
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Distributed Software Router Management / Debele, FIKRU GETACHEW. - STAMPA. - (2012).
Original

Distributed Software Router Management

Publisher:

Published
DOI:10.6092/polito/porto/2506278

Terms of use:
Altro tipo di accesso

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2506278 since:

Politecnico di Torino

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234896170?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

POLITECNICO DI TORINO

SCUOLA DI DOTTORATO
Dottorato in Ingegneria Elettronica e delle Comunicazioni

XXIV ciclo

Tesi di Dottorato

Distributed Software Router
Management

Fikru Getachew Debele

Tutore Coordinatore del corso di dottorato
prof. Andrea Bianco prof. Ivo Montrosset

February 28, 2013

Graduation committee:

Chairman:
Prof Carla Raffaelli (University of Bologna, Italy)

Members:
Prof. Emilio Leonardi (Politecnico di Torino, Italy)
Prof. Marco Gribaudo (Politecnico di Milano, Italy)

Internal committe:
Riccardo Scopigno (Istituto Superiore Mario Boella research institute, Italy)
Prof. Federica Cappelluti (Politecnico di Torino, Italy)
Prof. Maurizio M. Munaf (Politecnico di Torino, Italy)

Distributed Software Router Management
by

Fikru Getachew Debele

Submitted to the Department of Electronics and Telecommunication
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the

Politecnico di Torino

February 28, 2013
Copyright c© Fikru Getachew Debele

All rights reserved

Acknowledgements

Dear God, thank you so much that you have been walking along my side during the
tough times I passed through during this research work, and indeed, throughout my
life.

One of the joys of completion is to look over the journey past and remember all
who have been with me along this long but fulfilling road.

First and foremost, I would like to express my heartfelt gratitude to Prof.
Andrea Bianco for his constant and professional guidance. You showed me how
to do research and your support uphold me to finish my study. I am also grateful
to all other people at TLC that I have learned to know over the years and who have
let me take part of their professional experience during seminars and discussions.

I have been very fortunate to get involved in a research group that beleives in
teamwork. I want therefore to thank all the people I have collaborated with in these
years. Among them, special thanks go to Robert Birke, who really took the time to
familiarize with my research and come up with new and inspiring research directions
during early days of my Ph.D. study. Many thanks also to Luca Giraudo and
Nanfang Li with whom I happily collaborate during some of my research activities.

I gratefully acknowledge the funding sources that made my Ph.D. work possible.
My research work was supported by the Italian Government for the first 3 years and
then by SFINGI project.

Last, but not least, I would like to thank my family for their love and under-
standing. More than ever, I would like to express my love to the most important
persons in my life: my lovely wife, Tigist Seyum, and my wonderful child Yegeta
Fikru.

Abstract

With the stunning success of the Internet, information and communication tech-
nologies diffused increasingly attracting more uses to join the the Internet arsenal
which in turn accelerates the traffic growth. This growth rate does not seem to slow
down in near future. Networking devices support these traffic growth by offering an
ever increasing transmission and switching speed, mostly due to the technological
advancement of microelectronics granted by Moore’s Law. However, the comparable
growth rate of the Internet and electronic devices suggest that capacity of systems
will become a crucial factor in the years ahead.

Besides the growth rate challenge that electronic devices face with respect to traf-
fic growth, networking devices have always been characterized by the development
of proprietary architectures. This means that incompatible equipment and architec-
tures, especially in terms of configuration and management procedures. The major
drawback of such industrial practice, however, is that the devices lack flexibility and
programmability which is one of the source of ossification for today’s Internet.

Thus scaling or modifying networking devices, particularly routers, for a de-
sired function requires a flexible and programmable devices. Software routers (SRs)
based on personal computers (PCs) are among these devices that satisfy the flexi-
bility and programmability criteria. Furthermore, the availability of large number
of open-source software for networking applications both for data as well as con-
trol plane and the low cost PCs driven by PC-market economy scale make software
routers appealing alternative to expensive proprietary networking devices. That is,
while software routers have the advantage of being flexible, programmable and low
cost, proprietary networking equipments are usually expensive, difficult to extend,
program, or otherwise experiment with because they rely on specialized and closed
hardware and software.

Despite their advantages, however, software routers are not without limitation.
The objections to software routers include limited performance, scalability problems
and lack of advanced functionality. These limitations arose from the fact that a single
server limited by PCI bus width and CPU is given a responsibility to process large
amount of packets. Offloading some packet processing tasks performed by the CPU
to other processors, such as GPUs of the same PC or external CPUs, is a viable
approach to overcome some of these limitations.

In line with this, a distributed Multi-Stage Software Router (MSSR) architec-
ture has been proposed in order to overcome both the performance and scalability
issues of single PC based software routers. The architecture has three stages: i)
a front-end layer-2 load balancers (LBs), open-software or open-hardware based,
that act as interfaces to the external networks and distribute IP packets to ii) back-
end personal computers (BEPCs), also named back-end routers in this thesis, that

provide IP routing functionality, and iii) an interconnection network, based on Eth-
ernet switches, that connects the two stages. Performance scaling of the architecture
is achieved by increasing the redundancy of the routing functionality stage where
multiple servers are given a coordinated task of routing packets. The scalability
problem related to number of interfaces per PC is also tackled in MSSR by bundling
two or more PCs’ interfaces through a switch at the front-end stage. The overall
architecture is controlled and managed by a control entity named Virtual Control
Processor (virtualCP), which runs on a selected back-end router, through a DIST
protocol. This entity is also responsible to hide the internal details of the multistage
software router architecture such that the whole architecture appear to external
network devices as a single device.

However, building a flexible and scalable high-performance MSSR architecture
requires large number of independently, but coordinately, running internal compo-
nents. As the number of internal devices increase so does the architecture control
and management complexity. In addition, redundant components to scale perfor-
mance means power wastage at low loads. These challenges have to be addressed
in making the multistage software router a functional and competent network de-
vice. Consequently, the contribution of this thesis is to develop an MSSR centralized
management system that deals with these challenges. The management system has
two broadly classified sub-systems:

I) power management: a module responsible to address the energy inefficiency in
multistage software router architecture

II) unified information management: a module responsible to create a unified man-
agement information base such that the distributed multistage router architec-
ture appears as a single device to external network from management informa-
tion perspective.

The distributed multistage router power management module tries to minimize
the energy consumption of the architecture by resizing the architecture to the traffic
demand. During low load periods only few components, especially that of routing
functionality stage, are required to readily give a service. Thus it is wise to device
a mechanism that puts idle components to low power mode to save energy during
low load periods. In this thesis an optimal and two heuristic algorithms, namely
on-line and off-line, are proposed to adapt the architecture to an input load demand.
We demonstrate that the optimal algorithm, besides having scalability issue, is an
off-line approach that introduce service disruption and delay during the architecture
reconfiguration period. In solving these issues, heuristic solutions are proposed and
their performance is measured against the optimal solution. Results show that the
algorithms fairly approximate the optimal solution and use of these algorithms save
up to 57.44% of the total architecture energy consumption during low load periods.

The on-line algorithms are superior among the heuristic solutions as it has the
advantage of being less disruptive and has minimal service delay.

Furthermore, the thesis shows that the proposed algorithms will be more efficient
if the architecture is designed keeping in mind energy as one of the design parameter.
In achieving this goal three different approaches to design an MSSR architecture are
proposed and their energy saving efficient is evaluated both with respect to the
optimal solution and other similar cluster design approaches.

The multistage software router is unique from a single device as it is composed of
independently running components. This means that the MSSR management infor-
mation is distributed in the architecture since individual components register their
own management information. It is said, however, that the MSSR internal devices
work cooperatively to appear as a single network device to the external network.
The MSSR architecture, as a single device, therefore requires its own management
information base which is built from the management information bases dispersed
among internal components. This thesis proposes a mechanism to collect and or-
ganize this distributed management information and create a single management
information base representing the whole architecture. Accordingly existing SNMP
management communication model has been modified to fit to distributed multi-
stage router architecture and a possible management architecture is proposed. In
compiling the management information, different schemes has been adopted to deal
with different SNMP management information variables. Scalability analysis shows
that proposed management system scales well and does not pose a threat to the
overall architecture scalability.

Contents

Page

Abstract IX

1 Introduction 1
1.1 Multistage software router architecture 2
1.2 Open issues in multistage software router 6
1.3 Goal, research questions and approach 7
1.4 Thesis outline . 9

2 State-of-the-art: Distributed software routers and management 11
2.1 Software routers . 11
2.2 Power management in distributed architecture 15

2.2.1 Energy efficient cluster design 18
2.3 Distributed information management system 19
2.4 Conclusion . 21

3 Multistage architecture energy management 23
3.1 Off-line algorithms . 24

3.1.1 Problem definition and MILP formulation 25
3.1.2 Two-step approach . 27
3.1.3 Performance evaluation . 30

3.2 On-line algorithm . 35
3.2.1 System modeling . 36
3.2.2 Proposed heuristic algorithm 37
3.2.3 Computational complexity . 42
3.2.4 Performance evaluation . 44

3.3 Conclusions . 56

4 Energy efficient multistage architecture design 57
4.1 Energy efficient back-end routers design 58

4.1.1 Goal programming design approach 58

4.1.2 Heuristic design approach . 60
4.1.3 Locally optimal design approach 61

4.2 Design validation . 62
4.2.1 Traffic traces . 62
4.2.2 Experimental setup . 62
4.2.3 Results . 64

4.3 Conclusions . 69

5 Multistage architecture network management 71
5.1 Problem description . 71
5.2 Multistage architecture internal network management requirements . 73
5.3 Proposed management architecture 74

5.3.1 Manager-agent communication model 76
5.3.2 multistage router MIB . 78
5.3.3 Single-entity management information view: the case of ag-

gregate variables . 78
5.3.4 Scalability analysis . 82
5.3.5 Software implementation . 84

5.4 Conclusions . 84

6 Conclusions 85
6.1 Overall conclusions . 85
6.2 Future research directions . 87

Appendix A Splittable item with variable bin size and cost - mapping 89

Bibliography 91

List of Abbreviations 97

Index 99

List of Figures

1.1 Single PC software router performance 3

1.2 Performance measurement of PacketShader 4

1.3 MSSR Architecture: the load balancers (first stage), the switch (sec-
ond stage) and the back-end routers (third stage) 5

2.1 Router transfer rate comparison for different packet sizes 12

2.2 Performance of FPGA-enhanced NICs with two-priority traffic 12

2.3 Server forwarding rate for minimal-forwarding application as a func-
tion of different packet-size distribution 13

2.4 High-level view of a traditional router and a server cluster-based router 15

2.5 Protocol-based network management interaction 20

3.1 Load proportional energy saving scheme in back-end routers 32

3.2 Relative difference due to variability in router and link parameters . . 33

3.3 MSSR architecture power saving scheme block diagram 42

3.4 Input traffic trace used in the experiment 46

3.5 Comparison of different algorithms for unsplittable input traffic . . . 48

3.6 On-line algorithms relative difference with respect to optimal algorithm 49

3.7 Comparison of different algorithms for unsplittable input traffic . . . 50

3.8 Comparison of different algorithms for unsplittable input traffic . . . 51

3.9 Configuration difference between two consecutive solutions (unsplit-
table traffic) . 52

3.10 Comparison of different algorithms for splittable input traffic 53

3.11 Comparison of different algorithms for splittable input traffic 54

3.12 Configuration difference between two consecutive solution 55

3.13 Comparison of on-line algorithms based on NIC+ and NIC− efficiency
sorting . 55

4.1 Input traffic trace used in the experiment 62

4.2 Power dissipation of back-end PCs defined by different design ap-
proaches (based on 60min traffic sampling) 65

4.3 Energy consumption of back-end PCs defined by different design ap-
proaches (based on 60min traffic sampling) 66

4.4 Cluster cost for different design approaches 67
4.5 Energy consumption: Design-I, Design-II, Design-III, Design-IV, and

Design-V,I3 (based on 15min and 60min traffic sampling) 68
4.6 Design and sampling mismatch effect 69

5.1 Management System used in multistage Software Router: logical ar-
chitecture . 75

5.2 Modified manager-agent communication model for the multistage soft-
ware router . 77

5.3 Main IF and IP counters involved in packet forwarding for a single-
stage router (right) and the multistage software router (left) 80

List of Tables

3.1 Maximum size of the MILPs in terms of number of routers and inter-
faces to obtain a solution in reasonable time 28

3.2 Cr scenario description . 33
3.3 Simulation parameters for on-line algorithm performance evaluation . 45

4.1 Group of PCs and corresponding parameters used in the back-end
router cluster design . 63

Chapter 1

Introduction

The Internet traffic is growing at faster rate as more and more bandwidth hungry
applications and services such as audio and video streaming are deployed. The
proliferation of tablets, mobile phones, and other smart devices are driving up the
demand for connectivity as well. In addition, with the stunning success of the In-
ternet, information and communication technologies diffused increasingly attracting
more uses to join the the Internet arsenal which in turn accelerates the traffic growth.
This growth rate does not seem to slow down in near future [1, 2].

Networking devices support these traffic growth by offering an ever increasing
transmission and switching speed, mostly due to the technological advancement of
microelectronics granted by Moore’s Law [3]. However, the comparable growth rate
of the Internet and electronic devices suggest that capacity of systems will become
a crucial factor in the years ahead. Given the current trend of increase in system
capacity and traffic growth, the former will lag by a factor of 10 over the same time
period [4].

Besides the growth rate challenge that networking devices face with respect to
traffic growth, they have always been characterized by the development of propri-
etary architectures. This means that incompatible equipments and architectures,
especially in terms of configuration and management procedures. The major draw-
back of such industrial practice, however, is that the devices lack flexibility and
programmability which is one of the source of ossification in the Internet [5]. For
instance networking devices, more importantly those deployed at the core of the In-
ternet, shows such inflexibility that deploying simple changes to a network to adapt
to a traffic demand incurs huge cost due to required upgrade or even equipment re-
placement. Fixing problems and introducing new features is almost difficult because
of unavailability of devices’ software source codes.

Thus scaling or modifying networking devices, particularly routers, for a desired

1

1 – Introduction

function requires flexible and programmable devices. Software routers (SRs) 1 are
among the devices that satisfy the flexibility and programmability criteria. Because
of the aforementioned challenges related to real hardware routers, the technique of
modifying PCs and using them as a router is an appealing alternative. Modifications
to a PC include but not limited to attaching two or more network interface cards
(NICs) that connect different networks, upgrading the current hardware to improve
performance, installing networking applications, etc.

The flexibility and programmability feature of software router comes from the
fact that the hardware is available from multi-vendor at low cost and the large
availability of open-source software for networking application, such as Linux [6]
and Click Modular Router [7] for the data plane, as well as eXtensible Open Router
Platform (XORP) [8] and Quagga [9] for control plan. However software routers are
not without limitation. Most criticisms to single PC based software routers include
limited performance such as routing capability, lack of scalability such as number of
interface and lack of advanced functionalities.

In the following a multistage software router architecture, proposed to address
single PC based software router limitations, will be introduced (Section 1.1), and
then we point out what is considered the main open issues in multistage architecture
(Section 1.2). The analysis of such open issues leads to present the goal and the
research questions addressed in this thesis (Section 1.3). Finally, the outline of this
thesis is presented (Section 1.4).

1.1 Multistage software router architecture

High-end performance can not be obtained easily today with routers based on a
single PC architecture. State-of-the-art PC based routers and switches have a
potential for switching up to few Gbps if the packet processing is performed by
the CPU [10–12] or few tens of Gbps if a specialized packet processing is imple-
mented [13]. While such capacity is more than enough for a large number of appli-
cations, by no means comparable to carrier-grade equipments that scales as high as
92 Tbps [14].

The scalability and performance limitation of single PC based software routers
arose from the fact that PCs are limited by Peripheral Component Interconnect
(PCI) bus and processing capacity as shown in Figure 1.1. Figure 1.1(a) shows
throughput for single PC software router having the following specification: PCI -
X Intel PRO/1000 Gigabit Ethernet line cards, a single Intel Xeon CPU running at
2.6 GHz, equipped with 1 Gigabyte 128-bit wide, 200 MHz double data rate (DDR)
RAM, and PCI-X bus running at 133 MHz, that is, with 8 Gbps bandwidth as

1Software router is a term denoting a personal computer, equipped with two or more network
cards, designated to do the task of routing packets between networks.

2

1.1 – Multistage software router architecture

(a) thoughput (b) saturation forwarding rate

Figure 1.1. Single PC software router performance

the baseline system [10, 15]. The plot clearly depicts the impact of packet size on
performance, showing that a single PC can only reach about 640 kpps (kilo packet
per second), considering the minimum-size Ethernet frames. For smaller Ethernet
frames the bottleneck stem from the maximum packet rate that the PC architecture
can forward because of CPU availability and memory-read-latency constraint.

On the other hand, Figure 1.1(b) shows the source of the bottleneck as the packet
size increases. This time the number of interfaces increase to eight 1 Gigabyte cards
to evaluate the routers performance under multiple flows simultaneously crossing the
router. The maximum throughput is limited to about 4 Gbps, which corresponds
to the PCI bus bandwidth that must be crossed twice by each packet to be stored
into the RAM, processed, and then transmitted [10,15].

It is possible that the maximum throughput a single PC can sustain is further
reduced if more complex operations that increase per-packet processing time must
be performed by the CPU; for example, imposing access control list (ACL) rules,
network address translation (NAT) operations, and so on.

Optimizing Linux network stack to eliminate per-packet memory management
overhead and to process packets in batch and/or offloading core packet processing
operations (such as IP table lookup or IPsec encryption) to Graphics Processing
Units (GPUs) enhances software routers performance by many folds as shown in
Figure 1.2. The platform is called PacketShader [13]. Figures 1.2(a) and 1.2(b)
show IP packet forwarding performance of PacketShader for all packet sizes. The
CPU+GPU mode reaches close to the maximum throughput of 40 Gbps. While this
requires modification in kernel source codes, it demonstrates that software routers
have capacity to route few tens of Gbps. Despite this progress, however, software
routers based on single PC still lag behind their specialized hardware based routers
counterpart.

3

1 – Introduction

(a) IPv4 forwarding (b) IPv6 forwarding

Figure 1.2. Performance measurement of PacketShader

Given these single PC based router bottlenecks, a foreseeable approach to attain
high-end performance in software routers is to offload packet processing tasks to
external CPUs. That is, to scale software routers to larger size and to achieve
higher performance, a distributed architectures composed by several PCs should be
sought for [11, 13, 15–17]. In line with this, a Multi-Stage Software Router (MSSR)
architecture depicted in Figure 1.3 has been proposed [15]. In building a high
performance software router, the multistage architecture exploits classical PCs as
elementary switching elements. It is an attempt to scale the capacity of networking
devices, routers in particular, in an incremental way. Besides convenient scaling,
multistage software router has the advantage of being flexibility and reconfigurability
as it implements open-source networking application software both in its control and
data plane. The architecture has the following three stages:

I) the layer-2 front-end Load Balancers (LBs) acting as the interfaces to the
external networks. LBs are also responsible to distribute IP packets to back-end
routers. Several algorithms such as simple round-robin scheme, more complex
algorithms that, for example, guarantee in sequence routing of packets [18] or
balance packets to a particular back-end router based on quality of service (QoS)
parameters can be implemented in distributing packets to back-end stage. Load
balancing is obtained simply by setting the destination MAC address of the
Ethernet frame, so that the correct back-end router Ethernet NIC is addressed.
Load balancers implementation can be either hardware-based (such as Field-
programmable gate array (FPGA) based) or software-based (PCs running Click
Modular Router [7]).

II) the back-end PCs (also referred as back-end routers) providing layer-3 rout-
ing functionality. Back-end routers are PCs running Linux as the data plane
and XORP or Quagga as the control plane and share the same routing table
providing several parallel forwarding paths in the architecture.

III) an interconnection network based on Ethernet switches to interconnect the two

4

1.1 – Multistage software router architecture

.

.

.

.

.

.

L3

Router

L3

Router

L2 Load-

Balancer

L2 Load-

Balancer

L2 Load-

Balancer
F
ro
n
t
N
IC

s

Virtual

CP

Back-endFront stage

Interconnection

Network

Figure 1.3. MSSR Architecture: the load balancers (first stage), the switch (sec-
ond stage) and the back-end routers (third stage)

stages: the back-end PCs and the load balancer stages

The data plane operation in the three stages can be visualized as follows: When
packet arrives at the router input port, it is

• received by an LB front-NIC, processed by the balancer CPU to perform simple
and fast load balancing among back-end routers, and then transmitted by the
LBs back-NIC toward the interconnection network;

• switched by the interconnection network to an appropriate back-end router
NIC;

• received by a back-end router and processed by its CPU to perform the re-
quired packet operations, then transmitted toward the interconnection net-
work;

• switched by the interconnection network to a proper LB back-NIC;

• received by a LB back-NIC, processed by the balancer CPU to switch the
packet toward the appropriate front-NIC, then transmitted toward the next-
hop node.

From control plane perspective, the multistage architecture comprises an entity
named virtual Control Processor (virtualCP) that manages, controls and configures
the whole architecture [19]. The virtualCP is implemented by choosing one of the

5

1 – Introduction

back-end routers as a master node and this node runs all the routing protocols. LBs
redirect all the routing protocol traffic to this master node. An internal control
protocol named DIST, that cooperates strictly with the routing software, has been
developed to:

(I) coordinate the routing process among back-end routers and the load balancing
function among LBs;

(II) configure the architecture; and

(III) provide automatic fault recovery mechanisms.

The virtualCP is also responsible to present the MSSR architecture to the external
network as a single, large router by hiding the internal architectural detail.

At the cost of control and management complexity, the multistage software router
architecture is able to:

• overcome the performance limitation of single PC based routers by offering
multiple, parallel forwarding paths;

• scale the total number of interfaces an MSSR can host, and as a consequence,
the router capacity;

• improve router performance by incrementally adding/upgrading internal ele-
ments seamlessly;

• recover from faults through automatic reconfiguration of the internal elements;

• provide functional distribution, to overcome single PC CPU limitations, for
example, allowing the offloading of CPU intensive tasks such as filtering/cryp-
tography to dedicated PC

Note that routing capacity and number of interfaces scaling simply involves increas-
ing the number and/or capacity of the back-end routers and the front stage PCs
respectively. The interconnecting switch can also be duplicated for capacity scaling
or if redundancy is required.

1.2 Open issues in multistage software router

Like many networking devices, the MSSR is typically designed for the peak load.
Therefore, a high-end MSSR architecture might require tens or hundreds of PCs.
Let’s demonstrate this through a practical example. Suppose we want to design a
MSSR equivalent to a Juniper T320 core router that supports up to sixteen 10 Gbps
ports and has 160 Gbps forwarding capacity [20]. The following internal components
are available:

6

1.3 – Goal, research questions and approach

• back-end routers with 5.5 Gbps forwarding capacity and equipped with single
10 Gbps interface;

• LBs with two (one internal and one external) 10 Gbps interface;

• a hardware switch with enough capacity to interconnect LBs and routers.

As per this specification, we need 16 LBs, 1 switch and 29 back-end routers to de-
sign a 160 Gbps capable MSSR equivalent to T320 router. That is the architecture
requires a total of 45 PCs and 1 network switch. It is easy to see that this num-
ber increases with performance. As the number of internal devices increase, the
multistage software router architecture faces two challenges.

First, control and management complexity increases with the number of internal
devices. The virtualCP has to communicate to each device to infer their operation
status, update them with control messages, detect any abnormalities and take mea-
sure, etc. Furthermore, individual internal devices register their own management
information system. Thus, the virtualCP has to collect this information and build
a management information system that represents the whole architecture. All these
tasks create complexity in controlling and managing the architecture. This com-
plexity problem has partially been solved from the control plane perspective [19].

