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Summary & Acknowledpiemefits

Summary

Network and Service Management (NSM) is a research discipline with significant research 

contributions the last 25 years. Despite the numerous standardised solutions that have been 

proposed for NSM, the quest for an “all encompassing technology” [1] still continues.

A new technology introduced lately to address NSM problems is Web Seiwices (WS). Despite the 

research effort put into WS and their potential for addressing NSM objectives, there are 

efficiency, interoperability, etc issues that need to be solved before using WS for NSM.

This thesis looks at two techniques to increase the efficiency of WS management applications so 

that the latter can be used for efficient monitoring and event reporting. The first is a query tool we 

built that can be used for efficient retrieval of management state data close to the devices where 

they are hosted. The second teclmique is policies used to delegate a number of tasks from a 

manager to an agent to make WS-based event reporting systems more efficient.

We tested the performance of these mechanisms by incorporating them in a custom monitoring 

and event reporting framework and supporting systems we have built, against other similar 

mechanisms (XPath) tliat have been proposed for the same tasks, as well as previous technologies 

such as SNMP. Through these tests we have shown that these mechanisms are capable of 

allowing us to use WS efficiently in various monitoring and event reporting scenarios.

Having shown the potential of our techniques we also present the design and implementation 

challenges for building a GUI tool to support and enhance the above systems with extra 

capabilities.

In summary, we expect that other problems WS face will be solved in the near- future, making WS 

a capable platform for it to be used for NSM.

Key words: Network and Ser-vice Management, Web Ser-vices, Simple Network Management 

Protocol, extensible Mai'kup language, XML Path language, Monitoring, Event Reporting, 

Policy, Efficient.
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Chapter 1. Introduction

Chapter 1

1 Introduction

1.1 Problem Definition and Motivation
Network, system and service management has grown into a significant research discipline during 

the last twenty yeais. Although research and standardisation took place starting from the mid 80’s, 

the quest for a general enough technology to be used for network, system and seiwice 

management still rages. Reseai'ch work in the past and present has tiied to cover aspects of 

network and service management such as the organisation of management applications, the 

modelling of the information reflecting the status of managed resources, and the logic and 

algorithms behind solving management problems. While though architectural and information 

modelling aspects of network and service management can be agreed upon leading to 

standardisation, the logic and algorithms behind management problem solutions is a subject that 

will still require research effort in the years to come. Tliese are true since new networking 

environments and management needs always emerge requiring new problem solving techniques. 

Despite the extensive research that has taken place in the last twenty five years and the numerous 

standardised solutions that have been devised and agreed, the quest for an “all encompassing 

technology” [1] still continues. This reflects reality since many technologies were abandoned and 

others found only specific niche markets.

Throughout the last twenty years a lot of management technologies made their appearance. 

Historically the first network management technologies were procedure based (i.e. the Distributed 

Computing and Management environments (DCE & DME)) of the Open Software Foundation 

group (OSF)).These technologies were later abandoned in favour of object oriented protocol 

based approaches such as the Open Systems Interconnection System Management (OSI-SM) [2] 

protocol and the Simple Network Management Protocol (SNMP) [4]. Combining the 

characteristics of procedural based approaches and object-oriented protocol based approaches, 

distributed object technologies such as the Common Object Request Broker Architecture 

(CORBA) [6] were proposed for use in network and service management. Another distiibuted 

management approach, the management by delegation move in the early 1990’s, followed a 

different path from other technologies. Instead of managing devices in a remote fashion, the main 

idea behind this approach is to send code to a managed device so that the latter can perform these 

tasks locally.

1
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Quite recently, extensible Markup Language (XML) based approaches and protocols, the most 

notable of which is Web Services (WS) for building distributed applications, have been proposed 

as a management technology that could also be used for Network and Service Management 

(NSM). Considering the common characteristics that WS share with distributed object 

technologies, it is no surprise that WS were suggested for NSM. Nevertheless before this is 

possible, WS need to solve several problems before they even become capable of being used for 

NSM purposes such as (a) potential problems for dealing with the strict performance requirements 

of NSM (b) interoperability problems when building WS management applications (c) modelling 

and standardization problems when translating information models and operations from other 

technologies to WS etc. In the next sections we present an overview of previous technologies and 

WS as well as our motivation for providing mechanisms that can increase the efficiency of WS 

management applications, which is one of the necessary steps towards making WS a technology 

capable to be used for NSM.

1.2 An Overview of Procedure and Object Oriented based Approaches 

for Network and Service Management

The first network management technologies introduced to solve the NSM problem were 

procedure based. Procedure based approaches allowed manipulation of managed resources in a 

soft remote manner. These approaches achieved the latter by creating non object oriented based 

procedural software specific to a particular application. In essence these technologies allowed 

remote manipulation of managed resources by emulating protocol functionality that was specific 

to a particular application. The latter means that each protocol function was supported by specific 

procedures. Examples of procedural based protocols were the Distributed Computing and 

Management environments (DCE & DME)) of the Open Software Foundation group (OSF). At 

the time though that these approaches were introduced, their working groups decided not to 

support object oriented based procedural software. As such despite the great amount of research 

work invested in these technologies, they never caught up and were abandoned because they 

coincided with the appearance of object-oriented distributed management approaches as well as 

generic protocol based manager-agent approaches.

The first object, oriented approach was the Open Systems Interconnection System Management 

(OSI-SM) [2] for managing OSI switches/routers and end systems. OSI-SM introduced the 

manager-agent model, in which managed device resources are represented by objects to which 

collective access is provided by an agent. OSI-SM boasted significant innovations for its time 

such as sophisticated selective information access capabilities through scoping/filtering, a 

powerful event model and a set of generic functions. On the other hand though, it was a fairly
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complicated technology, it was tied to the OSI protocol stack and it required a lot of know-how 

from a user’s perspective to use it for NSM. Thus OSI-SM found its niche market only in 

telecommunication environments.

An approach to map OSI-SM onto TCP/IP protocols, in order to use it for the management of IP- 

based networks led to the introduction of CMIS/P over TCP/IP approach [3]. Tliis approach never 

caught up because the Internet Management Community was already working on a simpler 

protocol, the Simple Network Management Protocol (SNMP) [4].

SNMP was envisioned as a management protocol solution with a simpler information model than 

OSI-SM which could be easily implemented and would incur smaller overhead on managed 

devices. SNMP uses a vaiiable-based information model with a small set of generic operations to 

manage network resources. Although the simplicity of SNMP played a major role to its wide 

adoption and deployment, its simplicity introduced several problems. When SNMP was 

inti'oduced, aspects such as efficient mechanisms to delete or create new data, bulk data retrieval, 

reliable event delivery and security were absent. These features were added in subsequent 

versions but tlie lack of other features especially in order to be able to perform changes on the 

network (i.e. transaction support for configuration management), led the management industry to 

use SNMP only as a monitoring tool [5]. Eventually the slow rate of development of SNMP 

contributed to IETF finally deciding not to evolve SNMP further in 2002 [5].

Trying to solve SNMP’s problem for configuration management, IETF developed the Common 

Open Policy Service for Policy Provisioning protocol (COPS-PR). COPS-PR is a policy based 

protocol for configuration management over TCP and supports atomic transaction support and 

security. Its information model is similar to SNMP’s Structure of Management Information (SMI) 

information model. Still COPS-PR is not backwards compatible with SNMP. The latter 

contributed a lot to the narrow adoption of COPS-PR. In addition lETF’s fixation in continuing to 

promote a mdimentary information model eventually led COPS-PR “despite the original hype not 

to receive any significant uptake in the real world” [1], especially because it suffers from the same 

problems as SNMP [5].

1.3 An Overview of the Common Object Request Broker Architecture

Even though remote procedure call approaches for management eventually lost to the object 

oriented protocol based approaches, they had still set the foundations of managing network 

devices remotely through standardised dependent Application Programming Interfaces (APIs). 

The latter aie important for the development of interoperable and portable applications. As such, 

remote procedure call approaches combined with principles from object-oriented approaches 

naturally evolved to distributed object based approaches. One such effort was led by the Object



Chapter L Introduction

Management Group (OMG) which produced the Common Object Request Broker Architecture 

(CORBA) [6]. In CORBA objects are accessed through interfaces which expose a number of 

methods to the clients that access them through stub objects. CORBA was initially conceived as 

an approach to support general purpose distributed applications. Its potential though made the 

management community to also consider it for network management by modelling managed 

objects as CORBA interfaces. Substantial research effort was invested into CORBA for remote 

management. This effort equipped CORBA with facilities for network monitoring and event 

reporting as weU as a lightweight Portable Object Adapter (POA) to support large object 

populations representing different aspects of a managed device. Still CORBA was never used in 

large scale for network management because it did not support bulk data retrieval facilities for 

monitoring and because it had for that time a significant memory and latency footprint on 

managed devices. In the end, other technologies such as Java RMI and mainly Web Services 

supported at large by the industry, led CORBA into finding its niche market only in service 

management supported only by a number of telecommunication vendors.

1.4 An Overview of the Management by Delegation Move

A different approach from all the previous ones was the management by delegation move in the 

early 1990’s. The main idea behind this approach is that instead of performing management tasks 

in a remote fashion, code is sent to a managed device so that it can perform these tasks locally. 

This idea found ground for network management when platform independent languages such as 

Tel and Java appeared, allowing the agents/servers managing the underlying resources to host 

new code more easily. As soon as these languages appeared, two trends for applying management 

by delegation emerged. The first are manager-agent approaches such as the Script [7], and the 

Expression MIB [8]. In these MIBs the lifecycle of a script or program is controlled through 

specific management objects handled by an agent. The second trend involves mobile objects 

migration and execution close to the managed devices to which these objects need access to. 

Mobile agent platforms were considered for network management using either a constrained or 

full mobility approach. In constrained mobility approaches the agent is told before hand which 

locations to visit and in the full mobility case the mobile agent makes autonomous decisions as to 

where it should move depending on the information it receives from its surrounding environment. 

Despite the fact that a lot of research work has been invested in the management by delegation 

approaches, the fact that there were never any significant, real world implementations, the 

increased development costs (management of management problem) and the inherent insecure 

nature of mobile code or scripts in general, has resulted in these approaches receiving very little 

attention by the industry.
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1.5 A New Player in Network and Service Management

On the contrary, XML based approaches for network and service management have been on the 

rise in the last few yeais. The ability of XML to define arbiti'aiy tags to describe the context of 

information through Document Type Definitions (DTDs) [9] and XML Schemas [10] make it an 

excellent mechanism to define management protocols, interface specifications etc. Given tiiat the 

industry supports XML in many of its applications, using XML or XML-based technologies for 

NSM becomes considerably attractive. The latter, as well as the promise of faster product 

development, interoperability and application integration, has led to the adoption and 

implementation of many XML based technologies and standaids to address the problems of Web 

based management. One prominent technology in this area is Web Seiwices. WS is a technology 

that allows creating web interfaces that can be accessed over the Internet. Given the similarity to 

distiibuted object technologies, there has been a lot of reseaich targeting their use for network, 

system and service management.

Over the past few years, XML and WS have been used by vaiious research groups to define many 

Web-based specifications for network management. The work of some groups was integrated 

with the work of other groups [38], [39], [143], [144]. As such currently there are two main 

groups working on WS management specifications. These are the Distributed Management Task 

Force’s (DMTF) Web Based Enterprise Management (WBEM) collection of specifications [11], 

[12] and the OASIS (IBM, HP) Web Services Distributed Management (WSDM) group of 

specifications [13], [14]. The first group has designed specifications such as the Web Based 

Enterprise Management Framework encompassing a set of management technologies developed 

in order to unify the management of distiibuted computing environments and devices. A key 

aspect of WBEM is tlie Common Information Model (CIM) [15]. The latter provides a set of 

generic classes from which application-specific information models are derived in order to expose 

the state of managed devices. An extension to CIM is the WS-CIM mapping for WS-based 

management. In addition to WS-CIM, DMTF has also devised tlie Web Services for Management 

(WS-Management) specification [12]. This framework specifies how to identify a manageable 

resource (represented by WS-CIM objects) and how to initiate communication with it. On the 

other hand, the OASIS group has issued two specification documents (a) the Management Using 

Web Seiwices (MUWS) specification [13], [14] (b) the Management Of Web Services [24] 

specification (MOWS). The former specification considers how to manage resources with the use 

of WS and the latter how to manage WS endpoints through WS protocols.

Another XML based approach for configuration management trying to address the relevant 

shortcomings of SNMP, i.e. transaction support and security, is the Network Configuration 

protocol (NetConf) [25]. NetConf uses a set of predefined operations (edit-config, copy-config
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etc) to change some of the configuration parameters of a managed device by uploading to the 

agent of the managed device a new configuration stored in an XML document. This document is 

parsed by the agent who then enforces if possible the new configuration values. To enable 

transaction support a configuration may be retrieved, deleted, copied, enabled, locked revoked 

etc. NetConf supports currently three transport mappings, NetConf over Secure Shell (SSH) [27], 

NetConf over the Blocks Extensible Exchange Protocol (BEEP) [28] and NetConf over SOAP 

[26]. All transport mappings support security features to ensure authentication, data integrity and 

confidentiality. Work on NetConf itself has been finalised although work on associated data 

models has just started.

From all the above it is evident that a lot of work and research effort has been invested into 

evolving new XML and WS based standards for network, service and system management. 

Despite the promising potential of using WS for NSM, WS need to solve several problems before 

they even become capable of being usable for NSM purposes such as (a) potential problems for 

dealing with the strict performance requirements of NSM (b) interoperability problems when 

building WS management applications (c) modelling and standardization problems when 

translating information models and operations from other technologies to WS etc. One of the 

main shortcomings of WS and XML is the relatively large overhead incurred by the XML tags 

used to describe the context of management information. This means that WS inherently represent 

a technology with large application footprint. Network management operations though require 

keeping resource usage, latency and traffic overhead low. This way a management technology 

can remain scalable and unobtrusive to a network's smooth operation. Creating unobtrusive 

management technologies is easier today that the technical characteristics of managed devices and 

networks have increased substantially during the last decade in terms of the speed, memory and 

bandwidth that the latter can handle. But still real-time IP traffic analysis on high speed links is 

challenging for traditional solutions and especially for WS, mainly due to the little time available 

to process a packet (in the order of nanoseconds for 10 Gbps links). As such if WS are going to be 

used for NSM, one of the many necessary steps towards that direction is to find mechanisms in 

order to alleviate the initial overhead imposed by XML tags which results in an increasing 

memory, latency and traffic footprint.

A promising characteristic of WS and WS standards for management in general though is that 

they are designed to be loosely coupled. This is an excellent characteristic because it provides a 

lot of ground for many optimisations. As such, it is possible to design and use mechanisms to 

solve several of the known problems WS face when they are used for NSM. It is the investigation 

of features and mechanisms that are capable of minimising the WS technology footprint (one of 

the problems of WS-based management) for management that has motivated the research work 

presented in this thesis. This way we are trying to provide some solutions to the efficiency
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problem of WS-based management so that it might become possible to use WS effectively and 

efficiently for addressing critical management tasks.

1.6 PhD Objectives
This thesis looks into mechanisms that minimise the footprint of WS-based management 

applications. This is one of the many problems that need to be solved before using WS for NSM. 

By providing solutions to this problem, WS could be potentially used in a scalable manner to 

handle management tasks such as monitoring and event reporting. The goal of this research is to 

invent new or use pre-existing Web Services mechanisms in order to improve the performance of 

WS for network management. This way we will also be able to assess and to test the applicability 

and scalability of these mechanisms in providing solutions that could minimise the large 

application footprint problem of WS management applications for monitoring and event 

reporting. The key objectives are:

♦ Perform an examination of what has been done so far in the field of XML and WS based 

management and in pai ticular in tlie field of monitoring and event reporting.

♦ Investigate approaches and mechanisms in order to increase the performance of WS-based 

management applications for monitoring and event reporting. More specifically, examine 

mechanisms in order to perform load distribution and task delegation of the monitoring and 

event reporting operations in order to increase performance of WS management applications.

• As part of tins investigation, we examine mechanisms that can be used to perform 

selective or bulk information retrieval to facilitate low cost and efficient monitoring. 

We show that a WS based query tool used for information processing and filtering of

management state data is such a potential mechanism. As such we investigate the

characteristics of such a query tool so the latter could be used efficiently in

addressing monitoring and event reporting requirements.

• As pait of tliis investigation we will also examine tlie use of policies for load and task 

distribution in order to make the event reporting process for WS more efficient.

♦ Build a scalable optimised and efficient monitoring system based on our query tool.

♦ Build a scalable, flexible, dynamic and efficient event reporting system based on policies.

♦ Build a distributed architecture for monitoring and event reporting using the above systems 

and mechanisms. This aichitecture should support

■ The operations and messages of a custom framework for potentially better 

performance within a network domain.

■ The operations, messages and concepts of a standard management framework for 

interoperability at the edges of a domain.

♦ Evaluate the performance and scalability of these systems and our framework.
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♦ Complement our WS-framework by building a Graphical User Interface (GUI) tool that will 

use and enhance the above systems and mechanisms with extra capabilities. This system will 

be a high level manager and will be the heart of our WS-framework.

1.7 Achievements

In this thesis, the focus is on introducing mechanisms that will allow WS to be used efficiently for 

monitoring and event reporting of network devices. As part of this, we first introduce a custom 

query tool that can be used for monitoring and event reporting and has the following 

characteristics:

♦ Exploits the relationships between state data for effective monitoring.

♦ Minimises its footprint.

♦ Offers bulk and filtering retrieval capabilities.

♦ Supports task and load distribution as part of a distributed monitoring 

architecture.

♦ Supports its operation within custom and standardized frameworks.

Compared to other tools such as XPath, this tool will be shown to be more scalable for several 

monitoring and event reporting management tasks, as well as more flexible in exploiting any 

types of relationships between state data and not only tree relationships (i.e. XPath). Using this 

query tool as part of a custom framework and as part of a monitoring and event reporting system 

we will show that in various monitoring and event reporting scenarios, WS efficiency increases 

and becomes comparable and sometimes even better than older technologies such as SNMP.

As part of increasing the performance of WS for NSM, we also introduce and use policies as the 

means to manage the event reporting process and build WS based event reporting systems that

♦ Are more efficient in several scenarios than standard WS-based systems and 

SNMP traps.

♦ Provide useful notifications helping a manager in pinpointing network problems 

which was a common problem for other technologies such as SNMP.

♦ Have the potential of minimizing a manager’s supervision.

In addition to the previous we also introduce a Graphical User Interface tool to support, enhance 

and complement the functionality of the monitoring and event reporting systems mentioned 

above.
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1.8 Thesis Structure
The rest of this thesis is organised as follows. In chapter two we perform a literature review on 

previous key management technologies and discuss thek advantages and disadvantages. In this 

chapter we also give an overview of WS and we discuss and analyse how they can be used for 

NSM. Based on this analysis, we introduce the research that has been performed so far in WS 

based management and especially in monitoring and event reporting. In this chapter we also 

discuss briefly what needs to be performed in order to extend or improve the current research 

work on monitoring and event reporting. In chapter tliree we introduce our work on a query tool 

and its design characteristics so that the latter can be used as an efficient mechanism for 

monitoring and event reporting. Also in this chapter we also introduce an architecture, a custom 

framework and a monitoring system that supports distributed monitoring using the query tool we 

have designed and implemented. In chapter four we introduce a set of scenarios based on which 

we will evaluate the capabilities of our query tool against XPath (XML Path language)-a general 

XML based queiy tool. Based on these scenarios and after showing that our query tool is more 

scalable and allows addressing several measurement scenarios, we also evaluate the performance 

of our custom monitoring framework that uses our query tool against a standard protocol such as 

SNMP. This way we show that our query tool, framework and architecture can support efficient 

and scalable distributed monitoring. In chapter five we introduce our work on managing the event 

reporting process with policies in order to increase the performance of WS-based event reporting 

applications. As part of this work we introduce our policy specific grammar for managing the 

event process and an event reporting system we have designed and implemented that uses policies 

and our queiy tool. As part of chapter five we demonstrate the benefits of the performance of our 

event reporting system in trying to minimise the footprint of WS based event reporting 

applications. In chapter six we introduce our work on the design and implementation decisions in 

building a graphical based management tool to support and enhance the functionality of our 

monitoring and event reporting systems. In chapter seven we draw conclusions about our 

achievements and propose future directions for our work.
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Chapter 2

2 Literature Review and Related Work

2.1 Introduction to Network Management
Research work in the past and present has tried to cover aspects of network and service 

management such as the architecture of management applications, the modelling of the 

information reflecting the status of managed resources, and the logic and algorithms behind 

solving management problems. While though architectural and information modelling aspects of 

network and service management can be agreed upon leading to standardisation, the logic and 

algorithms behind management problem solutions is a subject that will still require research effort 

in the next years to come. This is true since new networking environments and management needs 

always emerge requiring new problem solving techniques. Despite the extensive research that has 

taken place in the last twenty five years and the numerous standardised solutions that have been 

devised and agreed, the quest for an “all encompassing technology” [Ij still continues. This 

reflects reality since many technologies were abandoned and others found only specific niche 

markets.

Putting it plainly. Network and Service Management (NSM) is a scientific discipline that consists 

of many conceptual areas and aspects [29]. As such it is a discipline that involves a very complex 

subject with interchangeably related issues and facets and with requirements that are often 

conflicting. The main functional areas of NSM processes according to the International 

Organisation for Standardisation (ISO) based on [30] and [31] are five: (a) performance 

management (b) configuration management (c) accounting management (d) fault management 

and (e) security management. These areas involve:

• Performance Management (PM): PM involves taking measurements for various aspects 

of a network such as network throughput, user response times and line utilisation. These 

measurements help in maintaining internetworking performance at an acceptable or 

desirable level. To maintain performance at an acceptable level PM involves aspects such 

as data gathering, data analysis, defining threshold values that trigger events worthy of 

attention, determining performance metrics, running simulations for network planning 

and partitioning etc.

10
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• Configuration Management (CM): CM usually involves the definition, collection, 

monitoring, and alteration of configuration data so that the effects on network operation 

and on various versions of hardware and softwaie elements can be tracked and managed,

• Accounting Management (AM): AM is concerned with measuring network utilisation 

paiameters so that individual network usage of the network can be regulated 

appropriately. To measure the utilisation of all important network resources a 

combination of usage patterns and usage quotas aie used and maintained. These patterns 

yield billing information as well as information used to assess continual fair and optimal 

resource utilisation. This way it is possible to minimise network problems and maximise 

fairness of network access across all users.

• Fault Management (FM): FM entails detecting, logging and notifying users of potential 

issues that will cause network problems. FM also entails fixing automatically these 

network problems in order to keep a network running effectively. To do the latter FM 

tries to reduce network downtime or unacceptable network degradation by determining 

fault symptoms and isolating the problem at hand. Having isolated the problem, it is 

possible to fix it and evaluate the effectiveness of the solution given.

• Security Management (SM): SM necessitates controlling access to network resources 

according to local guidelines so that the network cannot be sabotaged (intentionally or 

unintentionally). In addition SM involves protecting sensitive information from 

unautliorised access. To do the previous SM entails identification of sensitive network 

resources, configuration of mappings between sensitive network resources and user sets, 

monitoring access points to sensitive network resources and logging inappropriate access 

to resources.

From all the above it becomes clear that NSM comprises many different conceptual areas and 

aspects. WWle it is relatively easy to identify these aieas, it is not a simple task to provide simple 

solutions for each one. This occurs first because new requirements always arise so a solution 

given today to these problems may not be appropriate for tomorrow. At tlie same time all these 

NSM conceptual areas have strict objectives to fulfil. Thus solutions to these NSM objectives can 

have conflicting requirements. The next section presents some of the most important NSM 

objectives. In the next sections we will also analyze potential problems for each technology to 

meet the objectives of NSM for each functional aiea. Currently we just provide in Table 2-1 a 

brief overview of the functional areas that each technology has tackled and problems that aiise.

11
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Technology

Functional

Area

OSI-SM SNMP CORBA WS Management 

by delegation

PM Yes /  telecoms 

specific

Yes but limited and 

efficiency problems

Yes /  limited/ 

efficiency 

problems

Yes /  efficiency 

problems

Yes but increased 

development cost

CM Yes/ complex / Yes/ difficult/ 

problematic

Yes Yes / currently under 

standardization

Not known

AM Yes /  telecoms 

specific

Not known Yes vendor 

specific

Not known Not known

FM Yes/ complex/ 

telecoms specific

Limited / sometimes 

unreliable

Yes Yes/ convergence 

for interoperability 

pending

Yes /  increased 

development cost

SM Yes / telecoms 

specific

Limited /  added 

SSL features /  

efficiency issues

Yes/added 

later

Yes /  some issues 

arise

Inherent security 

problems

Table 2-1 Functional area aspects that each technology has tackled

2.1.1 Network Management Objectives
NSM comprises many facets and is applied through the use of many different technologies, 

approaches, algorithms, architectures, information models etc. Since many of these facets may 

have conflicting requirements, solutions are given on a trade off basis. The most important 

requirements and objectives of NSM, as well as potential problems that can arise in the 

enforcement of these objectives are given below.

♦ All technologies, software, information models, algorithms used for NSM should 

employ management solutions that are unobtrusive on the smooth operation of a 

network. The latter can be interpreted to employing management solutions for NSM 

that aie scalable. This in turn is translated into having management solutions that 

incur a minimum overhead in terms of latency, traffic, memory and other network 

resources. The management problem though is sometimes very complex and may 

require complex solutions. Complex solutions to management problems though, can 

be more obtrusive to the network operation. On the other hand providing management 

solutions having in mind the simplification of the management problem at hand can 

lead to oversimplification. The latter may result in having difficulties when solving 

more complex problems such as configuration management (i.e. the SNMP simplicity 

makes it difficult to use it for configuration management). As such oversimplification 

can also increase the complexity of solving a management problem and thus it may 

also affect scalability.

♦ A management solution to management problems should be driven by the principles 

of low complexity, minimal development cost and software application reuse for the

12
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reasons explained below. Following tliese principles can help maintain the 

management infrastructure simpler and promotes extensibility and adaptability. The 

latter is extremely important but also difficult to achieve as it is not an easy task to 

visualise all future management needs today. Nevertheless an adaptable and 

extensible management solution can cope with problems and new network 

management needs that were not foreseen at the time of its deployment.

Interoperability is a necessity for any management solution. During the last 25 years a 

lot of management standards, architectures, protocols, algorithms, information 

models, software etc have been designed, used and applied to a variety of different 

networks. All these technologies should be able to co-exist. As such interoperability 

allows a management solution to be backwaids compatible with other technologies 

and promotes technology reuse and cooperation.

Security is a feature that should go hand in hand with all management solutions. As 

such security features should be developed as a core trait of any management 

framework or standard to prevent unautliorised access to management data. Such 

security features guarantee data integrity, confidentiality and the network’s good 

operation. Applying these features in distributed environments is a difficult challenge 

both in terms of guarantying that these features can not be easily bypassed but also in 

terms of scalability (i.e. use of SSH in SNMP).

A management framework should allow intermixing and atomicity of operations. 

Many tasks in NSM are quite complex and thus require a number of consecutive 

operations to be performed (i.e. configuration management). Thus a management 

framework should permit the intermixing of several operations together to perform a 

complex task. Sometimes though when intermixing operations the enforcement of 

one operation depends on the results and enforcement of previous operations. 

Therefore a framework needs to support atomic commit of operations. This way if an 

operation is not enforced, operations depending on its enforcement will not be 

enforced either. If the previous situation occurs, a management system should be able 

to return to its previous state. This though is not an easy task and it is not supported 

by some technologies as for example SNMP. In SNMP the simplicity of the 

information model hides the relationships between the data representing the state of a 

device. At the same time performing actions with SNMP is carried out by setting 

vaiiable based data. Combining all this resulted in having cases where a single 

operation on data can turn into a sequence of SNMP interactions. This makes it 

difficult to maintain state until an operation is complete, or until failure has been

13



Chapter 2, Literature Review and Related Work

determined. Even if failure is determined, rolling the device back into a consistent 

state is difficult.

♦ A management solution should allow easy and effective access to management data 

for monitoring, event reporting and configuration (reading and altering management 

data). NSM to a great extent involves monitoring the network status in order to 

guarantee a network’s good operation. The latter is required in order to find faults in 

the operation of the network to overcome these faults by altering its configuration. To 

do all these operations, tools are required to process, access and alter effectively the 

state of managed devices. The construction of these tools can be facilitated if a 

management framework is based on an information model to represent state data that 

promotes usability and expressiveness in reading or altering these data. A very simple 

information model though hides the relationships between management data that 

represent the state of a device (i.e. SNMP). As such, tools that uncover these 

relationships and offer facilities for processing and accessing data in a bulk or 

selective manner are often quite complex. Complexity increases the footprint of a 

management application and inhibits scalability. In addition, complexity also limits 

the use of management tools to specialists.

These, as well as some other features of secondary importance but none the less important, need 

to be part of any management framework. In the past a lot technologies and standards were 

introduced as part of an effort to offer an efficient solution for network and service management. 

Some of these solutions did not manage to adapt to the new management needs in the passing of 

time and were abandoned. Others that were more successful managed to find their own niche 

markets. This has happened because all frameworks and management technologies have their 

advantages and disadvantages towards addressing management problems and objectives. The next 

sections investigate the history of some of these technologies, according to their characteristics 

and looks into some of the key technologies in NSM and their problems.

2.2 History and Analysis of Key Network Management Technologies
A lot of research has been invested in the last twenty five years in Network, System and service 

Management. Research work in the past and present has tried to tackle aspects of NSM covering 

all its main functional areas as these were presented and analysed in the previous section. Despite 

the extensive research that has taken place, a series of problems with the use of management 

technologies still arise. In the next sections we will investigate the history of several NSM 

approaches. In the next sections we also examine some of the main technologies that were, are 

being used and will be used in the near future. As part of this investigation we also explore 

potential problems that arise with the use of each technology.

1 4
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2.2.1 OSI-SM

The first significant object oriented approach for network management was the Open Systems 

Interconnection System Management (OSI-SM) [2] for managing OSI switches/routers and end 

systems. To solve management problems, OSI-SM inti'oduced the manager-agent model (Figure 

2-1). In this model, the resources of managed devices are represented by objects at different levels 

of abstiaction [36] and aie accessed by a manager. Collective access to these objects is provided 

to the manager by an agent. The agent offers access to collections of managed objects classes 

(these represent the underlying resource) called “clusters” across a management interface. 

Interfaces aie defined in a formal way based on a standaid specification and using the managed 

object types supported by this specification to represent the underlying resource.

The information model of OSI-SM mandates a specific way to represent the underlying resource. 

The information model of OSI-SM is written using the OSI Abstract Syntax Notation 1 (ASN.l) 

[37] language. The latter is a data stiucturing language that supports simple and constructed types 

for expressing the properties of an underlying resource. The Management Information Model of 

OSI-SM (MIM) is presented in [43], [44]. A fundamental ASN.l type in this information model is 

the Object Identifier (OID) [32]. This represents a sequence of non-negative integers on a global 

registiation tree to structure managed objects of devices hieraichically. OIDs are unique and are 

registered by standards bodies (i.e. ISO). The collective view of this tree of object classes 

through the management interface is called a Management Information Base (MIB). An OSI 

Management Information Base (MIB) defines a set of Managed Object Classes (MOCs) and a 

schema that defines the possible containment relationsliips between instances of these classes [1] 

(Figure 2-2). The OSI-SM information modelling principles for MOCs aie labelled to as the 

Guidelines for the Definition of Managed Objects (GDMO) and are specified in [45].

To have access to managed objects in OSI-SM, manager applications are used to access the 

interfaces tlirough which agents expose these objects. Agents aie typically implemented in 

software that serves management requests, and dispatch events through the management protocol. 

Through the manager-agent model, OSI-SM standardised only how information is modelled, 

leaving aspects of the internal structure of managed systems undefined. As such highly optimised 

implementations could be devised since internal aspects and APIs need not be standardised [36]. 

As a result of all this, OSI-SM can be considered mainly as a communications framework and 

protocol through which access to managed objects is achieved [1].
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Figure 2-1: The Manager-Agent Model [36] 
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Figure 2-2: OSI Management Information MIB [36]

As mentioned previously OSI-SM left internal implementation aspects undefined. As such agent 

software could use implementation-specific mechanisms to allow access to managed objects. As a 

result many implementation specific mechanisms were defined. Part of these implementation- 

specific mechanisms, was the ability of the OSI-SM agent software to evaluate event notifications 

at the source of their production based on predefined criteria. As such, the agent was able to emit 

events only to entities that were interested in receiving these events. The event software was 

sophisticated for its time and allowed managers to distinguish between the events they wanted to 

receive, with filtering on the event type, time, object name of the object that emitted the event, 

and the actual notification information. Filtering was not only used for event reporting but was 

also used for monitoring so as to retrieve only the specific management information representing 

the state of a device that the manager was interested in receiving. OSI-SM also supported
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mechanisms for bulk retrieval of management state data through an operation called scoping. 

Based on all the previous it is evident that OSI-SM boasted significant innovations for its time. 

One of these innovations was also OSI-SM’s support to allow intermixing and atomicity of 

operations. The latter permitted concerted configuration changes to take place through a series of 

Set operations allowing the agents of OSI-SM to keep track of state. As a result of all these 

sophisticated mechanisms, OSI-SM was adopted as the key technology for the 

Telecommunications Management Network (TMN) [35], and is accepted as being one the most 

sophisticated management technologies introduced so far, supporting features that should be 

present in any management technology.

On the other hand tliough, OSI-SM is a complicated technology with many implementation 

options and sophisticated features. As such it is expensive to deploy and implement, it is 

relatively difficult to use and requires a lot of know-how. All the previous limit its use only to 

specialists and experts. At the same time OSI-SM was tied to the OSI protocol stack, and thus 

found its niche market only in telecommunication environments. An approach to map OSI-SM 

onto TCP/IP protocols in order to use it for the management of IP-based devices led to the 

introduction of CMIP over TCP/IP approach [3] (CMOT). At the time though of the introduction 

of this protocol the Internet Management Community was working on SNMP for Network 

Management and as such CMOT never caught up. As a result despite the fact that a lot of 

research and standardisation has been invested into OSI-SM, resulting in characteristics that any 

management technology should possess, it never received large scale deployment. It should 

though be the base for influencing any future management technology.

2.2.2 SNMP

While OSI-SM found its niche maiket in the telecommunications area, the Internet Management 

Community was already working on a simpler protocol, the Simple Network Management 

Protocol (SNMP) [4]. SNMP is also based on the manager-agent model for accessing managed 

objects where a single interface to an agent is used to access a cluster of managed objects 

representing the underlying resources.

SNMP was envisioned as a simpler protocol that would have a simpler information model [32], it 

would be easily implemented, and at the same time would impose a smaller overhead to managed 

devices. As a result, the information model that SNMP uses is also based on ASN.l but a sub-set 

of it. As such SNMP has limited support on the use of constructed types (only simple two 

dimensional tables are allowed). As a result of this, management data in SNMP are variable-based 

(object-based but no inheritance and classes since they are considered unnecessary 

complications). Again, as for OSI-SM, a fundamental ASN.l [32] type in SNMP for representing
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variable-based data is the Object Identifier (OID). The latter represents a sequence of non

negative integers on a global registration tree used in order to structure managed device data 

hierarchically. The collective view of this tree of data through a management interface is also 

called a Management Information Base (MIB) (Figure 2-3). The SNMP information modelling 

principles for defining MIBs are labelled as the Structure of Management Information (SMI) and 

are specified in [RFCl 155] for SNMPvl [41] and in [RFC1902] for SNMPv2 [42].

SNMP AHB 

group
/ 'v

/ o \

l i ;
table eutiles

O SNMP object
•  SNMP tabular object

— ► object ordering

Figure 2-3 SNMP Management Information Base [36]

Based on the manager-agent model and simplicity, SNMP was designed to support a small set of 

operations so as it can be easily implemented. As a result of this as well as due to SNMP’s

operation over the Internet Protocol (IP), whose deployment was followed by its major adoption,

contributed to SNMP’s wide deployment.

The first version of SNMP (v.l) though, was missing a few very important aspects especially 

when compared to OSI-SM. Initially SNMP did not support (a) proper emulation of creation and 

deletion of data through the set operation (b) bulk data retrieval (c) reliable event delivery (d) 

security features. These were fixed in later versions (a) by adding a new operation (GetBulk) to 

support bulk data retrieval (b) by using TCP to support efficient and reliable management data 

delivery and (c) by introducing new security features and secure transport protocols such as SSH. 

Despite fixing these shortcomings in the sub-sequent versions, SNMP still faced many problems. 

According to [5] these are the main problems of SNMP:

♦ Scaling Problems. SNMP has very adequate performance when retrieving a small 

amount of data from many devices but is rather slow when retrieving large amounts 

of data from few devices. The latter is attributed to the lack of filtering and 

aggregation capabilities in order to reduce the management data that need to be 

collected. As a result the lack of these capabilities introduces scaling problems.
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♦ Limited transaction support (atomicity). Because SNMP is vaiiable-based and actions 

are performed by changing the state of a vaiiable, a logical operation on a variable 

can turn into a sequence of SNMP interactions. The latter makes it difficult to 

maintain tlie state of an operation and roll back to a consistent state in case of failure.

♦ No easy support for retrieval or playback o f configurations

♦ Lack o f high-level description o f procedures. It is often not easy from reading the 

MIB modules to ascertain how certain high-level tasks can be accomplished. In 

addition there is no description on how the various objects of the information model 

can be used to achieve certain management functions. As a result development cost 

increases.

♦ Increased development cost. MIB modules and Üieir implementations are not 

available in a timely manner (sometimes MIB modules lag years). This happens 

because of the complex table indexing schemes and table interrelationships. The lack 

of structuied types makes MIB modules much more complex to design and thus 

implement.

♦ Few high level programming/scripting interfaces. Operators view most of SNMP 

high level interfaces as too low-level and thus time consuming, inconvenient and 

impractical.

♦ Poor performance on query operations that were not anticipated during the MIB 

design. A typical example is when performing a more complex query. For example 

in order to determine which outgoing interface is being used for a specific destination 

address, tlie collection of more data than required has to be collected so that the 

manager can process them. This is tlie case because such queries were not anticipated 

when designing the already complex management MIBs.

♦ The SMI language is quite complex and not veiy practical.

♦ SNMP traps do not usually contain much information to describe a problem. As a 

result a SNMP trap usually is followed by information retrieval operations to figure 

the meaning of the trap or determine the cause of an event. The latter introduces more 

latency and traffic overhead and hampers scalability of SNMP operations.

All the previous suggest that the SNMP protocol was simplified in terms of the number of 

protocol operations and resource requirements on managed devices. It was not though simplified 

in terms of usability. This led to problems such as the lack of transaction support which is 

essential for configuration management. As a result, SNMP is being used mostly for monitoring 

and not for configuration management. This is tiue altliough SNMP supports configuration
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management of devices through the set operation and a set of guidelines determining best 

practices for configuration management have been specified in [138]. Even when some features 

were added in SNMP for configuration management, the fact that some of these features were 

added very late, contributed to IETF finally deciding not to evolve SNMP further in 2002 [5].

2.2.3 COPS-PR

Trying to solve SNMP’s problem for configuration management, IETF suggested the Common 

Open Policy Service for Provisioning protocol (COPS-PR). COPS-PR was designed to support 

configuration management based on the manager-agent model with some very nice features such 

as:

♦ Support for high-level transactions on single devices such as deleting or replacing a 

configuration.

♦ Well defined atomicity of transactions. As a result if a failure occurs the manager is 

notified of it and the device is rolled back to the state of the last known “good” 

configuration.

♦ Guarantees that only a single manager can handle a specific configuration at a given 

point in time. This way the danger of corrupting a configuration from simultaneous 

access to it from many managers is minimised. To disallow corrupting a configuration, 

COPS-PR supports execution of configuration transactions in a specific order and 

permits only a single manager to have control, at any point in time, for a given subject 

category of a device.

♦ Synchronisation at all times between the manager and the device. This happens even if a 

communication failure occurs.

♦ COPS-PR is extensible with a use of features called capabilities. Manager applications 

are forced to adapt and use when communicating with a device only the capabilities that 

the given device supports.

The information model of COPS-PR is very similar to SNMP’s (Policy Information Base (PIB)) 

Structure of Management Information (SMI) although is not backwards compatible with the 

latter. This hampered the wide adoption of COPS-PR. In addition lETF’s fixation to continue 

promoting a rudimentary information model resulted in COPS-PR suffering from similar 

problems like SNMP. Some of these problems are the following:

♦ Very few standardised PIB modules due to increased development time. This happens 

because of the complex table indexing schemes and table interrelationships and also 

because of the lack of structured types which makes design and implementation more 

complex.
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♦ No easy retrieval and playback of configurations for reasons similar to SNMP.

♦ The COPS-PR view of a managed device is data-centric. Thus mapping a task 

oriented high level view into a series of operations on management data and vice 

versa is very complex and difficult.

The above as well as other similar to SNMP related problems, combined with the fact that COPS- 

PR is not compatible with SNMP, coiinibuted to the former not receiving any significant uptake 

in the real world” [1]. At the same time an XML-based approach is cuiTently being standaidised 

for configuration management, leading the internet community and the industry (NetConf) to 

abandon COPS-PR for configuration management of network devices.

2.2.4 CORBA

Remote procedure call approaches for management eventually lost to the object oriented protocol 

based approaches such as SNMP and OSI-SM. This did not happen though, before they had set 

the foundations of managing network devices remotely through a standardised Application 

Programming Interface (API). The latter allows programmers to develop distributed applications 

and promotes the construction of interoperable applications. As such remote procedure call 

approaches combined witli principles from object oriented based approaches naturally evolved 

into distributed object based schemes.

One such effort was led by the Object Management Group (OMG) which produced the Common 

Object Request Broker Architecture (CORBA) [6]. In CORBA objects are accessed through 

interfaces which expose a number of methods to the clients that access them through stub objects. 

Unlike the manager-agent model, in CORBA every object has its own interface that is accessed 

separately by an application in client role. As such tlie fundamental building block of the CORBA 

information model is a programming language object-class (Figure 2-4). Defining the interfaces 

for these objects is performed using the Interface Definition Language (IDL).

CORBA was initially conceived as a method to access general purpose distributed apphcations. 

Its potential though made the management community to also consider it for network 

management by modelling managed object resource properties as CORBA interfaces. As such, 

substantial reseaich effort extended CORBA with facilities for network monitoring and event 

reporting of managed devices. In addition, CORBA was equipped with a lightweight Portable 

Object Adapter (POA) to support large objects populations representing different aspects of a 

managed device. The latter is a mechanism tliat helps connect a request to access an object by 

linking the object reference used in the request with the proper code.
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Figure 2-4 CORBA Information Model building blocks

CORBA is based on the Open Distributed Processing (ODP) [46] framework for specifying and 

building distributed systems. ODP was conceived in order to solve the problem of inter

communication and inter-connection of heterogeneous systems. The goal of ODP was to promote 

software distribution, interoperability and portability. Using the ODP model of client-server 

interaction, where distributed application objects interact with other objects by accessing each 

other’s interfaces, CORBA achieved access, location and replication transparency by hiding the 

complexities of the underlying platform (Object Request Broker (ORB)). The previous are 

achieved by providing:

♦ Well known server objects called name servers that provide interface references 

(Interoperable Object References (lORs)) to client objects. Name servers and lORs 

can be used by an object for the latter to acquire access to other objects.

♦ Hiding the underlying transport protocol for interoperability purposes inside the 

supporting software platform.

The ODP model is depicted in Figure 2-5. CORBA objects communicate with each other by the 

use of a Remote Procedure Call protocol (RPC) called the General Inter-OperabiUty Protocol 

(GIOP). The most well known mapping of this protocol is over TCP/IP and is known as the 

Internet lOP (HOP). This protocol provides reliable transport but at the same time hides the 

connection management processes from the ORB. Access to objects in Figure 2-5 can be static, 

through pre compiled stubs, or dynamic, through the Dynamic Invocation Interface (DII). Events 

as shown in Figure 2-5 are disseminated through special servers called event notification servers 

or from event brokers [47], [48]. Event Brokers allow clients to specify the type of events they 

want to receive by filtering the event content.
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Figure 2-5 The Distributed Object Model [1]

Though CORBA was initially seen as a unifying management technology, mainly because of its 

characteristics, it was never used in large scale for network management despite the fact it even 

supported atomicity of operations for configuration management. This is attributed to the 

following shortcomings.

♦ Accessing management data values and attributes through a RPC can be expensive. 

CORBA can become a very heavy technology even though it has a relatively 

lightweight POA to support large object populations. Translating for example the 

information models of SNMP and OSI-SM to CORBA would by default require 

exposing (a) one method per attribute to have access to the latter and (b) model 

dynamic entities such as TCP connections with separate objects. As a result a large 

number of objects each exposing a large number of methods (heavy-weight in terms 

of footprint objects) through their interfaces would have to be deployed. Thus a core 

network device such as a router may end up containing thousand of these objects 

which is not scalable. The solution commonly used according to the Joint Inter 

Domain Management taskforce (JIDM) [49] is to perform semantic and not syntactic 

translation of an information model. As a result commonly used attributes are 

accessed together through a single method. In addition dynamic entities are not 

modelled with a single object for each one but are returned through a single method 

as a “list of records” (this list is manipulated by the use of other methods). The 

previous suggestion can possibly reduce the resource overhead. The reduction size 

though depends on issues such as which attributes to group together for common 

access.

♦ CORBA does not support selective retrieval facilities for monitoring. There is no 

special server for supporting these operations. There are some proprietary solutions 

solving these problems but there are no standardisation efforts towards that direction.
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Bulk retrieval can be supported by adopting the suggestion of the JIDM taskforce for 

semantic translation of a well known information model. As such collective access to 

a series of attributes is provided by a single method. The granularity of this scheme is 

though in question while selective retrieval using such a translation is not supported.

♦ Despite support by some telecommunication equipment vendors, CORBA was never 

supported at large by the industry. As a result, it was mainly used for service 

management and not for network management (i.e. Ericsson Radio Systems AB has 

used Orbix to develop its Cellular Management Operations System (CMOS) based on 

the Telecommunications Management Network (TMN) architecture).

♦ Object references do not reveal any information about the object. Object references 

in CORBA provide transparent access to objects. These references though are opaque 

types and have no internal structure. As such there are no means in CORBA to 

describe the services and the functionality of the interfaces that each object offers. 

Thus service discovery and service reuse in inhibited. This is not the case for newer 

technologies such as WS.

♦ CORBA is not flexible enough for dynamic instantiation o f new services. CORBA 

does not provide a built-in facility for instantiating new interfaces to objects. As such, 

interface creation may only be supported by existing interfaces. This approach is not 

flexible as a factory interface is always necessary for every other interface that can be 

dynamically created. In newer technologies such as WS, specifications such as the 

WS-composition or the WS-ServiceGroup specifications allow composing new 

services from existing ones. In addition to this, web servers used in WS allow 

dynamic instantiation of new interfaces (one of the possible ways).

Based on the previous shortcomings and the fact that other technologies were introduced in the 

meantime for distributed management (i.e. WS) restricted CORBA’s wide adoption for network 

and service management. CORBA found its niche market only in service management with 

support by a number of vendors in the telecommunications domain.

2.2.5 Management by Delegation

A different approach from all the previous ones was the management by delegation move in the 

early 1990’s. The main idea behind this approach is that instead of performing management tasks 

in a remote fashion, code is sent to a managed device so that the latter can perform these tasks 

locally. This idea found ground for network management when platform independent languages 

such as Tel and Java appeared, allowing the agents/servers managing the underlying resources to
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host new code more easily. As soon as these languages appeared two trends for applying 

management by delegation emerged.

The first trend is manager-agent approaches in which the lifecycle of a script or program is 

controlled through specific management objects handled by an agent. The introduction of the 

Script and the Expression MIB took place back in 1999 by the IETF Distiibuted Management 

Working Group (DISMAN) which was chartered to define a set of managed objects for specific 

distributed network management applications. The goal of this work was to employ the 

advantages of distributed management over the centralised concept to tackle the increasing 

demands of network management. Some of the main parts of this group’s work was the 

Definitions of Managed Objects for the Delegation of Management Scripts (Script MIB RFC 

3165) [7] and the Distributed Management Expression MIB (Expression MIB RFC 2982) [8].

The second trend involves mobile objects/agents migration and execution close to the managed 

devices to which these objects need access to. Mobile agent platforms were considered for 

network management using either a constrained or full mobility approach. In constrained mobility 

approaches the agent is told before hand which locations to visit and in the full mobility case the 

mobile agent makes autonomous decisions to where it will move depending on the information it 

receives from its close environment.

Management by delegation was initially seen as a more flexible approach through which task, 

CPU, and network load delegation (Script MIB, mobile code) could be performed. This allowed 

performing management of devices, close to where the actual operations on these devices should 

be performed. This in theory can reduce the footprint of management applications. Other benefits 

exist as well. For example some approaches such as the Expression MIB [8] were introduced as a 

way to create new, customised MIB objects for monitoring and event reporting. This is very 

useful as monitoring and event reporting of the state of a device is not limited to objects in 

predefined MIBs. Despite the obvious benefits of these approaches in terms of robustness, 

reliability and flexibility, inherent problems prevented these technologies from been deployed in 

large scale. This is attiibuted to the following shortcomings.

♦ The "management o f management" problem [50]. Approaches such as the Script 

MIB and mobile code present managers with the need to distribute, run, update, 

control a script, and to gather and coiTelate the intennediate and final execution 

results. This increases maintenance costs.

♦ Significant performance issues. In [51], and [50] significant issues in terms of the 

performance of the Script MIB aie identified (e.g. big memory overhead). In other 

cases such as drat of the Expression MIB [8], the standard itself states that using the 

Expression MIB for monitoring or event reporting is often not a good trade-off for
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objects that are simply to be recorded or displayed. This is often the case when 

performing network management monitoring operations and in some cases for event 

reporting operations.

