sampling and Gaussian blurring are applied on 

the existing HR micro expression images for all three databases to obtain three corresponding 

sets of simulated databases. This process of creating images with loss of quality from its HR 

images is known as image degradation and can be expressed using equation (3.4) [41]:  

𝐿 = 𝑆𝑌𝑍 + 𝑥 (3.4) 

The symbol S denotes down sampling, Y denotes blurring, Z denotes high resolution, x is other 

additive noise and L represents the LR image obtained.  

 

3.7 Summary 
 

This chapter introduced the theory of resolution for ME and why they are important during the 

recognition process. Early work examining implications of resolution for MER in computer 

vision involved methods without DL models. To improve the research by introducing DL 

methods into ME analysis, this chapter moves on to discuss the concepts of SR and progression 

of DL techniques in SR domain.  It also clearly depicts the steady growth of GAN models but, 

has a long way to go before being well-established for facial ME analysis. Facial expression 

analysis using SR tends to focus more on macro expression. Therefore, applying these methods 

with focus on facial ME seems relevant and achievable. All theories and methods described in 

this chapter provide the foundations on which the contribution Chapter 6 will be based upon.  
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Chapter 4 

Local Phase Quantization for Micro 

Facial Feature Extraction 

 

 

4.1 Introduction  

Fundamentally, any digital image is composed of a finite number of pixels, expressed 

mathematically by a two dimensional function f(x,y), where x and y represent the two spatial 

coordinates and its finite intensity at any image position is denoted by f. Objects in such images 

can be described by observing characteristics and patterns within them. Algorithms for 

determining and describing such patterns are known as feature extraction algorithms and the 

steps involved form the feature extraction process. It is believed that information contained in 

an individual’s face are more discriminative along the horizontal direction than those vertically 

aligned, which is ideal for appearance-based techniques [126]. Due to its horizontal orientation, 

such facial features seem to remain undisturbed by any changes in illumination [126]. For 

experimenting, in this section a feature extraction technique is to be applied to ME facial images 

taken from spontaneous ME datasets CASMEII. It should be noted that these micro facial 

images have been captured in an environment with appropriate lighting hence, encoding facial 

micro textures using appearance-based methods seems realizable. Another advantage of using 

methods that fall within the appearance-based category is that providing emotion label 

information is sufficient for it to undergo a training process. This section of thesis explores the 
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handcrafted extraction method which employs an appearance-based approach named local 

phase quantization (LPQ).  

The LPQ extraction method was first introduced in [127-129] for extracting textures 

from blurred images. The use of the LPQ method was further seen for FE analysis in later years 

[88, 130-132]. In a comprehensive study by [133] it was found that most of the work for FE 

recognition reported exceptionally high recognition accuracy by using LPQ and its variants. The 

facial images considered in these experiments [88,130-132] for performing expression analysis 

contained macro expressions. Survey revealed that comparatively more work that employ LPQ 

method for macro expression [88,130-132] exists than ME [89][134]. The work in [134] 

employs local phase quantization on three orthogonal planes (LPQ-TOP) for AU detection for 

ME and is different from work in this thesis which focuses on recognition. In the work by [89] 

this method is employed for ME, but it focuses on designing cross database micro expression 

recognition (CDMER) rather than a straightforward MER system. In their work [89], instances 

of ME used during training and testing phases belonged to two different datasets. Hence images 

used to train a model were different from images used to test that model. An average recognition 

accuracy of 63.79% (decorrelation 0.1) and 64.05% (decorrelation 0) was achieved using LPQ-

TOP on varying combinations of training and testing data taken from HS, NIR and VIS 

variations of the SMIC dataset. Similarly, using training images from CASMEII and testing on 

images from HS, NIR and VIS variations of SMIC and vice versa produced an average accuracy 

of 38.51% (decorrelation 0.1) and 41.83% (decorrelation 0). Inspired by the massive success of 

the LPQ based method for macro expression analysis and the CDMER framework, this thesis 

takes forward the usage of LPQ-TOP and test its suitability to perform as a micro facial feature 

extraction technique where both training and testing images belong to the same dataset (i.e., 
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non-cross database environment). The performance of the extraction method on the chosen 

database is measured by analyzing the classification results obtained by employing features 

extracted by LPQ-TOP method. Thus, work described in this thesis does not consider designing 

a CDMER and focus remains on building a MER framework by employing the LPQ-TOP 

method.  

In this chapter the preliminary investigations performed using the CASMEII database to 

test the suitability of employing LPQ-TOP and TIM for designing an automated MER system 

are presented and forms the first contribution for this thesis. Results obtained here also form the 

basis on which its application is extended in further Chapters.  

The remainder of this chapter is organized as follows. Section 4.2 introduces the LPQ 

based approach particularly as a feature extraction technique. Preliminary results obtained by 

experimenting with this method using the CASMEII dataset and an initial analysis is presented 

in Section 4.3, followed by a summary of the work in Section 4.4.  

The contribution made in this chapter has been published in Sharma, P., Coleman, S., 

Yogarajah, P. & Laurence, T. (2019). Micro expression classification accuracy assessment. 

IMVIP 2019: Irish Machine Vision & Image Processing, Technological University Dublin, 

Dublin, Ireland, August 28-30. doi:10.21427/kbny-0a41.  
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4.2 Local Phase Quantisation Method 
 

The LPQ method is based on computing a discrete Fourier transform (DFT). The quantized 

phase of DFT is mathematically obtained for a given image patch, generally also referred to as 

a neighbourhood, to describe its underlying texture, known as phase quantization. Three 

primary building blocks of this method are phase information, blur insensitivity and histogram. 

Experiments in [127-129] show that if statistically independent samples are taken to perform 

quantization, then maximum information can be preserved, and de-correlation was introduced 

to achieve this. It is a well-established fact that the LPQ method draws its working principle 

from quantization of Fourier transforms [127]. Equations (4.1) to (4.5) describe the process 

when the phase computed for a DFT is invariant to blur. Similarly, equations (4.15) and (4.16) 

describe the LPQ operator. Given an original image f(x) , its corresponding observed image 

ց(x) with spatial blurring, that is invariant spatially, can be represented using convolution, 

expressed by [127-129]: 

                                           ց(x) = (f  * h)  (x)                                                                   (4.1) 

where h(x) symbol represents a point spread function (PSF), * notation is used to denote two-

dimensional convolution and x stands for a vector of coordinates, which is expressed by [x,y]T. 

This expression further can be represented in the Fourier domain as [127-129]: 

G(u) = F(u). H(u)     (4.2) 

Here, the symbol G(u) represents the DFT of the blurred image, F(u) signifies the DFT of the 

original image and H(u) serves as the DFT of the PSF. Furthermore, u is considered to be a 

vector of coordinates, expressed as [u,v]T.  Since the focus of this method is to obtain phase 

information, the equation can be expressed in terms of a sum [127-129]: 
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                                     ∠G(u) = ∠F(u) + ∠H(u)                                                                  (4.3) 

In equation (4.3), the three symbols ∠G(u), ∠F(u) and ∠H(u) represent the corresponding 

phase angle for G(u), F(u) and H(u). Presuming h(x) is centrally symmetric, i.e., h(x)=h(-x), 

the Fourier transform is always expected to be a real value, consequently this causes the phase 

to be reduced to a two-valued function represented as[127-129]: 

                                            ∠H(u) = {
𝑂     𝑖𝑓     𝐻(𝐮) ≥ 0

𝜋     𝑖𝑓    𝐻(𝐮) < 0
                                                              (4.4) 

Ultimately the equation then becomes: 

                                        ∠G(u) = ∠F(u) for all ∠H(u) ≥ 0                                                     (4.5) 

Three approaches were proposed by [128] for computing the local phase information namely, 

short term Fourier transform (STFT), Gabor filters and least square filters. Following the best 

results obtained with STFT to compute the phase information in [128], in this thesis a STFT 

based approach is selected. 

 

 

4.2.1. Short Term Fourier Transform  

A short-term Fourier transform (STFT) for an image f(x) can be computed by taking an image 

patch of size m x m denoted as fx(y). These image patches  fx(y) are mathematically defined by 

basis function using equation (4.6) [128]:                       

                                                           𝜙𝐮
ℱ(y) =  𝑒−𝑗2𝜋𝐮𝑇𝐲                                                                        (4.6) 

The STFT can now be computed using 2D convolution * given by: 

                                                                𝑓(x) ∗ 𝜙𝐮
ℱ(y)                                                                  (4.7) 
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Here, STFT is computed for four low frequencies, u = {u1, u2, u3 , u4}. Additionally, for rows 

and columns, computations can be performed using one dimension because the basis functions 

are easily separable [128]. 

Elaboratively, to examine the phase, LQP basically considers a local M x M 

neighbourhood represented by the notation Ɲx  at each pixel position, x, for a given image f(x). 

For computing a STFT the following equation is used [127-129]: 

𝐹(𝐮, 𝐱) = ∑ 𝑓(𝐱 − 𝐲)   𝑒 −j2π𝐮 𝑇𝐲
 

𝐲∈Ɲx

  =𝐰u
𝑇𝐟x 

(4.8) 

  

In equation (4.8) 𝐰u
  denotes basis vector computed at u frequency. For the neighbourhood Ɲx, 

its pixel information is stored in a vector denoted by 𝐟𝑥. Using 1-D convolution consecutively 

for rows and columns, the STFT is evaluated for all positions in an input image. It computes 

local Fourier coefficients at each pixel location for four frequency points: u1=[a , 0]T , u2=[0 , 

a]T , u3=[a , a]T , u4=[a , -a]T  (see Figure 4.4 ). Here, “a” represents a scalar frequency that 

satisfies H(u)≥0.  

 

4.2.2. Decorrelation  

As noted by [128], the scalar quantization process discussed in Section 4.2.1 can be achieved 

in a theoretical scenario where the coefficients undergoing quantization are not co-dependent 

statistically. However, while experimenting, situations may arise where such coefficients are 

correlated and employing scalar quantization is not recommended. Therefore, to have a better 

approach for such cases utilizing vector quantization seems more suitable. Alternatively, 
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decorrelating the data prior to performing quantization can also be relevant [128]. At this stage 

the real and imaginary components of the frequency components need to be separated. This 

ultimately results in a vector for each pixel position that can be expressed as in equation (4.9), 

where Re represents the real and Im represents the imaginary parts respectively [127-129]. 

Fx = ([Re{ F(u1,x)},Im{F(u1,x)}],….      

                                                  …, [Re { F(u4,x)},Im{F(u4,x)}])T                                      (4.9)    

The real components are then concatenated into a vector and the step is also repeated for 

imaginary components to generate its vector. Combining equation (4.8) and (4.9), the final 

vector representation is expressed as: 

Fx = Wfx (4.10) 

For an image patch f(x), σ2 denotes variance between pixels that are adjacent to one another. 

Therefore, the resultant matrix representing covariance for all the data samples M, belonging 

to the neighborhood Ɲx is given by (4.11) [127-129]: 

 

 

Assuming linear dependence for Fx, the covariance matrix is measured as [128]: 

D = Ф CФT  (4.12) 

In order to decorrelate these vectors whitening transformation is employed given by equation 

(4.13) and equation (4.14) is the singular value decomposition employed to compute 

orthonormal matrix V [127-129]. Whitening transformation follows a linear transformation 

𝐂 = 

[
 
 
 
 

1 𝜎1,2 
… 𝜎1,𝑀

𝜎2,1 1 … 𝜎2,𝑀

⁞ ⁞ ⋱ ⁞
𝜎𝑀,1 𝜎𝑀,2 … 1 ]

 
 
 
 

 

(4.11) 
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model which essentially converts a given vector and covariance matrix into a set of new vector 

having an identity matrix as its covariance matrix. 

Resultant vectors are obtained by computing Gx for every location for the given image, which 

then undergoes a quantization process. 

 

4.2.3. Quantisation 

The uncorrelated samples obtained from the steps discussed above are then quantised. To do 

so, binary scalar quantizer shown in equation (4.15) is used and quantizes the signs of real and 

imaginary parts of the coefficients obtained in the previous step. Here,  fj represents the jth 

component for a given vector F(x) [127-129]:  

                                                    𝑞𝑗̇ = {
1,          𝑖𝑓     𝑓𝑗̇ 

   ≥ 0

O,          𝑖𝑓     𝑓𝑗̇  
 
 
< 0

                                                        (4.15) 

 

The resultant eight-bit binary coefficients are represented in the form of integers using the 

binary coding technique using equation (4.16), where the integer values lie within the range of 

0-255 given by [127-129]: 

                                                     𝑏 = ∑ 𝑞𝑗2
𝑗−1

8

𝑗=1
                                                             (4.16) 

The symbol 𝑞𝑗 represents the quantized vector obtained from equation (4.15) and (4.16) for the 

jth component. Such integer values are composed for all the image positions and stacked into a 

Gx = VT Fx (4.13) 

D = U ΣVT (4.14) 
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histogram. This histogram is essentially a 256-dimensional vector containing features extracted 

from an input image (see Figure 4.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.4. LPQ-TOP Method 

To extract features, as a first step the whole facial image is divided into non overlapping blocks, 

then a feature vector is computed for each of these blocks using the LPQ approach. A graphical 

illustration of this step in a simplest form is presented in Figure 4.1. The LPQ method is ideal 

 

XY 

        

XT 

YT 

Figure 4.2. Concatenated histogram obtained from three orthogonal planes (XY, XT & 

YT) [88]. 

  ……  

Figure 4.1. Extracting feature from each block and concatenating them into single feature 

vector [88]. 

Input image 

LPQ 

operator 

LPQ feature 

vector 

256 bins 
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when working with static images however, for implementation in this thesis, including the 

temporal sequence is essential to examine ME dynamics hence, the extension of LPQ to include 

the time domain, denoted as LPQ-TOP is employed. The spatial domain data are provided by 

the XY plane whereas information relating to the temporal domain is provided by the XT and 

YT planes (see Figure 4.2).  

The descriptors extracted from each of these planes are represented in the form of a 

histogram where each of these histograms are concatenated to form a single feature vector. A 

simple illustration of this procedure for extraction and concatenation of feature vectors is 

presented in Figure 4.3. Since features are extracted independently along all three orthogonal 

planes, i.e., XY, XT and YT, it produces 256 x 3 bins per volume, measured in space-time. The 

overall procedure followed for obtaining features using LPQ, along with the selection of the 

neighbourhood described in this section is graphically demonstrated in a step-by-step manner 

in Figure 4.4 and Figure 4.5. It effectively also demonstrates the use of the equations outlined 

in this section as and when applicable. The extracted facial micro features in this stage form 

the foundation for recognition at a later stage. In initial experiments conducted in this thesis 

this technique was employed to extract facial micro features from image sequences taken from 

the CASMEII dataset. 

 

 

 

 

 

      ..…      

Features extracted from the entire image sequence 

Features extracted from 

XY, XT and YT planes 
Features extracted from 

XY, XT and YT planes 

Figure 4.3. Features extracted from each block representing a sequence, concatenated to 

form feature vector [88]. 
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Figure 4.4. LPQ Fourier frequencies and M x N neighbourhood [131]. 
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Figure 4.5. Step-by-step layout for computing LPQ over facial image [131]. 
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4.3 Experiments and Results  
 

The general pipeline used for performing MER consists of face detection, pre-processing, 

feature extraction and feature classification as demonstrated in Figure 4.6. In this section the 

details of the experiments performed using this pipeline are discussed. The experimental setup 

and parameter specifications used along with the results obtained and its discussion is also 

presented in this section. 

4.3.1. Face Detection and Pre-Processing  

The experiments have been conducted using the CASMEII spontaneous ME dataset containing 

faces captured with a resolution of 280 x 340 pixels [47]. The raw dataset contains facial data, 

unaffected by flickering or illumination issues, which can be readily used. For detecting a face 

from the input, Viola, and Jones (V & J) [71] detector as described in Section 2.4.1 is used. 

