581 research outputs found

    A trustworthy mobile agent infrastructure for network management

    Get PDF
    Despite several advantages inherent in mobile-agent-based approaches to network management as compared to traditional SNMP-based approaches, industry is reluctant to adopt the mobile agent paradigm as a replacement for the existing manager-agent model; the management community requires an evolutionary, rather than a revolutionary, use of mobile agents. Furthermore, security for distributed management is a major concern; agent-based management systems inherit the security risks of mobile agents. We have developed a Java-based mobile agent infrastructure for network management that enables the safe integration of mobile agents with the SNMP protocol. The security of the system has been evaluated under agent to agent-platform and agent to agent attacks and has proved trustworthy in the performance of network management tasks

    A Lightweight and Flexible Mobile Agent Platform Tailored to Management Applications

    Full text link
    Mobile Agents (MAs) represent a distributed computing technology that promises to address the scalability problems of centralized network management. A critical issue that will affect the wider adoption of MA paradigm in management applications is the development of MA Platforms (MAPs) expressly oriented to distributed management. However, most of available platforms impose considerable burden on network and system resources and also lack of essential functionality. In this paper, we discuss the design considerations and implementation details of a complete MAP research prototype that sufficiently addresses all the aforementioned issues. Our MAP has been implemented in Java and tailored for network and systems management applications.Comment: 7 pages, 5 figures; Proceedings of the 2006 Conference on Mobile Computing and Wireless Communications (MCWC'2006

    Management system for IPv6-enabled wireless sensor networks

    Get PDF
    “Copyright © [2011] IEEE. Reprinted from Internet of Things (iThings/CPSCom), 2011 International Conference on and 4th International Conference on Cyber, Physical and Social Computing. ISBN 978-1-4577-1976-9 This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.”It is expected that in the near future smart objects will have an Internet connection – this is the Internet of Things vision. Most of these objects compatible with the IEEE 802.15.4 standard are characterized by small size, power constrains, and small computing resources. Connecting such devices to the Internet is considered simultaneously the biggest challenge and a great opportunity for the Internet growth. To achieve the Internet of things vision is necessary to support IPv6 protocol suite in all objects. Supporting IPv6 simplifies, simultaneously, the integration of these objects in the Internet and their management. Actually, despite of the relevance, there are no existing standard solutions to manage smart object networks. Managing this type of networks poses a unique challenge because smart object networks may be comprised of thousands of nodes, are highly dynamic and prone to failures. This paper presents a complete solution to manage smart object networks based on SNMPv1 protocol. The paper also presents the design and deployment of a laboratory testbed

    A web services based framework for efficient monitoring and event reporting.

    Get PDF
    Network and Service Management (NSM) is a research discipline with significant research contributions the last 25 years. Despite the numerous standardised solutions that have been proposed for NSM, the quest for an "all encompassing technology" still continues. A new technology introduced lately to address NSM problems is Web Services (WS). Despite the research effort put into WS and their potential for addressing NSM objectives, there are efficiency, interoperability, etc issues that need to be solved before using WS for NSM. This thesis looks at two techniques to increase the efficiency of WS management applications so that the latter can be used for efficient monitoring and event reporting. The first is a query tool we built that can be used for efficient retrieval of management state data close to the devices where they are hosted. The second technique is policies used to delegate a number of tasks from a manager to an agent to make WS-based event reporting systems more efficient. We tested the performance of these mechanisms by incorporating them in a custom monitoring and event reporting framework and supporting systems we have built, against other similar mechanisms (XPath) that have been proposed for the same tasks, as well as previous technologies such as SNMP. Through these tests we have shown that these mechanisms are capable of allowing us to use WS efficiently in various monitoring and event reporting scenarios. Having shown the potential of our techniques we also present the design and implementation challenges for building a GUI tool to support and enhance the above systems with extra capabilities. In summary, we expect that other problems WS face will be solved in the near future, making WS a capable platform for it to be used for NSM