High development costs. In specifications such as that of the Script MIB many 

aspects were left undefined such as a) how to get the Script MIB tables populated, b) 

how to get scripts re-fetched and restarted after updates, and, c) procedural details of 

event forwarding (where the call-back address for event forwarding is stored, how 

event correlation is performed etc). In other specifications such as that of the 

Expression MIB the DISMAN charter [54] states that “implementing the Expression 

MIB is non-trivial work and takes lots of months to complete”. All the previous 

reveal that management by delegation approaches present increased development 

cost.

Severe security issues. Running software or scripts is inherently very dangerous since 

it is difficult to check what the nature of a script or mobile code is. This makes it clear 

why the industry was not inclined to use and deploy at large scale approaches such as 

intelligent agents or the script MIB.

Integration to current devices is sometimes difficult. Integrating for example the 

Expression MIB in existing agents that do not support it is not possible unless the 

agent uses an extensibility feature like AgentX [52], [53]. Even so, “sub-agent access 

from the master agent for MIB variables” as it is required to support the Expression 

MIB in existing agents [53], is a non goal for AgentX. As such, even with AgentX 

the Expression MIB can not be used for the purpose it was designed for.

Restricted access to resources. The specification of the Expression MIB allows 

access only to local data since remote addresses are not supported. This eliminates the 

use of remote data in the evaluated expressions. Thus using the expression MIB for 

distributed monitoring is limited since access is provided only to local agent 

resources. The inherent distributed nature of other technologies introduced later such 

as WS, allows us to overcome such problems [55].

Support for bulk and selective retrieval is impractical. Using the Expression MIB to 

support bulk and selective retrieval using a series of expressions even with 

wildcarding is not plausible. This happens because the objects that need to be 

accessed and evaluated by an expression have to be re-set each time for different 

monitoring tasks.
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A lot of research work has been invested in the management by delegation approaches. 

Nevertheless there was never any significant deployment of the Script and the Expression MIB 

due to the increased development costs and due to the insecure nature of management scripts. 

This has led these technologies not to receive significant support by the industry.

2.3 WS for Network and Service Management

2.3.1 Introduction

Contrary to other technologies whose development during the last few years have diminished, 

XML-based approaches for network management have been on the rise. This is attiibuted to many 

reasons. The ability of XML to define arbitrary tags to describe the context of management 

information through Document Type Definitions (DTDs) [9] and XML Schemas [10], make it an 

exceptional mechanism to define management protocols, interface specifications etc. In addition 

the industry supports XML already in many applications. As such, using XML for network 

management is made considerably attractive.

The promise of faster product development, interoperability, application integration and industry 

acceptance has led to the adoption of XML to create technologies that can be used for Web based 

management. One such technology is Web Services. WS is a technology that allows creating web 

interfaces that can be accessed over the Internet. Given the similarities to distributed object 

technologies, there has been a lot of research taigeting their use in network, system and service 

management.

Despite the promising potential of using WS for NSM and the common characteristics it shares 

with distributed object technologies, WS need to solve several problems before they even become 

capable of being used for NSM purposes such as (a) potential problems for dealing with the stiict 

performance requirements of NSM (b) interoperability problems when building WS management 

applications (c) modelling and standardization problems when translating information models and 

operations from other technologies to WS etc.

In the next sub-sections we will provide an introduction to WS and also to the protocols and 

standards the WS industry has introduced for network and service management. This introduction 

is necessary to provide the background for understanding the design choices made as part of this 

thesis work in the next chapters. Also based on this introduction and standards, we will discuss 

how WS can be used for NSM, Following this discussion, we are going to introduce the state of 

the ait approaches and research in this field. Based on this research we will identify advantages 

for using WS for NSM and elaborate on potential problems that need to be solved. One of these 

problems is performance and scalability of WS for NSM which also has been the motivation for 

the work in this thesis.
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2.3.2 WS Background

Web Services are an XML document based technology designed to support interoperable 

interaction between computing system processes in a distributed manner. In essence “given that 

Web services are based on XML documents for exchanging information, it could be said that the 

technological underpinning of a WS is document-oriented computing” [56]. The core WS 

components for document oriented computing are the following;

(a) The setvice. This is the software that is used to process the document being exchanged 

through the use of a variety of application and transport protocols (i.e. programming 

language objects, stand alone system processes etc)

(b) The XML document. This contains all the application-specific information that a 

service consumer process sends to a producer process for processing. The format of this 

message is based on an XML schema [16], [17] which both the consumer and producer 

have access to. This way the consumer and producer of a service can validate and 

interpret the documents they exchange. The common means of doing the latter is through 

the Web Services Description Language (WSDL) [18], [57].

(c) The address. This is a combination of a protocol and a network address through which 

the consumer process is allowed access to the service (i.e. http protocol + network 

address)

(d) The envelope. This is a protocol that encapsulates the XML document and ensures that 

the latter wiU be separated from other data that the consumer and producer service might 

want or need to exchange.

2.3.2.1 Understanding SOAP

The protocol that is mostly used for the exchange of messages in Web services is the Simple 

Object Access Protocol (SOAP) [59], [60] (the envelope). SOAP “is a lightweight protocol 

intended for exchanging structured information in a decentralised, distributed environment” [60]. 

SOAP was designed to be 1) extensible, 2) usable over a variety of underlying networking 

protocols, and 3) independent of programming models. The first characteristic of SOAP is 

achieved by building the SOAP messaging framework on XML through the use of DTDs and 

XML Schemas. The latter are extensible and thus SOAP is extensible. Additionally for the second 

characteristic, SOAP allows the use of any transport protocol for the exchange of XML messages. 

Before this happens though, a binding with each transport protocol that SOAP uses has to be 

defined and standardised for interoperability purposes. To guarantee the third characteristic, 

SOAP is not bound to a specific programming model, such as the Remote Procedure Call (RPC) 

processing model for sending messages in a request-response style, although it supports it. This
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way SOAP is not bound to the pre-defined semantics that follow for example the RPC model. As 

such, SOAP is constructed so that it can be used with any message processing model (Message 

Exchange Pattern (MEP)). SOAP supports various MEPs including one to exchange one way 

messages as well as request response messages (the latter model is not necessaiily RPC so as 

SOAP is not tied to tlie pre-defined semantics of the latter). In order to use these MEPs without 

SOAP attaching itself to their semantics, SOAP defines tlie general format of tlie actual messages 

exchanged between two message processing entities (a sender-receiver) and their intermediaries, 

but not how to treat certain aspects of the message [59](i.e. vaiious element tags in the header). 

The semantics of how to treat specific aspects are defined in other specifications and have to be 

agreed between the vaiious entities in the message communication path (sender-receiver- 

intermediaiies).

In SOAP, XML messages are canied inside an XML structure called the soap envelope. The latter 

consists of two parts.

The first part of the envelope is the header. The envelope holds all the information necessary to 

process the SOAP message correctly. The envelope contains for example information important to 

create applications in which a message can be passed between multiple intermédiaires before 

reaching its final destination [61]. To have SOAP support communication between two entities as 

well as intermediaries, certain information/rules in the header have to be processed by a SOAP 

processor as a message travels from its sender to its receiver. Example of specific information 

rules contained in the header are (a) the address of where the message is going (i.e. a WS- 

Addressing address [19]) (b) how the message should be treated by intermediaries (c) WS- 

Security signatures [23].

In the last example of header specific information, WS-Security signatures can be used to define 

tlie entities that can have access to the information contained in the XML message canied in the 

SOAP envelope.

A scenario for the second example of header specific information where a number of 

intermediaries exist between the sender and the receiver of a SOAP message is given Figure 2-6. 

In this figure a number of intermediaries exist between tlie sender and the receiver of a request. 

By looking into the header elements of the SOAP envelope the intermediaries can process and 

change the transport protocol binding used to route the request to its receiver.

For the first example of header specific information, a scheme of WS-Addressing addresses is 

given in Figure 2-7. In this example the header contains information about the address of the 

receiver and the sender of a message. WS-Addressing provides transport-neutral mechanisms to 

identify Web service endpoints and to secure end-to-end endpoint identification of WS messages 

that were not envisioned at the time of the definition of SOAP and WSDL. WS-Addressing
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enables messaging systems to support message transmission through networks that include 

processing nodes such as endpoint managers, firewalls, and gateways in a transport-neutral 

manner. To do all the above, WS-Addressing uses two mechanisms (a) EndPoint References 

(EPRs) and (b) Message Information Headers (MIHs).

EPRs support a set of dynamic usage patterns not covered by WSDL 1.1 so as to allow WS to be 

used in the following usage scenarios [98]:

• Dynamic generation and customisation of service endpoint descriptions.

• Identification and description of specific service instances that are created as the result of 

interactions between WS that involve manipulating state.

• Flexible and dynamic exchange of endpoint information in tightly coupled environments 

where communicating parties share a set of common assumptions about specific policies 

or protocols that are used during the interaction.
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Figure 2-6 SOAP messaging with intermediaries [62]

endpoint

<3 : Envelope xmlns;S="http://www.w3.org/2003/05/soap-envelope" 
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">

<3 :Header>
<wsa:MessageID>

uuid:6B29FC40-CA47-1067-B31D-00DD010662DA 
</wsa:MessageID>
<wsa:ReplyTo>

<wsa:Address>
http://254.127.33.22:5050/client 

</wsa:Address>
</wsa : ReplyTo
<wsa:To>http://250.128.29.22:6060/receiver</wsa:To> 
<wsa:Action> http://250.128.29.22:6060/Get</wsa:Action> 

</S:Header>
<3:Body>

</3:Body>
</3:Envelope>

Figure 2-7 WS Addressing scheme: Message source and sink addresses

A detailed list of example of messaging scenarios addressed using WS-Addressing is given in the 

WS-ReliableMessaging specification. In essence though, EPRs extend or complement the WSDL
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description model (e.g. the portType, binding and semce elements etc.) to support various 

messaging scenaiios though they do not replace it.

MIHs augment a message exchanged between WS endpoints (in otlier words a sender and a 

receiver) with properties that enable the identification and location of the parties involved in an 

interaction. The latter is important in order to support various Message Exchange Patterns 

(MEPs). The properties with which MIHs extend an endpoint are [99]:

♦ Destination properties: Addresses of the intended receiver of a message.

♦ Source endpoint properties: References of the endpoints where messages originated 

from.

♦ Reply endpoint properties: Endpoint references that identify the entity to which 

replies to a message need to be sent.

♦ Action properties: Identifiers that uniquely identify the semantics implied by this 

message.

♦ Message ids; URIs that uniquely identify a message in time and space.

♦ Relationsliip properties: A pair of values that indicate how a message relates to 

otlier messages.

The second part of the envelope is tlie body. The latter contains the actual data that Web Service 

applications need to process. The formatting of the body can follow mainly two encoding styles 

(a) RPC and (b) Document. The first style is based on the concept of using SOAP messages to 

create Remote Procedure Calls. RPC calls result in issuing a command to the receiving entity of 

the message. When the style of a message is RPC, it is mandatory that the name of the method 

invoked when accessing a WS is the same as it appears in the body of the SOAP message. The 

Document style involves simply having data in XML format as the content of the SOAP body. 

The format of these data is agreed upon between the sender and the receiver [62] (i.e. tlirough the 

WSDL definition of a seiwice the sender and receiver produce stub and skeleton code which when 

used defines the appearance of tlie request and response of the SOAP body). How the receiving 

application will use or respond to the SOAP data in Document style is application specific.

SOAP also supports two techniques for deciding how to serialise the data contained into the body 

of a SOAP message over the wire (encoding). The first technique is using literal XML Schema 

definitions. The second technique involves using SOAP encoding rules. With the former approach 

an XML schema describing every piece of information in the body defines tlie XML format of the 

latter without ambiguity. Using SOAP encoding rules, the body is serialised always at runtime in
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a standard, specific manner. The latter technique though is more prone to errors, suffers from 

interoperability issues and leads to more verbose representations of SOAP data.

To understand how the style of the document and the encoding affect the body of the SOAP 

message, another important component of building WS has to be introduced. This component is 

the Web Services Description Language (WSDL).

2.3.2.2 Understanding WSDL

The Web Services Description Language was introduced to facilitate the definition of a service 

description. The latter indicates how potential consumers of services are intended to interact with 

the service. In essence WSDL is used to define in a standard, unambiguous, machine readable 

format [63], [64] (a) the information to send to a service in order to interact with it, (b) the 

information the service is going to send back, (c) the operations that a service exposes, (d) which 

parameters to pass to an operation, (e) via which protocols a service can be accessed, and (f) on 

which location the Web service resides so as to be able to access it. When defining all this 

information the services defined in WSDL have to be described in an interoperable and extensible 

manner. As such, when defining service interfaces with WSDL, the standard itself tries to 

facilitate interoperability and extensibility. Interoperability was actually one of the main reasons 

WSDL 2.0 was introduced since WSDL 1.1 was not very extensible. Also WSDL 2.0 was 

introduced so the latter could be compliant to the WS-Interoperability Basic Profile [68], [69] and 

also to support the SOAP 1.2 extensibility mechanisms. To facilitate extensibility, WSDL also 

differentiates between its abstract part and its concrete (implementation) part. This way the 

abstract part can be used as many times as required to define new services by defining only the 

concrete part of each new service [67].

As part of WSDL’s abstract part the producer of a service has to first use an XML schema to 

describe die elements and the content of XML messages exchanged as part of the operations a 

service exposes. This is performed by using the basic elements and data-types from XML Schema 

or by defining new data-types of any complexity. In the WSDL language this is called defining 

the WSDL types element {<wsdl:types>). Using the elements and data-types inside the 

<wsdl:types> element, the producer of a service can define the operands that are going to be used 

as input and output of each operation that is exposed as part of a service’s interface. In WSDL this 

means defining the <wsdl:message> elements. Following the definition of message elements, the 

producer needs to define the operations that are going to be exposed as part of a service’s 

interface. Operations in WSDL are represented by <wsdl:operation> elements and the latter are 

part of the <wsdl:portType> elements. Each <wsdl:operation> element uses message elements to 

describe its input and output. Each <wsdl:portType> element contains only definitions of the 

operations an interface exposes, and not implementations. In this respect, <wsdl:portType> is
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much like an interface. This is why in WSDL 2.0 the name of a <wsdl:portType> element has 

been changed to <wsdl:intetface>.

If <wsdl:portType> elements are like interfaces, the implementation of these interfaces are called 

bindings and are represented by <wsdl:binding> elements. In fact the <wsdl:binding> elements 

are the first concrete WSDL elements introduced so far. <wsdl:binding> elements are linked to 

the actual implementation of a service. Inside a <wsdl:binding> element, the producer of a 

service, references part or all of the <wsdl:operation> elements in the WSDL document. This 

way the producer of a service defines the operations that his service is going to implement. 

Having the binding elements defined, the next WSDL elements that need to be defined are the 

service elements (<wsdl:service>). These elements represent the actual service that is offered. 

Each <wsdl:service> element is linked to a <wsdl:binding> by referring to it. This way the 

service specifies which operations it exposes. In addition, each service contains a number of 

addresses where it is deployed. A service may have more than one address through which it can 

be accessed. Each address is defined in its own <wsdl:port> element. Each <wsdl:port> element 

refers to a particular binding (interface implementation), and includes a URI in order to define 

how to access a service. In WSDL 2.0 port elements have been replaced with <wsdl:Endpoint> 

address elements since the latter naming reflects better that a WS is a communication point. The 

conceptual model of WSDL 1.1 and 2.0 is given in Figure 2-8.

From the above it is evident that WSDL and IDL are different in many respects. WSDL defines 

an abstract and concrete part for service reuse (an abstract part can be used by different concrete 

parts to define different services). IDL does not provide such features. WSDL and especially 

version 2.0 allows services to be more easily extended. To the best of our knowledge IDL does 

not provide extensibility features.

WDSL 1.1 Conceptual Model iMSDL 2.0 Conceptual Model

Figure 2-8 WSDL 1.1 and 2.0 conceptual model

The conceptual models of WSDL 1.1 and 2.0 depict the changes in element tags that exist 

between the two versions. The changes between the two versions though are not just limited in the
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naming of these elements. One such change is that <wsdl:message> elements in WSDL 2.0 can 

no longer refer to more than one <wsdl:part> elements. In WSDL 1.1, <wsdl:part> elements 

allow creating <wsdl:messages> that can refer back to more than one data-types defined in the 

<wsdl:types> element. The WS-Interoperability [68] profile though does not allow a message 

element to have many children as the architects of this specification believe that the opposite 

would allow definition of the operations a service exposes in an unambiguous format. In addition 

WSDL 2.0 supports the use of other type systems apart from XML Schema. This allows for 

example constructs from semantic models and languages to be used to define the WS input and 

output data types of an operation. In essence this change supports the need of WSDL 2.0 to satisfy 

the WS-Interoperability [68], [69] basic profile and become more extensible. WSDL 2.0 supports 

two new extensibility mechanisms (a) an open content model (b) the concept of features and 

properties. The first allows XML elements and attributes from other (non-WSDL) XML 

namespaces to be accepted into a WSDL document. Even attributes from DTDs and Schemas 

from other service descriptions are accepted (there are specific rules on how this happens: we will 

see in chapter 3 how this feature and the WS-ServiceGroup specification can be used to provide 

collective access from one service to a series of others.). The second extensibility mechanism 

allows the definition of new attributes and elements inside a WSDL document. In essence both of 

the extensibility mechanisms are used so that WSDL 2.0 is better suited for integrating the 

demands of new specifications that have not been visualised when it was introduced. As part of 

these mechanisms WSDL 2.0 can now support more MEPs than WSDL 1.1 (8 compared to 4 

[70]; to support the new MEPs WSDL 2.0 enables you to specifically state what message pattern 

you're using by referencing its definition over a web address) without the need of using WS- 

Addressiiig to cover some message exchange scenarios that the latter could not support. Another 

change in WSDL 2.0 is that the latter supports interface inheritance. The latter change increases 

the level of reusability when defining a service. Despite the changes performed to achieve the 

conformance of WSDL 2.0 to the WS-Interoperability basic profile though, some issues may arise 

when using different WSDL versions (i.e. v l.l) . These problems have been noted [70], [71] and 

are the following:

♦ Commonly available WSDL 1.1-based proxy generators can't be used for generating the 

proxy stubs from WSDL 2.0 necessitating WSDL 2 proxy generators.

♦ Custom WSDL 2 proxy generator tools might not adhere to standards and can aggravate 

interoperability issues further.

♦ Tight coupling of the WSDL specification version on the client side for consuming the 

service will lead to interoperable issues as new versions of WSDL are released.
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A number of solutions on these problems are provided in [70], a discussion on or evaluation of the 

applicability of these solutions to resolve the aforementioned problems has not been included in 

this thesis.

Now that both SOAP and WSDL have been introduced it is possible to explain how the style of 

the SOAP document and the encoding affects the body of a SOAP message. Imagine that the 

following Java method needs to be exposed as a service: public void get (int x, float y). A SOAP 

request message and the equivalent WSDL document using tiie RPC/encoded, RPC/literal, 

Document/literal styles are given in Figure 2-10, Figure 2-9, Figure 2-11 respectively 

(Document/encoded is hardly ever used).

From the Document/literal style it can be observed tliat the naming of the attributes of the Java 

method that will appeal- in the SOAP body, depends on the <wsdl:types> element naming. In 

addition, it can be observed that when using a Document/literal encoding style, the operation 

name in the SOAP message is lost. This can be rectified by using the Document/Literal Wrapped 

style of encoding (Figure 2-12). Using this encoding style the body of the SOAP message appears 

to be like it has an RPC/literal encoding (Figure 2-10). The wrapped encoding style is a sly way 

of putting the operation name back into the SOAP message. The latter style though is 

characterised by a more verbose WSDL document (Figure 2-12).

An important advantage of the document encoding styles is that they can be easily validated since 

they are based on an XML schema. Of the document styles though, only literal encodings are 

compliant to the WS-Interoperability (WS-I) basic profile (Document/literal, Document/literal 

Wrapped, RPC/literal) [69]. This is because die WS-I profile allows only one child per SOAP 

body element. Which document style though should it be used? Using the document wrapped 

style is not a good practice when a number of overloaded functions exist. The reason for this is 

that when using the wrapped style, the operation name and the element name of the attributes in 

the WSDL documents should be the same. Having multiple functions with the same name would 

require multiple wrapping elements for the attributes of the functions with the same name. This is 

not allowed in WSDL [66]. On the other hand with tiie Document/literal style the operation name 

in the SOAP message is lost. Without the name, dispatching can be difficult, and sometimes 

impossible. In addition the Document/literal style is WS-Interoperability profile compliant but 

with restiictions (allows for more than one root elements). As such both document styles are 

necessary.

In addition by observing Figure 2-10, Figure 2-9, Figure 2-11 and Figure 2-12, one can determine 

that the SOAP messages using literal styles are less verbose [66]. This occurs because encoding 

information is eliminated.

Based on the above, it seems that the Document styles of structuring the SOAP body aie in most 

cases better than RPC ones. This is why the industry is turning gradually towards supporting only
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these styles in WSDL (in the WS-I profile). The only deficiency that can be attributed to these 

styles is that when type information is required (retrieved from the encoding info), the 

RPC/encoded style may be better suited. Still only the RPC/literal style is supported by the WS-I 

profile. Not many toolkits support this style though [148] leaving Document styles as the main 

option.

<soap:envelope>
<soap:body>

<Get>
<x>5</x> 
<y>5.0</y> 

</Get> 
</soap:body>

</soap ;envelope>

<message name="GetReqviest ">
<part name="x" type="xsd:int"/> 
<part name="y" type="xsd:float"/> 

</message>
<message name="empty"/>
<portType name="PT">

<operation name="Get">
<input raessage="GetRequest"/> 
<output message="empty"/> 

</operation>
</portType>

Figure 2-10 SOAP and WSDL files for RPCVIiteral style

<soap;envelope>
<soap:body>

<Get>
<x xsi:type="xsd:int">

5
</x>
<y xsi:type="xsd:float"> 

5.0 
</y>

</Get>
</soap:body>

</soap:envelope>

m  m"<message name="GetRequest">
<part name="x" type="xsd:int"/> 
<part name="y" type="xsd: float"/> 

</message>
<message name="empty"/>
<portType name="PT">

<operation name="Get">
<input message="GetRequest"/> 
<output message="empty"/> 

</operation>
</portType>

Figure 2-9 SOAP and WSDL files for RPC/encoded style

<soap:envelope> 
<soap:body> 

<s>5</s> 
<t>5.0</t> 

</soap:body> 
</soap:envelope>

<types>
<schema>

<element name="s" type="xsd:int"/> 
<element name="t" type="xsd:float"/> 

</schema>
</types>
<message name="AnyGetRequest">

<part name="x" element*"s"/>
<part name*"y" element*"t"/>

</message>
<message name*"empty"/>
<portType name="PT">

<operation name*"AnyGet">
<input message="AnyGetRequest"/> 
<output message*"empty"/> 

</operation>
</portType>

Figure 2-11 SOAP and WSDL files for Document/literal style
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<soap:envelope> 
<soap:body> 

<Get>
<x>5</x> 
<y>5.0</y> 

</Get> 
</soap:body> 

</soap:envelope>

type*"xsd:int"/> 
type="xsd: float"/>

<types>
<schema>

<element name="Get">
<complexType>

<sequence>
<element name*
<element name*

</sequence>
</complexType>

</element>
<element name*"GetResponse"> 

<complexType/>
</element>

</schema>
</types>
<message name="GetRequest">

<part name="parameters" element*"Get"/> 
</message>
<message name*"empty">
<part name*"parameter8 
</message>
<portType name*"PT">

<operation name*"Get">
<input message="GetRequest"/>
<output message*"empty"/>

</operation>
</portType>

element*"GetResponse"/>

Figure 2-12 SOAP and WSDL files for Document/literal Wrapped style

2.3.2.3 Understanding UDDI

Apart from the four core components of WS (SOAP, WSDL and a transport protocol binding), an 

optional but important component to build WS distributed management applications is service 

publication and discovery. Service publication and discovery requires mechanisms for efficient 

and simple discovery of the services that companies and business bodies have to offer by 

publishing them in a registry. In order to achieve this, a collection of interfaces defined in the 

Universal Discovery Description and Integration (UDDI) specification is required. UDDI builds 

on top of a network transport layer, the SOAP XML messaging layer, and the WS description 

layer. On the description layer, the Web Services Description Language (WSDL) provides a 

uniform XML vocabulary that describes Web Services and their interfaces. This vocabulary can 

be used by the UDDI [65].

The basis of UDDI is a registry. The registry holds (a) a number of programmatically accessible 

descriptions of businesses and the services they support (b) references to industry-specific 

specifications that a service might support (c) taxonomy definitions for efficient categorisation of 

businesses and services and (d) identification and discovery mechanisms for meaningful 

identification of businesses and services. As such the registry contains mainly three types of
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information [58]. First there is basic information about a business such as its name, the type of 

business it is involved with, contact information, a business identifier etc. Second there is 

information that categorises the business and service information and thus extends the ability of 

the user to find a business and a service. Lastly there is also information on how and where to 

programmatically invoke the services each business offers (pointers to discovery mechanisms, 

references to technical specifications). All the information described until now are contained in 

four primary data types within a UDDI registry. Figure 2-13 shows the naming of these types and 

the relationships they share. The businessEntity elements provide information about a business 

(service provider). The technical and business descriptions for a Web service are defined in 

businessService elements and its bindingTemplate elements. Each bindingTemplate element 

contains a reference to one or more tModel elements which are used to defined the technical 

specifications for a service.

BuiineMEnfV

—I Bin<lngTempl«te" 

—I Bin<ingTempl«te"

BlndngTempWe

Figure 2-13 UDDI data types [73]

From what is described above, the service description information defined in a WSDL file has the 

potential of being complementary to the information found in a UDDI registry. Though UDDI 

provides support for many different types of service descriptions, there is no direct support for 

WSDL descriptions. Providing support for WSDL though would automatically allow users and 

clients of services (a) to find a business and the services they offer (b) to access information 

about the interfaces and the functionality a service exposes(c) to look up information on how to 

access a service that a business offers etc. As such the UDDI organisation has published a best 

practices document titled Using WSDL in a UDDI Registry 1.05 [72]. This document describes 

how to publish WSDL service descriptions in a UDDI registry. In [72] WSDL files are divided in 

two parts (service interfaces and service implementations). Basically in this document a WSDL 

file is roughly divided in its abstract and concrete parts and each WSDL element is assigned to a 

UDDI type. Figure 2-14 shows how each WSDL element is assigned to a UDDI type. In [73], 

[74] examples are given on how to pubUsh WSDL service descriptions and how a chent can find 

these descriptions to use them afterwards in order to access a service.
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WSDL
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WSDL Service
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V V feflffitlo i»

SerWce Implenwntatlon

SerWœ Interface

UDDI
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Figure 2-14 The implementation and service interface XML element tags of a WSDL file and how to 

assign them to UDDI types for service description and discovery [73].

2.3.3 XML and WS-based Standards and Frameworks

2.3.3.1 Service Oriented Architecture for QoS, Security and Management

Over the past few years, XML and WS have been used by various research groups to define many 

Web-based standards and specifications. The ultimate goal of this research was to achieve 

implementation of the Service Oriented Architecture (SOA) providing solutions for Network and 

Service Management, Quality of Service (QoS) and security in a distributed manner. The creation 

and support of standards is a critical component in achieving this goal [100]. The technologies 

that need to be standardised and implemented as part of this work involve three different sections 

of the conceptual WS stack in Figure 2-15.

The wire layer in Figure 2-15 involves standards and technologies required to transport messages 

between WS. In the wire layer, the transport sub-layer entails network connectivity using TCP/IP. 

The packaging sub-layer is concerned with the serialisation of the message payload. The 

extension sub-layer allows for extensible features to be added in the headers of a SOAP message. 

The common protocol used in the wire layer in order to provide the functionality of these three 

sub-layers is SOAP over HTTP supporting XML messaging between WS.

The description layer is based on XML Schema to describe a series of specifications in order to 

express all attribute types required to model a WS, the interactions of a WS with other services 

etc. The interface and implementation description sub-layers entail definition of the operations 

and messages supported by a WS, how to serialise messages over the wire, where to send 

messages etc. In essence these sub-layers describe the mechanics of a service. The common 

language used to describe the mechanics of a WS is WSDL. The policy sub-layer in the 

description layer consists of facts, assertions, and rules that apply to a particular Web service. 

Policies in essence are used to describe the requirements and capabilities of two WS endpoints 

when the latter want to initiate a conversation. A non normative way to describe the rules and
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capabilities that apply to a particular service is the WS-Policy specification [101]. In the 

description layer there is also a necessity to accompany a WS description document by another 

description document which defines how to display a service to a user and what the interactions 

between the service and the user should be. This is the role of the presentation sub-layer.

All the five sub-layers introduced so far in the description layer are enough to allow description of 

a WS but other sub-layers are also required to describe other features of WS applications. For 

example the composition and orchestration sub-layers describe the relationships and interactions 

between WS respectively. The composition sub-layer allows defining relationships such as 

containment, parent-child relationships and groupings that exist between properties of each WS. 

The orchestration sub layer clarifies how to order the interactions between WS operations by 

defining choreographies, workflow charts etc. The Business Process Execution Language For 

WS (BPEL4WS) [102] and the WS-Transaction (consists of the WS-Coordination [103], WS- 

AtomicTransaction [104] and the WS-BusinessActivity [105] specifications) specifications are 

the most common specifications used for both orchestration and composition of WS. In the 

description layer the service level agreement sub-layer allows defining metrics for performance, 

usage and Quality of Service parameters that a service should conform to. The WS- 

Leve [Agreement (WSLA) specification is a good example for defining the QoS parameters of a 

WS. The business sub-layer describes a contract between business partners having transactions 

using WS.

Discovery [ 
Agencies f

Di$covery~
Publication
Inspection"

Description Business Level A greem ents 
Service Level A greem ents

Security

Presentation

Implementation Description
Interface Description

XML Schema

Wire Extensions
Packaging
T ransport

Figure 2-15 A more complete version of the WS stack [100]

Another important layer in the SOA architecture is the discovery layer. The Discovery layer 

encompasses standards and technologies to support publication, discovery and inspection of
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service descriptions. UDDI is cmrently seen by many as tlie means for discoveiy and publication 

of service interfaces. For inspection of WS the WS-Inspection specification seems to be promoted 

to handle this task. This specification aims at providing a standaid way of indicating to web 

services consumers where to locate web services.

Behind all these specifications in each layer lies an overaiching concern of the WS industry to 

supply reliable, secure and interoperable communication between distiibuted applications. By 

standardising these aspects, the WS industry hopes to provide applications that can be managed 

for the puiposes of providing services to clients with specific Quality of Service guarantees (see 

Figure 2-15).

Ensuring the integrity, confidentiality and security of communication between Web Services 

requires the use of a comprehensive and complete security model. The latter necessitates use of a 

message security model (WS-Security [106]) along with a Web service endpoint policy (WS- 

Policy) model, a trust model (WS-Trust [107]), and a privacy model (WS-Privacy). All these 

specifications provide the foundation upon which it is possible to establish secure interoperable 

Web Services across several trusted domains. The WS-Security specification describes how to 

attach signature and encryption headers on SOAP messages to guarantee message integrity (XML 

signatures) and message confidentiality (XML encryption). The WS-Policy specification is used 

in the context of security in order to describe the capabilities and constraints the various WS 

based intermédiaires in the communication path have (i.e. supported encryption algorithms). The 

WS-Privacy specification will describe a model on how Web Services and consumers of WS 

define their preferences for security. In practice WS-Privacy allows producers of services to state 

their security policies so as to require from incoming requests to adliere to these policies. The 

WS-Trust specification describes a framework tliat enables Web Semces to interoperate in a 

secure manner. In essence WS-Trust describes how to establish both direct and brokered trust 

relationsliips between several parties.

Building on these four specifications, three new specifications can be defined, for secure 

conversations (WS-SecureConversation [108]), federated trust (WS-Federation [109]), and 

authorisation (WS-Authorisation). The WS-SecureConversation depicts how to manage and 

authenticate message exchanges between parties. This specification also defines how to establish 

session keys, derived keys, and per-message keys for authentication. The WS-Federation 

specification defines how to manage and broker trust relationships in a heterogeneous federated 

environment. In essence WS-Federation defines mechanisms to allow different security realms to 

federate, such that authorised access to resources managed in one realm can be provided to 

entities in other realms. The WS-authorisation illustiates how to manage authorisation data and 

authorisation policies to determine what an entity is allowed to do.
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Combining all the above specifications leads to having a model for secure communications 

between WS. Nevertheless work in this domain is not final yet since some of these specifications 

have already become OASIS standards and some are still in the process of definition.

To guarantee reliable delivery of messages between WS, the industry came up with the WS- 

Reliability [110] protocol. WS-Reliability is a SOAP-based protocol for exchanging SOAP 

messages with guaranteed delivery, no duplicates, and guaranteed message ordering. The 

concepts of the WS-Reliability are enforced as extensions to the SOAP header. The WS- 

Reliability specification is necessary since SOAP over HTTP over TCP/IP is not sufficient when 

an application-level messaging protocol must also guarantee some level of reliability and security. 

This happens because in a few scenarios, the TCP protocol cannot completely guarantee delivery 

of a message to a remote peer. This is true for example in the case of intermediaries where it is 

possible for a message to arrive successfully at the final station but it never gets processed by the 

appropriate SOAP processor i.e. a WS. In this case, the SOAP message is successfully delivered 

by the transport protocol but the message cannot be processed properly because of some errors 

[56]. As such there is a possibility that a message never gets processed by the final remote peer 

and if the sending entity closes down the connection, it will not receive an error notification. The 

WS-Reliability specification was introduced in order to minimise phenomena such as the latter 

from happening with the added cost of extra complexity. WS-Reliability was designed to be 

independent from the underlying transport protocol. Bindings with the underlying transport 

though have to be present for interoperability purposes. A common binding of WS-Reliability 

with a transport protocol is HTTP over TCP/IP.

All the above standards represent the Service Oriented Architecture (SOA) covering aspects such 

as security, reliable messaging, QoS etc. From all this work in standardisation of WS operations, 

it is evident that the WS industry tries to prepare WS in order for the latter to become a platform 

for application integration that could be used for Service Management. At the same time though, 

all these WS standard specifications could be considered for Network Management. In the next 

sections we will see how and also analyse the first approaches towards this direction.

2.3,3.2 Using WS for Network Management the CORBA way
Having introduced SOAP, UDDI and WSDL, a simplified version of the WS stack to support the 

description, the discovery, the registration and the messaging functionality of WS is given in 

Figure 2-16. This stack supports the basic functionality required for building and deploying WS 

but also provides the required functionality so as to use WS for network management.

One approach of using WS for Network is analogous to how distributed object technologies such 

as CORBA achieve the same thing. Although WS are a not a distributed object technology [56] 

the WS stack can support the functionality required for network management in a similar manner
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to how this is performed in CORBA. To identify how CORBA and WS can fulfil the 

requirements of distributed management of network devices, these requirements have to be 

analysed. As such in order for a distributed technology to be used for network management, it has 

to fulfil amongst others the following important characteristics:

Tools to describe the interfaces between communication entities.

Hide the complexity of the underlying layers from the management application 

(protocol independence- applications operate in the same manner regardless of what 

protocol was used for communication).

Mechanisms to access communication entities in a remote fashion.

Communication protocols that support various MEPs to facilitate the communication 

between management entities (synchronous or asynchronous communication).

Mechanisms to register the services offered by a management server so that clients 

can find them and consume them (access and location transparency).

UDDI 4

WSDL

SOAP

http, ftp. MO, 
HOP, and more

C Service discovery

Service publication

Service description

XML-based messaging

C Network

Figure 2-16 A simplified version of the WS stack [58]

Regarding the first characteristic, CORBA defines the interfaces of managed objects (client and 

server objects take up the role of the communication entities in CORBA) representing the 

underlying resources of network devices using the Interface Definition language (IDL). In a 

similar fashion to CORBA the Web Services Description language (WSDL) [57] can be used to 

describe the interfaces between two communication endpoints, a client and a server. In WS the 

client and server can potentially be implemented as objects of a programming language, they can 

be implemented as system processes or as any other software.

As far as the second characteristic, CORBA hides the complexity of the underlying transport 

protocol from the application by using the Internet Interoperability protocol (HOP) that is 

independent of the underlying transport protocol. In WS, SOAP is also independent of the
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transport protocol, supporting different protocol bindings, WS though have to support processing 

models where the underlying protocol can change when passing through intermediaries. As such 

for interoperability purposes each of the bindings that SOAP supports has to be defined a priori 

before used. The common binding of SOAP is HTTP. CORBA’s HOP protocol (HOP is over 

TCP/IP) is broadly equivalent to the default mapping of SOAP to HTTP thus TCP/IP.

For accessing management applications in a remote fashion CORBA uses Interoperable Object 

References (lORs) to describe the location at which an object can be found and the protocol that 

should be used to access it. Thus actually lORs represent references (pointers) through which 

access to managed objects is provided. Uniform Resource Identifiers (URIs) are the most 

common mechanism used in WS to have access to a service over the internet backbone from 

anywhere in the world. WS also offer other more elaborate mechanisms with extra functionality 

as the means of accessing a service (to support synchronous and asynchronous communication). 

One such example is the addresses and mechanisms of the WS-Addressing specification.

In order to support communication between objects, CORBA uses the General Inter-ORB 

Protocol (GIOP). This protocol uses a request response MEP similar to RPC. WS support 

various MEPs to support communication between services. One of those MEPs is the RPC 

messaging model offering the means to support a request-response MEP. RPC though is not the 

only way WS use in order to support a request-response MEP. Actually RPC is not preferred in 

the WS world because it attaches predefined semantics on how to use and structure the payload of 

a message.

Building distributed management applications requires client applications wishing to access a 

server application to be able to discover where to access the latter. In CORBA the name server 

object is a special object to do just that. In CORBA each server object registers an lOR with the 

name server so that objects in client mode can look them up. This way transparent access to server 

objects is achieved. The same can be achieved in WS using UDDI to discover the endpoint 

through which a service can be accessed (section 2.3.2.3). UDDI though can offers more 

functionality than the name server and at the same time offers the means to a consumer to retrieve 

more information about a service (i.e. the service owner, the type of a service, the functionality 

and the specifications a service depends on, etc). In general there are several other ways to 

emulate the functionality of CORBA’s name server in WS. One such way is through a Web 

Server. A Web Server using a SOAP toolkit servlet can host WSDL descriptions of a service and 

thus can be a simple mechanism to emulate the functionality of the name server (i.e. the Apache 

Tomcat [75] Web Server and the Apache Axis servlet [77], [76] combined can provide the 

functionality of the name server).

44



Chapter 2. Literature Review and Related Work

Based on the above observations, it is made clear that die web services basic stack in Figure 2-16 

can be used to support the CORBA object model in Figure 2-5 for building distributed 

management applications. Nevertheless CORBA and WS also have many differences. This is 

mainly attributed to die large number of technologies and standardisation efforts that have been 

invested in WS from the industiy. As such WS have differences in compaiison to CORBA 

regarding how to achieve NSM objectives. As such WS have been enriched with features that 

CORBA was never designed to address (i.e. for service discovery). In the next sections we will 

discuss how the WS industry envisions using WS for NSM,

2.3.3.3 WS-Based Management the WS way
Over the past few years, XML and WS have been used by various research groups to define many 

Web-based specifications for Network and Service Management. From the work introduced by 

these groups so far it seems that the WS industry tiies to differentiate itself in certain aspects from 

how CORBA was used to address NSM objectives.

One of the main attempts that differentiate WS from CORBA is an effort to model the 

relationship between management data representing the state of network resources and WS. 

Behind this attempt a deep debate rages on how to guaiantee interoperability in WS-based NSM. 

As part of this debate, WS puiists [56] believe that WS have no notion of state and that 

interactions with WS are stateless. Thus purists believe that there is no need to model the 

relationship of network resources and WS m order to manage state. On the otlier hand others 

believe that interactions with WS aie stateful and tiy to model such interactions [80] (Grid 

seiwices when the OGSI was initially intioduced). As such they tiy to assign predefined semantics 

on how to manage state. Others including [22] and [81] lie somewhere in the middle between 

these two views. In [22] and [81] authors acknowledge the critical role that state plays in 

distributed management and other disciplines. The latter group believes that managing state 

should be addressed within tlie Web Services architecture. The basis for this argument is that “a 

stateless WS implementation may act upon stateful resources since it may frequently interact 

witli, and cause updates to, dynamic state tliat is maintained in other system components”. In 

these cases, the identity of the state element(s) may be either passed in the request message or 

maintained as static data by the Web service. Thus tlie interface offered by such a Web service “is 

clearly stateful, in the sense that its behaviour is defined with respect to the underlying state” [81]. 

Lately the WS NSM industry has adopted the latter view for managing the state of WS 

representing the underlying resources. On the contrary CORBA and other distributed management 

approaches, used in the past GIOP and RPC to manage state. RPC messaging provides a network 

abstraction for executing procedure calls in a programming language in a remote fashion. To do 

this RPC offers mechanisms to identify a remote procedure, deciding which state must be
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provided to the procedure at invocation time, and what form to use to present the results to the 

invoker of the procedure at the time the call reaches its completion point. Thus RPC attaches 

predefined semantics in managing state (with RPC synchronous interactions across wide area 

networks is very difficult, large scale versioning is very difficult, interoperability issues over wide 

area networks aiise). WS try to avoid that by decoupling the WS interface from the stateful 

resources representing the capabilities of the underlying resource. This way a WS remains 

stateless while it is possible to keep track of state in a separate entity (the resource) which is 

important for some applications. This promotes the building of loosely coupled WS applications, 

the latter making it easier to recover from partial faults when managing state, which in turn 

increases reliability [179]. Also scalability increases since WS do not have to keep state between 

requests and can free up resources or because WS do not have to manage state information across 

requests [179]. In theory statelessness can help solve also some interoperability issues [56].

A second characteristic that differentiates CORBA from WS is how the latter tries to model and 

group the resources properties and attributes representing the state of a device. For WS the Web 

Service Resource Framework is a specification that defines a standard approach on how to 

manage resource properties and attributes representing state, and to how to group them in order to 

provide collective access to state. JIDM was probably the equivalent move in CORBA. The 

approaches taken in these specifications are completely different. WS provide collective access 

through WS composition and grouping resources at the description layer (WSDL). CORBA 

groups state data of resources at the implementation layer.

A third characteristic that differentiates CORBA from WS is service discovery, description and 

inspection. Both WS and CORBA offer facilities for discovering services in order to access them 

in a transparent manner. Contrary to CORBA though, WS have built an entire framework around 

how to provide metadata about services describing the details of each service, the owner of a 

service, dependencies and interactions with other services etc. UDDI simply provides more 

functionality than the name server (i.e. for service discovery, for informing consumers where 

services are offered).

In addition to the previous and contrary to what CORBA has done in the past, the WS-Industry 

has issued two specifications to promote building interoperable applications. The WS 

Architecture (WSA) [92] and the WS-InteroperabiHty (WS-I) profiles [68] are specifications that 

try to provide the means of interoperation between different WS based applications. WSA 

provides a common definition of a Web service, and defines its interactions and relationships to 

other components of the Web Services framework. As such, it tries to guide the community on 

how to build loosely coupled interoperable applications. To do this the WSA describes the 

minimal characteristics that are common and should be used by all Web services, and a number of 

characteristics that are needed by many, but not all, Web services. On the other hand the WS-
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Interoperability profiles try to promote a set of conventions and guidelines and how Web seiwices 

should be built and communicate with each other in order to achieve optimum interoperability.

These among other things differentiate CORBA from WS in using the latter for distributed 

management. The next sections describe how the WS industry envisions using WS for 

management.

2.3.3.3.1 Managing state using the WSRF framework

Based on the previous section, it is evident that the WS industry acknowledged the need of 

modelling stateful resources within a Web Services framework. As a result, mechanisms to enable 

tlie discovery, inüospection and interaction with stateful resources in a standard manner were 

devised. These mechanisms of interacting with resources allow a WS to remain stateless while it 

is possible to keep track of state in a separate entity (the resource) which is important for some 

applications. At the same time only the interface of a WS becomes stateful and is standardized 

leaving other aspects of a service undefined. This promotes tlie robustness of WS applications 

since loosely coupled management applications can be built making it easier to recover from 

partial faults when managing state which increases reliability [179]. In theory statelessness can 

help solve also some interoperability issues [56] (like large scale versioning since the internal 

implementation aspects are left undefined) but the future will confirm this aspect. Two moves 

have made considerable impact on managing state in a WS environment; the Open Grid Services 

Infrastrircture (OGSI) and the WS-Resource Framework (WSRF) [84]. Both frameworks define 

mechanisms to model several aspects of managing state. WSRF is more complete than OGSI, 

since it partitions the functionality required for managing state into several specifications, works 

with standard WSDL 1.1 etc [90].

The WSRF is a framework that defines mechanisms and constructs to enable WS to access state 

in a consistent and interoperable manner. It does this by proposing a set of mechanisms and 

conventions for managing state through statefirl resources. To retain the WS characteristic of 

being stateless, WSRF proposes to distinguish WS from resources and model the relationship of 

the former with the latter. This is done by introducing the WS-Resource [85] construct. WS- 

Resources are constructs providing the means of declaring and implementing an association 

between a WS and a number of stateful resources. WSRF represents the relationship between a 

WS and stateful resources in terms of the implied resource pattern. The latter in simple terms is a 

WS-Addressing [19] endpoint with a number of metadata called End-Point References (EPRs) 

that contain identifiers to stateful resources.

WSRF partitions the functionality required for managing state into five interrelated specifications. 

Each specification tackles a different aspect of managing state. The WS-Resource standard [85] 

mentioned previously analyses how to associate a WS with a resource. The WSRF also proposes
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mechanisms to model the state of resources. This is performed with RP documents. The WS- 

ResourceProperties (WS-RP) standard [86] defines how RP documents expose a number of 

publicly available properties of a resource to users (consumers) that want to access, change or 

delete them. WS-RP also defines that the implementation of RP documents is resource specific. 

As such the implementation of a RP document may not be a document instance of a schema as 

commonly imagined. Other implementations may chose to dynamically construct the RP elements 

from data held in programming language objects. Any implementation of an RP is allowed. 

Linking a RP document with a WS interface is also necessary. According to WS-RP this is 

performed using an attribute declaration inside the WSDL portType definition of the WS 

interface. Having defined how to associate a RP document with a WS, WS-RP also standardises 

how to retrieve data from RP documents. The latter is performed by using a set of standard 

operations in order to access, and change the state of a resource in terms of its properties.

The WSRF also provides mechanisms to manage the lifecycle of a resource, to group resources, 

and a common way to report faults. The WS-Resource Lifetime (WS-RL) [87] specification 

standardises the message exchanges that need to take place in order to destroy a WS-Resource. In 

general WS-RL gives guideUnes in order to manage the lifecycle of a resource. Apart from 

managing the lifecycle of resource an important aspect according to the WSRF in managing WS- 

Resources is how to group stateful resources in order to provide collective access to them. The 

WS-ServiceGroup (WS-SG) [88] specification provides the means to build WS offering collective 

access to properties of various WS-Resources. This is performed using membership constraints 

based on the properties that resources share, WSRF also recognises that when exchanging 

messages with WS-resources, faults can occur. The WS-BaseFaults (WS-BF) [89] standard 

describes a base fault type for describing errors produced when exchanging messages to access 

resources. Message exchanges for reporting and managing faults though are not defined. This is 

provided by other standards like WS-BaseNotification [91]. The WS-BaseNotification standard 

defines how events are filtered and delivered to their recipients, supports brokering relationships 

between consumers and producers of events when managing faults etc.

2.3.3.3.2 Web Services for Management specification
Based on the concepts of the WSRF, the Distributed Management Task Force (DMTF) has 

introduced a variety of WS-based management specifications [11], [15]. DMTF has invested 

considerable research effort in service management and has designed specifications such as the 

Web Based Enterprise Management framework (WBEM) [11]. The latter is a framework that 

encompasses a set of management technologies developed to unify the management of distributed 

computing environments and devices. A key aspect of the WBEM framework is the Common 

Information Model (CIM) [15]. The latter provides a set of generic classes from which
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application-specific information models are derived. DMTF has devised a mapping of CIM to a 

web services environment for the purposes of the WBEM framework. The WS-CIM specification 

[79] provides a simple way to map the vast management information available by DMTF to Web 

Services formats by enabling automatic translation of CIM management data. DMTF performs 

this by mapping tlie CIM (classes, properties and methods) to XML Schema and WSDL 

descriptions via an explicit algorithm programmed for automatic translation.

DMTF has also defined the Web Services for Management (WS-Management) specification [12]. 

The latter specifies how to identify a manageable resource and how to initiate communication 

with it. As part of this work DMTF has also devised a binding of CIM to WS-Management [78]. 

This specification describes how to communicate using the WS-Management framework 

operations with resources modelled witli WS-CIM.

WS-Management recognises the need to manage state through stateful resources and defines its 

own conventions and operations based on the WS-Transfer specification [22]. In essence, WS- 

Management describes a general WS protocol based on SOAP that tries to address several aspects 

of the management process. As such WS-Management tries to tackle aspects such as (a) how to 

access, modify and delete single or multiple instance XML management data representations in an 

interoperable manner (b) security (c) event reporting and (d) fault management. To address these 

domains, WS-Management depends on many other specifications. As a result WS-Management 

uses specifications such as WS-Addressing [19], WS-Eventing [20], WS-Enumeration [21], WS- 

Transfer [22] and WS-Security [23] for several aspects of the management process.