Second, performance scaling implies a high level of redundancy at the back-end
stage which translates into a source of energy wastage during low traffic periods.
Thus, at low load MSSR architecture is not efficient from energy cost perspective.
For example the T320 equivalent MSSR has 20 back-end routers but only few of
them are needed at low loads. From high load perspective, energy consumption
could threaten the scalability feature of the MSSR architecture. That is as more
and more performance is needed, it might not be realistic to increase the number of
internal devices from energy consumption perspective.

Dealing with some of these challenges that the multistage architecture faces is
the task of this thesis as detailed in the following subsection.

1.3 Goal, research questions and approach

In light of the reasoning so far, the goal of this thesis is to develop a centralized
MSSR management system that (i) collects and compiles a unified management in-
formation system, and (ii) resize the MSSR architecture to the input traffic in an
efficient way such that the power wastage is minimized during low load periods. In
achieving this goal, an answer for the following research questions will be sought-
after:

7

1 – Introduction

Research Question 1: What is the state-of-the-art in distributed architecture
information management and energy saving?

Research Question 2: What are the possible approaches that make MSSR
architecture energy consumption proportional to the input load demand?

Research Question 3: Which MSSR configuration best suits for resizing the
architecture such that the energy wastage is minimized over a specified period?

Research Question 4: How to build a unified management information base
(MIB) that represents the MSSR architecture?

The objective of Research Question 1 is to identify the main contributions and
research trends in distributed information management and energy saving techniques
in a network so far. A literature study is performed to present a structured overview
of the research field.

Research Question 2 tries to look for the right approaches to resize the MSSR
architecture to the load demand such that the energy saving achieved will be as
close as the optimal solution. The optimal algorithm is based on an optimization
problem and two other viable energy saving heuristics are identified: an off-line
algorithm named two-step algorithm and an on-line algorithm called a differential
on-line algorithm. The two-step algorithm solves the energy minimization problem
by splitting the optimal problem into two steps: router and link power optimization
steps. While the two steps are optimal individually, the combined solution, however,
is not. This divide-and-conquer approach reduces the optimal problem complexity
at the cost of solution quality but scales well to a practical multistage router archi-
tecture size. The differential on-line algorithm; being a heuristic solution, it has the
obvious scalability advantage and also, unlike the optimal and two-step algorithm,
it reduces service disruption and/or minimize delay. This is because it builds a
new solution on top of existing one which is not the case for the other two algo-
rithms. The energy saving achieved by two-step and differential on-line algorithms
are compared to the optimal solution to measure their performance. Results show
that the proposed algorithms result in load proportional MSSR energy consumption
and fairly approximate the optimal solution.

However, the performance of the proposed algorithms to Research Question 2
is different for different input MSSR configurations. Therefore Research Question
3 is meant to design the MSSR configuration such that the operation of energy
saving algorithms will be more efficient. Given a set of group of PCs to be used
for MSSR configuration and an input traffic profile over a specified period, the
problem is to choose an MSSR configuration that is more flexible to tune such that
minimization of the power wastage is maximized during low load periods. The

8

1.4 – Thesis outline

energy saving is computed over the input traffic sampling periods. We propose
three MSSR design approaches; namely goal programming, performance-power ratio
heuristic and locally optimal design approaches. The proposed design approaches
energy efficiency is then compared with other existing cluster design approaches and
the optimal solution. It is shown that our design approaches permit up to 10% of
energy saving compared to existing design approaches for similar MSSR architecture
cost.

Finally Research Question 4 deals with distributed management information
gathering and compilation mechanisms. As stated earlier the multistage is com-
posed of large number of autonomous systems that individually register their own
management information. As a single device, however, the MSSR requires a man-
agement information base that represents the whole architecture. This information
base is built from internally dispersed management information bases located in
each internal component which requires collection and compilation. This research
question, therefore, seeks a mechanism to build a unified management system such
that the architecture appear as a single device from management perspective. In
the thesis, after identifying MSSR internal network management requirements, an
SNMP manager-agent communication model is extended to fit the multistage archi-
tecture. The model defines mechanisms to collect data from distributed elements in
a reliable way and aggregate the data to a unified view.

1.4 Thesis outline

The thesis structure closely follows the Research Questions. It is organized as fol-
lows:

• Chapter 2: State-of-the-art: Distributed software routers and man-
agement presents a structured overview of the main contributions so far in
the field of distributed architecture management. It divides the literature sur-
vey into three main categories: software routers, energy saving in networks
and distributed information management.

• Chapter 3: Multistage architecture energy management presents the
different energy saving algorithms. Performance comparison is supported by
simulation results [21,22]. Chapter 4: Energy efficient multistage archi-
tecture design, which closely related to energy saving algorithms, focuses on
designing an energy efficient MSSR architecture [23].

• Chapter 5: Multistage architecture network management investigates
how to create a unified management information base that represents the whole
architecture from internally dispersed management information bases local to
each internal devices [24].

9

1 – Introduction

• Chapter 6: Conclusions finally closes the thesis by drawing conclusions and
identifying directions for future work.

10

Chapter 2

State-of-the-art: Distributed
software routers and management

As described in Section 1.1 a multistage software router is a distributed architecture
that is composed of many internal components. The large number of autonomously
running devices could translate into energy consumption and management informa-
tion is distributed among internal components. This requires additional effort to
make the architecture energy efficient and a mechanism to manage the distributed
information system.

In the following, different efforts made by the research community to address
the issue of energy consumption in a network as well as management of distributed
information in similar architecture to multistage will be presented. Software router
related research activities so far will be detailed in Section 2.1. Section 2.2 focuses
on main contributions in power management in distributed architecture while Sec-
tion 2.3 presents different schemes used to manage distributed information systems.

2.1 Software routers

Over the years, viability of software routers as an alternative to expensive and
proprietary networking devices have been studied extensively. Different researchers
also tried to solve the scalability and performance related issue to software routers
to make them practical to deploy in large networks.

Andrea et al. [10, 25] assessed the feasibility of building a high-performance IP
router out of a common PC hardware and open source operating system. Fig. 2.1
shows the saturation transfer rate for Linux and Click, when the routers are crossed
by four traffic flows, either unidirectional (UNI) or bidirectional (BI) for different
Ethernet payload sizes. The results are based on a high-end PC with a Super-Micro
X5DPE-G2 mainboard equipped with one 2.8 GHz Intel Xeon processor and 1 Gbyte

11

2 – State-of-the-art: Distributed software routers and management

Figure 2.1. Router transfer rate comparison for different packet sizes

of PC2100 DDR RAM consisting of two interleaved banks, so as to bring the memory
bus transfer rate to 4.2 Gbyte/s. Eight 1 Gbps Intel PRO 1000 NICs are installed
on the router to generate the required number of flows. The result shows that the
software router can transfer up to 500 Mbps when handling minimum size packets
and up to 5.5 Gbps when handling 1518 byte packets. For minimum-size Ethernet
frame, it is not possible to route a single 1 Gbps traffic flow even if the PCI bus
bandwidth is 8 Gbps. The main limitation stem from central processing unit (CPU)
overloading and from large host-memory-read latency.

A similar work has been presented in [26, 27] but this time the authors used
FPGA-enhanced NICs to offload the CPU from performing IP routing and directly
transfer packets across the PCI bus, completely bypassing the standard Linux IP
stack. Thus the NIC operation is in fast-path routing mode. Packet transfers on the
PCI-bus are regulated by a distributed (asynchronous) scheduling algorithm based
upon in-band messages exchange among the FPGA-enhanced NICs. This approach

Figure 2.2. Performance of FPGA-enhanced NICs with two-priority traffic

12

2.1 – Software routers

Figure 2.3. Server forwarding rate for minimal-forwarding application as a func-
tion of different packet-size distribution

also enables a more sophisticated quality-of-service (QoS) oriented classification and
scheduling algorithms to substitute the classical first-in first-out (FIFO) service disci-
pline available on commercial NICs. Fig. 2.2 shows packet classification used jointly
with fast-path routing where high-priority packets receive a better services whereas
only low-priority packets experience losses.

Multi-core servers performance potential is best exploited by parallelizing packet-
processing within a server which enhance single PC based routers [11,17]. The paral-
lelization involves CPU accompanied by memory access (through dedicated memory
controllers and buses) and NICs parallelization (through multiple queues) and lower
level of software stack are built to leverage packet processing parallelization (through
batching). Fig. 2.3 shows the maximum loss-free forwarding rate achieved through
this custom server parallelization when running the minimal-forwarding application
(a traffic arriving at port i is just forwarded to port j with no additional operation).
A 24.6 Gbps forwarding rate is sustained for larger packets without hitting any bot-
tleneck inside the server. That is the performance is limited by the number of NICs
installed on the server. In contrast, the server saturates at 9.7 Gbps or 18.96 Mpps
for the minimum packet size.

Another customized approach to scale monolithic router performance is a plat-
form called PacketShader [13]. PacketShader optimizes Linux network stack to elim-
inate per-packet memory management overhead and to process packets in batch
and/or offloading core packet processing operations (such as IP table lookup or
IPsec encryption) to Graphics Processing Units (GPUs) to enhance single PC based
software router performance as shown in Figure 1.2.

Despite the above mentioned efforts, admittedly, monolithic software routers
do not scale beyond the 10 Gpbs range if packet processing is performed by the
CPU [10–12] or 40 Gbps range if a custom packet processing is implemented [13].
This performance is 2-3 orders of magnitude away from carrier-grade routers that
switch up to 92 Tbps [14]. Thus in scaling single PC software router performance
a different approach based on router functionality distribution to multiple external
CPUs has been proposed recently [11, 15].

Partridge et al. [28] used a combination of multiple line cards (each supporting

13

2 – State-of-the-art: Distributed software routers and management

one or more network interfaces) and forwarding engine cards all plugged into a
switched backplane to build a 50 Gbps software router in a custom configuration. It
was the first multigigabit router using conventional CPUs that demonstrate routers
can continue to serve as a key component in high-speed networks.

Recently Bianco et al. proposed one of the possible distributed software router
architecture introduced in Section 1.1 that distribute router functionality into mul-
tiple off-the-shelf commodity PCs [15, 16]. The architecture is named multistage
software router for the reason that the architecture is composed of three stages:
Load balancers, interconnection network and back-end routers (See Section 1.1 for
detail). The authors demonstrate that the performance of a multistage software
router formed by N1 load balancers, each equipped with at least three back-end
NICs, and N2 back-end routers scales as:

Pmin = min(N1 × 1488,N2 × 640)kpps (2.1)

considering a minimum sized packet. The theoretical maximum of 1488 kpps and the
single router forwarding limit of 640 kpps when IP routing is adopted are reported
in Fig. 1.1(a).

Due to the need of high number of ports and performance, the number of PCs
in a multistage architecture could be large. Thus, many internal devices need to
be controlled and configured. In addition, the internal interconnection must appear
to external network as a single entity which again requires a special coordination.
In addressing this issue Bianco et al. [19] proposed a control protocol named DIST
that directly interact with software routing suites such as Quagga and XORP to be
operating system independent. The protocol is responsible to:

(I) coordinate the routing process among back-end routers and the load balancing
function among LBs;

(II) configure the architecture; and

(III) provide automatic fault recovery mechanisms.

The multistage software router has also been extended to virtualized environ-
ment [29] in looking for increased flexibility (scalability, maintenance and consolida-
tion) and easier introduction of new features such as energy saving mechanism. The
authors measured the performance of multistage software router and demonstrated
its feasibility in a virtualized environment.

RouteBricks [11,17] is based on parallelizing router functionality across multiple
servers and within each server. Fig. 2.4 depicts a high-level view of a traditional
router and RouteBricks architecture. In the architecture there is no centralized
components and no component in the architecture need to operate at a rate greater
than cR, where c ranges typically from 2 to 3 and R is the servers’ packet processing

14

2.2 – Power management in distributed architecture

Figure 2.4. High-level view of a traditional router and a server cluster-based router

capability. The number of ports can increase simply by adding servers to the cluster
which makes the architecture incrementally extensible in terms of number of ports
as well as switching capacity.

A distributed software router architecture named DROP (Distributed SWROuter
Project) is also proposed in [30]. The architecture is partially based on the main
guidelines of the IETF ForCES (Forwarding and Control Element Separation) stan-
dard [31]. DROP allows building logical network nodes through the aggregation of
multiple SRs, which can be devoted to packet forwarding or to control operation.
The authors also provided some performance evaluation using different control plane
tests as defined in RFC 4062 [32].

2.2 Power management in distributed architec-

ture

The global Internet and its thousands of equipments consume an enormous energy
amount and have an impact on global warming. While ICT can make a major con-
tribution to the global response to climate change, by itself however, is responsible
for 2% of global carbon emissions - a similar figure to the global airline industry.
With the ICT sector growing at faster rate, it is imminent that the CO2 emission
by ICT industry grows as well - estimated to be 6% by 2020 [33,34].

Telecoms infrastructure and devices contribute about 25% of the 2020 ICT sector
carbon footprint. However the ICT technology has a silver lining - the substantial
inefficiency in the technology that can be readily addressed. In regard to networking
devices, for example, the energy consumption is proportional to the installed capac-
ity rather than the traffic demand. Thus, devices energy consumption is constant
irrespective of the variability in the load which obviously raise a question on how to
resize the device capacity to a load demand.

While modern hardware and operating systems devised methods at different
levels to save energy in electronic devices, the ever increasing capacity demand is

15

2 – State-of-the-art: Distributed software routers and management

generating an increase in power consumption both at device and network level. For
instance, while desktop computers produced in 2003 consume roughly 100-120 W
when used moderately, the same is also true for today’s desktops [35]. On the
infrastructure side, the power dissipation of routers has grown with a 1.4 times
increase in power dissipation for every doubling of capacity [36]. Therefore a common
opinion among network researchers is that the sole introduction of low consumption
silicon technologies may not be enough to curb energy requirements, thus the focus
is shifting towards different areas. For instance, there is an ample opportunity of
saving energy by controlling the devices as well as network topology during low
traffic periods, considering that the networks are typically oversized [37].

Therefore, beginning with a position paper by Gupta et al. [38], researchers in IT
focused on how to save energy in data network holistically. In this section we discuss
state-of-the-art energy saving techniques in a distributed architecture, particularly
clusters similar to the multistage software router architecture.

In line with this, Chase et al. [39] proposed an energy-conscious request switching
paradigm to reduce energy usage for server cluster during low traffic periods. The
switch monitors cluster load and concentrates traffic on the minimal set of servers
that can serve it at a specified utilization and latency. This induces the remaining
idle servers to step down to a low-power state. The proposal basically extends the
load-balancing switches with an energy-conscious routing policy that leverages the
power management features of the back-end servers.

A similar approach is proposed by Pinheiro E. et al. [40]. In this case a system
that dynamically turns cluster nodes on to be able to handle increase in load and
off to save energy during low load periods is proposed. A control-theoretic and load
distribution algorithm makes the cluster reconfiguration decision by considering the
cluster total load and the power and performance implication of changing the current
configuration. The technique saves up to 38% in energy.

Power-aware request distribution [41] is a method of scheduling service requests
among servers in a cluster so that energy consumption is minimized, while main-
taining a particular level of performance. Energy efficiency is obtained by powering
down some servers when the desired quality of service can be met with fewer servers.

The schemes in [39–41] allow energy saving only at the coarse-granularity of the
entire server and/or only homogeneous servers are considered. In multistage archi-
tecture however, besides the back-end routers are heterogeneous in capacity as well
as power consumption, they could have one or more network cards adding another
layer to an optimization problem. Indeed, the minimization of active internal NICs
and/or interfaces on NICs can lead to large energy saving especially in high rated
network cards. For instance a 10 Gbps link consumes in the order of 20 watts [42]. If
we install four of such NIC per PC, then the consumption is proportional to the PC
itself. Therefore the wastage in the network cards needs to be addressed. Moreover,
the heterogeneity requires a mechanism to prioritize the back-end routers according

16

2.2 – Power management in distributed architecture

to their energy efficiency.
In reducing the granularity, Heath T. et al. [43] designed a cooperative Web

server for a heterogeneous cluster that uses modeling and optimization to minimize
the energy consumed per request. The approach conserves 45% more energy than
an energy-conscious server that was proposed for homogeneous clusters. While their
approach is similar to the optimization problem defined in this thesis, we show that
optimal solution is an off-line solution that results in service disruption. Going
beyond the off-line solution, we propose an on-line heuristic energy saving schemes
in a heterogeneous back-end router cluster.

Two forms of energy saving in a network; namely rate adaptation and sleeping of
network devices, has been proposed as an appealing alternatives [44]. Researchers
exploit these options to save energy in a network through smart topology reconfigu-
ration. Chiaraviglio et al. [45] addressed a network design problem by considering the
minimization of the total power consumed by the network. They proposed heuris-
tics to select a minimum set of routers and links to be used in order to support a
given traffic demand. The main idea is to power off links and even full routers while
guaranteeing QoS constraints such as maximum link utilization. A novel energy
reduction approach at the network level by considering nodes capable of adapting
their performance to the actual load has also been proposed in [46]. While those
researchers focus on energy-aware routing, this thesis focuses on energy-aware load-
balancing.

A white paper from Juniper Networks, Inc. [47] reports an energy criteria used to
compare energy consumption of different network devices. The normalized energy
consumption rating (ECR), measured in watts/Gbps, is defined as

ECR =
E

T
(2.2)

where E is energy consumption of the device and T is the effective full-duplex
throughput. Both values may come from either internal testing or the vendor’s
data sheet. ECR is a peak metric that reflects the highest performance capacity
of the device. In our energy saving algorithms and MSSR design we used similar
criteria as one of device selection parameter in setting up a new back-end router
configuration.

Finally, Bolla et al. gives a detailed survey [48] on emerging technologies,
projects, and work-in-progress standards which can be adopted in networks and
related infrastructures in order to reduce their energy and carbon footprint. The
authors categorized current approaches to save energy in fixed network infrastruc-
ture into three groups:

• Re-engineering approaches - aim at introducing and designing more energy-
efficient elements for network device architectures;

17

2 – State-of-the-art: Distributed software routers and management

• Dynamic adaptation of network/device resources - focuses on adapting packet
processing engines and of network interfaces to actual traffic load;

• Sleeping/standby approaches - used to smartly and selectively force idle net-
work/device portion to low power mode.

In this thesis the proposed energy saving techniques fall under sleep/standby cate-
gory where unused elements (PCs or network cards) set to sleep mode and wake up
only if needed.

2.2.1 Energy efficient cluster design

A cluster is a group of stand alone computational resources that work cooperatively
together to achieve a single purpose. It is a viable approach to cope with the
fast growth of the Internet [1]. Clusters can serve purposes such as infrastructure
scalability, high availability, increased computational resources and load balancing.
Data centers as well as networking devices such as routers that already use cluster
approach are presented in [15,49,50].

Server cluster design focuses on server types that currently give the best per-
formance per unit of price, or the types that give the best absolute performance
(i.e, highest computational capacity). The Google cluster architecture [49] consid-
ers best performance per unit of price as PCs selection criterion to setup a cluster.
This approach prioritize commodity-class PCs to high-end multi-processor servers
because of their cost advantage. Software reliability, instead of hardware, is the pre-
requisite for this design principle. The choice of the commodity-class PCs implies
larger number of PCs in a cluster to handle the peak load, which results in a high
power consumption.

Designers also estimate cluster capacity based on the applications running on it
where capacity could mean bandwidth, CPU, RAM, storage etc needed as a server
configuration. The aim is to use servers with best absolute performance such that
the cluster handles peak load [51, 52] with fewer reliable computers. However, such
cluster is far more expensive than the cluster based on commodity-class PCs for the
same performance, due to the higher interconnect bandwidth and reliability of the
servers [49]. Furthermore, the high capacity granularity implies power inefficiency
despite power saving schemes deployment similar to the one proposed in [21, 22].
This is because even for small traffic demand we have to turn on high capacity
server which consumes high power.

In this thesis we propose three different multistage software router back-end
cluster design approaches with main focus on energy efficiency. The first approach,
given a pool of different types of computers, searches for an optimal back-end router
configuration that minimize power consumption over a specified period for a given

18

2.3 – Distributed information management system

traffic profile. The problem is formulated as a preemptive goal programming. In
the second approach we consider performance-power ratio as PCs’ selection criteria
in building a cluster. In this case the cluster is composed of homogeneous PCs
which has the advantage of simple management. The last approach sizes the back-
end router configuration based on local optimization. This approach optimize the
configuration for the peak load and resizes this configuration for the other load
scenarios.

2.3 Distributed information management system

Multistage architecture is build on the principle that the whole architecture will be
viewed as a single device to external network. This principle applies for the man-
agement information as well. Hence the multistage architecture is required to have
a single management information base (MIB), which could be virtual or accessible
locally to the internal manager, representing the whole architecture. Management
information unification is necessary because each component in the multistage archi-
tecture, as an independent element, stores its own management information. That
is, the management information is dispersed internally and there is no single man-
agement information base (MIB) representing the whole multistage architecture.
For example consider the sysUpTime1. Each internal component in MSSR has its
own sysUpTime but which one represents the up time of the multistage architecture
as a whole? Or do we need to generate a new sysUpTime? Thus creating a MIB for
multistage software router requires additional complexity to compile a response to
external manager request. Hence building a multistage software router MIB is one
of the main task of this thesis.

Since the inception of network management in late 1980s, there have been sev-
eral approaches to manage networks, systems and services. Initial solutions were
protocol-based management approaches that adopted the manager-agent paradigm.
Manageable resources are modeled through ”cluster” of managed objects at different
levels of abstraction. Managed objects encapsulate the underlying resource and offer
an abstract access interface at the object boundary [54, Ch. 2. p. 63ff]. An appli-
cation in an agent role accesses the managed objects via the management interfaces.
The access interface is defined through formal specification of the relevant managed
object classes and the associated access mechanism. Figure 2.5 depicts the man-
agement interaction of protocol-based network management approaches. OSI sys-
tems managment (OSI-SM) [55] and Internet Simple Network Management Protocol
(SNMP) [56] are the two prominent technologies that adopted the manager-agent
paradigm.

1sysUpTime is the time (in hundredths of a second) since the network management portion of
the MSSR architecture was last re-initialized [53].

19

2 – State-of-the-art: Distributed software routers and management

Manager Agent
Management

communication

protocol

Operation

NotificationApplication in

manager role
Application in

agent role

Managed

objects

Figure 2.5. Protocol-based network management interaction

Other management technologies include CORBA (based on distributed objects
technology), eXtensible Markup Language (XML) based network management (re-
cently proposed as an alternative to existing network management solutions) [57–59].
In this thesis however we implement an SNMP based network management for two
reasons:

• it is the most widely deployed management protocol and hence easy interop-
erability

• availability of open source code for our implementation [60]

SNMP is accompanied by a standard describing how to specify managed objects -
the Structure of Management Information (SMI) - and a document defining standard
managed objects organized in a tree structure - the Management Information Base
(MIB-II). It also uses object identifiers (OIDs) suffices for naming to address objects.

An SNMP entity acting as manager role sends request to an entity acting as an
agent, which support a different SNMP version than the manager. For interoperabil-
ity among the different SNMP versions a third network entity called proxy agent is
required in between the manager and the agent. Similarly, proxy agent intervention
is also required in converting responses received from an entity acting in an agent
role into responses sent to an entity acting in a manager role but supports a dif-
ferent SNMP version. The proxy agent, therefore, performs SNMP message header
and PDU formats conversion to suite to the message format of the recipient, i.e.
the entity beyond the proxy agent. Unlike the proxy agent, however, the message
modification proposed in this thesis is to perform different variable computations
and aggregation to create a single-entity image of the multistage architecture which
requires the message header and PDU format conversion necessary for its operation
before responding to the original request. Our purpose is not dealing with mes-
sage handling among different SNMP version. Rather it is to address the issue of
a single-entity information view of the multistage software router to the external
network manager which involves different SNMP variables computation and aggre-
gation. Moreover, our approach deals with many internal agents for a single variable
request.

20

2.4 – Conclusion

2.4 Conclusion

In this chapter, we provided a survey of the state-of-the-art in distributed archi-
tecture management spanning the period 2005 - 2010. Section 2.1 summarizes the
main effort made by researchers in scaling software routers. Both single PC based
router scaling and distributed router architecture based on multiple CPUs to achieve
high-end router performance have been discussed.