    Distributed Software Router Management

    Get PDF
    With the stunning success of the Internet, information and communication technologies diffused increasingly attracting more uses to join the the Internet arsenal which in turn accelerates the traffic growth. This growth rate does not seem to slow down in near future. Networking devices support these traffic growth by offering an ever increasing transmission and switching speed, mostly due to the technological advancement of microelectronics granted by Moore’s Law. However, the comparable growth rate of the Internet and electronic devices suggest that capacity of systems will become a crucial factor in the years ahead. Besides the growth rate challenge that electronic devices face with respect to traffic growth, networking devices have always been characterized by the development of proprietary architectures. This means that incompatible equipment and architectures, especially in terms of configuration and management procedures. The major drawback of such industrial practice, however, is that the devices lack flexibility and programmability which is one of the source of ossification for today’s Internet. Thus scaling or modifying networking devices, particularly routers, for a desired function requires a flexible and programmable devices. Software routers (SRs) based on personal computers (PCs) are among these devices that satisfy the flexibility and programmability criteria. Furthermore, the availability of large number of open-source software for networking applications both for data as well as control plane and the low cost PCs driven by PC-market economy scale make software routers appealing alternative to expensive proprietary networking devices. That is, while software routers have the advantage of being flexible, programmable and low cost, proprietary networking equipments are usually expensive, difficult to extend, program, or otherwise experiment with because they rely on specialized and closed hardware and software. Despite their advantages, however, software routers are not without limitation. The objections to software routers include limited performance, scalability problems and lack of advanced functionality. These limitations arose from the fact that a single server limited by PCI bus width and CPU is given a responsibility to process large amount of packets. Offloading some packet processing tasks performed by the CPU to other processors, such as GPUs of the same PC or external CPUs, is a viable approach to overcome some of these limitations. In line with this, a distributed Multi-Stage Software Router (MSSR) architecture has been proposed in order to overcome both the performance and scalability issues of single PC based software routers. The architecture has three stages: i) a front-end layer-2 load balancers (LBs), open-software or open-hardware based, that act as interfaces to the external networks and distribute IP packets to ii) back-end personal computers (BEPCs), also named back-end routers in this thesis, that provide IP routing functionality, and iii) an interconnection network, based on Ethernet switches, that connects the two stages. Performance scaling of the architecture is achieved by increasing the redundancy of the routing functionality stage where multiple servers are given a coordinated task of routing packets. The scalability problem related to number of interfaces per PC is also tackled in MSSR by bundling two or more PCs’ interfaces through a switch at the front-end stage. The overall architecture is controlled and managed by a control entity named Virtual Control Processor (virtualCP), which runs on a selected back-end router, through a DIST protocol. This entity is also responsible to hide the internal details of the multistage software router architecture such that the whole architecture appear to external network devices as a single device. However, building a flexible and scalable high-performance MSSR architecture requires large number of independently, but coordinately, running internal components. As the number of internal devices increase so does the architecture control and management complexity. In addition, redundant components to scale performance means power wastage at low loads. These challenges have to be addressed in making the multistage software router a functional and competent network device. Consequently, the contribution of this thesis is to develop an MSSR centralized management system that deals with these challenges. The management system has two broadly classified sub-systems: I) power management: a module responsible to address the energy inefficiency in multistage software router architecture II) unified information management: a module responsible to create a unified management information base such that the distributed multistage router architecture appears as a single device to external network from management information perspective. The distributed multistage router power management module tries to minimize the energy consumption of the architecture by resizing the architecture to the traffic demand. During low load periods only few components, especially that of routing functionality stage, are required to readily give a service. Thus it is wise to device a mechanism that puts idle components to low power mode to save energy during low load periods. In this thesis an optimal and two heuristic algorithms, namely on-line and off-line, are proposed to adapt the architecture to an input load demand. We demonstrate that the optimal algorithm, besides having scalability issue, is an off-line approach that introduce service disruption and delay during the architecture reconfiguration period. In solving these issues, heuristic solutions are proposed and their performance is measured against the optimal solution. Results show that the algorithms fairly approximate the optimal solution and use of these algorithms save up to 57.44% of the total architecture energy consumption during low load periods. The on-line algorithms are superior among the heuristic solutions as it has the advantage of being less disruptive and has minimal service delay. Furthermore, the thesis shows that the proposed algorithms will be more efficient if the architecture is designed keeping in mind energy as one of the design parameter. In achieving this goal three different approaches to design an MSSR architecture are proposed and their energy saving efficient is evaluated both with respect to the optimal solution and other similar cluster design approaches. The multistage software router is unique from a single device as it is composed of independently running components. This means that the MSSR management information is distributed in the architecture since individual components register their own management information. It is said, however, that the MSSR internal devices work cooperatively to appear as a single network device to the external network. The MSSR architecture, as a single device, therefore requires its own management information base which is built from the management information bases dispersed among internal components. This thesis proposes a mechanism to collect and organize this distributed management information and create a single management information base representing the whole architecture. Accordingly existing SNMP management communication model has been modified to fit to distributed multi-stage router architecture and a possible management architecture is proposed. In compiling the management information, different schemes has been adopted to deal with different SNMP management information variables. Scalability analysis shows that proposed management system scales well and does not pose a threat to the overall architecture scalability