Input  Face 

Detection 

• Viola 

and 

Jones 

Pre-

Processing 

• ASM 

• LWM 

• TIM 

 

Micro Facial 

Feature 

Extraction 

• LPQ-TOP 

 

 

Feature 

Classification 

• SVM 

Micro 

Expression 

Classes 

• positive 

• negative 

• surprise 

Figure 4.6.  Bare bone structure for micro expression recognition system. 
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Following the work in [40], for face alignment this thesis uses ASM [72] and LWM [76]. Total 

68 landmarks are identified using ASM which are then used for normalizing images further. 

The ME videos in the dataset have non-uniform frames, therefore taking inspiration from 

[40,89], this thesis applies TIM [77] to interpolate frames and maintain frame uniformity across 

the input data. The working principle of TIM has already been discussed in section 2.4.1.  

Originally the data in this dataset were labelled into five classes i.e., happiness, disgust, 

surprise, repression, and others. In experiments for this thesis three classes namely positive, 

negative and surprise were considered. The motive behind choosing three classes of 

expressions is that the key focus of this research is to be successful as a MER system 

particularly targeting autistic faces in future.  This type of faces tends to manifest very minimal 

expressions on their face therefore the concept of classifying ME into three classes as positive, 

negative and surprise seemed more realizable. Also, in the five classes, fear and sad expressions 

were not used for baseline evaluation however in this thesis these expressions are also utilized. 

During implementation in this thesis, happy expressions have been given a positive label and 

surprise expressions are left unchanged. Expressions like fear, sad and disgust are categorized 

under a negative label. Samples originally labelled as others in this dataset are a mixture of 

various expressions due to which input expressions have a high chance of being misclassified 

as others during classification. This type of interference within the classification algorithm can 

diminish overall performance. To avoid this and to preserve inter class discriminative 

characteristics of input samples, expressions labelled others have not been considered for this 

initial experiment. Additionally, expression labelled as repressions also remain unused for this 

thesis in current experiment to align the expression labels as close as possible to autism 

individuals.  
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4.3.2. Micro Facial Feature Extraction and Classification 

Experimentally, features are extracted using the LPQ-TOP method described in Section 4.2. 

During implementation, a neighbourhood size of 5x5 was used. The feature vector obtained 

thereafter is passed to the classification algorithm. For conducting experiments, SVM [105] is 

used to perform classification of these data into three classes. The classification accuracy is 

computed as follows: 

𝐴 =
𝑁𝐶

𝑁
× 100 

(4.17) 

In equation (4.17), ME images correctly classified are denoted by 𝑁𝐶 , 𝑁 denotes the total 

number of ME images used and 𝐴 is the rate of accuracy obtained. A total of 130 CASMEII 

images have been used with 33 positive, 25 surprise and 72 negative labels. Experimentally, 

[89] found that setting decorrelation to zero produced the best results, hence this section uses 

the same parameter for the implementation of LPQ-TOP with the XY, XT and YT planes set 

to [5,5,5]. 
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LPQ representation 

(b) 

 

LPQ  
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Figure 4.7.  Instance of LPQ representation on XY plane, derived for positive label. 
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Surprise expression (Input image) 

(a) 
LPQ representation 

(b) 

 

LPQ  

operator 

Figure 4.9.  Instance of LPQ representation on XY plane derived for surprise label. 

Input image 

(a) 

Texture patterns captured by LPQ operator 

for negative label (disgust expression) 

(b) 

Figure 4.10.  Highlighting the texture patterns captured by LPQ descriptor.  

(a)  

Disgust expression (Input image) 

LPQ  

operator 

(b) 

LPQ representation 

 
Figure 4.8.  Instance of LPQ representation on XY plane derived for negative label. 
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4.3.3. Results and Discussion 

An instance of the LPQ representation obtained for a static image of a positive label (happy 

expression) in experiments performed for this thesis is demonstrated in Figure 4.7(b).  It can 

be observed that the original expression (see Figure 4.7.(a)) is very subtle, yet LPQ was 

successful in extracting its relevant features thereby achieving an effective description of the 

expression (see Figure 4.7.(b)).  A similar observation can be spotted for a negative label 

(disgust expression) from its original and LPQ representations demonstrated in Figure 4.8. For 

the surprise label, Figure 4.9 demonstrates a successful LPQ representation derived from its 

subtle original image. From these three figures (Figure 4.7, Figure 4.8, and Figure 4.9) it can 

be observed that LPQ descriptors were successfully implemented. It was effective in 

characterizing facial attributes required for identifying the ME that appear on the face. Its 

strong discriminative ability can also be visualized from these graphical results which 

demonstrates effective depiction of spatial texture patterns. For instance, the texture patterns 

for an expression captured by the LPQ operator, highlighted in red in Figure 4.10, is clearly 

visible in the processed image and can easily be perceived as a disgust expression. Hence the 

relevance of the LPQ approach for ME analysis has been established experimentally.  

 

For extracting features, the LPQ method was tested with varying combination of planes, the 

results obtained for each combination is presented in Table 4.1. From these results it is evident 

that by including all three planes, it yielded best recognition performance in comparison to 

Table 4.1. Micro expression recognition results on CASMEII dataset with varying 

combinations of orthogonal planes. 

 LPQ LPQ- XTYT LPQ -XT LPQ-YT LPQ-TOP 

Accuracy (%) 53.57 61.11 60.06 60.89 61.16 
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other combinations of planes. The second-best performance was achieved by employing XTYT 

planes which was lower by a small value of 0.05% compared with the previous combination. 

The next best performance was yielded by using YT plane followed by XT plane. The lowest 

performance was obtained when time domain was excluded with an accuracy which is 7.59% 

lower than when all planes were employed. This clearly shows the significance of incorporating 

time domain for MER. 

 

 

 

 

 

 

 

 

The available datasets were divided into training and testing sets in a 70:30 ratio. SVM 

was employed for training and testing the data with three kernel functions, namely linear, RBF 

and polynomial. Parameters for each of these kernels were searched using grid search, followed 

by k-fold cross validation. A SVM with multi-class classification using a one-vs-all strategy 

was utilized. The penalty coefficient C was set between the search range of 0.1 to 1000 to 

obtain the best penalty value. Similarly, for the γ parameter, the search range was set between 

0 to 1 with interval of 0.1. The coefficient 𝑟 was set to zero, and degree was set between 1 to 

Figure 4.11. Performance comparison of SVM kernel on features extracted from 

CASMEII using LPQ-TOP.  
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10.  Performance of each of these kernels was recorded during the experiments and calculated 

repeatedly over several iterations (150); the results are illustrated in Figure 4.11. From this 

figure it is evident that the RBF kernel produced the best performance over several iterations. 

Though performance of the polynomial kernel exceeded that of RBF in some instances, it could 

not outperform the RBF in overall. Performance of the linear kernel was lower than the RBF 

in the majority of the iterations with a similar trend observed when compared with the 

polynomial kernel. The lowest performance recorded for the linear kernel was 49.23% and  

53.84% for both polynomial and RBF. Peak performance recorded for the linear kernel 

was 63.8%, whereas for the polynomial and RBF it was 63.07% and 69.23% respectively. 

Thus, it can be seen that the peak performance of the linear kernel was slightly higher than that 

of the polynomial kernel. However, when computing the overall performance of these kernels, 

the RBF surpassed other kernels with 61.16%, evidenced by the average recognition rate which 

was 56.7% for the linear kernel, whereas using the polynomial it was 58.3%.  Therefore, SVM 

with the RBF kernel was able to produce the best performance for LPQ-TOP on CASMEII 

database. Performance metrics like precision, recall and F1 score obtained from the 

experiments is presented in Table 4.2. 

Precision is a measure that reveals the proportion of samples correctly predicted as true 

positives compared with total positive instances predicted by the model. The metric can be 

computed by applying the equation given below [143]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
   ;  0 < 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 < 1 

(4.18) 
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The recall measure helps to identify the number of positive instances missed by the model 

during its prediction stage. This estimation is computed using mathematical equation given 

below [143]. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
;  0 < 𝑅𝑒𝑐𝑎𝑙𝑙 < 1 

(4.19) 

 The F1 score is computed using harmonic mean of these both precision and recall values, 

mathematically expressed using an equation given below [143]. 

  

 

 

 

 

 

From the performance metrics obtained using the CASMEII database, presented in Table 4.2, 

it can be seen that using the proposed pipeline precision of 0.63 was obtained which depicts 

the model had a low false positive rate, the recall value was 0.62 and F1 score was 0.53. 

Observing the confusion matrix in Figure 4.12 it can be clearly seen that negative samples had 

higher classification accuracy, compared to positive and surprise samples which may be due to 

the data distribution that is more bias towards negative class labels. Moreover, among the 

misclassified samples, the majority of them were wrongly classified as negative samples. 

2

(
1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 
1

𝑅𝑒𝑐𝑎𝑙𝑙
)
 

(4.20) 

Table 4.2. Performance metrics 

obtained on CASMEII. 

Performance 

Metric 

Value 

Precision  0.63 

Recall 0.62 

Accuracy% 61.16 

F1 Score 0.53 

Figure 4.12. Confusion matrix obtained 

for CASMEII data.  
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Exceptionally less misclassified data were wrongly classified as surprise. The accuracy 

values reported in Table 4.3 give an insight on the significance of this method for feature 

extraction using the CASMEII dataset. The value obtained highlights that LPQ-TOP was able 

to perform well on this dataset by achieving an accuracy rate of 61.16% for three class emotion 

classification. In this initial experiment, LPQ-TOP based recognition approach has achieved 

5.29% higher accuracy than LBP-TOP reported by [40]. Similarly, this accuracy is 3.67% 

higher than HOG-TOP and 4.07% higher than HIGO-TOP [40]. Significantly less work could 

be found using the CASME II dataset for classifying ME into three classes of emotion hence 

comparison of accuracy delivered by the proposed approach for three class emotion has been 

established wherever applicable. Meanwhile, less work that have employed LPQ-TOP using 

CASMEII for MER could be found due to which appropriate comparison could not be 

established. However, the performance of LPQ-TOP using CASMEII is compared with those 

in [40] for SMIC using LBP-TOP, HOG-TOP, and HIGO-TOP.   

This comparison of the preliminary result with those obtained by [40] using variations of the 

SMIC dataset is presented in Table 4.4. According to the values listed in the Table 4.4 one can 

 Table 4.3. Accuracy % comparison for CASMEII. 
 

Feature 

Extraction 

Method 

 

Accuracy % 

Class 

Label used (ours) 

Expressions used 

(ours) 

LPQ-TOP 61.16 (ours)  

3 

 

 

positive  Happy 

LBP-TOP 55.87 [40] negative Sad, Fear, Disgust, 

HOG-TOP 57.49 [40] surprise 
Surprise 

HIGO -TOP 57.09 [40] 

Table 4.4. Accuracy % Comparison for CASMEII & SMIC. 

Feature 

Extraction 

Method 

 

CASMEII 

 

SMIC-HS 

 

SMIC-VIS 

 

SMIC-NIR 

SMIC-

subHS 

LPQ-TOP 61.16 (ours) - - - - 

LBP-TOP 55.87  [40] 57.93  [40] 70.42  [40] 64.79  [40] 77.46  [40] 

HOG-TOP 57.49  [40] 57.93  [40] 71.83  [40] 63.38  [40] 80.28  [40] 

HIGO-TOP 57.09  [40] 65.24  [40] 76.06  [40] 59.15  [40] 80.28  [40] 
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see that the performance of LPQ-TOP when compared with results obtained in [40] using 

SMIC datasets are higher in some cases. For instance, from experiments conducted in this 

thesis the accuracy is 3.23% higher than LBP-TOP and HOG-TOP when compared with the 

performance recorded across SMIC-HS. This accuracy is also closer to those obtained using 

LBP-TOP and HOG-TOP and 2.01% higher than HIGO-TOP on SMIC-NIR dataset. This 

comprehensive analysis of the preliminary results helps to visualize successful use of LPQ-

TOP in a MER task. It should be noted that performance recorded in [40] for HOG-TOP and 

HIGO-TOP is much higher when used on the SMIC-VIS and SMICsub-HS datasets. One 

reason behind this exceptional performance of both the methods on SMICsub-HS could be due 

to its smaller sample size as it is collected from only eight participants containing more evenly 

distributed data. Nevertheless, in experiments conducted for this thesis the features extracted 

using LPQ-TOP classified using SVM have produced the highest classification accuracy 

compared with other extraction methods on CASMEII. It must be mentioned here that 

employing similar approach in a cross-database environment the highest accuracy obtained on 

CASMEII in [89] is 48.46% which is quite lower compared to the results obtained in this thesis 

in a non-cross database environment. 

Examining these initial results, it is sufficient to claim that performance of LPQ-TOP 

technique is as competitive as any other traditional feature extraction methods employed so far 

for micro facial images. Likewise, its usefulness is established amidst these early experiments 

and intermediate results obtained. Hence, this technique seems to have some potential for 

additional investigation, as such exploring it further alongside other methods will be considered 

with more elaborative experiments in next chapters. 
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4.4 Summary 

To summarize, the current research work was devoted in assessing the significance of the LPQ-

TOP method for facial micro feature extraction. It also attempts to determine the method’s 

effect when combined with supervised classification. In this chapter the focus remains on the 

applicability of the LPQ-TOP method for a MER system. Experiments are conducted using the 

CASMEII dataset to establish this. A comprehensive analysis based on results obtained through 

initial experiments is provided to highlight its importance for expression analysis. Absence of 

similar work for MER made the entire process of tuning the LPQ algorithm time consuming 

and more challenging. Through careful examination it is found that the method was successful 

in describing micro facial features thereby empowering the classification process. Results 

demonstrate that the performance of this method is quite appreciable when compared with other 

binary and gradient based approaches. Despite the fact that the LPQ method is computationally 

slightly higher than the local binary method, the positive outcome indicates it can be exploited 

further and has scope for improvement. Deeper investigation may be needed to maximise its 

usage. Since work employing CASMEII has not considered three class classification, it was 

difficult to make direct comparison with other works that use it. At the time of writing this 

thesis and to the best of author’s knowledge, the only work that has employed the LPQ based 

method for recognition of ME without an AU, is specifically for designing CDMER. Therefore, 

this chapter proposes to extend its use for building MER pipeline for a non-cross database 

scenario along with TIM. By further employing phase quantization approach for the next few 

experiments, it aims to draw clearer insight on this method particularly for ME domain. To 

achieve this, the thesis further exploits the LPQ-TOP and TIM into the recognition pipeline in 

Chapter 5 and provides a comprehensive analysis of the performance obtained on several 

databases. 
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Chapter 5 

Amplifying Spontaneous Facial Micro 

Expression to Achieve Recognition Boost  

 

5.1 Introduction 

 

Exceptionally short duration and faint intensity of muscle progression in ME naturally limits 

the recognition capability of algorithms. This has been a perennial challenge which needs to be 

meticulously dealt with. Chapter 2 revealed that previously more work employing image 

sequences for analysing facial ME were prevalent than video sequences. To exploit the full 

potential of such expressions, designing video-based MER systems have emerged rapidly in 

recent years. Such approaches employing videos can provide the groundwork for building real 

time ME analysis. Finding ME accurately in a video sequence is still a challenge since it is 

noticeable in few frames due to its brief time span. The research direction of this section is 

towards approaches that aid enhancement of existing facial micro features to compensate the 

elusive nature of these minute expressions. Thus, this section surveys existing video 

magnification-based MER systems extensively.  