For distributed router solution, the energy consumption of the architecture in-
creases with performance since performance scaling is proportional to the number
of interconnected devices. Thus Section 2.2 details the energy saving mechanisms
adopted in networks in general, and distributed architecture similar to MSSR in
particular. The Subsection 2.2.1 presents energy efficient cluster design approaches
which contributes to energy efficiency of distributed architectures.

Finally, a distributed architecture information management schemes have been
discussed with main focus on SNMP management.

21

Chapter 3

Multistage architecture energy
management

Like many networking devices, the multistage software router is typically sized for
peak traffic. State-of-the-art PC-based routers can route only few Gbps [10, 11] if
the packet processing is performed by the CPU or few tens of Gbps if a specialized
packet processing is implemented [13]. Therefore, the multistage architecture might
require tens or hundreds of back-end routers to achieve high-end performance. This
performance scaling implies a high level redundancy at the back-end stage which
translates to a source of energy wastage at low loads. To reduce such a wastage
during low traffic periods, the routing task can be transferred to a subset of back-
end routers and all other routers are put in low power state to save energy until
they will be required again to manage higher traffic.

Let us consider a realistic scenario: we want to realize a router with 16 interfaces
at 10 Gbps (i.e. equivalent to a Juniper T series (T320) core router with 160 Gbps
forwarding capacity and up to 2.8 kW power consumption [20]) using a multistage
software router with the following internal components:

• back-end routers with 5.5 Gbps forwarding capacity [10] and each equipped
with single 10 Gbps interface;

• LBs each with two 10 Gbps interfaces (one connect to external and the other
to internal network);

• a hardware switch with enough capacity to interconnect LBs and routers.

Then the architecture will be composed of 16 LBs, 1 switch and 29 back-end routers.
If we assume LBs and routers are running on PC with idle power consumption equal
to 60 Watts (approximate lower side idle power consumption for today computers),
then this architecture consumes 2.7 kW in idle state excluding the switch and the

23

3 – Multistage architecture energy management

NICs on back-end routers. However, the energy saving mechanism proposed in this
chapter can reduced the architecture consumption down to 1 kW in idle state, which
is the equivalent consumption of 16 LBs and 1 back-end router.

While back-end routers and switch are redundant during low traffic periods, LBs
are not because they act as external interfaces (which must stay active to guaran-
tee external connectivity). Energy saving in LBs could be achieved if operating at
network level, where the whole network energy consumption is optimized by redi-
recting the traffic over a subset of routers, not when operating at the device level [45].
Therefore saving in LBs is not discussed in this thesis.

The main contributions of this chapter are the MILP formulation, proposal of
an off-line algorithm called two-step algorithm and an on-line differential algorithm
to solve MSSR energy wastage problem. The analysis of the proposed algorithms
are also presented. Thus the chapter is divided into two major topics: Off-line algo-
rithm and on-line algorithm to save energy in MSSR. In Section 3.1 we describe the
energy saving problem in multistage architecture and give a detailed formulation of
the problem followed by an off-line energy saving algorithms. Performance evalua-
tion of the two-step algorithm will be discussed in Subsection 3.1.3. Highlighting the
advantages and disadvantages of off-line approaches, Section 3.2 presents an alter-
native: an on-line algorithm. Computational complexity and implementation issues
are also briefly described. Subsection 3.2.4 discusses simulation results of on-line
algorithm and finally conclude the chapter in Section 3.3.

3.1 Off-line algorithms

In light of the Research Question 2 discussed in Chapter 1, we propose a mixed
integer linear programming model (MILP) to select a subset of back-end routers,
characterized by different power consumption and routing capacity,1 so as to mini-
mize overall power consumption while satisfying the traffic demand. The problem is
a typical resource allocation problem: objects (the traffic) have to be stored in a set
of bins (the routers) while minimizing a total cost (the power consumption). Thus,
while our research focuses on multistage software router, the proposed technique
can be applied to many load distribution scenarios such as a computational clusters,
where is it possible to identify a set of resources and a set of containers with an
associated cost and capacity (e.g. jobs to workers or tasks to processors).

1Routing capacity for a PC is defined as the amount of traffic it can process and forward per
second, measured in bits/sec

24

3.1 – Off-line algorithms

3.1.1 Problem definition and MILP formulation

The redundancy in the back-end routers designed to handle the peak hour traffic may
result in energy waste under low traffic periods. We design mechanisms to reduce
energy consumption by adapting the number of back-end routers to the currently
offered traffic load.

The proposed saving mechanism is based on an optimization technique which
requires the virtualCP to collect periodically the information about the components
of the architecture and the incoming traffic. In this section we use different param-
eters and variables to describe the system as a Mixed Integer Linear Programming
(MILP) model and we introduce them here to clarify the notation:

• Input: the total input traffic to the multistage router, T ∈ R

• Routers: B is the set of back-end routers. ∀r ∈ B, Pr ∈ R is the router
power consumption (excluding line cards) and Cr ∈ R is the routing capacity

• Links: L is the set of all internal links. Lr ⊆ L is the set of internal links
connected to router r. ∀r ∈ B, ∀l ∈ Lr, Prl ∈ R is the link power consumption
and Crl ∈ R is the link capacity

• MILP variables: ∀r ∈ B, αr is a router selection variable (equal to 1 if the
router is activated, 0 otherwise). ∀r ∈ B, ∀l ∈ Lr, βrl is the link selection
variable (equal to 1 if the link is used, 0 otherwise). Finally, trl is a portion of
traffic T to be forwarded by router r on its link l.

In the problem formulation we have to take care of different details and dif-
ferent assumption about the system, ranging from the input traffic to the power
consumption of a link. The key points considered in our work are as follows:

1. Traffic measurements are available at the virtualCP : we do not focus on the
issue of measuring or estimating the incoming traffic and collecting measure-
ments. We assume that the virtualCP is able to obtain reliable aggregate
measurements on the input traffic.

2. The input traffic T is splittable among the back-end routers : every packet is
managed independently by LBs and sent to a different back-end router. This
may create out-of-sequence delivery of packets belonging to the same flow,
unless reordering is envisioned at LBs.

3. Routers and NICs energy consumption: the router and its cards are optimized
separately. That is while a router is used in forwarding traffic on some of its
interfaces during low load periods, the remaining network cards can be turned
OFF to contribute to energy saving.

25

3 – Multistage architecture energy management

4. Single link per card scenario: we focus on single link per card scenario. How-
ever, a back-end router can be connected to the switch with more than one
link. We further assume that techniques such as smart power down [61] will
put a card to low power mode upon a decision taken by the controller to
turn off the link on that card. Therefore, we represent the combined power
consumption of the card and the link l on a given router r by Prl ∈ R

5. ON-OFF power model for the back-end routers and links : measurements show
that power consumption of network devices and links can be approximated
by a linear model [46, 62] with an initial step. Indeed, most of the energy
consumption is due to the activation of the resource, whereas the remaining
part depends linearly on the actual load. To keep the problem formulation
as simple as possible, we chose the ON-OFF model: the energy consumption
does not depend on the actual resource load, but it is either zero or a constant
value.

6. Off-line solution: the energy saving problem is solved using an off-line al-
gorithm: the problem is not taking into account the evolution of the input
traffic, but it is designed to give the best solution given a specific input traffic.
Solutions obtained with different input traffic loads are independent, i.e., the
sets of activated routers under similar loads may be completely disjoint. As
a result, under frequently changing input traffic, the multistage router config-
uration may be ”unstable”: the set of active routers may change completely
even for small variations of the input traffic load. Furthermore, the virtualCP
must manage state transitions (e.g. turning on and off back-end routers due
to a new solution) in a non-disruptive way. A feasible mechanism would be to
turn on all PCs in current and in future solutions, then to redirect the traffic
to the subset of routers belonging to future solution only and finally to turn
off the idle routers belonging exclusively to the first solution. This solution
compromises the optimal solution. Another alternative could be an on-line
differential algorithm that builds a new configuration solution on top of an
existing one (See section 3.2 for detail)

Based on the fourth and fifth assumptions mentioned above, the maximum power
consumption of a back-end router r is given by:

Pr +
∑

l

Prl (3.1)

Thus, the multistage software router energy saving scheme can be formalized as a

26

3.1 – Off-line algorithms

MILP problem as follows:

min Pcombined =
∑

r(Prαr +
∑

l Prlβrl) (3.2)

s.t.
∑

r

∑

l trl = 1 (3.3)
∑

l trlT ≤ Crαr ∀r ∈ B (3.4)

trlT ≤ Crlβrl ∀r ∈ B,∀l ∈ Lr (3.5)

αr ≥ βrl ∀r ∈ B,∀l ∈ Lr (3.6)

αr,βrl ∈ {0,1},trl ∈ [0,1] (3.7)

In the MILP formulation, (3.3) ensures that all the input traffic T is served,
while (3.4) and (3.5) make sure the capacity constraints of each router (Cr) and link
(Crl) are not violated. (3.6) ensures that router r is active if at least one of its links
is chosen to carry some traffic.

Equations (3.2)–(3.7) define a MILP problem that optimizes the multistage ar-
chitecture power consumption, considering both routers and NICs. Hence, we refer
to it as the combined problem in the next sections. The problem is NP-hard, and it
cannot be mapped easily in its complete form to a well-known problem as demon-
strated in Appendix A. Thus, exact methods can only be used to solve small size
cases.

3.1.2 Two-step approach

The combined problem cannot be mapped directly to problems with well known
solutions, although it is similar to some classical problems in the area of resource
allocation (e.g. Knapsack and Bin-Packing [63]). Being NP-hard, the combined
problem is complex because it jointly optimizes routers and links and it is unsolvable
for large size. Indeed, in Table 3.1 we report the maximum size of the multistage
router as the number of back-end routers, for a given number of interfaces per router,
for which we were able to obtain a solution in reasonable time (e.g. 5 minutes, the
default SNMP collection interval time which can be the basis for an estimation of
the current traffic load). It is clear from Table 3.1 that as soon as the number
of interfaces per router grows the maximum number of routers drops quickly in
the combined problem case. Thus, the combined problem is seriously limited in
scalability by the number of interfaces per router; since the number of interfaces
should be easily around 10 in a normal PC, then the size of the multistage router
would be limited among 12 to 20 routers, which may not be enough even in the
Juniper T320 example introduced earlier in this chapter.

Since the combined problem is not scalable and cannot be used even for small
size multistage routers with few links per back-end router, we focus on heuristics
solutions to improve scalability. We have two elements (i.e. routers and links)

27

3 – Multistage architecture energy management

involved in the optimization and hence we took advantage of the problem structure
to split the combined problem in two parts, using the divide and conquer approach.
We name this solution the two-step problem: in the first step, the router optimization
problem, we focus on routers only, whereas in the second step, the link optimization
problem, we optimize the number of links on each router selected in the first step.

This approach is much more scalable than the combined problem, since the single
steps are smaller in size and easier to solve than their parent problem. As shown in
Table 3.1, the two-step problem is two order of magnitude more scalable than the
combined problem. We didn’t try to solve the two-step for more than 716 back-end
routers, the maximum size we were able to solve in the case of combined problem.
Indeed, as detailed in Appendix A, the single steps are still NP-hard, but they
are easily mappable to well-known problems. Thus, we can take advantage of the
existing heuristics and approximation algorithms available in the literature to solve
them.

On the other side, the two-step approach is not optimal since the divide and
conquer approach implies that we are using a greedy approach. Even though the
single steps are optimal, the output of the first step is obtained without considering
the links thus it may be different from the optimal solution of the combined problem.
Furthermore, the second step algorithm cannot send feedbacks to the first step in
case of bad inputs. In the next subsections we present in detail the two steps and
we evaluate the quality of the two-step solutions compared to combined problem
solutions to determine the impact of the two-parts splitting on the energy saving
problem. We will not consider approximation algorithms to solve the single steps
but we rely on optimal solutions given by CPLEX [64] solver. Since we focus mainly
on the approximations introduced by the splitting itself we avoid the additional
approximations that would be introduced by heuristics.

Router optimization

The router optimization step is the first step of the two-step approach. At this stage,
routers to be involved in traffic forwarding are optimally chosen without considering

Maximum number of back-end routers
Interfaces combined two-step

1 716 more than 716
2 134 more than 716
4 30 more than 716
8 20 more than 716
16 12 more than 716

Table 3.1. Maximum size of the MILPs in terms of number of routers and inter-
faces to obtain a solution in reasonable time

28

3.1 – Off-line algorithms

the NICs. Thus the router optimization step is formulated as follows:

min PR OPT =
∑

r Prαr (3.8)

s.t.
∑

r tr = 1 (3.9)

trT ≤ C∗

rαr, ∀r ∈ B (3.10)

αr ∈ {0,1} (3.11)

tr ∈ [0,1] (3.12)

where all variables, constraints and terms have the same meaning as in (3.2)–(3.7)
with the following modification: trl which is redefined as tr because links are not
considered here and C∗

r = min(Cr,Crl) which defines the actual routing capacity
of a router. This problem is a variation of the well known bin-packing problem
with splittable item (traffic T) where the bins (routers) have different size (routing
capacity Cr). Unlike the classical bin-packing problem where the cost of using a
bin is the same as the size of the bins, in this scheme the cost (power consumption Pr)
of the routers is different from the size (routing capacity Cr). Therefore, the above
problem is a bin-packing problem with generalized cost and variable

sized bins [65] with splittable items. (3.8) – (3.12) are used to optimally select the
routers to be used in packing the splittable traffic T while minimizing the power
consumption.

As previously mentioned, the two-step approach is based on the divide and con-
quer paradigm. Therefore the information required to globally optimize the system
is partitioned among the two steps making them less optimal from a global point of
view. To assess the impact of information partitioning, we introduce two different
schemes to configure the first step:

• Router-Power scheme (NIC−): no link information is made available to
the first step. In this scheme we use (3.8)–(3.12) with no modification.

• Router+Link-Power scheme (NIC+): NIC power consumption is consid-
ered in the first step.

In the NIC+ scheme the cost of using a router is defined as the power consumption
of the router plus the sum of the power consumption of all of its network cards.
Hence the Pr parameter in (3.8) is replaced by

P new
r = Pr +

∑

l

Prl (3.13)

P new
r is the same as in (3.1) and it represents the maximum power consumption of

router r including its NICs.

29

3 – Multistage architecture energy management

Link optimization

The link optimization problem makes use of the solution of the router optimization
step, so it is always the second step in two-step approach. Once the routers are
chosen by the first step and the amount of traffic Tr (such that

∑

r Tr = T) sent to
router r is determined, then the links on each router r are chosen according to the
following optimization problem to be solved independently on each router r ∈ B:

min PL OPT
r =

∑

l Prlβrl (3.14)

s.t.
∑

l trl = 1 (3.15)

trlTr ≤ Crlβrl, ∀l ∈ Lr (3.16)

βrl ∈ {0,1},trl ∈ [0,1] (3.17)

where Tr is the portion of the traffic T to be routed by router r, as provided by the
router optimization step. trl is a portion of Tr sent on link l to router r and it is
an optimization variable for this step. The other variables and parameters have the
same meaning as before. Note that the link optimization is performed independently
for each active router r ∈ B. As in the first step, this formulation is a generalized

cost variable sized bin-packing problem, where the links are the bins with cost
Prl and size Crl and the traffic is the splittable item Tr.

After solving the second step on each router, the total power consumption of the
multistage architecture due to the two-step approach is given by:

Ptwostep = PR OPT +
∑

r

PL OPT
r (3.18)

3.1.3 Performance evaluation

In this section we present results obtained using CPLEX [64] to implement the op-
timization models and we compare the combined and two-step solutions against the
scenario where no energy saving mechanism is implemented. This approach gives us
more opportunity to control single parameters and to focus on algorithm behaviors
without introducing additional complexity, implementation issues and approxima-
tions (e.g. two-step scheme is based on Bin Packing problem which is typically
solved by heuristics).

In the comparison, we fixed our attention to a realistic scenario, i.e. a multistage
router architecture with features comparable to those of a Juniper T320 router [20].
The main parameters [11, 35, 42] used in the simulation are:

• LBs and router power consumption PLB = Pr = 80 W;

• back-end router routing capacity Cr = 8000 Mbps;

30

3.1 – Off-line algorithms

• link capacity Crl = 1000 Mbps;

• link power consumption Prl = 2 W;

According to this profile, the 160 Gbps forwarding capability of Juniper T320 can
be realized using 20 back-end routers interconnected through a switch, each back-
end router being equipped with eight 1 Gbps single-port network cards. Without
energy saving scheme, this network consumes about 20 ∗ 80 + 2 ∗ 8 ∗ 20 + 16 ∗ 80 =
3200 W (1920 W by back-end routers) without considering the internal switch and
assuming to have 16 LBs each with one 10 Gbps link. However, the energy-saving
scheme proposed can save up to 1838 W when a minimal traffic is offered at inputs
(i.e. only one back-end router and one of its link are active to guarantee minimal
functionalities). This saving accounts for 57.44% of the total energy consumption
of the MSSR architecture.

Besides the analysis performed with the above described multistage router con-
figuration, we also evaluate independently the impact of the variability of four con-
figuration parameters (i.e. Cr, Pr, Crl and Prl) on the solution quality (measured
as the difference between the combined solution and the two-step solution). More
precisely, we fix three of the parameters to the above given default values, while we
vary the fourth parameter as follows:

• Cr: uniformly distributed in the range 5000 Mbps ≤ Cr ≤ 10000 Mbps. Ten
links (at 1 Gbps) for each router are required to avoid bottleneck.

• Pr: uniformly distributed in the range 60 W ≤ Pr ≤ 120 W.

• Crl: one of the standard link rates with priority to 1 Gbps links (100 Mpbs
with probability p = 0.25, 1 Gbps with probability p = 0.75).

• Prl: randomly chosen from {2,3,4} W.

For each of the four above described scenarios, we run the combined model and
the two-step schemes for traffic loads ranging from 10% to 100% of the total routing
capacity of the multistage architecture. For each of those load values, 20 random
instances were generated and results were averaged over the instances. Furthermore,
in the case of the two-step scheme, we evaluate both the router-optimization schemes
described in subsection 3.1.2 (i.e. NIC− and NIC+ schemes) under the same con-
figurations. The comparison metric is the total power consumption of the back-end
stage (minimum, maximum and average over the 20 instances). The relative differ-
ence between the optimal and the proposed algorithm is also reported to clarify the
comparison metric where relative difference is defined as:

Relative difference =
Ptwostep − Pcombined

Pcombined

(3.19)

31

3 – Multistage architecture energy management

 0

 400

 800

 1200

 1600

 2000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Po
w

er
 (

W
at

t)

Load

Optimal
NIC+ two-step
NIC- two-step

No Saving Scheme

Figure 3.1. Load proportional energy saving scheme in back-end routers

where Ptwostep and Pcombined are the two-step and optimal algorithm solution respec-
tively.

Main results

First of all, the most important result is that the usage of off-line energy saving
schemes proposed makes the energy consumption of the back-end stage of the mul-
tistage router proportional to input load allowing a huge energy saving when the
input load is not maximum, as reported in Fig. 3.1. For the above given experimen-
tal setup the energy saving ranges from 0 W in the case of maximum input load
to 1838 W (equivalent to 95.73% of maximum power consumption of the back-end
router) when input load is smaller than one link capacity and one router only is
needed.

Secondly, the solutions of combined and two-step approaches are very similar
in terms of power consumption. In the worst case considered in our simulations
the maximum power difference between the two-step approach and the optimal
solution is less than 9% as reported in Fig. 3.2, where all the considered scenarios
are compared. In the next section we explain more in detail the differences among
the solutions

Finally, the NIC− and NIC+ schemes obtain the same results in most of the
scenarios, but the NIC+ has a huge impact on the Prl scenario where link power is
randomized. In this scenario our heuristic allows to improve the two-step solution
and to make it equivalent to the combined solution as reported in Fig. 3.2(a) and
Fig.3.2(b), meanwhile it has no negative impact on the other scenarios. Thus the
NIC+ heuristic is useful to reduce the negative impact due to the variability of link

32

3.1 – Off-line algorithms

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
di

ff
er

en
ce

 (
%

)

Load

Cr
Pr

Crl
Prl

(a) NIC- two-step heuristic

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
di

ff
er

en
ce

 (
%

)

Load

Cr
Pr

Crl
Prl

(b) NIC+ two-step heuristic

Figure 3.2. Relative difference due to variability in router and link parameters

features and to improve the greedy approach followed by the two-step schemes.

Detailed results

In this section we explain more in detail the impact of each parameter on the pro-
posed algorithms.

Cr scenario

The effect of Cr variability on the two-step approach is minimal as reported in
Fig. 3.2. The difference is due to the greedy nature of the two-step: In the first
step there is no knowledge of the available links, so it happens that the amount of
traffic sent to routers by the first step cannot be managed efficiently by the second
optimization step on each of the routers. For instance, consider a simple scenario
involving two back-end routers:

Cr (Mbps) Pr (W) No. of links Crl (Gbps) Prl (W)

R1 9100 80 10 1 4
R2 7300 80 10 1 4

Table 3.2. Cr scenario description

Observe that the routers are equivalent from the point of view of the objective
function of the first step (i.e. Pr) and the difference is only in the routing capacity
as required by Cr scenario. Let us assume an input load T = 11 Gbps. A possible
optimal solution is to route 9 Gbps to R1 and 2 Gbps to R2 using nine links on R1
and two links on R2 at full capacity and consuming 2 ∗ 80 + 9 ∗ 4 + 2 ∗ 4 = 204 W.

However, in the two-step approach the final solution is typically different from the

33

3 – Multistage architecture energy management

optimal one. Since there is no knowledge of links in the first step, the first solution
usually maximizes the usage of one of the routers. For instance, one possible choice
is to forward 9100 Mbps to R1 and 1900 Mbps to R2 using ten links on R1 and
two links on R2 (two links, one on R1 and another on R2, are not used at full load)
consuming 2 ∗ 80 + 10 ∗ 4 + 2 ∗ 4 = 208 W, 4 W worse than the optimal power
consumption.

Thus, the solution of the first step is not always well-suited to efficiently load
the links, leading to higher energy consumption. However, the amount of additional
energy required is generally small because only few additional links are involved (e.g.
up to ten links at load equal to 0.9 in our case). Finally, there is no difference among
NIC− and NIC+, because the routers support the same set of links. In the case of
NIC+ the same amount of power is added to all the routers, thus the difference
among routers remain the same.

Pr scenario

There is no difference among the two-step and the combined approaches, because
the variability is introduced in the optimization parameter included in the objective
function. Since the first step is the reduced version of the combined problem while
considering routers only, then the optimal and two-step approaches are equivalent
in this case. Indeed, there are no issues related to the inefficiency in link utilization
in the second step as in the previous case, because the total available capacity Cr

(8 Gbps) is exactly the sum of the available links (eight links at 1 Gbps). This
means that the same routers will be chosen by both schemes, showing no difference
in Fig. 3.2. Furthermore, NIC− and NIC+ are equivalent for the same reasons
explained in previous scenario.

Crl scenario

This scenario is introducing variability in link features, thus it highlights the weak-
nesses of the two-step approach especially at high loads (See Fig. 3.2). In this case
the links have the same power consumption, but they may have a different capacity
(e.g. 100 Mbps or 1 Gbps). Since all the routers have the same power consumption,
it is important to be able to use efficiently the links by sending the right amount
of load to all the routers as in Cr scenario; this is done efficiently by the combined
scheme, but it cannot be done by the two-step scheme where all the routers are
equivalent in the router optimization step regardless of their links. Furthermore,
the difference among optimal and two-step schemes increases with the load, because
an increasing number of routers are activated and more routers will receive a wrong
portion of the load. Finally, the NIC+ heuristic cannot improve the solution since
it is focused on link power consumption only, which is the same for all the links.