The basis of WS-Management is the WS-Transfer specification [22]. WS-Transfer defines a set 

of generic operations for acquiring, deleting and changing XML-based representations of resource 

data offered by managed systems such as PCs, servers, routers etc, through WS interfaces. WS- 

Transfer defines two operations for sending and receiving XML representations of management 

data. Another two operations allow creating and deleting these representations. WS-Transfer 

defines that these operations are exposed as methods of two consti ucts that model the relationship 

between stateful management data and WS. Both of these constructs represent the need to manage 

state through stateful resources. WS-management uses these constructs to define its own 

conventions for managing resources in a similar fashion to the concepts of WSRF. The two 

constructs aie (a) the resource entity and (b) tlie resource factoiy entity. The first construct 

represents WS offering access to XML representation of management data (resomces) through 

EPRs of the WS-Addressing specification. The second construct represents WS that can be used 

as factories for creating new resources from XML representations of management data.

In addition to tiying to model the relationship of WS with resources for interoperability, WS- 

Management tiies to standardise a number of operations for managing the event reporting
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procedure. For tliis goal WS-Manageraent uses the WS-Eventing specification [20]. The latter is a 

specification for subscribing and receiving events that carry information signifying that something 

worthy that needs to come to the attention of the receiving entity has happened (i.e. a fault when 

accessing or trying to modify the state of a resource). WS-Eventing supports a) discovering the 

event-types an event producer supports (b) discovering events a producer of events currently 

holds, (c) subscribing to an event, (d) event filtering to send events only to someone that wants to 

receive them and not to produce events no-one wants to receive, (e) defining an expiration date 

for receiving events, and, (f) asynchronous style messaging through a callback address for 

delivering events. To support the data filtering mechanisms required by WS-Eventing, the latter 

makes use of the XML Path language (XPath) [82], [83], which is a language used to select 

different portions of an XML document based on some constraints (merging and filtering 

constraints). To support an asynchronous style of delivering events, WS-Eventing uses the WS- 

Addressing specification. The latter is used as a callback mechanism by the entity (i.e. a WS) 

producing an event to call back the entity (i.e. a WS) that needs to receive the event. This is 

required since the time of the production of an event is not known and as such asynchronous 

communication is necessary. In addition to the previous, event subscription requires mechanisms 

to ensure message integrity, message confidentiality, and single message authentication. WS- 

Management performs this by using the concepts of the WS-Security specification.

Many of the message exchanges performed using the WS-Management specification can generate 

faults. Having a common way to describe faults in WS promotes sharing of a common 

understanding and view of faults between distributed applications. This is necessary because for 

example different programming languages Uke Java and C++ can map exceptions to different 

fault types and this can create confusion. WS-Management adopts SOAP 1.2 faults as the base 

fault type for describing errors produced when exchanging messages to access resources.

Finally WS-Management also acknowledges that there are going to be occasions where a resource 

might have multiple instances i.e. event log data etc. The specification of WS-Management does 

not try to tackle how to model resources with multiple instances (as the WS-RP specification 

does). It recognises though that if a resource has multiple instances and provides a mechanism for 

enumerating or querying the set of these instances, WS-Enumeration can be used to perform the 

iteration. Implementation specific details though are not given.

The operations that WS-Management adopts from WS-Transfer and WS-Eventing and their 

description are given in Table 2-2.
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Get Reti'ieves resoui'ce representations

Delete Deletes resources

Create Creates resources

Put Updates a resowce

Enumerate Establishes an enumeration context for modelling 

resources with multiple instances

Pull Iterates over a result set with an iterator

Release Releases tlie enumerator and its associated resources

Subscribe Subscribes to receive events

Unsubscribe Cancels a subscription

Renew Extend a subscription

SubscrîptîonEnd Warns the event receiver that subscription is ending

Acknowledge o f  Delivery Event receiver acknowledges receiving an event

Refusal o f  Delivery Event receiver responds with a fault instead of 

acknowledging receiving an event

Table 2-2 WS-Management operations

2.3.3.3.3 The Web Services Distributed Management specifications

Another important move in the world of NSM is that made by the Web Services Distributed 

Management (WSDM) group. This group has issued two specification documents; (a) the 

Management Using Web Services (MUWS) specification [13], [14] (b) the Management of Web 

Services [24] specification (MOWS). The former details how to manage the resour ces of devices 

with the use of WS, and the latter how to manage the WS endpoints through which WS interfaces 

are accessed [93].

MUWS similar to WS-Management also recognises that the interface maintained by a WS is 

stateful, in the sense that its behaviour is defined with respect to the underlying state. MUWS 

adopts the concepts of WSRF for managing the state of resources. Based on WSRF’s concepts, 

MUWS introduces the concept o f the manageable resource which is a refinement of a WSRF 

resource. MUWS defines that a resource is manageable when it exposes a set of manageability 

capabilities. The latter is a set of resource properties, operations, events, metadata describing the 

specific behaviour of a resource and defining its ability to be managed.

According to MUWS, manageability capabilities are separated into (a) common manageability 

capabilities and (b) resource specific manageability capabilities. MUWS defines a set of standard 

model elements to describe common as well as resource specific manageability capabilities
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(properties of a resource). It also allows resource specific models such as the information models 

of CIM or SNMP to describe resource properties as a set of resource capabilities.
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Figure 2-17 The concepts of the WSDM architecture

GetResourceProperty Retrieves properties requested explicitly

GetMultipleResourceProperties Retrieves multiple properties requested explicitly

QueryResourceProperties (QRP) Retrieves selectively or in a bulk manner a number of 

resource properties using a query language (e.g. using 

XPath)

QueryReiationShipsBy Type 

(QRBT)

Retrieves information from a particular relationship type 

a resource shares with other resources

SetResourceProperties Modifies (inserts, updates, and/or deletes) the specified 

properties o f a resource

Subscribe Requests that specific notifications are sent to an event 

consumer

GetCurrentMessage Requests from the producer o f notifications for a resource 

to send the last message on an event topic

Notify Notifies a consumer about an event

PauseSubscription Pauses a subscription to receive events

ResumeSubscription Resumes a subscription to receive events that has been 

paused.

RegisterPublisher Creates tfie registration of a resource as a notification 

publisher at an event broker

Destroy Destroys the registration of a resource at an event broker

Table 2-3 MUWS operations that a WS interface must implement to manage resources
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The basic concepts behind the MUWS aichitecture aie shown in Figure 2-17. In this figure the 

WS endpoint is called a manageability endpoint and it provides access to a manageable resource 

through a WS interface. The WS interface is linked to the RP document’s definition (its XML 

schema) by referring to it with a special attribute defined in the portType element of the WSDL 

document tliat describes the WS-interface. This way a WS-Resource is formed. From Figure 2-17 

we can also observe that the RP document has no specific implementation. This permits the RP 

documents to have resource specific implementations. As a result the manageability consumer 

does not have to wony about the implementation of the WS-Resource. Therefore the only tiling 

the consumer has to perform is to invoke a set of standard operations to access the properties of a 

WS-Resource in an interoperable manner. These operations allow the consumer to request 

information about the resource, subscribe to events, or, control the resource. Most of these 

operations are inherited by WSRF and the WS-BaseNotification [33] standard, the latter being 

used for manipulating event information within the MUWS framework. MUWS also defines a 

new operation in order to access tlie relationships that resources share. The operations that 

MUWS supports and their description are given in Table 2-3.

2.3,3.3.4 Converging the various Standards

HP, IBM, Intel and Microsoft are companies behind many of the management specifications 

introduced previously that define several aspects of WS-based applications such as notifications, 

management and resource handing. In March 2006 these companies decided to develop a 

common set of specifications for resource handling, eventing and management to promote 

interoperability. This will be performed by building on existing specifications and defining a set 

of enhancements that enable the convergence of their standards. The new specifications that will 

emerge from these enhancements will be designed to be extensible so as to cover for aspects that 

were not conceived at the time of their introduction. The areas where changes will occur and 

which all companies agreed to address include (a) resource management (b) events and 

notification management (c) and WS-based management [94].

In the aiea of resource management the companies agreed to extend and support WS-Transfer and 

WS-Enumeration with two specifications (WS-Transfer Addendum and the WS- 

ResourceTransfer) and a newer version of an existing specification (WS-MetadataExchange (WS- 

MEX) [96]). WS-Transfer Addendum extends WS-Transfer by revising the operations of the 

latter in order to allow a user to specify a subset of a resource to be retiieved, updated or changed 

as it may not be necessary in some cases to handle the entire state of a resource. All companies 

also agreed that the new WS-MBX specification will need to support exchange of metadata 

between WS applications through the Get operation of WS-Transfer. In the past WS-MEX 

defined its own operations for how metadata can be embedded in WS-Addressing [98] EPRs, and
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how metadata could be retrieved from a Web service endpoint. These operations though did not 

promote interoperability. As part of making the new WS-MEX specification more interoperable, 

the latter now defines also how metadata associated with a Web Service endpoint can be 

represented as WS-Transfer resources. To do this, the new WS-MEX specification introduces the 

mex:Metadata element. This is a new element contained inside WS-Addressing EPRs so as to 

provide an interoperable way to convey metadata as WS resources. As part of all the changes for 

resource management all companies agreed to jointly develop a new specification known as WS- 

ResourceTransfer (WS-RT) [95]. The latter borrows advanced concepts from the WSRF and 

extends operations Create', Get', and Put' of WS-Transfer to support creating, retrieving, and 

updating partial elements of a resource. This will result in having improved performance since it 

may not be necessary in some cases to retrieve the whole state of a resource as it may be very 

large to retrieve or update. WS-RT also borrows from WSRF the concept of managing the 

lifetime of a resource. Figure 2-18 shows the support of all companies to existing standards for 

resource management (shaded blocks represent jointly agreed upon specifications).
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Figure 2-18 Jointly supported specifications in the area of resource management [94]
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Figure 2-19 Jointly supported specifications in the area of event management [94]

All companies also agreed in defining a new specification for subscribing and receiving events 

based on concepts of the Web Services Base Notification (WS-Notification). The new 

specification will be called the WS-EventNotification and it is based on extended concepts of the
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WS-Notification. WS-EventNotification is a superset of WS-Eventing, and uses WS-RT to 

support a WSRF resource model for managing event subscriptions. Figure 2-19 shows the 

support of all companies to existing standards for event management (shaded blocks represent 

jointly agreed upon specifications.)

Building on the joint work in the area of information distribution and event notification a new 

common WS management specification is being designed by all companies. This new 

specification is based on the WS-ResourceTransfer and WS-EventNotification specifications. 

Figure 2-20 provides an overview of the new specifications and their relationship to existing 

specifications for management. In essence Figure 2-20 shows that the reconciliation of the 

resource management and event/notification specifications of all these companies enables 

reconciliation of many of the functions of the management specifications. The latter promotes 

building interoperable management applications.
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Figure 2-20 Jointly supported specifications in the area of WS-based management [94]

2.3.3.3 5 XML-based Configuration Management

Complementary to the work of all the previous industry companies for WS-based management, is 

another XML-based approach for configuration management. The Network Configuration 

protocol (NetConf) is the result of this work [25] trying to address the shortcomings of SNMP 

such as transaction support and security. NetConf uses a set of predefined operations (edit-config, 

copy-config etc) to change some of the configuration parameters of a managed device. This is 

achieved by uploading or configuring at the agent of a managed device a new configuration stored 

in an XML document. When this configuration document is completed, it is then parsed by an 

agent that enforces if possible the new configuration values. To enable transaction support for 

NetConf, its architects allow the document containing a device configuration to be retrieved, 

deleted, copied, enabled, locked, revoked etc. The architects of NetConf also introduced security 

features in NetConf through the transport mappings of the latter. NetConf supports currently three 

transport mappings, NetConf over SSH [27], NetConf over BEEP [28], NetConf over SOAP [26]. 

All transport mappings support security features to ensure authentication, data integrity and

55



Chapter 2. Literature Review and Related Work

confidentiality. Work on NetConf itself has been finalized. The NetConf group though has also 

associated itself with work on associated data models to be used for configuration management 

(event models, information models). This work is still in the process of definition.

2.3.4 Research in WS-based Network and Service Management

From all the above standards and specifications that we have introduced in the previous sections it 

is evident that a lot of work and research effort has been invested into evolving XML and WS 

based standards for network, service and system management. WS and XML have great potential 

in being used for Web-based management but this potential raises also a few concerns. WS face 

(a) potential problems for dealing with the strict performance requirements of NSM (b) 

interoperability problems when building WS management applications (c) modelling and 

standardisation problems when translating information models and operations from other 

technologies to WS etc. An important concern about the use of WS for NSM is that WS may not 

be able to support efficient and optimised mechanisms for accessing, deleting or modifying 

management data representing the state of a device. A second concern is how to perform WS- 

based NSM, and at the same time be backwards compatible with previous management 

technologies such as SNMP. There are other problems with the use of WS for NSM but many 

research papers have focused in the past on evaluating the performance of WS-based NSM, some 

of which are also trying to provide solutions for backwards compatibility with previous 

management technologies. These papers can be broadly classified in five categories (a) 

performance of SOAP messaging and means to improve it (b) WS-based network management 

monitoring (c) WS-based event reporting (d) XML/WS based gateway schemes for backwards 

compatibility with SNMP for monitoring or event reporting (e) XML-based configuration 

management based on NetConf.

2.3.4.1 SOAP messaging performance

Many researchers have studied the performance of SOAP communication in the past. All of them 

reach to the conclusion that the performance of SOAP depends highly on the following 4 factors 

(a) software and toolkits used (b) parsing techniques (c) compression techniques (d) encoding and 

serialisation styles.

Regarding the first factor, the authors in [111] conclude that some web servers used for deploying 

toolkits for SOAP messaging or WS are better than others (i.e. Apache Tomcat and Sun Server 

are better than the IIS server of Microsoft). In addition to the previous, some toolkits for building 

and deploying SOAP messaging applications or WS perform better than others [112], [113], [114] 

(i.e. Apache Axis for Java [76], [77] is better than SOAP RMI [146] or SOAP Lite [147] or 

gSOAP [145] for C++ is better than the C# toolkit). This is attributed to the different parsing,
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binding, and serialization techniques etc that each toolkit uses. As such the choice of software and 

SOAP toolkit can make a dramatic difference in the performance of SOAP-based communication.

In relation to the previous, the techniques of parsing the XML documents carried within the body 

of a SOAP message also affect performance. Using general purpose XML parsers that have no 

knowledge of the structure of the data that needs to be processed and encoded, is a bad practice 

that deteriorates performance. Using schema specific parsers based on the data tliat needs to be 

encoded can seriously increase performance [115]. In addition, minimising the number of times a 

document has to be parsed and validated compared to its schema for the purposes of SOAP 

messaging also affects performance. In the past many parsing schemes were operating by parsing 

a document’s XML schema for validation of every request to access XML data. It was only quite 

recently, for example, that suggestions in [116] to parse XML schemas only once have been 

adopted by the JAVA API for XML Processing [161].This move minimises encoding latency and 

increases performance substantially. In addition pull parsing techniques suggested in [114] in 

order to optimise WS performance in cases where the XML elements of a document need to be 

accessed in succession or when some element have been parsed before and do not need to be 

visited again, have been adopted by tlie Apache AXIS 2.0 and Codehaus XFire Toolkits. These 

SOAP toolkits use the Streaming API for XML processing (StAX) pull parser to efficiently split 

an XML stream into small sized chunks. As such they can build a partial XML infoset tree in 

memory in an incremental manner, allowing applications to start processing the XML content 

even before the entire document has been parsed.

Performance also depends on compression techniques. In the past general approaches to 

compression were used for compressing XML data with SOAP. These schemes were not very 

efficient. As such, this affected performance of SOAP communications greatly. The idea behind 

general approaches used in the past was that of coding the symbols that appear* in an XML 

message according to the rate tliey appear within the message. A bigger number of bits ar e used 

for rare symbols and a smaller number of bits for frequent symbols (entropy coding). A new idea 

that increases the compression rate and minimises time overhead, is source encoding borrowed 

from the field of image, video and signal processing. One method of source encoding that can be 

applied to compression of XML data is differential encoding. Differential encoding schemes 

encode only the changes between a SOAP message sent at a moment in time t+1 and a previous 

message sent at time t. This reduces compression time [118] but also improves traffic overhead. 

Approaches using differential encoding aie gaining ground and increase the performance of 

SOAP communications.

Another issue in SOAP performance is encoding and serialisation. As explained previously there 

are four styles of encoding RPC/encoded, RPC/literal, Document/literal, Document/encoded. 

Literal approaches produce less verbose documents and thus decrease latency and traffic overhead
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and as a result increase performance. Document styles can also be easily validated. Thus literal 

approaches should be the norm for building SOAP messaging applications [119], [113] especially 

since the WS-Interoperability profile mandates their use (Document literal. Document/literal 

Wrapped). Serialising data in XML, especially binary data is also an issue that affects 

performance. The use of MIME encodings to serialise binary data increases processing cost, code 

size and decreases performance. The use of DIME binary encodings as suggested in [116] can 

overcome these problems. DIME encodnigs are now supported in commercial and some open 

source toolkits (i.e. the Java API for XML Web Services (JAX-WS)). AXIS 2.0 and XFire 

toolkits also support the JAX-WS API. One of the most interesting features of Axis 2.0 and its 

AXIOM object model (AXIs Object Model), is its built-in support for the W3C XOP (XML- 

binary Optimized Packaging) and MTOM (Message Transmission Optimisation Mechanism) 

standards used in the latest version of SOAP attachments. These two standards work together 

providing a way for XML documents to logically include blobs of arbitrary binary data into 

SOAP messages. XOP and MTOM are crucial features of the new generation of Web services 

frameworks since they finally provide interoperable attachment support and end the current 

problems in this area [125].

By adopting all these optimisations the peformance of SOAP toolkits has increased. Quite 

recently in a comparison [97] between Apache AXIS 2.0 (1.4 version) and AXIS 1.4, the authors 

showed that using the AXIOM object model and StAX for pull parsing, and the ADB( Axis 2 

Data Binding) or XML Beans binding framework for serialising data, has increased the latency 

performance of AXIS 2.0 by 3 to 5 times compared to AXIS 1.3 (this work extends the research 

work in [114]). In addition the same authors in [97] have shown that the ADB binding framework 

for serialising data compared to the Java API for XML Binding framework (JAXB) is better. This 

is the main reason why AXIS 2.0 is superior to XFire [40]. Currently these two frameworks are 

some of the faster WS toolkits available, and quite recently the XFire group has joined the 

Apache Software foundation. This is the main reason we use in the measurements in chapters 3,4, 

5 and in [180], AXIS version 1.x and 2.x since they are fast toolkits supporting the Java APIs we 

use in our work.

The performance of WS and SOAP though, is not just influenced by the parsing and serialisation 

techniques used in SOAP/WS toolkits to handle the XML infoset, but also in terms of the 

processing required to perform on this infoset. In our research in chapter 4 we will show that 

processing XML data, makes the performance of the XML Path language used to process and 

alter management data stored in XML to be worse compared to a custom query toolkit we have 

built that processes raw data instead. In chapter 4 we will show that the overhead introduced by 

processing management data is equally and in cases where the management data volume increases 

more important than the parsing and serialisation overhead (XPath implmentations introduce 10-
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16 times more latency than the custom query tool when the volume of information to be processed 

is large). As such the perfoimance of query tools to process management data affects the 

perfomance of management operations such as monitoring and event reporting. This is the main 

drive behind building our own query tool which we introduce in chapter three.

2.3.4.2 WS-based monitoring for Network Management
A lot of researchers have also investigated the potential of WS for network and service 

management. Researchers in [120], [121], [122] and [123] evaluated the performance of WS 

against traditional management technologies such as SNMP and CORE A. Their results suggest 

that WS are considerably worse than SNMP in terms of traffic overhead when the number of 

management objects retrieved is quite small. The situation becomes better when the number of 

objects that needs to be retrieved increases. In terms of latency, [122] suggests that although WS 

require bigger encoding time, the fact that SNMP does not support caching (resulting in a new 

search from the start of the MIB tree every time a new request arrives) results in WS having less 

latency overhead than SNMP. This happens both for when the volume of data retrieved is small or 

large. In terms of a comparison between CORBA and WS, the former according to [120] 

performs better in all cases in terms of latency and traffic overhead. All papers though agree that 

WS can be potentially used for NSM. An investigation in [123] of the performance of the two 

service management standards (MUWS, WS-Management) also verifies this. In [123] the authors 

have tailored these standards in order to use them for the needs of network management. As such 

they use these standards to simulate SNMP operations (get, getBulk) and evaluate their 

performance against the latter when performing polling based monitoring. These experiments 

have shown again that WS in terms of traffic overhead perform quite worse than SNMP. 

Regarding response time, WS-Management and MUWS perform a bit worse than SNMP but not 

to a point that would prevent their use for management. In terms of memory overhead the authors 

conclude that the two standards require quite a lot of memory allocated to the Java virtual 

machine, to the web server and the agent they developed. Still the autliors conclude that the use of 

these standards for network management is not prohibitive.

Based on the above it would appear that WS could be used for network monitoring only in cases 

where a great amount of data needs to be retrieved [120], [121], [122], [123], as they constitute a 

relatively heavyweight technology in terms of memory, latency and traffic overhead. Two factors 

though influencing the performance of WS in all these resear ch papers have not been investigated. 

The first factor is that all researchers assume that the complexity of management operations for 

monitoring is limited to retrieving management data sequentially or in a bulk way. This is not 

necessarily correct. Sometimes monitoring can involve scenarios that require more complex 

operations such as information processing, selective retrieval, or bulk retrieval from various areas
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of the information tree etc. Acknowledging this need OSI-SM offered facilities for bulk and 

selective retrieval. At the same time SNMP architects recruited the DISMAN charter to provide 

mechanisms to cater for such scenarios showing how important it is for a technology to provide 

solutions for such situations. This is important because even with simple information models such 

as those of SNMP, retrieving data representing a part of the state of a device sequentially or in a 

bulk way from an information tree may not be enough. This occurs because usually management 

data hide a lot of relationships with other state data. Having a complete view of the state of a 

device with monitoring in such cases requires retrieving several values from different parts of the 

information tree. This requires information processing for bulk and selective retrieval of 

management information based on the relationships state data share. The second factor that has 

been overlooked, is that all the authors mentioned so far have not investigated the performance of 

WS and SNMP in an environment where distributed monitoring and task delegation is required to 

retrieve the state of device. To show the importance of load and task distribution, SNMP 

architects created several distributed management extensions to SNMP since several occasions 

arise when the manager has to process data from many agents which can be a daunting task. In 

cases like this, performance of WS compared to SNMP can be different.

Having not investigated scenarios where complex operations and task delegation for monitoring 

are required, one can not deduce any accurate and complete conclusions regarding the 

performance of WS for network management. One of our goals in this thesis is to use WS for 

network management under an enviroment where task delegation and load distribution is 

required, and design and build tools that will facilitate such operation. This way we can evaluate 

the performance of a WS-based network management framework and extract safer conclusions.

2.3.4.3 WS Network Management Gateway Schemes and Architectures
A lot of researchers have also tried to use WS for network management but at the same time 

remain backwards compatible with previous management protocols such as SNMP. This is very 

important since most devices that can be managed already support legacy protocols like SNMP.

In [126], [127], the authors suggest the use of an XML to SNMP gateway which operates 

between an XML-based manager and a SNMP agent. The gateway translates the operations of 

one system to the operations of the other and vice versa, for polling based monitoring. The 

authors in these papers propose a set of guidelines for translating the Structure of Management 

Information (SMI) SNMP MIBs to XML schemas using a version of the smidump tool [142]. The 

latter is a program used to dump the contents of a single MIB or PIB module or a collection of 

modules to the standard output channel in a selectable output format. This format may be a simple 

tree of nodes, but also a format fully compliant to SMIvl, SMIv2, or SMIng or CORBA IDL or 

an XML Schema etc. Smidump can thus be used to convert modules from SMI to XML Schemas.
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Based on this translation scheme, the authors have also built a gateway implemented using Java 

servlet technology. Inside the gateway, using an XML paiser (DOM) and an XML document 

syntax selection tool (XML Path Language), the authors translate XML/SOAP operations to a 

series of SNMP operations for monitoring and event reporting.

In addition to the previous work, tlie authors in [128] have also used smidump for translating the 

SNMP MIBs to XML. The authors have also intioduced the concept of protocol level and object 

level translation gateways. These two types of gateways introduce the means to map management 

operations of established protocols such as SNMP, into operations supported by WS-based 

management systems. The protocol level gateway directly maps SNMP primitives to WS 

operations (e.g. Get, GetNext, and Set). An object-level gateway exposes a number of WS 

operations to the manager allowing the latter to access specific management information from a 

device. Retrieving for example a specific SNMP table can be offered in an object level gateway 

through a specific operation offered by the gateway (i.e. GetlfTable to get the interface table of 

the Network Management of TCP/IP-based internets MIB [129], [130]). When evaluating the 

performance of these gateway schemes tlie authors conclude that protocol level gateways aie not a 

viable solution since the verbosity of XML tags incur a large overhead compared to SNMP. 

Object level gateways are viable for WS-based management of legacy devices only when the 

volume of management information tliat should be retrieved is quite large. Extending their work 

on gateways the authors in [133] compare the performance of their gateway schemes with SNMP 

in a management by delegation environment using the SNMP Script MIB, In this paper the 

authors introduce a new type of gateway called the service level gateway, Seiwice-level gateways 

are built to expose through WS interfaces the set of services that a MIB provides (in the paper the 

authors implement the operations of the Script MIB). The MIB stmcture in service level gateways 

though is not strictly followed. In the investigation performed the service level gateway consumes 

less bandwidth than SNMP and the other two gateway types they have investigated in [128]. 

Seiwice level gateways also exhibit a response time quite close to that of SNMP, making the 

former as the authors claim a good candidate to perform network monitoring operations.

In addition to the previous work, the authors of [131] introduce three methods for interactive 

translations of SNMP operations through a gateway scheme; (a) DOM-based translation (b) 

HTTP-based translation and (c) SOAP-based translation. In DOM-based translation an XML- 

based manager calls a DOM interface that is hosted in the gateway. After this call each XML 

request is translated to a series of SNMP operations between the gateway and the legacy managed 

device supporting SNMP operations. In HTTP-based translation the gateways analyse XPath and 

XQuery expressions sent to them by an XML-based manager wlrich are then translated to SNMP 

requests. With this scheme bulk and selective retrieval can be supported reducing the management 

traffic between the XML-based manager and the gateway. This process though introduces
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processing and memory overhead. In SOAP-based translation the gateway exports a set of 

sophisticated resource specific operations to the XML-based manager. Using these operations the 

manager can also look up management information in a bulk or selective manner using XPath 

expressions.

Another gateway scheme has been introduced in [139] and [140]. The gateway system supports 

interactions of an XML-based manager with an SNMP based agent as well as interactions 

between pure XML-based managers and agents. The gateway supports monitoring, event 

reporting and configuration operations as well as bulk and selective retrieval of management 

information with XPath. The authors have configured their own XML schema with a number of 

statically predefined data types to map management information for monitoring, event reporting 

and configuration to XML.

Contrary to all the previous schemes, the authors in [135] have defined an architecture to support 

XML-based network management in a more flexible and dynamic way. Previous systems such as 

the one in [139] and [140] are static XML adapters to existing subsystem interfaces. As such all 

the previous architectures and schemes were not flexible and modular enough to support new 

subsystems added in a management system. A lot of performance gains are not exploited in this 

way. On the contrary, the new architecture in [135] proposes to process the XML transaction that 

will be mapped to a managed device operation in a dynamic manner. This means that when new 

subsystems are added in the management system, the software supporting pre-existing sub

systems does not have to be modified. To support this, the architecture in [135] allows providing 

new features just by modifying or adding extensions to the XML schema supporting the features 

of pre-existing sub-systems. The XML schemas contain all of the information necessary to 

validate and route management transactions to the new subsystems and to update the command 

line interfaces that can support the new features. The authors claim that they have no knowledge 

of another system that can be updated in this fashion without modification of the common 

management software. The authors also promote a model for representing management 

information within an XML schema. Using this model they try to increase latency and traffic 

overhead performance gains.

All the previous gateway schemes have not addressed though security aspects. In most 

management protocols and frameworks security is an important aspect. The work in [132] 

introduces a role based access paradigm to provide security extensions for XML to SNMP 

gateways in order to address authentication, confidentiality and authorisation issues. The authors 

show how to integrate the security extensions they propose inside pre-existing frameworks that 

support network management operations using gateways.

All the gateway schemes introduced so far recognise the importance of remaining compatible 

with previous management technologies. Many of these gateway schemes also recognise that it is 

equally important that the performance of network management operations is not compromised.
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What also matters is how these two guidelmes aie achieved. In tlie gateway schemes presented, 

operations of legacy protocols such as SNMP are mapped to XMLAVS/SOAP operations. This 

increases in some cases the perfonnance of the XML-based solutions in terms of latency and 

tiaffic overhead. Such schemes though are not flexible since in order to deploy various levels of 

granularity in retrieving management data, a WS interface has to expose a very big number of 

functions (i.e. object level gateways). This increases memory overhead. In cases where a large 

population of WS is required in order to represent the underlying resources, approaches such as 

these with a big number of functions exposed by each WS interface are not scalable. In addition, 

some of the gateway schemes introduced provide support for tools such as XPath or XQuery to 

retrieve data in a bulk or selective way trying to minimise traffic and latency overhead in cases 

where the entire state of a device need not be retrieved. In essence schemes that use query tools to 

retrieve management data in a bulk or selectively manner may be more efficient. This can be true, 

because when using query tools to retrieve the exact state data from the underlying device, it is 

possible to use a single method per WS interface to achieve the same granularity as previous 

researchers did with many specialised methods. As such query tool schemes can be more 

lightweight. However tliere have been various concerns in the NetConf mailing list [25] that 

XPatli or other query tools might be too heavyweight in terms of memory and latency overhead 

for handling management data for configuration management, monitoring and event reporting. In 

the next chapters we will show that XPath can be a heavyweight tool when performing certain 

management operations under certain conditions. Thus alternatives should be looked at, and 

possibly more lightweight tools for network management should be built. At the same time the 

WS industry, as we saw previously in the roadmap of the MUWS and WS-Management 

standards, tries to promote a common set of management operations to access management 

information for interoperability. Thus it would be more plausible when building gateways or any 

WS-based monitoring and event reporting sub-systems, to support the operations of these 

standards when mapping WS operations to legacy devices. Any gateway-based management 

solution should adhere to the concepts of these standards, otherwise interoperability will suffer 

(object level gateways, service level gateways etc introduced in this section do not support the 

operations of WS management standards).

2.3.4.4 WS-based Event Reporting for Network Management
Some researchers have also investigated the potential of using WS for event reporting. In [124] 

researchers have evaluated the performance of the WS-Notification standard and SNMP for event 

reporting. To do this the authors have used SNMP traps to evaluate SNMP’s notification 

performance. At the same time, the authors used the WS-Base notification standard and three 

gateway schemes so as to map SNMP traps to the operations of the former, for WS based event 

reporting. The first gateway scheme maps the contents of the fields of an SNMP trap directly to
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WS-Notification message fields. The second gateway pushes the content of an SNMP trap in 

binary format inside one of the fields of the WS-Notification standard. The authors describe this 

mapping strategy as a tunnelling approach. This is because the gateway between the Web Service 

manager and the SNMP agent uses the WS-Notification messages as a tunnelling mechanism 

between the notifying agent and the notified manager. The third gateway acknowledges the fact 

that in traditional management, SNMP traps usually trigger in the notified manager a sequence of 

SNMP requests back to the notifying agent. This means that in such cases the manager requests 

from the agent additional information related to the reported event. As such, the goal of the 

proposed gateway is to move the SNMP interactions to receive extra information about an event 

closer to the notifying device, and contact the distant manager only after having collected all the 

relevant information related to the event being reported. Testing the three schemes the authors 

conclude that the direct mapping gateway and the tunnelling gateway perform considerably worse 

than SNMP traps. The third gateway performs better than SNMP both in terms of latency and 

traffic overhead SNMP. The authors conclude that the third gateway scheme has great potential. 

Still, this scheme is not very flexible since the whole strategy of what the gateway should retrieve 

from the agent when a trap is transmitted, is hardwired. A more flexible scheme would be more 

promising.

At the same time authors in [34] have explored the performance of the WS-Notification standard 

messages for event reporting against simple text based approaches such as sending events in raw 

XML format or sending events data in raw binary format. From their examination of the three 

methods for reporting events the authors suggest that WS standards are best used at the edge of a 

domain and not as part of the core distribution because these standards are not scalable. On the 

contrary, the authors suggest using custom based solutions inside a domain that are proprietary or 

open source for better performance.

Combining the suggestions of [124] and [34], it is evident that a custom event reporting system 

based on a flexible (not hardwired) logic for configuring events and managing the event process 

can be a promising solution for event reporting. This system should be able to send WS-based 

standard messages for event reporting at the edges of a domain but also send event reports in an 

application specific manner within a domain. One of the goals of this project was to build such a 

system. In the next chapters we will investigate policies and the WS-Notification standard to 

facilitate the design and implementation of such a system. We will then evaluate its performance 

compared to other event reporting systems.

2.3.4.S XMLAVS Based Configuration Management
Although NetConf is under the scope of interest of most researchers for configuration 

management, most of its ideas come from a previous attempt to address configuration
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management problems developed by Juniper Networks. The JUNOScript API [141], [157] was 

designed to support configuration of the state of a device by alteration of the state data of the 

latter. JUNOScript is an XML-based configuration protocol supported by a lightweight remote 

procedure call oriented model of exchanging messages, sitting on top of a connection oriented 

transport protocol such as SSH or Telnet. The connection oriented transport protocols allow 

exchanging management configuration information in a secure reliable manner with no 

limitations in size. JUNOScript supports both an XML messaging system of operations for 

configuration of devices as well as a command line interface. The latter is supported by a 

rendering device translating between CLI commands and XML message exchanges (operations). 

To support the translation of these operations, the messages containing them aie processed and 

translated by using a proprietai y lightweight XML paiser that uses a subset of XML features.

Although JUNOScript was a precursor of NetConf, most reseaich in configuration management is 

focused on NetConf. Various implementations of the NetConf protocol have investigated the 

performance of NetConf for configuration management. In [134] the authors have proposed and 

implemented an architecture based on NetConf to support configuration management in order to 

address tlie problems of SNMP in this domain. In [136] the authors extend their work and through 

implementation of their architecture suggest ways to improve NetConf s performance. In this 

investigation the authors conclude that tlie transport protocol mapping does not affect 

performance of NetConf in terms of traffic overhead and latency. They do propose though that 

compression should be used, especially when tlie volume of configuration data transferred with 

NetConf is large. This is true since encoding large pieces of configuration data in XML format is 

not a scalable solution. The authors also propose usage of NetConf s pipelining mechanism as the 

means to reduce response time, although tliis mechanism does not also reduce traffic overhead. 

Pipelining is a mechanism that allows sending a series of request messages witliout waiting for 

the response to these requests to come back. This mechanism improves latency in terms of 

elapsed time when a series of operations need to be perfomied but does not improve traffic 

overhead. To improve the traffic overhead of NetConf operations, tlie authors propose the use of a 

multi command operation that uses tlie RPC layer used by NetConf to transfer a single request 

message containing several operations. This saves the tiaffic overhead incurred from the HTTP 

and SOAP header data that would be introduced if invoking a number of NetConf operations 

using multiple request messages. In addition to the previous, the authors propose the use of XPath 

compared to sub-tree filtering (alternative mechanism for filtering proposed by the NetConf 

Charter) as a more efficient solution to process configuration management data for filtering and 

merging operations.

In addition to the previous work, the authors in [137] have also introduced an open source 

implementation of NetConf with extended features. The architecture the authors propose in this

65



Chapter 2. Literature Review and Related Work

paper supports encryption, authentication and access control as part of a global security 

architecture and also compression to optimise bandwidth consumption. The authors evaluate also 

the performance of XPath versus sub-tree filtering and conclude that when used only for filtering, 

sub-tree filtering is slightly better. The opposite happens when combing merging different parts of 

an XML configuration document with filtering operations. In the latter case, XPath is better.

A lot of work has addressed increasing the performance of XML-based solutions for 

configuration management. Building lightweight mechanisms for communication and promoting 

best practices when performing configuration operations can dramatically increase the 

performance of the NetConf protocol. Despite these optimisations though, there is a lot of concern 

regarding the performance of XPath and sub-tree filtering for configuration management. Both 

solutions may incur large performance overheads under certain conditions and scenarios, and as 

such other solutions should also be looked at.

2.4 Summary

2.4.1 Overview of Research Work so far

A lot of research has been invested in many technologies and standards in order to address the 

objectives of network and service management. Despite the extensive research that has taken 

place in the last twenty five years and the numerous standardised solutions that have been devised 

and agreed, the quest for an “all encompassing technology” [1] still continues. A new player 

introduced lately that can be used for NSM is WS and XML. WS can be used to address NSM 

objectives for monitoring, event reporting, configuration management, transaction support etc. A 

variety of standards and specifications have been introduced to address all these aspects. Behind 

all these specifications the WS industry tries to guarantee reliable, secure and interoperable 

communication between distributed applications that can be managed for the purposes of 

providing services to clients with specific Quality of Service guarantees. Based on all these 

specifications, some of which are at the stage of design implementation and some of which are at 

the stage of already being a standard, it is evident that WS have great potential in becoming a 

promising and complete platform for application integration that could be used successfully for 

network and service management. In order to use WS for NSM, one possibility is to use the 

former in a similar manner to previous distributed management technologies such as CORBA. 

This is true due to the similarities that WS have with the latter technology. The WS industry 

though differentiates itself from how CORBA was used to address NSM objectives. WS 

differentiate themselves by standardising aspects such as (a) how to achieve interoperability in an 

end to end fashion, (b) how to model interactions between services and resources(c) how to 

manage, represent and access the state of devices etc. Eventually it is conceivable that WS, due to
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the large industry support, may have the potential to solve NSM problems that other technologies 

in the past have not solved.

Though WS and XML may have potential in being used for Web-based management, there are 

several problems that need to be solved before this is even possible. One of these problems is that 

WS may not be efficient in accessing, deleting or modifying management data representing the 

state of a device. A lot of reseaich has been invested in trying to increase the performance of WS 

and XML (a) by improving the performance of SOAP messaging mechanisms (b) by improving 

tlie performance of WS for network management monitoring, event reporting and configuration 

and (c) by improving the performance of gateway schemes for backwards compatibility with 

previous management technologies such as SNMP for monitoring, event reporting and 

configuration.

From all the research perfomied so far it is evident that monitoring, event reporting and 

configuration management sometimes require more sophisticated operations on management data. 

This occurs because tlie data representing the state of a device often share relationships even with 

data of other devices. Thus retrieving or altering the complete state of a managed device requires 

having tools that support more sophisticated operations such as information processing, bulk and 

selective retrieval, task delegation for distributed management, navigation of the relationships 

between state data etc. Some tools have been suggested to address the goal of retiieving the state 

of a managed device effectively for network management operations. Vaiious concerns that the 

efficiency of these tools is poor have been expressed. Thus alternatives should be looked at and 

possibly more lightweight tools for bulk and selective retrieval of management state data should 

be built.

At the same time it is observed that any management solution, for network management should 

conform to tlie concepts and the standards that will emerge from the convergence of the 

management standards described in [94]. The fact that these standards promote the building of 

loosely coupled management applications and they encourage the decoupling of management 

applications from the specifics of implementation, promotes the use of resource specific tools and 

applications to manage network resources. This opens the way to provide custom solutions for 

network and service management. This is very important now that the role of providing custom 

solutions within a network domain and interoperate with standards at the edges of the network 

domain is promoted as an efficient way to increase performance of WS based management [34].

2.4.2 Roadmap for the rest of this Thesis

Considering all tlie above, this thesis looks for mechanisms that present the potential of 

minimising the footprint of WS-based management applications so that the latter can be used
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more efficiently for monitoring and event reporting. As part of the thesis work we show the 

importance of mechanisms used for load distribution and task delegation in minimising the 

performance of WS-based monitoring and event reporting applications. As such, we present and 

analyse two such techniques. The first is a query tool we have designed and built that can be used 

for efficient retrieval and processing of management state data close to the devices where these 

data are hosted. The second technique is policies used in order to delegate a number of tasks from 

a manager to an agent to make WS-based event reporting systems more efficient. As part of the 

first technique we will show the characteristics that our query tool and every tool should possess 

for efficient WS based monitoring. As part of the second technique, we will introduce our policy 

grammar in order to make event reporting systems autonomous and capable of performing a 

variety of tasks efficiently, without having to hardwire the logic and the capabilities of these 

systems.

To evaluate the performance of our query tool we have build a monitoring system supporting bulk 

and selective retrieval of management state data. This system uses the operations of a lightweight 

custom monitoring framework we have defined for performance and can support the Management 

Using Web Services operations and concepts (MUWS) for interoperability. The entire monitoring 

system is part of an architecture that supports distributed polling based monitoring. We will 

evaluate the performance of our query tool against XPath suggested by several WS management 

standards for monitoring, a general use XML query tool, and we will show that it is more scalable 

under certain situations. Based on this,we will then test our lightweight framework using our 

query tool against SNMP and show that it can perfomi better in some cases or equally good in 

other cases to SNMP for monitoring (when bulk and selective retrieval and load distribution is 

required).

We will also use the WS-Notification framework to build a WS based event reporting system that 

supports policies and our query tool for efficient WS based event reporting. We will test the 

performance of this event reporting system against another WS based event reporting system and 

SNMP traps and we will show that it has the potential of performing better.

Having shown that the techniques we used for load and task distribution can be used effectively 

for building efficient WS based management applications we will present the design and 

implementation challenges for building a monitoring tool to support and enhance the above 

systems with extra capabilities. This system is a high level manager and represents the heart of 

our WS-framework.
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Chapter 3

3 A Custom Query Tool for bulk and selective 

retrieval and distributed monitoring

3.1 Introduction
Since the introduction of the Simple Network Management Protocol (SNMP) in the early 1990’s 

and the newer versions of it that followed, its use for sophisticated network management still 

raises a lot of concerns [5]. Back in the early 1990’s, SNMP version one was initially equipped 

with (a) a relatively simple information model (b) facilities for retiieving and configuring the state 

of a device with a series of consecutive operations (c) traps for event reporting. Versions two and 

three of SNMP following tlie introduction of version one, included enchancements to support (a) 

proper emulation of creation and deletion of state data (b) bulk data retrieval (c) reliable event 

delivery (d) security features. Despite the enchancements though, SNMP may not be suitable for 

some monitoring and event reporting tasks.

Monitoring and event reporting tasks have certain requirements. Sometimes in order to have a 

complete view of the state of a device for monitoring, a manager has to retrieve several values 

from different parts of the information tree (i.e. SNMP MIB) based on the relationships tlie data 

in the tree shaie. Even more, sometimes data have to be processed close to the device from which 

they are retiieved, in order to return only the part of the state of the device that a manager is 

interested in receiving. In addition, information processing has to be performed as part of an 

architecture that supports distribution of tlie monitoring load to several entities. This is required, 

first because sometimes state data need to be retrieved from several devices, and second because 

if the monitoring processing load would be undertaken by a single entity such as a network 

manager, the latter could be overwhelmed by the task at hand.

SNMP hides relationships between state data in description clauses. Although diese clauses can 

be accessed, it is very difficult in many cases just by reading the MIB modules, to understand 

which data values should be retrieved for some monitoring or event reporting tasks. This occurs, 

because it is sometimes difficult in a SNMP MIB to identify all of tlie relationships that state data 

share. Due to the above characteristics, SNMP operations do not help a manager in exploiting the 

conceptual relationships that state data share for monitoring or event reporting (it is not
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impossible to perform certain tasks exploiting the conceptual relationships of state data in SNMP, 

but certainly more difficult and sometimes impractical and not scalable).

In addition to the above, SNMP does not have filtering mechanisms for information processing 

and in some situations its bulk retrieval mechanisms are impractical to use. The lack of filtering 

mechanisms in SNMP does not facilitate load and task distribution, since without such 

mechanisms data can not be processed close to the devices where they are hosted. At the same 

time, SNMP’s bulk retrieval operation is inadequate in some cases. This is especially true in cases 

where (a) multiple instance data must be retrieved (the volume of these data changes dynamically) 

or (b) when the data that need to be retrieved have to be extracted in a specific order. In the 

former case the GetBulk operation of SNMP does not permit a SNMP manager to dictate to a 

SNMP agent that the former needs to retrieve all the multiple instance data of a specific type. This 

is because for such operations the manager is forced to know in advance how many multiple 

instance data of a specific type exist. Sometimes the latter is not possible since for some multiple 

instance data their volume changes frequently (i.e. volume of TCP Connections on a device). 

GetBulk and in general all SNMP operations for monitoring are inefficient in terms of traffic 

overhead when data have to be retrieved in a specific order. This happens because in such cases, 

the manager has to specify all the OIDs of the data it wants to retrieve. Even if traffic overhead 

was not a problem the variable-based system of SNMP MIBs does not allow a manager to know 

the exact order of OIDs required in the GetBulk request. This is because the ordering of OIDs in 

the MIB tree is lexicographical and not based on the conceptual relationships these data share. For 

example the order of the Logical Switched Paths (LSPs) in the mplsXCTable of the LSR MIB 

[152] is not depicted according to which PHB each LSP belongs to, but it is lexicographical and 

based on computational requirements (for efficiency, stability etc). In order for the manager to 

find the order that specific data are organised in a MIB table (i.e. the LSPs a PHB consists of), the 

manager first needs to retrieve all these data and then to process them. If these data change 

frequently, this is time consuming, it increases traffic overhead, and forces a SNMP manager to 

process data from many devices very frequently which could be overwhelming in terms of the 

processing power required from a single entity. If SNMP had filtering facilities, a SNMP manager 

would not need to put all the OIDs in the GetBulk request message to retrieve data in a specific 

order, neither would it have to do the processing of a number of data from many devices. One 

way to support filtering mechanisms with SNMP is the Script and the Expression MIB. Still as 

explained in chapter two, these mechanisms are insecure, and sometimes they are inefficient, 

impractical and provide limited support for distributed monitoring and increase in some situations 

the monitoring footprint instead of decreasing it.

In addition, SNMP traps in some situations do not retrieve all the management information 

required to describe an event [5]. This forces in many cases the SNMP manager to ask for more

70



 Chapter 3. A Custom Query Tool for bulk and selective retrieval and distributed monitoring

detailed information from the SNMP agent after receiving an event. This increases latency, traffic 

and memory overhead.

Based on the above, it is evident that although SNMP provides opearations to retrieve data 

sequentially or in a bulk manner, these operations may not be adequate under some situations for 

either monitoring or event reporting.

Distributed object technologies such as tlie Common Object Request Broker Architecture 

(CORBA) were considered as unifying management technologies to solve many problems that 

otlier technologies such as SNMP did not solve. CORBA offered facilities for location and access 

tianspaiency, transaction support for configuration management, efficient event reporting, 

reduced development & operational costs and supported security features. Although CORBA has 

come a long way to address the shortcomings of SNMP, it still has some inefficiencies. In 

CORBA federation is not supported, filtering mechanisms are basic and proprietary, scalability 

may be an issue in terms of the large agent footprint required for deploying large object 

populations, and there are no facilities to support the description and composition of the services 

that CORBA objects offer.

Web Services (WS) is an emerging XML technology whose promise of faster product 

development, interoperability, application integration and industry acceptance has led researchers 

to consider it for network management. As explained in the previous chapter though, WS is a 

technology that has to solve quite a few problems before it could be used for NSM. One of these 

problems is the substantial overhead WS introduce for performing management operations 

compared to other technologies such as CORBA and SNMP. This is attributed to the verbosity of 

XML tags describing the context of management data. In addition, as explained in chapter two, 

the tools and APIs used to built and deploy WS are still in the process of development and as a 

result performance is inhibited. While the issues of the software performance for building and 

deploying WS will probably be resolved, the verbosity of XML tags will always have a negative 

impact on WS performance (memory, latency, and tiaffic overhead). But mechanisms to 

overcome pai t of this overhead can be found (i.e. minimize the processing overhead by processing 

raw data but still use XML to form a response to a request).

As explained previously for SNMP though, in many monitoring and event reporting scenarios it 

may not be necessary to retrieve the whole state of a device as it may be very large to retiieve or 

update. Having efficient mechanisms/tools for bulk and selective rehieval can possibly improve 

the performance of WS in such situations. In the past, sub-tree filtering and XPath have been 

suggested as tools to support merging and filtering operations on XML data for configuration 

management, monitoring and event reporting. There are various concerns though, as explained in 

chapter two, that these tools may have a big footprint on management operations under certain
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situations. Thus alternatives should be looked at and possibly more lightweight tools for network 

management should be designed and built.

For WS-based management though, the aforementioned tools should also support a variety of 

other features apart from bulk and selective retrieval. They should for example permit 

communication using standardised operations from frameworks such as MUWS and WS- 

Management to promote interoperability. At the same time they should permit operation as part of 

a custom WS framework that may be performing better in terms of scalability. Furthermore they 

should exploit the relationships between state data in order to search and retrieve management 

data more efficiently. Finally they should be part of an architecture that supports distributed 

monitoring for task and load delegation in order to relieve a single entity such as a manager from 

this sometimes overwhelming burden.

Combining all the above, we have designed, built and deployed a custom query tool to retrieve 

management information representing the state of a device for polling based monitoring and event 

reporting. The tool allows navigating the relationships that exist between state data and supports 

bulk and selective retrieval mechanisms in order to retrieve the state of a device more efficiently. 

The tool is part of an architecture and framework that encompasses a distributed monitoring 

system supporting task delegation of the monitoring load from a manager to a series of agents. 

The framework used in this monitoring system supports a small number of functions so as to be 

lightweight for increased WS-based monitoring performance within a network domain. The 

monitoring system and architecture can also be converted in order to support the standard 

operations and functionality of the MUWS framework for interoperability purposes at the edges 

of a network domain. This way performance of WS-based operations can be optimised using a 

lightweight WS-based framework while at the same time interoperability does not suffer.