The concept of magnifying subtle changes in videos that are difficult to be perceived 

by naked eye was first introduced in [79]. The magnification was applied for observing blood 

flow as well as motion with small scale, and the method was named Eulerian video 

magnification (EVM). The method was tested in some dynamic environment where changes 
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are almost invisible to naked eyes like the heartbeat of a new-born, guitar string vibrations, 

blood flow on the wrist etc., and was successful in revealing such indistinct motion which 

usually goes undetected by human eyes. The same technique was introduced for ME by [49] 

to amplify the muscle movement in videos. Three filters i.e., Butterworth, ideal and second 

order infinite impulse response (IIR) were examined to identify the best choice. Due to a narrow 

range of bandpass, the ideal filter performed poorly on ME videos. Using a second order IIR 

filter with the magnification factor set to 20 and spatial frequency set to 16, the best 

performance was obtained. The Butterworth filter performed better than the ideal filter but 

could not outperform the IIR filter during experimentation by [49]. Using the IIR filter, the 

magnification approach was tested on the CASMEII dataset and achieved recognition accuracy 

of 75.3%[49]. Using HIGO for extracting EVM magnified features on the CASMEII dataset, 

[40] achieved an impressive recognition performance of 78.14%. Similar to the work discussed 

earlier, in experiments by [40] too, an IIR filter with a wider bandpass was employed. The 

method was tested with varying magnification factors to identify the best parameter 

combinations on various datasets including three variations of the SMIC dataset. On SMIC-HS 

the method achieved accuracy of 75%, similarly on SMIC-VIS it was 83.10% and 71.83% on 

SMIC-NIR. Utilizing a hybrid approach in [135], where motion magnified with EVM was 

extracted using spatio temporal texture map (STTM), almost 5% more accuracy than [49] was 

achieved. Combining TIM and magnification as a single component in [78], the framework 

recorded accuracy of 70.85% on CASMEII. To build a layout for compound MER system, 

[136] magnified basic ME using EVM which were then used for producing compound ME 

images. Due to muscle articulation achieved using magnification, creating synthesized images 

for compound expressions became much easier. To deal with the noise present in the magnified 

ME clips, [136] employed the Emotion Avatar Image (EAI) technique.  
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Evidently the video magnification approach seems to complement facial features, 

therefore extending previous work described in Chapter 4, this section examines the influence 

of magnification on phase quantization method. Keeping the previous framework (refer to 

Figure 4.6) intact this section introduces EVM taken from [79] to achieve ME amplification. 

Also, for a thorough investigation, the proposed approach is tested on seven different 

spontaneous ME datasets and hence demonstrate the robustness of the approach.  

The remainder of this chapter is organized as follows. In Section 5.2 the video 

magnification technique employed for experiments is discussed. A brief description of the 

proposed approach is outlined in Section 5.3. Experimental results obtained along with its 

comprehensive analysis is presented in Section 5.4 and finally, a summary of the work is 

presented in Section 5.5.  

A portion of experiments and results presented in this chapter has been published in 

Sharma,P., Coleman, S., Yogarajah, P. , Taggart, L.  and Samarasinghe P., (2021) "Magnifying 

Spontaneous Facial Micro Expressions for Improved Recognition," 2020 25th International 

Conference on Pattern Recognition (ICPR), 2021, pp. 7930-7936, doi: 

10.1109/ICPR48806.2021.9412585.  
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5.2 Eulerian Video Magnification 

 

Given an input video, the EVM technique [79] operates on both the spatial and temporal domain. 

In simple terms, the video frames first undergo decomposition in the spatial domain, next the 

filtering process is applied in the temporal domain. To perform magnification, it takes any pixel 

location and examines color values in time series. If any variation is observed in the temporal 

series for a chosen frequency band, then the amplification process is initiated. Using a linear 

approximation approach that assumes steadiness in brightness, the EVM approach is effective 

in magnifying motion without explicitly tracking it. Since magnification is achieved without 

relying on motion estimation, this reduces the overall computational complexity [79]. Also, 

another major advantage of this approach over a Lagrangian based method is that amplification 

of both spatial based motion as well as temporal changes can be achieved through this single 

framework. The method boasts of maintaining a rationale between spatial and temporal video 

attributes, achieved due to the uniform filtering process applied over its pixels. Due to a 

straightforward implementation of the magnification algorithm, the method is easy to use and 

allows users to directly regulate various parameters appropriately.  

The overall process can be described in three phases, spatial decomposition, temporal 

processing for amplification, and reconstruction as illustrated in Figure 5.1. During spatial 

decomposition the sequences in an input video are broken down in terms of several spatial 

frequency bands. This is followed by the next phase where temporal processing is carried out 

on each of these extracted spatial bands. Here, a band pass filter is applied in order to derive the 

appropriate frequency band. By multiplying these extracted signals with a magnification factor 

denoted as α, the final amplified video is reconstructed. The steps followed to perform the 

magnification process using EVM framework are detailed in Section 5.2.1.
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5.2.1 Eulerian Motion Magnification 

In order to realize motion magnification, Eulerian motion magnification (EMM) utilizes a series 

expansion approach based on Taylor series of the 1st order [79]. There exists an association 

between motion magnification and temporal processing which can be described using motion 

translation in a one-dimensional signal. Given an amplification factor 𝛼 the signal to be 

synthesized is expressed as [79]: 
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Figure 5.1. Illustration of Eulerian video magnification framework [79]. 
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                                                     𝐼 (𝑥, 𝑡) = 𝑓(𝑥 + (1 + 𝛼)𝛿(𝑡))                                                   (5.1) 

In equation (5.1), for a given pixel position x at time t, its intensity is represented as 𝐼(𝑥, 𝑡). As 

an effect of translation these intensities are expressed using displacement 𝛿(𝑡) ; where, 

𝐼(𝑥, 𝑡)  =  𝑓 (x | 𝛿(𝑡)) and 𝐼(𝑥, 0) =  𝑓(𝑥). Here, 𝛼 represents an amplification factor applied 

to unify these signals. Considering time, ‘t’ and 𝑓 (𝑥 +  𝛿(𝑡)) for a given image at position x, 

applying first order Taylor series expansion the equation is given as [79]: 

                                                  𝐼(𝑥, 𝑡) ≈ 𝑓(𝑥) + 𝛿(𝑡)
𝜕𝑓(𝑥)

𝜕𝑥
                                                                  (5.2) 

For a motion signal 𝛿(𝑡), assuming it does not lie beyond the frequency range of the temporal 

bandpass filter, then this results in an expression [79]: 

                                           𝐵(𝑥, 𝑡) = 𝛿(𝑡)
𝜕𝑓(𝑥)

𝜕𝑥
       (5.3) 

In equation (5.3), the effect of applying a broadband temporal bandpass filter to I(x, t) is denoted 

by B(x, t). The next step is to compute a new signal 𝐼(𝑥, 𝑡), by adding the amplified bandpass 

signal factored by 𝛼, back to I (x, t) expressed as [79]: 

                                               𝐼(𝑥, 𝑡) = 𝐼 (𝑥, 𝑡) + 𝛼 𝐵(𝑥, 𝑡)                                                              (5.4) 

Substituting the values of 𝐼 (𝑥, 𝑡) and 𝐵(𝑥, 𝑡) in equation (5.4) with values taken from equation 

(5.2) and (5.3), and simplifying these expressions the equation becomes:  

                                           𝐼(𝑥, 𝑡) ≈ 𝑓(𝑥) + (1 + 𝛼) 𝛿(𝑡)
𝜕𝑓(𝑥)

𝜕𝑥
                                                        (5.5) 

Extending the influence of Taylor’s series expansion for amplification with larger deviation 

denoted by  (1 + 𝛼) 𝛿(𝑡), the expression transforms into [79]: 

                                             𝐼(𝑥, 𝑡) ≈ 𝑓(𝑥 + (1 + 𝛼)𝛿(𝑡))                                                        (5.6) 
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For situations where 𝛿(𝑡) lies outside the frequency range of passband, application of broadband 

temporal band pass filter to I (x, t) will produce a resultant bandpass signal given by [79]: 

𝐵(𝑥, 𝑡) = ∑γ𝑘𝛿𝑘(𝑡)
𝜕𝑓(𝑥)

𝜕𝑥
𝑘

 

(5.7) 

 

 

Variations in temporal spectral components of 𝛿(𝑡) at a given index 𝑘 is denoted by 𝛿𝑘(𝑡) in 

equation (5.7) attenuated by γ𝑘 (known as temporal filtering factor). Due to the equivalence 

between the frequency dependent amplification factor and the temporal frequency reliant 

attenuation i.e., 𝛼𝑘 = γ𝑘𝛼, the outcome is a motion magnified video expressed as [79]: 

 

𝐼(𝑥, 𝑡) ≈ 𝑓(𝑥 + ∑(1 +

𝑘

𝛼𝑘)𝛿𝑘(𝑡)) 

(5.8) 

 

The amplification achieved with a factor (1 + 𝛼) using Taylor series expansion is theoretically 

true considering the assumptions described earlier, however in reality it suffers from certain 

limitations when working with fine grained frames depicting feeble motion. To decide on the 

best amplification factor, 𝛼 that can produce motion magnification with highest precision for a 

given wavelength, bounds are employed to regulate the entire process, using equation (5.9).  

    

                                                                   (1 + α)δ(t) <  
λ

8
                                                                       (5.9) 

 

Here, λ represents the spatial wavelength given by 2𝜋 ∕ 𝜔 for a frequency 𝜔, α is the 

magnification factor, δ(t) represents the observed motion.   
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5.3 Proposed Approach 
 

  The demand to design a competent automatic MER system in CV is increasing 

noticeably owing to its cross-discipline applications. However, due to its faint and rapid 

characteristics recognizing such expressions is still extremely challenging. To deal with this 

issue, this section introduces video magnification into the existing MER framework that was 

tested earlier using the CASMEII dataset. The basic framework employed in this thesis for the 
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Figure 5.2. Microexpression  recognition pipeline with EVM,TIM, and LPQ-TOP. 
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MER problem has already been discussed in Chapter 4, along with an appropriate illustration 

(see Figure 4.6). Utilizing the components from the basic framework, in this section it is 

extended further to address three class MER problem.  

 This proposed framework along with the new component is illustrated in Figure 5.2. It 

consists of EVM in the pre-processing stage, which is the new addition, to be utilized with 

previously employed components. In the previous work (Chapter 4), the data was processed 

with TIM, then the LPQ approach was chosen and applied along three orthogonal planes, 

denoted as LPQ-TOP, for extracting facial micro features. Both these methods are revisited in 

this section to demonstrate its proficiency when combined with EVM, which had not been 

addressed in the experiments discussed in Chapter 4. This section continues to exploit the MER 

pipeline from the previous experiment, introducing new additions to it and presenting extensive 

research conducted along with a thorough analysis to examine effects of magnification on LPQ-

TOP method. Ultimately, the extracted features are used as input to a SVM for training, testing 

and classification. Thus, usage of TIM [77], LPQ-TOP [127-129] and the SVM [105] method 

for feature extraction and classification remain unchanged in this experiment too. The class 

labels considered for experiments in this chapter remain as negative, positive and surprise which 

is same as those used in Chapter 4. The effectiveness of the proposed approach is determined 

based on several tests and performance evaluation obtained over a variety of datasets namely 

SAMM, SMIC (HS, NIR & VIS), CASME, CASMEII and CAS(ME)2. To ensure the work in 

this thesis remains relevant with fewer explicit facial expressions and reduced expressiveness 

in faces with autism, relabeling of samples seemed appropriate and consequently three labels 

i.e., positive, negative and surprise were chosen. Moreover, to have more uniformity in class 

labels across all datasets relabeling was endorsed as some datasets consist of more than three 

labels. Throughout the experiments conducted in this section, happy expressions are relabeled 
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as positive, whereas all expressions originally labelled as surprise remain unchanged. 

Expressions originally labeled as disgust, sadness and fear are relabeled as negative for all 

datasets excluding SMIC, since it is already labeled into these particular three classes. 

Additionally, the original SAMM and CAS(ME)2 dataset contain an anger label which is also 

categorized under negative in this implementation. The CASME dataset consists of tense label, 

which is classified as negative in this work. Some data originally labelled as repressions, 

helpless, pain, contempt, and others have not been considered in this work since these labels are 

present in selected datasets only. Moreover, these expressions do not seem to be a good fit 

considering expression limitations in autism. The procedure for extracting features using LPQ-

TOP outlined in Section 4.2 has been followed here.  

       To comprehend the effect of magnification and build a working model of the proposed 

concept for solving the three class MER problem, the entire experiment is conducted in two 

phases. In the first phase the features are extracted with LPQ-TOP from data belonging to all 

seven databases individually, without introducing magnification to obtain seven corresponding 

sets of feature vectors. Classification is performed individually on each of these vectors to 

categorize the input into appropriate labels. In the second phase of the experiment, magnification 

of the ME videos for all seven datasets is implemented individually using the EVM technique 

described in Section 5.2. Following this, the corresponding magnified data are processed with 

TIM. Features are then extracted using LPQ-TOP from these magnified frames to obtain another 

corresponding set of seven feature vectors which are then forwarded for classification. To 

provide a fair analysis of LPQ-TOP performance, this section compares it’s results with other 

popular feature extraction methods generally employed for MER. Details of experiments 

conducted using the proposed approach along with its corresponding results obtained are 

provided in Section 5.4. It must be mentioned here that the literature review in Chapter3 revealed 
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that comparatively lesser work employing SAMM, CAS(ME)2, and CASME database could be 

found. Moreover, there was an absence of similar work employing magnification on these 

databases due to which appropriate comparison could not be established. The work used for 

comparison employing CASMEII and SMIC database is somewhat relevant to the work 

described in this thesis therefore used for comparison, however magnification factor and 

extraction methods are different to that used in this thesis. 

The work in this Chapter has two contributions in the field of MER. First, it presents a 

comprehensive examination and analysis to ascertain the usefulness of employing TIM and 

EVM with LPQ-TOP to boost recognition performance. Second, it offers a thorough 

investigation of LPQ-TOP using several datasets contributing to its cognizance as a potential 

micro facial feature extraction technique substantiated by results that are comparable with some 

of the existing methods which are popularly employed in this domain.  

 

5.4 Experiments and Results 

 

The details of the experiments conducted using the proposed approach along with the 

specifications of parameters used throughout this set of experiments are presented in this 

section. The EVM approach introduced by [79] follows four steps to produce a magnified video. 

First is performing spatial decomposition, second is applying a bandpass filter. Third, it 

multiplies the extracted bandpass signal with the amplification factor. Fourth is adding this 

amplified signal back to the original video. To decompose video into various spatial frequency 

band, a Laplacian pyramid is constructed. Then for extracting the desired frequency band, it can 

use either an ideal filter, Butterworth or second order IIR. Empirically [79] found that the ideal 
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bandpass filter was more suitable to amplify color whereas the second order bandpass IIR filter 

seemed suitable for magnifying both color and motion. To examine the effect of all three filters 

on ME, in this thesis, a pilot test was performed on a video taken from the CASMEII dataset. 

Results obtained thereafter were compared with instances of image sequences extracted from 

the original ME video without performing magnification. Figure 5.3. illustrates the original 

image sequence for the disgust expression to be used for a fair visual comparison with various 

results obtained in this set of experiments. Another need for conducting the pilot test was to 

identify a suitable magnification factor for amplifying ME videos.  

Thus, the overall work was divided into three experiments.  First was the pilot 

experiment, second was extracting features from non-magnified image sequences for seven 

individual datasets and performing classification. In the third set of experiments the videos from 

seven datasets were magnified, then feature extraction was performed followed by the 

classification process.  

 

 

 

 

 

 

 

 

Figure 5.3. Non-magnified raw image sequence for disgust micro expression. 