34

3.2 – On-line algorithm

Prl scenario

As in the previous scenario, the variability in links highlights the weaknesses of two-
step scheme as shown in Fig. 3.2. In this case, all the routers are the same from the
point of view of power consumption and capacity thus they are equally likely to be
included in the solution by the two-step scheme. The relative difference reported in
Fig. 3.2(a) is decreasing with load because at small loads it is less likely to activate
the best routers (which are randomly chosen because they are equivalent). However,
at high loads, most of the routers are activated; thus, it is less likely to exclude the
best routers from the solution.

Finally, in this scenario the NIC+ heuristic is very effective reducing the error
in the considered configurations almost to zero because the aggregated power con-
sumption of links and routers allows to choose more efficiently the best routers: the
set of power-hungry links influences the choice of routers giving more priority in
the first step to routers hosting power-efficient links. As presented in Fig. 3.2(b),
there are still some small differences at low load, but this is due to the fact that
the heuristic aggregates all links in a single bunch. Thus, the router optimization
step is choosing on the aggregate power and not on the single link power. As a
consequence, some errors are more likely when few links will be used, as in the low
load case.

3.2 On-line algorithm

In the previous section we show that the two-step algorithm closely approximate
the optimal solution considering different scenarios under the assumption that the
input traffic is splittable (at a packet level) among the back-end routers. Given
this assumption, the two-step algorithm also scales to a practical size of a MSSR
architecture. However, if flow based routing is required, the two-step problem maps
to a generalized cost variable sized bin packing problem [66] and its scalability
deteriorates. In addition, as we describe later in this section, the off-line algorithms
(both the optimal and two-step) are more service disruptive and introduce more
delay unless the solution quality is compromised.

This section provides an alternative to off-line approaches; namely on-line dif-
ferential energy saving algorithms. Unlike the optimal and two-step algorithms, the
on-line algorithms set up a new back-end router configuration by modifying an ex-
isting configuration. It is less optimal compared to the off-line algorithms but has
the advantage of being less disruptive and scales well to solve large configuration
size both under splittable and flow based routing.

35

3 – Multistage architecture energy management

3.2.1 System modeling

While the assumptions presented in subsection 3.1.1 still holds, in this section we
consider an on-line solution for the following two traffic scenarios:

• unsplittable input traffic: Flow based input traffic information is necessary
if ordered delivery at the output interface is important to minimize out of
order delivery and delay needed to order the flows. The ordered deliver can
be performed by load balancing the incoming traffic based on flows, where
a flow is defined as packets belonging to the same source and destination.
Input traffic belonging to same flow will be directed by load balancers to the
same back-end PCs for routing operation. This input traffic is referred to as
unsplittable input traffic since a flow does not split into different back-end PCs
but forwarded only by a single PC. QoS provision is another perspective to
see the need for flow based routing.

• splittable input traffic: If ordered deliver and QoS provision is not manda-
tory, the input traffic can be present to the optimizer as an aggregate input.
The LBs split the aggregate traffic among available back-end PCs for rout-
ing operation as in the case of off-line algorithms. We refer to this traffic as
splittable input traffic.

Consequently, the multistage architecture energy saving model presented in Sec. 3.1
requires a slight modification to fit both splittable and unsplittable input traffic
scenario. In the following, we discuss this modification in detail.

Problem formulation

Based on the the above stated assumptions, the multistage architecture energy sav-
ing scheme can be stated and formalized as follows: Given i) a set of back-end
PCs B; each PC b ∈ B characterized by power consumption (excluding network
cards) Pb ∈ R and routing capacity Cb ∈ R, ii) a set of links Lb connected to each
PC b ∈ B; each link l ∈ Lb characterized by power consumption Pbl ∈ R and link
capacity Cbl ∈ R, and iii) a set of input traffic demand T ∈ R, Select PCs and
links required in routing the traffic demand such that the energy consumption of
the architecture is minimized, Subject to link rate and router capacity.

In formalizing the problem definition, let αb be a PC selection binary variable
(equal to 1 if a PC b ∈ B is activated, 0 otherwise), and βbl be the link selection
binary variable (equal to 1 if the link l ∈ Lb connected to PC b ∈ B is used, 0
otherwise). And let δblk be

• a flow selection binary variable, δblk ∈ {0,1}, for unsplittable input traffic; 1 if
a flow tk ∈ T is forwarded on link l of router b , 0 otherwise, OR

36

3.2 – On-line algorithm

• a portion of splittable input traffic to be forwarded by router b on link l; i.e.,
δblk ∈ [0,1]. Note that for splittable traffic, the set T has only one element
which is the aggregate input traffic. Thus k = 1 under splittable traffic scenario
and δblk represents a portion of an input traffic T .

Given the above definitions and assumptions, the MSSR energy saving problem can
be formulated as a mixed integer linear programming (MILP) as follows:

min. P =
∑

b(Pbαb +
∑

l Pblβbl) (3.20)

s.t.
∑

b

∑

l δblk = 1 ∀k ∈ T (3.21)
∑

l

∑

k δblkSk ≤ Cbαb ∀b ∈ B,∀k ∈ T (3.22)
∑

k δblkSk ≤ Cblβbl ∀b ∈ B,∀l ∈ Lb,∀k ∈ T (3.23)

αb ≥ βbl ∀b ∈ B,∀l ∈ Lb (3.24)

αb,βbl ∈ {0,1}

δblk ∈ {0,1} ∨ [0,1]

where Sk is the size of flow k. (3.21) ensures that all the input traffic T is served
while (3.22) and (3.23), respectively, make sure the capacity constraints of each
router (Cb) and link (Cbl) are not violated. (3.24) ensures that router b is active if
at least one of its links is chosen to carry some traffic.

Equations (3.20) – (3.24) define a MILP problem that optimizes the MSSR ar-
chitecture power consumption, considering both PCs and NICs simultaneously for
both unsplittable and splittable input traffic. The solution to the above defined
problem is a back-end PCs configuration capable of routing an input traffic T under
devices capacity constraint while minimizing the energy consumption. The problem
is categorized as NP-hard problems as demonstrated in appendix A. Thus, exact
methods can only be used to solve small size cases and therefore we opt for a heuris-
tic method. We use the results, however, as a reference to measure the performance
of our proposed heuristic algorithms.

3.2.2 Proposed heuristic algorithm

Besides the optimal problem is NP-hard, reconfiguration of back-end PCs to handle
changes in input traffic usually causes service disruption or forwarding delay unless
an optimal solution is compromised. This is because a solution which is optimal
in one input traffic scenario will not be optimal in another. Thus the change in
an input traffic triggers re-computation for optimal solution under current traffic
demand. Most frequently, the new solution differs from the previous solution which
means turning off some already active devices and turning on some others. This

37

3 – Multistage architecture energy management

transition requires some time resulting in a reduced routing capacity temporary.
That is some input traffic are delayed or not served at all during reconfiguration
phase. One solution could be to keep the previous configuration until a new one is
setup but this compromises the optimality of the solution during the reconfiguration
phase since the previous configuration is not optimal under current traffic scenario.

Algorithm description

The proposed energy saving heuristic is an on-line differential algorithm that defines
a new back-end stage configuration needed to satisfy the current traffic demand by
modifying an existing MSSR configuration to avoid service interruption or delay.
The algorithm is a modified first-fit-decreasing bin-packing algorithm [63] with bins
(PCs) having different size (actual routing capacity Ca) and different usage cost
(power dissipation) where the items (input traffic) can be splittable or unsplittable.
The algorithm also has to consider bins (links) within a bin (PC) scenario during
packing. More specifically, the algorithm tries to pack the links with portion of the
input traffic taking heed of the routing capacity of the PC being not exceeded.

During the initialization phase, the algorithm performs two tasks: computes the
actual routing capacity of each PCs and sorts the devices (both PCs and links).
The actual routing capacity of a PC acting as a router is limited either by the
CPU packet processing capacity or by the sum of link rates on the PC [10] [11].
For example, if a PC has 4 Gbps routing capacity but has only single 1 Gbps
link, then the actual routing capacity is limited to the link capacity; i.e. 1 Gbps.
Since the devices have different capacity and power dissipation, sorting devices is
necessary in order to increases the packing efficiency [66]. The initialization phase
of the algorithm performs these tasks according to a predefined criteria (detail in
section 3.2.2). Furthermore, for unsplittable input traffic the flows will be sorted in
descending order - again to increase the efficiency of packing.

After the initialization phase, the algorithm continues to monitor changes in the
input traffic. If the input traffic increases, the algorithm will retain the current
configuration and augments the current capacity by turning on additional devices.
Otherwise, if the input traffic decreases, the algorithm turns off some devices to down
size the current active configuration to the traffic demand (detail in section 3.2.2).

Algorithm initialization

At start up, the algorithm analyze the MSSR available configuration, i.e. the set
of PCs used as the back-end stage and of their NIC cards, to determine the actual
routing capacity (Ca) of each PC and therefore of the whole architecture (C

MSSR
).

38

3.2 – On-line algorithm

The algorithm computes these capacities as:

Ca = min(Cb,
∑

l

Cbl) (3.25)

C
MSSR

=
∑

b

Ca (3.26)

Equation (3.25) defines actual capacity of a PC as the minimum between a PC CPU
packet processing capacity (Cb) and the sum of all the link rates on that PC. Then
the sum of all back-end PCs actual routing capacity defines the MSSR architecture
capacity (C

MSSR
).

Then the algorithms sort devices, both PCs and links, according to the following
two schemes:

I) device efficiency - devices are ordered in descending order of efficiency OR

II) device power dissipation - devices are ordered in ascending power dissipation

The sorted devices are used in the packing algorithm (described in Sec. 3.2.2) that
prioritize the first device in the sorted list which has a capacity to handle a traffic
demand.

In the first sorting scheme, efficiency is defined, in general, as the amount of
traffic routed per watt:

η =
actual capacity

power
(3.27)

When sorting PCs according to their efficiency, two slight variations are considered.
The version of the algorithm denoted as η

NIC−

does not consider the NICs power
consumption when evaluating PCs’ efficiency.

η
NIC−

=
Ca

Pb

(3.28)

Instead, the version of the algorithm that takes into account also the link power
consumption during PCs sorting stage is named η

NIC+
. In this case, (3.28) can be

rewritten as:

η
NIC+

=
Ca

Pb +
∑

l Pbl

(3.29)

where N is the number of links connected to back-end PC b. Similarly, links in a
PC b are also sorted according to their efficiency η

bl
:

η
bl
=

Cbl

Pbl

(3.30)

39

3 – Multistage architecture energy management

The second sorting scheme sorts devices by power dissipation where less dissipat-
ing devices come first in the list. That is less energy consuming devices are preferred
if they have a residual capacity to route incoming traffic. PCs sorted according to
their power consumption also has P

NIC−

and P
NIC+

versions. Accordingly, P
NIC+

sorts PCs considering links power consumption as:

P
NIC+

= Pb +
∑

l

Pbl (3.31)

On the other hand, P
NIC−

considers only the PCs power consumption for sorting.
Links on a PC also will be sorted according to their power consumption in case the
second sorting scheme is deployed.

Packing algorithm

The goal of the algorithm is to minimize energy consumed by a subset of back-end
PCs that serves the requested traffic demand. Therefore, after the devices sorting
phase, the algorithm follows a greedy approach in packing the incoming traffic to the
back-end PCs. For efficiency sorting scheme, the algorithm starts activating (i.e.,
setting in the on state) the available most efficient PC b according to (3.28) or (3.29)
and the most efficient links l on that PC b according to (3.30). When the first
PC’s actual capacity (Ca) is fully utilized, the algorithm considers packing residual
incoming traffic to the next available most efficient PC. This procedure is iterated
until all the incoming traffic is served. If the incoming traffic exceeds the MSSR
architecture capacity (CMSSr), the extra amount of traffic is discarded. Similarly,
if the sorting is based on device power consumption, the algorithm starts packing
the least power consuming PCs and least consuming links on those PCs until all
incoming traffic is served.

After each configuration setup, the algorithm continues to monitor the incoming
traffic change to identify a traffic modification worth of a reconfiguration phase. A
reconfiguration phase initialized in following two ways:

I) threshold based or

II) sampling based

In threshold based reconfiguration initialization, a specified threshold is defined. If
the traffic change exceeds this threshold, then a new back-end PCs configuration
will be defined by the algorithm to handle the new traffic demand. We assumed an
input traffic change by ±5% of total input traffic to initiate reconfiguration of the
back-end PCs. Any smaller change in input traffic that does not reach ±5% of total
traffic will not activate a reconfiguration step. To serve such a small variation in the
input traffic, however, the current configuration can be augmented by 5% of total

40

3.2 – On-line algorithm

MSSR capacity. We did not consider the capacity augmentation in these work to
be fair in comparing the proposed algorithm with the optimal solution which does
not consider this extra capacity either.

Sampling based reconfiguration initialization defines a traffic sampling interval
a priori and the input traffic is sampled accordingly. Every time there is a new
sampled input traffic, the algorithm resize the back-end PCs configuration to the
load demand, i.e. the algorithm enters the reconfiguration phase on regular interval
according to the input traffic sampling time.

When a reconfiguration request is triggered, if the traffic demand increases, the
algorithm computes the extra traffic demand and turns on additional resources, i.e.,
links on already active PCs and new PCs currently in off state, needed to route
the increased demand. As discussed earlier, links and PCs to be activated are
considered in order of increasing efficiency or decreasing power consumption. If the
traffic decreases, on the other hand, the algorithm adjusts the running configuration
by turning off extra links and PCs to down size the back-end configuration to the
traffic demand. Under decreasing input traffic, however, we consider turning off
devices in reverse order - turn off less efficient or more energy consuming PCs and
links first depending on the sorting scheme used.

The pseudo-code description of the proposed energy saving heuristic is reported
in Algorithms 1 - 3. Algorithm 1 presents the sorting algorithm and Algorithms 2
and 3 details packing schemes deployed. The packing schema for unsplittable and
splittable traffic is slightly different as highlighted by the corresponding pseudo code.

The block diagram depicted in Fig. 3.3 shows how the proposed energy saving
scheme fits into the MSSR architecture. The energy saving scheme runs on the same
back-end PC where the virtualCP is running to ease their interaction. Any change
in the model instance triggers the power saving algorithm to recompute back-end
configuration that saves energy under the current configuration. The model instance
is modified for two reasons: First the virtualCP monitors, through the DIST proto-
col, any change in the MSSR configuration, to identify any modification in link and
PCs configuration, that may be caused by device faults, upgrade or addition/re-
moval for management purposes. These modifications trigger create/update actions
on the system model instance. Second it is modified by the traffic statistic mod-
ule that collects traffic information. Thus any change in the input traffic above a
predefined threshold or new input traffic sampling or any modification in PC config-
uration triggers the energy saving algorithm to define a new energy efficient MSSR
configuration.

Once the new MSSR configuration has been defined by the energy saving algo-
rithm, the virtualCP switches on and off the proper set of PCs and links exploiting
the DIST protocol features. Furthermore, load balancing tables of front-end stage
LBs are modified accordingly, to ensure that the incoming traffic is forwarded only
to currently active PCs.

41

3 – Multistage architecture energy management

Power saving

algorithm

Monitor
Control

 Traffic

Statistics

 Model

Instance

VirtualCP

create/

update

update

read

provide power

efficient

configuration

Trigger

Multistage software router configuration

Control PC

Figure 3.3. MSSR architecture power saving scheme block diagram

3.2.3 Computational complexity

Setting up a new configuration involves the following steps: (i) computing the actual
capacity (Ca) of each PCs, (ii) sorting of devices and input traffic and (iii) packing
the input traffic to the new configuration. Computing the actual capacity of each
PCs requires looping through the PCs and links in those PCs which can be done
in time O(mn) where n is the number of PCs and m is the number of links on
each PC. The number of links per PC usually limited to few number and can be

Algorithm 1 Sorting algorithm - Pseudo-code description

if sort by efficiency then

if NIC+ then

sort(list of η
NIC+

)
else

sort(list of η
NIC−

)
end if

for all PCs do
sort(list of η

bl
);

end for

else

if NIC+ then

sort(list of P
NIC+

)
else

sort(list of P
NIC−

)
end if

for all PCs do
sort(list of Pbl);

end for

end if

42

3.2 – On-line algorithm

Algorithm 2 Unsplittable traffic routing - Pseudo-code description

sort(list of flows)
sort(list of device)
A = 1; //number of active PCs, at least one device to readily give service
loop

if reconfiguration required then

for All flows f = 1, 2, ..., M do

for All PCs b = 1, 2, ..., N do

for All links l = 1, 2, ... L do

if Flow f fits in link l then
Pack flow f in link l ;
break;

end if

end for

if Flow f packed then

break;
end if

end for

if Flow f did not fit in any A PCs link then

if b is less than N then

Turn on next PC in the list
decrement f ;

else

drop flow f ;
end if

end if

end for

if b less than A then

extra PCs = A - b;
switch off extra PCs;

end if

A = b;
end if

end loop

considered as a constant. Thus actual capacity computation can be performed in a
time O(n). Considering merge sort, sorting devices and input traffic (in case of flow
based routing), can be done in worst case in a time O(nlogn) [67]. We implemented
a first-fit-decreasing algorithms for packing which has a worst case running time of
O(nlogn) [68]. Summarizing the three steps, a configuration choice can be performed
in a time O(n + nlogn + nlogn) = O(nlogn) which scales logarithmically in the
number of flows and PCs.

43

3 – Multistage architecture energy management

Algorithm 3 Splittable traffic routing - Pseudo-code description

sort(list of device);
A = 1; //number of active PCs, at least one device to readily give service
loop

if reconfiguration required then

for All PCs b = 1, ..., N do

for All links l on PC b do

if l has residual capacity then

pack portion of input traffic;
input traffic -= l residual capacity;

end if

if All packed then

break;
end if

end for

if All not packed in A PCs then
if b less than N then

Turn on next PC in the list;
else

drop extra input traffic;
end if

else

break;
end if

end for

if b less than A then

extra PCs = A - b;
switch off extra PCs;

end if

A = b;
end if

end loop

3.2.4 Performance evaluation

In this section we evaluate the proposed on-line differential algorithm with respect to
the optimal solution for unsplittable and splittable input traffic. First we discuss the
experimental scenario and in the following subsections we present the main results.

Experimental setup

To asses the energy saving achieved by the proposed algorithms, a back-end stage
base configuration with three groups of PCs are used as an input both to the optimal

44

3.2 – On-line algorithm

and to the on-line algorithm. Each group consists of five PCs and each PC in each
group has the following specification [10,11,35,42]:

Cr (Gbps) Pr (W) No. of links Crl (Gbps) Prl (W)

Group I 4 60 4 1 4
Group II 8.7 100 1 10 20
Group III 8.7 80 9 1 6

Table 3.3. Simulation parameters for on-line algorithm performance evaluation

For the second and third group the total link capacity of each router (10000 Mbps
for the second and 9000 Mbps for the third group) is more than the corresponding
routing capacity which is 8700 Mbps for both groups. Therefore the actual routing
capacity (computed according to (3.25)) for both groups is limited by capacity of the
routers. Instead, for the first group the router capacity and the total link capacity
are the same and hence the actual capacity is 4000 Mbps. Overall, the multistage
software router has a maximum routing capacity of 5 ∗ 4000 + 5 ∗ 8700 + 5 ∗ 8700 =
107 Gbps. To fully utilize this capacity we assumed 11 LBs each with one 10 Gbps
link external and at least three back-end links with total capacity of 10 Gbps for
internal connection [15]. Assuming 80 W power consumption for each LB, without
any energy saving scheme, the architecture consumes 2.53 kW (1.65 kW by the
back-end routers) excluding the interconnecting switch.

Traffic traces

In the simulation, we used two different traffic traces. The first one is based on
a realistic traffic scenario. We captured a traffic from a university core router in
Twente to derive the input traffic load. To build large MSSR architecture, the
traffic was scaled up while keeping the ratio the same among traffic loads at each
sampling. We aggregated the traces into 60min time interval. Then, we averaged
the traffic volume over a week to get a per day volume statistics. Fig. 3.4 shows
the volume trace. We used this trace to generate unsplittable input traffic and is
suitable for sampling based reconfiguration initialization of the back-end PCs.

The second traffic trace is a synthetic traffic trace used in splittable input traffic
scenario where the traffic is assumed to change by ±5% of the total architecture
capacity (C

MSSR
). We applied this scheme to compare the on-line algorithm with

the two-step algorithm discussed in subsection 3.1.2.

45

3 – Multistage architecture energy management

 40

 50

 60

 70

 80

 90

 100

 110

 0 2 4 6 8 10 12 14 16 18 20 22 24

T
ot

al
 tr

af
fi

c
(G

bp
s)

Time (hours)

60min sampling

Figure 3.4. Input traffic trace used in the experiment

Evaluation metrics

Based on the experimental scenario and the input traffic traces, we compare the
proposed energy saving on-line algorithm with respect to the optimal off-line algo-
rithm and with an on-line heuristic version that is not sorting PCs in terms of energy
consumption. We also compare the different algorithms in terms of the difference
between two consecutive configurations.

An energy consumption of the back-end routers over a given period is obtained
from power dissipation curves as:

Energy = power× time (3.32)

This is equivalent to compute the area under each power curve. Both the power
dissipation and a derivate energy consumption of the back-end PCs configuration
defined by each algorithms will be reported.

The configuration difference, expressed as the difference between two consecutive
back-end PCs configuration in terms of number of PCs, is a measure of service
interruption or delay. Turning off some devices in the current configuration during
the reconfiguration step, means that the capacity of the MSSR decreases by the
number of devices turned off until the new configuration come on-line resulting is
service interruption temporarily.

We also consider the two router sorting policies NIC+ and NIC- to highlight
the impact of link power when sorting PCs. Accordingly, results from the following
algorithms will be presented for both splittable and unsplittable input traffic:

• Optimal: back-end PCs configuration solved optimally. We used CPLEX [64]
to solve Equations (3.20) - (3.24)

46

3.2 – On-line algorithm

• η
NIC+

: an on-line heuristic that sort devices according to their efficiency and
considers link consumption in PC sorting

• η
NIC−

: same as η
NIC+

but does not consider link consumption in PC sorting

• P
NIC+

: an on-line heuristic that sort devices according to their power dissipa-
tion and considers link consumption in PC sorting

• P
NIC−

: same as P
NIC+

but does not consider link consumption in PC sorting

• Random: on-line heuristics without device sorting scheme

Recall that saving for LBs are not considered, as discussed in Sec. 3. Therefore,
the results presented include only the back-end PCs configuration. The results
reported are average over 5 runs for each scenario under unsplittable input traffic
considering the amount of time it took us to solve the optimal problem. For splittable
input traffic we averaged the results over 10 runs since it is much faster to solve the
optimal problem under this scenario.