In the next sections we present the concepts and ideas upon which our custom query tool was 

developed. We also analyse how the tool operates as part of a distributed polling based 

monitoring architecture that supports load and task distribution of the monitoring load. Finally we 

present how to convert our distributed monitoring architecture in order to make it conformant 

with the concepts of the MUWS standard for supporting distributed monitoring and 

interoperability.

3.2 Concepts behind state data selection based on the relationships that 

state data share

Exploiting the relationships that exist between management state data in order to support efficient 

retrieval of management information is not a new idea. In the past OSI-SM introduced the
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manager-agent model as the means to provide collective access to clusters of programming 

language Managed Objects (MOs) organised in a management information tree according to 

containment relationships. These objects represented the underlying device resources and 

collective access to them was provided through an interface hosted at an agent overlooking the 

device resources. The protocol used to access this interface is the Common Management 

Information Protocol (CMIP) [149]. Using CMIP, management applications acting in manager 

roles in OSI-SM were able to access either a single object, by using its name, or multiple objects 

selected through scoping and filtering parameters. Scoping in CMIP selects objects for bulk 

retrieval based on containment relationships starting from a particular position in the information 

tree. Filtering further eliminates the selection of managed objects from scoping through Boolean 

expressions containing assertions on attribute values. The advantage of scoping and filtering is 

expressive power on selecting management data as well as minimisation of management traffic.

Still CMIP allowed only for containment relationships to be navigated in order to select 

management data representing the state of a device. As such the authors in [150] suggested 

extensions to CMIP to allow scoping be used to select management data based on other 

relationships the latter share. The idea is simple. Since the state data representing the underlying 

resources share a number of relationships, so do the objects encompassing them. Using these 

relationships the hierarchical tree of Managed Objects Classes (MOCs) in OSI-SM can be 

navigated. By adding mechanisms to CMIP to allow navigation of any relationship between 

MOCs, the resulting CMIP++ [150] allowed the manager of a management system to impose 

level restrictions in the scoping process. This way the manager can indicate the starting and final 

levels at which objects are extracted using a path expression. In addition CMIP+-I- also supported 

cascaded relationship restriction patterns. The latter is a series of relationships that should be 

followed going from one object to the other in order to reach the final object to be selected. 

CMIP+-H also supported selecting managed objects where the relationship restriction pattern 

cannot be followed. The latter objects are called fringe objects. Examples of the above are given 

below.

Q  atti A=5

Figure 3-1 SI = BASE.(rl.r2) where (attrA = 5) ([150]) : Searching for objects which can be reached 

following relationships rl and r2 with attrA equal to 5
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•  SI

Figure 3-2 SI = BASE.(rl) [2] ([150]) : Searching for objects which can be reached following

relationship rl twice

BASE Q  attrl=6

Figure 3*3 SI = BASE.(rl.r2) [2] where attrl=6 [150] : Searching for objects which can be reached 

following relationships rl and r2 with attrl equal to 6

Figure 3-4 SI= BASE.(rl) [I...3] [150] : Searching for objects which can be reached following

relationship rl from 1 to 3 times

•  si

Figure 3-5 Sl= BASE.(ii)! [l...n ] [150] : Searching for objects where the relationship rl can not be

followed from 1 to n times

In Figure 3-1 the scoping path expression enables a manager to select only objects that can be 

reached following relationships first of type ri and then type r; (cascaded relationship restriction 

pattern). In the path expression of Figure 3-1 the search for managed objects starts from object 

base. Starting from base, the default level restriction is applied restricting selection of objects 

only to those which can be reached following the relationship pattern of the path expression just 

once. When object selection from scoping completes, the filtering expression at the end of the
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path expression in Figure 3-1 allows selecting only those objects that have attribute 1 equal to 5. 

In Figure 3-2 only objects that can be reached following relationships of type ri are selected. The 

search starts from object base and a level restriction is applied restricting the selection of objects, 

to objects that can be reached following relationship 1% twice. In Figure 3-3 objects are selected 

following the sequence of relationships (ri, r )̂. The filtering path expression is applied at the end 

(where attiT=6). In Figure 3-4, objects are extracted between levels 1 and 3 that can be reached 

following relationships of type n. In Figure 3-5 objects aie extracted between levels 1 and n 

where the relationship pattern I'l cannot be followed (Fringe object selection). More examples are 

given in [150].

3.3 Moving from navigation of relationships between objects in 

CMIP++ to navigation of relationships between WS

As mentioned previously, relationships is something shared by the state data representing the 

underlying resources. As such objects encompassing these data also share these relationsliips. In 

the same way as for objects, WS can be used to encompass and expose the state data of the 

underlying resources of managed devices. Since the state data will keep on sharing relationships 

so will tlie WS encompassing them. As such tlie concept of scoping in CMIP++ where you select 

the objects from which to retrieve data from based on the relationships the latter share can also be 

used in WS-based management. This time tliough navigation of relationships will be performed to 

select the WS to retrieve state data from and not objects.

Having to search relationships between objects for data and having to search relationships 

between WS, presents a significant difference. In CMIP++ object oriented principles such as 

containment facilitated the structuring of state data in hierarchies with different levels of 

abstraction. This allowed searching for state data more effectively. WS offering access to 

management state data do not perform tliis by default. Nevertheless it is possible to structure WS 

in hierarcliies. An example of how to organise WS encompassing management state data in 

hierarcliies is given in Figure 3-6.

In Figure 3-6 examples of 5 types of relationships between management data of the Traffic 

Engineering MIBs (RFCs 3812 [151], 3813 [152], 3814 [153]) aie given. One such relationship 

example is containment relationships. Containment relationships aie the most common 

relationships between management state data and can be the basis for building hieraichies of 

objects or WS. In programming language terms, objects at higher levels of a hierarchy (i.e. Figure 

3-7 object 1 at level 0) contain a portion of management state data from objects at lower levels of 

a hierarchy (i.e. Figure 3-7 object 2 at level 1) as well as their own data. The same can happen 

with WS. Using the concept of containment, a WS at level 0 (i.e. Figure 3-6 tlie QoS Resources
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Web Service) can be created from WS at level 1 (i.e. Figure 3-6 the PHB WS at level 1). This 

way the higher layer WS can contain management state data from the lower layers as well as its 

own. While a higher layer WS contains data from lower layers it is necessary to provide access to 

WS state data at lower levels from WS at higher levels. This is common between programming 

language objects. Later we will show how this is performed with WS. A very good example of 

containment relationships is in SNMP Management Information Bases (MIBs). A SNMP table 

contains management state data populating its columns and rows. Another type of relationship 

common to SNMP MIBs which is also displayed in Figure 3-6 is augmentation. A table 

augments another table when both have common row identifiers. Another common relationship 

between SNMP MIBs is a References relationship. References relationships occur when for 

example an attribute from an SNMP MIB references another attribute. An example of such a 

relationship is the mplsInSegmentTrafficParamPtr attribute in the mplsInSegmentTable of the 

Multiprotocol Label Switching (MPLS) Router (LSR) [152] MIB. This parameter references a 

row of the mplsTunnelResourceTable in the MPLS Traffic Engineering MIB [151] containing the 

characteristics of a QoS Traffic Class (e.g. delay, jitter, loss). AssociatesTo and AssignedTo 

relationships are also very common between the traffic engineering MIBs. A Label Switched Path 

(LSP) is associated to a Per Hop Behaviour (PHB-traffic class). A Service Level Specification 

(SLS-traffic contract) is assigned to a PHB.

QoS Resources

mplsXC
Table

Resource 
^'Me TablePHBs

mplsXC
Entries

mpisin mplsOut mplsln mplsOut 
Segment Segment Segment Segment 

able Table PerfTable PerfTable
oF=io| Resource 

Entries

..mplsXCln 
Segmenlndex 
mplsXCOut 

Segmentlndex...

mplsln
Segment

Entry

mpl iOut 
Seg nent

...Discards, 
TotalBandwidrth

...mplsInSegment 
TrafficParamPtr...

Table 

•  Single Value

—O  Augments —^-Containment 
—̂  References —O AssignedTo 
—► AssociatesTo

Figure 3-6 Organising WS encompassing state data in hierarchies
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To structure WS as in Figure 3-6 three rules are required. Containment is the first rule. A WS 

containing data from other WS lies at a level higher from the latter in a hierarchy of WS. The 

second rule is that when augments relationships or any other type of relationship apart from 

containment exist between two WS, those WS lie at the same level of the hierarchy. The third rule 

is that if a WS shares both containment and other relationships with other WS, containment is a 

stronger relationship when classifying a WS in the hierarchy tree. Based on containment and the 

above rules, the hierarchy in Figure 3-6 is built between data of the traffic engineering MIBs 

(RFCs 3812 [151], 3813 [152], 3814 [153]). Figure 3-6 is not an exhaustive list of relationships 

between state data of these MIBs and should not be considered as normative but only as a 

possible way to structure WS. This is why as we will see later on, this is a conceptual view that 

an agent has on how the WS hierarchy is structured (only the agent has this view). This view may 

not be the way data are structured in SNMP MIBs or on the managed device. Using such a view 

though, we can structure a WS hierarchy that does not follow the lexicographical ordering of 

SNMP MIBs but an ordering based on the relationships state data share (conceptual ordering).

LvlO

) ( 4 ) Lvl 1

V
( s V K e V c C ? ' )  ( a )  Lvl2

( 9 ( ^  ) Lvl 3
—̂ -Containment relationship
—C> Augments relationship Class
—► PointsTo relationship Object

Figure 3-7 Example of relationships between programming language objects

As it will be seen in the next section, structuring WS as shown in Figure 3-6 can facilitate the 

process of retrieving WS state data in a bulk manner for monitoring or event reporting using 

relationships between state data. An example though would clarify why this is important. 

Consider a scenario where a manager needs to retrieve all the PHB related data from an agent 

which has the view of the conceptual tree in Figure 3-6. These data in SNMP lie in different 

tables and in different MIBs sharing a number of relationships. WS as in Figure 3-6 allow us to 

encompass the PHB related data using a different WS to encompass data for each PHB. This 

allows us to have a per single PHB view on the data (per PHB granularity). In some cases 

though, it is desirable to retrieve data from all PHBs or from several PHBs. Structuring data as in 

Figure 3-6 based on containment allows a manager to pick all PHBs at once by pointing one level 

higher from the WS-hierarchy where we want to retrieve data from (similar to scoping) and at the
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same time retrieve only the data we want from each PHB with filtering. Other reasons for the 

necessity of exploiting conceptual relationships are provided in [142].

To further clarify the potential of using conceptual relationships for monitoring, in the next 

section we analyse the functionality of the query tool we have built in order to support bulk and 

selective retrieval for polling based monitoring based on the relationships state data share. The 

tool is used as part of an architecture and a custom framework that supports delegating tasks from 

a manager to a series of agents in order to distribute the monitoring load.

3.4 Distributed Monitoring with a custom Query Tool

Being able to structure WS in a manner similar to that in Figure 3-6 is the first step for exploiting 

the relationships that exist between state data for distributed polling based monitoring. Four more 

steps need to be fulfilled in order to complete the process of supporting distributed polling based 

monitoring using WS. The first of the four steps is to find the means to expose these relationships 

as part of a WS. This way an entity such as an agent can exploit them for bulk retrieval in a 

similar way CMIP++ used the relationships between state data stored in programming language 

objects in scoping. The second of the four steps is to build a query tool that will support (a) bulk 

retrieval by exploiting the relationships between WS state data and (b) filtering for selective 

retrieval of WS state data. The third step is to integrate this tool as part of an architecture and a 

custom lightweight framework that supports distributed polling based monitoring. This way, task 

and load distribution from the manager to a series of agents can be performed and performance of 

WS-based management operations compared to other technologies can potentially increase. The 

final step is to make the necessary conversions to the distributed monitoring architecture which 

supports our query tool in order to make it compliant to the concepts and operations of MUWS or 

WS-Management for distributed monitoring. This is a very important step now that the role of 

providing custom solutions within a network domain for performance, and interoperation with 

standards at the edges of the network domain, is recognised as an efficient way to increase 

performance of WS-based management [34].

3.4.1 First step - Exposing the relationships between state data as part of a 
WS interface

In order to define relationships between WS as in Figure 3-6, a scheme to expose the relationships 

that exist between the state data that a WS encompasses is required. If containment was the only 

type of relationship between state data, this would be a simple thing to do. A simple scheme to 

define the relationships between WS state data would be to use the naming scheme of the 

Uniform Resource Identifiers (URIs) where services are deployed in our favour. When defining
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URIs in a web browser, a slash “/” is always used to point to a web page contained in another web 

page. In a similar way we could use the URIs through which WS are accessed to denote the level 

in a hierarchy where a service is offered. In this scheme the location tag after a slash would 

denote the name of a WS that is contained in tlie WS whose location tag is before the slash (i.e. 

http://131.22.33.44/El/E2, E2 is the child of El). However, relationships between state data may 

not be only containment relationships. The definition of otlier relationships must also be possible 

so another scheme must be found.

One way to define relationships between services is to provide metadata about them. To provide 

such metadata we initially considered certain WS standards for the job. WS-Addressing [19] and 

WS-MetadataExchange (WS-MEX) [96] are such standards. WS-MEX specifies the messages 

that applications exchange in order to retrieve service metadata. WS-MEX is thus intended as a 

retrieval mechanism for only WSDL service description data. Thus WS-MEX cannot be used for 

the purpose we want to use it for. In addition to this, using WS-MEX to retiieve service 

relationsliip metadata would also require tlie introduction of metadata services from which these 

metadata should be retrieved. This will increase latency and memory requirements. Since we do 

not want to increase the latency and memory overhead of our query tool, WS-Addressing was 

considered as an alternative solution. As mentioned in chapter two, WS-Addressing was initially 

designed in order to support MEPs and communication scenarios that WSDL 1.1 did not support. 

Apart from supporting a series of MEPs though, WS-addressing could also be used in another 

way. The WS-Addressing specification supports the use of a metadata element inside the WSDL 

document of a WS so as to provide to the application that consumes the latter with service 

description information (WSDL information) and also other metadata about the service itself. 

Thus the metadata element could also be used to add information about service relationships.

Still at the time the work on our query tool was presented in the research community, the work on 

WS-Addressing was not finalised. In addition, while the standard and the metadata element were 

specified in the WS-Addressing specification, tliere were no open source toolkits that supported 

them. Thus, other means had to be found to support metadata infoimation about service 

relationsliips until work in WS-addressing was finalised and open source toolkits supported it. 

Thus for the time being, we will present only how the problem of providing metadata for service 

relationships was solved at the time when we introduced our work on our query tool in the 

research community in [154]. In the section where we address the fouitli step, in integrating our 

tool and architecture with tlie concepts of MUWS and WS-Management, we will show how the 

same problem can be solved using a standardised solution.

In order to provide metadata about service relationships, a simple and flexible scheme had to be 

devised. To understand the scheme we came up with though, a short summary has to be given on 

how WSDL is organised and how it allows deploying WS in three distinct ways. In WS, a WSDL
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document defines the interfaces that every WS exposes and the access points where these 

interfaces are accessed. In essence a WSDL document consists of an abstract part acting as an 

access stub and a concrete part affecting its behaviour (Figure 2-8). In the abstract part of a 

WSDL document the interface element describes the set of operations a service exposes. In the 

concrete part, the endpoint elements define the specific URI addresses where a service interface 

can be accessed. The binding element in the concrete part links the abstract part and the concrete 

part, allowing a user to define where the interface of a WS can be accessed.

Based on the above, the organisation of WSDL and the structure it enforces on its constituent 

parts allow a user to exploit three distinct ways to deploy a WS. The most common way of 

deployment is by allowing access to all the operations of a WS through a single interface. Service 

WSO in Figure 3-8 shows this deployment scenario. The WSDL document for service WSO 

contains one service element referring to one binding and one endpoint element. The second 

deployment scenario can be seen in Figure 3-8 for service WSl. There the access to service WSl 

is provided through multiple access points. In this case, the WSDL document for WSl contains 

one service element with multiple endpoint elements (two in this case) referring to the same 

binding element. The third deployment scenario can be observed in services WS2 and WS3. In 

this scenario two interfaces to the same programming language object are offered by defining 

different endpoint elements for different service elements. Each endpoint element refers to a 

different binding element.

In order to define metadata about the relationships between WS, we can make use of the second 

deployment scheme. Our scheme proposes to use several access points (Endpoints-URIs) so as to 

be able to define several relationships between WS. In our proposal, WS have a primary access 

point to provide access to them. For every relationship a service shares with another service, the 

latter will define a secondary URI. The secondary URI provides metadata about the relationship 

that the two services share with a syntax that complies with the rules of RFC 3986 [156] about 

constructing URIs. The syntax for the primary and the secondary URIs is given in (3,1) and (3.2). 

Parsing secondary URIs provides an entity like an agent with a conceptual view of a relationship 

tree such as that in Figure 3-6. In Figure 3-9 an example of primary and secondary URIs for WS 

sharing two types of relationships are provided. In this figure service SRV-El has only one URI 

to allow access to it. Services SRV-E2 and SRV-E3 have 3 URIs, the primary one and two 

secondary ones for the rl and r2 types of relationships they share with other services. Services 

SRV-E4, SRV-E5 and SRV-E6 contain one primary and one secondary URI to show an 

association of type rl with other services. Having a number of secondary URIs to denote the 

relationships between WS state data poses minimal overhead. This is the case because both the 

primary and secondary URIs point to the same object implementation and the same object
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instance. The minimal overhead that is introduced comes from registering each URI in the 

registry of the web server providing access to each WS.

Primary _URI =http://serverURL:serverPort/primaryServiceTag

Secondary _URI=http://serverURJL:serverPort/sendingServiceTag- 
serviceLeveI_recipientServiceTag-serviceLevel.relationTag

(3.1)

(3.2)

Implementation 
class

f  Service ^  Service Service ^
I Instance 10 i I Instance 11 J ^nstance 12 J

WSDL Service WSDL Service WSDL Service WSDL Service 
WSO WSl WS2 WS3

Figure 3-8 Service deployment scenarios 
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http://serverURL;serverPort/E3 
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SRV-E3
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«RV-E5http://serverURL:serverPcrt/E4
http://serverLIRL:serverPort/E2-2_E4-3.r1

http;//serverURL:serverPort/E6
http://serverURL:serverPort/E3-2_E6-3.r1

http://serverURL:serverPort/E5
http://sefverURL:serverPort/E3-2_E5-3.ri

Figure 3-9 Association scenario with endpoints

3.4.2 Second step -  Building a query tool for bulk and selective retrieval 
from WS exposing management state data

So far we have explained how to exploit the relationships between state data for bulk retrieval of 

management data and how to expose these relationships as part of a service interface. Now we 

can show how to exploit these relationships. To support bulk and selective retrieval using the 

relationships between state data, a custom query tool was developed [155] based on Java’s regular 

expression engine (regex). The tool supports four types of queries, each one with a special
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functionality. All types of queries are carried as parameters in operations supported by a custom 

WS monitoring framework we have developed. The operations of this monitoring framework are 

exposed by a series of WS interfaces. Each WS interface exposes management data from SNMP 

MIBs representing state data from a managed device. Using the endpoints of these WS interfaces, 

an agent can find out about the relationships between these interfaces and build a conceptual view 

of a WS tree such as that in Figure 3-6. By analysing the queries our query tool supports, the 

agent can select the WS and the state data to retrieve from the WS tree hierarchy. The types of 

queries our query tool supports are: (a) Service Selection (SS), (b) Single Instance Data (SID), (c) 

Multiple Instance Data (MID), and, (d) Filtering Data (FD) queries. To validate the correct 

syntax of each query, our custom query tool uses a custom parser. In the next section we will 

show how this is achieved using an example.

SS queries are a combination of WS endpoint addresses, level and relationship restrictions in 

order to select local or remote WS hosting the state data of a managed device. Level and 

relationship restrictions can be used to retrieve state data from WS exposing them in a bulk 

manner similar to how CMIP-H- used these relationships in scoping. Level restrictions are applied 

in order to specify from which levels of a hierarchy of WS state data can be retrieved. This is 

different to how CM1P++ applied level restrictions in the scoping expression. Relationship 

restrictions are applied to enforce selecting WS whose state data share specific relationships with 

the state data of other WS. The WS endpoint address inside a SS query is used in two ways. 

Primarily the WS endpoint address is used to point to the WS in a hierarchy of WS where the 

search for services will begin from. A secondary usage for the endpoint address is to show to the 

agent handling the relationship tree for bulk retrieval, whether local or remote WS need to be 

accessed for state data. As it will be shown in the next section, this is how distributed polling 

based monitoring can be supported. A simplified Backus Naur Form (BNP) [158] syntax for the 

SS query is the following:

<SS_query>::={ < startpoint__tag>, <minlevel_tag>, <maxleveLtag>, (3.3)
<pattem_tag>}.

<pattem_tag>::=<identifier> I <pattem_tag>. <identifier> I (<pattem_tag>)!. (3.4)

<min_Ievel_tag>:.-<integer> . (1.5)

<max_level_tag>::=<integer>. (3.6)

<startpoint_tag>::=<URI_identifier>. (3.7)

To demonstrate how an agent can use the SS query for bulk retrieval of state data, some examples 

need to be given.
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1) SS query with no restriction: A SS query such as that in equation 3.8, if an agent has a 

conceptual view of the tree of services shown in Figure 3-10, will cause a number of actions. 

Upon receiving the expression, the agent will use the parser of the custom query tool to evaluate 

its validity. If the expression is valid then the agent will extract the endpoint address from the 

SS_Query. By processing the endpoint address, the agent can start searching the tree of WS from 

the point that is defined by the endpoint address (Root in this case). The agent will search for 

services which can be reached by following relationships first of type rl and then of type r2. The 

services selected are highlighted in Figure 3-11, If SID, MID, FD expressions are also dispatched, 

the agent will only return the values in each WS service selected that match the criteria posed by 

these expressions. How this is performed is presented in the next section.

SS _query = {http : / /1 9 2 .1 6 8 .3 0 .4 //?o o /,,,r l.r2 } (3.8)

L v3

Lv2

Figure 3-10 General relationship tree

Root

Lv 1

ioo jL v2

O 0Lv3

Figure 3-11 Service selection no restriction

2) SS query with single level restriction: For the path selection expression in equation 3.9, the 

agent will start searching the sub-tree shown in Figure 3-10 from the starting point indicated by 

the endpoint address (Root). It will search for services that reside only at level 2 to which you can 

reach following relationships first of type rl and then r2. The selected services are highlighted in 

Figure 3-12.
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SS _ query ={http : / / \9 2 .\6 S .30A /R o o t ,2 ,2 ,r \.r2 )  (3.9)

Lv2

Lv3

Figure 3-12 Service selection single restriction

3) SS query with multiple level restrictions: In the case where the SS query has a multi-level 

restriction, as in equation 3.10, the agent will search the WS sub-tree from the starting point 

(Root) for services that reside in level 2 and 3. Only services which can be reached by first 

following relationships of type rl and then r2 will be selected. The selected services are 

highlighted in Figure 3-13.

SS _ query = {http : / / \9 2 .\6 S .30A /R o o t,\ ,3 ,r \.r 2 )  (3.10)

Root

L v2

Lv3

Figure 3-13 Service selection multiple restriction

4) Fringe Services: In all the above service selection examples the agent visits one after the other 

all the services included in the sub-tree starting from the WS-node to which the endpoint address 

is pointing to. For every selection the agent makes, it evaluates for every service node whether 

each relationship tag in the relationship restriction pattern can be followed or not. Thus for every 

relationship tag there is a recursive evaluation of the binary state of the relationship that a WS 

shares with another WS. The recursive evaluation of each relationship in the sequence of 

relationships that the agent follows, can also allow detection of services where the relation pattern 

cannot be followed (fringe services). An example of a SS query that captures services where
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relationships of type rl cannot be followed is given in 3.11. The services that are selected are 

highlighted in Figure 3-14.

SS _ query =^{http : //192.168.30.4//?oor,l,3 ,(rl)!} (3.11)

Root

L v3

Figure 3-14 Service selection for fringe Services

SID, MID and FD queries are called data queries because they are used to retrieve the state data 

of a managed device hosted in a WS. SID and MID queries allow the retrieval of single and 

multiple instance data respectively from a WS hosting device state data (i.e. a table’s rows are 

represented by multiple instance objects and MID queries can used to extract them). FD queries 

can be applied to MID queries to filter the collected data. The BNF syntax for the MID, SID and 

FD queries is the following:

<SlD_query>:;={<mult_inst_tag> I <mult_slct_exp>, <mult_inst_tag >} . (3.12)

<MID_query>::=<identifier>([] I [<integer>-<integer>] I [< integer>] I [< (3.13)
integer>(< I >)xletter>(> l<)< integer>]).

<FD_query>::={<mult_inst_tag xrelational operator> <value>l <flt_exp > (3.14)
<space><logical_operator><space> <flt_exp>}

<value>::=<integer>kstring> (3.15)

An example of queries for retrieving all TCP connections from the TCP table in the RFC 1213 

MIB whose type is FTP (File Transfer Protocol) or HTTP is given in equations 3.16 and 3.17.

MID_query={tcpConnEntry[ ]} (3.16)

FD_query= {tcpConnLocalPort = 22 OR tcpConnLocalPort =80} (3.17)
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3.4.3 Third step -  Using the query tool as part of an architecture for 
distributed polling based monitoring

This far we have introduced how the query tool queries can be used (a) to select the services from

which state data will be retrieved based on the relationships these services share (b) how bulk and

selective retrieval is performed using data queries. It is possible now to show how to use the query

tool as part of a custom framework over an architecture that supports distributed polling based

monitoring. In Figure 3-15 we depict the steps of a process where distributed polling based

monitoring is performed using the query tool. In this figure a manager sends a request to an agent

to retrieve data from a managed device (i.e. a router in this case). The manager performs this by

accessing one of the three operations that our custom framework supports. These operations are

offered by every WS interface that the agent exposes, and allow three different views to the state

data of managed devices (single instance view, multiple instance view, all data view). As part of

each operation’s operands the manager dispatches SS, SID, MID, FD queries and a callback

address (Figure 3-15 step 1). Each SS query is associated with a set of data queries and all

together are used to retrieve management state data. The manager can send many combinations of

SS and data queries to the agent, each of which can be used to retrieve different portions of state

data. On receiving a number of queries, the agent extracts each SS query. Using an instance of the

query tool and its parser, the agent validates each SS query. After validation the agent extracts the

constituent parts of each SS query. By processing the endpoint address of each SS query, the

agent can determine whether local or remote data need to be accessed from a WS that exposes

data from a SNMP MIB (Figure 3-15 step 2 and 3). As shown in Figure 3-15, the agent has view I

on data that looks like a tree of WS. The agent acquires this view by processing the relationships

WS share from the secondary endpoints each service exposes. This is a conceptual view which the

agent builds when it processes all the secondary URIs each WS interface exposes. This view may

not be the actual way state is represented in managed devices (i.e. in an SNMP MIB). ,

In the case that the endpoint address of a SS query points to a WS that is hosted in a remote

router, the current agent tries to route the SS query and its associated data selection queries to the j

remote agent of these devices (Figure 3-15 step 4 alternative). This process continues from agent

to agent until the remote agent is reached. Each request made to a next hop agent contains the SS

query and their associated data queries. The request also contains the callback address of the

manager that sent these queries in the first place. At the remote agent, the manager’s callback I

address is used to send back the required data to the latter using a process similar to the one for |

retrieving data from a local router explained below (Figure 3-15 step 4). This process distributes '

the monitoring load to several agents.

86



 Chapter 3. A Custom Query Tool for bulk and selective retrieval and distributed monitoring

If the agent determines from the Endpoint address of a SS query that a local router needs to be 

accessed for data (Figure 3-15 step 4), the agent extracts the relationship and level restrictions in 

the SS query. Using these restrictions it searches in his conceptual WS tree to find the WS which 

meet these restrictions. This process is called service selection. During this process the agent 

picks the services to retrieve data from. After service selection, the agent dispatches the data 

queries associated with each SS query to each WS that was selected. This is performed using an 

operation of the custom framework we have designed and which each service interface exposes. 

Now that each WS has a number of data queries dispatched to it, each one uses its query tool 

instance and parser to validate and analyse the queries it received. After analysing each query 

each WS can determine which data to retrieve. Having determined the data to retrieve each WS 

sends a request for the data to the associated managed device (Figure 3-15 step 5 and 6). After 

retrieving the data from the managed device (i.e. router), each WS responds to the agent with the 

required data in XML format. For performance reasons as we will see later on, the management 

data in each WS are held in programming language objects and not in an XML document instance 

(Figure 3-15 step 8). The agent concatenates the data it received from the various WS selected 

during service selection and sends back the response to the manager (Figure 3-15 step 9). An 

implementation of all this was presented in [159] and [164] using Linux PCs supporting state data 

from MPLS MIBs demonstrating that our custom query tool is scalable compared to XPath in 

addressing a number of scenarios. We will present this study in the next chapter.

o «2.
XML

Document
monitoring 

response (9) 'M anager^

^  c  g Agent extracts
œ ™ .2 3 . .
w w !- O' custom toolr§f.s
§ 8 V *. (A
S .a a S 'A g e n ti?Tr!

monltonng i

, , %Manageh
(contains tool j  .
queries) (1) 

view on . A5> « flj g Query'
-S I  I Tool ’

5T 9» _

Linux PC

Agent

T Qüêfÿ .
I Tool

•Instanoe-’

If remote access^ 
required and address”' 

is known send all 
queries to next hop 

and repeat steps 3 to 
9 (4 alternative)

#  WS C3 WSinterface 
Programming

#  language object

Figure 3-15 Distributed monitoring using the custom query tool to support bulk and selective

retrieval monitoring
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Up until now a high level view of the distributed polling based monitoring architecture has been 

presented. It is now possible to have a look at a few important internal implementation details. 

These details are given in Figure 3-16 where we portray (a) how the agent acquires a conceptual 

view of the tree of WS and (b) why each WS has its own query tool and associated parser 

instance.

In Figure 3-16 we can observe how the agent acquires the conceptual view of a WS tree. Initially 

the agent deploys all the Web Services that are required in order to expose the state data from a 

series of SNMP MIBs (Figure 3-16 step 1 -  In the measurement scenarios we will present in the 

next chapter, the traffic engineering MIBs (RFC 3813, 3814) and the Interfaces group of state 

data from the RFC 1213 MIB have been implemented). Before each WS is deployed, the latter 

creates a query tool instance in the sense that each query tool has its own personalised parser 

instance (Figure 3-16 step 2, 3, 4). Why each WS tool has a personalised parser instance is 

explained later. During the process of deploying each WS, the agent registers to the web server 

that will host each WS both the primary and secondary access points of the latter. Once all 

services are deployed, the agent also deploys itself as a WS (Figure 3-16 step 5). The agent also 

has a personalised query tool and parser instance. Before deploying itself the agent analyses the 

secondary URIs from the registry of the web server and builds its conceptual view of the WS tree 

hosting management state data.

As mentioned previously, the query tool of each WS is personalised in the sense that each query 

tool has its own parser instance. The reasons for having a personalised parser are two. The first 

reason has to do with minimising the processing overhead for data queries that request for 

inexistent data. As such, before the constructor of the query tool class is invoked to create an 

instance of the query tool for each WS interface, the constructor of the query tool provides to the 

constructor of the parser class a set of object tags. These tags represent the name tags of every 

type of object that is contained in every MIB exposed as a WS interface. As such if a data query 

comes for data that do not exist, the query tool through its parser can determine the latter without 

searching the data structure hierarchy (data-gnostic query tool). The second reason behind having 

a query tool with a personalised parser for each WS interface is to improve the footprint of the 

query tool by acknowledging what sort of data are contained in each WS (i.e. single instance data, 

single dimension multiple instance data, multidimensional multiple instance data etc). In essence 

the parser of each WS interface is aware of the types of data structures contained in the latter in 

order to minimise the latency and memory footprint. This is similar to why schema specific 

parsers are aware of the XML structures contained in an XML document in order to minimise the 

footprint of WS applications. Based on the above it is evident that having a data structure aware 

and a data-gnostic personalised parser for each query tool instance can save memory as well as 

latency overhead.
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Memory and latency overhead is also saved by performing other optimisations on the query tool. 

One of these optimisations is that the data contained within each WS interface are represented 

through programming language objects (raw data not XML). All these objects are kept in a linked 

list and the navigation of the latter is being peiformed by special pointers in each object. As such 

the data hierarchy of each MIB can be preserved and navigation of the data hieraichy is possible. 

It would be possible to hold all these data in XML document instances. The inherent hierarchical 

nature of an XML document would make it easier to capture the data hierarchy of a MIB. As it 

will be shown in the next chapter though, this would introduce a significant memory and latency 

overhead since the performance of general XML parsers (i.e. DOM, SAX) is not good. 

Performing data processing operations on raw data is much more efficient. After perfonning these 

operations, the result can be structured in an XML document using a general XML parser. The 

latter process is more efficient. Anotlier optimisation that has been performed for the query tool is 

how the custom parser represents multiple instance data inside the linked list of raw data. Figure 

3-17 displays how an SNMP table is represented tlirough the DOM XML paiser and our custom 

parser. In this figure it is evident that DOM (the XML parser used in Figure 3-17) creates a 

detailed hierarchy of element, value or attributes nodes by processing the equivalent of a table in 

an XML document. This occurs because in XML documents the context of each piece of 

information is described by explicit data nodes etc. For the query tool, a different approach was 

followed. The query tool treats multiple instance data of the same type (like a column from a 

table) as a single entity with a single tag describing their context. The benefits of this are twofold. 

First, the volume of data required to be searched decreases since fewer tags to describe data 

context aie required. Second, the hierarchy of single or multiple instance objects connected with 

pointers in every linked list is simpler. Thus data of specific type can be found easier and faster. 

The later as we will see in the next chapter has a big impact on latency as well as memory 

overhead.

Having analysed the optimisations that have been performed on our custom queiy tool, we can 

now link the operations in Figure 3-15 to the ones in Figure 3-16 and depict a few implementation 

details not displayed in the former figure. Steps 6 to 14 in Figure 3-16 are the equivalent ones to 

steps 4 to 9 in Figure 3-15 for distributed monitoring. An aspect tliat can be observed in Figure 

3-16 but not in Figure 3-15 though, is that each WS allows three views on its data through three 

different functions (a) a single instance view (getSObj) (b) a multiple instance view (getMultiObj) 

(c) an all data view (getObj). These are the functions that our custom framework supports and 

through which distributed monitoring is possible. Each WS in our distributed monitoring 

aichitecture must expose these operations. In the next section we will show that in order to 

support the MUWS framework operations for interoperability purposes, the WS at the edge 

devices of a network domain must also support tliese operations.
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Figure 3-16 Interactions between various components of the WS polling based monitoring scheme to

retrieve management information.

(This is for a scenario where the agent retrieves data from local WS. Otherwise other agents and 

interactions with these agents would need to be depicted.)
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3.4.4 Fourth step -  Adjusting the query tool and the architecture to the 
concepts of the MUWS Standard

As mentioned in chapter two, during the last few years various research groups defined many 

WS-based specifications for Network and Service Management (NSM). Some of the most 

prominent work in this field has been carried out by two groups. The WS for Management and the 

Management Using Web Service (MUWS) specifications are the result of the standardisation 

efforts of these two groups. Both groups recognise in these specifications that when managing 

network devices the need to model, access and manage state is a key issue. While though both
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groups recognise the need to manage state, WS Management defines its own conventions and 

operations (based on the WS-Transfer specification), while MUWS adopts concepts from WSRF. 

Based on WSRF’s concepts, MUWS introduces the concept of the manageable resource which is 

a refinement of a WSRF resource. A manageable resource is a resource that exposes a group of 

state-data/properties, operations, and metadata representing its ability to be managed. In MUWS 

all these aspects aie called capabilities and as such MUWS defines an XML Schema and WSDL 

description documents to describe them.

The groups behind MUWS and WS-Management have agreed on a roadmap to create new 

standai'ds for resource, event and seivice management. This will eventually promote building of 

interoperable management applications for managing the state of resources. Despite this 

standardisation effort though, and until this effort is complete, three features that the MUWS 

Framework possesses make it very promising for integrating it witli our distributed monitoring 

architecture and our queiy tool.

The first feature is a dialect attribute in the QiieiyResourceProperties (QRP) operation (Table

2-3) which MUWS adopted from WSRF. This attiibute permits the usage of a query language for 

retrieving a number of resource properties. Thus the QRP operation presents great potential in 

using it to retrieve Resource Properties (RP) of underlying resources and devices in a selective or 

bulk manner. As such the QRP operation can be eligible for using it with our query tool to 

retrieve management state-data/properties in this manner.

Another feature of MUWS is an XML element that allows defining the relationships that 

resources share as RP. MUWS mandates that relationships between state data can be represented 

as common resource properties. MUWS defines the QRBT operation (Table 2-3) in order to 

retrieve relationships between state data as resource properties. In this way MUWS not only 

standardises where and how to store the relationsMps between state data but also standardises how 

to retrieve them.

The tliird feature of MUWS that seems promising is the fact that the latter adopts the WSRF’s 

WS-ServiceGroup (WS-SG) specification [88] for providing collective access to resources. The 

concepts in WS-SG can be used for composition of resources based on RP the latter share. This 

way collective access to RP can be achieved. Even more, resources can be grouped forming 

hierarchies of resources enabling better access to RP for monitoring.

Therefore the QRP and QRBT operations, the support of MUWS to describe and retrieve the 

relationships between stateful resources, and the adherence of MUWS to WS-SG, present great 

application potential to support our distributed monitoring architecture and gain the 

interoperability of the MUWS framework in return. This is very important especially now that the 

integration of custom lightweight solutions with standards is recognised as the means to increase
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scalability [34] of WS-based management applications and at the same time preserve 

interoperability. This is even more important today since the use of MUWS for network 

management in an investigation about its performance in [123] presents potential performance 

problems as MUWS has quite a heavy footprint for monitoring. Using MUWS only at the edges 

of a network domain and not through the entire network would allow a management application 

to preserve interoperability and at the same time use a potentially more lightweight solution in the 

core of the network.

In the next sections we will explain how to use the features of MUWS to support our distributed 

monitoring architecture and our query tool. We will explain the changes that have to be performed 

in our architecture and we will give an example of using our query tool for distributed monitoring 

of manageable resources (WS-Resources) with MUWS.

3.4.4.1 The MUWS potential to support our distributed monitoring scheme
The QRP operation in Table 2-3 enables retrieval of resource properties in a selective or bulk 

manner. This is achieved using a query language, MUWS supports two well known query 

languages; XPath vl.O [82] and v2.0 [83]. The use of one or the other is supported by a dialect 

attribute pointing to the specification of their syntax. In theory any query language can be used 

although currently MUWS does not support other languages. In the roadmap of convergence of 

MUWS and WS-Management [94] for interoperability purposes though, their working groups 

agreed on using an extended version of the WS-Transfer specification (WS-ResoureTransfer) to 

support RP selection using a query language. In this roadmap it is defined that query languages 

are resource specific. This clearly paves the way for using our own query tool with MUWS for 

data retrieval, especially since in the next chapter it will be shown to be more scalable under 

certain situations compared to XPath in retrieving management state data when a varied number 

of merging and filtering operations are performed over various volumes of data.

The QRBT in Table 2-3 also presents great application potential for use with our monitoring 

scheme. The QRBT operation is an operation that can be used for retrieving information about 

relationships that exist between resource properties/state-data. MUWS standardises that 

relationships between state data are stored as common resource properties and defines that the 

QRBT can be used to retrieve these properties. As such, the QRBT operation can be potentially be 

used by the agents in our distributed monitoring scheme to retrieve relationship information 

between state data in order to build a conceptual tree like the one in Figure 3-6, this time not of 

WS but of WS-Resources. The hierarchy of Figure 3-18 shows the equivalent of the hierarchy in 

Figure 3-6 with WS-Resources.

To build the conceptual tree of WS-Resources in Figure 3-18, the use of the WS-SG specification 

is required. MUWS adopts the concepts of the WS-SG specification so as to support collective
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access to WS-Resources. Collective access to WS-Resources though, is something also required 

to support the containment relationships in the WS-Resource tree in Figure 3-18. This way it is 

possible for a WS-Resource at i.e. level 0 to contain a portion of management state data from WS- 

Resources at lower levels of the tree (i.e. level 1) and provide access to these data. Based on the 

above, it is evident that the WS-SG can be the basis for building the conceptual tree of WS- 

Resources that the agents in our distributed monitoring architecture need to have a view upon.
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Figure 3-18 The equivalent WS-Resource hierarchy of figure 3-6

(This figure is not an exhaustive list of relationships between traffic engineering resources and should not 

be considered as normative but only as a possible way to structure resources)

Based on the above, it is evident that MUWS has the potential of supporting the functionality of 

our distributed polling based monitoring architecture of Figure 3-15. Before this is possible 

though, a number of other requirements have to be met. These are the following:

♦ In the architecture of Figure 3-15 a number of agents enable the distribution of the 

monitoring load in order to retrieve state data from a series of managed devices. Thus access 

to resource properties/state-data either when using our custom framework or the MUWS 

framework should be provided by a series of agents.

♦ Managed devices at the edges of a network domain should expose state data as WS- 

Resources. Within a network domain state data can be exposed through simple WS 

interfaces.

♦ WS interfaces should support the standard operations of MUWS in managed devices at the 

edges of the network domain and our custom framework operations across the entire domain.
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This way the operations of MUWS can be used to preserve interoperability when monitoring 

operations need to be performed outside the domain, while our custom framework operations 

can be used within a network domain.

♦ It should be possible to use custom tool queries with the QRP operations of MUWS,

♦ The WS-SG specification should be used to build a hierarchy of WS-Resources such as that 

shown in Figure 3-18 in managed devices at the edges of a network domain.

All the previous characteristics can be supported with adjustments to the architecture described in 

Figure 3-15. The details of this are presented in the next section.

3.4.4.1.1 Fulfilling the MUWS requirements for distributed monitoring

In this section we will explain how the requirements introduced previously can be met so our 

distributed monitoring architecture and our query tool can be supported by MUWS. The next four 

sections address the requirements set in the five bullet points in the previous section. Each section 

addresses a requirement in each bullet point with the exception that the second section addresses 

bullet points two and three together.

3.4.4.1.1.1 First Requirement

In terms of the requirement to have a series of agents manage the monitoring process, the MUWS 

framework specification defines that the consumer (i.e. manager) [13], [14] of a WS-Resource is 

isolated from the specifics of the implementation of the WS endpoint and the manageable 

resource. Thus MUWS supports both agentless or with an agent implementations when managing 

WS-Resources. Thus supporting the agents of the architecture in Figure 3-15 with MUWS does 

not present any compatibility problems with the concepts and guidelines of the latter.

3.4.4.1.1.2 Second & Third Requirements

In terms of exposing management data using the WS-Resource concept for the architecture in 

Figure 3-15 for managed devices at the edge of a network domain, there are four conditions that 

need to be met. First each WS exposing a manageable resource should expose the MUWS 

operations through a WS addressing endpoint. Second resources should be exposed in terms of 

RP. Third RP documents should be linked with the WS interfaces through their WSDL portType 

elements. Fourth the agent itself should be a WS-Resource having access to all the other WS- 

Resources.

The first condition can be satisfied as long as the WS in managed devices at the edges of a 

network domain in Figure 3-15 are built in order expose the MUWS Framework operations. This 

also means though that we have to make alternating use of the MUWS operations for distributed
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monitoring (at the edges of a domain for interoperability) and the operations of our custom 

framework (within a network domain for increased performance). This should not pose a problem 

as devices at the network edge can use MUWS operations to communicate with other edge 

devices and the custom framework operations to communicate with network core devices.

The second condition can also be satisfied since tlie WS-RP specification and thus MUWS also 

support implementations of tlie RP document that are not instances of an XML Schema. This is 

necessary since the architecture in Figure 3-15 dynamically constructs the RP document and its 

information from data held in programming language objects, and then binds tliese elements to an 

XML document instance. Since MUWS allows resource specific implementations of the RP 

document, tlie second condition can be met without risking being non-conformant to WSRF’s and 

MUWS’ concepts for exposing state as resource properties.

For the third condition each WS exposing management data should be linked with a RP document 

by referiing to it in its WSDL portType. This can be achieved with any WSDL implementation.

For the fourth condition to be met, tlie agent should use the concept of the WS-SG specification to 

group WS-Resoui'ces so that collective access to resources is provided. This can be achieved the 

way it is explained in the fifth requirement section below, but also requires the agents of the 

devices at the network edges to also be represented by a WS-Resource. The latter can be 

supported by the architecture of Figure 3-15 by making the appropriate changes so that the WS 

representing the agents at the edges of a network to be turned into WS-Resources.

Fulfilling the second requirement necessitates that both the agent and the WS exposing 

management data at the edges of a network to be converted to WS-Resources exposing the 

standard operations of MUWS. Thus fulfilling the second requirement (conditions 2 and 4) 

automatically means the third requirement is also satisfied.

3.4.4.1.1.3 Fourth Requirement
The fourth requirement can be achieved using the QRP and QRBT operations of MUWS.

The QRBT operation can be used to retiieve the relationships that WS-Resources share in order 

for an agent at the edge of a network domain to build its conceptual view of WS-Resources. This 

way when a service selection query is dispatched from a manager to an agent, the latter will be 

able to select which WS-Resources to retrieve data from.

The QRP operation can be used to perform bulk and selective retrieval of resource properties 

from WS-Resources using our query tool. To do tliis, first the QRP operation should support our 

custom tool queries. Using the dialect attribute of the QRP operation to point to a specification of 

our query tool and language would make this possible. Since it is in the future goals of MUWS
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and WS-Management to support resource specific query languages, this should not be a problem. 

Figure 3-19 shows an example of using the QRP operation to support our custom tool queries.

<wsrp:QueryResourceProperties>
<wsrp:QueryExpression 

<qit:SS_Query>{http://192.168.50.4:8080/WS- 
Resource/1/,2,3, AssociatesTo* Augments}

</qrt;:SS_Query>
<qit:MID_Query>

{nq)lsInSegmentPerfEntry[ ]}
</qrtMID_Query>
<qrt:FD_Query>

{mplsinSegmentPerfDiscards<=500}
</qrt:FD_Query>

<qrtSS_Query>{http://l92.168.60.3:8080/WS- 
Resourcû2/,2,3, AssociatesTo* Augments}

</qrt:SS_Query>
<qrt:MID_Query>

{mpIsInSegmentPerfEntry[ ]}
</qrt:N0D_Query>
<qrt;FD_Query>

{mplsinSegmentPerfDiscards>=1000}
</qrtFD_Query>
<qrt:CBackAd&ess>.. .</qrt:CBackAddress>

</wsrp:QueryExpression>
</wsrp:QueryResourceProperties>

Figure 3-19 Custom tool queries with MUWS’s QueryResourceProperties operation

3.4.4.1.1.4 Fifth Requirement
Fulfilling the fifth requirement requires using the WS-SG specification to build a hierarchy of 

WS-Resources. Using this hierarchy, data from WS-Resources can be retrieved more efficiently. 

In order to build such a hierarchy, containment can be the relationship between WS-Resources 

that can serve as the basis of a member constraint to build the levels of the hierarchy. Figure 3-20 

gives an example of a containment relationship between two WS-Resources one of which resides 

at level 2 of the hierarchy and one at level 3. In this figure, the relationship type and level 

association elements can be used by the agents of our architecture to build a conceptual hierarchy 

of WS-Resources and are defined in a separate XML schema (referred by the rel namespace in 

Figure 3-20). Inserting schema specific information such as those in the rel schema inside the type 

and participant elements of the MUWS schema is allowed by the latter in order to describe any 

schema specific information about WS relationships (see Figure 3-20). WS-Resources can share 

other types of relationships apart from containment relationship such as the one given in Figure 

3-20. As long as relationships are defined in MUWS relationship elements and stored as resource 

properties of a WS-Resource, our agents can look them in order to build the hierarchy of Figure

3-18.
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In order to actually support the tree of Figure 3-18, collective access from a WS-Resource at a 

higher level to WS-Resources of lower levels is necessary. As such it is necessary for the higher 

level resource to be able to access the WSDL operations and RP documents of WS-Resources at 

lower levels. For WSDL 2.0 this is easy due to its extensible nature. Accessing operations from 

the WSDL document of another WS-Resource necessitates that the latter references these 

operations in its portType. WSDL 2.0 allows this through an extension attribute in the portType 

definition. In order for a WS-Resource to be able to have access to other RP of other WS- 

Resources, the WSDL RP document schema of the former has to reference the WSDL RP 

schemas of the latter resources. This in WSDL 2.0 can be achieved by first defining each RP 

document of a WS-Resource in a separate XML schema. Then using the import attribute of an 

XML schema inside the WSDL document of a WS-Resource it is possible to refer to elements of 

other schemas of other resources. WSDL 1.1 though is not as extensible as WSDL 2.0. As such, 

in order to perform the above with WSDL I.l, the schemas and operations of lower level 

resources have to be manually imported in the WSDL document of the higher level WS-Resource. 

It is obviously more flexible to build hierarchies of WS-Resources and provide collective access 

to RP with WSDL 2.0.

<rauws2:Relationship>
<muws2:Name>...
</muws2:Name>
<muws2:Type>
</rel:containment>

</muws2;Type>
<muws2:Participant>

<muws 1 :ManageabilityEndpointReference>
..EPR2...