103 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4.1 Pilot experiment 

Through the pilot experiment the target was to make an appropriate selection of two entities i.e., 

bandpass filter and amplification factor, to be applied in the rest of the experiments. In order to 

verify the effect of different filters used in the magnification process, three sets of experiments 

were conducted with the magnification factor set to 26, chosen randomly. In the first experiment 

a Butterworth filter was applied to obtain the amplified ME. Image sequences extracted from 

the amplified video obtained is presented as layer 2 in Figure 5.4. Similarly, the ideal filter was 

Figure 5.4. Illustration of magnified image sequences for disgust micro expression obtained 

using different bandpass filters. 

Note: Every fourth frame in each row represents the apex frame. 
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applied to obtain second magnified video represented by layer 3 in Figure 5.4. Finally, by 

applying the IIR filter in the third experiment it obtained magnified frames as represented by 

layer 4 in Figure 5.4. Comparing the original frames with the results obtained one can visually 

find no difference between magnified and non-magnified frames using the ideal filter. The effect 

of magnification can hardly be noticed in the magnified frames (see layer 2 in Figure 5.4). Also, 

the presence of noise due to magnification is not very prominent in this case. The magnified 

frames obtained using Butterworth filter suffer from noise compared with the ideal filter results. 

Visibly this can be realized by observing the frames presented in layer 2 in Figure 5.4. Here, the 

presence of magnified noise is overshadowing the magnified expressions obtained. Observing 

the magnified frames obtained using the IIR filter one can easily perceive the exaggeration 

occurring above the eyebrow regions. Clearly, the muscle movement is much more visible when 

compared with its non-magnified frames. Keeping the magnification factor uniform throughout 

this pilot test, the results presented here have been obtained. By carefully examining these results 

and following the work by [49] and [79], selecting the IIR filter to perform magnification for 

experiments in this thesis seemed reasonable.  

 

 

 

 

 

 

 Figure 5.5. Highlighting areas with appearance of muscle motion exaggeration after 

applying EVM. 
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An instance of ME magnified using EVM, highlighting areas with appearance of exaggerated 

muscle is presented in Figure 5.5. Evidently from Figure 5.5 one can visualize that magnification 

has a profound effect on accentuating minute expressions.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Every third frame in each layer represents the apex frame. 

 
Figure 5.6. Demonstrating magnified image sequences obtained for disgust micro expression at 

different settings of magnification factor 𝛼. 
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In order to have a guideline for selecting the amplification factor to be applied in the rest of the 

experiment, another pilot test was conducted by regulating magnification factor, 𝛼 in equation 

(5.9). Magnification method, applying the IIR filter was tested on the disgust video ME for five 

different 𝛼 values, set at 6, 16, 26, 36 and 46. These magnified image sequences extracted from 

individual results, obtained using five different 𝛼 values are presented in Figure 5.6. The 

exaggeration of muscle movement obtained by setting 𝛼= 6 is not very discriminative indicating 

that the effect of magnification is less recognizable. Extremely feeble magnification effect can 

be perceived here when observed minutely but this degree of amplification is not enough for 

conducting experiments in this thesis.  Continuing with the pilot testing phase and regulating 

amplification factor the experiments move on to higher  𝛼 values. As the 𝛼 value increases to 

16 the effect of magnification can be seen on the facial muscles, especially on areas around the 

nose and above the eyebrows (see row 3 in Figure 5.6). This effect is visibly more perceivable 

when compared with the results obtained with 𝛼 set to 6. A higher exaggeration is more 

prominent as the magnification factor reaches 26. At this setting motion magnification along 

with slight color variations can be observed. Beyond this amplification factor (i.e., 𝛼= 36 & 

=46) the visibility of color variations due to amplification is very high and interferes with the 

appearance of motion magnification to a large extent. Comparatively, the images obtained in 

these two cases seem noisier than previous cases. Since the appearance of muscle motion is very 

prominent when 𝛼 is set at 26 and the interference due to color changes seem negotiable; this 

setting seemed suitable for experiments to be performed in this thesis. Moreover, comparing the 

results between 𝛼=16 and 𝛼=26, colour changes in both cases is almost similar. Also, 

exaggeration of motion is visibly quite superior for 𝛼=26 by comparison. Besides, [49] and 

[137] were successful in achieving good recognition using 𝛼=20 and 𝛼=26 respectively, thus 

for this thesis experiments with a magnification factor set above 20 was chosen. Since the 
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obstruction due to color changes for 𝛼= 36 and 𝛼=46 is very high and dealing with these can be 

very time consuming, these settings were not considered in this work. Also, due to very low 

visibility of magnification on facial muscles for 𝛼=6, this setting too did not seem appropriate 

for conducting experiments.  Thus, throughout the experiments hereafter the magnification 

factor was set at 26 and an IIR filter was employed for realizing motion magnification using 

EVM technique outlined in Section 5.2. 

 

5.4.2 Experiments employing non-magnified data 

 

Following the work in [40] and [89], the TIM parameters were chosen in this set of experiments 

for processing the raw data without introducing a magnification technique. As highlighted in 

Section 5.3, since this section focuses on categorizing facial ME into three classes, the chosen 

labels are positive, negative and surprise. Also, as previously discussed relabelling has been 

obtained as described in Section 5.3. A total count of 133 ME images have been considered 

from the CASME dataset. Here the distribution of data is biased towards a negative label. For 

CASMEII a total of 122 instances were used with distribution of 32 positive, 65 negative and 

25 surprise labels. This data distribution is better than those in the CASME dataset. Very few 

ME data was available in CAS(ME)2 with a total count of 51 and with a distribution of below 

twenty data for positive and surprise labels.  

With data distribution skewed more towards negative labels, 121 ME data were used 

from the SAMM dataset. Comparatively, this dataset contained less noisy data than others.  

Extremely few data labelled as surprise in this dataset could be employed in this work, due to 

low availability. Among all the datasets considered, SMIC-VIS and SMIC-NIR contained the 

most evenly distributed data. Both the datasets had a distribution of 28 positive, 23 negative 
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and 20 surprise labels. The highest count of data employed in our work was from SMIC-HS, 

with a total count of 164. Distribution of data in this dataset was satisfactory with 51 positive, 

71 negative and 42 surprise labels.  

 Thus, one can see that majority of the available ME datasets have unbalanced class 

division. The total datasets used along with the specifications of their distribution into three 

class labels are presented in Table 5.1. This data distribution remains common for both the 

experiments described in Section 5.4.2 and Section 5.4.3.  

 

 

 

 

 

 

 

 

 

 

The raw data have been up sampled with TIM before performing feature extraction. While 

employing the LPQ-TOP method the neighbourhood size is set to 5.  To perform cross 

validation for training, along with multi-class classification using one-vs-all strategy, 

Table 5.1. Dataset used and their class distribution. 

 

Dataset 

Total  

Samples 

Used 

Positive 

Label 

Negative 

Label 

Surprise 

Label 

CASME 133 9 104 20 

CASMEII 122 32 65 25 

CAS(ME)2 51 12 29 10 

SAMM 121 26 80 15 

SMIC-VIS 71 28 23 20 

SMIC-NIR 71 28 23 20 

SMIC-HS 164 51 71 42 

Table 5.2. LPQ-TOP performance on seven datasets (without magnification).  

 

 

Dataset 

Accuracy % 

Decorrelation(0.1) Decorrelation(0) 

CASME 83.42 83.45 

CASMEII 61.09 61.16 

CAS(ME)2 63.6 63.2 

SAMM 70.0 70.4 

SMIC-VIS 65.6 64.91 

SMIC-NIR 63.3 62.9 

SMIC-HS 61.11 62.8 
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experiments were performed using 10-fold. Experiments for classification were carried out 

using SVM with three different kernels namely polynomial, RBF and linear. Performance of 

LPQ-TOP is assessed on all seven datasets using classification accuracy. The accuracies are 

presented in Table 5.2.  The performance of the chosen extraction method i.e., LPQ-TOP is 

impressive with the highest accuracy of 83.45% recorded on the CASME dataset.  

The lowest performance using the LPQ-TOP approach was obtained with the CASMEII 

dataset with accuracy of 61.16%. Similar recognition accuracy is observed on SMIC and 

CAS(ME)2  datasets, with 65.6%, 63.3% and 62.8% accuracy obtained on VIS, NIR and HS 

variations of SMIC datasets respectively. For CAS(ME)2  the value obtained was closer to 

SMIC-NIR at 63.6% accuracy. Among all these datasets, SAMM contains the cleanest data 

along with exceptional facial resolution. Here the approach reached an accuracy of 70.4% 

which is reasonably good performance, considering no magnification was applied yet. 

 

5.4.3 Experiments employing magnification process 

 

Experimentally this section investigates if intensifying muscle movements on the face during 

the initial stages by explicitly utilizing EVM followed by TIM can assist LPQ-TOP in 

producing recognition performance improvement on facial ME using various datasets. Further 

it also examines if magnification with EVM can help realise uniform increase in recognition 

rate across all the chosen datasets. By carefully observing the recognition rate obtained for all 

cases, an analysis is performed to give useful inferences. Keeping the parameters consistent 

with Section 5.4.2 during extraction process, this second phase of experiment was conducted.  
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As discussed in Section 5.3, the proposed framework employed magnification in combination 

with TIM and the LPQ-TOP feature extraction method for ME analysis. The sample 

Figure 5.7. Magnified micro expression image sequences obtained for various datasets with the 

amplification factor α= 26 using IIR filter. 
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distribution used here is the same as presented in Table 5.1. These samples were first magnified 

by applying EVM, implemented using IIR filter and the magnification factor set to 26. The 

effect of applying EVM with the mentioned parameters and filter on various dataset can be 

visualized from image sequences presented in Figure 5.7. Due to the magnification process the 

almost invisible muscle movement on every dataset is amplified and has become very 

prominent. For instance, in layer 2 representing the CASME dataset, the amplified muscle near 

the mouth as well as the nose region can be perceived clearly. Similar observations around the 

mouth region can be seen for layer 4 representing the SMIC-HS dataset. This observation is 

consistent for the SAMM image sequence too, representing substantial muscle movement. The 

features were then extracted from these magnified data from all seven datasets in different 

experiments. Following the similar process outlined in Section 5.4.2, SVM was applied to train 

and test with these features. Performance obtained across all datasets by applying the proposed 

approach is presented in Table 5.3. 

 

 

 

 

 

Analogous to classification results for non-magnified datasets, in this case also, the highest 

accuracy of 88.2% is obtained for the CASME dataset by employing magnification. After 

magnification, the lowest performance using the proposed approach was obtained for SMIC-

HS dataset resulting in an accuracy of 65.8%. An impressive performance boost using the 

Table 5.3 Accuracy % obtained using LPQ-TOP and its comparison 

across various datasets. 

Dataset 

Accuracy % (LPQ-TOP) 

No 

Magnification 

With 

Magnification  

% Increase  

CASME 83.45 88.20 4.75 

CASMEII 61.16   74.50 13.34 

CAS(ME)2 63.60 68.50 4.90 

SAMM 70.40 72.07 1.67 

SMIC-VIS 65.60 73.80 8.20 

SMIC-NIR 63.30 70.42 7.12 

SMIC-HS 62.80 65.80 3.00 



112 | P a g e  
 

CASMEII dataset after introducing magnification has been noticed with accuracy recorded at 

74.5%. On CAS(ME)2 dataset a reasonable effect of magnification can be witnessed with 

accuracy of 68.5%. With a very competitive accuracy at 73.8% and 70.42%, performance boost 

for SMIC-VIS and SMIC-NIR is also notable. Almost an insignificant effect of magnification 

is observed on the SAMM dataset with an accuracy of 72.07%. The results obtained 

demonstrate that EVM can enhance the extraction capability of LPQ-TOP to achieve improved 

recognition performance for the majority of datasets. Observing the recognition boost achieved, 

significant influence of magnification in improving the performance of LPQ-TOP is undeniable 

and this influence is observable among all chosen datasets.  

Further examining these recognition values revealed that, even though a rise in 

recognition performance after introducing magnification is obvious for all datasets, no uniform 

pattern could be observed in these increased recognition rates. For instance, a significant boost 

in recognition accuracy of 13.34% was recorded on the CASMEII dataset after employing 

magnification in contrast to a small boost of 1.67% achieved on the SAMM dataset even though 

the number of samples used is approximately same for both these datasets. Moreover, the data 

are also recorded with same fps for both, yet a significant variation in the influence of 

magnification is observed on these two datasets. Diverging from this pattern, between SMIC-

VIS and SMIC-NIR the rate of increase varies by only 1% (approx.) , indicating a more uniform 

rate of increase in the recognition accuracy among these datasets. It is important to note here 

that these two SMIC datasets contain data recorded with the same rate of fps and the volume 

of data is the same for both. These characteristics observed among SMIC datasets are similar 

to characteristics shared between the SAMM and CASME dataset, yet a uniform magnification 

influence could not be observed among the latter two datasets. The SAMM and CASMEII 
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databases have non-uniform distribution of data whereas both SMIC datasets contain more 

balanced data which may have resulted in this variation, with results appearing more favourable 

using the SMIC datasets. Certainly, the classification technique also seems to have benefitted 

due to uniform data distribution evident from the rate of increase in the recognition accuracy 

obtained which are more uniform for SMIC database.  

 

 

 

 

 

 

 

 

 

 

Overall, considering all the datasets employed in this experiment, the average increase in 

recognition accuracy was computed as 6.14% (approx.) which indicates successful 

implementation of the proposed pipeline for MER problems addressing three class labels. The 

performance comparison of three SVM kernels on seven datasets used in this experiment is 

presented in Figure 5.8. Among the three kernels tested, experimentally it was observed that 

the linear kernel produced best results for the SMIC dataset. It produced the best accuracy and 

Figure 5.8. SVM kernel performance comparison on various dataset. 
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outperformed the other two kernels by quite a large margin on all three variations of the SMIC 

dataset used. This kernel also performed well on CASMEII dataset as demonstrated by the 

results. However, on the CASME dataset the RBF achieved highest accuracy and outperformed 

the linear kernel. Also, performance of the polynomial kernel was slightly better than linear 

kernel when tested on the CASME dataset. Comparatively by employing the polynomial kernel 

the SVM recorded improved accuracy on both SAMM and CAS(ME)2 datasets. Particularly in 

the case of CAS(ME)2 , the accuracy obtained using this kernel can be seen to be higher than 

linear and RBF. Performance of all the three kernels was almost similar using SAMM dataset 

but considering the overall performance, the polynomial kernel resulted in better performance 

with a very small margin. 

   

 

 

Table 5.4.  Accuracy % comparison between LPQ-TOP and other methods.  