    Dynamic Context Awareness of Universal Middleware based for IoT SNMP Service Platform

    Get PDF
    This study focused on the Universal Middleware design for the IoT (Internet of Things) service gateway for the implementation module of the convergence platform. Recently, IoT service gateway including convergence platform could be supported on dynamic module system that is required mounting and recognized intelligent status with the remote network protocol. These awareness concepts support the dynamic environment of the cross-platform distributed computing technology is supported by these idea as a Universal Middleware for network substitution. Distribution system commonly used in recent embedded systems include CORBA (Common Object Request Broker Architecture), RMI (Remote Method Invocation), DCE (Distributed Computing Environment) for dynamic service interface, and suggested implementations of a device object context. However, the aforementioned technologies do not support each standardization of application services, communication protocols, and data, but are also limited in supporting inter-system scalability. In particular, in order to configure an IoT service module, the system can be simplified, and an independent service module can be configured as long as it can support the standardization of modules based on hardware and software components. This paper proposed a design method for Universal Middleware that, by providing IoT modules and service gateways with scalability for configuring operating system configuration, may be utilized as an alternative. This design could be a standardized interface provisioning way for hardware and software components as convergence services, and providing a framework for system construction. Universal Middleware Framework could be presented and dynamic environment standardization module of network protocols, various application service modules such as JINI (Apache River), UPnP (Universal Plug & Play), SLP (Service Location Protocol) bundles that provide communication facilities, and persistence data module. In this IoT gateway, management for based Universal Middleware framework support and available for each management operation, application service component could be cross-executed over SNMP (Simple Network Management Protocol) version 1, version 2, and version 3. The way of SNMP extension service modules are conducted cross-support each module and independent system meta-information that could be built life cycle management component through the MIB (Management Information Base) information unit analysis. Therefore, the MIB role of relation with the Dispatcher applied to support multiple concurrent SNMP messages by receiving incoming messages and managing the transfer of PDU (Protocol Data Unit) between the RFC 1906 network in this study. Results of the study revealed utilizing Universal Middleware that dynamic situations of context objects with mechanisms and tools to publish information could be consisted of IoT to standardize module interfaces to external service clients as a convergence between hardware and software platforms

    An ICT-oriented Management Solution for NGNs

    Get PDF
    NGN architecture reused several standards from the IP world, as exemplified by the Session Initiation Protocol SIP, which is ubiquitous in the majority of these network components. However, the NGN management architecture simply presented a very generic management model that follows TMN. Several management technologies are proposed, such as Web services, CORBA and SNMP, to implement management solutions. Network and systems management standardizing bodies currently promote newer technologies that aim to solve known shortcomings to these. This paper proposes a management solution for NGNs based on recent IP world technologies. The presented solution was implemented in the form of a middleware to manage NGN elements. This middleware was used in the management of an element belonging to the IP Multimedia Subsystem platform, namely the Policy and Charging Rules Function

    Distributed management based on mobile agents

    Get PDF
    During the forthcoming years, Internet-based concepts will continue to revolutionize, in an unpredictable way, the mode enterprises provide, maintain and use traditional information technology. Management systems will be a crucial issue in the struggle with this crescent complexity. However, new requirements have to be considered, due to the expectation of enormous quantities of different elements, ranging from an impressive network bandwidth availability to multimedia QoS-constrained services. Many researchers believe that mobile agent paradigm can provide effective solutions on these new scenarios. This paper presents an implementation of management applications supported upon distribution and delegation concepts. For that it uses the current work of IETF’s Disman working group enhanced with mobility provision. The mobility allows the distributed managers to adapt dynamically to a mutable environment optimizing the use of network resources

    An ontology-driven architecture for data integration and management in home-based telemonitoring scenarios