</muws 1 ;ManageabilityEndpointReference>
<wsa:EndpointRefence>...EPR2...
</wsa: EndpointReference>
<muwsl:ResourceId>...
</muws 1 :ResourceId>
<muws2:Role>.. .</muws2:Role>
<rel:Lvi>3</reI:Lvl>

</muws2:Participant>
<muws2:Participant>

<muws2:SeIf/>
<muws2:Role>.. .</muws2:Role>
<rel:Lvl>2</rel:Lvl>

</mu ws2 : Participant>
</muws2:Relationship>

Figure 3-20 Defining relationships of WS-Resources as resource properties
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3.4.4.2 Monitoring Example

Having explained how to use MUWS to achieve the requirements of the distributed monitoring 

architecture in Figure 3-15, it is now possible to provide an example. This example will show how 

to use MUWS operations for distributed monitoring across an entire network domain. Normally 

within a network domain only the operations of our custom lightweight framework would be 

required. The MUWS operations would be used for communication between domains for 

interoperability. Other issues need to be solved though before using MUWS for distributed 

monitoring between network domains. As such in this example we will only show how to use the 

operations of MUWS for distributed monitoring within a single domain.

In tlie distributed monitoring example using MUWS operations we have to imagine that the 

architecture in Figure 3-15 has been transformed to support the WS-Resource concept and the 

operations of MUWS. In addition, we need to assume that each agent has a view on a hierarchy of 

WS-Resources that looks like the one between WS-Resources in Figure 3-18. The example begins 

by having the manager of Figure 3-15 query the WS-Resource interface of the agent associated 

with the local queries router by invoking its QRP operation. This operation carries the data shown 

in Figure 3-19. The agent extracts the <qrt:SS_Query> elements from the QRP operation and 

checks the addresses they contain. The agent thus realises that the first query is for the local router 

and the second for a remote router. As such, it dispatches the remote SS query and its associated 

MID and FD queries to the next hop remote agent by invoking the latter’s QRP operation. In this 

operation the agent also inserts the callback address of the manager. Back to the local queries 

agent, monitoring resumes by having the latter process the local SS query. The agent then 

determines that the manager wants to retrieve properties from the WS-Resources in level 2 and 3 

that can be reached by first following relationships of type AssociatesTo and then type Augments 

starting the search from WS-Resource 1. The agent then searches the conceptual tree by invoking 

the QRBT operation of each WS-Resource’s searching for relationships of iypt AssociatesTo with 

other WS-Resources. This eliminates all WS-Resources apart from 30,31,4 to 7, 13 to 17 because 

only the latter resources can be reached by an AssociatesTo relationship. The agent then queries 

again the remaining WS-Resources for relationships of type Augments. The latter results in having 

the agent select WS-Resources 40 and 41 in order to retrieve state data. Then the agent applies the 

level restrictions which mandate selecting only WS-Resources between and including levels 2 and 

3. Since WS-Resources 40 and 41 belong to level 2, they remain selected. The agent then 

dispatches the MID and FD queries to WS-Resources 40 and 41 using their QRP operations. In 

each WS-Resource the mplsInSegmentPeifEntry instances are selected which have 

mplsInSegmentPetjDiscards values less than 500 (jnplsInSegmentPetjEntries and 

mplsInSegmentPerfDiscards do not appear as WS-Resources in Figure 3-18 because the figure 

would look crowed). WS-Resource 41 does not contain any information as the ones requested by
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the agent and thus sends an empty response. WS-Resource 40 responds to the agent with the 

result contained in an XML document. The agent would nonnally concatenate results, but in this 

case it does not happen because from the WS-Resources selected, only WS-Resource 40 provides 

a number of state data. The agent then sends back to the manager the result in XML format. A 

similar process as for the local agent also takes place in the remote agent when it receives the 

remote SS, MID and FD queries.

3,5 Conclusions & Summary
In this chapter we have shown that state data representing the underlying resources share a 

number of relationships. As a result, the objects encompassing these data also share these 

relationships enabling efficient information retrieval as in CMIP-I-+. Since not only objects but 

also WS can be used to encompass the state data of underlying resources, WS can also share a 

number of relationships. By having WS share relationships with other WS we can use these 

relationships to facilitate infonnation retrieval for WS-based monitoring. In contrast to 

programming language object-oriented technologies that use relationships to structure objects into 

hierarchies for easier searching of the latter, WS do not support this by default. As such in this 

chapter we have introduced three rules in order to build a hierarchy of WS. Using these rules we 

have shown how to build a conceptual hierarchy of WS encompassing management state data and 

how to exploit these relationships for data selection. The latter enables us to search state data for 

monitoring, not only based on the lexicographical ordering of the state data of managed devices 

but also on the internal some times hidden relationships that these data share.

As a result, we have designed and built a custom query tool and parser to facilitate bulk and 

selective retrieval from WS hierarchies sharing a series of relationships. The queiy tool supports 

bulk retrieval by having an agent process a number of special queries, called SS Queries, to 

navigate a conceptual WS hierarchy of state data which the agent builds automatically by 

exploiting the relationships between state data. The query tool also supports selective retrieval 

through information processing using special queries called data queries. The functionality of our 

query tool is not limited though just to bulk and selective retrieval. We integrated this query tool 

as part of an architecture that combines the use of a series of agents that process a number of 

SS queries to support distributed polling based monitoring. As such, we have achieved the 

delegation of a series of monitoring tasks from a manager to a number of agents using the 

operations of a custom WS framework.

Based on the above, the gains of using oui' queiy tool for monitoring are threefold. Bulk and 

selective retrieval exploiting the relationships between state data and distribution of the 

monitoring load represent two of the benefits.
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The third benefit is a potential benefit but with several restrictions. By introducing extra 

functionality to a series o f management agents processing our SS Queries using our query tool, 

our architecture gives a complete view of management services through ONE agent by supporting 

federation of management requests. As such, a manager does not need to contact many agents for 

different parts of the global MIB but it can contact one, assuming of course that services 

supported by agents are hierarchically linked. Introducing extra functionality to a series of WS- 

based management agents that will need to already be there for another purpose in the first place, 

to support distributed monitoring, is a viable solution but it raises a few concerns. Currently there 

are no WS agents supported in any network. If  WS catch up in the future as a potential 

management technology, introducing such functionality to agents is possible, but nobody 

guarantees that there are going to be WS agents in the future. Even if  this scheme is going to be 

used with SNMP agents, there are still problems with how pre-existing agents will support such a 

feature. It is possible to use extensibility features like AgentX to support such a feature but even 

then companies have to agree to support such functionality. Despite the several limitations, our 

approach can support disti ibuted monitoring, and if  adopted by future WS-based agents it can be 

considered as an alternative solution to distributed monitoring.

We must though be able to use our query tool not only as part of our custom monitoring 

framework, but also as part of a standard framework for monitoring. As such we have shown how 

to transform our monitoring architecture based on the concepts of the MUWS standard for 

distributed management of WS-Resources. MUWS as well as WS-Management are two 

frameworks in the process of standardising the WS operations on manageable resources for the 

purpose of increasing the interoperability of WS management applications. As a result, finding 

ways to integrate our work on distributed monitoring with the work performed in MUWS for 

standardising the operations performed on manageable resources is of great benefit. Using two of 

MUWS operations, the ability to define relationships as WS resource properties and the WS-SG 

specification in order to build organised hierarchies of WS-Resources, we highlight the changes 

that are required in our distributed monitoring architecture to support the concepts of MUWS and 

WSRF. This is extremely important since it allows us to use the MUWS standard at the edges o f a 

management domain to preserve the interoperability of our distributed monitoring architecture. At 

the same time we can use our custom framework or any lightweight framework within a network 

domain so as to increase the performance of WS monitoring operations since MUWS may have 

quite a big overhead for monitoring as shown in [123]. Such approaches are gaining ground as for 

example in [34] where a similar scheme was suggested for event reporting.

In the next chapter we will perform a comparison of our query tool with XPath. This way we will 

show that in scenarios where a varied number of merging and filtering operations are required 

over various volumes of data, our custom-based tool can be more scalable from general purpose
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tools when used for network management monitoring operations. Driven by the scalability of our 

query tool we will use it in a case study for polling based monitoring over MPLS enabled 

networks. We will investigate three scenarios over these networks where bulk and selective 

retrieval is required. Based on these scenarios, we will compare the performance of our custom 

monitoring framework with a standard protocol such as SNMP. This way we will be able to 

demonstrate that our custom monitoring framework is lightweight enough to be used for WS- 

based monitoring.
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Chapter 4

4 Testing the Efficiency of our Query Tool 

and our Monitoring Framework

4.1 Introduction

In chapter two we have analysed the work that has been carried out by other researchers in 

evaluating the performance of WS for polling based monitoring of the state of network devices. 

Based on that work we mentioned that it would appear that WS could be used for network 

monitoring only in cases where a great amount of data needs to be retrieved. This happens 

because it seems that WS by nature constitute a relatively heavyweight technology in terms of 

memory, latency and traffic overhead. This is attributed to the verbosity of XML tags describing 

the context o f management data. In addition the tools and APIs used to built and deploy WS are 

still in the process of development and, as a result, performance is inhibited. While the issues of 

the tools and APIs performance for building and deploying WS are being resolved as shown by 

the increasing performance o f WS toolkits in [40], [97] , the verbosity of XML tags will always 

have a negative impact on WS performance. Still there are ways to minimise this impact. 

Minimising the processing overhead of data stored in XML may be more important in some cases 

than solving the encoding, serialisation and parsing problems that affect the performance of 

SOAP toolkits and thus the performance of WS management operations. For example as shown in 

an investigation of our own in [180] the latency performance o f Axis 2.1.4 versus its predecessor 

(Axis 1.1.4) has increased by 3 times for discovering the PHB IDs that need to be retrieved in 

scenario 2 that we introduce in section 4.2.2 (1000ms difference when 980 objects are retrieved). 

As will be shown later using the same network setup, the latency performance of our custom 

query tool against XPath version 1.0 or 2.0 for processing the same amount of objects is better by 

9 or 17 times respectively (2600ms or 6000ms difference).

Irrespective of the factors that affect the performance of WS-based management operations 

studied by other researchers, a series of factors influencing the use of WS for network monitoring 

have not been investigated yet. Previous research has not examined scenarios where bulk and 

selective retrieval and information processing on management data is required. On the contrary, 

researchers have only investigated scenarios where management data are retrieved in a sequential
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(by definining each piece of information to be retrieved explicitly) or bulk manner. Even so in 

these scenarios, researchers tested the performance of retrieving management state data in a bulk 

manner by usmg schemes that deployed special functions to offer bulk access to management 

data. These schemes are not flexible since in order to have an adjustable level of granularity for 

monitoring operations, the WS interface offering access to management data has to expose a 

very big number of functions. This increases memory overhead. In addition using these schemes 

for bulk retrieval of management data requires to visualise before hand which management data 

should be grouped togetlier so that collective access to these data is provided tlrrough special 

functions. This is also not flexible. Furthermore, in cases where a large population of WS is 

required in order to represent the underlying resources, these approaches are not scalable because 

the big number of functions required to access state data increase the footprint of each WS, In 

addition to the above, some schemes that have been researched for monitoring mandate the 

retrieval of each piece of information exphcitly (using a series of identifiers). The latter is not 

optimal since this way traffic overhead increases uncecessarily.

On the contrary, schemes that use query tools to retrieve management data in bulk or selectively, 

have the potential of being more efficient. This is because when using query tools to retrieve state 

data representing the underlying resources, it is possible to use a single method per WS interface 

to achieve the same granularity as previous researchers did with many specialised methods. As 

such, query tool schemes theoritically have the potential of being more lightweight. In addition, 

query tools can be a great addition to several monitoring scenarios. Examples of such scenarios 

can be found in cases (a) where the entire data of a device needs not to be modified or retrieved 

(b) when state data have to be retrieved based on the relationships they share (c) when it is 

necessary to retrieve management information without specifying explicitly each piece of 

information that needs to be retrieved. For the first case it is plausible to process data close to the 

devices from where they are retrieved, rather than retrieving the entire state of a device and 

process it at the manager. Performing the latter will increase traffic overhead and at the same time 

could have an ovewhelming effect on the manager. For the second case especially when using 

SNMP MIBs, data usually hide a lot of relationships and processing is required to exploit these 

relationships. The latter is necessary in many cases where the need to achieve a number of high 

level monitoring tasks requires from a management entity to process a number of relationships 

between state data. A query tool can be used to uncover these relationships on the fly whereas a 

scheme with a series of specialised functions has to visuahse these relationships beforehand and 

provide special functions to achieve eveiy high level task that is necessary for monitoring. For the 

third case it is evident that defining a simple Boolean expression containing assertions on attribute 

values to pinpoint the data that need to be retrieved for monitoring is better than defining each 

piece of information to be retrieved explicitly. The latter is not very efficient, especially in terms

103



Chapter 4. Testing the Efficiency o f our Query Tool and Monitoring Framework______________________

of traffic overhead. Query tools used for WS-based monitoring can be used effectively to address 

all three scenarios described previously. In the past though researchers have not invested a lot of 

effort in checking the performance of query tools for WS-based management. As such, the 

scalability of these query tools in processing management data and how the latter affects the 

performance of WS-based management operations need to be investigated.

Based on the above it is evident that it is important first to find and then analyse scenarios where a 

number of high level tasks need to be achieved using bulk and selective retrieval facilities and 

information processing. Based on these scenarios it is important to study the performance of 

various query tools, including our own tool introduced in chapter three, to evaluate how 

lightweight each tools is. This way we can also identify potential problems with each tool and 

possibly suggest solutions to these problems. After having investigated the performance of the 

various query tools, it will then be possible to select the one that is more scalable and evaluate the 

performance of WS-based polling based monitoring against other technologies.

In the next sections we will introduce a number of scenarios based on the monitoring system of a 

network that provides Quality of Service (QoS) guarantees to clients over Multi-Protocol Label 

Switching (MPLS) routers. These scenarios necessitate but do not mandate the use of tools for 

retrieving state data in a bulk or selective retrieval manner. Based on these scenarios we will 

compare the performance of our query tool with XPath vl.O and v2.0. The latter are suggested as 

potential candidates for handling the XML configuration payload of the NetConf protocol using 

filtering (selective) and merging (bulk) operations. XPath implementations have also been 

suggested as potential candidates for extracting the properties of manageable resources for 

monitoring and event reporting (MUWS, WS-Management). We will show that XPath may have 

potential scalability problems handling time critical scenarios and that our custom query tool can 

perform better. Based on these results, we decided to use our query tool in order to evaluate the 

performance of WS polling based monitoring against SNMP. This way we will be able to extract 

conclusions on the perfoimance of our custom WS framework and whether the latter can be used 

for efficient polling based monitoring.

4.2 QoS Monitoring Requirements and Scenarios

4.2.1 Introduction

As mentioned in the previous section, a number of scenarios will be introduced in this section for 

the purpose of comparing our custom query tool with XPath and our custom WS-based 

framework with SNMP. Before introducing these scenarios though, it is necessary to provide a
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background on how to provide Quality of Service (QoS) guarantees. This is necessary since the 

scenaiios introduced in the next section involve monitoring operations on QoS-enabled networks

Providing QoS in a network domain or across different domains has been the subject of extensive 

research over the past years. Currently QoS is provided on tlie basis of Service Level Agreements 

(SLAs). These represent a set of tenns that clients and providers of services have to abide by, 

when they are accessing and providing a service respectively. The technical part of an SLA is 

called a Service Level Specification (SLS) and it represents the means for defining QoS-based IP 

connectivity seiwices [166]. IP Differentiated Seiwices [167] (DiffServ) is currently seen as the 

framework for providing QoS-based seiwices. In this framework, routers aggregate traffic that 

belongs to several service classes according to predefined QoS poHcies. These policies are 

quantified through performance paiameters such as throughput, delay, loss and delay variation. A 

common approach to support the DiffServ architecture is over Multi-Protocol Label Switching 

(MPLS) traffic-engineered networks. Maximising network resource utilisation and at the same 

time meeting the QoS demands of services contracted to customers in these networks is a key 

tai'get for operators offering QoS-based services.

Based on the above it becomes evident that monitoring of the network status and its resources is 

an essential process in order to ensure a network’s smooth and reliable operation. When providing 

QoS-based value-added services, this becomes even more important. Providing value added 

services is a challenging task and requires the deployment of resource management techniques, 

such as the use of Traffic Engineering (TE). The latter requires the collection of monitoring data 

enabling both off-line/proactive and dynamic/reactive operations to be performed. These 

operations can ensure the smootli operation of the network. As such, tlie role of a scalable 

monitoring system in terms of network size, speed, and number of contiacted services to 

customers, is of paramount importance as the monitoring system in QoS networks triggers the 

operations that can ensure the smooth operation of the latter. Given the multitude of services with 

various performance requirements and the need to have measurement data witli the finest 

granulaiity possible, the design and implementation of scalable monitoring systems constitutes a 

significant challenge. This is especially true as such systems must be capable of providing 

measurements for network provisioning, dynamic resource allocation, route management, and in- 

service verification of value-added services. Therefore, Quality of Service monitoring is a very 

important aspect in the process of providing quantified QoS-based services.

Providing QoS over MPLS enabled networks has been the focus of various research projects. 

Examples of such work aie the frameworks proposed by the TEQUILA [162], [163], the 

CADENUS, and the ENTHRONE [165] projects. The architectures developed by these projects 

rely on their monitoring systems to provide them with up to date information about the state of the 

network. To address the needs of Traffic Engineering and QoS provisioning in general, a
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monitoring system must be able to acquire long and short term data. All the monitoring systems 

of the aforementioned frameworks collect these data using the Manager-Agent paradigm. The fact 

though that QoS enabled networks may have a large number of nodes and a large number of 

routes with different QoS guarantees may result in an exponential increase of monitoring 

requirements. As such in QoS networks where MPLS is used, their monitoring systems for 

scalability reasons perform measurements only at the MPLS Label Switched Path (LSP) level,

the QoS traffic class level (Per Hop Behaviour -  PHB) and the traffic contract level (Service

Level Specification-SLS). The types of measurements performed at these levels are two: active 

and passive ones. Active measurements are performed by injecting synthetic traffic to the network 

in order to monitor delay, jitter and packet loss. Passive measurements can be conducted using 

Management Information Bases from SNMP and involve measuring throughput, load and packet 

discards at the PHB, SLS and LSP levels [162], [163], [164]. The type and the specific points 

where passive measurements need to be performed in QoS networks are the following:

♦ LSP load at the ingress router (LSP L-I)

♦ LSP throughput at the egress router (LSP T-E)

♦ PHB throughput at every router (PHB T)

♦ PHB packet discards at every router (PHB D)

♦ Offered load at ingress per SLS or flow (SLS L)

♦ Offered throughput at egress per SLS or flow (SLS T)

As our investigation focuses on evaluating the performance of our custom WS framework against

SNMP and our query tool against XPath, active monitoring will not be considered. Active

measurements are not considered because they can be performed in the same manner for both 

SNMP and WS. As such active measurements are of no benefit in the context of evaluating the 

performance of our query tool to XPath or testing the performance of WS against SNMP for 

monitoring.

4.2,2 QoS monitoring scenarios

In this section we introduce three scenarios based on which the performance and scalability of 

WS-based management will be examined.

The first scenaiio will be used to compare the performance of WS and SNMP for retrieving the 

state data required in order to perform the passive measurements of a QoS network. In this 

scenario SNMP and WS could be used in the same way. This means that it is not necessary to use 

our custom query tool or XPath to perform any of the measurements involved in this scenario.
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Normally though the process of performing the passive measurements for QoS can be facilitated 

by having bulk or selective retrieval capabilities. We will explore this possibility in tlie second 

scenario. For the time being we want to use the first scenario in order to estabhsh a base for the 

performance of WS and SNMP. As such in the first scenario only bulk retrieval capabilities of 

WS and SNMP will be exploited. This applies both for the operations tliat WS expose based on 

our custom framework or the SNMP’s GetBulk operation. For some of the passive measurements 

tliough, information would have to be retrieved from different groups of data and from various 

MIBs. This for WS would normally require a number of different functions and potentially will 

affect latency overhead. To keep the comparison between WS and SNMP on equal terms, we 

decided to make a change. We decided to use just one of the functions of our custom framework 

for the measurements (the one providing access to all the data of a MIB exposed thiough a WS 

interface). This method will use our query tool or XPath (depending which is more scalable) to 

retrieve data in a bulk way from the various groups of data and the various MIBs required. Using 

our query tool or XPaÜr for bulk retrieval should not affect performance because of the nature of 

the measurements required for this scenario. This is true because for the measurements of this 

scenario no information processing is required. In addition, this scenario will also evaluate the 

perfonnance of consecutive SNMP GetNext operations to acquire the same data as with GetBulk 

or with WS.

The second scenario involves performing the same passive measurements as the first scenario. 

This time though, our custom query tool or XPath will be used with our custom WS framework 

for data processing at the agent side. This way the passive measurement data to be retrieved will 

be sent back to the manager in an ordered manner. By an ordered manner we mean on per PHB, 

SLS, or LSP basis. As such the manager can be relieved from the task of processing data from a 

big number of agents which is a load that could be overwhelming for a single entity. 

Consequently, a WS agent will be used to offer access to passive measurement data in a bulk 

manner but with capabilities of information processing. This is possible by using the selective 

retrieval facilities of XPath or our queiy tool before delivering management data to the manager. 

For SNMP we do not use facilities for information processing. Although it would be possible to 

use the Script or the Expression MIB to handle this task, as explained in chapter two, the 

mechanisms offered by these MIBs create a lot of problems. They are not secure, they are 

sometimes inefficient, impractical, they have limited support and as explained in many cases such 

as for monitoring they introduce more overhead to SNMP operations than they save. As such, 

SNMP will be used with the same capabilities as in the first scenario. In general with this scenario 

we will try to show that queiy tools for WS can be used to delegate and distribute the data 

processing load for monitoring to a number of agents. As a result, we can examine if such an 

approach could be a more viable option for monitoring using WS.
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The third scenario assumes that the MPLS interface of the ingress router of a QoS network fails. 

On receiving an event about the failure of this interface, the manager needs to determine the 

affected LSPs and service contracts (SLSs). This is a selective retrieval scenario where only the 

relevant information from a MIB hosted at an agent will be retrieved. This scenario is going to be 

used both for testing our custom query tool with XPath vl.O and v2.0 as well as our WS-based 

custom framework and SNMP. Through this scenario we will determine whether XPath 1.0 or 2.0 

is more scalable than our custom query tool. Based on this scenario we can decide whether to use 

XPath or our custom query tool in order to evaluate the performance of SNMP against our custom 

WS-based monitoring framework (for all three scenarios).

4.2.3 Management Information used for the scenarios

To perform the measurements required for the three QoS scenarios, a number of commercial 

SNMP Management Information Bases (MIBs) must be used. The MPLS Label Switching Router 

(LSR) MIB (RFC 3813) [152] and the MPLS Forwarding Equivalence Class to Next Hop Label 

Forwarding Entry (FEC) MIB (RFC 3814) [153] are necessary to perform the measurements 

required for any of the three scenarios. The LSR MIB can be used to perform PHB and LSP 

measurements whereas the FEC MIB can be used to perform SLS measurements. The Interfaces 

group from the RFC 1213 MIB must also be implemented. This is required since the MPLS MIBs 

are associated with many of the Interfaces group data.

4.3 Comparing XPath with our custom query tool

Polling-based monitoring is a key domain in using WS for Network Management. Monitoring in 

many scenarios involves retrieving state data in a bulk or selective manner from a managed 

device in a synchronous manner. Thus in many monitoring scenarios, mechanisms to retrieve data 

in a bulk or selective way are important. When using such mechanisms though, their scalability is 

a very crucial parameter. This is because in cases such as that of a network providing QoS 

guarantees, collection of management data is critical. In WS-Based management this is a great 

challenge since the verbosity of XML tags increase the coding and processing latency as well as 

the traffic and memory overhead requirements. In addition the performance of general-purpose 

XML parsers may be poor for network monitoring operations. Therefore the tools that will be 

used to manipulate XML data for bulk and selective retrieval should be efficient enough, if not to 

reduce the extra overhead imposed by XML tags and parsers, at least to increase it in a scalable 

manner.

Two of the industry’s options for processing and querying management data in XML documents 

are the XML Path (XPath) Language v. 1.0 & 2.0 [82], [83]. XPath 1.0 and 2.0 are W3C
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candidate recommendations in 1999 and 2005 respectively. They took their name from the path 

notation syntax with slashes “/” tliey use to control the selection of specific portions of an XML 

document. In addition to this functionality, XPath can also be used to perform operations on data 

after selecting the latter. In order to be able to select or modify XML data, XPath is using the 

Document Object Model (DOM) parser for analysing and keeping the structure of an XML 

document in memory. Using DOM to analyse an XML document, XPath can then process special 

queries sent to it in order to select or modify the data inside an XML document. These queries 

contain merging and filtering operations of aibitraiy complexity, making XPath a veiy expressive 

tool when used for handling XML content.

In the past, XPath has been proposed for altering or selecting configuration data in NetConf. 

NetConf uses XPath in the special operations it defines to manage tlie configuration data of a 

managed device stored in XML. NetConf’s performance though, in retrieving or altering 

configuration data in terms of memory, latency and traffic overhead relies on the XML parsing 

and handling techniques used by the supporting technologies it utilises. In essence NetConf’s 

performance depends on technologies such as XPath and DOM. In the past, various concerns have 

been expressed in the NetConf mailing list that XPath might be heavy in terms of memory and 

latency overhead for handling configuration data. As such they have suggested sub-tiee filtering 

as an alternative. Comparing XPath 1.0 and sub-tree filtering, in performing die filtering and 

merging operations required for handling configuration data, die authors in [134] and [137] 

conclude that when used only for filtering, sub-tree filtering is slightly better. The opposite 

happens when combining merging and filtering operations. This work though in essence implies 

that both XPath and sub-tree filtering may have problems in accessing or altering configuration 

data.

In the same way as for handling configuration data in NetConf, XPath has been suggested by 

some management technologies (MUWS, WS-Management) as a candidate technology for 

monitoring and event reporting. In MUWS and WS-Management, XPath is used to retrieve state 

in a bulk (XPath merging operations) or selective manner (XPath filtering operations). Still XPath 

may have limitations when used for this purpose. A limitation XPath 1.0 has, in comparison to its 

successor is the limited expressiveness of queries it supports. Tliis can sometimes inhibit the 

performance of XPath 1.0 since it may increase the number of times a document needs to be 

searched for retrieving or altering XML data. In the next section we will elaborate further on this 

issue. Another important shortcoming that all XPath implementations share is their dependency 

on DOM. DOM allows dynamically accessing and updating the content and structure of XML 

documents by loading all its data into memory. Handling an XML document the way DOM does 

can unnecessarily in some cases increase the memory and latency requirements for retrieving or
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modifying state. As such, it is evident that the concerns that XPath may be heavy for 

configuration management, may also be applicable for monitoring and event reporting.

As a result of the above conclusions it is necessary to compare our custom query tool and XPath 

in terms of their performance in executing monitoring operations. When comparing the 

performance of our custom query tool with XPath in terms of their scalability we need to examine 

(a) potential bottlenecks in the performance of these tools (b) how these tools perform when a 

small or a large volume of data needs to be accessed or processed (c) how these tools perform 

when executing monitoring operations that require bulk and selective retrieval and (d) how 

different XPath implementations perform compared to one another.

As such in the next sections we will explain how we need to set up our third QoS scenario in 

order to achieve the above goals. Having done that, we will then elaborate on the management 

model as part of which we will compare the performance of XPath and our custom query tool. 

Then we will give examples and analyse the queries that can be formed with XPath or our custom 

query tool. This way it will be possible to explain the actual queries that will need to be formed as 

part of the third QoS scenario for testing the performance of each query tool. Finally we will 

present the software and hardware setup we used for the measurements of the third QoS scenario 

and then analyse the measurements themselves.

4.3.1 The Set Up of the QoS Scenario

To evaluate the performance of our query tool and XPath we need to make the volume of 

information that needs to be processed volatile. This way we can identify how each tool performs 

when processing a big or a small volume of data. To perform the above, the routers in the third 

QoS scenario will be configured to have on one occasion a small number of LSPs and on another 

occasion a big number of LSPs. This way we can simulate a large and a small network and thus 

change the volume of information that has to be processed. For the needs of the measurements we 

will configure the ingress router of the third QoS scenario to have 900 or 30 LSPs. When 

configuring the network as described above though, another requirement is to keep the 

measurements either when the network is small or big on the same terms. This way we can extract 

safe conclusions as to how the volume of information to be processed affects the performance of 

each query tool. As such we assume that the number of LSPs and SLSs affected by the failing 

interface in the third scenario is six. This may be a plausible number of LSPs assigned to a single 

interface for a small network, but it may not be plausible for a large one. The aim though when 

making this selection is to keep the number of affected SLSs and LSPs for small and large 

networks the same so as to be able to extract safe conclusions about any potential bottlenecks in 

each tools’ performance.
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To check how different XPath implementations perform compared to one another and also how 

each tool performs when performing bulk and selective retrieval actions, the QoS scenaiio 

contains a series of queries witli a varied number of merging (bulk retrieval) and filtering 

operations (selective retiieval) for each query. By altering the number of these operations from 

one queiy to another, we can check how this affects performance botli of the custom query tool 

but also of XPath. Later it will be shown that some XPath implementations perform better than 

others. By varying the number of merging and filtering operations we will be able to show that the 

increased expressiveness of XPath 2.0 can be beneficial, decreasing memory and latency 

overhead.

Checking for potential bottlenecks in each tool’s performance using the third QoS scenario is 

provided by default from die moment we chose to compare our query tool with XPath. The parser 

of our custom query tool operates on raw data. DOM, which is the parser that XPadi uses, 

operates on XML. By making this experiment we can check the potential of DOM in being a 

bottleneck for XPath since the parser of our query tool operates in a different way (Figure 3-17 

and section 3.4.3). By altering the volume of data for die scenario measurements, we also gain 

another advantage when checking for potential bottlenecks in each tool’s performance. We can 

identify potential problems with each tool and suggest ways to increase their performance.

Our scenario though has also two limitations. The first is drat although the scenario we have 

chosen allows for checking the performance of different XPath vl.O & 2.0 implementations, this 

is not currently possible. This is because there are not many Java implementations of XPath or 

even in other languages that are fully conformant to standards, are mature and come from reliable 

bodies. The implementations we have chosen though, meet all these requirements. SAXON 8.9 by 

Michael Kay which is one of the XPath 2.0 standard authors [160] is a good implementation of 

XPath 2.0, it is conformant to the standard specification, and is mature. The Java API for XML 

Processing (JAXP) implementing XPath 1.0 from SUN [161] comes from a very reliable body 

that needs no introduction.

4.3.2 The management model for the measurements

In the diird QoS scenario based on which we will evaluate each tool’s performance, a Multi- 

Protocol Label Switching (MPLS) network will be used as the means to provide QoS guarantees 

to clients. The scenario requires performing passive measurements at the Label Switched Path and 

the Serwice Level Specification (SLS-traffic contract) level. As such for this reason we have 

selected two of SNMP’s MPLS MIBs to represent management data. These are the MPLS Label 

Switching Router (LSR) MIB [152] and the MPLS Forwarding Equivalence Class to Next Hop
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Label Forwarding Entry (FEC-To-NHLFE) MIB [153]. These MIBs are used to perform Per Hop 

Behaviour (PHB-traffic trunk) LSP and SLS measurements.

For the scenario measurements, the MPLS MIBs are used to expose management data through 

WS interfaces. The model used for monitoring these data through their interfaces is the manager- 

agent model. Though our tool can also support distributed monitoring, this is not possible for 

XPath. As such we do not use SS queries in this scenario and we do not structure WS in 

hierarchies since we need to test all tools on the same terms. For each MPLS MIB, a WS interface 

is created offering access to different portions of the latter’s data using three methods. For XPath 

and the custom tool these methods can be seen in Figure 4-1. The sglDataGet and simpleDataGet 

methods allow access to single instance MIB data. The multiDataGet and complexDataGet allows 

access to multiple instance data. The sglMultiDataGet and simpleComplexDataGet allow access 

to all the MIBs’ data.

SOAP over HTTP 
request holding XPath 

queries 
(1 ^^ggggemW information Services

Manager
XML documen 
single instance 

data

XML documen 
multiple 

instance data
XPath 
Instance (DOM)

Xpath or 
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document
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parser)
SOAP over HTTP 

request holding custom 
parser queries 
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Figure 4-1 Data Retrieval using XPath 1.0 or 2.0 or the custom tool

In order to retrieve data from a WS exposing an MPLS MIB, each WS incorporates an instance 

either of our custom query tool or XPath 1.0 or 2.0 (Figure 4-1). Retrieving state data from a 

MIB requires a manager to send either XPath or custom tool queries to an agent. These queries 

are sent as arguments of a Remote Procedure Call (RPC). The queries are then analysed by the 

custom query tool or XPath instance of each service. When the required data are selected by each 

tool, an XML parser is used to form the response in XML format to send back to the manager. 

The above process is the same for the WS that use XPath implementations as well as those that 

use our custom query tool. The only difference is that the parser of our custom tool has view upon
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raw data whereas XPath (DOM) has view on XML. All tools support bulk and selective retrieval 

through merging and filtering operations, though with different syntax.

4.3.3 An analysis of XPath queries and their custom quei-y tool equivalents

4.3.3.1 XPath 1.0 and 2.0 queries
The most common perception that people have about XPath’s view of an XML document is that 

of a tree of nodes. In XPath, tlie most common kind of nodes are (a) element (b) attiibute (c) text, 

(d) namespace, (e) processing-instmction (f) comment and (g) document (root). The root node of 

an XML document tree is called the document node. Element nodes describe tlie context of data. 

Attiibute nodes, aie nodes that describe attiibutes of an element node. Text nodes are nodes that 

contain the actual data of an element or attribute node. More details about nodes and XPath are 

given in [168]. Nodes in an XML document also shaie relationships. In XPath there are five types 

of node relationships: (a) Parents (b) Children (c) Siblings (d) Ancestors (e) Descendants. 

Selecting nodes in XPath is performed witli appropriate patli expressions to the node that needs to 

be extracted, depending on the type of the node to be extracted and the relationship it shares with 

other nodes. Most common symbols to depict tlie type of node and its relationship with other 

nodes are given in Table 4-1.

Nodename Selects all nodes after this node
/ Selects nodes having as start point root node
// Selects nodes from the current node that match 

the selection no matter where they are
Selects the current node
Select the parent of the current node

@ Selects attributes from a node
$ Selects any element node
[] Find a node that contains a specific value.

Table 4-1 Symbols for representing nodes in XPath 1.0 and 2.0 [168]

Useful examples of XPath expressions similai' to the queries that will be used in the 

measurements of the third QoS scenaiio are given in Table 4-2. The first query in this table selects 

all the element nodes of type b that are descendents of element nodes of type a. In the second 

expression all the element nodes of type a are selected if they have as descendents element nodes 

of type b whose value is equal to 1. This is an example of a filtering operation. In the third 

expression all the element nodes of type c are selected starting the seaich from element nodes of 

type a that have as descendants, nodes of type b with a text node value equal to 1. An interesting 

feature in expressions four and five is the use of operators. For example tlie “I” operator computes 

multiple node-sets and the equals “=” operator tests for equality between two values. From these 

expressions it is also possible to observe a difference in the operator expressiveness of XPath 1.0
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& 2.0. What is depicted here is that while the use of parentheses in XPath 1.0 at the first step of a 

path expression is allowed i.e. (alblc)/d/e, expressions such as /a/b/(c Id I e) are not permitted. 

XPath 2.0 allows use of the latter expression along with the use of more operators and functions. 

This allows a user of XPath 2.0 to form less verbose queries that require fewer merging 

operations in some cases than XPath 1.0. This enables XPath 2.0 as we will see later to impose a 

smaller latency or memory overhead than XPath 1.0, since it requires searching an XML 

document fewer times.

a//b Selects all b element nodes that are descendants of a element 
nodes, belonging under the latter

//a[b=’l ’] Selects all a elements with b elements equal to 1
//a[b=’l ’]/c Selects all c elements starting the search from a tags with b=l
//a[b=’l ’]/(cld) **XPath2 only** Selects all c and d elements starting the 

search from a elements with b=l
//a[b=’l ’l/cl//a[b=’l ’]/d **XPath2 & 1** Same result as the previous for XPath 1& 2

Table 4-2 Sample expressions for XPath 1.0 and 2.0 

4.3.3.2 Comparison of XPath with our custom query tool

Our custom query tool and XPath 1.0 & 2.0 were designed with a different perspective. The 

custom tool uses special queries to select the type of programming language structures from 

which to retrieve data from. XPath uses the keys in Table 4-1 to select XML data nodes based on 

the containment relationships nodes share with other nodes. This way XPath can find the path to 

the XML data that needs to be retrieved. The custom parser operates on raw data and does not 

need to define a path to the data that need to be retrieved. This happens because it exploits 

pointers and relationships between raw data objects or WS respectively to guide itself across the 

data hierarchy (raw data objects are stacked in a linked list). XPath uses absolute or relative path 

expressions and symbols to find its way to the data that need to be retrieved. The custom tool uses 

a minimal set of operators to perform filtering (=,!=,>=,<=,<,>, AND,OR) or bulk retrieval ( 

merging ) operations. XPath implementations and especially version 2.0 have loads of 

operators and functions to perform filtering and merging. Based on the above, it is easy to deduce 

that the query tool does not have as much functionality as XPath 1.0 and 2.0 and it cannot be as 

expressive and flexible as the latter. Still the tool can be used to address the purpose of retrieving 

management state data for monitoring and event reporting as used for example in [169]. In this 

work the custom query tool was used to provide bulk and selective retrieval capabilities for event 

reporting. Limiting the tool’s functionality like this was done to keep things simple, keep the 

grammar of the tool simple and easy to learn, and keep the memory and latency overhead low.

Examples of the custom tool queries and their XPath counterparts in Table 4-2 are given in Table 

4-3, Similar queries to the ones in Table 4-3 are used in the evaluation section for the QoS
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scenario between XPath and the custom tool. These queries contain a varied number of filtering 

and merging operations to evaluate each tool’s performance.

MD:{a[]} a//b
MD:{a[l)FD:{b=l} //a[b=’l ’]
MD: {c[])FD:{b=l} //a[b=’l ’]/c
MD: {cn ,d []lF D :{b= l| //a[b=’l ’]/(cld)
MD: {c[],dn iFD :{b= l,b= H //a[b=’l ’]/cl//a[b=’l ’]/d

Table 4-3 Custom tool queries and XPath equivalents

4.3.4 Scenario Measurement Set up and Analysis

4.3.4.1 Network Setup for Measurements
For the evaluation aspects of our QoS scenario the MPLS LSR and FEC-to-NHLFE MIBs are 

exposed as WS interfaces. For XPath 1&2 and the custom queiy tool management data are 

exposed as shown in Figure 4-1. The Apache Axis 1.4 SOAP toolkit is used to deploy WS 

interfaces using a Document/literal encoding style. For XPath 1.0 functionality, we use the Java 

API for XML Processing vl.3. XPath 2.0 is supported by SAXON 8.9. Java’s 1.5.6 regex engine 

is used for the query tool. To measure traffic overhead for the third QoS scenario we use Linux’s 

tcpdump utility. To perform latency measurements, the currentTimeMillis( ) method of Java is 

used. Each latency sample is calculated based on averaging the results of 10 measurements. 

Memory overhead was measured by monitoring the maximum consumption of memory 

(swap/RAM) of Linux PCs where the manager and the agent in Figure 4-1 aie deployed. The 

manager and agent of Figure 4-1 were deployed on a 1000MHz/256MB RAM and 

466MHz/192MB RAM machine respectively, thus simulating a lower end system for the agent. 

Both machines ran Red-hat Linux 7.3.

4.3.4.2 Measurements Analysis
The measurements we will analyse in tliis section involve tiaffic, latency and memory overhead 

for the third QoS scenario analysed in section 4.2.2. In this scenario we need to determine using 

any of the three tools and the MPLS tiaffic Engineering MIBs, the affected LSPs and SLSs after 

the interface of an ingress router of an MPLS network fails. To do this for the management model 

in Figure 4-1, three queries must be sent from the manager to the agent. The first queiy 

determines the interface indices of the LSPs associated with the failing interface. The second 

query uses the interface indices returned by the agent from the first queiy to determine the 

affected LSP IDs. In the third queiy the LSP IDs from tlie previous step are used to determine the 

affected SLSs IDs. Part of the queries, since they are quite large and cannot be listed as a whole, 

for XPatli 1.0, 2.0 and the custom query tool are given in Figure 4-2, Figure 4-3 and Figure 4-4.
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From the XPath queries in Figure 4-2 and Figure 4-3, it is possible to observe that apart from the 

required data, each query also retrieves the row identifiers of each row of the SNMP table from 

which data are extracted. For the WS using the custom query tool in Figure 4-1, this is performed 

by default and as a result it increases latency overhead. Retrieving the row identifiers for multiple 

instance data in SNMP is mandatory (i.e. a Table). This way an SNMP manager and agent is able 

to distinguish table rows. As such for WS that use XPath vl.O or 2.0 implementations, we retrieve 

the row identifiers explicitly as it happens for WS that use the custom query tool implicitly. This 

way we can keep the measurements for all tools relatively on the same terms.

XPath 
1.0 

Query 1

//mplsInSegmentEntry[mplsInSegmentlnterface=iflndexi ]/mplslnSegmentInterface | 
//mp!sInScgmentEntry[mplsInSegmentInterface=ifIndexi]/mplslnSegmentIndex | 
//mpisOutSeginentEntry [mpIsOutSeginentInterface=ifindexi]/mplsOutSegmentInterface | 
//mpisOutSeginentEntrylmplsOutSegmentlnterface^ iflndexil/mplsOutSegmentlndex

XPath 
1.0 

Query 2

//mplsXCEnti-y[mpIsXCInSegmentIndex= mplsInSegmentlndexi or 
mpisXCOutSegmentIndex=mplsOutSegmentIndexi or ...]/mpIsXCLspId | 
//mplsXCEnti-y[mplsXCInSegmentIndex= mplsInSegmentlndexi or 
inpisXCOutSegmentIndex= mplsOutSegmentlndexi or ...]/mpIsXCOutSegmentIndexi...

XPath 
1.0 

Query 3

//inplsFTNEntry[mplsFTNActionPointer=mplsXCLspIdi .mplsXCIndexi. 
mplsXCInSeginentlndexi.mplsXCOutSegmentlndexi or ... ]/mplsFTNDscp | 
//mplsFTNEntry [mplsFTNActionPointer=mplsXCLspId i .mplsXCIndexi. 
mplsXCInSegmentlndexi.mplsXCOutSegmentlndexi o r ... 1/mplsFTNIndex

Figure 4-2 XPath 1.0 queries

XPath2 
Query 1

//mplsInSegmcntEiitry[niplslnSegmetitInterfacc=iflndexi]/ 
(inplsInSegmentlnterface | mplsInScgmentlndex) | // 

mplsOutSegmcntEiitty[mplsOutSegmcntIntcrfacc=iflndexi]/ 
(mplsOutSegmeiitlnterface I mplsOutSegmentlndex)

XPath2. 
Query 2

//mplsXCEntry[mplsXCInSegmeiitIndex=mplsInSegmentlndeX| or 
mp]sXCOutSegmentIndcx=mplsOutSegmentIndeX| o r...]/ 
(mplsXCLspld 1 mplsXCIndcx | mpIsXCInSegmentlndex | 

mplsXCOutSegmentlndex)
XPath 

2.0 
Query 3

//mplsFTNEntry[mplsFTNActionPointer=mplsXCLspIdi 
.mplsXCIndexi .mplsXCInSegmeiitlndexi. 

mplsXCOutSegmentlndex, or ...]/(mplsFTNDscp j mplsFTNIndex)

Figure 4-3 XPath 2.0 queries

Custom
p arse r

Q uery l

{niplslnSegnientInterface[ ], mplsOutSegmentInterface[ ]} 
{value=iflndexi,value=if[ndex]}

Custom  
p a rse r 

Q uery 2

{mplsXCLspIdt ]} 
{mplsXCInSegmentIndex=mplsInSegmentIndexi OR 

mpIsXCOutSegmentXCIndex=mplsOutSegmentlndeX) O R ...}
Custom  
p a rse r 

Q uery 3

{mplsFTNDscp[ ]} 
(mplsFTNActionPoiiitei-mpisXCLspIdi.mplsXCIndeXj. 

mplsXCInSegmentlndexi.mplsXCOutSegmentlndex, OR ...}

Figure 4-4 Custom based tool queries
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In Figure 4-5 and Figure 4-6 we provide latency overhead measurements for a small and a big 

QoS network. Before analysing the results, we need to make some clarifications. The first 

clarification is that for both the small and tlie big network we retrieve tlie same data. This happens 

either for XPath or the custom query tool. The volume of data though, that needs to be searched 

when the size of the network increases changes. The exact figure of this change is thirty times. In 

addition to the above clarification it has to be noted tliat XPath implementations need to search a 

bigger volume of data than the custom queiy tool. This occurs for a simple reason. In XML, the 

context of each piece of information requires usually two element node tags. This means that for 

every single instance or for every multiple instance entry of data, two sepaiate element tags are 

required. A different approach was followed for tlie custom query tool for multiple instance data. 

For the custom tool all the management data of each WS are stored in a linked list. In every linked 

list multiple instance data of the same type (like a column from a table) aie described so as to 

appear as several entities with a single tag describing their context. The benefits of this aie 

twofold. First, the volume of data required to be searched decreases since fewer tags to describe 

the data context aie required. Second, the hierarchy of single or multiple instance objects 

connected with pointers in every linked list is simpler. Thus data of specific type can be found 

easier and faster (Figure 3-17). This has a big impact on latency.

From analysing the latency measurements in Figure 4-5 and Figure 4-6, it can be observed that 

when compaiing tools together tlie latency of XPath 1.0 is bigger than tliat of the custom queiy 

tool with the difference ranging from 166% (small networks) to 1589% (big networks). For XPatli

2.0 when comparing tools together this percentage vaiies from 116% to 968%. Compaiing how 

the latency of each tool increases witli respect to the data volume, the custom query tool latency 

increases only by 2.5 times when the network size and the volume of data increase 30 times. For 

XPatli 1.0, latency increases between 13 to 19 times depending on the query used, and for XPath

2.0 between 9 to 18.5 times. Since the main difference between the query tool and XPath, is the 

pai'sers they use to handle data (raw data and XML respectively), we can realise that DOM is not 

scalable when handling an increasing volume of XML data. On top of DOM’s inefficiency, as 

mentioned in the previous chapter the custom query tool and parser have two extra optimisations 

to minimise latency even further. The first optimisation is that the parser of the custom query tool 

instance inside each WS becomes awaie of the type of objects the WS contains when the latter is 

deployed. This allows the custom queiy tool to refrain from searching for data that do not exist. 

The second optimisation is also present in XPath 2.0. The custom queiy tool supports merging of 

data located anywhere inside a WS MIB using the symbol XPath 2.0 allows merging of data 

using the symbol “I” and as mentioned before, the latter allows path expressions such as (a!blc)/d/e 

or /a/b/(c Id I e). XPath 1.0 does not allow the latter type of expressions. The fact tliat XPath 2.0 

and the custom query tool allow merging of any data located anywhere in the MIB tiee, allow
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them to perform sufficiently less filtering operations and search the document more effectively for 

merging operations than XPath 1.0 (XPathl: queryl (4xF-3xM), query2(24xF-3xM), query3 

(12xF-lxM) XPath2-Custom tool :queryl (2xF-3xM), query2(6xF-4xM), query3(6xF-lxM) 

M=merging F=filtering). For this reason XPath 2.0 and the custom tool reduce latency more than 

XPath 1.0. Nevertheless XPath 2.0 is burdened from DOM’s inefficiency to handle an increased 

volume of XML data. In addition XPath 2.0 is burdened from the need of DOM to hold a detailed 

structure of an XML document in memory (Figure 3-17). As such, as we can observe from Figure 

4-5 and Figure 4-6, the latency of XPath 2.0 varies quite a bit when the number of filtering and 

merging operations changes. On the contrary, the latency performance of the custom tool for 

merging and filtering operations of varied complexity is not affected much. Each query for the 

custom query tool introduces similar latency overhead.

350 *

s?4000w 250

(0

14mu

Measurement Type Measurement Type

Figure 4-5 Latency measurements for small networks

Figure 4-6 Latency measurements for large networks

In terms of memory overhead the results are presented in Figure 4-7 and Figure 4-8. The memory 

consumption in these figures involves maximum run-time swap/RAM memory consumed for 

operations as a whole. The memory consumption does not involve only memory consumed by 

XPath 1.0 & 2.0 or the custom tool but also memory consumed from all processes related to the 

monitoring process i.e. the web server and its libraries, axis libraries to deploy and access WS, 

etc. The maximum system memory consumption though, can give us an indication of the memory 

footprint of each tool. For small networks the memory footprint of XPath 2.0 is the smallest of the 

three tools. XPath 1.0 follows and the custom query tool lies in the last position. The custom 

query tool consumes 28% (1.5MB) and 24% (1.4MB) more memory than XPath 1.0 & 2.0 

respectively for small networks. This situation though changes for big networks. In big networks 

since the data volume increases, so is the memory requirement for processing or loading XML
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data in memory using DOM. As such XPath 2.0 & 1.0 consume 28% (6.4MB) and 66% (15.3MB) 

more memory respectively compared to the custom query tool. From the above it is evident that 

the verboseness of XML tags to describe each piece of data, and the cost of using DOM to search 

a more elaborate hierarchy of objects as that of an XML document, has its toll on XPath when the 

network size increases. Larger memory consumption though, when the network size increases, 

may not be a scalable option.