 

 

Dataset 

Our Work (Accuracy %) Other Authors 

EVM +TIM+LPQ-TOP  Accuracy % Method [40] 

CASME 88.2  - 

CASMEII 74.5 

78.14 HIGO + mag  

63.97 HOG + mag  

60.73 LBP-TOP + mag  

CAS(ME)2 68.5  - 

SAMM 72.07  - 

 

SMIC-VIS 

 

73.8 

81.69 HIGO + mag 

77.46 HOG + mag  

78.87 LBP-TOP + mag  

 

SMIC-NIR 

 

70.42 

67.61 HIGO + mag  

64.79 HOG + mag  

67.61 LBP-TOP + mag  

SMIC-HS 
 

65.8 

68.29 HIGO + mag  

61.59 HOG + mag  

60.37 LBP-TOP + mag  
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5.4.4 Proposed approach vs. other methods 

 

To determine the overall performance of the proposed approach, comparison with other similar 

approaches is conducted. The accuracies obtained after introducing magnification on all seven 

datasets in comparison to other methods are presented in Table 5.5. For a fair comparison of 

LPQ-TOP performance with magnification compared with other methods, an analysis is 

presented in Figure 5.9. Carefully observing the results, one can notice that the proposed 

approach is able to achieve a performance boost which is comparable with some of the existing 

approaches on the majority of datasets. For instance, using the CASMEII and SMIC-HS 

datasets, the proposed approach is able to produce accuracy which is 10.53% and 4.21% higher 

than HOG with magnification (HOG+mag). Likewise, using both these datasets the proposed 

approach once again produced 13.77% and 5.43% higher accuracy than LBP-TOP with 

Figure 5.9 Performance comparison of LPQ-TOP and other methods. 
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Figure 5.9. Performance comparison of LPQ-TOP and other methods. 
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magnification (LBP-TOP + mag). From these observations it was understood that the chosen 

approach resulted in performance which was much better than HOG + mag and LBP-TOP+ 

mag. However, for the same two dataset the performance of the proposed approach seemed 

slightly less competent than the third method i.e. (HIGO + mag). The performance obtained 

using the proposed approach on SMIC-NIR dataset recorded 5.63%, 2.81% and 2.81% higher 

accuracy than all the three existing methods i.e., HOG, HIGO, and LBP-TOP respectively, 

when implemented along with magnification. 

Using the SMIC-VIS dataset, the proposed approach obtained an accuracy of 73.8% 

yet is still lower than other methods in comparison. Consequently, the proposed approach does 

not seem to meet the expected results for this dataset. Due to lack of similar work on CASME, 

CAS(ME)2 and SAMM datasets appropriate comparisons could not be made. However, 

experimentally the proposed approach was able to gain a significantly improved recognition 

performance using the CASME dataset, recorded as 88.2%. This is by far the highest accuracy 

obtained using the proposed approach across all datasets.  For the SAMM and CAS(ME)2 

datasets using the same approach the accuracy recorded was 72.07% and 68.5%. Therefore, the 

results obtained utilizing the proposed approach look promising and are closely comparable 

specially with LBP-TOP and HOG-TOP. 

In the experiments conducted some of the samples have been excluded, this may have 

given an added advantage to our method thus resulting in high recognition accuracy. From 

these results one can conclude that the performance of LPQ-TOP with magnification is 

comparable with both binary and gradient based methods. Examining these results more closely 

it is obvious that magnification has a substantial influence on the CASMEII dataset followed 

by SMIC-VIS and SMIC-NIR. On the other hand, the performance of the LPQ-TOP method 
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was consistently better on the CASME dataset. From this thorough examination it can be 

inferred that overall performance of the proposed approach was competent enough to 

accomplish a good MER performance, therefore  can be compared and contrasted with similar 

existing techniques. Experimental results show that the proposed approach can be viewed as 

an alternative approach for solving MER problems. Findings from this work have shown that 

the feature extraction method LPQ-TOP has undeniably benefited from magnification which 

has led to boost in recognition accuracy for all datasets. 

Experimentally, a higher magnification factor seems to work positively when combined 

with TIM and LPQ-TOP method. Moreover, fewer class labels used in this experiment to 

maintain higher relevance with ME exhibited by ASD individuals may have worked in favour 

of the proposed approach. 

 

5.5 Conclusion 
 

This work provides an extensive performance analysis of an approach that combines 

magnification, interpolation, and phase quantization. The proposed methodology is tested on 

seven different spontaneous ME datasets to ascertain the performance boost achieved by the 

LPQ-TOP approach when employed together with magnification and interpolation. The results 

highlight the usefulness of the approach for dealing with MER problems. However, it should 

also be noted that even though performance boost has been achieved for every instance, yet it 

lacks consistency in the rate of increase in the recognition accuracy across the datasets. An 

average boost of 6.15% has been achieved using the proposed approach which is promising. 

This clearly substantiates the advantage of employing magnification to significantly aid 
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extraction techniques in efficiently distilling relevant facial micro features thereby boosting 

overall recognition performance to a large extent. A closer investigation revealed a clear 

performance bias towards the CASMEII dataset after magnification in comparison to other 

datasets sharing similar data count and frames per second.  

Furthermore, this work also presents an extensive comparison between some popular 

existing feature extraction methods and quantization methods, where tests were conducted both 

with and without EVM on several spontaneous ME datasets. Evidently the results obtained 

successfully establish the competency of the LPQ-TOP technique particularly as a facial micro 

feature extraction technique with abundant scope for further exploration. Indeed, through this 

work a novel pipeline aimed to solve the three class MER problem, particularly by employing 

video, is realized successfully. Moreover, the results obtained here can be utilized for making 

comparisons while designing new methodologies in the future. Additionally, experiments 

performed provide the groundwork for MER frameworks that can be extended for autism 

screening, detection, and diagnosis as future application. The results obtained from the 

proposed pipeline at this stage looks promising and the methodology can be explored further.  

Imbalanced classification is one of the limitations of the proposed approach due to an 

unequal distribution of available data samples with the exception of the SMIC datasets. In order 

to perform competent ME analysis, having an adequate number of training samples is crucial 

and this is often a challenge due to unavailability of adequate volume of spontaneous ME data 

samples and datasets. Therefore, unavailability of sufficient ME data is the second limitation 

of the current work. Nevertheless, the results obtained by exploiting LPQ-TOP method are 

positive and shall be explored further in Chapter 6. 
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Chapter 6 

Image Super Resolution for Micro 

Expression Analysis  

 

6.1 Introduction  

 

ISR based ME analysis is proposed to address the image quality issues often generated while 

capturing recordings as highlighted in the earlier chapters. To regain the discriminative features 

lost due to quality issues, DL based SR methods are investigated in this section for transforming 

low resolution ME images into SR images. Additionally, this chapter presents an exhaustive 

performance analysis of various SR algorithms employed for ME image reconstruction along 

with a comparative performance analysis of the overall pipeline on three simulated ME 

databases. Taking forward the SR concept for ME introduced by [41], this thesis proposes a 

pipeline that utilizes GAN and its variant along with other DL approaches to achieve ISR on 

low quality ME images. To best of the author’s knowledge, at present both DL and GAN 

approaches have not been utilized specifically on low resolution ME images, this work is a first 

attempt to realize it. The proposed pipeline aims to combine the best features from both 

handcrafted methods as well as DL techniques. Low resolution ME images obtained by 

simulating data from SMIC (HS&VIS) [64] and CASMEII [47], databases are used to evaluate 

the performance of proposed approach. 
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The remainder of this chapter is organized as follows. In Section 6.2 the overall pipeline 

proposed for reconstructing ME from LR images and its recognition process is described. 

Experimental results obtained along with its comprehensive analysis is presented in Section 6.3. 

This is followed by a summary of the work presented in Section 6.4.  

A portion of experiments and results presented in this chapter has been published in  

• Sharma, P., Coleman, S., Yogarajah, P., Taggart, L. and Samarasinghe, P. (2022), 

Evaluation of Generative Adversarial Network Generated Super Resolution Images for 

Micro Expression Recognition. In Proceedings of the 11th International Conference on 

Pattern Recognition Applications and Methods - ICPRAM, ISBN 978-989-758-549-4, 

pages 560-569. DOI: 10.5220/0010820100003122. 

• Sharma, P., Coleman, S., Yogarajah, P. et al. Comparative analysis of super-resolution 

reconstructed images for micro-expression recognition. Adv. in Comp. Int. 2, 24 (2022). 

https://doi.org/10.1007/s43674-022-00035-x. 
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6.2 The Proposed Micro Expression Reconstruction & 

Recognition Pipeline 
 

To deal with the issue of LR in images consisting of ME, this thesis proposes a framework with 

a DL and GAN based SR image reconstruction module along with three other standard modules 

namely, image degradation, micro facial feature extraction and feature classification as shown 

in Figure 6.1. The initial two modules, image degradation and image reconstruction, are also 

known as pre-processing modules. They are employed to prepare the datasets for the 

recognition task. This is followed by a micro facial feature extraction module where the 

essential micro features are extracted from the input facial images. As a final step, the 

classification module manages the task of assigning appropriate class labels based on the 

extracted features.  

 

 

 

 

 

 

 

 

 

 

Pre-processing 

 

 

 

 

 

Figure 6.1. Outline of proposed approach employing image reconstruction before micro 

expression recognition. 
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EF :  Extracted features 

ESRGAN : Enhanced super resolution generative adversarial network 

FC   : Feature classification 

GAN : Generative adversarial network 
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LBP-TOP : Local binary pattern on three orthogonal planes 

LPQ-TOP : Local phase quantization on three orthogonal planes 

LR : Low resolution 

MFFE : Micro facial feature extraction 

RDN : Residual dense network 

SR : Super resolution 

SVM  : Support vector machine 
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For experimenting, the HR images from the ME database are initially input into the image 

degradation model to generate the corresponding LR images. The degradation model applied 

to achieve this has already been discussed in Section 3.6. For every existing HR database, the 

proposed pipeline obtains two sets of LR databases, i.e., 64x64 and 32x32, by applying a down 

scale factor of two and four.  

Following this, for every set of LR64 databases four different SR methods psnr-small 

[119,139,], psnr-large [119,139], noise-cancel [120,139] and ESRGAN [121, 139] are applied 

in different set of experiments. Here, the two methods, psnr-small and psnr-large perform SR 

using the RDN architecture discussed in Section 3.3 whereas ESRGAN and the noise-cancel 

technique utilize a GAN architecture to generate SR images. The generator for noise-cancel 

utilizes the RDN structure from Section 3.3 (refer to Figure 3.6) and the discriminator follows 

the architecture discussed in Section 3.4.1 (refer to Figure 3.11). The ESRGAN generates SR 

images by utilizing the structure described in Section 3.4.2. Likewise, for every set of LR32 

databases ESRGAN and nESRGAN+ super resolution methods are applied. The architecture 

employed by nESRGAN+ model to generate SR images is as discussed in Section 3.4.3.  

In addition to these techniques, SR experiments using bicubic interpolation [125] are 

also performed. Therefore, experimentally the pipeline generates SR images using the bicubic 

interpolation technique discussed in Section 3.5. By comparing the results obtained from DL 

and GAN based SR methods with the bicubic method, this thesis validates the reconstruction 

performance on ME images and makes useful inferences. 

Every SR database obtained at both 64x64 and 32x32 resolution is used as input to the 

feature extraction method at different instances. Throughout this chapter, for every set of HR, 

LR and SR databases both LBP-TOP and LPQ-TOP feature extraction techniques have been 
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employed individually. The corresponding feature vectors obtained thereafter are then given as 

input into the classification module to perform appropriate expression classification. 

Throughout the experiments, classification has been achieved using SVM as discussed in 

Section 2.4.4. Parameter specification of both the feature extraction method and SVM 

classification are presented in Section 6.2.1.  Specifications for the three databases used in this 

Chapter are presented in Table 6.1 followed by Table 6.2, which presents a summary of 

resolutions, notations and different SR methods employed throughout the experiments. Actual 

parameters and other experimental settings used for all the methods shall be discussed in 

Section 6.3. 

 

 

 

 

 

 

 

Table 6.1 Spontaneous micro expression dataset used. 

 

Dataset Subjects 
Data 

Count 
Classes 

Class Label & 

Distribution 

Facial 

Resolution 

Speed 

(fps) 

CASME

II 
26 246 5 

Happy- 32, Disgust -63, 

Surprise - 25,Repression -

27, Others - 99 

280 x 340 200 

SMIC-

VIS 
8 71 3 

Positive -28, Negative-23, 

Surprise -20 
130 x 160 25 

SMIC-

HS 
16 164 3 

Positive -51, Negative-70, 

Surprise -43 
190 x 300 100 

Table 6.2 Summary of notations, resolution and methods used. 
 

Low Resolution 

SR Method Used 

Scale 

Factor 

Super Resolution 

Notation 

Used 

Input 

Resolution 

Final 

Resolution 

Notation 

Used 

LR64 64 X 64 psnr-small 2 128x128 SR64 

LR64 64 X 64 psnr-large 2 128x128 SR64 

LR64 64 X 64 noise-cancel 2 128x128 SR64 

LR64 64 X 64 ESRGAN 2 128x128 SR64 

LR64 64 X 64 bicubic 

interpolation 

2 128x128 SR64 

LR32 32 X 32 ESRGAN 4 128x128 SR32 

LR32 32 X 32 nESRGAN+ 4 128x128 SR32 

LR32 
32 X 32 

bicubic 

interpolation 

4 128x128 SR32 
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6.2.1 Feature Extraction and Classification Parameter  

 

For extracting features using the LBP-TOP method, the radii in two spatial directions i.e., for 

X and Y was set to 1. Similarly, the radii for the axis in the time domain, i.e., T, was set to 4. 

Further the neighbouring points for all the three planes i.e., XT, YT and XY was set to 8. 

Parameter settings for LPQ-TOP feature extraction include a neighbourhood with the size set 

to 5 and decorrelation set to 0.1. Experiments were conducted using multi-class classification 

with SVM to classify data from CASMEII as happy, sad, disgust, repression, and others 

whereas data from SMIC-HS and SMIC-VIS were classified into positive, negative and 

surprise. 

 

 

 

 

 

 

 

 

 

 

 Figure 6.2. Detailed illustration of pipeline to reconstruct micro expression images from low 

quality data and its recognition process.  
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• RDN( noise-cancel) 

• nESRGAN+  

• ESRGAN 

Note:  

EF:  Extracted features, ESRGAN: Enhanced super resolution generative adversarial network, FC: 

Feature classification, LBP-TOP: Local binary pattern on three orthogonal planes, LPQ-TOP:  Local 

phase quantization on three orthogonal planes, LR: Low resolution, MFFE: Micro facial feature 

extraction, nESRGAN+: Further improving enhanced super resolution generative adversarial network, 

psnr: Peak signal to noise ratio, RDN: Residual dense network, SVM: Support vector machine 
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6.3 Experiments, Results, and Analysis  
 

A detailed illustration of the overall pipeline with specific techniques employed at different 

stages to achieve MER utilizing LR images is presented in Figure 6.2. In this section the 

experimental setup, parameters settings and results obtained using the methods and modules 

outlined in Figure 6.2 are discussed. 

 

6.3.1 Image Degradation 

 

From the specifications presented in Table 6.1; it can be clearly seen that facial resolution for 

all three databases vary. Therefore, to maintain uniformity across all datasets, all HR images 

are initially set to 128x128 following the work in [41] and will be referred as HR128 in this 

thesis. Down sampling these HR128 by factors 2 & 4 its corresponding sets of LR64 and LR32 

are obtained for all the three databases individually. Instances of HR128 and their 

corresponding LR images at these two levels for all three databases are presented in Figure 6.3. 

 

 

 

 

 

 

 

               (d)                            (e)           (f) 
                (a)                            (b)           (c) 

             (g)                             (h)            (i) 

Figure 6.3. (a),(d) and (g): Instance of HR 128x128;  

 (b), (e) and (h):  LR image instance at 64x64 and  

 (c), (f) and (i) : LR image instance at 32x32 

obtained by applying image degradation simulated 

from CASME II(a), SMIC-HS(d) and SMIC-VIS 

(g) database. 
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Images produced using such degradation models appear blurrier and of reduced quality. These 

effects along with the extent of loss of image details in the degraded images are clearly visible 

in the images shown in Figure 6.4. The LR images obtained by applying degradation on the 

corresponding HR images are depicted in Figure 6.4 (b), (d) and (f) respectively. Subtle 

expressions in HR images illustrated by Figure 6.4 (a), (c) and (e) are more obvious compared 

with the expressions on the degraded images presented in Figure 6.4 (b), (d) and (f).  Evidently, 

one can notice loss of image details in the low-quality images generated by the degradation 

model. Thus, it can be said that both HR and LR images differ in terms of quality, as well as 

resolution. These newly created databases are now suitable to be used with SR algorithms.  