Results: Unsplittable input traffic

In unsplittable input traffic scenario, we consider sampling based MSSR reconfig-
uration initialization as discussed in Sec. 3.2.2 and Sec. 3.2.4. That is we sample
the input traffic every given sampling interval and reconfigure the back-end PCs
to handle the sampled traffic. This configuration lasts for the sampling interval.
For this simulation we choose the realistic traffic trace depicted in Fig. 3.4 but it
is equally applicable for synthetic traffic scenario. The unsplittable traffic is com-
posed of mainly smaller and larger flows. A parameter α (and β = 1 − α) defines
the proportion of smaller and larger flows to be used in a given simulation. In one
extreme we choose large amount of smaller flows and in the other large amount of
larger flows to see the impact of flow sizes on the proposed algorithm. Thus the
following α are defined:

• α = 0.2,β = 0.8 - more number of larger flows

• α = 0.5,β = 0.5 - same proportion of smaller and larger flows

• α = 0.8,β = 0.2 - more number of smaller flows

At each sampling time, for each defined α, we generate flows such that the sum
equal to a traffic volume (See Fig. 3.4) at that sampling time. Smaller flows are
uniformly generated from 1 Mbits to 10 Mbits and larger flows from 50 Mbits to
100 Mbits. The first scenario is used to evaluate the algorithms under worst case
since packing larger flows results in less efficiency. In the following we present detail

47

3 – Multistage architecture energy management

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5 10 15 20

Po
w

er
 (

W
at

ts
)

Time (Hrs)

α=0.2

Optimal

ηNIC+

PNIC+

Random

No scheme

(a) Load proportional power dissipation

 15

 20

 25

 30

 15 16 17 18 19 20 21 22 23

E
ne

rg
y

co
ns

um
pt

io
n

(K
W

h)

Time (Hrs)

α=0.2

Optimal

ηNIC+

PNIC+

Random

 0

 4

 8

 12

 16

 0 5 10 15

(b) Energy consumption over 24 hours

Figure 3.5. Comparison of different algorithms for unsplittable input traffic

results for unsplittable input traffic generated as per the defined α and β. Note that
at full load it is possible all the flows might not be served even under optimal packing
because of some capacity wastage in each PCs during packing. Fig. 3.5(a) reports the
power dissipation of the back-end PCs configuration set up by different energy saving
algorithms for α = 0.2. The on-line algorithms (labeled η

NIC+
and P

NIC+
) sorts the

back-end PCs considering their link consumption as discussed in Sec. 3.2.2. The
figure shows that the power dissipation of the back-end PCs configurations defined
by different algorithms is proportional to the load demand. However the power
saving that can be achieved by the different algorithms differs. The power saving
by each algorithm can be computed as the gap between the power dissipation of the
architecture if no power saving scheme is deployed, the curve labeled ”No scheme”,
and the power dissipation of the architecture defined by each algorithm. Fig. 3.5(b)
and Fig. 3.6 confirms the claim that each algorithm saves different amount of power.
Fig. 3.5(b) depicts the energy consumption of the back-end PCs configuration over
24 hours as given by (3.32). The figure is magnified over the time range 15 to 23
while the smaller inset in Fig. 3.5(b) shows the remaining part for the time range 0
to 15.

It clearly shows that the saving by the η
NIC+

algorithm is as good as the optimal
and that of P

NIC+
is just as worse as the unsorted case. η

NIC+
on-line algorithm

is successful because in sorting the PCs it can globally see which PCs are more
efficient than the others. This algorithm losses against the optimal because of the
last PC choice for a given configuration. The choice of the PCs in setting up a
configuration for η

NIC+
is influenced by the sorting algorithm. That is the algorithm

does not have a freedom to choose the last device in a configuration, even if it is less
loaded. Therefore the capacity wastage is translated into energy inefficiency. While
the global view of devices is also true for P

NIC+
algorithm, it does so from power

consumption point of view. But least power consumption does not, in general,

48

3.2 – On-line algorithm

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20

R
el

at
iv

e
di

ff
er

en
ce

 (
%

)

Time (Hrs)

α=0.2

ηNIC+

PNIC+

Random

Figure 3.6. On-line algorithms relative difference with respect to optimal algorithm

mean energy efficiency. In this simulation scenario the least consuming PCs are
those in group I which has also the least capacity. If a traffic demand is beyond
one of the PC’s capacity, another one of the same group will be turned on instead
of turning on one bigger capacity PC from the other groups. This results in higher
loss because higher loads demand more number of less capable PCs and signifies
that what is important is not only the power consumption but the amount of task
a device performs per watt.

The relative difference between the on-line algorithms and the optimal is depicted
in Fig. 3.6 where relative difference is defined as:

Relative difference =
P

ALGO
− P

OPT

P
OPT

(3.33)

In (3.33), P
ALGO

is the power dissipation of the back-end PCs configuration at a
given sampling time and P

OPT
is that of the optimal configuration. Fig. 3.6 justify

that the P
NIC+

algorithm loses more against the optimal at low loads as shown in
the time interval 4am and 8am. As the load is increasing the inefficiency of the
on-line algorithms decreases because more and more of wrongly included devices in
back-end router configuration becomes appropriate to include.

Similar behavior is seen as α changed to 0.5 and 0.8 as well. The results for α =
0.8 is plotted in Fig. 3.7. As α changes from 0.2 to 0.8, the figures clearly show that
packing efficiency slightly varies among the different αs. This is explainable because
the flow sizes are very small compared to the capacity of the devices. The smaller
link capacity in the simulation scenario is 1 Gbps which is 10 times that of the largest
flow size. Thus packing can be done efficiently under all considered α cases. In the
following we present results based on α = 0.2 only as the results are similar for the
other αs. The energy saving capability of both algorithms based on efficiency sorting
and power sorting drops under NIC- scenario. Fig. 3.8(a) shows that still algorithms

49

3 – Multistage architecture energy management

 15

 20

 25

 30

 15 16 17 18 19 20 21 22 23

E
ne

rg
y

co
ns

um
pt

io
n

(K
W

h)

Time (Hrs)

α=0.8

Optimal

ηNIC+

PNIC+

Random

 0

 4

 8

 12

 16

 0 5 10 15

(a) Energy consumption

 0

 5

 10

 15

 20

 25

 0 5 10 15 20

R
el

at
iv

e
di

ff
er

en
ce

 (
%

)

Time (Hrs)

α=0.8

ηNIC+

PNIC+

Random

(b) On-line algorithms relative difference with
respect to optimal algorithm

Figure 3.7. Comparison of different algorithms for unsplittable input traffic

based on efficiency sorting are performing better (see label η
NIC−

) compared to the
other on-line algorithms but it loses much against the optimal in comparison to η

NIC+

sorting based algorithms. This is because the sorting algorithm lacks global view
of devices’ efficient which directly influence the packing algorithm. The inefficiency
arises from the fact that those PCs which are efficient according to η

NIC−

sorting
criteria have high energy consumption in their links. Thus the overall efficiency
decreases.

While the η
NIC−

sorting based on-line algorithm still performs well, the lack of
global view of efficient PCs costs the algorithm much more than even the unsorted
scenario under some load situation. This can be seen from the relative difference
plot shown in Fig. 3.8(b). This usually happens at low loads because according to
this sorting scheme group III PCs are given priority. These devices has higher
total link consumption compared to the others groups. Consequently prioritizing
these devices is the source of inefficiency. At about 40% of the total load, however,
the inefficiency introduced by these devices reverts as more appropriate devices are
included in the solution.

The algorithm that sorts devices according to their power consumption, which
was not performing well in NIC+ scenario, is even worse under NIC- (see label P

NIC−

in Fig. 3.8). The inefficiency reasoning for P
NIC+

also holds for P
NIC−

. In addition,
in P

NIC−

the inefficiency is exacerbated by lack of global view of less consuming PCs.

Although the power saving achieved by the off-line optimal approach is larger, the
on-line algorithms have an obvious scalability benefits. Furthermore, it gracefully
modifies the current MSSR configuration minimizing service interruptions. Fig. 3.9
supports the claim that the on-line algorithms are less disruptive compared to the
off-line optimal reconfiguration. The plot reports the difference in the number of
PCs between two consecutive configurations for the optimal off-line and on-line

50

3.2 – On-line algorithm

 15

 20

 25

 30

 35

 15 16 17 18 19 20 21 22 23

E
ne

rg
y

co
ns

um
pt

io
n

(K
W

h)

Time (Hrs)

α=0.2

Optimal

ηNIC-

PNIC-

Random

 0

 4

 8

 12

 16

 0 5 10 15

(a) Energy consumption

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20

R
el

at
iv

e
di

ff
er

en
ce

 (
%

)

Time (Hrs)

α=0.2

ηNIC-

PNIC-

Random

(b) On-line algorithms relative difference with
respect to optimal algorithm

Figure 3.8. Comparison of different algorithms for unsplittable input traffic

algorithm based on efficiency sorting but the result is similar for the algorithm
based on power sorting as well. The peak configuration difference is at the start
of the simulation. This is because the algorithms, before receiving the first traffic
input, turn on only one PC to save energy while readily giving service as traffic
arrives. In our simulation, when the algorithms reconfigure the architecture for the
first time, they receive a large amount of traffic (see Fig. 3.4 at 12am). Thus the
number of routers change from one to more than 10 in both the optimal and on-line
algorithms.

After this initial setup, however, the on-line algorithms require reconfiguration
of at most 2 PCs while it is usually more than 2 PCs for the optimal. In the optimal
case the change in reconfiguration includes PCs in the active configuration. This
means that as the input traffic changes, the optimal off-line algorithm recomputes
the back-end PCs configuration from scratch since the current configuration is not
optimal under the new scenario. That is it is possible that the optimal off-line algo-
rithm could turn off PCs in the active configuration if they are not optimal under
the changed load and turns on other PCs which are already off to compensate the re-
duced capacity. This results in capacity deficiency during the reconfiguration period
and therefore service disruption or delay is inevitable. The on-line algorithms on the
other hand just turn on required number of additional dvices that augment the ca-
pacity of existing configuration to balance the increase in the load (see Algorithm 2)
or turn off any extra devices if the traffic is decreasing.

Results: splittable input traffic

In this section we present performance evaluation of the proposed on-line algorithm
that sorts devices by efficiency under splittable input traffic. We do not consider
on-line algorithm that sorts devices based on their power dissipation since it is less

51

3 – Multistage architecture energy management

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20

of

 R
ou

te
rs

Time (Hrs)

α=0.2

Optimal

ηNIC+

PNIC+

Random

Figure 3.9. Configuration difference between two consecutive solutions
(unsplittable traffic)

efficient. We compare the on-line algorithm with the optimal, two-step and an on-
line algorithm that randomizes the list of back-end PCs. The experiment is based on
the MSSR architecture described in Sec. 3.2.4. We used a synthetic traffic trace as
detailed in Sec. 3.2.4 where a traffic change by ±5% of the total architecture capacity
(C

MSSR
= 107 Gbps) initiate the the back-end PCs reconfiguration phase. We run

all algorithms for a load ranging from 5% to 100%. Note that the off-line algorithms
(i.e. the optimal and two-step) are the same as the one presented in Section 3.1. We
consider both router sorting policy given by equations (3.28) and (3.29) to highlight
the impact of link power consideration in sorting the back-end routers.

Fig. 3.10(a) and Fig. 3.11(a) compare the saving that can be achieved by dif-
ferent schemes for splittable input traffic. Compared to the no scheme scenario, all
the three schemes; i.e., the optimal, two-step and the on-line differential algorithms,
save a lot of energy especially at low loads. In no load condition, for instance, the
proposed algorithm saves up to 1.53 kW at the back-end stage under the worst sce-
nario (i.e. only one back-end router - from the second group with its link - is needed
to guarantee minimal functionality). In general, all the proposed algorithms tune
the MSSR to the traffic demand resulting in a load proportional energy consumption
architecture. The small figure inside Fig. 3.10(a) magnifies the detail of the three
schemes in a load range between 0.15 to 0.4. To be more precise we present also
the relative difference of the proposed heuristic and two-step with respect to the
optimal as shown in Fig. 3.10(b) and 3.11(b).

From these results it is evident that the heuristics are less efficient compared with
the optimal solution and among the heuristics the two-step shows better performance
for both NIC+ and NIC− efficiency sorting and the unsorted heuristic scenario is the
worst. On-line heuristic is less efficient in comparison with the two-step algorithm
with worst case performance gap of 27.7% and 20.2% with respect to the optimal
algorithm for NIC+ and NIC− router sorting respectively. Two-step has rather

52

3.2 – On-line algorithm

 0

 300

 600

 900

 1200

 1500

 1800

 2100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Po
w

er
 (

W
at

t)

Load

Optimal
no scheme

two-stepNIC+
ηNIC+

Random

 300

 600

 0.2 0.3

(a) Load proportional power dissipation

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
di

ff
er

en
ce

 (
%

)

Load

ηNIC+

two-stepNIC+
Random

(b) On-line algorithms relative difference with re-
spect to optimal algorithm

Figure 3.10. Comparison of different algorithms for splittable input traffic

lower performance gap; i.e. 3.45% and 10.67% respectively for NIC+ and NIC−

router sorting respectively.

In both NIC+ and NIC− back-end PCs sorting schemes the on-line heuristics
worst performance gap occurs at low loads. This is because the second and the
third group of PCs are given priority according to NIC+ and NIC− efficiency sorting
respectively. However the load demand is much less than the capacity provided by
the configuration made up of these group of PCs and hence the decision made by
the on-line heuristic translate into less efficiency in terms of energy consumption.
For instance at load 0.1 (which is equivalent to 10.7 Gbps input traffic), we need
two routers from the second group with a total capacity of 17.4 Gbps according to
NIC+ efficiency sorting. This is in excess of ≃ 7 Gbps and the total consumption
is 2 ∗ 80 + 2 ∗ 20 = 200 W. A better choice would have been one router from the
second group and one router from the first group with a total power consumption
of 80+ 20+ 60+ 4 ∗ 4 = 168 W which is the right choice by the two-step algorithm.
Thus the excess capacity by the on-line algorithm translates into energy inefficiency.
This is significant at low loads relatively. As the load is increasing, the heuristic
solutions are relatively comparable to the optimal and the performance gap between
on-line and two-step also closes. This is because more and more devices wrongly
included by the on-line heuristic in previous solution becomes the right choices thus
reducing the performance gap with respect to both the two step and the optimal
solution.

The better performance of unsorted heuristic scenario at low loads is because, for
this simulation scenario, it happened that the routers at the front end in the unsorted
list is a better combination compared to the heuristic solutions. We present here
to show that this scenario is possible but running the simulation multiple times
indicates that this is not generally true.

53

3 – Multistage architecture energy management

 0

 300

 600

 900

 1200

 1500

 1800

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Po
w

er
 (

W
at

t)

Load

Optimal
no scheme

two-stepNIC-
ηNIC-

Random

(a) Load proportional power dissipation

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
di

ff
er

en
ce

 (
%

)

Load

ηNIC-

two-stepNIC-
Random

(b) On-line algorithms relative difference with re-
spect to optimal algorithm

Figure 3.11. Comparison of different algorithms for splittable input traffic

It is said that the on-line differential algorithm is less efficient compared to the
two-step and the optimal algorithms. Why are we then still interested in an on-line
differential algorithm? The answer lies in its obvious scalability benefits and its
capability to build a new solution on top of an existing one. While two-step scales
well to practical MSSR size, the differential solution is lacking in both two-step
and optimal algorithms because they took an off-line approach to solve the energy
saving problem. That is, for every change in input traffic demand we need to solve
the problem from scratch to scale the architecture to the traffic change since previous
load optimal solution will not be any more optimal in the current traffic condition
in off-line approaches. This could result in a completely different solution from the
previous one which requires turning off an already active devices and turning on non
active ones. This is undesirable since it results in service disruption until the new
configuration is ready.

The proposed on-line heuristic, however, continually checks for a change in traffic
demand and builds upon an existing solution; reducing possibility of service inter-
ruption while keeping the energy consumption of the new configuration as minimal
as possible. More precisely, whenever there is a reconfiguration request, the heuristic
start to pack the first efficient devices. At the end of packing it computes the differ-
ence between the number of devices in the previous configuration and the current
one. If the difference is positive, then it turns on required additional energy efficient
resources among non active configuration to serve the difference. Otherwise turns off
the less efficient resources equivalent to the computed difference (see Algorithm 3).

Fig. 3.12 supports the claim that the heuristic is less disruptive compared to
the optimal. It shows the configuration difference between two consecutive solution
both for optimal and the on-line differential heuristic. The results is similar for
two-step and the on-line differential heuristic as well. At any instance the on-line

54

3.2 – On-line algorithm

 0

 1

 2

 3

 4

 5

 6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ro

ut
er

s

Load

Optimal
ηNIC+

Figure 3.12. Configuration difference between two consecutive solution

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
di

ff
er

en
ce

 (%
)

Load

ηNIC+

ηNIC-

Random

Figure 3.13. Comparison of on-line algorithms based on NIC+ and
NIC− efficiency sorting

algorithm has less or equal configuration difference compared to the optimal solution.
For instance a load transition from 0.25 to 0.3 results in turning on and/or off 6
routers in case of optimal solution but the number of routers don’t change in the
heuristic solution. As previously mentioned, the optimal algorithm computers for
a new configuration whenever there is a reconfiguration request and usually the
solution is different from the previous solution. The best it can do, for instance for
increase in traffic, is to turn on additional efficient resources without turning off the
previously running devices given that the previously running devices are among the
optimal under the current condition. And this is how the heuristic works; i.e., it
keeps the previous solution and builds up on it. Therefore the heuristic configuration
difference is a lower limit for the optimal configuration difference in a general sense
as shown in Fig. 3.12.

Finally, Fig. 3.13 highlights the importance of link power consideration in sorting
the back-end routers. It shows that considering link power consumption in sorting

55

3 – Multistage architecture energy management

routers improves the efficiency of the on-line heuristic except the unique behavior
seen at very low loads. At this load, among the randomized routers list, routers
with better efficiency have been at the front of the unsorted list favoring unsorted
scenario but this is not true in general.

3.3 Conclusions

In this chapter, we presented energy saving algorithms that minimize the energy
consumption of a multistage software router by resizing the architecture to the
traffic demand through proper choose of subset of the back-end routers. We defined
an optimal problem and proposed a two-step heuristic to overcome the scalability
issue related to the optimal algorithm. The simulation results obtained on a realistic
scenario show that the solution quality of the proposed scheme is within 9% of the
optimal solution in the worst case considered.

We also presented an energy saving on-line differential algorithm to solve the
same problem. We evaluated the algorithm in relation to the optimal solution and
compared its performance with respect to the two-step approach as well. The results
shows that, even though the on-line differential heuristic is less optimal compared
to the off-line approaches (both the optimal and two-step algorithms), the saving
is still significant in comparison to the no saving scheme. The main advantage of
on-line heuristic lies in its capability to build a new solution upon existing one.
This makes the algorithm non disruptive and therefore superior to the off-line ap-
proaches in terms of QoS provision. Moreover, it scales well to solve large size MSSR
configuration.

Finally, all algorithms make MSSR architecture to be energy efficient. That is
the architecture consumes energy proportional to the input traffic load demand.
The saving achieved by the proposed algorithms reaches up to 57.44% of the total
architecture energy consumption at low loads.

Though the energy saving schemes are defined for multistage software router,
the schemes could easily be adapted to other distributed architectures composed
of different parts (e.g. a proprietary router with multiple line cards) where energy
efficiency of the parts need to be addressed independently.

56

Chapter 4

Energy efficient multistage
architecture design

In chapter 3 we proposed energy saving algorithms that adapt a MSSR architecture
capacity to a given known traffic demand by tuning the back-end stage. The off-line
algorithms optimize the MSSR architecture at a given time instant for a known traffic
demand. If running this algorithm at different times for a variable traffic profile, the
MSSR architecture configurations obtained may be composed by a different set of
PCs. In the on-line case a differential approach is sought for: a new configuration is
obtained by updating the configuration defined at the previous time by minimizing
the number of PCs that should be switched on/off. In both approaches, no attempt
is made to globally optimize the MSSR architecture taking into account the long-
term (e.g., 24 hours) traffic profile.

It is also shown that the proposed algorithms can save up to 57.44% of energy
when compared to architectures that does not implement energy saving scheme [21].
However, the achievable savings depend on the back-end routers configuration. For
instance, if the back-end stage is built using PCs having coarse capacity granularity,
it is difficult to resize the configuration in period of low traffic load, and the installed
unused capacity translates into energy wastage. On the other hand, a back-end stage
composed of PCs with smaller capacity granularity is more flexible for reconfigura-
tion. But, the smaller capacity means a larger number of PCs to handle a given
traffic demand, which requires more energy.

The goal of this chapter is, therefore, to define the back-end routers configuration
that minimizes the energy consumption over a given period, under the assumption
that once the MSSR configuration has been optimally defined the energy saving
algorithms similar to those presented in Chapter 3 are used to adapt the back-end
stage configuration to the input traffic demand.

The remainder of this chapter is organized as follows. The proposed energy
efficient back-end routers design approaches are detailed in Sec. 4.1. Sec. 4.2 presents

57

4 – Energy efficient multistage architecture design

the energy consumption and back-end routers cost comparison of proposed design
approaches with the optimal and existing design methods. Finally we conclude this
chapter in Sec. 4.3.

4.1 Energy efficient back-end routers design

Capacity to handle traffic is the basic requirement when designing a high perfor-
mance MSSR to satisfy the peak load demand. However, the approach of sizing
back-end routers on the peak demand does not translate into energy efficient con-
figuration. Given the increasing importance of energy saving in networks, back-end
router design should consider energy consumption in addition to peak load capac-
ity requirement. To achieve this goal, we propose three different back-end routers
design approaches: a goal programming based methodology, a heuristic and a lo-
cally optimal approach, described in detail in the subsections 4.1.1, 4.1.2, and 4.1.3
respectively.

All design approaches assumes the following input parameters:

• splittable input traffic Tt ∈ R: an average traffic profile, derived by estimates
or measures, and sampled every time t;

• set of available PCs to be used as back-end routers. Let S be a set of groups
of PCs of different types. Each PC in the same group is characterized by the
same power consumption Pk ∈ R, routing capacity Ck ∈ R, and hardware cost
Wk ∈ R. In the design phase, in each group k ∈ S, PCs are assumed to be
available in infinite number.

4.1.1 Goal programming design approach

The goal programming design approach models the energy efficient MSSR design
as a preemptive goal programming problem. The model has two objectives: energy
minimization and cost minimization. The primary objective is to minimize the
energy consumption of the back-end routers over the traffic sampling duration. This
defines the the number of PCs, Nk, from each group k to be used as a back-end router
in the MSSR architecture. The problem is constrained by each router capacity and
a maximum admissible budget I. The budget constraint is used to keep the MSSR

58

4.1 – Energy efficient back-end routers design

cost under control. The problem is formulated as follows:

minimize

O(t,k) =
∑

t

∑

k PkNkαt (4.1)

subject to
∑

k CkNkαt ≥ Tt ∀t (4.2)
∑

k WkNk ≤ I ∀k ∈ S (4.3)

0 ≤ Nkαt ≤ Nk ∀k ∈ S,∀t, (4.4)

Nk,Nkαt ∈ N

αt ∈ [0,1]

The solution to the optimization problem (4.1) – (4.4) is the number of PCs Nk

from each group k to be used to build the back-end routers configuration. (4.2)
adapts Nk by αt ∈ [0,1] defining the suitable Nk composition that satisfies Tt at
each sampling instance t. It takes into account the energy saving algorithms running
after the initial design phase to adapt the designed configuration to the input traffic
demand Tt. (4.3) ensures that the hardware cost of the selected PCs should not
exceed the maximum cost I and (4.4) bounds the number of PCs needed at each
sampling time t within Nk.

The objective function, O(t,k), minimizes the sum of each sampling instance
active configuration power dissipation. This is equivalent to minimizing the energy
consumption of MSSR architecture over a specified period. Note that the active
configuration at time instance t consists of only Nkαt PCs from each group k. Hence,
the power dissipation of a MSSR configuration varies for each sampling time t.

If the maximum admissible budget I, which is difficult to set up a priori, is too
large with respect to traffic needs, the first design phase could result in an over-sized
configuration because the optimization target is the energy consumption. This situ-
ation may incur unnecessary cost to set up the back-end router configuration. Thus,
we define a second step that optimize the cost of the back-end routers by tailoring
any possibly over-sized configuration obtained in the first step. To maintain the
primary objective, we enforce the energy cost obtained from the energy optimiza-
tion problem as an equality constraint and build the budget optimization model as

59

4 – Energy efficient multistage architecture design

follows:

minimize

O(k) =
∑

k WkNk (4.5)

subject to
∑

k CkNkαt ≥ Tt ∀t (4.6)

0 ≤ Nkαt ≤ Nk ∀t,∀k ∈ S (4.7)
∑

t

∑

k PkNkαt = O(t,k) (4.8)

Nk,Nkαt ∈ N

αt ∈ [0,1]

Constraints (4.6) and (4.7) have the same meaning as in (4.2) and (4.4) respec-
tively. (4.8) guarantees that the new back-end routers configuration dissipates the
same power as in the previous phase. As pointed out earlier the primary objective
represents the sum of each sampling instance active devices power dissipation. Thus
the cost minimization step, except trimming any excess devices from the configura-
tion, should not affect the primary objective. This is achieved through minimization
of the total cost while maintaining the primary objective and satisfying the traffic
demand at each time t which is a problem defined through (4.5) – (4.8).