Comparing the two XPath implementations with one another in terms of memory overhead also 

reveals something not expected. XPath 2.0 consumes less memory compared to XPath 1.0 

irrespective of the volume of data when the number of merging and filtering operations performed 

by the former is smaller (query2 and query3). On the contrary, when the number of merging and 

filtering operations is about the same or larger (queryl) for XPath 2.0, the latter consumes more 

memory. This happens because inherently XPath 2.0 is a much heavier application than XPath 

1.0. This is due to the increased functionality it has compared to its predecessor. Still the 

increased expressiveness that is inherent to XPath 2.0, allows it to perform sufficiently less 

filtering operations for some queries and search the document more effectively for merging 

operations. As such in cases where increased expressiveness is required, XPath 2.0 will consume 

less memory. If though queries have to be formed that cannot take advantage of its increased 

expressiveness, memory overhead for XPath 2.0 will be equal to XPath 1.0 or greater.
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Figure 4-7 Memory overhead for large networks

Figure 4-8 Memory overhead for small networks

XPath implementations impose more traffic overhead than the custom query tool (Figure 4-9: 

queryl- C:2327 X 1:2777 X2:2670, query2- C:2346 XL3807 X2:3203, query3- C:2442 X 1:2941 

X2:2620, C=custom tool Xl=XPathl X2=XPath2). This happens because data representations as 

well as queries are different for XPath implementations. For the custom query tool, data are
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retrieved for example in the format of <xxxxDataTag> xxxxx.rowid, </xxxxDataTag>. We 

adopted this format because in various SNMP tools, the row identifier and the actual value of a 

piece of management information are printed together. In XPath 2.0 data are represented as 

<xxxxDataTag> xxxxx </xxxxDataTag>, <rowid,DataTag> rowid, <rowid,Data Tag> since this 

is the manner data are organised and extracted from an XML document. It is feasible to have the 

same representation of state data as for the custom query tool for all the XPath implementations. 

This though would require extra processing overhead for XPath implementations. This would 

happen because when the data and the row identifier element nodes are returned after an XPath 

query, these data would have to be processed even further to structure them as in the custom 

query tool. As such latency overhead will increase. Also from Figure 4-9 we can observe that the 

queries of the custom tool are more compact even than the queries of XPath 2.0. This happens 

because the custom query tool retrieves row identifiers of multiple instance data by default, 

without the need to request these explicitly. XPath 1.0 queries are even less compact that the 

XPath 2.0 ones because path expressions similar to /a/b/(c Id I e) cannot be used. Based on the 

above it is evident that XPath implementations incur a larger traffic overhead in certain scenarios. 

Representing data more compactly and having less verbose queries though, should be an option 

for any query tool. This is especially required when polling based operations need to be 

performed frequently with a finer granularity, for example for some time critical monitoring tasks 

in QoS networks. In XPath implementations, this may not be possible for tasks that require 

measurements with finer granularity since the latency overhead for XPath implementations in 

certain scenarios should be reduced before this is feasible.
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Figure 4-9 Traffic overhead for small and large networks
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4.3.4.3 Discussion of the results
Comparing the performance of tliree WS-based tools for bulk and selective retrieval, we have 

shown as expected that our custom query tool is more scalable when handling certain scenarios. 

This was expected because several optimizations were performed on our custom query tool to 

scale its performance for monitoring and event reporting. On the contrary general tools such as 

XPatli can be used for information retrieval as suggested by various standards (MUWS, WS- 

Management) but tliey may suffer from various problems. This investigation has shown that the 

major bottleneck of XPath implementations is using DOM to handle increasing volumes of 

management data stored in XML. DOM and XPath operate in order to find specific portions of 

XML data by keeping an elaborate hierarchy of XML nodes (element, text, attribute nodes etc). In 

many cases, such as for multiple instance data of the same type, this hierarchy could be 

simplified. This way the volume of data that needs to be searched but also the number of search 

operations required would be reduced. Our custom query tool uses this approach and as a result 

the latency overhead of monitoring operations is minimised. In addition to keeping an elaborate 

hierarchy of XML nodes, DOM’s memory less state adds to the problem of increasing latency 

overhead even further. DOM is a general parser that is not aware beforehand of the types of data 

types that exist inside an XML document. As such, in cases where XPath has to process queries 

for inexistent data, DOM can not help XPath to reject these queries instantaneously. This 

increases latency overhead. On the contrary, our custom query tool keeps state of the type of data 

that exist inside a WS and thus rejects queries for inexistent data immediately. This way latency 

overhead is reduced. Moreover due to their dependence on DOM, the performance of XPath 

implementations varies based on the number of merging (bulk) and filtering operations that need 

to be performed. The situation for XPath 1.0 might be worse, since due to its lack of 

expressiveness, it usually may require performing more of these operations.

For the above reasons and though XPath implementations were suggested by vaiious management 

standards for monitoring and event reporting, it seems that a lot of work has to be performed in 

improving the perfonnace of these tools if they are going to be used for bulk and selective 

information retrieval in situations where time critical tasks need to be performed. Nevertheless by 

comparing XPath 1.0 & 2.0 we have seen that increasing the expressiveness of XPath 2.0 is a step 

in the right direction in order to decrease latency and memory consumption. A lot more 

improvements are required. A different memory management scheme may be a good option 

instead of the one DOM is using since in many monitoring scenarios it is not required to keep all 

the data of an XML document in memory. Different ways to represent the structure and the 

hierarchy of an XML document for multiple instance data in DOM may also prove beneficial. 

Different strategies to process XML data and better memory management is a must in order to 

reduce the overhead that XML tags put on any query tool that handles XML payload. Maybe the
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option of saving management data in smaller size documents, since the performance of XPath is 

better when handling small volumes of data, is a step in the right direction. Then employing an 

intelligent scheme to search the appropriate documents each time can be beneficial in reducing the 

latency and memory overhead. In addition, employing a schema specific parser other than DOM 

might be plausible and required. Schema specific parsers can employ a better memory 

management scheme since they are aware of the type of data they need to process. Such a parser 

should load in memory only the data required in order to process an XPath query to completion 

and not the entire document containing the management data. As such memory consumption can 

be reduced.

Developing custom tools to meet management objectives for information retrieval in monitoring 

and event reporting might be a solution but it still is a solution that can have several limitations. 

Processing raw data to keep latency and memory overhead low does not allow us to deploy a 

common way to access data as through an XML document. This increases development time and 

makes the process of building interfaces to expose management information a more time 

consuming process. In addition custom implementations such as our query tool may have limited 

functionality and expressiveness than industry based tools. Moreover XPath is a well known tool 

that many are familiar with. Learning a new tool even with a simpler syntax might not be 

desirable. As such improving on the performance of standard tools such as XPath is imperative. 

This is especially true for interoperability purposes since XPath is a standard whereas custom 

tools are not.

Nevertheless our custom tool and parser implementation and scenario have shown that XPath 

implementations have to be improved if they are going to be used for time critical monitoring and 

event reporting tasks. Using XPath for monitoring operations, in systems such as those of a 

network offering QoS guarantees, should not be considered at this time if changes are not 

performed to increase DOM's performance.

4.4 Comparing our custom WS-based Framework with SNMP

In this section we will investigate the performance of WS-based monitoring against SNMP. To do 

this, performance will be compared upon the three QoS scenarios introduced in section 4.2.2. As 

explained in section 4.2.2 all of these scenarios can benefit from the use of a query tool. Using a 

query tool for monitoring can be invaluable in these scenarios. This happens because these 

scenarios reflect monitoring cases where it is not necessary to retrieve the entire state of a device 

or where it is necessary to retrieve the state of a device in a specific manner. As such bulk and 

selective retrieval mechanisms are necessary for these scenarios. Previous researchers have not 

investigated, as explained in chapter two, scenarios where such mechanisms are required in order
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to delegate a series of data processing tasks from a manager to an agent. This is because they have 

examined only scenarios where data are retrieved sequentially or in a bulk manner with no 

information processing. As such any conclusions they made about the performance of WS for 

management and especially for monitoring may not reveal the entire picture . Using a query tool 

to delegate the task of processing management data from a manager to the agent will allow us to 

investigate how WS can perform compared to SNMP in such occasions. This way we will also be 

able to explore if tlie initial overhead that the verbosity of XML tags incur on WS performance 

can be overcome.

In the previous section we have shown tliat our custom query tool is a more scalable option than 

XPath for a number of monitoring scenarios where bulk and selective retrieval mechanisms are 

required. As such for the performance measurements of all three scenaiios we are going to use 

only our custom query tool as part of our custom framework operations.

For SNMP measurements it would be possible to use the Script or the Expression MIB in order to 

provide the bulk and selective retrieval capabilities that our query tool offers. As explained in 

chapter two though, tlie use of these MIBs for monitoring or event reporting raises a lot of issues. 

The use of the Expression or the Script MIB often introduces performance issues since in many 

cases even the specifications of these MIBs state that the latter MIBs do not represent a good 

trade off especially for monitoring. The Script MIB presents increased development costs due to 

the management of management problem. The capability of the Expression MIB to provide access 

to remote resources is limited. In addition tlie Expression and the Script MIB present integration 

problems with current devices. Moreover implementation and open source software that supports 

these MIBs is either limited or not existent. Finally, using the Expression MIB to deploy bulk and 

selective retrieval mechanisms is impractical and increases the footprint of monitoring operations. 

Based on the above we decided that for SNMP measurements we are going to use only the 

standai'd mechanisms of SNMP that provide capabilities for sequential or bulk retrieval of state 

data. The reason for this as we will show later in our analysis, is that if distributed management 

extensions of SNMP like the Expression MIB will be used, overhead is going to increase rather 

than decrease. This is attributed to some of tlie chaiacteristics of these MIBs. It is possible to 

alleviate some of the problems that emanate from these characteristics but this would require 

revisions to these MIBs and work in tlie DISMAN charter responsible for the definitions of these 

MIBs has finished.

4.4.1 Monitoring with SNMP

Before any measurements performed for the three scenarios are presented and analysed, a few 

aspects on how SNMP measurements need to be earned out will need to be examined. It is
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important to (a) explain what software and which MIBs are going to be used for the 

measurements (b) analyse the steps required for making the measurements required for the 

scenarios (c) examine the granularity required for each one of the measurements. Analysing all 

these aspects is important as it will allow us to have a greater understanding of the measurement 

requirements. This way it is possible to understand whether SNMP or our WS-based custom 

framework can satisfy these requirements.

In terms of the MIBs required for the measurements of the three QoS scenarios we will use the 

MIBs listed in section 4.2.3. These MIBs can be used to perform five of the six passive 

measurements required for the first and second scenario of section 4.2.2. The LSR MIB can be 

used to perform the four PHB and LSP related measurements. The FEC MIB can be used to 

perform the SLS load measurement at the ingress router. For the sixth measurement SLS data 

have to be retrieved from the egress router. Thus the sixth measurement cannot be performed with 

the FEC MIB as this is only deployed at an ingress router. As such, this measurement is not 

considered in the scenarios that will be investigated later. Regarding the measurements of the 

third scenario, the LSR MIB will be used to find the LSP IDs that are affected by the failing 

interface of the ingress router. Then the FEC MIB will be used to find the affected contracts (SLS 

IDs).

In terms of the software used for SNMP measurements, we use a Net-SNMP agent and the 

AdventNet SNMP toolkit. For all scenarios, the software allows for bulk retrieval operations to be 

performed but selective retrieval mechanisms are not possible as plain SNMP does not support 

them. Distributed management extensions are also not applicable since as we will show they 

introduce more overhead than they save but also because the Net-SNMP agent does not support 

these MIBs.

The steps for retrieving SLS, PHB and SLS related data for the first and second scenario is 

explained in the next section. The process of retrieving data for the third scenario was explained 

in section 4.3.4.2 when analysing the steps required in order to carry out the performance 

measurements between XPath and our custom query tool.

4.4.1,1 Retrieving passive measurement data with SNMP for the first and second 
scenario

For the first five passive measurements using SNMP, a number of MIBs, tables and entries must 

be accessed. For LSP measurements, the manager must query the agent for the following data:

• LSP-IDs in order to determine how LSPs are organised in a specific table. The row 

identifiers (row IDs) of the relevant table are also returned so as to perform the next step.
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• LSP load at the ingress (LSP L-I) or throughput at the egress (LSP T-E) from tables 

holding statistical information using the row-IDs returned in the previous step.

For PHB measurements the process is the following:

• Retrieve the PHB IDs in order to determine the PHB each LSP belongs to.

• Query for the throughput (PHB T) or packet discards (PHB D) for each PHB, based on the 

row IDs retrieved from tlie previous step.

To determine SLS load, the manager must do the following:

• Query first the relevant agent in order to find out which LSPs each SLS is associated with 

(SLS IDs, Differentiated Service Code Point field -DSCP- and LSP IDs).

• Based on the row IDs obtained, the manager can access the statistics table for each LSP in 

order to compute the load for each traffic contract (SLS).

Determining the row identifiers of LSPs, SLSs and PHBs as a first step is an essential and 

required process for these measurements. For all measurements it is assumed that the manager is 

aware of the network topology tlirough a topology repository. This implies that the manager, apart 

from topology information also has knowledge of the ID of every contract, the ID of each LSP at 

the ingress and egress routers, as well as the various traffic classes supported. Data queries in 

SNMP though are based on the exact location of tabular information. As such, the manager needs 

to initially determine the order in which LSP, PHB, and SLS data are organised in the SNMP 

tables and then retrieve the information relevant to the passive measurement scenarios.

4.4.1.2 Granularity of SNMP operations on passive measurement data
Another aspect that requires special consideration is the sampling granularity for each type of 

data. Since each class of seiwice in a QoS network has different requirements, it would be 

expected that different sampling frequencies should be applied to the traffic of each class. A 

premium class of service, for example, requires more frequent measurements tlian a best-effort 

service. Using different sampling frequencies for different SLSs though would make the 

monitoring architecture more complex. For tliis reason, we use a selection of three different 

sampling frequencies based only on the type of data that needs to be retrieved. Determining, for 

example, the IDs for each LSP requires a relatively long sampling period (long granularity, in the 

order of days or weeks) since tlie same LSP configuration is typically retained over a relatively 

long period of time (a provisioning period). The value of tabular objects referring to PHB and 

SLS specific data, on the other hand, may change more frequently. This occurs due to failures on 

MPLS-capable interfaces, load balancing to meet the requirements of each traffic contiact, etc. 

During the load balancing process tlie traffic on heavily utilised LSPs is assigned to less utilised 

ones. Solving such problems might be possible without reconfiguring the entire network, by
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routing the traffic mapped on a failing interface or on a heavily utilised link to another. As such, 

PHB and SLS related information change more frequently and the polling period for these data is 

of medium granularity, in the order of 5-10 minutes. Lastly, sampling periods for more dynamic 

data such as load and throughput are in the order of 5-20 seconds (short granularity).

4.4.2 Monitoring with WS

For WS the LSR and FEC MIBs have been re-implemented from scratch as native Web Services, 

following the tree structure described in their RFCs. SNMP agents are not re-used. All data are 

stored in single values, tables and linked lists (raw format). To represent the MIB hierarchy, each 

programming language object representing a MIB’s data is cormected to another with special 

pointers. All these data are stored in a linked list allowing the navigation of the data hierarchy. 

Each MIB is deployed as a WS. Every WS exposes through its interface the three functions of our 

custom framework. As a result a manager can have access to different portions of the MIB’s data 

(single instance, multiple instance, and all data view, Figure 3-16).

The steps and the granularity that is required to retrieve passive measurement data for the three 

scenarios using WS are the same as the ones in sections 4.1.1.1 and 4.1.1.2 for SNMP,

In terms of software, our custom query tool is used to perform the filtering and merging 

operations for bulk and selective retrieval of state data. Apache AXIS version 1.4 is used to build 

and deploy all WS that the architecture we analysed in chapter three requires.

4.4.3 Measurements

4.4.3.1 Evaluation Setup
For the evaluation aspects of our scenario, a big number of LSPs needs to be setup for some of the 

measurements. As this is difficult to be achieved in a small test-bed, we resorted to other means 

for evaluating the performance overhead for SNMP. Thus in order to calculate the traffic 

overhead for SNMP, the average size of each message is calculated by looking into the message 

and analysing the size of its subparts. This analysis is presented in the next section. In the next 

section we will also explain that every traffic overhead measurement of SNMP has a maximum 

and a minimum value. As such the traffic overhead for SNMP was calculated using the average 

for each type of measurement between these two values. To compute latency for SNMP a similar 

number, size and type of objects as that in the MPLS MIBs, need to be extracted for each type of 

measurement. As such we use the Advent-Net SNMP v3.3 toolkit to access a Net-SNMP v. 5.0.2 

agent for data of the same size, number and type as that required for the measurements of the
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scenarios. Latency measurements for SNMP were performed using Java’s currentTimeMillis() 

function by averaging 20 measurements for each sampled result.

For WS the Apache Axis 1.4 SOAP toolkit was used to deploy the LSR, the FEC and the 

Interfaces Group of the RFC 1213 MIB as WS with the same information as in SNMP. The 

information of each MIB is replicated exactly as it would be in a router. All MIBs were deployed 

using an RPC/literal encoding style so that the verboseness of XML tags is reduced and traffic 

overhead as well as coding latency is minimised. For the par ser of the custom query tool that all 

WS use to support selective or bulk information retrieval, we used Java 1.4.2.10 and its regular- 

expression matching engine. Traffic arrd latency overhead and tlie machine setup for WS 

measurements are the same as in section 4.4.2.1. Latency measurements for WS were performed 

by averaging 20 measurements for each sampled result.

4.4.3.2 SNMP traffic consumption calculation
Since a big number of LSPs need to be setup for some of the measurements we needed to resort to 

other means for evaluating the traffic overhead for SNMP. Thus in order to calculate the tiaffic 

overhead for SNMP we need to look into each SNMP message and analyse the size of its 

subparts. SNMP messages use ASN.l syntax [37]. When retrieving data, a SNMP manager can 

use 3 types of messages or Protocol Data Units (PDUs): Get, GetNext and GetBulk. All three 

types of PDUs consist of several fields including the version, tlie community, the PDU type, the 

request ID field, and the vaiiable-bindings field. Get or GetNext also include an error status field 

and an error-index field, whereas GetBulk includes a Non-repeaters and a Max-repetitions field. 

In the experiments performed:

• The version field is vl/v2.

• The community field is “public”.

• The PDU type is GetNext or GetBulk.

• Object requests will not exceed 2000 and so the request-ID field will not exceed this

value.

• The eiTor-status field can take only 5 values.

• Since the enor-index shows the variable in the variable binding list that caused an error

and the number of variables we retrieve in a packet will not exceed 127, this value cannot 

exceed this number

• For the experiments the Non-repeaters=0 and the Max-repetitions field will not exceed 

2000.
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By calculating the size of each field using the Basic Encoding Rules in [170] and taking into 

account how the measurement requirements affect the size of each field we can calculate the size 

of each SNMP message. Based on a previous study on the traffic of SNMP [122], the size of an 

SNMP request or response message can be computed as follows:

L g e t, getNext, getBulk 27 4- M * (6  +  Z.i +  ) (4.1)

In equation 4.1, L, is the size of the Object Identifier (OID) of a variable, L2 is the size of the 

variable value itself, n is the number of OIDs to retrieve, and the numbers 27 and 6 relate to the 

encoded size of the message subparts. The request PDU in all three scenarios contains one or two 

OIDs of different types of SNMP data. In the case of GetBulk the number of OIDs is different 

than the number of objects returned. Therefore, the size of SNMP operations, if ni objects are 

retrieved and a single OID exists in the request packet, is given in equations 2 and 3.

L get, getNext » Wj * (54 + 12 + 2T, + L2 ) (4.2)

LgetBuik = 54 4-1 * (6 + L, ) + Wj (6 + Lj 4- ) (4.3)

Table 4-4 presents the size of Li and which has been calculated for each measurement type. 

These values can be substituted in equations 2 and 3 to determine the maximum, minimum and 

average traffic of SNMP operations for all scenario measurements. In the traffic overhead results 

for SNMP in the next section, we list average traffic between a maximum and a minimum value 

for each type of measurement.

Measurement
Tvoe LI L2

LSP IDs 16-19 (Max 16000 LSPs) 6 (CR-LDP)
LSP Load Ingress 
(L4) Th/put (T-E) 

Egress
14-15 (Max 16000 LSPs) 1-4 or 1-8

PHB Th/put (T) 
and packet 

Discards (D) and 
SLS Load (L)

14-15 for each (Max 
16000 LSPs)

1-4 or 1-8 (L) and 
1-4 (D)

PHB IDs 14-15 (Max 16000 LSPs) 14
SLS IDs 14-16 (Max 16000 LSPs) 1-3 (Max 16000 LSPs)

SLS LSP IDs 14-16 (Max 16000 LSPs) 16-20 (Max 16000 LSPs)
Interface IDs 14-16 (Max 16000 tfs) 1-4

Table 4-4 Li and Lg length analysis for all scenarios 

4.4.33 Scenario Measurements
Before analysing the measurements for scenario one and two it is imperative to highlight a few 

aspects. For measurements of scenario one but also for scenario two the following apply:

• For both WS and SNMP, PHB packet discards and throughput (T4-D) are retrieved by 

asking for both variables in the request packet (2 OIDs for different types of data in the 

request packet).
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• For SNMP, SLS IDs and SLS LSP IDs (SLS+SLS LSP IDs) are retrieved by asking for 

both vaiiables in the request packet. For WS only SLS LSP IDs aie retrieved since 

processing occurs at the agent side and the SLS IDs need not to be retiieved for 

processing tliem at the manager.

• In the measurement figures we differentiate between the WS PHB and SLS measurements 

between scenario 1 and 2 by incorporating a filtering flag (denoted «^///respectively).

• LSP measurements are performed in the same way for both scenario one and two as no 

processing is required due to the way data are organised in tables.

• For SNMP, latency is about the same for all types of objects retrieved for scenario one 

and two and depends roughly on the number of objects retrieved and their location in the 

MIB tree. As such in order to make the latency figures for scenaiio one and two (Figure 

4-10, Figure 4-17 ) more readable, we present only average latency plots for all 

measurement types in Table 4-4. The latency values in these plots depend on the type of 

request packet (GetNext/GetBulk), the number of OIDs that refer to different types of 

data in the request packet (1 or 2 OIDs for the experiments) and the ordering of the OIDs 

in the request packet (random, sequential).

4.4.3.3.1 Scenario One: Bulk Retrieval
In this scenario data are retrieved witli SNMP either with consecutive GetNext operations or with 

a single GetBulk operation. For WS, data are retrieved with a call to one of tlie operations of our 

custom framework analysed in chapter three. The operands of each call (paiser queries) aie 

appropriately interpreted by the parser of our custom queiy tool to retrieve data in a bulk manner 

similai' to how GetBulk performs the same thing. For this scenario traffic overhead for LSP, PHB 

and SLS measurements are presented in Figure 4-11 to Figure 4-16, whereas latency results are 

provided in Figure 4-10.

From the graphical representations (Figure 4-11-LSP-IDs Figure 4-12-LSP load or throughput) it 

is evident that WS start producing less traffic than SNMP’s consecutive GetNext operations if 

more than 30 objects are retrieved. This occurs because with the RPC/literal encoding, XML tags 

are less verbose and thus the initial overhead of HTTP/SOAP can be overcome. Still each XML 

node inside the body of the SOAP message for WS consists of two element nodes and a text node 

representing the value of the element node. In GetBulk the return message contains for eveiy 

piece of information an OID (tlie equivalent of a single XML element tag) and a value (the 

equivalent of the text node). Thus it is not possible to overcome with WS the traffic overhead of a 

GetBulk operation. It is possible to reduce the traffic overhead of WS even further in order to 

match the performance of the GetBulk operations if we use empty XML element nodes. In such a
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scheme the context information of state data would be represented with one element node whereas 

the values of management information would be given with an attribute node within the empty 

element node. Empty element nodes can be used though only to represent leaf node data of a 

management information tree. In the information model of SNMP this is possible and plausible 

because only leaf nodes contain management information and only leaf nodes contain accessible 

management data. In other information models this may not be true though. As such in our WS 

custom framework we do not use the empty node element scheme even though we use SNMP 

MIBs.

Considering latency measurements that involve retrieval of a single type of data (GET 1 OID 

nof), the performance of WS is better than that of consecutive GetNext operations with SNMP 

(Figure 4-10). Although SNMP encoding is faster, most SNMP agents do not support caching 

[122]. The latter inhibits SNMP performance. When two types of data are requested (GET 2 OIDs 

nof), the SNMP GetNext operation produces even more latency as more data must be retrieved 

from different locations in the MIB tree. Latency in this case increases more abruptly than in the 

case where a single type of data was retrieved (Figure 4-10 SNMP GET 1 OID nof, SNMP GET 2 

OID nof). This emphasises how the lack of caching capabilities affects performance. Regarding 

GetBulk, the latency is better than that of WS. In the case of requesting two variables though, the 

gradient of the GetBulk curve (Figure 4-10 SNMP GETB 20IDs nof) is higher in some cases than 

that of WS (Figure 4-10 WS T+D nof). Thus, when the number of objects retrieved exceeds 1000, 

the absence of caching makes even GetBulk’s latency worse than that of WS in some cases 

(Figure 4-10 WS T+D nof, SNMP GETB-20IDs nof).

Latencytms)
350 , -------

-WSLSP IDs 
WS-SLS+LSP IDs nof 

-WS T+D nof 
-SNkf GET-20IDS nof 
-SNNff’ GETB-lOCnof

WS L-I T-E or SLS L not Objects 
WS-PHBIDs nof 

-SNkf GET-1 OIDnof 
-SNM’ GETB-20IDs not

Latencytm.)

2000

1500

1000

-WSLSP IDs 
WS-SLS+LSP IDs nof 

-WST+D nof 
■ SNMP GET-20IDS nof 
- SNMP GETB-1 OID nof

1040

- WS L-I T-E or SLS L nolObjectS 
-WS-PHB IDs nof 
-SNMPGET-1 OID nof 
-SNMPGETB-20IDS nof

Figure 4-10 Latency for all measurements of scenario 1 for small and large data networks
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4.4.3.3 2 Scenario Two: Data Processing
In this scenario the same information for the passive measurements of a QoS network as in the 

previous scenario is retrieved. This time though for WS, PHB and SLS related data are processed 

at the agent using the parser of the custom query tool. This way, the manager receives state data 

on a per PHB or SLS basis. As such, load, throughput or packet discards can be computed by the 

manager without any processing at the manager side. This approach is better because although the 

manager is usually hosted in a high-end system, it will have to access many agents to retrieve 

PHB or SLS related data. Thus the manager runs the risk of being easily overwhelmed by the 

amount of processing required. Our custom query tool allows us to distribute the load to several 

agents. This is feasible today especially since the myth of the dumb agent is no longer valid [55]. 

Using WS with tools for distributing the monitoring load may improve performance of WS 

monitoring operations in some cases as we will see below.

Before analysing the measurements of this scenario some aspects need to be highlighted. As such 

it must be noted that for PHB measurements the LSPs in each router are assigned to 6 different 

traffic classes. Also for SLS measurements we decided to investigate two cases. The first case 

concerns individual SLSs, each bound to a different LSP (ILSP/C, C=contract), for which we 

investigated traffic and latency for 1 to 300 Contracts (C). In the second case we investigated a 

Virtual Private Network (VPN) scenario for the same number of contracts where each SLS in the 

ingress router is bound to 3 different LSPs (3LSPs/C).

In all the measurements of these scenario WS perform better than successive GetNext operations 

in terms of traffic overhead, but worse than GetBulk. It is worth analysing though certain aspects, 

in order to show that if SNMP was used to retrieve data on a per PHB or SLS basis the 

performance of the latter would be worse.

Bytes
12000

Bytes
120000

10000010000

800008000

600006000

40000 ------- 14000

20000
2000

700 800 900 1000
Obfects50 100

Objects SNMP GET LSP-IDs 
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Figure 4-11 Traffic overhead for retrieving LSP IDs, scenario 1&2, small and large networks
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Figure 4-12 Traffic overhead for retrieving LSP load/throughput, scenario 1&2, small and large

networks

To acquire data on a per PHB basis using WS, the following data queries must be sent to the 

agent:

{mplsInSegmentlrafficParamPtrl ], q^g^y)
mpIsInSegmentTrafficParamPtrl ],...}

{value = OIDpvalue = OID^,...} (FD query)

(mplsOutSegmentPerfHcOctetslidpidj,...], (jvfiD query) 
mplsOutSegmentPerfDiscards[id,, idj,... ]}

(4.4)

(4.5)

(4.6)

Analysing the traffic overhead in Figure 4-13 (PHB IDs f) it is evident that the traffic incurred for 

discovering PHB IDs is roughly the same as in the previous scenario. In terms of latency we 

observe that an increase of a maximum of 300 ms occurs when 980 LSP IDs must be retrieved 

(Figure 4-10-PHB IDs nof & Figure 4-17-PHB IDs f). This happens as the relevant tables need to 

be searched 6  times one for each traffic class. This increase in latency using WS could be avoided 

if the relevant tables of the MPLS MIBs could be searched only once. Our custom query tool 

though does not allow us to use more flexible and expressive FD queries than the ones used in 

expression 4.5. Thus our query tool does not allow us to limit the number of searches and still be 

able to receive data on a per PHB basis. Consequently, latency can improve if our query tool is 

optimised to support more flexible queries that allow us to be more expressive. For throughput 

and packet discards, the traffic overhead also increases by a maximum of 8000 octets for 980 

LSPs (Figure 4-14 PHB D+L f & nof). The latter increase in traffic overhead occurs because the 

manager needs to access throughput on a per PHB basis. The latter implies that the WS manager 

has to include in the request packet all the row identifiers for each LSP segment assigned to each 

PHB. Despite the extra overhead, throughput (PHB T) and packet discards (PHB D) for each PHB
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are fairly easy to compute by the manager when data are retrieved this way. Accessing throughput 

(PHB T) and discards (PHB D) on a per PHB basis also increases latency by a maximum of 

200ms when the number of LSPs inside an MPLS router is 980 (Figure 4-10-PHB T+D nof & 

Figure 4-17 -PHB T+D f). Nevertheless, for all PHB measurements in this scenario, the 

granularity requirements for polling data from tlie WS agent are satisfied (5-10 minutes for PHB 

IDs and 5-20 seconds for T+D).

If SNMP was used without distributed management extensions (no facilities for processing data at 

the agent side) to compute load and packet discards on a per PHB basis it is possible that the 

granularity requirements for PHB measurements could not be met. This happens because in order 

for a SNMP manager to compute load and packet discards on a per PHB basis, it must follow a 

two step procedure. In the first step of this procedure the SNMP manager must process data from 

a number of agents in order to discover to which PHB the row entries in the statistics table of each 

LSP segment belong to. Even for a high end system like the manager, processing data for the first 

step from a series of routers that have quite a few LSPs can be prohibitive (i.e. for a series of 500 

routers/devices which have 200 configured LSPs assigned to 6  traffic classes (PHBs) processing 

of the 200 LSPs takes 72 ms to complete on a 1000 MHz/256MB PC for all 6  traffic classes, thus 

it would take the manager 72x500=36000msecs=36secs to complete the above step). In the 

second step after processing the data from the previous step, the SNMP manager must include in 

the request packet it sends to query for throughput or discards on a per PHB basis, the row 

identifiers of each LSP segment in order. The latter though even if the GetBulk operation of 

SNMP was used for the request message of die second step, would increase die traffic and latency 

overhead of such an operation by a big amount compaied to using GetBuUc to retrieve the same 

amount of objects using the Max-Repetitions field sequentially. In Figure 4-17 we can observe 

that if we retrieve data in a random way from an SNMP MIB table as it would be required to 

retrieve throughput or discards on a per PHB basis, the latency of the GetBulk operation increases 

(Figure 4-17 GBTB lor 2 OIDs random). More specifically, the traffic overhead of GetBulk will 

become bigger than that of the operations of our WS custom framework for the same type of PHB 

measurements when more than 420 objects will be requested (Figure 4-13 GETB-PHB IDs 

random. Figure 4-14-GETB-PHB D+L for load and discards).
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Figure 4-13 Traffic overhead for retrieving PHB-IDs, scenario 1&2, small and large networks
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Figure 4-14 Traffic overhead for retrieving PHB discards and load, scenario 1&2, small and lai*ge

networks

Even with distributed management extensions such as the Expression MIB that could provide 

SNMP with bulk and selective retrieval mechanisms, use of the latter would not be a good trade

off. This is because usage of the Expression MIB to retrieve load or packet discards on a per PHB 

basis would incur considerably more overhead than if SNMP was used without distributed 

management extensions. This would happen because in order to retrieve load or packet discards 

on a per PHB basis using the Expression MIB, the latter would also require from the SNMP 

manager to follow the first step of the procedure described previously in order to determine to 

which PHB the row entries in the statistics table of each LSP segment belong to. This as shown 

previously could be prohibitive when the manager has to process data from a series of agents. 

Even after determining to which PHB each LSP belongs, in order for the manager to calculate the 

throughput and packet discards for each PHB, the latter has to set a number of parameters in the 

tables of the Expression MIB by following a two step procedure. In the first step of this procedure 

the manager has to set in the expObjectTable of the expression MIB a series of four parameters (4
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OIDs expObjectID, expObjectWildcard, expObjectSampleType, expObjectRowStatus) for each 

LSP throughput or packet discards parameter that will be used in order to calculate PHB 

throughput or packet discards. Even though the expression MIB permits wildcarding to set all the 

LSP throughput or packet discards parameters in the expObjectTable that will be used in order to 

calculate PHB throughput or packet discards in one go, this is not possible in this case because the 

order according to which each LSP is assigned to a PHB in the mplsXCTable of the LSR MIB is 

random. As such the LSP throughput or packet discards parameters that will be used in order to 

calculate PHB throughput or packet discards have to be set in the expObjectTable explicitly. In 

the second step the, manager will have to set in the expValueTable of the expression MIB a 

sepaiate expression to calculate the PHB throughput or packet discards for each traffic class by 

referring to the expObjectID parameters of the expObjectTable. After completing the two steps 

described, the manager can retiieve using a getNext operation all the values in the expValueTable 

to acquire PHB tliroughput or packet discaids. Just for the first step, usage of the expression MIB 

would roughly quadruple the monitoring overhead (4 OIDs and 4 values for each LSP throughput 

or packet discard paiameter have to be set) in order to calculate PHB throughput or discaids 

compared to using SNMP without distributed management extensions (1 OID and 1 value for 

each LSP throughput or packet discard parameter), not even calculating the latency overhead 

incuired in tliis step for setting such a big number of objects in the expression MIB. In addition 

for each object in the expObjectTable, the expression MIB would have to query the agent hosting 

the data referenced in the expObjectTable with a series of consecutive getNext operations (1 OID 

and 1 value for each LSP throughput or packet discard parameter). This increases latency and 

traffic overhead even further. This means that in order to calculate throughput and discards on a 

per PHB basis using tlie expression MIB, it might be necessary every few minutes to change the 

order of the expObjectID parameters used in the expressions of the expValueTable. It is evident 

from the above that using the Expression MIB for calculating PHB throughput or discards may 

not be plausible or practical. As such it would be nice if MIBs such as the expression MIB would 

be updated to support more features to handle scenarios such as the above gracefully. 

Unfortunately the DISMAN charter who could do these updates has finished its work.

Using the Script MIB to calculate throughput or packet discards on a per PHB basis apart from 

the security issues may also not be a very lightweight option. In devices running at high speeds, a 

simple script would need 15 MBs of memoiy just to run distribute, update and control it [50], 

[51], ignoring the data that would have to be processed by it. Our custom query tool requires for 

the Java libraries of Apache AXIS, the Java libraries of tomcat and the query tool itself not more 

than 6.5 MBs for queries when the volume of data to be processed is small and 16 MBs for 

queries when the volume of data is extremely large (Figure 4-7, Figure 4-8).
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Figure 4-16 Traffic overhead for retrieving SLS load, scenario 1&2, small and large networks

Analysing the SLS measurements with WS for the second scenario is a bit o f a more complicated 

issue as it was for PHBs. For this aspect of the second QoS scenario we need to explain first that 

the WS manager needs to first determine to which LSPs (mplsFTNActionPointer^SLS LSP IDs) 

each contract belongs to (DSCP-SLS IDs). In the case of WS though, the agent returns the SLS 

LSP IDs of each SLS but does not have to return the SLS IDs. This is because the latter are not 

required for the next query and because the WS manager does not need to perform any processing 

on these data. In the case of SNMP though the agent has to send both the SLS and SLS LSP IDs 

because the manager needs to process these in order to determine to which LSPs an SLS belongs 

to. The custom tool data queries for the SLS measurements of this scenario are:

{mplsFFNActionPointerl 1} (MID query)
(mplsFTNDscp = value,,mplsFTNDscp = value^,—} (FD query)
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{mplsInSegmentPerfHcOctets[ ], query)
mplsInSegmentPerfHcOctets[ ],...}

{mplsInSegnentlndex = value, OR mplsInSegirentlndex = value,. 
mplslnSegmentlndex = value, OR mplslnSegmentlndex = value .̂.

(FD query
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Figure 4-17 Latency overhead for measurements in scenario 2, small and large networks

In the above queries, we can observe that the expressions for retrieving the LSP IDs of each SLS 

contain a filtering query for each different contract that exists. This would normally increase the 

WS traffic overhead compared to the same measurement of the previous scenario because our tool 

forces us to search the relevant tables several times. This does not happen though, and on the 

contrary, the overall WS traffic is much less in comparison to the same measurement of the 

previous scenario. This occurs because the SLS IDs are not included in the response packet and 

thus the encoding latency of the SOAP message is reduced (very close to GetBulk traffic with no 

filtering involved - see SLS IDs 3LSPs/C or 1 LSP/C on Figure 4-15). Latency is also less 

because less data need to be encoded in the SOAP body compared to the same measurement in 

the previous scenario (maximum 200 ms less than GetBulk -  see Figure 4-10 & Figure 4-17 SLS 

IDs 3LSPs/C or 1 LSP/C). Even when the amount of processing required is great as it happens for 

the VPN scenario (3LSPs/C) where a 900 entry traffic table has to be searched 300 times, WS 

performance is substantially better as less data need to be encoded in the SOAP body.

In terms of SLS load measurements using our custom framework on the other hand, traffic and 

latency (Figure 4-16 SLS-L 1 LSP/C or 3LSP/C & Figure 4-10 SLS-L nof) have increased 

compared to the previous scenario (maximum 3 times more latency and maximum 20K more
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traffic). This occurs only once per granularity period (in minutes) when load (L) is polled for the 

first time. Polling for load for the first time requires the manager to determine which entries in the 

statistics table of the incoming segment refer to each LSP. After that, the SLS load can be 

retrieved by using the row identifiers obtained in the first measurement. After the first polling 

period the traffic overhead and latency for determining SLS load, is similar to the WS 

measurement for SLS load in the previous scenario (Figure 4-16 SLS L Sec Poll any C, Figure

4-12 SLS L nof, and Figure 4-17 SLS L nof).

Using our query tool as described above in order to perform the two steps required for SLS load 

and packet discards measurements still allows us to meet the granularity requirements for these 

measurements. Nevertheless, performance of WS SLS measurements could be improved if the 

query tool was enhanced to support more flexible and more expressive queries so as to search 

relevant tables fewer times (300 searches for SLS load in the first granularity period).

For the same reasons as for PHBs measurements, satisfying the granularity requirements for 

short-term SLS measurements with SNMP might not be possible especially when processing SLS 

load state data from many ingress routers and especially if the distributed management extensions 

of SNMP were used. For a series of 50 edge routers/devices which have 300 contracts each one 

assigned to 3 LSPs (VPN scenario) a 900 entry mplsFTNTable will have to be processed 300 

times one for each contract (1369 ms to complete on a 1000 MHz/256MB PC). Thus it would take 

a SNMP manager 50xl369=68450msecs=68,450secs to find to which LSPs each contract is 

assigned to for every router, in order that afterwards the manager can find the load for each 

contract. Alternatively for the load of each traffic contract to be calculated at the agent on a per 

SLS basis, the SNMP manager would have to retrieve data in a random way from an LSP 

statistics table for each LSP an SLS is assigned to. This as for PHB load and discards increases 

the latency and traffic overhead of a GetBulk operation (see Figure 4- 16-GETB-SLS L random. 

Figure 4-17- GETB-IOID random, GETB-20IDs random and Figure 4-15 GETB-SLS-i-SLS LSP 

IDs rand). Alternatively using the distributed management extensions to compute the load of each 

traffic contract will not save but on the contrary will increase the traffic and latency overhead, for 

the same reasons as explained previously for PHB discards and throughput.

4.4.3.3.3 Scenario Three: Data Filtering
In the third QoS scenario we can demonstrate how a WS-based monitoring system can benefit 

from data filtering. For the measurements of this scenario, the ingress router is configured to have 

910 and 50 LSPs to simulate a large and a smaU network respectively. Each LSP is assigned to a 

different customer (SLS). The reason behind assigning a different customer to each LSP is to keep 

things simple with respect to checking the validity of the data retrieved with each query 

performed with the custom query tool. A further assumption in this experiment is the number of

1 3 8



________________Chapter 4. Testing the Efficiency o f our Query Tool and Monitoring Framework

LSPs and SLSs affected by the failing interface, which we assume to be six. Although it is not 

easy to determine a plausible number of LSPs assigned to a single interface, six would be a 

reasonable number for small networks. It may not be realistic though to use the same number of 

affected LSPs in the case of large networks. The aim though is to keep the volume of data to be 

retrieved relatively low. This way we can show that WS can benefit from sophisticated retrieval 

mechanisms and exhibit superior performance against SNMP even though a small volume of data 

needs to be retrieved (not shown in [120] and [122] or any other WS performance related work). 

In addition, by keeping the same number of affected SLSs and LSPs for both small and large 

networks we can maintain the traffic overhead and latency comparison between both types of 

networks on the same terms. The queries required for this scenario were analysed in section 

4.3.4.2 and were given in Figure 4-4.

The measurements for this scenario are presented in Figure 4-18 to Figure 4-21. The total amount 

of traffic produced as a result of the three queries for a big or a small network using WS is 6653 

bytes. This happens because as already explained for this scenario the amount of information that 

is retrieved for either type of network is the same although the volume of information that needs 

to be searched changes. The total latency for WS in the small and the big network is 134 and 425 

ms respectively.
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I  WS(50LSPs) queryl 
lWS(50LSPs) queryS 
I  SNMP(50LPs) queryl 
I  SNMP(50LSPs) queryS

■  WS(50LSPs) queryg
□  WS(50LSPs) total
□  SNMP(50LSPs) query2
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Figure 4-18 Traffic overhead measurements for WS & SNMP for a small network
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Figure 4-19 Traffic overhead measurements for WS & SNMP for a large network
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Figure 4-20 Latency measurements for WS & SNMP for a large network

For SNMP measurements, filtering is not supported and processing has to be performed at the 

manager. As such for this scenario all the interface indices along with the LSP IDs and the SLS 

IDs need to be retrieved in order for the SNMP manager to be able to process them. Furthermore 

as we can see from the SNMP measurements there are differences between the traffic and latency 

overhead between queries 1, 2 and 3. These differences are attributed to the amount of data 

retrieved for each query which affects both traffic and latency overhead. The total traffic for 

SNMP, using GetBulk, is 6890 bytes for the small network and 126360 bytes for the large 

network. The total latency for SNMP is 247ms for the small network and 3902 ms for the large 

network. If more LSPs and SLSs were affected by the failing interface it would mean that the

140



________________Chapter 4. Testing the Efficiency o f our Query Tool and Monitoring Framework

volume of data that would be retrieved by WS would be bigger. It is not realistic though to have a 

big number of LSPs inside a router fail at the same time. The only case where SNMP might have 

shown better performance than WS for this scenario would be if very small networks were 

investigated so that the amount of information to be retrieved or processed would be very small. 

Such QoS-enabled networks though do not exist in practice. As such for this scenario WS exhibit 

better performance than SNMP.
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Figure 4-21 Latency measurements for WS & SNMP for a small network

4.5 Summary and Conclusions

In this chapter we have compared the performance of three WS-based tools for bulk and selective 

retrieval over a QoS scenario for polling based monitoring. Through this comparison we have 

shown as expected that our custom query tool is more scalable due to the several optimisations 

that have been performed on it (raw data are processed instead of XML, the hierarchy of data for 

multiple instance data is simplified, queries for inexistent data are rejected immediately etc). Still 

by comparing XPath 1.0 & 2.0 we have seen that increasing the expressiveness of XPath 2.0 

implementations is a step in the right direction to decrease its latency and memory consumption. 

A lot more improvements though are necessary. As such we have suggested ways that could 

possibly increase the performance of XPath implementations. This is necessary because 

developing custom tools to meet management objectives for monitoring also has limitations 

(increased development time, limited functionality and expressiveness, etc). As such, a wider 

range of solutions for bulk and selective retrieval is always desirable. Nevertheless our custom 

query tool and parser implementation have shown that general tools such as XPath have to be 

improved before using them for time critical management tasks.
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Having investigated the performance of our tool we decided to test the effective use of WS and 

our custom framework for performing network monitoring tasks compared to SNMP. In contrast 

to what other researchers have done in this field, we chose to investigate polling based monitoring 

scenarios where task and load distribution are required to perform a series of high level tasks 

requiring filtering and data processing. Before using our query tool to evaluate the performance of 

our WS monitoring framework and SNMP though, we tried to investigate the best possible ways 

to offer facilities for bulk and selective retrieval for distributing monitoring load in the context of 

SNMP. As such we came upon the distributed management extensions of SNMP. Our study has 

shown though that problems such as security, restricted access to resources, luck of industry 

support, increased development time and performance costs and limited open software support 

has led the management community to practically not use the distributed management extensions 

of SNMP.

Based on the above we have decided to use our query tool for WS based monitoring and SNMP 

without distributed management extensions to test their performance. In contrast to previous 

research though, we tried to investigate and compare the performance of our custom WS 

framework against that of SNMP using a realistic case study. The latter is that of a monitoring 

system of a network that provides QoS guarantees using MPLS, As part of this investigation we 

have (a) analysed the measurements required for QoS, (b) shown how to perform these 

measurements with the MPLS MIBs both for SNMP and WS, and, (c) chosen three scenarios to 

demonstrate how the monitoring process can benefit from bulk and selective information retrieval 

facilities.

In tlie first QoS scenario, we have investigated the performance of our WS monitoring framework 

and SNMP when retrieving data in a bulk manner. This is similar to what previous researchers 

have done, with the difference that we used literal encoding for the data in order to minimise the 

verboseness of XML tags. This way we can minimise the data encoding latency and also the 

traffic overhead. We demonstrated that WS can perform better in terms of traffic overhead and 

latency, in comparison to retrieving data with consecutive SNMP getNext operations. We also 

showed that when the required management information increases, the latency of WS can 

sometimes become even less compared to SNMP’s GetBulk operation, mainly because SNMP 

agents do not support caching. In addition if, as we showed in chapter two, a newer SOAP toolkit 

was used, such as Axis 2.0 (version 1.4) compared to Axis vl.4 that we used for our study, the 

performance of our WS monitoring framework could be improved even further (see [180]). 

Therefore, as long as care is taken to meet management objectives and improved versions of 

XML tools are used to deploy a WS framework, WS can become better compared to the past in 

addressing the monitoring requirements of network management.
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In the second QoS scenario we have used our custom query tool to distribute the monitoring load 

for processing management data to the agents. This way the manager can receive the required 

information it needs in a specific manner (e.g. per PHB, SLS). ). This scenario is also a way to 

show how important it is to minimise tlie processing overhead of WS operations for management 

in addition to minimising the serialisation and parsing overhead of WS toolkits. Furthermore, with 

this scenario we can show that by distributing tliis load to several agents the manager is relieved 

from this task. Though SNMP could do the same with its distributed management extensions, we 

have explained that the use of the expression MIB for example would potentially increase the 

latency and traffic overhead of SNMP operations instead of reducing it. Even if the expression 

MIB is not used and we select the manager to do all the processing, more latency would be 

inh'oduced since several agents must be monitored, for example in the order of hundreds for a 

large ISP network. We have shown that the latter may not be scalable. Even when retrieving data 

on a per PHB or SLS basis with SNMP by assuming that the manager knows tlie exact location of 

tabulai* information inside the various tables of the LSR and the EEC MIB, the footprint of SNMP 

operations would increase. This is because in these cases all the OIDs of the required objects that 

would have to be retrieved must be defined in an appropriate order in the request packet. Doing 

this makes even the latency and die traffic overhead of the GetBulk operation of SNMP worse 

tlian that of our WS framework in certain cases when the number of objects retrieved exceeds a 

certain number. Thus by having an optimized parser and framework and by allowing processing 

of management data at the agent we managed to meet any of the granularity requirements for 

monitoring required for this scenario. We have shown that the same may not be true in some 

situations for SNMP’s short term measurements showing how important it is to minimise the 

processing overhead of management operations.

In the third scenario, the better performance of our custom query tool and framework in using it 

for monitoring operations that require filtering is demonstrated. The traffic overhead and latency 

in this scenario is in some cases 25 or 15 times less than the equivalent measurements with 

SNMP. This would not be the case if XPath was used (XPath implementations as shown in the 

comparison of our query tool with XPath 1.0 and 2.0 incur a minimum of ten times more latency 

for monitoring operations over a large network for the third QoS scenario).

Still, the measurements in the second scenario suggest drat our parser has room for improvement. 

Our quei-y tool should support more flexible queries so as to minimise the number of times it is 

required to search for example a series of tables for state data. The latter would allow us to 

improve the latency and traffic overhead that our query tool incurs. Additionally from comparing 

our query tool widi XPath, we have also realised that om* quer*y tool must be converted in order to 

allow it to be more extensible (i.e. using a Java compiler such as JavaCC and not Java’s regular 

expression matching engine). This way it would be possible to allow the addition of many

143



Chapter 4. Testing the Efficiency o f our Query Tool and Monitoring Framework________________

functions and operators that could increase the expressiveness of the queries that are formed with 

it. As a result, it would be possible to perform a series of other statistical operations on data 

compared to what our tool currently allows; this could be useful.

The approach and measurements presented in this chapter suggest that our custom WS framework 

can be used for distributed management meeting the monitoring requirements of a complex 

environment. Distributing load to the agents is extremely important for a WS framework, 

resulting in a more distributed scalable system that can support sophisticated management 

operations. Of course, our agent, query tool and any WS framework that supports it would need to 

be installed in routers, interfacing with the services providing elemental management information. 