 

6.3.2 Image Reconstruction 

 

The experiments for image reconstruction were performed in two phases based on resolution 

of the LR image i.e., 64x64 and 32x32. In the first phase the LR64 instances of three databases 

were employed individually for the SR task. For each of these databases, five different sets of 

SR experiments were conducted by individually employing psnr-small, psnr-large, noise-

cancel, ESRGAN and bicubic techniques with scale factor set to 2. The images obtained from 

all these methods after SR at this scale factor is referred to as SR64. Therefore, corresponding 

sets of SR database were obtained for every LR64 database.  

         (a)                         (b)                          (c)                         (d)                          (e)                        (f) 

Figure 6.4. (a) (c) (e) Before applying degradation; (b) (d) (f) After applying degradation 

on CASMEII, SMIC-HS and SMIC-VIS respectively. 
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Similarly, in second phase LR instances of three databases at 32x32 resolution were 

employed individually for SR task. For each of these databases, three different set of SR 

experiments were conducted by employing ESRGAN, nESRGAN+ and bicubic techniques 

with scale factor set to four. For all these SR methods the final resolution obtained was 

128x128, to be referred as SR32. 

 

 

 

 

 

 

A basic sketch of this procedure followed for obtaining SR images from their 

corresponding LR images using different scale factor is illustrated in Figure 6.5. With reference 

to the basic model built using the RDN architecture given in Chapter 3 (see Figure 3.5 and 

Figure 3.6), parameter D refers to the number of RDB, C refers to the number of convolutional 

layers that are stacked inside a RDB, G refers to the number of feature maps of every 

convolutional layer that exists in RDBs, G0 refers to the output filters i.e., the number of feature 

maps for convolutions that are outside of RDBs and of every RDB output. The values for these 

parameters employed in the psnr-large model is C=6, D=20, G=64, G0=64 and scale factor x2, 

where the RDN network employed was trained on large image patches with large PSNR values.  

For psnr-small model parameter values used were C=3, D=10, G=64, G0=64 and scale factor 

Scale 

factor HR image 

x2  

x4  

Figure 6.5. An abstract view to demonstrate resolution levels for image degradation and 

image super resolution model. 

SR image 

128 x 128  

128 x 128  

 

 

  ISR 

LR image 

64 x 64  
 

 

 

Image 

degradation 

128 x 128  

32 x 32  
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x2, where the RDN network employed was trained on small image patches with smaller PSNR 

values. 

In the noise-cancel model parameters were set to C=6, D=20,G=64, G0=64, scale factor 

x2, 3x3 kernel and activation function ParametricReLU for the RDN structure. The model was 

built by training the generator network on both VGG feature loss as well as adversarial loss. 

Different sessions of training were performed taking different sets of data. The discriminator 

employed in this method is the one illustrated in Figure 3.11. Different from the generator 

network, here it uses LeakyReLU activation function with its α parameter set to 0.2. 

Additionally, it also utilizes VGG loss which is based on ReLU and the network is optimized 

with Adam optimizer.  Thus, using the psnr-small, psnr-large, and noise-cancel models, 

corresponding sets of SR64 datasets were obtained for every LR64 database. 

ESRGAN is the fourth approach tested in this work built using ten RRDB, with three 

RDB in each of these RRDB. Furthermore, each of these RDB is built using four convolutional 

layers and inside each RDB there are 32 convolution output filters. Additionally, the 

architecture is fitted with 32 output filters for every RDB. With the learning rate set at 0.004, 

100 decay frequency and decay factor at 0.5, the training parameters were set. The network 

was optimized using Adam optimizer and LReLU was used as activation function. The weight 

of the loss function is set to 1 for the generator and 0.003 for the discriminator during training. 

The GAN is optimized using Adam with β1 set to 0.9 and β2 set to 0.999 during this training 

phase. The discriminator is implemented with a kernel size of 3 and α set to 0.2 in LeakyReLU. 

The size of all convolutional layers is kept as 3x3 throughout the experiment. However, for 

local and global feature fusion, the size is set to 1x1. The model built was capable of upscaling 

images and supported scale factors two and four. Therefore, for every LR64 database its 



129 | P a g e  
 

corresponding SR64 database containing SR images scaled by factor 2 were obtained. 

Similarly, for every LR32 database its corresponding SR32 database containing SR images 

scaled by factor 4 was obtained.  The network structure employed here has been already 

discussed briefly in Section 3.4.2.  For implementation of these four models discussed here the 

settings have been borrowed from [139]. 

The nESRGAN+ uses 3x3 convolutional kernels, 10 residual blocks and x4 scale factor 

and its architecture are described in Section 3.4.3. The loss function set at 0.005, decay factor 

at 0.01, learning rate set to 1x10-4 was considered. The Adam optimizer with parameters β1 

and β2 set to 0.9 and 0.999 respectively was used. The model built was trained to upscale 

images by a scale factor set to 4. Most of the parameter settings of ESRGAN were kept intact 

while implementing nESRGAN+. These architecture and parameter settings for this model 

have been adapted from [124]. With this model for every LR32 database employing upscale 

factor four its corresponding SR32 database consisting of SR images was obtained, with 

resolution at 128x128. 

To summarize, three LR64 databases, simulated from CASMEII, SMIC-HS and SMIC-

VIS, were used in the SR experiments at scale factor two. For each simulated instance of LR64 

databases, all four SR algorithms (i.e., psnr-small, psnr-large, noise-cancel and ESRGAN) were 

employed in four different sets of experiments to obtain four corresponding sets of super-

resolved images. Similarly, another three sets of LR32 databases simulated from CASMEII, 

SMIC-HS and SMIC-VIS were used to perform the SR experiments at scale factor 4. For this 

case ESRGAN and nESRGAN+ models were employed to obtain corresponding SR images. 

A summary of resolutions, different SR methods and database employed to perform 

various sets of experiment has already been presented in Table 6.2. The visual perception while 
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assessing SR and HR image quality through human eyes may not always seem consistent 

hence, image quality needs to be assessed using quality metrics for these reconstructed images. 

These quality metrics are useful in determining performance of the SR algorithms. 

 

6.3.3 Image Quality Assessment 

 

Two widely used methods to assess SR image quality are peak signal to noise ratio (PSNR) 

and structural similarity index measure (SSIM) [121, 140], so these methods are chosen to 

assess quality of the super-resolved images obtained in the experiment. Values obtained for 

PSNR (measured in decibels, dB) and SSIM reflect the quality and rate of distortion of the 

reconstructed images compared with the original HR images. In simple terms they estimate 

structural correlation between the original and input image. SSIM is based on those structures 

that are typically visible in an image. The maximum value for SSIM is one which means closer 

the SSIM values are to one better is the reconstructed image quality. In case of PSNR, as its 

value increases, so too does the quality of reconstructed images. PSNR can be estimated by 

comparing the reconstructed image with an ideal image as follows [140]. 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔 10(
  𝑚𝑎𝑥 2   

𝑀𝑆𝐸
) 

       

(6.1) 

 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑  

𝑚−1

𝑖=0

∑  

𝑛−1

𝑗=0

(𝐼(𝑖, 𝑗) − 𝐼′(𝑖, 𝑗))
2
 

(6.2) 

 

In equation (6.1), 𝑚𝑎𝑥 refers to maximum possible pixel intensity for a given input image and 

MSE refers to mean squared error. In equation (6.2) the number of rows is given by 𝑚, the 

number of columns is given by 𝑛, 𝐼 is the HR original image and 𝐼′ is the degraded image, 𝑖 is 

the row index and 𝑗 is the column index. SSIM is estimated using the following [140]: 
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𝑆𝑆𝐼𝑀(𝑓, 𝑔) = 𝑙(𝑓, 𝑔)𝑐(𝑓, 𝑔)𝑠(𝑓, 𝑔)    (6.3) 

Here 𝑙(𝑓, 𝑔) estimates mean luminance closeness between two images 𝑓  and 𝑔 and is known 

as the luminance comparison function. Similarly, 𝑐(𝑓, 𝑔) estimates contrast closeness between 

two images and is known as the contrast comparison function. The correlation coefficient is 

estimated using the structure comparison function 𝑠(𝑓, 𝑔) between two images i.e., 𝑓 and 𝑔. 

For SSIM, positive values can range between 0 to 1, where 0 means no correlation between 

two images and 1 means high correlation between two images. These two measures i.e., PSNR 

and SSIM computed for various SR algorithms for all three databases along with their analysis 

will be discussed in Section 6.3.4. 

  

 

  

 

 

 

 

 

 

 

 

Table 6.3.   Peak signal to noise ratio (PSNR (dB)). 

Resolution SR Method 
Dataset 

CASME II SMIC-HS   SMIC-VIS 

64 X 64 psnr-small 34.7 37.41 36.67 

64 X 64 psnr-large 34.59 36.58 36.12 

64 X 64 noise-cancel 31.06 30.38 31.15 

64 X 64 ESRGAN 33.71 35.79 35.36 

64 X 64 bicubic 34.7 36.45 35.57 

32 X 32 ESRGAN 27.65 29.5 28.95 

32 X 32 nESRGAN+ 14.83 23.08 15.73 

32 X 32 bicubic 30.83 32.3 31.64 

Table 6.4.  Structural similarity index (SSIM). 

 

Resolution SR Method 
Dataset 

CASME II SMIC-HS  SMIC-VIS 

64 X 64 psnr-small 0.954 0.9827 0.9701 

64 X 64 psnr-large 0.953 0.9789 0.9672 

64 X 64 noise-cancel 0.9261 0.9412 0.925 

64 X 64 ESRGAN 0.9503 0.9826 0.9667 

64 X 64 bicubic 0.9555 0.9771 0.9616 

32 X 32 ESRGAN 0.7811 0.8502 0.8189 

32 X 32 nESRGAN+ 0.6559 0.7601 0.7527 

32 X 32 bicubic 0.9032 0.9365 0.9111 
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6.3.4 Image Reconstruction Result Analysis  

 

This section discusses the performance of all five SR algorithms based on the PSNR and SSIM 

metrics. Every set of super-resolved image sequence obtained were then compared with their 

corresponding HR images to obtain PSNR and SSIM values by utilizing equations (6.1), (6.2) 

and (6.3). The average PSNR and SSIM values computed for all reconstructed SR instances at 

SR64 and SR32 for all three databases are listed in Table 6.3 and Table 6.4 respectively.   

Observing these image metrics, it is seen that psnr-small model was able to generate 

higher quality super resolved images across all databases at 64x64 image resolution. 

Specifically, the best reconstruction performance was obtained using the SMIC-HS database 

with this model achieving PSNR/SSIM values of 37.41dB/0.9827. On CASMEII database the 

performance of psnr-large model was very close to psnr-small model with PSNR/SSIM values 

behind that of psnr-small by a very small value of 0.11dB/0.001 respectively. For SMIC-HS 

database the images produced by psnr-small and ESRGAN model were structurally very close 

with a difference of 0.0001 SSIM value but psnr-small method produced 1.62dB higher PSNR 

value than ESRGAN. However, observing PSNR value alone it is seen that reconstruction 

performance of psnr-small and psnr large on SMIC-HS database is almost equal with a 

difference of only 0.83dB. Similar observation regarding PSNR metric can be made between 

psnr-large and ESRGAN model where later is lacking by a nominal value i.e., 0.79dB. 

Examining PSNR/SSIM values, a competitive performance between psnr-small and psnr-large 

models can be observed on SMIC-VIS database, where psnr-small model is ahead by 

0.55dB/0.0029. When observing SSIM value alone for this database, structural performance of 

psnr-large and ESRGAN is almost same with later lacking by a value as small as 0.0005.  
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At 64x64 for bicubic and other reconstruction methods, inspecting PSNR values it is 

noticed that the bicubic performance is exactly the same as that of psnr-small method on 

CASMEII. All other reconstruction methods have produced image with lesser quality than 

bicubic method on this database. Using the SMIC-HS and SMIC-VIS databases the 

reconstruction performance of both psnr-small and psnr-large are superior to the bicubic 

method. Although reconstruction performance of the ESRGAN is below the bicubic but is still 

closer to bicubic in comparison to noise-cancel method. Examining the SSIM values in Table 

6.4, one can notice that reconstruction performance of all the methods is inferior to bicubic 

method on CASMEII. Best value obtained on this database is 0.954, which is 0.001 below 

bicubic method, though the value is low by exceptionally small margin. On SMIC-HS and 

SMIC-VIS database the reconstruction performance of three methods i.e., psnr-small, psnr-

large and ESRGAN are superior to bicubic method, thus these methods seem to perform well 

on both these databases. Clearly performance of the reconstruction methods on CASMEII is 

not satisfactory in comparison to other two databases. 

Moving on to values obtained for 32x32 images it can be clearly seen that ESRGAN is 

able to outperform nESRGAN+ model across all databases. The best reconstruction 

performance given by ESRGAN at this resolution is for SMIC-HS with 29.5dB/0.8502 

PSNR/SSIM metric values. The reconstruction performance of nESRGAN+ is far behind with 

its best performance metrics at 23.08dB/0.7601 for the same database.  

Overall, it can be said that images reconstructed using psnr-small, psnr-large and 

ESRGAN model was almost similar where the psnr-small model was ahead by a narrow 

margin. Also, all these three models produced comparatively superior results compared to 

noise-cancel model for 64x64 images. Similarly, at 32x32 the ESRGAN produced far better 
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results than nESRGAN+ model but overall performance was still lower than those obtained at 

higher resolution i.e., 64x64. While comparing results obtained using ESRGAN at both 64x64 

and 32x32 levels, it can be observed that the model is able to produce comparatively better 

result by employing higher resolution images. For instance, highest performance given by 

ESRGAN is 35.79dB/0.9826 on SMIC-HS database for 64x64 images, however using the same 

model a dip in performance is noticed when lower resolution images (i.e., 32x32) are employed 

with PSNR/SSIM metrics value 29.5dB/0.8502. This clearly strengthens the common belief 

that the resolution employed at input directly affects the reconstruction performance of SR 

algorithms and same can be observed for ME images as well. Comparing reconstruction 

performance using PSNR/SSIM values for all these methods with bicubic it can be noticed that 

at 32x32 their performance is less superior than bicubic technique. Thus, the bicubic method 

seems to perform better at this level. 

Images generated by employing various SR methods on three databases is presented in 

Figure 6.6 and Figure 6.7. From these results one can observe the visual quality of images 

generated by various SR algorithm at different scales. By comparing the visual quality of 

reconstructed image instances in both the figures, the significance of resolution and image 

quality employed during input phase seem obvious. For instance, visually the images obtained 

from LR64 after reconstruction presented in Figure 6.6 is much clearer and less noisy when 

compared to those images presented in Figure 6.7 that were obtained from their corresponding 

LR32 images. Thus, as expected, images obtained from lower resolution i.e., LR32  are quite 

poor compared to those obtained from a higher resolution i.e., LR64. 
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           (a)                                (b)                                  (c)                                   (d)                                 (e) 

Figure 6.6.  Images reconstructed using super resolution algorithms (a) psnr-small, (b) psnr-

large, (c) noise-cancel (d) ESRGAN and (e) Bicubic interpolation with scale factor two for 

CAMSEII(top horizontal layer), SMIC-HS (middle horizontal layer) , SMIC-VIS (bottom 

horizontal layer). 

   (a)                                    (b)                                       (c) 

Figure 6.7.  

Images reconstructed using 

super resolution algorithms 

ESRGAN (a), 

 nESRGAN+ (b) and  

bicubic interpolation (c) ;  

with scale factor set to four for 

CASMEII (top horizontal 

layer), SMIC-HS(middle 

horizontal layer) and SMIC-

VIS(bottom horizontal layer). 
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6.3.5 Recognition Result Analysis Before Super Resolution  

 

In this section the recognition results obtained before applying SR algorithms, at various levels 

on both LR and HR cases using two different feature extraction methods, are discussed. 