In summary, equations (4.1) – (4.8) define a preemptive goal programming model
that minimizes the aggregate energy consumption of back-end routers over a speci-
fied period with right cluster cost.

4.1.2 Heuristic design approach

The heuristic approach defines the back-end routers configuration by greedily choos-
ing the most efficient PCs until the traffic requirement is satisfied. The PCs efficiency
is defined as performance per unit watt.

ηk =
Ck

Pk

(4.9)

Since we assume infinite PCs for each group, only the most efficient group k is used
to build the back-end routers cluster. Thus, the number of PCs, Nk, required to
handle a peak load Tmax is simply computed as:

Nk =

⌈

Tmax

Ck

⌉

(4.10)

where
Tmax = max(Tt) (4.11)

60

4.1 – Energy efficient back-end routers design

As discussed in Chapter 2, similar cluster design approaches exist in the literature.
The Google cluster architecture [49] considers performance per unit of price as PCs
selection criteria to setup a cluster configuration. This approach gives priority to
commodity-class PCs to high-end multi-processor servers because of their cost ad-
vantage. The other and most common way of resizing a cluster capacity is to use
servers with best absolute performance such that the cluster handles peak load with
fewer reliable computers [51,52]. In both cases the clusters have not been analyzed
for power consumption. In the design validation section we will compare the energy
cost of the clusters designed by these design schemes with those of our proposed
design techniques.

4.1.3 Locally optimal design approach

This optimal design approach defines the optimal back-end routers configuration
considering only the peak load. The problem is therefore defined as: given a peak
load Tmax as define in (4.11) and a set of group of PCs, S, where each PC in group
k ∈ R is characterized by the same power consumption Pk ∈ R and routing capacity
Ck ∈ R, select a subset of S within a budget constraint that minimize the power
consumption of the back-end router configuration and satisfy the peak load demand.
It is formulated as follows:

minimize
∑

k PkNk (4.12)

subject to
∑

k CkNk ≥ Tmax (4.13)
∑

k WkNk ≤ I ∀k ∈ S (4.14)

Nk ∈ N

(4.12) – (4.14) is a simplified form of (4.1) – (4.4) with a single sampling time,
i.e. the peak load sampling time. Thus the decision variable αt has no meaning and
Tt is replaced by Tmax. Once the back-end router configuration is set up, i.e. Nk is
known from each group k, then this configuration is used as a basis for the other
sampling time t adjusted (by energy saving algorithms deployed after the design
stage) to the traffic demand Tt at each sampling instance. Of course this design is
not globally optimal since an optimal configuration in one load condition will not be
optimal (even after adjustment by energy saving algorithms) under another load.

61

4 – Energy efficient multistage architecture design

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 2 4 6 8 10 12 14 16 18 20 22 24

T
ot

al
 tr

af
fi

c
(G

bp
s)

time (hour)

5min sampling
60min sampling

Figure 4.1. Input traffic trace used in the experiment

4.2 Design validation

In this section we discuss the performance of the proposed approaches through
experimental results. First we discuss inputs to the design problem: the traffic traces
and the experimental scenario. Then, we present the main results and discuss the
results in detail in the following subsections.

4.2.1 Traffic traces

Instead of defining a synthetic traffic load with a typical day and night behavior, we
captured traffic from Twente university core router to derive the input traffic load.
To build large MSSR, traffic was scaled up while keeping the ratio among traffic
loads at different sampling time. We used Perl scripts to aggregate the traces into
5min, 15min, 30min and 60min time interval. Then, we averaged the traffic volume
over a week to get a per day volume statistics. Fig. 4.1 shows the 5min and 60min
volume traces. We did not include the 15 and 30min curves for the sake of clarity,
but they show a similar behavior.

4.2.2 Experimental setup

The following four groups of PCs are used as input to the model [10, 11, 35]:
An infinite number of PCs in each group is assumed in the design phase. Based on
this setup, we compare the different design approaches in terms of energy consump-
tion and cost of back-end routers configuration.

62

4.2 – Design validation

• Design-I : builds a back-end routers cluster by choosing PCs with highest per-
formance/price ratio [49]. As discussed in Chapter 2, this approach minimize
the cost of the cluster which we verify through our simulation. It achieves this
goal by giving high priority to commodity PCs to set up the cluster because
of their cost advantage.

• Design-II : builds a back-end routers cluster by choosing PCs with the highest
performance (i.e, routing capacity) [51, 52]. This approach is the most widely
used cluster sizing technique. In this case, the design approach prioritize high-
end PCs to take advantage of the absolute performance they provide and to
ensure hardware reliability.

• Design-III : builds a back-end routers cluster by choosing PCs with the highest
performance/power ratio. This is the heuristic cluster design scheme proposed
in this chapter. It orders the group of PCs according to their efficiency (perfor-
mance/power ratio) and selects the most efficient group to design the cluster.

• Design-IV : This approach is another design scheme proposed. It designs the
back-end routers cluster by locally optimizing the configuration at the peak
load. Then this configuration output will be used as a basis for other traffic
input sampled at a different time.

• Design-V,Ix: This is our third back-end routers cluster design scheme. It
solves the optimization problem defined in (4.1) – (4.8) for different budget
constraints Ix where x = 1,2,...n and I1 < I2 < ... < In to set up the cluster.

In comparing these design approaches, we derive the energy consumption over a
period of 24 hours. The optimal solution which is obtained by solving the following

Group Parameters
Group Ck (Mbps) Pk (W) Wk (Units)

I 6500 75 250
II 8700 95 400
III 10000 120 500
IV 8500 92 400

Table 4.1. Group of PCs and corresponding parameters used in the back-
end router cluster design

63

4 – Energy efficient multistage architecture design

Integer Linear programming (ILP) model will be used as a reference for comparison:

minimize

Ooptimal =
∑

k PkNk (4.15)

subject to
∑

k CkNk ≥ Tt (4.16)

Nk ∈ N

Note that we do not have any additional constraint in this model, except to guarantee
the capacity for the traffic load and solved for each sampling time t independently.

We also assume that algorithms similar to those presented in Chapter 3 will
be used to turn on/off PCs at each traffic sampling time to adapt a configuration
setup by the different cluster design schemes to the traffic demand. To avoid any
approximations, however, we rely on CPLEX [64] to collect the results.

4.2.3 Results

In this subsection we compare the back-end routers selected by the different design
approaches from the energy consumption and cost perspective. We also discuss the
impact of traffic sampling interval on each design approaches.

Energy consumption

Fig. 4.2 compares the power dissipation of the different configurations. The result is
based on the 60 minutes input traffic sampling. The figure is split into two figures
for clarity. The optimal solution (labeled as ”Optimal”) obtained by solving the
ILP model (4.15) – (4.16) is included in both graphs as a reference. It is the lower
limit to the energy consumption of back-end routers defined by the other design
approaches. One can also observe from both figures that all the design approaches
result in an energy proportional cluster configuration except that the efficiency of
the energy saving algorithms differ under different design approaches.

Fig. 4.2(a) presents power dissipation of a cluster designed by goal programming
approach for different initial investment Ix. It is easy to see that the most constrained
design (Design-V,I1) is the least energy efficient. This is because, constrained by
budget, the optimization problem has no option but to choose PCs with least cost
though they are not energy efficient. However, as the budget is relaxed, the back-end
routers energy efficiency improves where the least constrained design (Design-V,I4)
is the most efficient. Design-V,I4 has the same performance as the optimal solution
because extreme relaxation of the initial investment is the same as no constraint at
all which is the case of the optimal solution.

64

4.2 – Design validation

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20

Po
w

er
 (

kW
at

ts
)

Time (hours)

I1<I2<I3<I4

Optimal
Design-V,I1
Design-V,I2
Design-V,I3
Design-V,I4

(a) Power dissipation: Design-V for different bud-
get constraints, Ix

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20

Po
w

er
 (

kW
at

ts
)

Time (hours)

Optimal
Design-I

Design-II
Design-III
Design-IV

Design-V,I3

(b) Power dissipation: Design-I, Design-II, Design-
III, Design-IV and Design-V,I3

Figure 4.2. Power dissipation of back-end PCs defined by different design ap-
proaches (based on 60min traffic sampling)

Fig. 4.2(b) compares the power dissipation of Design-I, Design-II, Design-III,
Design-IV and Design-V. Only of the goal programming approach, i.e Design-V,I3,
is reported in this plot for comparison with the other design approaches. The reason
of choosing Design-V,I3 will be clear soon while we discuss about the cost of the back-
end router cluster cost in Subsection 4.2.3. But this result shows that Design-V,I3 is
performing better than the others and Design-II is the worst cluster design approach
from energy cost perspective. To distinguish among the other design approaches’
performance, we report the energy consumption of the back-end routers computed
using (3.32) which is equivalent to computing the area under each power curve.
The result is shown for a 24 hrs traffic pattern in Fig. 4.3(a) and Fig. 4.3(b).

Fig. 4.3(b) confirms that Design-II consumes the highest energy in the specified
period. This design approach gives priority to high performance devices to setup the
back-end routers cluster. Since the high-end servers have large capacity granularity,
resizing the configuration to the input traffic mostly ends up in wasting some ca-
pacity. Thus, less loaded PCs in the back-end are sources of energy inefficiency and
the energy required by this approach is roughly 2kWh larger than the one required
by the optimal algorithm per day.

The design principle that configures back-end routers based on performance/price
ratio, Design-I, has better tailoring properties as it give priority to mid-range PCs
that have relatively smaller capacity and consume less energy, making it easier to
match input traffic. This yields roughly 1kWh (per day) less energy consumption
than Design-II, although it is fairly far from the optimal.

Design-IV is comparable to the goal programming approach, being roughly
0.25kWh less efficient than the optimal solution over 24 hours. Since this design

65

4 – Energy efficient multistage architecture design

 4

 6

 8

 10

 12

 14

 12 14 16 18 20 22 24

E
ne

rg
y

co
ns

um
pt

io
n

(k
W

h)

Time (hours)

I1<I2<I3<I4

Optimal
Design-V,I1
Design-V,I2
Design-V,I3
Design-V,I4

 0

 2

 4

 0 2 4 6 8 10

(a) Energy consumption: Design-V

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 12 14 16 18 20 22 24

E
ne

rg
y

co
ns

um
pt

io
n

(k
W

h)

Time (hours)

Optimal
Design-I

Design-II
Design-III
Design-IV

Design-V,I3

 0

 2

 4

 0 2 4 6 8 10

(b) Energy consumption: Design-I, Design-II,
Design-III, Design-IV and Design-V,I3

Figure 4.3. Energy consumption of back-end PCs defined by different design
approaches (based on 60min traffic sampling)

approach is based on optimization problem, the cluster is composed of heteroge-
neous PCs from different groups giving more flexibility to resize the back-end PCs
to match the load demand. The design scheme is only locally optimal to the peak
load, and hence less efficient compared to the goal programming (Design-V,I3) or
the optimal approach.

Design-III, on the other hand, performs worse than the two other proposed design
schemes. In this design approach, even though best efficient group is chosen to set
up the cluster, the cluster is composed of homogeneous PCs making it less efficient
to tune the cluster to the input traffic load.

The curves labeled Design-III, Design-IV, and Design-V,Ix are the energy con-
sumption of back-end routers cluster design approaches proposed in this thesis. Goal
programming technique outperforms the other design approaches if not under very
tight budget constraint (see label Design-V,I1 in Fig. 4.3(a)) in which case the en-
ergy consumption is similar to Design-III and Design-I (See Fig. 4.3(b)). However,
with less strict budget requirements, goal programming performance is very close
to the optimal solution (see label Design-V,I3 and Design-V,I4), saving up to 1-
2 kWh every day if compared to other design approaches. The goal programming
approach is more efficient because it selects PCs from heterogeneous groups giving
more flexibility to resize the back-end PCs to match input traffic.

The proposed design approaches save roughly 10% of energy when compared
to existing design techniques. This figure even rises to 20% for the goal program-
ming design approach if the budget constraint is further relaxed. Therefore these
design approaches supplement the energy saving algorithms proposed in Chapter 3
to achieve saving higher than the reported 57.44% saving.

66

4.2 – Design validation

Back-end router cluster cost

Since cost is always a key consideration, it is important to compare the cost of
back-end routers defined by different design approaches, as shown in Fig. 4.4. As
expected, Design-I has the least price because it is based on the performance/price
ratio selection criteria which tries to minimize price while increasing performance.
Design-V,I1 has similar costs mainly because of the tight initial investment con-
straint. It is also interesting to note that the two approaches have similar energy
efficiency, as shown in Fig. 4.3(b). However, the cost of Design-V,Ix increases as the
problem is less and less constrained by initial investment while the energy consump-
tion decreases. The goal programming solution comparable to the optimal solution,
i.e. Design-V,I4, costs ≃1.5-2 times larger than any of the other approaches. From
all possible Design-V constrained by different initial investment Ix, Design-V,I3 has
similar costs with the other design approaches but it achieves near optimal energy ef-
ficiency. That is why we considered Design-V,I3 to compare its energy consumption
with the other design approaches in the previous results. Design-V,I3 is preferable
for the reason that we are comparing design approaches with similar cost and in
addition we considered a design output which has energy efficiency as close as the
optimal while minimizing the cost. But, in general, there is a trade-off between
energy efficiency and cost in goal programming back-end routers design approach
which can be controlled by selecting a proper budget constraint.

Except the best goal programming approach, all other design approaches have
similar cost. At least with the considered set of PCs, which are those available on
the market today, energy efficiency seems to be one of the most important metric
in designing back-end routers cluster.

 2000

 2500

 3000

 3500

 4000

 4500

 5000

D
esign-I

D
esign-II

D
esign-III

D
esign-IV

D
esign-V

,I1
D

esign-V
,I2

D
esign-V

,I3
D

esign-V
,I4

C
lu

st
er

 c
os

t (
U

ni
ts

)

Figure 4.4. Cluster cost for different design approaches

67

4 – Energy efficient multistage architecture design

 10000

 11000

 12000

 13000

 14000

 23 23.2 23.4 23.6 23.8 24

E
ne

rg
y

co
ns

um
pt

io
n

(W
h)

Time (hours)

Optimal
Design-I

Design-II
Design-III
Design-IV

Design-V,I3

(a) 15min traffic sampling

 10000

 11000

 12000

 13000

 14000

 23 23.2 23.4 23.6 23.8 24

E
ne

rg
y

co
ns

um
pt

io
n

(W
h)

Time (hours)

Optimal
Design-I

Design-II
Design-III
Design-IV

Design-V,I3

(b) 60min traffic sampling

Figure 4.5. Energy consumption: Design-I, Design-II, Design-III, Design-IV, and
Design-V,I3 (based on 15min and 60min traffic sampling)

Sampling interval impact on design appraoches

We also analyzed the impact of traffic sampling intervals on energy efficiency. We
analyzed the energy consumption of the back-end PCs using traffic traces sampled
every 5min, 15min, 30min and 60min. Fig. 4.5(a) and Fig. 4.5(b) present energy
consumption of back-end router cluster defined by the different design approaches
under 15min and 60min traffic sampling respectively. Comparing Fig. 4.5(a) and
Fig. 4.5(b) reveals that energy consumption depends only slightly on traffic sam-
pling interval. For instance, if we consider goal programming design approach, the
difference in energy consumption is only 44 Wh over 24 hour period if the clus-
ter is designed based on 15min and 60min. We present here the 15min and 60min
sampling but the trend is similar for 5min and 30min sampling as well.

However, if the back-end routers cluster is analyzed under a sampling interval
for which it was not designed, the results are different as shown in Fig. 4.6. We
considered a cluster designed based on 60min sampling, later analyzed for its energy
consumption under the same traffic trace but for a 5min sampling interval. The curve
labeled ”Design-X/Sampling-Y” represents a back-end PCs designed under ”X min”
traffic sampling but analyzed for energy consumption under ”Y min” sampling. The
figure shows the difference in energy consumption for a MSSR designed for 60min
and analyzed for 60min and 5min traffic sampling time. The mismatch accounts for
0.8 kWh per day. This implies that algorithms responsible to resize the back-end
routers configuration after initial deployment should stick to the sampling time used
during the design phase to reduce energy inefficiency.

68

4.3 – Conclusions

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20

E
ne

rg
y

co
ns

um
pt

io
n

(k
W

h)

Time (hours)

Design-60/Algo-60
Design-60/Algo-5

Figure 4.6. Design and sampling mismatch effect

4.3 Conclusions

We proposed three different energy efficient back-end routers design approaches that
make energy saving algorithms more efficient. They permit to save up to 10% of
energy with respect to existing design approaches for similar budget. Savings could
raise to 20% for the goal programming design approach if the budget constraint is
further relaxed.

The traffic sampling interval is not so fundamental in designing energy efficient
back-end routers. But, if back-end PCs are designed for a given sampling time,
algorithms responsible to resize the configuration for variable traffic load should
stick to the sampling time used during the design stage for better efficiency.

Although we considered the specific design scenario of a MSSR architecture, the
proposed design approaches can be used in any cluster design that involve PCs as
the basic computational resources.

69

Chapter 5

Multistage architecture network
management

In Chapter 1 we discussed that the MSSR advantages come at the cost of control
and management complexity. This complexity problem has partially been addressed
from the control plane perspective [19]: An internal control protocol named DIST
has been developed to: i) configure the architecture; ii) coordinate the routing
process among back-end routers and the load balancing function among LBs; and
iii) provide automatic fault recovery mechanisms. Furthermore, DIST dynamically
maps the virtualCP on one of the back-end routers.

In Chapter 3 and 4 we discussed MSSR energy management in detail. In this
chapter we tackle the information management issue in MSSR architecture. After
briefly introducing management information organization, we discuss MSSR archi-
tecture management complexity problems (Section 5.1) and set management re-
quirements to build a management system suitable for MSSR (Sec. 5.2). Then in
Sections 5.3.1, 5.3.2 and 5.3.3 we describe the solution to the MSSR internal net-
work management problem detailing required communication model modification
and methods on how to create a unified information management system that rep-
resents the MSSR architecture. Scalability analysis of proposed solution is detailed
in Section 5.3.4. Finally in Section 5.3.5 we briefly discuss the proposed solution
implementation and conclude the chapter in Section 5.4.

5.1 Problem description

Networks require management procedures to monitor and control their operation.
To reach this goal, network devices keep track of management information, such
as cross-traffic, interface status and general system statistics. This information
is organized into a management information base (MIB) [53] accessible through

71

5 – Multistage architecture network management

different management protocols such as SNMP, NetConf and NetFlow [56,69,70].

The MIB is organized in a tree structure for individual network devices: objects,
ranging from scalar objects such as the system up time to tabular objects, such as
the routing table, are represented as tree leaves. A MIB object has the following
specifications: a unique name, attributes and valid operations that can be performed
on the objects (read and write). A numeric tag, called object identifier (OID), is
used to navigate through the tree to uniquely identify each MIB object.

Individual devices in a network has its own MIB and hence MIB variables are
directly accessible. The MSSR architecture, however, has a unique characteristics.
It is different from local area network in that the internal network has to be hidden
from external network mimicking a single device. It is different as well from a single
device because internally it is composed of devices having independent computing
capability. From management perspective this means that the MIB information
is distributed among different internal elements and none of them represents the
multistage architecture. For example consider the sysUpTime1. Each internal com-
ponent in MSSR has its own sysUpTime but which one represents the up time of the
multistage architecture as a whole? Or do we need to generate a new sysUpTime?
Analyzing such management related questions to create a unique MIB for multistage
software router requires additional complexity.

In this chapter we discuss building a multistage software router MIB from the
internally distributed management information among internal components. There-
fore the problem of MSSR information management can be seen as the problem
of mapping and/or combining the distributed information into an aggregated view.
This problem is twofold: i) definition of a communication model to collect the dis-
tributed data and ii) mapping the various data to create a single-entity view. We
define an internal network manager that coordinate the internal elements and oper-
ate on the MIB information distributed among the internal elements to create such
a single-entity view.

In addition the internal network manager has to work in coordination with other
modules, such as the multistage energy saving module described in Chapter 3, that
affects management operation. Turned off devices by the energy saving algorithms
are not available to respond to a management request. Consequently a multistage
management system need to track such unaccessible information for consistent man-
agement.

Access to management information is further complicated if any of the internal
device is not management capable. For instance LBs implemented in FPGA [26] are
not management capable because these devices do not support management agents

1sysUpTime is the time (in hundredths of a second) since the network management portion of
the MSSR architecture was last re-initialized [53].

72

5.2 – Multistage architecture internal network management requirements

which are responsible to respond to management requests. Therefore it is not possi-
ble to request for management information at all if the devices are not management
capable. Whenever it is possible to request for management information, these de-
vices track only limited number of the vast majority of management information.
The obvious question to answer is that how does the MSSR build its management
information from internal devices under this condition?

Addressing these and similar challenges require either modification of existing
functional areas of network management [71,72] or definition of new design require-
ments and new approach to manage MSSR architectures. In this thesis we took
the later road and present our proposal to solve the above described management
complication.

5.2 Multistage architecture internal network man-

agement requirements

In this section we discuss multistage network management design requirements which
guides us in proposing an MSSR management solution and evaluating its feasibility.
We identified the following four management requirements and a fifth one is included
as a future work.

1) Unified management information: MSSR is build on the principle that
the whole architecture will be viewed as a single device to external network. This
principle applies for the management information as well. Hence the multistage
architecture should have a single MIB, which could be virtual or accessible locally
to the internal manager, representing the whole architecture. Management informa-
tion unification is necessary because each component in the multistage architecture,
as an independent element, stores its own management information. That is, the
management information is dispersed internally and there is no single management
information base (MIB) representing the whole multistage architecture. Therefore
building such a unified MIB is one of the fundamental requirements.

2) Management information coherence: The internal network is prone to
failure. In such situation management information of the failed device is not ac-
cessible. Besides internal component failures, other functional modules of the ar-
chitecture controls the internal devices in achieving some objective. For instance,
the energy module proposed in Chapter 3 turns off back-end routers to save energy
consumption of the architecture. During this off period, the MIB of the turned off
device is not available to the internal manager. Those internal fluctuations result
in management information inconsistency when observed by the external manager
unless the internal manager copes up with such internal effects.

3) Scalability: The internal manager runs on one of the back-end router;

73

5 – Multistage architecture network management

namely the virtualCP. The amount of management information to be gathered from
internal devices at any time should not impede the performance of the virtualCP
as it is responsible for internal architecture coordination. Furthermore excessive
management information (if any) should not affect internal link bandwidth espe-
cially that of the VirtualCP. Thus, in designing a multistage management system,
scalability should have to be taken into account as well.

4) Predict non-management capable devices management information:
Some internal devices, for instance LBs implemented on NetFPGA, of the MSSR
architecture do not have management capability. In other words, the standard
management agents do not run in these devices to collect management information.
The internal manager, therefore, has to predict information related to devices that
do not have management capability.

5.3 Proposed management architecture

Given the MSSR management system requirements, we present our solution to the
management challenges an MSSR architecture faces in the following sections. The
proposal is based on building a virtual MIB. That is the virtualCP does not have
most of required management information locally rather collects the information
from internal devices and compiles it at the time an external manager requests for
it. This design approach has the advantage of being scalable as will be discussed
later in this chapter. The other design approach could be to build a MIB local to
the virtualCP and regularly update the MIB with the information collected from
internal devices irrespective of a request from external manager. This could results
in management information flooding in the internal network and could threat the
management system as well as the whole architecture scalability. We postponed this
research as a future activity.

As detailed in Section 2.2, SNMP is successful in network management and it is
a widely deployed protocol. And hence we consider SNMP as preferred management
protocol for MSSR network management as well. We also adopted the hierarchical
architecture management approach shown in Fig. 5.1 as a network management
systems (NMS). It uses the concept of manager of managers sitting at a higher level
and requesting information from smaller domain managers in a tree like fashion.