For this reason, the query tool was designed so that it can be used as an add-on service 

functioning over existing services and to be easily integrated with other standardised WS 

frameworks (i.e. MUWS). Security features need also to be incorporated in our custom 

framework. The latter can be achieved by integrating our query tool and architecture with the 

MUWS framework (see [180] for the work on integrating MUWS and our query tool and 

architecture). This is possible since the MUWS framework allows the use of resource specific 

query tools, and also since MUWS enables us to define and exploit the relationships between state 

data which our query tool utilises for more effective monitoring (bulk retrieval from several WS).

In summary, we anticipate that sophisticated WS management interfaces and lightweight tools 

will be supported in future managed devices, avoiding mistakes made with SNMP whose 

simplicity eventually became a boomerang, restricting solutions for sophisticated distributed 

management. Realistic scenarios in this chapter demonstrate that WS-based approaches 

performing load and task distribution can exhibit good performance, in addition to expressiveness 

in addressing management monitoring requirements.
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CHAPTER 5

5 Efficient WS based Event Reporting

5.1 Introduction

One significant aspect of using WS for network management is event reporting. In order to use 

WS for event reporting two problems have to be addressed (a) asynchronous communication and

(b) efficiency. The former is required since the time of the occurrence of an event is not 

predictable and thus synchronous communication is not possible. Efficiency is also an important 

aspect of event reporting. For example, it does not make sense to produce events that nobody 

wants to receive as this will incur unnecessary use of resources. To clarify this, an example is in 

order. In an event reporting system that supports brokering relationships it does not make sense 

for an event source to produce events that nobody has subscribed in the broker to receive them.

In order to provide asynchronous communication between WS, a callback mechanism is required. 

A Uniform Resource Locator (URL) is such a mechanism but is inadequate since (a) it only 

allows a single protocol to be defined to reach a service (b) it does not necessarily convey 

interface information [172] etc. The proprietaiy WS-Addressing [19] specification tried to solve 

the callback problem by defining two XML structures that can be used as an efficient callback 

mechanism: (a) endpoint references, (b) message-information headers. These mechanisms can be 

used to support vaiious message exchange patterns that WSDL 1.1 did not support. Despite the 

drawbacks analysed in [172] and [173], this specification has opened the way for three event 

reporting specifications to be defined: WS-Events [174], WS-Eventing [20], and WS-Notification 

[91].

In the WS-Events specification by HP [174], the consumer of an event can primarily (a) discover 

the types of events an event producer supports, (b) discover the events a producer currently holds,

(c) subscribe in order to receive events, (d) perform filtering on the type of events tliat a consumer 

wants to receive, (e) define an expiration date for receiving events, and, (f) provide a callback 

URL for delivering an event. Filtering mechanisms are not specified in [172] but the means for 

unwanted events not to be produced or consumed aie provided. In essence the specification does 

not clarify what tools are going to be used for event filtering [172]. Still the authors of the 

specification have created the framework based on the operations of which it is possible to 

perform event filtering.
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In the WS-Eventing [20] specification things become clearer; this specification supports the XML 

Path (XPath) language for event filtering and WS-Addressing to provide a better callback 

mechanism than the simple URI scheme used in WS-Events.

When the WS-Notification [91] standard was introduced, more features for event reporting were 

added compared to the previous standards. In addition to what other standards support, the WS- 

Notification standard also:

■ Allows consumers to receive content in an application-specific manner (raw format) or in a 

standard manner for increased interoperability.

■ Enables a consumer to define several types of expressions for event data filtering (XPath, 

database queries etc).

■ Permits a consumer to define the types of events it needs to receive with expressions called 

topics.

■ Provides support for notification brokering.

All the above standards are on the right track for providing efficient and reliable WS-based event 

reporting communication. Nevertheless, WS-Notifications could be used more efficiently for 

network management. Consider the third QoS scenario in chapter 4 where a manager has to be 

notified when an interface of a Quality of Service (QoS) enabled router fails. Upon receiving this 

event, the manager needs to determine the traffic contracts and LSPs affected by this interface and 

requests for more data. In cases such as these, event reporting triggers a set of actions at the event 

receiver. These actions may be requests to retrieve more system data (i.e. because the event itself 

was not descriptive enough to describe the root of a problem) or perform changes on the network 

(i.e. configuration of the network to solve a problem). Finding standardised ways to perform a set 

of actions and tasks, normally performed in network management by the entity receiving an event, 

in order for these actions to be performed by the entity producing them (i.e. a management agent 

hosting an event service), has the potential of making the notification process more efficient and 

more reliable. As explained in chapter 4, the process where an entity is given the task to perform a 

set of actions for another entity is called task delegation. Task delegation can be used for WS- 

event reporting as long as (a) the entity with the responsibility to perform a set of tasks does not 

live on a very resource-constrained system and (b) this is performed in a standardised manner. For 

the latter, the use of a WS standard to perform task delegation would be more than enough. For 

the former, this is more of a reality today [55] since the myth of the dumb agent does not apply, 

given that the capabilities of devices have been significantly enhanced.

Using task delegation in WS-based event reporting can be important for two reasons. The first one 

applies to data retrieval. In many event-reporting scenarios event data represent a small amount of
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the data canied over the network in compaiison to the HTTP and the Simple Object Access 

Protocol (SOAP) header data. The use of WS-Notifications is not justified in these cases since 

WS can perform badly when retrieving relatively small amounts of data [120], [122]. As such, 

adding additional data normally retrieved after tlie receipt of an event in the initial event report in 

order to reduce latency and traffic overhead should be beneficial. Second, by task delegation a 

higher degree of autonomy and reliability can be achieved as a manager’s supervision is limited 

and faults can be rectified as and where they occur.

There is a disadvantage though when performing task delegation. The disadvantage is that 

application complexity increases. As we are going to see later on, task delegation requires that a 

certain number of tasks are performed dynamically at run time. This can be difficult. For example 

perfonning processing on data returned after a task is sometimes quite difficult due to the variety 

of data that can be returned. Furtliermore task delegation requires managing of tasks. This can be 

quite difficult especially for tasks that are dependent on one another.

In chapter two we suggested that when performing task delegation from one entity to another it is 

necessary not to hardwire the logic and the tasks that can be performed as happened in [124]. In 

addition, we also mentioned that a WS-based event reporting system should use its own 

conventions and mechanisms for event reporting but also should be able to interpolate with 

standards at the edges of a domain as suggested in [34]. It is thus evident that a WS-based event 

reporting system has to be characterised by the following traits (a) it must have a flexible, 

dynamic non hardwired logic for configuring the tasks that need to be delegated to it (i.e. an event 

service at a management agent) by a manager (consumer of events) (b) it should be able to 

cooperate or use WS standards messages for any part of the communication that it is required to 

have with a consumer of events for interoperability purposes, as well use its own application 

specific messages for increased perfoimance.

A promising way to configure the event process for WS-based event reporting dynamically 

without hardwiring the logic of the event system is through policies. The WS-Notification 

standard supports the use of policies. The WS-Notification specification also supports the use of 

standard messages to report events as well as application specific messages. As such the WS- 

Notification standard becomes an excellent candidate for event reporting using task delegation.

Delegating tasks through policies to improve the communication between two entities is not a 

new idea. Applying it to WS-based event reporting to check if it is feasible and if potential 

benefits can be gained, is something that needs to be explored. As such, we have designed and 

built a WS-based event service supporting task delegation with the use of WS-Notification 

messages and policies. To prove the viability and the gains of this system, an event reporting
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scenario is analysed. This scenario is the third QoS scenario presented in chapter 4. Based on this 

scenario we analyse the performance of event reporting for three systems:

■ A WS-based notification system where only event data are reported in the initial report. Then 

a set of actions triggered by the event are performed by the manager to collect more data.

■ A policy WS-based event system where event data and data collected from subsequent tasks 

are gathered and sent by the entity that produces events in the initial event report.

■ An SNMP trap system.

The remainder of this chapter is structured as follows. Section 5.2 analyses the WS-Notification 

standard messages that are going to be used to configure the event reporting reporting process 

with policies. Based on section 5.2 we will show in section 5.3 that the WS-Notification standard 

can be used for configuring the event reporting process with network management policies. Using 

network management policies we will show that it is possible to support the delegation of a series 

of tasks of varied complexity from an event consumer (manager) to an event producer (event 

service at an agent) using a policy-hke language. As such, in section 5.4 we will present the 

policy-like language we have devised to configure an event service we have built for task 

delegation. In this section, we will also analyse the WS-Notification compliant messages that 

need to be exchanged for configuring our event service for handling a set of varied complexity 

tasks assigned to it by task delegation. As part of the task delegation process we will explore the 

interactions between our event service and an event consumer (a manager) using as an example 

the interactions required to handle the requirements of the third QoS scenario analysed in chapter 

4. In section 5.5 we will present a perfomance evalution between the two WS-based systems and 

the system based on SNMP traps using this scenario. In section 5.6 we finally present our 

conclusions.

5.2 The WS-Notification standard messages for event reporting

The WS-Notification family of specifications defines a complete system architecture to support 

event reporting based on WS. In this architecture a publisher/producer is an entity that sends 

notifications about a range of events called topics to other entities called consumers. Brokers are 

also defined as intermediate entities between producers and consumers that control the flow of 

events based on filtering. For a consumer to receive events, the latter must register with the broker 

or the event producer by selecting the appropriate topics. Publishers of events must state to the 

broker which topics they support, or advertise on their own the topics they maintain.

The WS-Notification standard defines a variety of features and messages that are exchanged 

between the various entities participating in the event reporting procedure. In our investigation we
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are only interested in (a) the request message a consumer sends to a producer to register for an 

event topic, (b) the response to this request message and (c) the messages the producer sends to 

the consumer in order to report an event. We do not tackle other messages involving notification 

brokering, event topic filtering at the broker, etc. This is because all these aie out of the scope and 

requirements of the third QoS scenario that will be examined to evaluate the performance of 

valions event-reporting systems. As such, there is no need to analyse any of the other messages 

the WS-Notification standard supports.

Based on the above and for the needs of the third QoS scenario, we will first analyse tlie stmcture 

of the basic WS-Notification messages used for subscribing and receiving events. Based on this 

analysis we will show that the WS-Notification standard supports the use of policies. We will also 

show how the WS-Notification standard supports the use of standaid and application specific 

messages to report events. Both of tliese features that the WS-Notification standard supports, form 

the two essential elements required to build an event reporting system supporting execution of a 

number of varying complexity tasks in a dynamical manner.

In the next two sections we analyse the basic messages of the WS-Notification standard (request 

response subscription messages and notification messages). This is the next incremental step in 

order to explain, in subsequent sections, how to increase the performance of WS-based event 

reporting systems with policies.

5.2.1 The WS-Notification Subscription Message

The WS-Notification specification specifies that in order for an event consumer to receive a 

notification from a producer, the former has to send a subscription message in order to subscribe 

for a series of events. The format of such message is given in Figure 5-1.

♦ The consumer reference element tag is a URL providing a callback mechanism for event 

delivery.

♦ The topic expression element tag defines the event topics a consmiier can register to receive. 

A topic can have sub-topics and topic filtering can be used by an event consumer to define 

specific topics of interest. Our event service implementation which we will analyse in section 

5.4 supports four general topics; (a) a threshold is exceeded going upwards (notify-high), (b) 

a threshold is exceeded going downwards (notify-low), (c) the state of a state attribute has 

changed to active (notify-up) and (d) the state of a state attribute has changed to non-active 

(notify-down). Thus topic filtering is not required.

♦ The UseNotijy element tag is used by a consumer to select whether events will be formatted 

in an application specific manner or using a WS-Notification standard Notify message. In
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addition to topic filtering, the selector and precondition expressions are used for data 

filtering. XPath expressions, database queries or any application specific tools can be used 

for this.

♦ The InitialTerminationTime tag is used define the period for which an event consumer 

registers for events.

<wsnt:Subscribe>
<wsncConsumerReference> 

http://13L227.88.70:8080/ 
notifications /notifications_
Consumer 

</wsnt ConsumerReference>
<wsnt:TopicExpression dialect=
“http7/131.227.88.70/eventTopics”> 

tns:notify-down 
</wsnt:TopicExpression>
<wsnt:UseNotify> True/False<Jv/snt:\JséSoüfy>l 
<wsnt: Precondition> 

wsrp:QueryExpression 
</wsnt: Precondition>?
<wsnt:Selector>

wsrp:QueryExpression
</wsnt;Selector>?
<wsnt:SubscriptionPolicy>

Event-Condition-Action 
Policy-like XML document 

</wsnt:SubscriptioiiPolicy>?
<wsnt:InitialTerminationTime>
2007-03-11T13:00:00 

</wsnt:lnitialTenmnationTime>?
</wsnt: Subscribe> I

Figure 5-1 WS-Notification Subscription message [91]

In the subscription message, the subscription policy element is an open component that can be 

used to specify application-specific policy requirements/assertions. The semantics of how an 

event producer will react to these assertions depends on the application-specific grammar used. A 

non-normative way to define policies within the subscription poUcy element is with the WS- 

Policy standard [101]. The WS-Policy standard defines a base set of constructs that can be used 

and be extended by other WS standards to describe a broad range of service requirements and 

capabilities. Applied to WS, a policy defined using the WS-PoUcy standard can be used to convey 

conditions that need to be met when an interaction between two WS endpoints occurs. In reality 

though, the subscription policy element and the WS-Policy standard in the WS-Notification 

standard subscription message was envisioned by IBM so as to be used by subscribers for setting 

their requirements or specifying their directives to the services managing the underlying resources 

(i.e. for managing their subscription maintained by an event source/service). This is necessary 

because each WS may have different approaches for implementing subscriptions and
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notifications. The greater vision of IBM is to use the subscription policy element so as to be able 

to define concrete policies that allow a service (i.e. a WS-based event service) managing the 

underlying network resources, to describe its approach for subscriptions and subscription 

management, and also to give the opportunity to the subscriber to specify directives that it must 

follow [94].

5.2.2 Other WS-Notification messages

The response to a subscription message may contain a lot of information. Primarily it contains (a) 

the address of a WS that defines the messages that can be exchanged to manipulate subscription 

resources, (b) a resource id for the subscription and (c) fault information in case of subscription 

failure (Figure 5-2 left).

The WS-Notification standard Notify message (Figure 5-2 right) contains the following: (a) a 

topic header that describes the event topic an event consumer subscribed initially to receive (b) a 

producer reference element that describes the endpoint of the service that produced the event, and 

(c) message elements where the actual payload of a notification is inserted.

The event service that we will analyse in section 5.4 will support both the WS-Notification Notify 

messages but also the application specific messages for reporting events. As a result, our event 

service can be used at the edges of a network domain, to report events to entities belonging in 

other domains using the WS-Notification standard message format for interoperability purposes. 

At the same time, our event service can use application specific messages (i.e. less verbose 

messages) to report events to several entities within a domain that subscribed to these events. This 

is one of the requirements suggested as a way to increase the performance of WS-based event 

reporting in [34].

cwsnt: SubscribeResponso 
<wsnt:SubscriptionReference> 

<wsa:Address>
Address o f  Subscription Manager 

</wsa:Address> 
<wsa:ReferenceProperties> 

Subscription Identifier 
</wsa:ReferenceProperties>

</wsnt:SubscriptionReference>

</wsnt:SubscribeResponse>

<wsnt:Notify> 
<wsnt;NotificationMessage> 

<wsnt:Topic dialect=”xsd:anyURI”> 
{any}

</wsnt:Topic>
<wsnt: ProducerReference>?

wsa:EndpointReference
</wsnt:ProducerReference>
<wsnt:Message>'!C5d;a7iy
</wsnt:Message>

<wsnt:NotificationMessage>+
</wsnt:Notify>

Figure 5-2 WS-Notification Subscription message response and Notification message [91]
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5.3 Policy-like Configuration of Events for Network Management

So far we have analysed the structure of the standard messages of the WS-Notification standard. 

We have also seen the vision of IBM for using the policy element. Now we can explore the 

potential of the policy element in making the communication of a WS event reporting system 

more efficient and reliable.

Apart from the IBM specifics on policies, the vision of policies for network and service 

management is described in [175] and [176]. According to [175], policies are an aspect of 

information influencing the behaviour of certain components within a system. In [175] all policies 

can be expressed as if they belong to a hierarchy where a high level policy goal can be refined 

into multiple levels of lower level policies and eventually into a set of policy rules. Effectively, as 

defined in [175], policies are rules that can be used as the means to successfully achieve a goal. 

Based on what goals policies are trying to achieve they can be broadly classified into (a) 

authorisation policies that define what is permitted, or not, to be performed in a system, and (b) 

obligation policies that define what must be performed, or not, in order to guide the decision 

making process of a system. Both types of policies can be defined using an event-condition-action 

model of definition. Based on this model for defining policies, it is evident that policies can be 

reduced to a set of rules, actions, utility functions that can be used to (a) ensure compliance, (b) 

define behaviour, and (c) achieve adaptability of a system.

Based on the above, it is evident that the view of WS-Policy on policies and that of the NSM 

management community have quite a few similarities. The WS-Policy standard defines that any 

part of a policy can be considered as a domain specific assertion of policy information. This may 

be an assertion for an action, an assertion about the state of a system or an assertion for a goal to 

be achieved. As such, the event condition action model parts of a policy definition in the network 

management world can be expressed with the use of WS-Policy assertions. As a result of the 

latter, it is evident that network management policies can be defined using the WS-Policy 

standard. It is even possible to express network management policies, using any domain-specific 

grammar that manages to express the event, condition and action parts of a policy.

By having a view of what events represent in the network management world, we can observe 

that events have a lot of the characteristics that policies also embody. In the network management 

world, events are viewed as a method for notifying an entity (i.e. a manager) about the state of a 

managed device or underlying resource that usually demands an action to be taken. Thus, events 

can contain information about (a) the event itself, (b) the condition that produces the event, and

(c) the type of actions to be performed after an event is generated. All this information is 

consistent with the network management perspective of defining policies (event-condition- 

action). Hence, it is clear that event information can be defined as policies. In general, it is even
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possible to describe the information of an event and the processes required in order to generate an 

event, or the actions performed when an event is generated, as part of a grammar used to describe 

the event condition action subparts of a policy.

To do what was described above with WS, we can either use WS-Policy or any domain specific 

grammar to configure events and the event process with policies. In this respect, the subscription 

policy element of the WS-Notification standard can be used as a wrapper to contain event 

information as well information in order to know when an event has to be generated and what to 

do when an event is generated.

Based on all the above, we have decided to design our own domain specific grammar to manage 

the event process and event information with policies. We have also built an event service that 

uses the basic WS-Notification standard messages to manage the event process with policies. In 

our event service implementation we use the subscription policy element as part of a subscription 

message to send to our event service (event producer) an XML document that consists of three 

sections: (a) general event data and how to collect them, (b) the conditions that trigger event- 

production, and (c) subsequent actions. As such, this XML document is used to configure the 

event process with policies. The grammar used to validate the XML document (against a schema) 

represents our domain specific grammar to manage the process of event production with policies. 

This grammar constitutes by no means a formal policy language. This is because our grammar 

based on its cunent condition needs to be enhanced in order to support concepts like policy 

refinement. Enhancement is necessary since our grammar currently supports actions as calls to a 

number of operations of a WS interface. These operations may be comprised by a number of 

actions which are not defined using assertions or alternatives clauses as in WS-Policy. For policy 

refinement this is necessary. Still the grammar supports an event condition action of defining 

policies. It is thus a policy-hke language and not a policy language in the strict sense. Still we can 

use it within tlie subscription policy element so as to be able to configure our event service in 

order for the latter to become capable of perfonning a set of varying complexity actions or tasks. 

This allows us to delegate a set of tasks that the manager would otherwise perform to other 

entities (i.e. our event service hosted in an agent) so that the WS event reporting process is made 

more efficient.

In the next section we analyse our domain specific grammar. Completing this analysis we can 

then give an example on how to use the event service we have built to support the event reporting 

requirements of the third QoS scenario introduced in chapter 4. As part of this example we will 

explain the interactions between our event service (event producer) and an event consumer 

(manager) to configure the former to perform a set of tasks of varying complexity as part of the 

event process. We believe that this can make WS-based event reporting more efficient.
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5.4 Managing our event service with our policy-like grammar

5.4.1 Policy-like event configuration document and grammar

The policy-like document consists of an event, a condition and an action part.

The event part (Figure 5-3) consists of sections which define (a) which parameter(s) need(s) to be 

monitored (OIDstoMonitor), (b) how to retrieve the state of the data to be monitored for event 

reporting {EvenTask and its sub-elements), and (c) how to handle and process the retrieved data 

for event reporting {Result and its sub-elements).

The OIDtoMonitor element is a comma separated list of the data that need to be monitored for 

event reporting.

The EventTask element is an element that describes the various information required in order to 

perform a WS call so as to be able to retrieve event data. These data can be processed in order to 

recognise if an event has to be produced or not. The WS call can be a call to a WS exposing 

management data from SNMP MIBs. It can also be a call to a system process offered through a 

WS interface (i.e. Command Line Interface (CLI) calls). Our view is that any action/task our 

event service is allowed to perform, can be provided through a WS interface. In this way, we can 

deploy and expose in a standardised fashion a set of capabilities that our event service can handle 

(these capabilities are provided by other WS). Based on the above, the ServiceEndpoint element 

points to the URI where a WS interface can be accessed. The Method element is used in order to 

describe the method of the WS interface that will be invoked i.e. to retrieve event data or to make 

any other call. The Use element describes the format of the SOAP body that will be used when 

communicating with a WS (i.e. Document or RPC). The Style element describes the encoding 

style of the messages dispatched in a WS call (i.e. Literal, Encoded, and Wrapped). The 

MethodParam and Param elements are used to describe the operands of the method of the WS 

interface that is invoked. Each Param element contains mainly three attributes, a parameter id 

(pmid), a namespace attribute and a type attribute. The pmid attribute uniquely identifies a 

parameter in order to be able to reference it within the policy-like document. The type attribute 

describes the type of each operand used in a WS method call (i.e. string, integer etc). The 

namespace attribute is used to describe the schema where this parameter is defined. In general, 

the parameters in the EventTask elements allow us to make dynamic calls to WS offering a variety 

of capabilities. Dynamic WS calls are the only means through which we can configure our event 

reporting system without hardwiring the logic and the tasks it can perform.

The Result element is an element used to provide directives to our event reporting system on how 

to process the results returned after a dynamic WS call, i.e. to retrieve event data. In this way, the 

data from these calls can be processed and stored in memory for later use, i.e. to identify whether

154



Chapter 5. Efficient WS based Event Reporting

an event has been produced or not. The ResultParam element is used to describe data (single or 

multiple instance data) of different types that are returned as part of a response to a WS call. The 

pmid attribute in the ResultParam element is used to uniquely identify a collection of data of the 

same type. Using this attribute we can uniquely reference each type of information returned after 

a WS call so at to use it for example as a method operand for another WS call. The type attribute 

describes the data type of a collection of state information (i.e. string, integer etc). The 

ResultFormat, the FormatValue and the FormatPattern elements are used in order to extract with 

regular expression matching techniques, each type of information included in the response of a 

WS call. This is required because the data in the response of a WS call can be intermixed 

somehow (the result can contain multiple instance data of various types (i.e. LSP interface data 

and their row identifiers of the table where these data lie).

<ns:EventSpec name="" jobid="" date="" time="">
<ns:OIDsToMonitor>.. .</ns:OIDsToMonitor> {1}
<ns;EventTask actionid="">

<ns; ServiceEndpoinO...
</ns:ServiceEndpoint> {1}
<ns:Method namespace="">...</ns:Method> {1}
<ns:Use>...c/ns:Use> {1)
<ns:Style>...</ns:Style>{ 1}
<ns : MethodParams>

<ns:Param name="" pmid="" namespace="" type="">
<ns:Param> +
</ns:MethodParams> ?

<ns:Result resid="" type="" namespace="" qname="" name="">
<ns: ResultParam pmid="" type="">...
</ns:ResultParam>*
<ns:ResultFormat forid="" dependsON="">

<ns:FormatValue>.. .</ns:FormatValue>? 
<ns:FormatPattem>...</ns:FormatPattem> ?

</ns:ResultFormat> ?
</ns:Result> *

</ns:EventTask> {1}
</ns:EventSpec> +

Figure 5-3 Event part of the policy-like document

The condition part of the document (Figure 5-4) contains information to determine whether an 

event has been produced or not. Information that need to be defined in the condition part refer to 

(a) the type of monitor used {MonitoringObjectType element and monid attribute -  i.e. mean 

monitor to compute the average between two counter values, variance monitor to compute the 

variance of a number of counter values, etc.), (b) the measurement granularity {granularity 

element), (c) the smoothing window size {window element), (d) the clearing value that re-enables 

event reporting if it has been disabled {clearvalue element) and (e) the value that determines if a 

threshold has been exceeded or not. The latter signifies if we need to report an event {value 

element).
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<ns:EventCondition jobrefid=""> 
<ns:MonitoringObjectType raonid=""> 

<ns:granularity>...</ns:granularity> {1 } 
<ns;window>...</ns:window>{ 1 } 

</MonitoringObjectType> {1}
<ns:Threshold>
<ns:tType>...</ns;tType> {1} 
<ns:value>...</ns;value> {1 }
<ns:clearvalue> </ns;clearvalue> ?

</ns:Thresbold> {1}
</ns:EventCondition> +

Figure 5-4 Condition part of the policy-like document

<ns:ActionOnEventjobrefid=""actionid="">
<ns : ServiceEndpoint>...
</ns;ServiceEndpoint> {1}
<ns:Method namespace="">...
</ns;Method> {1}
<ns:Use>...</ns:Use> {1)
<ns:Style>...</ns:Style>{ 1}
<ns:MethodParams>

<ns:Param name="" pmid=""namespace="" type=" "> 
<ns:Param> +

</ns:MethodParams> ?
<ns;Result resid="" type="" namespace="" qname="" name=""> 

<ns:ResultParam pmid=""type="">...
</ns:ResultParam>*
<ns:ResultFormat forid=" " dependsON=""> 

<ns:FormatValue>...</ns:FormatValue>? 
<ns:FonnatPattem>...</ns:FormatPattem> ? 

</ns;ResultFormat> ?
</ns:Result> ♦

</ns:ActionOnEvent>

Figure 5-5 Action part of the policy-like document

The action part(s) of the pohcy-like document contains data similar to the EventTask and Result 

elements in the event part of the policy-like document. These data, as in the EventTask element, 

allow us to call the appropriate WS to perform a series of tasks of various complexities in the case 

that an event has been produced. The Result element in the action part of the policy-hke 

document allows us to process the results of a response to a WS call (Figure 5-5). In this way we 

can use these results as operands of another task performed as part of another WS call. There are 

attributes inside the Param and ResultParam elements (not shown in Figure 5-5) that allow us to 

form the operands of a WS method call dynamically. This is extremely useful when using our 

parser queries or any custom tool queries. The former are used as operands of our scheme to 

retrieve management data in a bulk or selective retrieval manner. Sometimes these queries need to 

be formed on the fly, since they may also contain data that are not known in advance and are 

collected as part of executing a set of tasks sequentially. The attributes inside the Param  and
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ResultParam elements allow us to form these queries or any other operands on tlie fly 

(recursively).

5.4.2 Event reporting process description

Having explained how each piece of information in the policy-like document can be used, we can 

now analyse the interactions that take place between our event service (event producer) and an 

event consumer (manager) for event subscription. As part of the subscription process, we will 

show how to configure a set of tasks of varying complexity through our policy-like grammar so as 

to make our WS-based event reporting system more efficient. We will analyse the subscription 

process based on the steps requir ed to handle tire third QoS scenario in chapter 4.

To configure the event serwice we have developed for the QoS event reporting scenario presented 

in chapter 4, the event consumer has to send a subscription message to the event producer. In 

reference to Figure 5-6, the consumer is a network manager and the producer (event service) lies 

in a network agent.

In Figure 5-6 we give an overview of the operations tliat need to be performed as part of the 

subscription process for a receiver of events to actually start receiving notifications. Here, the 

subscription process starts by validating the policy-like document to avoid subscription request 

failure (Figure 5-6 step 0). Then, the request is compressed (Figure 5-6 step 0) and is sent to the 

agent (Figure 5-6 step 1). At the agent the subscription request is decompressed (Figure 5-6 step 

2), the policy-like document is extracted and split into its event-condition-action sub-parts (Figure 

5-6 step 3). After a DOM parser validates each message part (Figure 5-6 step 4), the XML policy

like document is also searched for any discrepancies not captured by XML validation (Figure 5-6 

step 5). This is necessary because the policy-like document contains inter-dependencies between 

some of its attributes and elements. These interdependencies cannot be expressed in an XML 

schema. Therefore, any problems relating to these inter-dependencies have to be found by 

checking for them explicitly. If any errors are found, the manager’s SOAP messaging service is 

notified (Figure 5-6 step 8 ). In the opposite case, the agent’s messaging service tries to add an 

event job to the event service (Figure 5-6 step 6 ). An event job can still be rejected for various 

reasons (i.e. a job already exists, etc.) (Figure 5-6 step 7). A successful or unsuccessful addition of 

a job is reported to the manager (Figure 5-6 step 8 ). Apart from adding an event subscription job, 

the event service supports features for job subscription such as (a) resume, (b) suspend, (c) 

remove, and (d) update.

Upon successful addition of a job, the event sub-part is processed and event data are collected 

using the Java reflection API to dynamically invoke the appropriate WS exposing management 

data (Figure 5-6 step 9). Selective data retrieval is performed using tlie custom query tool
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presented in chapter 3. Because we define these queries as part of the operands of each WS call 

within the Param elements of the pohcy-like document, the selector and precondition expressions 

offered by the WS-Notification standard subscription message for filtering are not used. 

Following the phase of collecting data (Figure 5-6 step 10), the condition part of the pohcy-like 

document is processed in order to determine whether an event has been produced (Figure 5-6 step 

11). If no event is produced, the process is repeated according to the granularity of operations. If 

an event is produced, the action sub-parts of the policy-hke document are executed (Figure 5-6 

step 12). The actions in our event reporting scenario involve tasks to gather extra data to 

determine the LSPs and SLSs affected by a failing interface. Calhng the appropriate WS to gather 

these data is performed dynamically and any queries to retrieve management data are formed on 

the fly using recursive methods. This happens because these queries contain data not known in 

advance and are collected during the execution of each task. When the event data and data from 

the configured tasks are collected (Figure 5-6 step 13), an event report is sent to the manager 

(Figure 5-6 step 14), which confirms its receipt (Figure 5-6 step 15). The event report data at the 

manager are finally stored in HTML format (Figure 5-6 step 16).
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5.5 Event Reporting Scenario Measurements

So far we have analysed how to use our event reporting system to configure through policies a set 

of varying complexity tasks so that they can be performed by our event service (hosted an agent). 

Since the tasks delegated to our event service are performed dynamically this allows us to 

configure our event service to perform a variety of tasks in a flexible manner. Nevertheless, our 

event service is capable of performing a variety of different tasks as long as we expose a set of 

different capabilities through WS interfaces. As such, we have given an example of the tasks that 

our event service can perform. This example revolves around the requirements of the third QoS 

scenaiio presented in chapter 4. As part of the requhements of this scenario we explained how our 

event service can be used to handle a set of tasks the manager would normally perform when the 

latter is notified that the interface of the ingress router failed. In this way, our event service 

reports botli the event data that it normally needs to report and also the data normally collected 

from the manager.

In this section we will tiy to explore if task delegation can make WS-based event reporting more 

efficient. As pait of the task delegation process required for the third QoS scenario we analyse in 

the next sections (a) the setup for the measurements of the third QoS scenaiio (b) we elaborate on 

the event reporting systems we will be comparing and (c) we examine the measurements 

themselves in order to extract any conclusions.

5.5.1 Event reporting systems tested

The event reporting systems we will be evaluating tlie performance of WS-based management are 

three. The first of the three systems is oui' WS-based event reporting system supporting task 

delegation through policies. The second system is also WS-based and it is also using the WS- 

Notification standard messages. It does not support though task delegation through policies. The 

third system is based on SNMP traps.

For the requirements of the the third QoS scenaiio, the second WS-based event reporting system 

notifies a manager that the interface of the ingress router failed. The event service of this system 

is hosted at the agent side. When the manager is notified about this event, it uses our query tool or 

XPath 1.0 & 2.0 to enquire the agent in order to determine the affected LSPs and tiaffic contracts 

(SLSs). This system is implemented again using the WS-Notification standard this time though 

policies are not used to manage the event reporting process. As such the manager initially 

subscribes for an event type (this time for an event of type “?/ie state o f a state attribute has 

changed to non active"). When such an event takes place the event system notifies the manager. 

The manager uses the information in tlie event to understand the nature of the event and then uses 

a query tool to inquire the agent in order to find out which LSPs or SLSs are affected.
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In the first WS-based system the event service is configured by a manager to perform dynamically 

the set of tasks the latter would otherwise perform after delivery of an event. When these tasks are 

performed by the event service, the latter sends back all the collected data to the manager (event 

data + data collected from the tasks). The approach followed by our pohcy based event reporting 

service is more complex. It requires from the event service to call the appropriate WS to 

determine the affected LSPs and SLSs at run time (WS dynamic call using Java’s reflection API). 

Also for this approach, the queries performed with the query tool to determine the affected SLSs 

and LSPs need to be formed on the fly. This is necessary since some of the queries contain data 

that are not known in advance. These data are collected and processed by the event service while 

it performs each task successively. Based on policy-like configuration and data filtering and 

processing using our custom query tool, we show that this approach is plausible and results in 

traffic and latency benefits compared to the second WS-based event service.

The SNMP trap event reporting system handles the QoS scenario as the second WS event service. 

It reports that the interface of the ingress router failed and then an SNMP manager polls for data 

to determine the LSPs and SLSs affected. The manager of the SNMP trap system does not use any 

filtering mechanisms to process data, as for example the distributed management extensions of 

SNMP, for the reasons explained in section 4.4.3.3.2.

5.5.2 Evaluation Setup

For the evaluation aspects of our scenario we need to set up a QoS network with 30 LSPs and a 

network with 900 LSPs. The former network simulates a small QoS network and the latter a large 

one. For the reasons explained in section 4.5.3.1 we had to resort to other means to calculate 

traffic overhead and latency for SNMP the same way as explained in section 4.5,3.1. The new 

traffic analysis is presented in the next section. For traffic overhead measurements of SNMP 

average traffic was calculated between a maximum and a minimum value. The software used for 

SNMP, the MIBs used and the utilities for measurement are the same as in section 4.4.2.1. For 

each SNMP latency measurement we used Java’s currentTimeMillis() function to average 10 

measurements for each sampled result.

For WS the Apache Axis 1.4 SOAP toolkit was used to deploy the LSR, the FEC and the 

Interfaces Group of the RFC 1213 MIB as WS, with the same information as in SNMP. The 

information of each MIB is replicated exactly as it would be in a router. All MIBs were deployed 

using a Document/literal encoding style so that the verboseness of XML tags is reduced and 

traffic overhead as well as coding latency is minimised. The Document style is also recommended 

for use with our event reporting system since it makes the process of handling the data returned 

after a WS call easier (i.e. XML tags in this style provide context information and it is fairly easy
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with this style to handle a volume of information not known in advance instead of having raw 

data). The SOAP messaging services used in the two WS-based event reporting systems use 

JAXP 1.3 to parse XML documents, SAAJ 1.3 to exchange SOAP messages [117] and JAXM 1.1 

for XML messaging. Java’s zip facilities are used to compress/decompress the WS-Notification 

standard messages. Java’s reflection API was used to make dynamic calls on WS. For bulk and 

selective retiieval in the WS-based event reporting systems, we used the query tool presented in 

chapter 3, based on Java’s 1.5.6 regex engine. For the WS-based event reporting system without 

policies we used SAXON 8.9 for XPath 2.0 functionality and JAXP 1.3 for XPath 1.0 

functionality. For WS-based systems the Linux tcpdump utility was used to measure the traffic 

overhead. Latency measurements for WS were perfoimed using Java’s currentTimeMillis() 

function by averaging 10  measurements for each sampled result.

The manager and agent used in the event reporting system of Figure 5-6 and in general for all the 

WS-based systems are deployed on a 1000MHz/256MB RAM and 466MHz/192MB RAM 

machine respectively. Both PCs run Red-Hat Linux 7.3, thus simulating a lower end system for 

the agent.

5.5.3 Measurements

The measurements presented in tliis section demonstrate the potential benefits of data filtering, 

processing and task delegation for WS-based event reporting. A compaiison with SNMP traps is 

also performed.

For SNMP traffic overhead measurements we rely on previous research performed in [122] and 

[124] about polling based monitoring and event reporting. In these papers die tiaffic overhead for 

SNMP operations is given by:

L g e t ,  getNext ~ til * (54 + 12 + 2L; 4* Lg ) (5.1)

LgeiBiiik ~  54 +1 * (6  4- jLj ) -H n.j (6  4- Lj 4- L ^ )  2)

LtrapSNMPv 1 =  49 4- (3 4- L j 4- L j  ) ^

LtrapSNMPv 2 =  75 4" Lg 4* W j * (3 4- L j 4"

In these equations Li is the size of the Object Identifier (DID) of a variable, Lg is the variable 

value size, ui is the number of OIDs to retiieve and L3 is the trap DID. Taking into account the 

size (in Table 5-1) of the data that needs to be collected for polling based operations and SNMP 

traps, the traffic overhead for SNMP can be computed.
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Measurement
Type

mplsXCLspld.
mpisXCIndex

mpteXCInSegmentlndex.
mplsXCOutSegmenllrKlex

mplslnSegmentlnterface.
mpislnSegmentlndex / 

mplsOutSegmentlnterface. 
mpteOutSegmenMndex

mplsFTNDscp.
miplsFTNIndex

mplsFTNAcbonPointer.
mpteFTNIndex

L1/L2 16-19 (Max 160)0 LSPs)/ 
6 (CR-LDP) 14-16 (Max 16000 Ifs)/1-4 14-16/1-3 (Max 

16000 LSPs
14-16/|l6-2o) (l\^x 

16000 LSPs
Measuremen

Tvoe
iiupefSiaius

ifndex
iTAOmmstai

iflndex
us.

Trap OID L3=10
------------

Event
Reporting

---------
L1/L2 10*(1-3)/1 1(H(1-3)/1

Table 5-1 Information size in ASN.l format inside an SNMP message

The network measurement setup for these measurements is the same as in 4.3.1 and 4.5.3.3.3 for 

the reasons explained in these sections. The queries required for this scenario to determine the 

affected LSPs and SLS were analysed in section 4.3.4.2 and were given in Figure 4-4.

The measurements for the three event reporting systems are presented in Figure 5-7 to Figure

5-10. In these figures the measurements for the policy WS-based system are depicted with (C) and 

for the other WS-based system with (S).
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Figure 5-7 Latency measurements for SNMP and for the two WS-based approaches (900 LSPs)

Figure 5-8 Latency measurements for SNMP and for the two WS-hased approaches (30 LSPs)

In Figure 5-7 we can observe that the latency for configuring the WS-based event reporting 

services is quite significant both for the system without policies but also for the one with policies. 

This happens because both systems require (de)compression of the subscription request. Also 

XML validation of the subscription message is performed for both of the WS-based systems 

(Figure 5-7 WS(C)/ WS(S) config). The latter also increases latency. Configuring the event 

service though is not a time critical task and it happens once for a specific event-subscription-job. 

Therefore, we do not consider subscription latency in the event reporting overall latency of the
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two WS-based systems, since it is not a time critical task and since subscription operations can be 

considered as offline operations.

Comparing the two WS-based approaches in terms of latency for small networks, it can be seen 

that the latency difference between the two systems is very small (Figure 5-8). This at first seems 

strange. Normally we would expect tliat the event reporting system with task delegation would 

incur less latency. We expect that because the policies-WS-based system is performing local- 

inside-the-agent WS calls to determine the affected SLSs and LSPs. Hence, for these operations 

the network latency overhead does not contribute to the overall latency. Nevertlieless, the policy 

event reporting system suffers from latency incuned from performing dynamic WS calls and 

building data queries on the fly. As such, any gains from performing local WS calls aie counter

balanced from the fact that these calls have to be made dynamically. For big networks though, 

latency is less by aiound 75 ms for the policy-like based event reporting system (Figure 5-7).

Comparing the two WS-based event reporting systems with SNMP traps, latency is about the 

same in the case of small networks (Figure 5-8). This is quite a good result for WS-based systems, 

considering that the amount of information retrieved is small (WS-based systems tend to perform 

worse when compared to SNMP for retrieving small amount of infonnation due to the processing 

overhead of the HTTP and SOAP header data). For big networks tliough, SNMP incurs more 

latency (Figure 5-7). This occurs for two reasons. The first reason is that SNMP does not offer 

facilities for task delegation through policies so that the data reüieval operations for determining 

the affected LSPs and SLSs could be performed locally. The second reason is that SNMP does not 

offer filtering capabilities. Therefore, determining the LSPs and SLSs affected from the failing 

interface, requires retiieving more data tlian required from the relevant tables in die MPLS MIBs. 

This is required so that all these data can be processed by the manager.

The latency performance of the two WS-based systems would not be better than SNMP if XPath

1.0 or 2.0 were used. As we saw in the previous chapter, XPath incurs at least 10 times more 

latency overhead compared to our custom query tool to offer bulk and selective retrieval 

capabilities to the agent. As such, if XPath was used, the latency overhead for these operations 

and in general for the WS-based event reporting system without policies would be considerably 

more than that of the SNMP trap system (Figure 5-7, Figure 5-8 WS(S) XPadi 1.0 Total, WS(S) 

XPath 2.0 Total).
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Figure 5-9 Traffic measurements for SNMP and the two WS-based approaches (900 LSPs)

Figure 5-10 Traffic measurements for SNMP (30 LSPs) and total traffic for the two WS schemes

As far as traffic overhead is concerned, 2700 bytes are saved by task delegation for both small and 

large networks when comparing the two WS-based event reporting systems (Figure 5-9). This 

reduction occurs because in the policy-like based event reporting system, the SOAP and HTTP 

header data contribute to the total overhead only once. The latter happens when sending the 

notification data along with all the data collected from each task (event data + task data). This 

may be a significant difference, because for every time an event will need to be reported, the 

policy based event reporting system will save more traffic and latency.

Therefore, it is desirable when configuring our pohcy based event reporting system to be able to 

monitor for example all the interfaces of the ingress router or any other managed device. This 

makes it more probable for an event to be produced and as such save more traffic. As such, we 

structured our policy-like document grammar in order to support processing data for event 

reporting from many underlying resources (i.e. interfaces, LSPs, PHBs). W e also make use of our 

query tool to retrieve any data from any device. These queries are compact and thus, the overhead 

incurred for retrieving information from many underlying resources is small. To do the same for 

an SNMP trap system, we would need to define all the OIDs of the state data that represent the 

underlying resources for event reporting. This will increase the traffic overhead of SNMP 

operations.

Comparing SNMP’s traffic overhead with our WS-based event reporting systems, we can observe 

that for big networks SNMP incurs a bigger overhead by 120 kilobytes. This is primarily 

attributed to the lack of filtering capabilities but also due to lack of task delegation facilities 

(Figure 5-9). For smaller networks though, SNM P’s traffic overhead is less by 2300 bytes when
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compared to the WS approach based on task delegation and policies (Figure 5-10). If more events 

are produced though, configuration traffic overhead included in tlie total traffic overhead of any 

WS-based approach (3767 bytes for configuration overhead of the policy based system) will not 

be contributing again since this happens only once for each event job. As such, SNMP’s traffic 

overhead increases and as a result our WS event reporting system with task delegation consumes 

1467 bytes less traffic than SNMP (3767-2300) for each new event produced (Figure 5-10). This 

would not be the case for tlie WS-based event reporting system without task delegation (3100 for 

configuration overhead - 2700 more overhead tlian the policy WS-based system-2300 bytes less 

overhead from SNMP = -1900 bytes, thus 1900 bytes more tiaffic overhead than SNMP for each 

new event produced).

5.6 Conclusions

In this chapter we have investigated how to make WS-based event reporting more efficient. As 

pai’t of this effort we have observed that in many monitoring scenarios, event reporting usually 

tiiggers a manager to perform a set of actions. These actions may be requests to retrieve more 

system data. This happens because in many cases such as in SNMP, events do not contain enough 

information for the manager to understand the tme nature and cause of a fault or a problem. Also, 

in many cases event reporting triggers a manager to perform changes on the network in order to 

fix faults (i.e. configuration of the network). Finding ways to perform a set of actions and tasks, 

normally performed by the network entity receiving an event, in order for these actions to be 

performed by tlie network entity producing the event in the first place, can make the notification 

process more efficient. The latter process is called task delegation.

In chapter 2 we suggested that when performing task delegation of a number of actions from one 

entity to another, a necessary requirement is not to hardwire the logic and the tasks that can be 

performed as happened in [124]. Anodier requirement mentioned in chapter 2, is that a WS-based 

event reporting system should be able to use its own conventions and mechanisms for event 

reporting but also should be able to cooperate with standaids at the edges of a domain, as 

suggested in [34].

Ill our search to achieve tlie above we came across the notion of policies. Policies effectively are 

sets of rules aiming to define under what guidelines a management system will operate. Policies 

essentially involve techniques to make management systems more autonomous or to guide the 

decision making process of a management system. As such, policies can also be used for task 

delegation where a decision is taken to delegate a number of tasks from one entity to another. As 

a result, policies would also make an excellent selection for making WS-based event reporting 

systems more efficient and more autonomous.
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Based on the fact that policies can be used for task delegation, it so happens that the WS- 

Notification standard supports the use of policies. Therefore, the WS-Notification standard 

becomes an excellent candidate for supporting the first requirement a WS-based event reporting 

system must satisfy. In addition, the WS-Notification standard supports both standard messages 

and also application specific messages to report events. As such, the WS-Notification standard 

becomes an excellent candidate for supporting the second requirement that WS event reporting 

systems must satisfy.

To prove the viability and also to explore if anything can be gained from performing task 

delegation through policies we decided to explore one of the various event reporting scenarios 

that would benefit from it. This scenario is the third QoS scenario analysed in chapter 4. For the 

needs of this scenario we have designed our own application specific grammar to manage the 

event process with policies. This grammar also reflects the network management view for 

defining policies (event-condition-action). We have also built an event service that uses the basic 

WS-Notification standard messages to manage the event process with policies. In our event 

service implementation, we use the subscription policy element of this standard to send to our 

event service (event producer) a policy-like XML document that consists of three sections 

containing information on: (a) how to collect and process general event data, (b) the conditions 

that trigger event-production and (c) subsequent actions after event production. Using this policy 

document we can delegate a set of tasks normally performed by the manager of a system to the 

agent of a system hosting our event service.

To assess the performance of our event reporting system we analysed its performance with two 

other event reporting systems: (a) A WS-based notification system where only event data are 

reported and then a set of actions triggered by the event are performed by the manager to collect 

more data (b) An SNMP trap system. The agents of the WS-based event reporting systems 

support our query tool. The WS-based event reporting system without policies also supports 

XPath 1.0 and 2,0. As such the WS-based systems are equipped with facilities for bulk and 

selective retrieval. The SNMP trap system is not.

From measurements performed with these systems we have shown that facilities for task 

delegation and scalable mechanisms for bulk and selective retrieval can lead to gains for WS- 

based event reporting systems. We have also shown that such facilities result in performance 

gains for WS in certain scenarios against SNMP in terms of (a) latency overhead, (b) traffic 

overhead and (c) the variety of tasks an event service and as a result an agent is capable of 

performing. Offering such facilities is more than plausible today since the technical capabilities of 

devices used for management are not as limited as in the past. Still the complexity of building 

such systems and providing such facilities increases.

166



Chapter 5. Efficient WIS based Event Reporting

Our work on event reporting needs also to be improved. We have to refine our policy-like 

grammar to meet closely the requirements of policy management. Currently, our event reporting 

system is manually configured through policies to perform a set of tasks dynamically at run-time. 

The essence of policy based management for event reporting though would be to design an event 

reporting system that will autonomously deduce the actions to perform. This is in our futuie plans 

and it can happen through a process called policy refinement. Furtliermore, it is in our goals to 

apply our event reporting system to other fields that need and would benefit from a more 

autonomous event service but at the same time would have more constrained resource 

requirements (i.e. policy based event reporting in ad-hoc networks, detecting node misbehaviour 

in ad-hoc networks with policies, configuration of a managed device in case of network failure 

where a network manager can not communicate with the device to overcome this failure).

Nevertheless, our event reporting system even as is, has nice application potential. Through a 

realistic scenario we have demonstiuted that it can be a scalable and viable option in certain 

situations and can have the potential of equipping event reporting systems with the ability to 

perform a variety of management tasks (configuration, data collection for monitoring), without 

impairing much the operation of such systems. DisUibuting task load through policies can become 

an important aspect towards the direction of achieving more distributed, scalable and self adaptive 

event reporting systems.
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Chapter 6

6 A Graphical User Interface for efficient 
Monitoring and Event Reporting

6.1 Introduction and Motivation
The main concern of our work so far was to minimise the footprint of WS-based management 

applications in order to handle management tasks such as monitoring and event reporting in a 

scalable manner.

As such we have presented our work on polling based monitoring. As part of this work we have 

built a WS-based monitoring system that relies on a custom framework and a data query tool, in 

order to support scalable monitoring operations. This system is part of a WS architecture we have 

introduced to support distributed polling based monitoring. We have shown that the architecture 

and the monitoring system we have introduced are scalable. This is attributed to a custom query 

tool we have built for efficient and more scalable monitoring compared to other query 

technologies such as XPath. Evaluating the performance of our WS-based monitoring framework 

(with our query tool) compared to SNMP, we have shown that the former can be used in a 

scalable manner compared to other technologies.