Therefore, analysis in this section is based on the recognition performance obtained for HR128, 

LR64 and LR32 i.e., before introducing SR algorithms into the pipeline as depicted in Table 

6.5. For all these instances feature extraction was carried out by employing both LPQ-TOP and 

LBP-TOP separately at different sets of experiments.  

Recognition result obtained for HR128 (refer to Table 6.5) reveal that by employing 

LPQ-TOP technique the recognition framework was able to produce 2.37% and 8% higher 

recognition accuracy on SMIC-HS and SMIC-VIS database compared to LBP-TOP, but on 

CASMEII the LBP-TOP performed better by 0.99% over LPQ-TOP method.  

For LR64 the recognition performance obtained (refer to Table 6.5) using both the 

extraction methods (before introducing SR) were almost similar, with LPQ-TOP being higher 

than the binary method by 0.09% and 0.19% on CASMEII and SMIC-HS database. However, 

on SMIC-VIS a much better performance was noticed by employing LPQ-TOP with 

recognition rate higher by 7.86%.  

Table 6.5.  Accuracy % obtained before introducing super resolution 

algorithms. 

 Accuracy %(ours) 

Database CASME II SMIC-HS SMIC-VIS 

Resolution LBP-

TOP 

LPQ-

TOP 

LBP-

TOP 

LPQ-

TOP 

LBP-

TOP 

LPQ-

TOP 

HR128 48.16 47.17 50.06 52.43 53.26 61.26 

LR64 43.05 43.14 49.2 49.39 49.40 57.26 

LR32 43.00 41.05 44.25 48.17 45.54 41.18 
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Taking LR32 in consideration performance recorded using LPQ-TOP was higher than 

LBP-TOP by 2.96% and 3.92% on CASMEII and SMIC-HS, however at same resolution the 

LPQ-TOP method reported 4.36% dip for SMIC-VIS database. At HR128, 61.26% accuracy 

was reported compared to 41.18% at LR32 on SMIC-VIS by employing LPQ-TOP and is the 

best performance recorded at this resolution level in these sets of experiment. At LR64 best 

performance was also on the same database i.e., SMIC-VIS employing the same method i.e., 

LPQ-TOP  with 57.26% accuracy. For LR32 the highest accuracy recorded was 48.17% and 

obtained on SMIC-HS database.  

Recognition performance comparison at various resolution levels employing both 

feature extraction techniques on all three databases is illustrated in Figure 6.8. With a gradual 

decrease in resolution level, a dip in recognition performance can be clearly noticed across all 

databases before employing SR methods. The results indicate that in general LPQ-TOP method 

works well on low quality images specially on SMIC variants. 

 

 

 

 

 

 

 

 

Figure 6.8. Recognition performance analysis on three databases at different resolutions 

before introducing super resolution. 
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6.3.6 Recognition Result Analysis Employing Super Resolution 

In this section the overall recognition performance of the proposed pipeline after introducing 

various SR algorithms on three individual databases, recorded in Table 6.6, Table 6.7, and 

Table 6.8 is discussed. Further a comparative analysis of the recognition performance obtained 

for all three databases employed in this work is also discussed along with its results recorded 

in Table 6.9.   

 

 

 

             

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

6.3.6.1 Performance analysis on SMIC-VIS 

Utilizing super resolved images, the best recognition performance recorded for the SMIC-VIS 

database is 61.63% as listed in Table 6.6. This is an increase of 4.37% using the psnr-small, 

reconstructed images at scale factor 2 with LPQ-TOP method compared to its corresponding 

LR64. The next best recognition was obtained employing psnr-large with the same extraction 

method resulting in an increase of 4.14% compared with its corresponding LR64. This was 

followed by ESRGAN with an increase of 3.75%. The lowest performance boost was for noise-

cancel method with an increase of 3.07%. 

Table 6.6.  Accuracy% obtained using various super resolution algorithms on SMIC-VIS 

 

 

Resolution 

 

SR Method 

Accuracy % 

LBP-TOP LPQ-TOP 

HR128 - 53.26 61.26 

SR64 psnr-small 59.62 61.63 

SR64 psnr-large 56.67 61.40 

SR64 noise-cancel 55.57 60.33 

SR64 ESRGAN 56.60 61.01 

SR64 bicubic 55.23 61.40 

SR32 ESRGAN 51.69 59.15 

SR32 nESRGAN+ 49.40 56.73 

SR32 bicubic 52.11 60.03 

LR64 - 49.40 57.26 

LR32 - 45.54 41.18 
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 Employing the LBP-TOP method, the best recognition performance was obtained at 

59.62%. This is a boost of 10.22% obtained by employing psnr-small at scale factor 2 compared 

to its corresponding LR64. For the same extraction method when combined with the psnr-large 

method, the reconstructed images produced a recognition boost of 7.27% followed by the 

ESRGAN method with a boost of 7.2%.  With a boost of 6.17%, noise-cancel produced the 

lowest improvement overall. Performance boost is obtained for all cases here but is still lower 

compared with that obtained employing LPQ-TOP method. 

 Reconstructing images with a scale factor of 4 with the ESRGAN method obtained a 

boost of 6.15% and 17.97% using LBP-TOP and LPQ-TOP respectively whereas with 

nESRGAN+ the accuracy was increased by 3.86% and 15.55% respectively. Therefore, boost 

in recognition performance obtained after employing SR algorithms at both scale factors is 

clear for this database. This analysis of recognition performance using the SMIC-VIS database 

employing various SR and extraction methods is illustrated in Figure 6.9. 

Figure 6.9. Recognition performance analysis on SMIC-VIS database after introducing super 

resolution. 
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Table 6.7.  Accuracy% obtained for various super resolution algorithms on SMIC-HS. 

 

 

Resolution 

 

SR Method 

Accuracy % 

LBP-TOP  LPQ-TOP  

HR128 - 50.06 52.43 

SR64 psnr-small 51.45 52.43 

SR64 psnr-large 50.67 52.00 

SR64 noise-cancel 49.39 51.82 

SR64 ESRGAN 51.43 52.43 

SR64 bicubic 49.87 52.43 

SR32 ESRGAN 49.82 50.60 

SR32 nESRGAN+ 49.24 50.00 

SR32 bicubic 49.35 51.02 

LR64 - 49.2 49.39 

LR32 - 44.25 48.17 

Figure 6.10. Recognition performance analysis on SMIC-HS database after 

introducing super resolution. 
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6.3.6.2 Performance analysis on SMIC-HS 

The recognition performance analysis obtained using the SMIC-HS database after introducing 

SR is presented in Figure 6.10. Observing the values from Table 6.7, on SMIC-HS database 

the best recognition performance achieved after introducing SR is 52.43%. This performance 

was recorded for both psnr-small and ESRGAN reconstructed images. This value is 3.04% 

higher that its corresponding LR64 which clearly indicates the recognition performance boost 

obtained, therefore the overall pipeline has benefited from the SR algorithm. Next, by using 

psnr-large reconstructed images, a recognition boost of 2.61% was obtained for the same scale 

factor i.e., 2. Once again at this scale factor, the noise-cancel model generated images resulted 

in the lowest recognition performance boost of 2.43%. All these performance boosts were 

obtained when each of the SR methods constructed data were used along with LPQ-TOP 

method.  

 For the LBP-TOP method, the highest recognition accuracy obtained is 51.45% by 

employing ‘psnr-small’ reconstructed images, which is a boost of 2.25% compared with its 

LR64. The next best performance was obtained using the ESRGAN method which was behind 

psnr-small method by a mere 0.02% and with a boost of 2.23% for the same scale factor i.e.,2. 

This was followed by psnr-large generated images which produced a recognition boost of 

1.47%. Consistent to the previous observations, the lowest performance was obtained by 

employing noise-cancel generated images with a recognition boost of only 0.19% compared to 

its corresponding LR64. Evidently from the results obtained for this database (refer Table 6.7), 

performance boost has been obtained for all instances across both feature extraction methods, 

though phase method is slightly better than the binary method. 
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 Moving on to a scale factor four, the best recognition performance obtained is 50.6% 

which indicates a boost of 2.43% compared to its corresponding LR32. This performance is 

obtained for phase-based approach. The nESRGAN+ employed images were able to obtain a 

performance boost of 1.83% for same extraction method. Using binary extraction method, the 

recognition boost obtained was 5.57% and 4.99% for ESRGAN and its variant respectively. 

Therefore, for this case too, recognition boost has been achieved for all SR instances employing 

both feature extraction methods. Once again, these results confirm the benefit of employing 

SR algorithms for achieving a boost in overall recognition performance at both scale factors on 

the SMIC-HS database. 

 

 

 

 

 

 

 

6.3.6.3 Performance analysis on CASME II 

 

Using the CASMEII database, the best recognition performance obtained after introducing the 

SR model was 47.93% using the ESRGAN super resolution algorithm along with the LBP-

TOP extraction method with a scale factor of 2 (refer Table 6.8). This reflects an obvious boost 

in recognition performance of 4.88% compared with its corresponding LR64 after employing 

Table 6.8.  Accuracy% obtained for various super resolution algorithms on CASME II. 

 

 

Resolution 

 

SR Method 

Accuracy % 

LBP-TOP LPQ-TOP 

HR128 - 48.16 47.17 

SR64 psnr-small 47.74 46.37 

SR64 psnr-large 47.34 46.01 

SR64 noise-cancel 46.50 43.54 

SR64 ESRGAN 47.93 45.96 

SR64 bicubic 47.74 45.56 

SR32 ESRGAN 43.05 41.93 

SR32 nESRGAN+ 40.04 34.67 

SR32 bicubic 44.35 42.75 

LR64 - 43.05 43.14 

LR32 - 43.00 41.05 
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SR. The next best performance at the same scale factor was given when images reconstructed 

using psnr-small were used with the LBP-TOP method, a boost of 4.69%. This was followed 

by images reconstructed by psnr-large, with 4.29% boost in recognition performance. Once 

again, the lowest performance at this scale factor was obtained using the noise-cancel based 

images with a boost of 3.45%.  

 Employing the LPQ-TOP method for images reconstructed using psnr-small produced 

the best recognition performance of 46.37%, which is an increase of 3.23% over its 

corresponding LR64 and yet it is still 1.37% lower than the performance obtained using the 

LBP-TOP method. The boost in recognition obtained employing this extraction method with 

psnr-large is 2.83%, noise-cancel is 0.4% and ESRGAN is 2.82%.  Although performance 

boost is achieved in all these cases compared with the corresponding LR64 images, the 

accuracies are lower than those obtained employing LBP-TOP approach. Therefore, for these 

cases recognition obtained using LBP-TOP seemed better than the phase method.   

 

 

 

 

 

 

 

Figure 6.11. Recognition performance analysis on CASME II database after introducing super 

resolution. 
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At scale factor four, images reconstructed with ESRGAN method employed with LBP-TOP 

obtained performance boost of 0.05% whereas with LPQ-TOP it was 0.88%. Though a higher 

boost is achieved using LPQ-TOP method, the overall recognition performance is still better 

with LBP-TOP method for this case.  The lowest performance was obtained for nESRGAN+ 

reconstructed images with recognition values recorded below its corresponding LR32 images 

for both the extraction methods on this database. This analysis of performance using the 

CASMEII database employing various SR and extraction methods is illustrated in Figure 6.11. 

Note: Bold indicates best values obtained in this thesis in general.  
For SR methods bold indicates best values obtained when compared with bicubic method.  

* Super resolution method used is patch-based and pixel-based regularization which is different from the deep learning-based approach used 

in this thesis. 

 
 

 

 

 

6.3.6.4 Performance comparison across all methods and databases 

Observing the values presented in Table 6.9, it is noticed that SR images at a scale factor of 2, 

when used with LPQ-TOP, produced much better recognition performance than the binary 

method using SMIC-VIS and slightly better for the SMIC-HS database. For instance, 

Table 6.9.  Accuracy% comparison for various super resolution algorithms across all datasets and 

methods. 
 Accuracy % 

CASME II SMIC-HS SMIC-VIS 

 

 

Resolution 

 

SR Method 

(ours) 

LBP-

TOP 

(ours) 

LPQ-

TOP 

(ours) 

Fast 

LBP-

TOP 

[41]* 

LBP-

TOP 

(ours)  

LPQ-

TOP 

(ours)  

Fast 

LBP-

TOP 

[41]* 

 

LBP-

TOP 

(ours) 

LPQ-

TOP 

(ours) 

HR128 - 48.16 47.17 48.18 50.06 52.43 50.00 53.26 61.26 

SR64 psnr-small 47.74 46.37 

48.18 

51.45 52.43 

52.44 

59.62 61.63 

SR64 psnr-large 47.34 46.01 50.67 52.00 56.67 61.40 

SR64 noise-cancel 46.50 43.54 49.39 51.82 55.57 60.33 

SR64 ESRGAN 47.93 45.96 51.43 52.43 56.60 61.01 

SR64 bicubic 47.74 45.56 49.87 52.43 55.23 61.40 

SR32 ESRGAN 43.05 41.93 

44.53 

49.82 50.60 

51.83 

51.69 59.15 

SR32 nESRGAN+ 40.04 34.67 49.24 50.00 49.40 56.73 

SR32 bicubic 44.35 42.75 49.35 51.02 52.11 60.03 

LR64 - 43.05 43.14 44.94 49.2 49.39 50.00 49.40 57.26 

LR32 - 43.00 41.05 44.13 44.25 48.17 46.95 45.54 41.18 
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examining the best performance on all databases it is seen that recognition is higher by 2.01% 

using SMIC-VIS and 0.98% using SMIC-HS employing LPQ-TOP, compared with the binary 

method. However, using the CASMEII database, the LBP-TOP method seems to perform better 

with 1.37% higher accuracy than the phase quantisation approach. Observing the overall 

analysis presented in Figure 6.12, for methods utilizing the RDN architecture, employing 

images reconstructed by the psnr-small method seems to consistently provide the best 

recognition performance across all databases. The performance of ESRGAN employed images 

was also at par with images constructed using psnr-small on the SMIC-HS database. However, 

using the SMIC-VIS database, the psnr-large model constructed images performed slightly 

better than the ESRGAN model constructed images. The lowest performance was consistently 

obtained by employing images reconstructed by the noise-cancel approach across all three 

databases. Therefore, at this scale factor, all three SR approaches, i.e., psnr-small, ESRGAN 

and psnr-large, seem to be very competitive and performed consistently better than noise-

cancel method. 

 

 

 

 

 

 

 

Figure 6.12. Comparison of recognition accuracy employing various instances of super 

resolution and feature extraction techniques on three micro expression databases for scale 

factor 2. 
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Observing the results in Table 6.9 and Figure 6.13, at a higher scale factor of 4, images 

reconstructed using ESRGAN seem to consistently outperform its corresponding variant i.e., 

nESRGAN+ across all databases. Once again both methods performed better on SMIC-VIS 

and SMIC-HS.  The lowest performance was obtained on the CASMEII database for both these 

SR methods. 

To have a fair comparison among results obtained using various SR methods in this 

work, a comparison with bicubic interpolation results is also made.  For SMIC-VIS database, 

SR images reconstructed at scale factor 2 (refer Table 6.9 and Figure 6.12) by all SR methods 

using LBP-TOP seems to work fairly well with recognition accuracies higher than those 
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Figure 6.13. Comparison of recognition accuracy employing various instances of 

super resolution and feature extraction techniques on three micro expression 

databases for scale factor 4. 
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obtained using the bicubic method. Employing LPQ-TOP on the SMIC-VIS database, the psnr-

small and psnr-large methods performed better than bicubic, whereas the noise-cancel and 

ESRGAN performances were lower than the bicubic method. At scale factor four recognition 

performance using images reconstructed by the bicubic method (refer to Table 6.9 and Figure 

6.13) was better which is consistent with the image quality metrics obtained for this instance. 