We propose an SNMP dual-role entity named aggregator that coordinates the
internal, independently running, SNMP agents and interacts with the external man-
agers issuing SNMP requests. The aggregator is logically one of the modules of the
virtualCP, the entity in charge of architecture control and coordination. However,
it may run independently of other modules, possibly in a different back-end router.

Load balancers redirect any external SNMP requests to the aggregator. When
an SNMP request is received, the aggregator queries the internal SNMP agents to

74

5.3 – Proposed management architecture

A

M

A

MSSR 1

Agents

Aggregators

External

Manager

A

M

A

M

AA

MSSR 2

Figure 5.1. Management System used in multistage Software Router:
logical architecture

obtain the required MIB information and aggregates the information representing
the whole multistage architecture. In other words, the aggregator is a dual-role
entity located at the mid-level of the hierarchy: for external managers it acts as an
agent and for internal agents it acts as a manager.

In terms of real implementation, whereas LBs and the switch (may) run an
SNMP agent, back-end routers host both the aggregator and the agent functionali-
ties. More precisely, each back-end router runs two instances of an SNMP process:
an aggregator (listening on the standard SNMP port to be reachable from exter-
nal hosts) and a standard agent listening on a different (configurable) port, used
for internal communication only. Even if all the back-end routers are listening on
the standard SNMP port, only one aggregator handles the external requests, be-
cause LBs forward SNMP request to the active aggregator only which resides on the
back-end router designated as the one hosting the virtualCP by the DIST protocol.
The standard SNMP agent instance permits to have the same interface towards all
elements of the architecture and is used to collect the local information.

All back-end routers run both SNMP instances for resilience purpose. Indeed,
if the currently active aggregator fails, another one can quickly take over, avoiding
management failures. The take over procedure is taken care by the DIST protocol.
When DIST detects a failure of the current aggregator, it elects a new one and
reconfigures the LBs to properly redirect SNMP traffic.

Observe that not all the internal elements may be SNMP-capable. Whereas back-
end routers can be assumed to be SNMP-capable because they are based on Linux
PCs, LBs, especially if hardware based, might not run an SNMP agent. Therefore,
we assume two classes of load balancers: SNMP-capable and SNMP-incapable. This
assumption affects the way in which the aggregator collects and computes MIB vari-
ables. In the first case, the aggregator can directly collect the proper information

75

5 – Multistage architecture network management

from the LBs agents. In the second case, either some MIB variables are approxi-
mated on the basis of the data available at the back-end routers or an alternative
collection mechanism is deployed, as detailed in Sec. 5.3.3. This is in line with one of
the management requirements listed in Section 5.2, i.e. predicting non-management
capable devices management information.

To ease information sharing among aggregators (which is needed for a quick
takeover in case of failure) and communication with the DIST protocol entity, the
architecture also comprises a database. Among others, the database stores config-
uration information of the internal elements and most MIB counters. If the LB is
not SNMP-capable, a minimal set of interface statistics, namely the received/trans-
mitted bytes/packets and the link speed information are also saved in the database.
The database is important, in general, to keep management information coherence.
Database resilience issues are not discussed because standard techniques can be
adopted.

The proposed aggregator module shares some features with the SNMP proxy
agent, documented in RFC 2576 [73]. However the purpose of a proxy agent is
message translation between the different SNMP versions, while the work presented
here focuses on creating a single-entity view of the multistage architecture to be
presented to external SNMP-capable peers.

5.3.1 Manager-agent communication model

The standard communication scenario used in SNMP [74] works for a single device
which has all the information in the local MIB. However, in the studied multistage
architecture, as already stated, the aggregator does not have the whole information
locally available. This requires a modification to the standard SNMP manager-agent
communication model.

Fig. 5.2 shows the modified manager-agent communication model. The steps
highlighted in the dashed box are the required extension to deal with the multistage
architecture. Upon a request reception, the aggregator agent decodes the request
to extract the object identifiers (OIDs) and checks the variable availability. If the
variable is locally available, the aggregator manager responds reporting the current
variable value. Otherwise, the aggregator sends SNMP requests to the appropriate
internal element(s), collects the response(s) received within a given timeout 2 and, if
required, aggregates the data to create the single-entity MIB variable. Finally, the
aggregator agent answers to the original external SNMP request.

If multiple responses are expected from the internal elements, a response to the
external manager’s request is sent on the basis of the available information at a given
time, even if some responses from internal agents are not available yet. For those

2In our implementation, the internal timeout was set to one second

76

5.3 – Proposed management architecture

Command

Responder/

Commander

Dispatcher

Message

Processing

Model

Security

Model

Receive SNMP

Request from

Network

Process PDU

prepareDataElement

aggregateResponsePDU

processIncomingMsg

createInternalPDU

prepareOutgoingMsg

generateRequestMsg

Send SNMP

Request to

Internal Agents

Receive SNMP

Response from

Internal Agents

prepareDataElement

processIncomingMsg

returnResponsePDU

prepareResponseMsg

generateResponseMsg

Send SNMP

Response to

Network

Figure 5.2. Modified manager-agent communication model for the mul-
tistage software router

elements which did not respond for whatever reason, the aggregator uses, if available,
the corresponding variable value saved in the database at the previous successful
request. On reception of a new request for a counter type MIB variable, if the agent
comes back to service, the aggregator checks to detect any variable re-initialization:
if found, the old value contained in the database and the newly available counter
value are summed up to mask the discontinuity. This compensation guarantees that
counters are kept monotonically increasing. Violating the monotonicity behavior of
counters would be disturbing for the external management software, because these

77

5 – Multistage architecture network management

values are typically used to compute temporal trends.

5.3.2 multistage router MIB

In the MIB definition of our multistage software router architecture, we mainly
consider, among all variables defined in the MIB tree, the system, the interface (IF)
and the IP group objects and demonstrate on how to build a unified management
information for MSSR architecture. This is one of the main MSSR management
requirements that we want to achieve (See Section 5.2 for detail).

The MIB variables can be grouped into two main categories, based on how the
aggregator computes the response:

Global Variables This category contains variables which are global for the mul-
tistage software router, e.g., the routing table (ipRouteTable), the system up time
(sysUpTime) or the system name (sysName). These variables do not depend on a
specific internal element; hence, they are stored in the database to ease information
sharing among all aggregators. A response to an external SNMP request for this
type of variables translates simply into a query to the database. The database might
be populated by the aggregator itself or by the DIST daemon depending on the spe-
cific information. For example, the system name is provided by the aggregator,
while the routing information is updated by DIST.

Collected Variables This category comprises all the variables requiring collection
of data from one or more internal agents, e.g., interface information. A further
division is between specific and aggregated variables. Specific variables can be fetched
through a single request to a specific internal element. This group comprises all the
variables containing specific properties of an internal element, e.g., the link status
(ifOperStatus) or the link speed (ifSpeed). Instead, aggregate variables need multiple
queries to different internal agents and require some kind of data aggregation. For
instance, the total number of received packets at the IP layer (ipInReceives) or the
discarded packets at the interface (ifInDiscards) are computed using counters from
several internal elements.

5.3.3 Single-entity management information view: the case
of aggregate variables

Global and collected variables are easy to handle: a simple request forwarding either
to the database manager or to an internal agent is needed. Thus, we focus on how
to compute the more complex aggregate variables. These variables mainly comprise
IF and IP counters.

78

5.3 – Proposed management architecture

Fig. 5.3 shows the main counters involved during packet forwarding, both in a
single device router and in the multistage software router. The challenge is to define
a mapping between the counters on the left, representing the single-entity view we
want to achieve, and the counters on the right distributed over the three stages of
the multistage architecture. In the following subsections we present such mapping.
Where ambiguity might exist, we use an over-line to indicate the mapped computed
variables and the superscript LB and BR for counters at LB or back-end router
interface respectively. Furthermore, for simplicity, we define ifInPkts as the sum
of both unicast (ifInUcastPkts) and non-unicast (ifInNUcastPkts) packets.

ifInOctets, ifInErrors and ifInUnknownProtos

ifInOctets, ifInErrors and ifInUnknownProtos count respectively the number
of received bytes, the number of discarded packets due to errors and to unknown/un-
supported protocols. These counters are interface specific and, therefore, simply
treated as collected variables.

As already introduced earlier, the computation of MIB variables may be difficult
because some elements may be non SNMP-capable. For this reason, we consider
three different cases:

• SNMP-capable LBs: SNMP messages are used;

• SNMP-incapable, DIST-capable LBs: The existing control plane is extended
to transport minimal traffic statistics (e.g. packet and byte counters);

• SNMP-incapable and DIST-incapable LBs: Data collection is not possible.
Counters are approximated using the information available at the back-end
routers (which are SNMP-capable), assuming a uniform distribution of traffic
among front-end interfaces. Unfortunately, ifInErrors and ifInUnknownProtos

variables are not available in this case, because these events occur at LBs’ in-
terfaces only.

Similar considerations apply to the outgoing counterparts: ifOutOctets, ifOutErrors

and ifOutUnknownProtos.

79

5
–
M
u
lt
is
ta
g
e
a
rc
h
it
ec
tu
re

n
et
w
o
rk

m
a
n
a
g
em

en
t

ifInoctets

ifInErrors

ifInUnknown-

Protos

ifInDiscards

ifOut
Errors

ifIn

ifOut
UnknownProtos

ifIn

ifOut
Discards

ifIn

ifOut ifIn
Pkts

ifInPkts

INOUTIN

ifOut
Errors

ifIn

ifOut
UnknownProtos

ifIn

ifOut
Discards

ifIn

ifOut ifIn
Pkts

INOUT

ifOut
Errors

ifIn

ifOut
UnknownProtos

ifIn

ifOut
Discards

ifIn

ifOut ifIn
Pkts

INOUT

ipInReceives

ipInHdrErrors

ipInAddrErrors

ipInDiscards

ipInUnknown-

Protos

ipForw-

Datagrams

ipInDelivers

IN OUT

ipOutReceives

ipOutHdrErrors

ipOutAddrErrors

ipOutDiscards

ipOutUnknown-

Protos

ipOutDelivers

Layer 2

Layer 3

ifOut
Errors

ifIn

ifOut
UnknownProtos

ifIn

ifOut
Discards

ifIn

ifOut ifIn
Pkts

INOUT OUT

ifOutoctets

ifOutErrors

ifOutUnknown-

Protos

ifOutDiscards

ifOutPkts

Load

Balancer
Load

Balancer

Switch Backend

Router

Switch

ipInReceives

ipInHdrErrors

ipInAddrErrors

ipInDiscards

ipInUnknown-

Protos

ipForw-

Datagrams

ipInDelivers

IN OUT

ipOutReceives

ipOutHdrErrors

ipOutAddrErrors

ipOutDiscards

ipOutUnknown-

Protos

ipOutDelivers

ifInoctets

ifInErrors

ifInUnknown-

Protos

ifInDiscards

ifInPkts

INLayer 2

Layer 3

OUT

ifOutoctets

ifOutErrors

ifOutUnknown-

Protos

ifOutDiscards

ifOutPkts

Single Device Router Multi-stage Software Router

Inbound Path Outbound Path

Figure 5.3. Main IF and IP counters involved in packet forwarding for a single-stage router (right) and
the multistage software router (left)

80

5.3 – Proposed management architecture

ifInDiscards

As defined in the RFC 1213 [53], the variable ifInDiscards counts the packets
which, even if correct at reception time, are discarded by the device for any rea-
son. We use this definition to compute all packets lost while traversing the internal
network of the multistage architecture. However, it is not possible to track the ex-
act path (and thereof the exact counters involved) of each packet within the multi-
stage architecture, due to the unpredictable decision of the load balancing scheduler.
Hence, we define Di as the share of packets internally discarded for interface i.

Di is computed as the difference of the correctly received packets at the input
interface of the LB (ifInPktsLBi) and the sum of correctly received packets at all
the interfaces of the back-end routers RBR, weighted by wi, the percentage of traffic
received at interface i. RBR and wi are computed as:

RBR =
M
∑

j=1

(ifInPktsBR
j) (5.1)

wi =
ifInOctetsLBi

∑N

k=1
ifInOctetsLBk

(5.2)

where M is the total number of back-end router interfaces, and N the total number
of external LBs interfaces. Thus,

Di = ifInPktsLBi − wiR
BR (5.3)

ifInDiscardsi = ifInDiscardsLBi +Di (5.4)

The above formulas make the implicit assumption that the loss probability is the
same on all internal paths, but it has the nice property of being completely indepen-
dent of the internal load balancing scheme adopted. Thanks to this property, the
same procedure can also be applied on the reverse path to compute ifOutDiscardi
without knowing the result of the routing operation.

In case of SNMP-incapable and DIST-incapable LB, ifInDiscardsi is directly
approximated by Di, replacing ifInOctets and ifInPkts in Eq. (5.1)-(5.4) with the
received bytes rxBytes and received packets rxPkts statistics, respectively, stored
in the database by DIST.

ifInPkts

ifInPkts is the sum of all the corresponding counters at the back-end routers
weighted by wi.

ifInPktsLBi = wi(
M
∑

j=1

ifInPktsBR
j) (5.5)

81

5 – Multistage architecture network management

For SNMP-incapable and DIST-incapable LB the same substitution as for ifInDiscards

apply.

IP counters

The IP counters are located only at the back-end routers. The mapping consists of
the sum of all the corresponding IP counters at the back-end routers. For instance,
ipInReceives is computed as:

ipInReceives =
M
∑

j=1

ipInReceivesBR
j (5.6)

sysUpT ime

In addition to the above counters, a special mention is needed for the sysUpT ime,
a global variable used to store the elapsed time since the management system was
running. This information is used as a time reference for the other variables by the
external management software, to plot temporal graphs. Given that the aggregator
can run on different back-end routers at different time, it is important that the
sysUpT ime is not related to a specific instance of the aggregator, but rather tied to
the up time of the whole architecture. To achieve this, the first aggregator stores the
reference startup time into the database. When an aggregator fails and another takes
over, the start up information remains the same. The sysUpT ime is re-initialized if
and only if all the back-end routers fail.

5.3.4 Scalability analysis

The use of a centralized aggregator has the advantage of reduced management com-
plexity. However, scalability issue might arise due to the concentration of SNMP
traffic. We said in Section 5.2 scalability should be considered as one of the man-
agement system requirement. Thus, we try to estimate the amount of SNMP traffic
internally generated to process an external SNMP request. The worst case scenario
is a request for IfInDiscards, because it implies the collection of the largest number
of variables from the multistage architecture (see Eq. (5.1)-(5.4)).

As reported in Section 5.3.3, M is the total number of back-end router interfaces,
meanwhile N is the total number of external LB interfaces. Eq. (5.1) requires to
collect 2M variables, because IfInPkts is the sum of two variables and Eq. (5.2)
requires N variables. Furthermore, three more variables are needed for Eq. (5.3)
and (5.4). In the worst case, for each variable two SNMP messages (request and
response) are required. Typically, the management station repeats the requests in

82

5.3 – Proposed management architecture

time to plot temporal graphs and keep device history. Therefore, the amount of
management traffic can be computed as:

total traffic =
2(2M +N + 3)S

T

≈
2(2M +N)S

T
(5.7)

where S is the SNMPmessage size, typically about 100 bytes for SNMP response [75],
and T is the update period, typically set to about 5 minutes.

Let us now consider two scenarios: i) a medium range edge router with 360
interfaces at 1Gbps (i.e. a mid-range 7600 series Cisco router [76]) and ii) a core
router with 16 interfaces at 10Gbps (i.e. a high-end Juniper T series router [20]).
Assuming back-end PCs with 1Gbps routing capability and one LB per interface
(worst case in terms of generated messages), we have that for i) M = 360,N = 360
and for (ii) M = 160,N = 16. Even assuming a very aggressive update period of 1s,
the management traffic would be equal to 216 KBytes/s and 67 Kbytes/s respec-
tively for one MIB variable. Even considering tens of MIB variables traced by the
management station, the management traffic is negligible with respect to the total
forwarding routing capacity, posing no threat to the overall architecture.

The above example considers the worst case scenario where one request is sent
to collect one variable from internal device. In our implementation, however, the
aggregator generates a request containing a list of varbinds to a device to collect
more than one variable instances in one response to reduce SNMP traffic generated
internally. For each additional variable to the list we have an average 18bytes pay-
load. For one variable the SNMP packet average packet size is 100bytes and for two
variables it will be 118bytes and so on. That is, if k is the number of variables in
the varbinds list and l the payload due to one variable in the list, then the total
SNMP traffic generated will be

Total bytes ∼= SNMP packet sizeavg + k × l (5.8)

Thus instead of sending individual request to internal devices, request to multiple
variables are bundled together into a single SNMP message, which would allow to
significantly reduce the number of messages and increase transmission efficiency.
Furthermore, (5.7) overestimates the real internal management traffic, because an
SNMP request is smaller than an SNMP response message.

From these arguments we conclude that the proposed management system scales
well for large size of MSSR and does not pose a threat to the overall architecture
scalability in general.

83

5 – Multistage architecture network management

5.3.5 Software implementation

The management architecture proposed in this chapter was implemented and verified
in a test-bed, similar to the figure shown in Fig. 1.3. More precisely, the prototype is
based on a customized version of Net-SNMP (ver. 5.4.2.1) [60] and MySQL DBMS
in addition to the software required to implement the multistage architecture.

5.4 Conclusions

The multistage software router, being a distributed router architecture, requires a
coordinated information management to mask the internal structure and to present
the architecture to external managers (e.g. Cacti and MRTG) as a single device.

We defined a hierarchical management system based on three elements (a man-
ager, aggregators and agents) as an extension of the standard manager-agent com-
munication model. The new system consists of a multistage distributed MIB and an
extended communication model, which define the mechanisms to collect data from
distributed elements in a reliable way and to aggregate the data in an unified view.
The net-SNMP 5.4.2.1 [60] implementation has been modified and tested in a small
scale test-bed and its scalability was assessed through simple load computations for
two classical high-end router configurations.

84

Chapter 6

Conclusions

In this chapter overall conclusions to the research topics discussed in this thesis in
accordance with the research question identified in Chapter 1 are presented (Sec-
tion 6.1) and finally conclude the thesis by pointing out possible extension and future
research directions in Section 6.2

6.1 Overall conclusions

A multistage software router architecture has the advantage of low cost, flexibility
and programmability over their proprietary networking devices and overcomes a
single PC based software routers performance limitation by offering multiple, parallel
forwarding paths. Scalability issues of single PC based software routers has also been
addressed in MSSR architecture since the number of interfaces as well as performance
can be increased/improved by incrementally adding/upgrading internal elements
seamlessly.

Like many networking devices, the MSSR is typically designed for the peak
traffic and hence a high-end MSSR architecture might require tens or hundreds
of PCs. As the number of internal devices increases, however, MSSR faces two
challenges: control and management complexity and energy wastage during low
traffic periods. The large amount of energy consumption at high load could also
threaten the scalability feature of the MSSR architecture. In addressing these issues,
this thesis dare to develop a centralized MSSR management system that (i) collects
and compiles a unified information management system, and (ii) resize the MSSR
architecture to the input traffic in an efficient way such that the power wastage is
minimized during low load periods.

To solve energy related issues of MSSR architecture, three algorithms, namely
optimal, two-step and on-line differential algorithms, with their respective pros and
cons have been proposed in Chapter 3 to address the Research Question 2. The

85

6 – Conclusions

algorithms adapt the energy consumption of multistage software router to a traffic
load by properly choosing a set of active back-end routers to match incoming load.
Results show that the proposed algorithms save up to 57.44% of the architecture
energy consumption compared to the no saving scheme at low loads.

The two-step algorithm takes a divide-and-conquer approach to overcome the
scalability issue of the optimal algorithm. Even if the single steps in the two-step
approach are optimal, the combined solution however is not. This is because the
information required to globally optimize the system is partitioned among the two
steps making them less optimal from a global point of view. The two-step scales
well to a practical size of MSSR architecture and closely approximate the optimal
with a solution quality within 9% difference in the worst case considered.

Both the optimal and two-step algorithms face service disruption and/or in-
creased delay during reconfiguration period. The on-line differential algorithm, even
though less optimal compared to the off-line approaches (both the optimal and two-
step algorithms), has the advantage of being non disruptive and therefore superior
to the off-line approaches in terms of QoS provision. Moreover, it scales well to solve
large size MSSR configuration. The worst case performance gap of on-line algorithm
with with respect to the optimal algorithm is about 27.7% .

In Chapter 4 an energy efficient back-end routers design approaches that supple-
ment the efficiency of energy saving algorithms have been proposed. The back-end
PCs cluster design approaches permit to save up to 10% of energy with respect to
existing design approaches for similar budget constraint. The design schemes in
combination with the energy saving algorithms makes the MSSR implementation
practical by reducing energy wastage in MSSR architecture that could threaten its
scalability feature.

The answer to the Research Question 4 has been provided in Chapter 5. Mul-
tistage architecture is build on the principle that the whole architecture will be
viewed as a single device to external network. This principle applies for the man-
agement information as well. Therefore, a mechanism that coordinated information
management to mask the internal MSSR structure and present the architecture to
external managers as a single device has been proposed as a solution to information
management complexity.

The MSSR management system is designed to satisfy requirements: unified
management view, management information coherence, scalability and capability
to interact with management incapable internal devices. The system consists of
an extended communication model, which defines mechanisms to collect data from
distributed internal elements in a reliable way and aggregate the data to create a
unified management view. A database local to the virtualCP provides mechanism
to mask information inconsistency and also use to store management incapable de-
vices management information. From scalability test, we argued that the proposed
management system scales well and does not pose scalability threat to the overall

86

6.2 – Future research directions

architecture.

6.2 Future research directions

In this section we present some future research directions in MSSR management:

• In Chapter 3 we considered a single link NIC scenario where turning off a link
implied turning off the network card itself. Both the energy saving problem
modeling and simulation can be extended to include a multi-link network card
scenario where saving in the links and NICs are performed separately.

• Our MSSR back-end router cluster design discussed in Chapter 4 does not
consider the QoS issues. Inclusion of such parameter increases the complexity
of the problem but also results in a more complete work. In addition capacity
scaling of an MSSR architecture is performed by adding one or more PCs
to the back-end stage. However, the PCs to be added to the architecture
has to be carefully selected in such a way that the energy efficiency of the
architecture is not compromised. Hence inclusion of quality of service issues
as an additional design requirement and energy efficient capacity scaling could
be potential research activities in future.

• In extending Research Question 4 one could ask if it is possible to develop a
single MIB local to the virtualCP. In Chapter 5 we considered a virtual MIB -
the internal manager has to collect and compile SNMP variables from internal
components upon arrival of a request from external manager. The time need
to collect and compile the variables may increase with the number of inter-
nal devices which could result in response delay. This is undesirable for some
time critical applications. Therefore, compiling the information ahead before
the external manager request for it could be an alternative to reduce dissat-
isfaction by the external manager operator [77, 78]. This requires building a
MIB - a data base that stores compiled management information - local to the
virtualCP and updating frequently whether external managers ask for man-
agement information or not. Thus, responding to an external manger request
just involves querying the local data base which would be much faster than
the method proposed in this thesis. In addition the management system could
include the remaining SNMP features not considered in this thesis, namely
support to SNMP set and trap messages. How to set a MIB variable which is
located in scattered manner in the software router and get trap information
about the software router are other challenges for future work.

87

Appendix A

Splittable item with variable bin
size and cost - mapping

The combined problem considering router and link optimization is too complex
and it is not easily mappable to any of the well-known NP-hard problems when
considered in its full form. Thus we consider a simplified version of the combined
problem where the links are not considered, assuming that they are consuming a
negligible amount of energy. In this case the router selection is sufficient to optimize
the overall energy consumption.