In the previous chapter we have also introduced our work on a scalable WS-based event reporting 

system. The latter supports mechanisms such as task delegation through policies and bulk and 

selective retrieval through our query tool to minimise the footprint of WS event reporting 

applications. Our event reporting system also supports the WS-Notification framework messages 

and operations for reporting events as well as application specific messages. We have shown that 

our event reporting system is scalable and efficient compared to another WS-based system that 

does not support policies and task delegation and uses XPath instead of our custom query tool, 

and also against a system that uses SNMP traps.

Though it is true that the ultimate goal of this project was to develop mechanisms in order to build 

an efficient WS-based framework for monitoring and event reporting our work is not complete. 

Mechanisms are required in order to provide a manager with a high level view of the functionality 

of the above systems. This will allow a manager (a) to have a view of the conceptual 

relationships between state data that are shared between WS hosted at an agent (b) to have a view 

of the state data and services an agents supports. As such we decided to build Graphical User 

Interface (GUI) offering high level functionality to a manager. This GUI represents a management
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tool on top of the polling based monitoring and event reporting systems we have introduced so 

far. The management tool is effectively a higher level manager enhancing the functionality of our 

monitoring and event reporting systems. The development of this tool consisted of two phases. 

The first was a design phase where we defined with a high level perspective the requirements of 

the GUI taking into account how the underlying systems operate. The first phase was followed by 

an implementation oriented design phase of the requirements set in the first phase. The 

implementation phase involved aspects such as coding, unit testing, integration with existing 

systems and efficiency of the proposed solutions. The end result is a working prototype that 

follows the manager-agent paradigm for distributed WS-based monitoring and event reporting.

The management tool is a standalone application. It has four main modules a data and service 

module, a monitoring module, a notification module and a connection management module. The 

data and sendee module is responsible for displaying to the end user what sort of services and 

data the agent supports. The monitoring module is responsible for creating monitoring jobs in 

order to retrieve management state data from a series of agents. The connection module is used to 

manage the parameters of the connection between a manager and an agent in order to be able to 

access the monitoring and event reporting functionahty provided by the latter.

In the next section we are going to present only the design decisions for the monitoring tool. 

Other aspects such as the design as well as the implementation phase details for each module are 

presented in the appendix. It is suggested for the user to read first the details in the appendix and 

then the rest of this chapter. At the end of this chapter we present our conclusions.

6.2 Design Decisions

This section is dedicated on the design decisions taken during the development of the 

management tool. Details such as why certain software tools and techniques were selected during 

the development of the management tool will be provided in this section on a per module basis. 

All the main design decisions concern the monitoring module.

The monitoring module is responsible for providing the user with facilities for creating, managing 

and serialising monitoring jobs. This panel is given in Figure 8-3. This panel allows a user to run 

simultaneous monitoring jobs with different granularities and parameters.

To be able to manage a collection of monitoring jobs efficiently and program different 

granularities for each job tliere are two options. The first option is using Java threads and the 

second option is tire Java Timer Class. The latter class allows us to create a Timer object. This 

object uses a single thread in order to plan when each job (represented by a Java TimerTask class 

object) is going to be executed. The alternative from using the Timer class would be to use Java
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threads for each job task. Using Java threads though could potentially cause regular lockdowns of 

the functionality of the monitoring tool if the threads are not managed appropriately. This is less 

probable with a Timer object because Java manages and schedules when a TimerTask (a job) 

inside it will run. In addition, threads are not efficient in managing the processor time slots. When 

a Thread is in sleep mode (inactive) the time slot the processor assigns to it is wasted 

unnecessarily. As such using many threads can lead to creating quite heavy applications 

especially when their volume increases. On the contrary the Timer object is more lightweight 

because it is a single thread. If sufficient jobs (TimerTask objects) are added in a timer object they 

can be run in parallel minimising the time the processor would spend in idle mode. Based on the 

above, we decided that the Java Timer class is the most appropriate class for creating and running 

monitoring jobs in parallel.

A second decision we had to take when creating monitoring jobs is how large would be the 

history of results that each job can keep in memory. If we allow this to be infinite, the manager 

could run out of memory and the management tool would become unstable. So we limited this 

number to 30 results per job. Thus the user can enter values only between 1 and 30 when selecting 

the history size in the create job panel (Figure 8-3).

A third concern for creating jobs with the monitoring module is what tools to use for XML 

validation. When a user sends a request like the one in Figure 8-1, it has to validate it against a 

schema so that the request will not fail when it reaches the agent. Depending on the method the 

user selects from the service tree to retrieve management data for each job, the create job panel 

highlights the type of queries that are allowed and dims the queries you are not allowed to use. 

Depending on the queries allowed, the monitoring tool selects the appropriate schema to check its 

validity. There are three schemas depending on whether the user wants to retrieve multiple 

instance data, single instance data or whether the user wants to be able to access all the data in a 

WS MIB. Selecting one of the methods supported by our custom framework defines also which 

schema to use for validation.

For validating an XML document against a schema we had three options (a) SAX [171] (b) DOM 

[178] (c) JAXB [177] (Java Architecture for XML Binding). SAX cannot be used by default for 

validation or for manipulation of XML data but only for displaying XML data. As such SAX is 

immediately rejected. To select between JAXB and DOM we have to look at their features. We 

have to keep in mind that our goal in selecting either of these tools is memory efficiency and also 

efficiency in validating a request message. The latter minimises latency overhead and the former 

memory overhead.

JAXB is an API that contains a set of classes and a binding compiler allowing us to represent an 

XML schema through a set of interfaces and Java classes. When a schema is represented by a set
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of classes the latter can be used in order to un-marshal or marshal an XML document. During the 

un-marshalling process an XML document is broken down into a set of Java objects. During the 

marshalling process an XML document can be created from a number of Java objects. During the 

marshalling or un-marshalling process an XML document can be validated for its conformance 

against its schema represented as previously said by a number of Java interfaces and classes. 

Since JAXB breaks down a schema or many schemas into a set of interfaces and classes only 

once, it then compiles them so that it can be used by any application for XML validation. Using 

DOM to validate an XML application against its schema would require parsing of an XML 

schema once for each application, and once when a job is resumed after being suspended. In the 

monitoring tool each job can be considered as a separate application that has to parse an XML 

schema and then compare tlie request document against tliis schema. Using DOM to do this 

makes unnecessary use of resources. On the contrary, using JAXB would require each job to use 

the same precompiled set of classes to validate an XML document. This saves time (latency 

overhead). As such JAXB is better than using DOM for validating monitoring requests.

JAXB as previously mentioned also allows an XML document to be manipulated through a set of 

Java objects. Each object can be processed or manipulated instantly simply by accessing that 

object. On the contrary using DOM to manipulate a document, would require us to go from node 

to node until finding tiie node that needs to be manipulated. This wastes a lot of memory. As such 

JAXB is also better than DOM when manipulating an XML document in terms of the memoiy it 

uses.

The only limitation of JAXB is that it works better only when the XML schemas it uses are static. 

In our case tliis is exactly what is required. Based on die above we decided to use JAXB for our 

monitoring module since is saves memory as well as latency overhead.

Having solved all the problems above using the best options available from the software we were 

aware of, a final problem had to be solved. When a user sets all the parameters for a monitoring 

job in the create job panel, pressing the “OK” button in this panel would create a monitoring job 

request which is then validated (Figure 8-3). The custom tool queries in this request need also to 

be validated for their correctness. To do this the only option available was to use the parser of our 

custom query tool. This means that validation of die queries is performed both at the manager and 

the agent. This increases latency a bit for each request but without it a monitoring request could 

fail at the agent wasting network resources. Not performing validation at the agent is also not 

possible. This is true because if a manager is not using the monitoring tool for validation of the 

queries, validation would not be performed neither at the agent nor the manager. Since our query 

tool is scalable in terms of latency and especially when compared to XPath we decided to perform 

validation at the monitoring tool and also at the agent. We believe that this is better than spending
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network resources (traffic) for queries that can not be validated and that will fail when they reach 

the agent.

When displaying monitoring jobs it is possible to view the data result history of a monitoring job 

in the form of a real time table and a real time chart. The Java API we selected for displaying 

results in the form of a chart is the JFreeChart time series API. We used this API because if 

fulfils almost all of our design requirements. JFreeChart has the following characteristics.

o It is relatively lightweight.

o It is open source.

o It is well documented as it is one of the most matured projects for charting and graphing.

o It supports most types of charts like bar charts, line charts, pie charts, time series charts 

etc.

o It can be embedded in any Java apphcation.

o It supports dynamic repainting of the chart in the case where for example the entire data 

pool changes. The latter is required when the user deselects a job and selects another.

The only problem that might exist with this API is that its drawing performance may not be very 

good if the frequency for displaying result samples is too high (i.e. frequency of change is in the 

order of milliseconds). As such we restricted the granularity of measurements in the create job 

panel to that of seconds (1 second is the minimum value that can be selected). We believe this is 

more than enough. For example in the QoS passive network measurements in chapter four, the 

granularity requirements were in the order of seconds, minutes or hours. For these measurements 

JFreeChart would satisfy any of the required granularity requirements.

A user should also be able when he/she quits the management tool to be able to view the jobs 

he/she added in a previous session. This task can be facilitated using a process called serialization. 

With seriahsation before the end user shuts down the management tool, the parameters of each 

monitoring job are saved in persistent storage. Each job and the TimerTask object associated with 

it are serialised in persistent storage by implementing the java.io.Serializable interface. Object 

serialisation through this API allows us to take an object’s state and convert it into a stream of 

data for storage. With object seriahsation, making any object persistent becomes easy as you do 

not have to write custom code to save object member variables in a file. Each object can be 

restored at a later time, even from another location. In fact, it is possible to even move an object 

from one computer to another and have the latter maintain its state. The persistent storage of the 

Serializable API is a file on the hard disk. When the management tool is started, the seriahsed 

jobs are extracted from this file and are restored in memory. Then the monitoring process for each 

job resumes, as the TimerTask object for each job is reinserted back in the Timer object.
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Serialisation is a better and more flexible option than storing data for each job in text files and 

retrieving them back again when they are required. This is why we opted for it.

6.3 Summary and Conclusions

In this chapter we have presented a Graphical User Interface (GUI) offering high level 

functionality to a manager controlling the monitoring and event reporting systems we have 

introduced in tlie previous chapters. The management tool is effectively a higher level manager 

for accessing and enhancing the functionality of our monitoring and event reporting systems. In 

this chapter we also have presented the design decisions behind this monitoring tool in order to 

support the functionality of the aforementioned systems. These decisions are critical in order for 

the proposed solutions to be appropriate enough so that the efficiency of our monitoring and event 

reporting systems is not harmed. The development of this tool consisted of two phases. The first 

phase was a design phase where we defined with a high level perspective the requirements of the 

GUI taking into account how the underlying systems operate. The second phase was the 

implementation phase where we analysed the implementation aspects of the tool. Both of these 

phases are described in the appendix.

Through our analysis in the appendix and in this chapter we can observe that the monitoring tool 

has the following characteristics:

♦ It supports a vaiiety of monitoring jobs with different granularity requirements and 

parameters. These jobs can be run simultaneously allowing the end user to perform lots of 

simultaneous monitoring tasks.

♦ It supports efficient management of monitoring jobs by providing facilities for creating, 

suspending, resuming, deleting and editing a monitoring job.

♦ It supports displaying monitoring results in a user friendly manner through a real time table 

or through a real time chart. This way the user can study the behaviour of certain 

management counters.

♦ It supports seriahsation of monitoring jobs so that the user does not have to create the same 

monitoring jobs every time he/she turns on the management tool after turning it off.

♦ It uses a timer object to manipulate a series of monitoring jobs so as to prevent application 

lock downs and also to make efficient use of the processor.

♦ It supports user friendly viewing of the services and the data the agent supports. As such the 

user can easily select the service to use to retrieve data and also wliich data to reuieve for 

monitoring,

♦ It uses JAXB for efficient vahdation of a monitoring request or an event reporting
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subscription request against its schema. This minimises latency and memory overhead 

requirements.

♦ Through the notification module the monitoring tool supports the use of the WS notification 

standard messages. It also supports receiving and displaying application specific event 

reporting messages.

♦ Through the notification module the monitoring tool supports displaying events in a user 

friendly manner through a web browser.

The management tool though also has some limitations:

♦ Currently the management tool does not support the standard messages of MUWS but only 

those of our custom framework. It is in our future objectives to support the messages 

supported by the MUWS standard. We also are in favour of supporting the message 

operations of the common management standard that will be developed for interoperability 

purposes by IBM and Microsoft, This can happen as soon as we will make the changes 

proposed in chapter three and when the schemas and the WSDL descriptions for these 

standards appear.

♦ The notification module needs to become more user-friendly. Currently the notification 

module supports event subscription based on an XML document template that provides 

information on how to complete it. In the fiiture we will provide a more interactive manner 

for creating a subscription request than using a template. This will allow the end user to 

make no mistakes when he/she completes a subscription request.

♦ Currently the monitoring tool supports only a limited number of functions for displaying 

results. The WMA function is one of them. In the future we will include functions for (a) 

finding the minimum and the maximum of the data in the result history (b) compute the 

variance and the standard deviation of the data in the result history (c) summation of a series 

of results to compute for example PHB throughput for the second QoS scenario etc. These 

functions will be provided as an option in the create job panel.

Still these limitations do no affect the functionality of our tool. It is in our future goals to amend 

these limitations. In essence though, this is a necessary tool supporting and enhancing the 

functionality of the monitoring and event reporting systems we have introduced in previous 

chapters.
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7 Conclusions and Future Work
In this final chapter we bring together the work presented in chapters 3-6 of this thesis. We 

remind to die reader tliat the main objectives of Üiis thesis were:

♦ To perform an investigation of mechanisms in order to improve the scalability and 

performance of WS for WS-based monitoring and event reporting.

♦ To build a custom framework and associated systems as part of an ai'chitecture that supports 

distiibuted and scalable monitoring and event reporting based on these mechanisms.

♦ To evaluate the scalability of the proposed mechanisms and solutions.

♦ To design and implement a Graphical User Interface to enhance the capabilities of the above 

systems.

Based on these objectives, in Section 7.1 we highlight the research contributions and discuss the 

importance of the main achievements with respect to these objectives. In Section 7.2 we identify 

directions and areas for potential future reseai'ch in this area.

7.1 Conclusions
The detailed research contributions of tliis thesis were given during the analysis and conclusions 

of chapters 3-6. In this section we re-iterate through our achievements.

With respect to the investigation of mechanisms in order to improve the scalability and 

performance of WS-based monitoring and event reporting we have identified and proposed a 

number of things.

WS are a technology with quite a substantial overhead compared to other technologies such as 

CORBA and SNMP, due to the verbosity of the XML tags describing the context of each piece of 

information. This increases the application footprint of WS applications when using them for 

management purposes substantially. Despite the big application footprint though, when using WS 

and also otlier technologies such as SNMP and CORBA for monitoring and event reporting it may 

not be necessary to retrieve tlie whole state of a device as the latter may be veiy laige. In such 

cases, mechanisms that can support information processing for bulk and selective retiieval can be 

extremely beneficial in minimising the management application footprint. Some of the previous 

technologies in the past did not provide efficient mechanisms for bulk or selective retiieval.
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SNMP for example does not support any selective retrieval mechanisms whereas its bulk retrieval 

mechanisms in some situations may prove inefficient. CORBA on the other hand can support bulk 

retrieval mechanisms (JIDM) but its filtering mechanisms may be limited and proprietary. In WS 

sub-tree filtering and XPath have been suggested as mechanisms/tools to support merging (bulk) 

and filtering (selective) operations on XML data for configuration management, whereas the latter 

has also been suggested for monitoring and event reporting of the state of network devices. There 

are various concerns though as explained in chapter two, that these mechanisms/query-tools may 

be too heavyweight under certain situations. It is thus evident from all the above that offering 

mechanisms/query-tools for bulk and selective retrieval is not a trivial task and requires careful 

consideration of the characteristics that these tools should have.

In CMIP and CMIP++ the engineering architects of these solutions acknowledge the fact that 

state data representing the underlying resources can share a number of relationships such as 

containment etc. These relationships in CMIP/CMIP++ were used in order to retrieve the state of 

a device more efficiently. In CMIP++ for example, the relationships that state data and the 

objects encompassing these data share, are used to support bulk retrieval of management 

information though scoping operations.

Programming language objects though are not the only programming construct that can be used to 

encompass management state data. WS can also encompass state data and as a result WS can also 

share relationships due to the state data they encompass. Exploiting these relationships between 

WS would allow a WS management application to perform bulk information retrieval for 

monitoring or event reporting. But there are two problems moving from relationships in CMIP++ 

to relationships in WS: Firstly having to search relationships between objects for data and having 

to search relationships between WS to do the same, presents a significant difference. In CMIP and 

CMIP++ object oriented principles such as containment, facilitated the structuring of state data in 

hierarchies with different levels of abstraction. This allowed searching for state data more 

effectively. WS offering access to management state data do not perform this by default. Secondly 

even if there was a way to build hierarchies of WS, supporting the containment relationships in 

order to build these hierarchies, requires providing collective access from the state data of one WS 

to the state data of other WS.

To solve the first problem in order to be able exploit the relationships between WS for bulk 

retrieval using a query tool, we introduced a number of rules in order to be able to structure WS in 

hierarchies (trees). As such we had to introduce three rules. The first rule is that if a WS shares a 

containment relationship with other WS (contains data from other WS as well as its own) it 

should lie a level higher in the WS hierarchy tree. The second rule is that if a WS shares any other 

type relationship apart from containment with another WS, both WS should lie on the same level 

of the hierarchy tree. The third rule is that if a WS shares both containment and other

176



Chapter 7. Conclusions and Future Work

relationships with other WS, containment is a stronger relationship when classifying a WS in the 

hierarchy tree. Based on all these rules, it is possible to form a hierarchical tree of WS to facilitate 

bulk information retrieval for monitoring. Then a query tool can be used to navigate these 

relationships to retrieve management state data from the WS hierarchy tree.

To solve the second problem in order to support the containment relationships required to build 

WS-hierarchies, we suggested tlie usage of a currently available specification to support collective 

access from the state data of a WS-Resource to the state data of other WS-Resources. The WS-SG 

specification allows us to perform such a feat combined with certain features of WSDL 2.0. We 

elaborated in chapter 3 how this is possible.

In addition to the previous, in many cases a management station requires retrieving management 

state data from many managed devices. It may not be scalable in these cases for a single manager 

to handle tlie monitoring and processing load from many managed devices because this task could 

be overwhelming for one entity. As such a WS-based query tool used in order to retrieve 

management state data should enable the manager to distribute the monitoring load to a series of 

agents where the processing of data can take place, before returning the latter to the manager. In 

essence a query tool should enable a manager to delegate the monitoring processing load to a 

series of agents.

Furthermore as it was shown in previous research, the cost of processing and encoding a great 

volume of state data stored in XML format can be large due to the verbosity of XML tags. The 

cost of encoding XML information can not be alleviated. The cost of processing XML data 

though can. As such, instead of having a query tool to process XML data, query tools can be used 

instead to process raw data. After performing processing operations on raw data, it is possible for 

a query tool to use XML tools to structure an XML response. The latter may be a better tactic in 

minimising the processing cost of WS-based monitoring and event reporting applications.

Moreover as shown by other research in [34] for event reporting applications, custom WS-based 

solutions for polling based monitoring may also be more efficient than general tools. As such it 

may be more favourable to build solutions that operate in an application specific manner for 

monitoring within a network domain and in a standard manner at tlie edges of a domain for 

increased interoperability. As such a query tool should be able to work not only as part of a 

custom framework within a network domain but also as part of a standard framework at the edges 

of that domain.

Combining all the previous, we proposed that a custom query tool should encompass aU the above 

requirements for polling based monitoring and also for event reporting. Based on this we 

proposed that a query tool for retrieving management infonnation in a bulk or selective retrieval 

manner from WS should (a) exploit the relationships state data share in order to be able retrieve
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the state of a device in a bulk manner (b) perform processing operations on raw data and not on 

XML (c) help distribute the monitoring processing load to a series of entities instead of restricting 

the latter to a single entity (d) work with lightweight frameworks that use application specific 

messages for monitoring or event reporting for performance when used within a network domain 

and with a standard framework at the edges of a domain for interoperability (e) allow selective 

retrieval of state data through information processing and filtering.

In addition, we have also observed that in many monitoring scenarios, event reporting usually 

niggers a manager to perform a set of actions. These actions may be requests to retrieve more 

system data. This occurs because in several cases as for example in SNMP, events may not 

contain enough information so that the manager understands the true nature and cause of a fault or 

a problem. Also in many event reporting scenarios, events trigger a manager to perform changes 

on the network in order to fix faults (i.e. configuration of the network). Finding ways to perform a 

set of actions and tasks, normally performed by the network entity receiving an event (manager), 

in order for these actions to be performed by the network entity producing the event (agent) in the 

first place has the potential of making the notification process more efficient. The latter process is 

called task delegation. When performing task delegation though, we highlighted that it is 

necessary not to hardwire the logic and the tasks that can be performed by the entity handling the 

delegated tasks as in [124].

As a way to perform task delegation as part of the event reporting process we proposed the use of 

policies. Network management policies represent information influencing the behaviour of a 

management system. Effectively policies are rules that can be used as the means to successfully 

achieve a goal. Policies use an event-condition-action model of definition in order to (a) ensure 

compliance, (b) define behaviour, and, (c) achieve adaptability of a system. We can observe that 

events have a lot of the characteristics that policies also embody. In the network management 

world events are viewed as a method for notifying an entity (i.e. a manager) about the state of a 

managed device or underlying resource that usually demands an action to be taken. Thus events 

comprise information about (a) the event itself, (b) the condition that produces the event, and, (c) 

the type of actions to be performed after an event is generated. All this information is consistent 

with the network management perspective of defining policies (event-condition-action). As such 

it is possible to describe the information of an event, and the processes required to generate an 

event or the actions performed when an event is generated, as part of a grammar used to describe 

the event condition action subparts of a policy.

Based on all the above we have proposed that a WS event reporting system should support task 

delegation and configuration of the event process through policies. In addition, as suggested in

[34] a WS-based event reporting system should also be able to use its own conventions and
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messages for event reporting within a network domain but also should be able to use standard 

messages at the edges of that domain.

With respect to the above suggestions and the need to build a custom framework and associated 

systems as part of an architecture that supports distributed and efficient monitoring and event 

reporting, we have achieved the following;

♦ We have built and deployed a custom queiy tool to retrieve management information 

representing the state of a device for polling based monitoring and event reporting. The tool 

exploits the relationships that exist between state data hosted in WS to facilitate bulk 

retrieval from the latter through a series o f special queries called Service Selection Queries 

(SS_Queries). The tool also supports selective retrieval capabilities in order to retrieve the 

state of a device more efficiently through a series of queries called data queries. This tool 

was designed to operate on raw data in order to minimise the processing overhead cost, and it 

has several other optimisations to minimise its footprint.

♦ We have designed and built a custom framework supporting distributed monitoring and task 

delegation as part of a distributed monitoring architecture. This architecture uses the 

SS_Queries of our query tool and the concept of a callback address mechanism boiTowed 

from event reporting to support distributed polling based monitoring. Through the use of 

SS_Queries, our architecture gives a complete view of management services through ONE 

agent by supporting federation of management requests. As we discussed in the end of 

chapter 3 this can become an alternative solution for distiibuted monitoring under certain 

conditions. Still as discussed in chapter 3 this solution has some limitations.

♦ We have shown how to convert our query tool and our architecture to support distributed 

monitoring using messages and concepts from standardised solutions managing state (i.e. the 

MUWS standard). We have integrated MUWS and our custom queiy tool in [180]. In [180] 

we have shown using the third QoS scenario that MUWS and our custom framework using 

our custom query tool can be potentially used within a network domain for increased 

perfomiance. At the same time in [180] we also suggest the usage of XPath and MUWS at 

the edges of a network for increased interoperability recognising that XPath is a standard and 

thus more appropriate for this task (although this solution is shown not to be as scalable as 

using MUWS with our custom query tool).

♦ We have built a policy grammar in order to perform task delegation through policies for 

event reporting.
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♦ We used this grammar as part of the WS-Notification standard subscription messages and 

operations so as to be able to support standardised as well application specific messages for 

event reporting.

♦ We have built an event service supporting task delegation through policies, and our policy 

grammar and bulk and selective retrieval through our query tool. Our query tool enables us to 

collect the appropriate information for event reporting. Our policy grammar allows us to 

delegate a number of varied complexity tasks from a manager to an agent. This way our 

event seivice

o Can be more flexible in the range o f tasks it can perform.

o Becomes capable o f collecting more information in order to help the manager in

pinpointing the root o f a problem reported inside an event.

o Can minimise under certain situations the footprint of event reporting operations.

o Has the potential of promoting the use of more autonomous solutions in

managing the event reporting process limiting the supervision of a manager.

o Adds as shown extra complexity in WS-based event reporting systems.

With respect to evaluating the scalability and efficiency of the proposed mechanisms, solutions 

and frameworks, we conducted a series of tests based on measurement scenarios we come across 

in QoS networks over MPLS enabled devices.

Initially we evaluated the performance of our query tool with XPath implementations of version

1.0 and 2.0. When testing the efficiency of our query tool we have shown as expected due to its 

optimisations that it is more scalable compared to XPath in terms of latency and memory 

overhead especially when the volume of management information increases. In addition our query 

tool is also more efficient compared to XPath in terms of traffic overhead.

Based on the fact that our tool is more scalable than XPath implementations we decided to use it 

in evaluating the performance of our WS based custom framework for polling based monitoring 

against another management protocol, SNMP. We tested the performance of these technologies 

for scenarios where processing, filtering and bulk retrieval of state data is required. Through our 

tests we have shown that our custom framework can be more scalable than SNMP in some 

situations and generally exhibits good performance compared to SNMP in other situtations. This 

might not be the case if XPath was used instead of our query tool. Our tests have also shown, that 

if SNMP was used to retrieve management information in a specific order (i.e. on a per PHB 

basis) or in scenarios where filtering is required, which is the case for several monitoring 

scenarios, the performance of the latter might not be better as expected, even if  the distributed 

management extensions of SNMP would be used. Based on the above we believe that our custom
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framework using our query tool can efficiently be used for WS polling based monitoring 

especially if  the newest advancements in parsing/serialization/binarization of XML are used (as 

shown in [180]).

In order to show that a WS-based event reporting using policies and our query tool for bulk and 

selective can be more efficient, we compared its performance against two other systems. One of 

the two systems was also a WS-based event reporting system supporting the use of the WS- 

Notification standard messages. This system though did not support policies, and supports bulk 

and selective retrieval either through our queiy tool or XPath version 1.0 and 2.0. The other 

system we investigated was a system based on SNMP traps that does not support either policies or 

filtering mechanisms. Testing the performance of our event reporting system we have shown it 

can perform equally good to SNMP traps when the volume of management data is small. For a 

small volume of data, our event reporting system performs equally well to the other WS based 

system in tenus of latency and better in tenns of traffic overhead. For a large volume of 

infonnation, our event reporting system saves latency and traffic overhead compared to the WS 

based system without policies. When the WS based system without policies uses XPath, its 

latency is worse in comparison to either our event reporting system or SNMP traps. When testing 

our event reporting system with SNMP when a large volume of data needs to be processed, the 

perfomiance of our system is better than that of SNMP, both in ternis of latency and also traffic 

overhead. This is not the case for the second WS-based event reporting system without policies 

when the latter uses XPath. With all the above we have shown that our event reporting system 

supporting the use of policies for task delegation and our queiy tool for bulk and selective 

retrieval can be used efficiently for WS-based event reporting. At the same time, our event 

reporting system uses the WS notification standard to be able to send application specific 

messages within a network domain and WS Notification standard messages at the edges of a 

domain. This as suggested in [34] is an efficient way to increase perfomiance of WS-based event 

reporting even more and still preseive the interoperability of WS based event reporting solutions.

With respect to designing and implementing a Graphical User Interface to enhance the 

capabilities of oui' monitoring and event reporting systems we have designed and implemented a 

high level manager tool supporting:

♦ Simultaneous running of a variety of monitoring jobs with different granularity requirements 

and parameters.

♦ Efficient management of monitoring jobs by providing facilities for creating, suspending, 

resuming, deleting and editing a monitoring job.

♦ Displaying monitoring results in a user friendly manner through a real time table or through a 

real time chart. This way our graphical management tool enables the end user to study the
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behaviour of certain management counters more effectively.

♦ Serialisation of monitoring jobs so that the user does not have to create the same monitoring 

jobs every time he turns on the management tool after turning it off.

♦ User friendly viewing of the services, the conceptual relationships between them and the data 

a management agent supports. As such the user can easily select the service to use to retrieve 

data and also which data to retrieve for monitoring.

♦ Efficient validation of a monitoring request or an event reporting subscription request against 

its schema through JAXB. The latter minimises latency and memory overhead.

♦ Creation of subscription requests though policies for task delegation.

♦ Receiving and displaying the history of standard and application specific event reporting 

messages in a user friendly manner through a web browser.

7.2 Future Work
There exist certain directions and areas towards which the work presented in this thesis can be

extended.

♦ Tackle the modelling aspects of relationships between state data and as a result of WS and 

WS-Resources encompassing these data. This is also an important step in using these 

relationships for effective monitoring and event reporting apart from exploiting these 

relationships.

♦ Expand the capabilities of our query tool so that it can be used not only for selecting data for 

monitoring and even reporting but also for altering data. This is an essential step in tackling 

in the future also aspects of configuration management

♦ We have to refine and extend our policy-like grammar to meet closely the requirements of 

policy management. Currently our event reporting system is manually configured through 

policies to perform a set of tasks dynamically at run-time. The essence of policy-based 

management for event reporting though would be to design an event reporting system that 

will autonomously deduce the actions to perform within a solution space. The latter requires 

the refinement of our policy like grammar.
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Appendix

8 Appendix

8.1 Design Phase Details of the Monitoring Tool

The management tool should enhance the work performed on our WS-based monitoring and event 

reporting systems. As such, the tool should act as a manager offering a high level view of the 

monitoring and event reporting functionality supported by the agent. As a result of this, the tool 

should provide a simple and user friendly interface to the end user in order for the latter to be able 

(a) to send monitoring requests and receive responses on these requests or in other words create 

and manage a number of monitoring jobs (b) to manage our event service through policies for task 

delegation. In general the requirements that need to be addressed by this tool are the following:

♦ The end user should able to define monitoring jobs to access particular data from the agent.

♦ The end user should be able to register for an event and also be able to receive events.

♦ Any messages exchanged between the monitoring tool and the agent systems (event 

reporting and monitoring systems) should be exchanged using SOAP. The syntax used in 

these messages should conform to the syntax used for the operations of our custom 

framework for monitoring, and to the WS notification standard for event reporting. The 

monitoring tool should also accept and be able to process event messages with application 

specific syntax. It is in our future objectives to support the messages used for the operations 

supported by the MUWS standard. This can happen as soon as we will make the changes 

proposed in chapter three to our monitoring system. These steps are important for 

interoperability and require a number of software changes.

♦ Before sending any request for event subscription or monitoring, the SOAP message should 

be validated by the management tool. This is necessary so that requests do not fail due to bad 

syntax when they reach the agent.

♦ The monitoring tool should depict the information and the services supported at the agent in 

the form of a tree. This way the manager can know what type of data are supported and what 

type of services he/she can use to retrieve these data.

♦ The end user should be able to create monitoring and event reporting jobs. The end user 

should be able to see the results from these jobs whether these are values on state data from 

monitoring or events generated from event reporting. Monitoring and event reporting results 

from relevant jobs should be displayed in a user friendly manner.

The management tool is a Java application that should equip an end user with a simple and user 
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friendly interface to create monitoring jobs and to subscribe and receive notifications. Its main 

components are a monitoring module, a notification module, a connection module and a data and 

services view module. We elaborate on the design phase requirements of these modules in the 

next sections.

8.1.1 Data and Service View Module

This module will display details about the infonuation that can be accessed from the WS-MIBs 

(data type, status i.e. accessible or not accessible data) hosted at the agent as WS interfaces. 

Examples of such MIBs are the traffic engineering MIBs used for all the scenarios we have 

examined in the previous chapters (LSR MIB, tlie FEC-to-NHLFE MIB and the interface group 

from the RFC 1213 MIB). This module will also need to display the operations offered by each 

WS interface. Using this module, the end user should be able to view

♦ What types of operations are supported by the WS hosted at tlie agent.

♦ What types of data are supported for retrieval at the agent.

All this information should be displayed in a user friendly manner. As such

♦ The data information and service information should be displayed in the form of a tree for 

easy viewing by tlie end user.

♦ A separate tree should be used to display the services supported and a separate tree should be 

used for the data types each WS interface supports.

All this information can help the end user in selecting the type of state data he wants to retrieve 

for monitoring and event subscription purposes and also the services available to use for these 

purposes. Eventually the data and service view module should display the relationships between 

WS and state data for effective retrieval of management data. A preview of the data and service 

view module and how it looks like can be seen in Figure 8-2. Implementation details are provided 

in the implementation phase section.

8.1.2 Monitoring Module

The Monitoring module should enable the end user (manager) to create a monitoring request 

using our custom tool queries. The monitoring module should be able to handle the responses to 

these requests and also display the results returned as pai't of a response to a request. These three 

requirements represent the essence of a monitoring job. For each monitoring job the following are 

required:

♦ Each job should use the operations supported by our custom framework.

♦ Each job should use SOAP messaging for requests and responses.
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♦ Before sending a request to an agent, the monitoring module is responsible for validating the 

correct syntax of the request contained in a SOAP message (through an XML Schema).

♦ The monitoring tool should also check the correct syntax of the custom tool queries included 

in the request.

♦ The monitoring module should consist of two panels facilitating this process. The first panel 

is a create job panel. A preview of this panel is given in Figure 8-3. This panel should allow 

the end user to create monitoring requests as part of a series of monitoring jobs. The second 

panel is a display result panel where the results of each monitoring job should be displayed. 

A preview of this panel can be seen in Figure 8-4.

♦ Depending on the service, the operation, the type of information the user selects from the 

data and the service view module, and the queries he/she will form using the create job panel, 

a request should be formed such as that in Figure 8-1 containing custom tool queries.

<?xml version="1.0" encoding="UTF-8 " standalone="yes"?>
<soapenv;Envelope 

I xmlns;soapenv="http://schemas.xmlscap.org/soap/envelope/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

■ xmlns:xsi=htq)://www. w3.org/200l/XMLSchema-instance 
xmins:qrt=http://127.33.44.2/QueryToclSchema3”>
<soapenv:Body>

<inO xmlns="um:AgentService" 
xmlns:ns l="http://xml.apache.org/xml-soap" 
xsi:type="ns 1 :Document"> 

ciequest xmlns="">
<qrt:SS_Query>{htq)://MplsLsrMibDoc,NULL,NULL,NULL}
</qrt:SS_Query>
<qrt:MID_Queiy>

{mpIslnSegmentInterface[],mplsOutSegmentInterface[]}
</qit MID_Query>
<qrt:FD_Query>{ value=32,value=31 }</<pt:FD_Query>

</request>
</inO>

</soapenv:Body>
</soapenv :En velope>

Figure 8-1 Monitoring request to the agent WS

This request message should be created using the functionality of the monitoring module and of 

the monitoring tool that should support the following features in managing monitoring jobs:

♦ Creation o f Monitoring Jobs: The main function of this feature would be to assist the end 

user in creating monitor jobs. Each monitoring job should be responsible for dispatching 

monitoring requests to the agent at regular intervals. Each monitoring job should have (a) a 

name (b) a method that will be invoked with it (c) a granularity period (d) a smoothing

2 0 0

http://schemas.xmlscap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema
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window size (for averaging) and (e) a number of custom tool queries that will be dispatched 

with it to retrieve state data. All this information should be provided in the create job panel.

♦ Viewing o f Monitoring Jobs: The monitoring jobs and their results should be displayed in the 

result panel in the form of a tree. When a user selects a job in the result panel, its result data 

should be displayed in the form of (a) real time table and/or (b) a real time chart. The size of 

the results history displayed in these two forms should be provided by the end user for each 

job. The user should provide the result history size as part of a parameter in the create job 

panel.

♦ Managing o f Monitoring Jobs: Each job in the result panel should provide the means to 

manage it by the use of a pop up menu (Figure 8-5). The pop up menu should allow the 

following options to manage a monitoring job:

o Suspend Job: This option should suspend the selected job. Once a monitor job is 

suspended, the management tool should not dispatch further monitoring requests to the 

agent for tliis job.

o Resume Job: This option should resume only suspended monitoring jobs or otherwise do 

nothing. When a suspended job is resumed monitoring requests are sent every granularity 

period to the agent.

o Delete Job: This option should remove a job from memory and from being executed 

again. This operation should also delete the parameters of a job kept in volatile storage by 

the monitoring tool.

o Edit Job: This option should help the user in editing the paiameters of an existing job. 

When a user selects this option, the create job panel should appeal' to amend any of the 

parameters included in a job. When the create job panel appeals the job should be 

temporarily suspended. Once the edited job is saved, the job should resume with the new 

paiameters.

♦ Serialising o f Monitoring Jobs: When a user exits the monitoring tool, all the monitoring 

jobs and their parameters that are active or suspended should be stored in pennanent storage. 

When the application comes up again, the monitoring tool should load these parameters and 

start dispatching monitoring requests for each job that was not in suspend mode based on its 

parameters. This functionality saves the end user from creating tlie same monitoring jobs 

eveiy time the management tool is turned off and then on again.

The implementation details of tlie monitoring module aie given in the implementation phase

section. A preview of the monitoring module is given in Figure 8 -6 .
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8.1.2 Notification Module

The Notification module should be responsible for event registration through policies using SOAP 

messaging. The general requirements of the notification module are:

♦ Provide support to the WS notification standard messages.

♦ Support validation of a subscription request message through an XML schema before 

sending it to the event service at the agent.

♦ Support receiving event reports, and display them in the form of a tree in an events received 

panel.

♦ Support the end user in structuring and sending subscription requests using our policy like 

grammar.

The notification module should support the following functionality:

♦ Event Subscription: The main function of this feature is to assist the end user in subscribing 

for events with the event service deployed at the agent. For event subscription a template 

should be provided with our policy grammar. Before sending any subscription request, the 

end user’s request should be validated with an XML schema. The end user should be able to 

(a) load the subscription template (b) save a subscription request for later use (c) load a 

subscription request that has been saved (d) examine the XML schema of the subscription 

request to understand what is the appropriate syntax for a request. All this functionality 

should be supported by a panel. A preview of the notification subscription messaging panel 

is given in Figure 8-7. It is in our future intensions to make the notification module for 

subscription more user friendly by supporting a more interactive and dynamic manner of 

creating a subscription request than using a template. This will allow the end user to make no 

mistakes when he/she is creating subscription requests.

♦ Viewing o f Events Received: The user should be able to view all the events received. A 

separate panel should assist in this respect. This panel will display events in the form of a 

tree. When the user clicks on a particular event the latter should be displayed as an HTML 

document in a web browser. Figure 8 - 8  is a preview of the events received panel.

Figure 8-9 is a preview of an integrated view of the notification module. It consists of the data 

and service module, the notification subscription messaging panel and the events received panel.

8.1.3 Connection Management Module

Every time the end user needs to create a subscription in order to receive notifications or send a 

request for data as part of a monitoring job, a connection should be created. The user should be
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able to specify the connection details of the agent on which he/she wants to connect. Details such 

as (a) the IP address of the connection (b) the port of the connection and (c) the folder path at 

which to connect on the web server hosting the agent should be provided / typed by the user. 

These details should be given using a dialog box provided by the file menu of tlie monitoring 

module. If these details are not provided, the monitoring tool should assume default values. A 

preview of the dialog box is given in Figure 8-10.

8.2 Implementation Phase Details of the Monitoring Tool

This section is dedicated on the implementation details and aspects of the management tool. 

Details will be provided in this section on a per module basis.

8.2.1 Data and Service VievK module

The data and service view module as mentioned previously describes tlie services and the 

methods that an agent exposes by using a tree representation. In order to acquire the service 

information the agent supports, the monitoring tool queries the registiy of the web server hosting 

the agent (the Tomcat seiver is used). When this happens it retrieves the WSDL files of each 

service. From these files the monitoring tool extracts the IP at which each seiwice is deployed, the 

name of the semce and the methods it supports. After all this infoimation is extracted, a tree is 

formed. The root node of this tiee is called ^"Setyices". The children of tliis node are the names of 

the services supported. The leaf nodes of this tree aie the methods each seiwice supports (Figure 

8 - 2  left).

The data and services view module also contains a tree for displaying the management 

information tliat the agent offers. The monitoring tool acquires this knowledge by inquiring a 

getTree method exposed by each WS interface the agent hosts. In order to populate the data tree, 

the end user has to click on one of the WS in tlie services tree (Figure 8-2 right). This 

automatically invokes the getTree method of tliat service. The “getTree” method offered by each 

WS is not displayed in the service tree because the user should not be able to use it. Only the 

internal processes of the monitoring module are allowed to use this method. If the getTree method 

of the agent is invoked (the agent is also a WS) a view of the relationships between WS and state 

data can be acquired. This can facilitate as shown in chapter three, the effective retrieval of 

management data (in a bulk manner). For other WS except the agent each node in the data tree, 

represents information the agent can retiieve from managed devices and also specifies whether it 

is accessible data or not. This is necessaiy for SNMP information models because in an SNMP 

information tree only leaf nodes provide accessible nodes. Leaf nodes of this tree represent single 

instance objects. Other nodes represent multiple instance objects (Figure 8-2 right).
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Figure 8-2 Data and Service View module

8.2.2 Monitoring Module

This module is responsible for providing the user with facilities for creating, managing and 

serialising monitoring jobs.

Creating Monitor Jobs: This facility is provided by the create job panel. This panel is displayed 

in Figure 8-3. In this panel the user is allowed to

♦ Enter a name for each job.

♦ Type or select the service to invoke.

♦ Type or select the operation name to be invoked.

♦ Type the queries which he/she is interested in enquiring.

♦ Select the granularity period for each job.

♦ Select the smoothing window for applying the Weighted Moving Average algorithm for

averaging the displayed results (Figure 8-3). It is in our goals in the future to provide a series 

of other functions apart from the Weighted Moving Average (WMA) function. The user 

would be able to select among these functions to enforce statistical operations on the data 

results collected as part of a monitoring job. Currently the user can use implicitly the WMA 

function when he/she selects a window size other than 1 or 0. If the user selects the window 

size to be 1 the result of the subtraction between two consecutive counter values will be 

displayed. If the user selects the window size to be 0, the actual counter value collected is 

displayed.
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Figure 8-3 : The Create Job Panel of the monitoring module

Viewing Monitors Jobs: Monitoring jobs are displayed in the form of a tree in the result panel 

(Figure 8-4). The root node of the tree is a node titled ''Monitor jobs”. Monitoring jobs are 

displayed as children of this node. The results o f each monitoring job are added as children of a 

monitoring job node (results history). The user can view the result history of a monitoring job in 

the following forms.

♦ Real time table: This table displays the time that a result was collected and a value for the 

result. The table gets updated as and when new monitoring job results arrive depending on the 

granularity period. The maximum number of rows in this table is equal to the volume of the 

result history.

♦ Real time Chart: The user can select to view the result history in a time series chart. This 

chart is displayed under the real time table. This chart can help the end user in studying the 

behaviour of certain network counters.
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Figure 8-4 : The Result Panel of the monitoring module

Manage Monitoring Jobs: In order for the end user to manage monitoring jobs he/she should 

right click on a monitoring job in the result panel for a pop menu to be displayed. The pop up 

menu provides four options which are the following:

♦ Suspend Job: When a user selects the suspend option from the popup menu, the Timer Task 

of the selected job is cancelled by calling the cancel method of a TimeTask object (job) 

explicitly from the main class of the monitoring tool. This kills the job immediately 

terminating even a request from this job that is in progress. The job parameters are still kept 

in memory (inside a job vector maintained by the monitoring tool) in case the suspended job 

is resumed later but requests are not sent to the agent.

♦ Resume Job: If and only if a job is previously suspended by the user, selecting this option 

will cause the monitoring tool to restart this job and start sending monitoring request 

messages to the agent. In order for this to happen the monitoring tool maintains a vector 

containing all the parameters associated with each job. When the end user selects a job to be 

resumed a new TimerTask object is created for this job and is reinserted back in the timer 

object.
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Delete Job: This option deletes a job from memory. This necessitates that the TimerTask 

object parameters associated with this job should be extracted from the job vector (volatile 

storage of the parameters of each monitoring job). Also the TimerTask associated with this 

job is cancelled. Then the purge method for this task is called for the timer object by the 

main class of the monitoring tool so that the garbage collector reclaims its memory.

Edit Job: This option loads the parameters of each job on the create job monitoring panel by 

accessing these parameters from the job vector. The user is enabled to change any parameter 

of a job. While this process occurs, the TimerTask object associated with this job is retracted 

from the timer object. When the user presses the OK button in the create job panel a new 

TimerTask is created for this job and is inserted back in the Timer object.

3  1 ^  Monitor Jobs 
3  first Job

- ♦  Tue Aug M 09
♦  Tue Aug 14 09 

- #  Tue Aug 14 09
♦  Tue Aug 14 09 

" $  Tue Aug 14 09
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3  1 ^  thirdJob

16:30 BST 2007 
16:35 BST 2007 
16:40 BST 2007 
16:45 BST 2007 
16:50 BST 2007 
16:55 BST 2007 
17:00 BST 2007

Delete

Suspend
Resume

Figure 8-5 : Pop Up Menu to manage monitoring jobs

Serialising Monitor Jobs: Before the end user shuts down the management tool, the parameters 

of each monitoring job are saved in persistent storage. Each job and the TimerTask object 

associated with it are serialised in persistent storage by implementing the java.io.Serializable 

interface. Object serialisation through this API allows us to take an object's state and convert it 

into a stream of data for persistent storage. The persistent storage of the Serializable API is a file 

on the hard disk. When the management tool is started, the serialised jobs are extracted from this 

file and are restored in memory. Then the monitoring process for each job resumes, as the 

TimerTask object for each job is reinserted back in the Timer object.

Figure 8 - 6  shows the integrated view of the monitoring module. As seen from the figure, there are 

four panels in the monitoring module. The leftmost panel is the data and services module model 

view panel. The second panel is the create job panel also enabling us to edit the parameters of a
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job. The third panel is the result panel. Inside the result panel there is another one allowing the 

user to display results in the form of a chart or table.

t4 0«s34tlfl5TaC 
14 0*S4t23KTaoe

140t:25el7i5TaC 
14 0fc29s22B5TaX l4Q#a6?a5TaC *4o#a5mKT«
140fc2»:4785TaC
*40&2&«KT»C:4Q#dM7#ST«C:4p#ak02«raK

rw#wti4W;ila^.j

m m
rutAu*r
rûMmt4fl»ï7Â-. rWiwfi4«U[7:4«,J
nmAw#Wmi7&..tmâutlAmtJA.:
fw»##i4mt#A.ru»*if'l4ci:lè:0.,.'

MofritorVaiiM

o».f74o mmm

nv(tln8*Qm«ntnMc*K)00'0000|
mei|»i8«gmwieiHert»cepi02-0002|
n̂t0u0*flm«nlnl«rt»c«t003>0003|
mpis0ue«gnwenieftice(004-0004l

Figure 8-6 : Integrated view of the monitoring module of the management tool

8.2.3 Notification Module

The notification module enables an end user to subscribe for events and receive events from our 

event service using WS Notification standard messages. This module supports the following 

functionality:

Event Subscription: The user is provided with a template for creating a new WS subscription 

message in order to start receiving events (Figure 8-7 Load Template button). This template 

provides information to the user on how to use each XML element in the subscription message 

even for the elements of the policy like document. The user is given the option to write a new 

subscription message using the template or is given the option of an empty message. The user can 

also save a subscription request message in memory (Figure 8-7 Save button) and recall this 

message at a latter time (Figure 8-7 Load Button). The user can also see the XML schema of the 

subscription message to understand what types of options are allowed in every element of the 

document template (Figure 8-7 “Open XSD” button). Initially this module was kept simple. In the 

future, more user friendly features will be added so that a more interactive and dynamic creation 

of a subscription request than using a template will be supported.
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Figure 8-7 : Notification subscription messaging panel
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Figure 8-8 : Event received tree

Vieiv Events Received: The events received by the event service at the agent are displayed in the 

form of a tree as that in Figure 8 -8 . The root node of this tree is called “Events". When the 

monitoring tool receives an event it looks into it in order to find the event name/topic. In Figure 

8 - 8  we can see four events produced for the third QoS scenario in chapter four. The user can view
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the particular details of an event by clicking on its corresponding node in the event tree. This will 

trigger the default web browser to open and the details of the event to be displayed as an HTML 

document.

Figure 8-9 shows the integrated view of the notification module. The notification nodule consists 

of three panels. The leftmost panel is the data and service module. It displays information about 

the services and the state data exposed at the agent. The middle panel is the notification 

subscription messaging panel. The rightmost panel displays the events received tree.
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Figure 8-9 : Integrated view of the management notification module

8.2.4 Connection Management module

Every time the end user needs to create a subscription to receive notifications or to add a 

monitoring job, a connection needs to be created. The user can provide details about the 

connection using the connection management module. The user can access this module by 

clicking the “File->New" Menu option. By selecting this option a dialog box appears enabling the 

user to specify details about the connection. The user can enter (a) the name of the connection (b) 

the IP address of the connection (c) the port number of the connection and (d) the path to the web 

server where the agent and the services such as the event service are hosted. If the user does not 

specify connection details the default options are used. The default address, port and folder path 

of the agent, are localhost, 8080 and “/axis/services”. The connection management module dialog 

box is given in Figure 8-10.
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Figure 8-10 : Connection Dialog Box
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