For the SMIC-HS database, both the psnr-small and ESRGAN methods were able to produce 

results at par with the bicubic method at scale factor two when combined with the LPQ-TOP 

method (refer to Table 6.9 and Figure 6.12). Likewise, when combined with the LBP-TOP 

method the images reconstructed using all SR methods performed better than the bicubic 

reconstructed images with the exception of noise-cancel which performed lower than bicubic. 

At scale factor four recognition performances of both SR methods were lower than bicubic 

method when combined with LPQ-TOP (refer to Table 6.9 and Figure 6.13). 

Using the CASMEII database at scale factor two (see Table 6.9 and Figure 6.12), psnr-

small and ESRGAN, when used with the LBP-TOP method produced recognition 

performances better or equal to that of the bicubic method, however using the psnr-large and 

noise-cancel approaches, recognition was marginally lower than the bicubic method. Most of 

the SR methods when combined with the LPQ-TOP approach for this database performed 

similar or better than the bicubic method whereas with the LBP-TOP method only psnr-small 

and ESRGAN seemed to perform better than bicubic. At scale factor four (refer to Table 6.9 

and Figure 6.13) the bicubic method was slightly better than ESRGAN based approach but 

much better than nESRGAN+ based approach. 

The overall comparison of recognition accuracy employing different SR and feature 

extraction techniques on three ME database is illustrated in Figure 6.12 and Figure 6.13. To 
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summarize, both the psnr-small and ESRGAN methods, when combined with LBP-TOP, 

perform best using CASMEII at a scale factor of 2, whereas at a scale factor of 4 ESRGAN 

worked best. Using the SMIC-HS database psnr-small and ESRGAN, when combined with 

LPQ-TOP, performed the best. Using the SMIC-VIS database psnr-small and psnr-large 

combined with LPQ-TOP performed well. Therefore, most of the SR methods were able to 

produce results better than the bicubic method at a scale factor of 2 across all databases, 

whereas at a scale factor of 4 using the SMIC-HS database and ESRGAN when combined with 

LBP-TOP produced better recognition results than the bicubic method.  

 

6.4 Summary 
 

As a solution and contribution to the MER system employing low quality images, a new 

pipeline exploiting DL and GAN based SR approaches is built. The contributions of this 

pipeline include an extensive analysis of five different SR algorithms particularly for 

reconstructing ME images. Clearly, all the SR models employed have been able to successfully 

reconstruct the facial details, though the image quality obtained is varying. Further a 

comprehensive analysis of two different feature extraction methods employing images 

produced by each of the SR methods is another contribution of this chapter. 

 The experiments were performed on publicly available three popular ME database with 

favourable results. Examining the overall performance, these positive results are a good 

indicator to ascertain the effects of DL and GAN based SR technique for boosting facial ME 

image details. Certainly, the classification accuracy was influenced by the size and quality of 

image reconstructed across all databases, and same is reflected in the results obtained. Two 
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limitations of this work are, first the tests consider two resolutions for LR images, however in 

the future resolutions lower than these can also be assessed. Second, data imbalance has not 

been addressed and as such the work can be substantiated by incorporating a suitable approach 

with more uniform datasets in the future.   

Nevertheless, the results achieved are promising and can be extended further by 

evaluating more SR algorithms with additional scale factors. The results obtained can also be 

used as a general guideline to widen the usage of suitable SR technique for such specific 

applications. Acquiring good facial resolution with low-cost surveillance cameras may not 

always be realistic in day-to-day life especially when faces to be captured are distant from the 

camera, this directly affects the quality of facial details obtained. Therefore, to overcome 

resolution issues that may exist in ME obtained in similar unfavourable settings, utilizing such 

deep learning SR based reconstruction algorithms together with recognition framework seems 

a feasible option. 
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Chapter 7 

Conclusion 

7.1 Introduction 

 

ME analysis has a long history since its discovery in the field of psychology and today has far-

reaching applications ranging from medical, security, academic, to business and beyond. To 

guide any research towards ME analysis, one needs to be able to determine its finer details. 

Therefore, incremental progress in the research has helped in developing and accumulating a 

variety of approaches that can achieve this. Meanwhile development of an automated system 

capable of functioning in a real-world environment will have wider applications and 

supplement cutting edge technologies. The primary focus of this thesis is designing methods 

that can effectively model spatial and temporal micro patterns to achieve MER. Modelling a 

system capable of catering to problems inherent while capturing ME in real world 

environments is an additional highlight of this thesis.  

LPQ based methods have previously been explored in ME for AU detection [134] and 

designing cross-databases [89], however this thesis investigates it as an ME feature extractor 

across several independent ME databases solely to accomplish expression recognition. 

Furthermore, it is combined with temporal interpolation and video magnification and results 

clearly demonstrate that its performance is as competitive as any other classical feature 

extraction method. Since the LPQ-TOP method has the ability to detect changes in the temporal 

as well as spatial domain, employing it for ME analysis in this thesis seemed a good fit. 
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Significantly improved performance was obtained for the majority of the databases by pooling 

magnification, TIM, and LPQ-TOP. From the experimental results obtained, use of LPQ-TOP 

for ME feature extraction is further substantiated. Recognition of ME using this proposed 

combination is the first investigation successfully realized on seven spontaneous ME databases. 

Low quality recordings captured in real-world environments is a major issue, especially 

within a surveillance setup. This thesis addresses the issue by adopting a more objective 

approach. Therefore, a novel pipeline that incorporates ISR algorithms (based on DL and GAN) 

as one of its constituent components, prior to MER, is built. For investigating this concept, five 

different SR algorithms were tested on three different ME databases for two levels of LR micro 

expression images. 

 

 

7.2 Research Findings 

This section provides a summary of the research objectives outlined in Section 1.5 and their 

corresponding outcome. These findings are based on the research and experiments undertaken 

and provide evidence-based reasoning for the outcome achieved. Investigating the efficiency of 

recognizing different classes of ME from the available databases employing features from the 

temporal domain and training models using machine learning was the first objective laid out in 

the thesis. This was achieved by utilizing the combination of TIM and LPQ-TOP technique for 

extracting spatio-temporal information from XY, XT and YT planes, training a SVM algorithm 

on those extracted features and finally classifying the data into relevant classes. LPQ-TOP has 

already been used for ME action unit detection [134] and designing cross-databases [89], 

however in this thesis it is employed solely to achieve ME recognition and classification 
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without incorporating the concept of action units and cross database. Experimental results 

demonstrate its potential as a feature extraction method and suggests it to be as competitive as 

other classical feature extraction methods. This preliminary experiment was performed using 

the CASME II database with accuracy of 61.16% which is comparable to those reported in 

[47,141,142]. This database was chosen for preliminary experiments due to it being one of the 

most widely used ME datasets. It was concluded that combining the interpolation and phase 

quantization technique with SVM yields acceptable recognition accuracies for ME. 

 

 

 

 

 

 

 

 

Exploring the advantage of utilizing video magnification with interpolation and a phase 

quantization technique by conducting suitable experiments is the second objective. This was 

accomplished by further employing the TIM and the LPQ-TOP method along with EVM on 

seven different spontaneous ME database i.e., SMIC (HS, NIR, &VIS), CASME, CAS(ME)2, 

CASMEII and SAMM. The proposed pipeline involving magnification and other methods 

experimented in this thesis is illustrated in Figure 7.1. The features extracted using the LPQ-

TOP technique on all these databases before introducing magnification further ascertained its 

edge as a feature extraction method. Moreover, utilizing it again after introducing EVM 
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Figure 7.1.  Proposed pipeline for micro expression recognition. 
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successfully improved the recognition accuracy for all databases, with highest improvement 

recorded for the CASMEII database at 13.34% and average improvement achieved across all 

databases at 6.14%. It was concluded that EVM was effective in accentuating the muscle 

motion for ME enabling more effective feature extraction by LPQ-TOP evident from the boost 

in recognition accuracy achieved in the majority of the cases. Evidence presented in Section 

5.4.2 and Section 5.4.3 clearly substantiates these findings. 

The third objective was to explore and compare two feature extraction approaches for 

describing the ME patterns in LR images. This was achieved by simulating LR micro 

expression databases for CASMEII, SMIC (HS & VIS) at resolution levels 64x64 and 32 x32. 

The LBP-TOP and LPQ-TOP methods were then employed to describe the ME patterns within 

these LR images. A simulated database was created to address the existing limitation of 

publicly available ME databases where image data have HR and are of good quality, therefore 

fail to resemble recordings acquired in a real-world environment. The LPQ-TOP method, when 

combined with SVM, gave best recognition performance for the SMIC-VIS images (LR) at 

64x64 resolution compared with LBP-TOP, but same observation could not be seen for 32x32. 

The LBP-TOP and SVM method seems to work best for LR images taken from the SMIC-HS 

and CASMEII databases. Experimental results obtained in Section 6.3.5 justify these 

outcomes. 

The fourth objective was to study the impact of low quality and LR during the 

recognition process. For this purpose, the two LR considered were 64x64 and 32x32, obtained 

by degrading the HR image of 128x128. The recognition accuracy obtained for ME at 128x128 

is compared with those obtained at 64x64 and 32x32 for all three simulated databases i.e., 

SMIC-HS, SMIC-VIS and CASME II. Knowing that the resolution of an image has direct 

impact on recognition performance, it is vital to be able to quantitatively demonstrate this. The 



154 | P a g e  
 

recognition accuracy percentage obtained at HR128 was 5.11/5.16 , 0.86/5.81, 3.86/7.72 higher 

than its corresponding LR accuracy percentage at 64/32 levels for CASME II, SMIC-HS and 

SMIC-VIS databases respectively. As anticipated the worst recognition performance for all the 

databases was for images at 32x32 level and was at least 5.16% lower than its HR images. This 

analysis is based on the results obtained using LBP-TOP and SVM on HR and LR images. 

Similar trends are observed for results obtained using LPQ-TOP and SVM with 4.03/6.12, 

3.04/4.26 and 4/20.08 higher than its corresponding LR accuracy percentage at levels 64/32 for 

CASME II, SMIC-HS and SMIC-VIS databases respectively. Again, decline in the recognition 

performance is observed with decreasing resolution. Clearly, results obtained in Section 6.3.5 

once again justifies these outcomes and confirms the declining recognition performance for 

MER with diminishing input image resolutions. 

 

 

 

 

 

 

 

 

 

 

The final objective was to investigate the contribution of SR algorithms and evaluate 

the performance of the proposed methods on several standard databases. This was achieved in 

Section 6.3.6 with the creation of databases containing super resolved images. These images 
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were obtained by employing various DL and GAN based SR algorithms. The proposed pipeline 

tested in this thesis to achieve micro expression recognition utilizing LR images and SR 

algorithms is illustrated in Figure 7.2. Further, by using the image quality metrics PSNR and 

SSIM, the quality of the reconstructed images was assessed. This helped to understand the 

performance of the SR algorithms on ME images before initiating the recognition process. 

Observing these metrics, among the chosen SR methods utilizing RDN trained with small 

PSNR gave the best reconstruction performance across all the databases for resolution level 

64x64 whereas at 32x32 reconstruction images obtained from ESRGAN method was 

preferable. Interestingly, reconstruction performance of ESRGAN and psnr-large model were 

as competitive as psnr-small. The quality of these reconstructed images obtained from various 

SR methods was clearly reflected on its corresponding recognition results. For instance, at 

64x64 the best reconstructed images were produced by the ‘psnr-small’ method and employing 

these produced the best recognition performances across all three databases. Similarly, at 

32x32 ESRGAN produced best quality SR images and consequently employing them produced 

better recognition performance compared to other similar methods. Overall, it can be concluded 

from these SR based ME experiments that utilizing DL and GAN based SR algorithms helps 

in regaining ME details in an image thereby boosting the recognition performance. Moreover, 

choosing an appropriate SR approach can significantly favour recognition methods. 

 

7.3 Limitations 

Although the techniques and algorithms utilized during research and experiments have 

successfully met all the objectives, limitations specific to this work should be discussed. First, 

the phase quantization method is computationally intensive, therefore for real-time processing 
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its optimization maybe essential. Moreover, utilizing DL techniques during the extraction 

process can deliver better performance.  Secondly, the database utilized consists of videos with 

minimal noise, as such regulating amplification factor delivered videos with magnified noise 

that could be dealt with easily. However, in real-world situations, obtaining noise free videos 

is challenging as such utilizing magnification in such scenario may not be appropriate. Thirdly, 

all the experiments performed by employing images consist of full-frontal faces, but in a natural 

setup the faces being acquired can have different poses, angles and sometimes suffer from 

occlusions. Building ME recognition methods that can cater for these unique conditions 

inherent to natural recordings are required moving forward. Although the low-quality image 

issue, particularly for ME images, has been addressed in this thesis to some extent, it must be 

mentioned that every image consists of a single face with empty background. This is unlikely 

in reality, considering surveillance recordings where most of the time several other objects 

appear in the background along with faces. Also, recordings consisting of multiple faces in the 

same frame is highly likely in such real-world scenarios. Developing algorithms that can adapt 

to such input can give an edge to the overall low quality ME based research and analysis. 

 

 

7.4 Future Work 
 

Research involving automatic ME analysis is still at an early stage compared with other 

applications of facial image analysis. The future of ME has a huge potential to continue creating 

new state-of-the-art solutions. While the work in this thesis represents a significant addition to 

the current ME domain, much more work is still needed.  To expand the knowledge base and 

develop high end methodologies, some interesting extensions to this work are discussed in this 

section.  
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First, utilizing cross-databases to increase the volume of data and making recognition 

methods more adaptable to varying domains can help to overcome the bias arising due to 

culture specific databases. This encourages development of a more generic framework that is 

not limited by the data format and scale. 

Second, to have more relevance to the real word situation employing data from “In-the 

wild” databases can be useful. They often contain data captured at varying pose, with occlusion, 

positioned at different angle, illumination changes and with multiple background objects. 

Existing approaches can be extended with appropriate modifications to adapt to such ME 

databases. 

Third, simulating datasets that contain images with resolutions lower than 32x32 can 

help to verify the robustness of SR based ME recognition pipeline. Also, adding more SR 

algorithms into the pipeline will give more comprehensive results, further validating the benefit 

of incorporating the SR concept for ME recognition with low quality images. 

In the work described throughout this thesis, three emotion labels were used for the first 

set of experiments and five emotion labels for the second. Therefore, as a fifth extension to this 

thesis, a greater number of labels can be incorporated into the list of emotions and combined 

with verbal and/or vocal data to have all-inclusive emotion analysis. 
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7.5 Concluding Remarks 

 

Throughout this thesis, the work presented forms contributions to automatic ME recognition, 

where emphasis was laid on ensuring the algorithms are rigorously tested on several databases 

to establish robustness of the overall approach. The contributions demonstrate that the results 

obtained were promising for the future of ME recognition. There is no doubt that research on 

facial MER has witnessed considerable growth and progress in the last decade, however lack 

of substantial volume of ME database is still a roadblock. While the research challenges in 

automatic MER remain, the development of emerging tools encouraging application to real-

world problems is growing steadily. Therefore, from the literature and contributions presented 

through this work, ME recognition in the real world may soon be the dominant research theme 

in ME analysis. As such designing methodologies with good processing speed might become 

essential to enable its application to the real world. Furthermore, technical, and academic 

advancements of the MER field will have a profound influence on various disciplines like 

medical, business, academic, e-commerce and many more. Therefore, investigating in the field 

of ME is noteworthy and the findings often earn credit across various disciplines. 
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