    Get PDF
    The shift from traditional medical care to the use of new technology and engineering innovations is nowadays an interesting and growing research area mainly motivated by a growing population with chronic conditions and disabilities. By means of information and communications technologies (ICTs), telemedicine systems offer a good solution for providing medical care at a distance to any person in any place at any time. Although significant contributions have been made in this field in recent decades, telemedicine and in e-health scenarios in general still pose numerous challenges that need to be addressed by researchers in order to take maximum advantage of the benefits that these systems provide and to support their long-term implementation. The goal of this research thesis is to make contributions in the field of home-based telemonitoring scenarios. By periodically collecting patients' clinical data and transferring them to physicians located in remote sites, patient health status supervision and feedback provision is possible. This type of telemedicine system guarantees patient supervision while reducing costs (enabling more autonomous patient care and avoiding hospital over flows). Furthermore, patients' quality of life and empowerment are improved. Specifically, this research investigates how a new architecture based on ontologies can be successfully used to address the main challenges presented in home-based telemonitoring scenarios. The challenges include data integration, personalized care, multi-chronic conditions, clinical and technical management. These are the principal issues presented and discussed in this thesis. The proposed new ontology-based architecture takes into account both practical and conceptual integration issues and the transference of data between the end points of the telemonitoring scenario (i.e, communication and message exchange). The architecture includes two layers: 1) a conceptual layer and 2) a data and communication layer. On the one hand, the conceptual layer based on ontologies is proposed to unify the management procedure and integrate incoming data from all the sources involved in the telemonitoring process. On the other hand, the data and communication layer based on web service technologies is proposed to provide practical back-up to the use of the ontology, to provide a real implementation of the tasks it describes and thus to provide a means of exchanging data. This architecture takes advantage of the combination of ontologies, rules, web services and the autonomic computing paradigm. All are well-known technologies and popular solutions applied in the semantic web domain and network management field. A review of these technologies and related works that have made use of them is presented in this thesis in order to understand how they can be combined successfully to provide a solution for telemonitoring scenarios. The design and development of the ontology used in the conceptual layer led to the study of the autonomic computing paradigm and its combination with ontologies. In addition, the OWL (Ontology Web Language) language was studied and selected to express the required knowledge in the ontology while the SPARQL language was examined for its effective use in defining rules. As an outcome of these research tasks, the HOTMES (Home Ontology for Integrated Management in Telemonitoring Scenarios) ontology, presented in this thesis, was developed. The combination of the HOTMES ontology with SPARQL rules to provide a flexible solution for personalising management tasks and adapting the methodology for different management purposes is also discussed. The use of Web Services (WSs) was investigated to support the exchange of information defined in the conceptual layer of the architecture. A generic ontology based solution was designed to integrate data and management procedures in the data and communication layer of the architecture. This is an innovative REST-inspired architecture that allows information contained in an ontology to be exchanged in a generic manner. This layer structure and its communication method provide the approach with scalability and re-usability features. The application of the HOTMES-based architecture has been studied for clinical purposes following three simple methodological stages described in this thesis. Data and management integration for context-aware and personalized monitoring services for patients with chronic conditions in the telemonitoring scenario are thus addressed. In particular, the extension of the HOTMES ontology defines a patient profile. These profiles in combination with individual rules provide clinical guidelines aiming to monitor and evaluate the evolution of the patient's health status evolution. This research implied a multi-disciplinary collaboration where clinicians had an essential role both in the ontology definition and in the validation of the proposed approach. Patient profiles were defined for 16 types of different diseases. Finally, two solutions were explored and compared in this thesis to address the remote technical management of all devices that comprise the telemonitoring scenario. The first solution was based on the HOTMES ontology-based architecture. The second solution was based on the most popular TCP/IP management architecture, SNMP (Simple Network Management Protocol). As a general conclusion, it has been demonstrated that the combination of ontologies, rules, WSs and the autonomic computing paradigm takes advantage of the main benefits that these technologies can offer in terms of knowledge representation, work flow organization, data transference, personalization of services and self-management capabilities. It has been proven that ontologies can be successfully used to provide clear descriptions of managed data (both clinical and technical) and ways of managing such information. This represents a further step towards the possibility of establishing more effective home-based telemonitoring systems and thus improving the remote care of patients with chronic diseases
    • 

    corecore