The simplified version of our problem is as follows:

minimize
∑

r Prαr (A.1)

s.t.
∑

r tir = 1 ∀i ∈ I (A.2)
∑

i Ttir ≤ Crαr ∀r ∈ B (A.3)

αr ∈ {0,1} (A.4)

tir ∈ {0,1} ∨ [0,1] (A.5)

where I is the set of all items to be packed. This formulation is equivalent to the
formulation of the single steps described in Sec. 3.1.2, except for the fact that here
we consider a more general formulation with many items which may be splittable
(e.g. tir ∈ [0,1]) or unsplittable (e.g. tir ∈ {0,1}).

If the items are unsplittable, the problem can be directly mapped to the Gen-

eralized Cost Variable Sized Bin-Packing problem [65], where the items
are represented by traffic flows and the bins by the routers. Since that problem is
NP-hard, then the unsplittable version of our simplified problem is NP-hard as well
as the complete form which introduces the link optimization too.

On the other side, the splittable problem can be mapped to the Knapsack

problem [68], but looking at the allocation problem from a different perspective: the
items to be packed are the routers, meanwhile the knapsack is the traffic (which we

89

A – Splittable item with variable bin size and cost - mapping

consider as a single aggregated entity without considering network flows). But in
this case the mapping is not direct as in the previous case, since major differences
are present in the formulation of the problems. In fact, the Knapsack problem is
as follows:

maximize
∑

i vixi (A.6)

s.t.
∑

i wixi ≤ W (A.7)

xi ∈ {0,1} (A.8)

where xi is the selection variable for router i, vi and wi are respectively the value
and the capacity of the router i and W is the size of the traffic. The two main
differences in the formulations are:

1. the Knapsack problem is a maximization problem, while our problem is a
minimization problem, due to the usage of values instead of costs.

2. in the Knapsack problem the total size of selected items must not exceed
W , meanwhile in our case it must be at least equal to W in order to allocate
enough capacity to forward the input traffic T .

The first issue is negligible according that a correct transformation from energy
costs Pi to values vi exists (e.g. vi = 1

Pi
). The second issue is also negligible

according that it is possible to obtain the minimum W ≥ T such that
∑

i wixi ≤ W

and
∑

i wixi ≥ T . If such an algorithm to select the optimal W exists, then our
problem can be mapped directly to the Knapsack problem which is known to be
NP-hard [68], thus the splittable version of our simplified problem is NP-hard as
well as its complete form.

Finally, a simple algorithm to select the optimal W is based on the iterative
solution of a sequence of Knapsack problems, starting with W = T then increasing
W by the minimum unit at every step until the condition in Eq. A.9 is verified:

∑

i

wixi ≤ W ∧
∑

i

wixi ≥ T (A.9)

When the condition in Eq. A.9 is verified the optimal W is obtained as well as the
optimal solution for the simplified energy saving problem.

90

Bibliography

[1] “Cisco Visual Networking Index: Global Mobile Data Traf-
fic Forecast Update, 2011–2016,” white paper. [Online]. Avail-
able: http://www.cisco.com/en/US/netsol/ns827/networking solutions sub
solution.html [Accessed: Dec., 2012]

[2] “Internet usage statistics.” [Online]. Available:
http://www.internetworldstats.com/stats.htm [Accessed: Nov., 2012]

[3] R. Schaller, “Moore’s law: past, present and future,” Spectrum, IEEE, vol. 34,
no. 6, pp. 52–59, 1997.

[4] R. Tkach, “Scaling optical communications for the next decade and beyond,”
Bell Labs Technical Journal, vol. 14, no. 4, pp. 3–9, 2010.

[5] J. Turner and D. Taylor, “Diversifying the internet,” in Global Telecommuni-
cations Conference, 2005. GLOBECOM’05. IEEE, vol. 2. IEEE, 2005, pp.
6–pp.

[6] “Linux.” [Online]. Available: http://www.kernel.org/ [Accessed: Dec., 2012]

[7] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The Click
Modular Router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–297, 2000.

[8] M. Handley, O. Hodson, and E. Kohler, “XORP: an Open Platform for Network
Research,” SIGCOMM Comput. Commun. Rev., vol. 33, no. 1, pp. 53–57, 2003.

[9] “Quagga routing suite.” [Online]. Available: http://www.nongnu.org/quagga/
[Accessed: Dec., 2012]

[10] A. Bianco, R. Birke, D. Bolognesi, J. Finochietto, G. Galante, M. Mellia,
M. Prashant, and F. Neri, “Click vs. Linux: two efficient open-source IP net-
work stacks for software routers,” in High Performance Switching and Routing,
2005. HPSR. 2005 Workshop on, May 2005, pp. 18–23.

[11] M. Dobrescu, N. Egi, K. Argyraki, B. Chun, K. Fall, G. Iannaccone, A. Knies,
M. Manesh, and S. Ratnasamy, “RouteBricks: Exploiting parallelism to scale
software routers,” in ACM SOSP, 2009, pp. 15–28.

[12] “Vyatta Series 2500.” [Online]. Available: http://www.vyatta.com/ [Accessed:
July, 2011]

[13] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: a GPU-accelerated
software router,” SIGCOMM Comput. Commun. Rev., vol. 40, pp. 195–206,

91

http://www.cisco.com/en/US/netsol/ns827/networking_solutions_sub_solution.html
http://www.internetworldstats.com/stats.htm
http://www.kernel.org/
http://www.nongnu.org/quagga/
http://www.vyatta.com/

Bibliography

August 2010.
[14] “Cisco carrier routing system.” [Online]. Available:

http://www.cisco.com/en/US/products/ps5763/index.html [Accessed: Dec.,
2012]

[15] A. Bianco, J. Finochietto, M. Mellia, F. Neri, and G. Galante, “Multistage
switching architectures for software routers,” Network, IEEE, vol. 21, no. 4,
pp. 15–21, July–August 2007.

[16] A. Bianco, J. Finochietto, G. Galante, M. Mellia, D. Mazzucchi, and
F. Neri, “Scalable layer-2/layer-3 multistage switching architectures for soft-
ware routers,” GLOBECOM 2006, 2006.

[17] K. Argyraki, S. Baset, B. Chun, K. Fall, G. Iannaccone, A. Knies, E. Kohler,
M. Manesh, S. Nedevschi, and S. Ratnasamy, “Can software routers scale?”
in Proceedings of the ACM workshop on Programmable routers for extensible
services of tomorrow. ACM, 2008, pp. 21–26.

[18] I. Keslassy and N. McKeown, “Maintaining packet order in two-stage switches,”
in INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Proceedings. IEEE, vol. 2. IEEE, 2002,
pp. 1032–1041.

[19] A. Bianco, R. Birke, J. Finochietto, L. Giraudo, F. Marenco, M. Mellia,
A. Khan, and D. Manjunath, “Control and management plane in a multi-
stage software router architecture,” in High Performance Switching and Rout-
ing, 2008. HSPR 2008. International Conference on, May 2008, pp. 235–240.

[20] “T Series Core Routers.” [Online]. Available:
www.juniper.net/us/en/local/pdf/datasheets/1000051-en.pdf [Accessed:
Dec., 2012]

[21] A. Bianco, F. G. Debele, and L. Giraudo, “Energy saving in distributed router
architectures,” Communications (ICC), 2012 IEEE International Conference
on, June 2012.

[22] ——, “On-line energy saving in a distributed multistage router architecture,”
pp. 1–6, December 2012.

[23] A. Bianco, F. G. Debele, and N. Li, “Energy efficient distributed router design,”
Communications (ICC), 2013 IEEE International Conference on, June 2013.

[24] A. Bianco, R. Birke, F. G. Debele, and L. Giraudo, “SNMP Management in
a Distributed Software Router Architecture,” in Communications (ICC), 2011
IEEE International Conference on. IEEE, 2011, pp. 1–5.

[25] A. Bianco, J. M. Finochietto, G. Galante, M. Mellia, and F. Neri, “Open-
Source PC-based software souters: A viable approach to high-performance
packet switching,” in QoS-IP (Third international workshop on QoS in mul-
tiservice IP networks). Springer Berlin / Heidelberg, 2005, pp. 353–366.

[26] A. Bianco, R. Birke, G. Botto, M. Chiaberge, J. Finochietto, G. Galante,
M. Mellia, F. Neri, and M. Petracca, “Boosting the performance of PC-based

92

http://www.cisco.com/en/US/products/ps5763/index.html
www.juniper.net/us/en/local/pdf/datasheets/1000051-en.pdf

Bibliography

software routers with FPGA-enhanced network interface cards,” in High Per-
formance Switching and Routing, 2006 Workshop on. IEEE, 2006, pp. 6–pp.

[27] M. Petracca, R. Birke, and A. Bianco, “HERO: High-speed Enhanced Routing
Operation in Ethernet NICs for software routers,” Computer Networks, vol. 53,
no. 2, pp. 168–179, 2009.

[28] C. Partridge, S. Member, P. P. Carvey, I. Castineyra, T. Clarke, J. Rokosz,
J. Seeger, M. Sollins, S. Starch, B. Tober, G. D. Troxel, D. Waitzman, and
S. Winterble, “A 50-Gb/s IP router,” IEEE/ACM Transactions on Networking,
vol. 6, pp. 237–248, 1998.

[29] A. Bianco, R. Birke, L. Giraudo, and N. Li, “Multistage software routers in a
virtual environment,” in Global Telecommunications Conference (GLOBECOM
2010), 2010 IEEE. IEEE, 2010, pp. 1–5.

[30] R. Bolla, R. Bruschi, G. Lamanna, and A. Ranieri, “DROP: An open-source
project towards distributed SW router architectures,” in Global Telecommuni-
cations Conference, 2009. GLOBECOM 2009. IEEE. IEEE, 2009, pp. 1–6.

[31] L. Yang, R. Dantu, T. Anderson, and R. Gopal, “Forwarding and control ele-
ment separation (forces) framework,” RFC3746, pp. 5–30, 2004.

[32] V. Manral, R. White, and A. Shaikh, “Benchmarking basic OSPF single router
control plane,” IETF Request for Comments, vol. 4061, 2005.

[33] M. Webb et al., “SMART 2020: Enabling the low carbon economy in the
information age,” The Climate Group. London, vol. 1, no. 1, pp. 1–1, 2008.

[34] S. Mingay, “Green IT: the new industry shock wave,” Gartner RAS Core Re-
search Note G, vol. 153703, p. 2, 2007.

[35] “Approximate desktop, notebook, & netbook power usage.” [Online]. Available:
http://www.upenn.edu/computing/provider/docs/hardware/powerusage.html
[Accessed: March, 2012]

[36] D. Neilson, “Photonics for switching and routing,” Selected topics in quantum
electronics, IEEE Journal of, vol. 12, no. 4, pp. 669–678, July–Aug. 2006.

[37] “ARBOR Networks.” [Online]. Available:
http://asert.arbornetworks.com/2009/08/the-internet-after-dark/ [Accessed:
Dec., 2012]

[38] M. Gupta and S. Singh, “Greening of the Internet,” in Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for com-
puter communications, ser. SIGCOMM ’03. ACM, 2003, pp. 19–26.

[39] J. Chase and R. Doyle, “Balance of power: Energy management for server clus-
ters,” in Proceedings of the 8th Workshop on Hot Topics in Operating Systems
(HotOS), 2001, pp. 163–165.

[40] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath, “Dynamic cluster recon-
figuration for power and performance,” in Compilers and operating systems for
low power. Kluwer Academic Publishers, 2003, pp. 75–93.

93

http://www.upenn.edu/computing/provider/docs/hardware/powerusage.html
http://asert.arbornetworks.com/2009/08/the-internet-after-dark/

Bibliography

[41] T. Heath, B. Diniz, E. Carrera, W. Meira Jr, and R. Bianchini, “Energy conser-
vation in heterogeneous server clusters,” in Proceedings of the tenth ACM SIG-
PLAN symposium on Principles and practice of parallel programming. ACM,
2005, pp. 186–195.

[42] Broadcom Corporation, “Broadcom NetXtreme II network adapter user guide.”
[Online]. Available: http://www.broadcom.com/docs/support/ethernet
nic/Broadcom NetXtremeII Server T7.4.pdf [Accessed: Dec. 2012]

[43] K. Rajamani and C. Lefurgy, “On evaluating request-distribution schemes for
saving energy in server clusters,” in Performance Analysis of Systems and Soft-
ware, 2003. ISPASS. 2003 IEEE International Symposium on. IEEE, 2003,
pp. 111–122.

[44] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and D. Wetherall, “Re-
ducing network energy consumption via sleeping and rate-adaptation,” in Pro-
ceedings of the 5th USENIX Symposium on Networked Systems Design and
Implementation, ser. NSDI’08. USENIX Association, 2008, pp. 323–336.

[45] L. Chiaraviglio, M. Mellia, and F. Neri, “Energy-aware backbone networks: A
case study,” in Communications Workshops, 2009. ICC Workshops 2009. IEEE
International Conference on, June ’09, pp. 1–5.

[46] J. Restrepo, C. Gruber, and C. Machuca, “Energy profile aware routing,” in
Communications Workshops, 2009. ICC Workshops 2009. IEEE International
Conference on, June 2009, pp. 1–5.

[47] “Energy efficiency for network equipment: two steps
beyond greenwashing,” white Paper. [Online]. Available:
http://www.juniper.net/us/en/local/pdf/whitepapers/2000284-en.pdf [Ac-
cessed: Dec., 2012]

[48] R. Bolla, R. Bruschi, F. Davoli, and F. Cucchietti, “Energy efficiency in the fu-
ture Internet: A survey of existing approaches and trends in energy-aware fixed
network infrastructures,” Communications Surveys Tutorials, IEEE, vol. 13,
no. 2, pp. 223–244, quarter 2011.

[49] L. Barroso, J. Dean, and U. Holzle, “Web search for a planet: The Google
cluster architecture,” Micro, IEEE, vol. 23, no. 2, pp. 22–28, March-April 2003.

[50] Q. Ye and M. MacGregor, “Cluster-based IP router: Implementation and evalu-
ation,” in Cluster Computing, 2006 IEEE International Conference on. IEEE,
2006, pp. 1–10.

[51] “Windows clustering.” [Online]. Available:
http://technet.microsoft.com/en-us/library/cc757731(v=ws.10) [Accessed:
Dec., 2012]

[52] “Domino 8.0 administration.” [Online]. Available:
http://publib.boulder.ibm.com/infocenter/domhelp/v8r0/index.jsp [Accessed:
Dec., 2012]

[53] K. McCloghrie and M. Rose, “RFC 1213 Management Information Base for

94

http://www.broadcom.com/docs/support/ethernet_nic/Broadcom_NetXtremeII_Server_T7.4.pdf
http://www.juniper.net/us/en/local/pdf/whitepapers/2000284-en.pdf
http://technet.microsoft.com/en-us/library/cc757731(v=ws.10)
http://publib.boulder.ibm.com/infocenter/domhelp/v8r0/index.jsp

Bibliography

Network Management of TCP/IP-based internets: MIB-II,” 1991. [Online].
Available: http://www.rfc-editor.org/rfc/rfc1213.txt [Accessed: Nov., 2012]

[54] S. Aidarous and T. Plevyak, Telecommunications Network Manage-
ment:Technologies and Implementations. Wiley-IEEE Press, 1998.

[55] “Information technology - open systems interconnection -
systems management overview,” 1992. [Online]. Available:
www.itu.int/rec/T-REC-X.701-199201-S/en

[56] J. Case, and M. Fedor, and M. Schoffstall, and J. Davin, “RFC 1157 A
Simple Network Management Protocol (SNMP),” 1990. [Online]. Available:
http://tools.ietf.org/html/rfc1157 [Accessed: Nov., 2012]

[57] Aiko Pras and Thomas Drevers and Remco van de Meent and Dick A. C.
Quartel, “Comparing the performance of SNMP and Web services-based man-
agement,” IEEE Transactions on Network and Service Management, pp. 72–82,
2004.

[58] A. Pras and J. Martin-Flatin, “What can Web Services bring to integrated
management?” Handbook of network and system administration, p. 241, 2007.

[59] J. Schonwalder, A. Pras, and J. Martin-Flatin, “On the future of Internet man-
agement technologies,” Communications Magazine, IEEE, vol. 41, no. 10, pp.
90–97, 2003.

[60] “Net-SNMP.” [Online]. Available: http://net-snmp.sourceforge.net/ [Accessed:
Dec., 2012]

[61] Intel, “Intel network adapters user guide.” [Online]. Available:
http://www.intel.com/support/network/sb/cs-009715.htm [Accessed: Dec.,
2012]

[62] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan, “A power bench-
marking framework for network devices,” NETWORKING 2009, pp. 795–808,
2009.

[63] E. G. Coffman Jr, M. R. Garey, and D. S. Johnson, Approximation algorithms
for bin packing: a survey. PWS Publishing Co., 1997, pp. 46–93.

[64] “IBM ILOG CPLEX Optimization Studio.” [Online]. Available:
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
[Accessed: Dec., 2012]

[65] L. Epstein and A. Levin, “An APTAS for generalized cost variable-sized bin
packing,” SIAM J. Comput., vol. 38, pp. 411–428, April 2008.

[66] J. Kang and S. Park, “Algorithms for the variable sized bin packing problem,”
European Journal of Operational Research, vol. 147, no. 2, pp. 365–372, 2003.

[67] S. Skiena, The algorithm design manual. Springer, 1998, vol. 1.
[68] S. Martello and P. Toth, Knapsack problems: algorithms and computer imple-

mentations. John Wiley & Sons, Inc., 1990.
[69] E. R. Enns, “RFC 4741 NETCONF Configuration Protocol,” 2006. [Online].

Available: http://tools.ietf.org/search/rfc4741 [Accessed: Nov., 2012]

95

http://www.rfc-editor.org/rfc/rfc1213.txt
www.itu.int/rec/T-REC-X.701-199201-S/en
http://tools.ietf.org/html/rfc1157
http://net-snmp.sourceforge.net/
http://www.intel.com/support/network/sb/cs-009715.htm
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://tools.ietf.org/search/rfc4741

Bibliography

[70] E. B. Claise, “RFC 3954 Cisco Systems NetFlow Services Export Version 9,”
2004. [Online]. Available: http://tools.ietf.org/html/rfc3954 [Accessed: Nov.,
2012]

[71] W. Stallings, SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. Addison-Wesley
Longman Publishing Co., Inc., 1998.

[72] A. Clemm, Network Management Fundamentals. Cisco Press, 2007.
[73] R. Frye, and D. Levi, and S. Routhier, and B. Wijnen, “RFC 2576

Coexistence between Version 1, Version 2, and Version 3 of the Internet-
standard Network Management Framework,” 2000. [Online]. Available:
http://tools.ietf.org/html/rfc2576 [Accessed: Nov., 2012]

[74] D. Harrington, and R. Presuhn, and B. Wijnen, “RFC 3411 An Architecture
for Describing Simple Network Management Protocol (SNMP) Management
Frameworks,” 2002. [Online]. Available: http://tools.ietf.org/html/rfc3411
[Accessed: Nov., 2012]

[75] C. Pattinson, “A Study of the behaviour of the Simple Network Management
Protocol,” In Proc. of 12th International Workshop on Distributed Systems,
Nancy, France, 2001.

[76] “Cisco 7600 Series Routers.” [Online]. Available:
http://www.cisco.com/en/US/products/hw/routers/ps368/index.html [Ac-
cessed: Dec., 2012]

[77] J. Hoxmeier and C. DiCesare, “System response time and user satisfaction:
An experimental study of browser-based applications,” in Proceedings of the
Association of Information Systems Americas Conference. Citeseer, 2000, pp.
140–145.

[78] B. Shneiderman, “Response time and display rate in human performance with
computers,” ACM Computing Surveys (CSUR), vol. 16, no. 3, pp. 265–285,
1984.

96

http://tools.ietf.org/html/rfc3954
http://tools.ietf.org/html/rfc2576
http://tools.ietf.org/html/rfc3411
http://www.cisco.com/en/US/products/hw/ routers/ps368/index.html

List of Abbreviations

ACL Access Control List

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

DBMS Data base management system

DROP Distributed SW ROuter Project

ECR energy consumption ratio

FIFO First In, First Out

ForCES Forwarding and Control Element Separation

FPGA Field-Programmable Gate Array

GPUs Graphics Processing Units

ILP Integer linear programming

LBs Load Balancers

MIB Management Information Base

MILP Mixed Integer Linear programming

MRTG Multi Router Traffic Grapher

MSSR Multi-Stage Software Router

NAT Network Address Translation

NIC Network Interface Card

NMS Network Management Systems

97

List of Abbreviations

OID object Identifiers

OSI SM Open Systems Interconnection - systems managment

PCI Peripheral Component Interconnect

PDU Protocol data unit

pps packets per second

QoS Quality-of-Service

SMI Structure of Management Information

SNMP Simple Network Management Protocol

SR Software Router

VirtualCP Virtual Control Processor

XML Extensible Markup Language

XORP eXtensible Open Router Platform

98

Index

Aggregator, 74

Back-end routers, 4
design, 58
power management, 23

Cluster design, 18, 57
capacity based scaling, 18, 61
goal programming, 58
Google cluster, 18, 61
heuristic approach, 60
locally optimal, 61

Distributed software router
DROP, 15
Multistage software router, 14
RouterBricks, 14

Load balancer, 4

Management information base, 71
mapping, 78

Multistage architecture, 4, 14
virtualCP, 5
back-end PCs, 4
back-end routers, 4
control plan, 6
data plan, 5
load balancer, 4
management plane, 6, 71

Network management, 19, 71
communication model, 76
architecture, 74
management information base, 71, 78

protocols, 72
Network management architecture, 74

aggregator, 74
requirements, 73
scalability, 82

Network management requirements, 73

Off-line algorithms, 24
link optimization, 30
performance, 30
router optimization, 28

On-line algorithms, 35
complexity, 42
description, 38
performance, 44

Open-source network application, 2
Click Modular Router, 2
Linux, 2
Quagga, 2
XORP, 2

Power management, 15, 23
modeling, 25, 36
off-line algorithms, 24
on-line algorithm, 35

Software router, 2, 11
Click Modular Router, 2
multistage architecture, 4
PacketShader, 13
performance, 2

VirtualCP, 5

99

About the author

Fikru Getachew was born in Fitche, Ethiopia, on Setember 19th, 1974. He stud-
ied Electrical and Electronics Technology, Nazareth, Ethiopia and graduated in
1998 (Batchelor of Electrical/Electronics Technology). After four years of service
in govenmental university as an assistance graduate, he started to pursue his study
and obtained Masters of Technology(MTech) from Indian institute of Technology,
Kanpur, India in 2004. Until he joined Politecnico di Torino as PhD student in
2009, he served at Arba Minch University, Ethiopia as lecturer. In those years he
also worked as an ICT coordinator (2006 - 2009) and Departement head (2004 -
2006). During his office he successfully coordinated and follow up implementation
of World Bank financed projects which he won based on competition among other
universities in the country.

Since Jan. 2009 he has been with Department of Electronics and Telecommuni-
cations (DET) of Politecnico di Torino performing research activity mainly related
to distributed software routers and management. His main topics of interest in-
clude distributed systems, network management, network virtualization and cloud
computing.

A list of his publications in reverse chronological order are:

• Andrea Bianco, Fikru Getachew Debele, Nanfang Li, Energy Efficient Dis-
tributed Router Design, IEEE International Conference on Communications,
Budapest, Hangary, June 2013

• Andrea Bianco, Fikru Getachew Debele, Luca Giraudo, On-line Differential
Energy Saving in a Distributed Router Architecture, IEEE Global Communi-
cation conference, California, USA, December 2012

• Andrea Bianco, Fikru Getachew Debele, Luca Giraudo, Energy Saving in Dis-
tributed Router Architecture, IEEE International Conference on Communica-
tions, Ottawa, Canada, June 2012

• Andrea Bianco, Robert Birke, Fikru Getachew Debele, Luca Giraudo, SNMP
Management in a Distributed Software Router Architecture, IEEE Interna-
tional Conference on Communications, Kyoto, Japan, June 2011

101

